05.03.2015 Views

atoms

atoms

atoms

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Building Exotic Quantum Systems<br />

-Toward Scalable Quantum Networks<br />

Quantum optics with cold<br />

<strong>atoms</strong> trapped in 1d- and 2dphotonic<br />

crystals<br />

Entangled<br />

Entangled<br />

Chen-Lung Hung (postdoc)<br />

Prof. Kimble Quantum Optics<br />

group<br />

Caltech physics information day<br />

March 28, 2013<br />

ORCHID<br />

NSSEFF<br />

QuMPASS


Quantum Networks<br />

➪ Fundamental Scientific Question and Diverse Technical Challenges<br />

Quantum Nodeprocess<br />

/ store<br />

quantum information<br />

Quantum Channel -<br />

transport / distribute<br />

quantum entanglement<br />

Theoretical issues<br />

• Does it “work” – capabilities beyond any classical system<br />

• Characterization of entangled states ➪ Computationally intractable?<br />

Experimental implementation<br />

• Physical processes for reliable generation, processing, & transport<br />

of quantum states


Quantum Networks for Quantum Simulation<br />

“spin”<br />

“interaction”<br />

“spin”<br />

L. Amico, R. Fazio, A. Osterloh, & V. Vedral,<br />

“Entanglement in many-body systems,” Rev. Mod. Phys. 80, 517 (2008)<br />

R. P. Feynman, “Simulating Physics with Computers,”<br />

Intl. J. of Th. Physics 21, 467 (1982)


Building Exotic Quantum Systems -<br />

➪ “Lego blocks” for the realization of complex quantum systems<br />

➪ Fundamental scientific question and diverse technical challenges<br />

Laboratory realization of physical systems<br />

different in kind than have heretofore existed<br />

• Quantum information processing<br />

• Quantum measurement<br />

• Quantum simulation<br />

Characterization and verification<br />

of entanglement for multipartite systems


1) A Quantum Interface<br />

between Matter and Light<br />

What’s inside here?<br />

Atoms<br />

• Strongly coupled atom – photon<br />

via cavity QED<br />

Photons<br />

χ (κ ,γ )<br />

• Cirac, Zoller, Kimble & Mabuchi, PRL 78, 3221 (1997)


2) A Quantum Interface<br />

between Matter and Light<br />

What’s inside here?<br />

• Ensemble of ~ 10 5 <strong>atoms</strong><br />

• Strong interaction of single photons and collective spin excitations<br />

• Raymer; Bigelow, Kuzmich, Mandel; …., Fleischhauer, Lukin, …<br />

• Duan, Cirac, Lukin & Zoller – DLCZ, Nature 414, 413 (2001)<br />

Writing and Reading<br />

single spin excitations<br />

via Raman processes<br />

Write<br />

Field 2<br />

Field 1<br />

Read


Quadripartite entanglement<br />

• 4 atomic ensembles sharing 1 quantum of spin excitation<br />

K. Choi, A. Goban, S. Papp, S. J. van Enk & H. J. Kimble, Nature 468, 412 (2010)<br />

W ideal<br />

= 1 2<br />

⎡( 1000 + e iφ 1<br />

0100 ) + e iφ 0010 + e iφ 2<br />

⎣<br />

0001<br />

( )<br />

⎤<br />

⎦<br />

exp<br />

⇔ ˆρ <strong>atoms</strong><br />

exp<br />

Inferred fidelity F <strong>atoms</strong><br />

exp<br />

F <strong>atoms</strong><br />

for atomic W state at memory time τ 0<br />

= 0.2µs:<br />

exp<br />

= W ideal<br />

ˆρ <strong>atoms</strong><br />

W ideal<br />

= 0.9 ± 0.1<br />

Fluorescent image<br />

from 4 ensembles


3) A Quantum Interface<br />

between Matter and Light<br />

What’s inside here?<br />

• Strong focusing of one photon onto a localized atom<br />

• Efficient collection of atomic emission of single photons<br />

“Single atom in free space as a quantum aperture,”<br />

van Enk & Kimble, PRL 61, 051802 (2000)


Strong interactions of single photons & <strong>atoms</strong><br />

A new frontier to achieve 1), 2), 3) in one setting<br />

What’s inside here?<br />

1. Multi-pass interactions and small mode volume in an optical cavity (cQED)<br />

2. Large optical depth (e.g., atomic ensembles)<br />

3. Strong focusing (localization) of light


Demonstration of a State-Insensitive Nanofiber Trap<br />

A. Goban et al., Phys. Rev. Lett. 109, 033603 (2012); arXiv:1203.5108v1<br />

Nano-fiber<br />

SiO 2 nano-fiber<br />

diameter = 430nm<br />

E in in<br />

<br />

E reflected<br />

Current experiment - r 1<br />

0.07<br />

Projected - r 1<br />

0.9<br />

E transmitted


Cavity QED with Atomic Mirrors<br />

D. Chang, L. Jiang, A. Gorshkov & H.J. Kimble, N. J. Phys. 14 063003 (2012); arXiv:1201.0643<br />

In <br />

Cavity QED<br />

Out <br />

Quantum protocols<br />

-Single photon generation<br />

-Entanglement distribution<br />

-Quantum logic<br />

- <strong>atoms</strong><br />

- photons<br />

- …<br />

Mirror <strong>atoms</strong><br />

Impurity<br />

atom<br />

Mirror <strong>atoms</strong><br />

1d waveguide <br />

Mirrors as coherent quantum memories<br />

strongly coupled to single impurity atom


Building Blocks for Scalable Quantum Information Processing*<br />

d I<br />

<br />

p<br />

<br />

q<br />

d M<br />

*D. Chang, L. Jiang, A. Gorshkov & H.J. Kimble,<br />

New J. Phys. 14 063003 (2012); arXiv:1201.0643


Photon-Mediated Dipole-Dipole Interactions*<br />

π<br />

<br />

<br />

è Infinite range spin-spin interactions with sinusoidal coupling set by Γ 1D<br />

