12.03.2015 Views

Product Catalog TEM

Interface between optics and electronics

Interface between optics and electronics

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Product</strong><br />

<strong>Catalog</strong><br />

Interface between optics and electronics


about us<br />

<strong>TEM</strong> Messtechnik - The Company<br />

Founded in 1988 by Dr. Thomas Müller-Wirts, <strong>TEM</strong><br />

Messtechnik right from the beginning aimed at the<br />

development of special solutions in the field of control<br />

and measurement techniques. The field of activities<br />

includes optics, electronics as well as chemistry and<br />

medicine. A handful of the customer-specific solutions<br />

has even matured to universal, self-contained<br />

products. The latter are presented in this catalog, thus<br />

giving an outline of our activities.<br />

If you are interested in any field related to the listed<br />

devices please do not hesitate to ask us for detailed<br />

information, for adaptations or even new developments.<br />

You will be impressed by our flexibility!<br />

Address<br />

<strong>TEM</strong> Messtechnik GmbH<br />

Grosser Hillen 38<br />

30559 Hannover<br />

Germany<br />

tel. +49-511-51089630<br />

fax +49-511-51089638<br />

info@tem-messtechnik.de<br />

www.tem-messtechnik.de


Laser<br />

Electronics<br />

Optical<br />

Measuring<br />

Technique<br />

Control<br />

Engineering<br />

Fields of Activity<br />

scan generators, high voltage piezo amplifiers,<br />

temperature controllers, diode laser divers, laser<br />

diode modulators, precision wavelength stepping,<br />

linearized scans, USB programmable all-in-one<br />

systems, customer specific solutions<br />

interferometric and atomic frequency references<br />

for tunable lasers, single-mode and mode-hop<br />

detectors for tunable lasers, position/polarization<br />

sensitive detectors, lock-in detection, HF<br />

modulation techniques, laser linewidth measurement<br />

tools<br />

precision frequency regulators for fixed or<br />

scanning frequency lasers, laser amplitude/power<br />

stabilisation with AOM or EOM, laser beam<br />

position/pointing stabilisation, automatic singlemode<br />

fiber coupler, multidimensional control of<br />

tuning elements<br />

about us<br />

Development<br />

Service<br />

customer specific adaption of our standard<br />

products, development of electronic devices,<br />

analogue and digital solutions, OEM boards,<br />

modular systems or stand-alone devices: from the<br />

first idea to the production-ready solution<br />

Scientific<br />

Consultation<br />

high competence consultation in the fields of<br />

tunable lasers, interferometry, laser distance<br />

measurement, spectroscopy, sensor electronics,<br />

laser driver and stabilisation electronics, power<br />

supplies, close relationship to universities and<br />

research institutions


Content<br />

Aligna<br />

Automated laser beam<br />

alignment and stabilization<br />

system<br />

µAligna<br />

Compact form of<br />

automated laser beam<br />

alignment and stabilization<br />

system<br />

µAligna Motor Control<br />

High-precision motor<br />

control electronics<br />

µAligna Crosshair<br />

Ultra-high precision electronic<br />

crosshair


FiberLock<br />

Automatic single mode<br />

fiber coupling<br />

Digital LaseLock<br />

Fully digital stand-alone<br />

laser stabilization<br />

electronics<br />

Content<br />

iScan<br />

The instrument for fast<br />

and precise control of<br />

tunable laser sources<br />

CoSy<br />

Compact unit for<br />

absorption saturation<br />

spectroscopy


Content<br />

PhaseLock<br />

Universal and compact<br />

phase stabilization<br />

electronics<br />

NoiseEater<br />

The universal laser intensity<br />

stabilization<br />

miniScan<br />

Scan generators -<br />

for scanning Fabry-Perot<br />

Interferometers and other<br />

applications<br />

PulsePicker<br />

Repetition rate reduction<br />

system


PDA-S<br />

Universal, sensitive<br />

transimpedance amplifier for<br />

photo diodes<br />

miniPiA<br />

The compact piezo amplifier<br />

Content<br />

miniSupply<br />

Universal symmetric DC<br />

power supply


Aligna ®<br />

®<br />

Aligna<br />

Automated Laser Beam Alignment and<br />

Stabilization System<br />

- fully automated high precision beam alignment<br />

- self learning parameter settings<br />

- modular system, control of up to 4 beams, all wavelengths<br />

- 2D and 4D scanning (position X,Y, angle X,Y)<br />

Applications<br />

• High precision material processing<br />

• Compensation of drifts and air fluctuations<br />

• Compensation of disturbance by moved optical components<br />

(Delay Lines, Tuning Elements, Zoom Optics,...)<br />

• Switching of one laser between several applications<br />

• Multi-dim scans for characterization of optical setups<br />

• Automatic coupling / optimization to single-mode fibers<br />

or to High Harmonic Generation Capillaries<br />

• Complete auto-alignment after laser replacement<br />

• Laser / experiment at different optical tables or rooms<br />

• Trepanning Optics: Compensation of laser drifts<br />

www.<strong>TEM</strong>-Messtechnik.de


Principle of Operation<br />

Aligna ®<br />

Laser beams, used in an experiment or in industrial applications, can move<br />

in space for many reasons:<br />

1: thermal drifts<br />

inside the laser,<br />

movements by<br />

frequency detuning,<br />

by power variation, etc.<br />

Laser<br />

Cooling System<br />

2: thermal drifts<br />

of cooling system<br />

and mechanical laser<br />

mounts<br />

6: moved optical elements<br />

(delay lines, switching mirrors,<br />

motorized telescopes,...)<br />

5: thermal effects in<br />

optical elements and<br />

mirrors<br />

Target<br />

3: drifts of alignment<br />

and folding mirror<br />

holders<br />

4: air fluctuations and<br />

temperature gradients<br />

7: Movement of the experimental<br />

(optical) tables or vacuum chambers<br />

• cw and pulsed lasers: rep rate 0.1 Hz ... 200 MHz / cw<br />

• modular system, up to 4 beams controlled by one device<br />

• servo loop accuracy: < 1 µm, < 1 µrad (down to 10 ... 100 nm)*<br />

• very large scan range: > 18° ***<br />

• all wavelengths (with standard detectors: 380 ... 1100 nm,<br />

with special detectors 180 nm ... 10 µm, even THz), any beam diameter<br />

• high speed: up to 5 kHz servo bandwidth**<br />

• several combinations of motorized and piezo-driven actors<br />

• fully computer control (USB, serial, Ethernet) and fully autarkic operation<br />

• connection of external measurement devices (power meters, PDs, ...)<br />

* with "OneInch" piezo actors<br />

** with "OneInch" piezo actors, small mirrors<br />

*** with motorized mirror mounts "Aligna 40”<br />

PSD 4D e:<br />

Position Sensitive Detector 4D:<br />

Position X,Y, Angle X,Y<br />

Visualization and Control System<br />

- logging of pointing and power<br />

- several beams simultaneously<br />

- automatic learning of opto-mech setup


Applications<br />

High Precision Material Processing<br />

Auto-Alignment System:<br />

NO manual alignment necessary!<br />

Two motorized and piezo-based mirrors,<br />

4D pointing measurement<br />

Aligna ®<br />

®<br />

Aligna R:<br />

Rotation stage for<br />

polarization control,<br />

intensity stabilization<br />

®<br />

Aligna multiDrill:<br />

AutoFocus and<br />

Pointing Stabilizer Head<br />

One laser distributed to several<br />

high precision applications:<br />

compensation of laser drifts, mechanical drifts,<br />

air fluctuations, vibrations,residual<br />

position error of switching mirrors<br />

®<br />

Aligna StabBoxx:<br />

Compact All-In-One<br />

Laser Beam Stabilizer:<br />

4D beam control by two motorized<br />

and piezo-based actuators<br />

4D pointing measurement<br />

for pointing servo control<br />

very easy integration into<br />

existing setups


Modular System: Electronic Components<br />

Aligna ®<br />

®<br />

Aligna 4D: 19" Rack Control Electronics<br />

- modular system: up to 4 independent control<br />

modules, 4 beams (4 SPM modules)<br />

- µController 32 bit, interfaces: USB, Serial, (Ethernet opt.)<br />

- LCD menu user guidance, user-definable keys<br />

- Software package for visualization and PC control<br />

- Supply for motor-driven and piezo-based actuators<br />

(up to 24 piezo actors, up to 8 motors, up to 16 loads)<br />

®<br />

Aligna 4D<br />

SPM: Signal Processing Plug-In Module<br />

- for connection of one PSD 4D, two PSD 2D, or other measurement<br />

heads (power meters, photo diodes, temperature, ...)<br />

SPM-P: Add-on to SPM, for use of Piezo Servos<br />

- including four fast servos for piezo actuators (or AOM scanner)<br />

- µC-controlled state variable filters for compensation of piezo resonances<br />

SPM-SH: Add-on to SPM, for use of Slow-RepRate Pulsed Lasers<br />

- Sample&Hold / Mixing circuitry, incl. pulse signal normalization<br />

- repetition rates: 0.1 Hz ... 30 kHz (>30 kHz: no SPM-SH needed)<br />

SPM-ADDA: Signal Processing Plug-In Module for external devices<br />

- for additional analog and digital inputs and outputs<br />

- input signals from power meter heads, photo diodes, temperature sensors<br />

- output signals to shutters, external devices, control systems<br />

- 8 analog inputs (+/- 10 Volts), 8 analog outputs (+/- 10 Volts), 8 TTL I/O<br />