<br />

• Quantum many-body physics<br />

• Quantum information processing: universal gate set with built-in “wiring”<br />

=exited state <br />

=ground state <br />

*D.E. Chang, L. Jiang, A.V. Gorshkov, and H.J. Kimble, N. J. Phys. 14 063003 (2012)


Self Organization of Atoms along a 1-D Waveguide<br />

D. Chang, I. Cirac, & H.J. Kimble, Phys. Rev. Lett. 110, 113606 (2012)


A Exciting Way Forward -<br />

Quantum Optics and Atomic Physics<br />

with 1-D and 2-D Photonic Bandgap Structures<br />

Kimble – Painter at Caltech<br />

D. Chang at ICFO<br />

I. Cirac at MPQ<br />

K. Choi at KIST<br />

Oskar Painter<br />

Caltech<br />

~400 nm


Quantum Optics with 1-d Photonic Structures<br />

Ø Large atom-photon interaction: single atom reflectivity r 1<br />

> 0.9<br />

Ø Strong coupling in cQED<br />

Single-photon Rabi frequency 2g 0<br />

>10 GHz<br />

Ø Wave-vector “engineering”<br />

ω(k) 2.0<br />

ω 2<br />

1.5<br />

Long-range atom-atom interactions<br />

mediated by single photons<br />

Quantum many-body physics for<br />

internal & external degrees of freedom<br />

ω 1<br />

k 1<br />

= k 2<br />

1.0<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5<br />

k


Single color optical trap (blue trap) and strong coupling<br />

C.-L. Hung & S. Meenehan, arXiv:1301.5252 (2013) <br />

x<br />

x<br />

y<br />

z<br />

y<br />

z<br />

x


Device Design and Fabrication – Oskar Painter, Caltech<br />

1-d photonic waveguide butt coupled to conventional optical fiber<br />

Efficient butt-coupled fiber <br />

• Efficient “on chip” quantum connectivity<br />

provided by photons over integrated optical networks.<br />

100 μm <br />

Evanescent atom-light coupling <br />

2 μm <br />

Photonic crystal mirrors/cavities <br />

1 mm <br />

2 μm


A new experiment platform – Kimble 1 & Painter 2 Groups<br />

N i ~ 10 7 Cs <strong>atoms</strong><br />

at ρ ~ 10 12 /cm 3<br />

T ~ 10µK<br />

Optical fiber<br />

butt-coupled<br />

to SiN device<br />

SiN device –<br />

~ 300nm x 200nm<br />

waveguide<br />

terminated by<br />

1-d mirror<br />

2 μm <br />

1.5mm<br />

N f ~ 10 6 Cs <strong>atoms</strong><br />

at ρ ~ 10 11 /cm 3<br />

T < 10µK<br />

Evanescent<br />

atom-light coupling<br />

1. Aki Goban<br />

Chen-Lung Hung<br />

Jonathan Hood<br />

Su-Peng Yu<br />

2. Sean Meenehan<br />

Justin Cohen<br />

Richard Norte


Toward scalable quantum networks enabled by Quantum Optics<br />

Fiber optic<br />

technology<br />

Atom-nanofiber systems<br />

Fiber-coupled atomic ensemble<br />

Atoms<br />

Single trapped atom<br />

near microtoroid<br />

K. Vahala (Caltech-ENS)<br />

Atoms<br />

Atoms<br />

Photonic crystal cavity<br />

O. Painter (Caltech-ENS)<br />

Linear circuits<br />

+<br />

Quantum functionality


1 mm <br />

H. Jeff Kimble Group<br />

East Bridge - Basement<br />

Photonic crystal trap<br />

A. Goban<br />

J. Hood<br />

S. P. Yu<br />

C.-L. Hung (postdoc)<br />

Self-organization near 1dwaveguide<br />

D. Ding<br />

J. Muniz<br />

J. H. Lee (postdoc)<br />

Cavity QED in photonic<br />

crystal structure<br />

D. J. Alton<br />

A. McClung<br />

P. Forn-Diaz (postdoc)<br />

M. Pototschnig (postdoc)<br />

O. Painter Group<br />

S. Meenehan<br />

Justin Cohen<br />

R. Norte<br />

Theory collaborator<br />

D. Chang (ICFO)<br />

I. Cirac (MPQ)<br />

S. van Enk (Oregon)<br />

A. V. Gorshkov (IQI)<br />

L. Jiang (IQI)<br />

K. S. Choi (KIST)


IQIM<br />

2mm<br />

Caltech Institute for Quantum Information and Matter<br />

A Physics Frontiers Center<br />

with support from the Gordon and Betty Moore Foundation<br />

ORCHID <br />

NSSEFF <br />

!""<br />

Caltech Institute for Quantum Information and Matter<br />

NSF Physics Frontiers Center<br />

with support from the Gordon and Betty Moore Foundation<br />

QuMPASS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!