PiezoDriver: Piezo Actor Driver Module<br />

- eight (max. 12) piezo-based actors (4 x "OneInch", e.g.) per module<br />

- 0...150 V, 50 mA standard (0...95V, 0...500 V,... on demand)<br />

µStp Driver: Micro Stepping Driver Module<br />

- including 8 power amplifiers, each 1 A max<br />

- four motorized linear actors (or micro-stepping motors)<br />

2x Aligna40 or Aligna60, e.g.,<br />

or 4x AlignaLin or other (std. or microstepping) motors<br />

- other loads, like peltier coolers (TEC), relays, shutters, diode lasers<br />

Aligna IO: Digital IO for communication with SPS, PLC (or other control systems)<br />

- used for status, error, station control<br />

- LEDs for indication of all input/output levels<br />

- standard SUB-D 25 (female) connector<br />

- 4 (6, 8) opto-coupled inputs (TTL compatible, 0...24V, voltage/current)<br />

- 4 (6, 8) relay-coupled outputs (complete galvanic de-coupling, 0.5A max.)<br />

alternatively 4 (6,8) FET outputs<br />

Aligna Con: BNC Connection Box for analog or digital signals<br />

- used for access to all relevant analog input/output signals<br />

(PSDs, motors, piezo actors, control signals, TEC, shutter, user-spec. components)<br />

- for use with ext. control systems (oscilloscope, DACS,...)<br />

- 8 BNC connectors, HD15 male, HD15 female<br />

Kangoo: Comprehensive Control Program<br />

- visualization of pointing, intensity, servo, etc.<br />

- logging of pointing, intensity, etc. vs. time<br />

- 2D or 4D scanning and measurement<br />

- self learning algorithms to optimize parameters for<br />

best fitting to the opto-mechanical setup,<br />

including all kinds of optical elements<br />

- compatible to Windows 7, Vista, XP, 2k, 9x


Modular System: Opto-Mechanical Components<br />

PSD 4D i: Position Sensitive Detector "industrial"<br />

- 4D measurement of position X,Y and angle X,Y<br />

- cw and pulsed lasers<br />

(test beam pow. cw: 100 µW...10 mW, pulsed: >10 nJ)<br />

- high accuracy: < 1 µm, < 1 µrad<br />

PSD 4D e: Position Sensitive Detector "experimental"<br />

- like "PSD 4D i", but discrete components<br />

- can be easily adapted to experimental setup<br />

or to even higher accuracy: < 10 nm, < 10 nrad<br />

PSD 2D: Position Sensitive Detector 2D (cw or pulsed)<br />

- individual use, or combined for 4D detection<br />

- std. wavelength: 380...1100nm<br />

special versions 180 nm...2600 nm<br />

Aligna 40: Motorized Mirror Mount 40x40 mm<br />

- two ultra microstepping linear actors<br />

- manual actuation by knurled knobs<br />

- reference optical encoder for both axes<br />

- several fixing methods for mirrors (or other components)<br />

(1", 1/2", 2", and others, any thickness)<br />

Aligna60<br />

PSD4D e<br />

PSD2D<br />

PSD4D i<br />

Aligna ®<br />

Aligna 60: Motorized Mirror Mount 60x60 mm<br />

- same as Aligna 40, larger size, preferred for 2" mirrors)<br />

Aligna MoPiA 40: Motorized + Piezo Actors<br />

- compact combination of Aligna 40<br />

and BeamScan OneInch<br />

Aligna40<br />

MoPiA40<br />

Aligna Lin: Motorized Linear Stage<br />

- application: auto-focussing optics<br />

- linear travel: 7 mm (more on demand)<br />

- various adapters for optical components<br />

- 1" lenses or other components<br />

- M9x0.5 mm objectives (and others)<br />

- optical reference pos. detection<br />

BeamScan OneInch: Piezo-based XY scanner<br />

- 1.25 mrad, max. 1.5 kHz<br />

- fitting to standard 1" mirror mounts<br />

AlignaLin<br />

w. SM fiber<br />

collimator<br />

AlignaLin<br />

1 inch lens<br />

BeamScan HS: Piezo XY scanner with high stroke<br />

- for auto-coupling to Single-Mode Fibers<br />

- high stroke: up to 2x100 mrad, 0.5 kHz<br />

- opt: man. or motorized focussing for SM fibers<br />

BeamScan OneInch<br />

BeamScan HS<br />

BeamSwitch DC: Beam Switch and Shutter<br />

- Precision beam switch, double ball bearings, adjustable limits<br />

- feedback signal (optical encoder) for valid action in both positions<br />

- beam diameter < 10 mm, beam dump or high reflecting mirror<br />

- no heat dissipation in both positions (current pulse control)<br />

BeamSwitch DC


Technical Data<br />

Aligna ®<br />

Dimensions:<br />

control electronics in 19-rack<br />

Aligna40 motorized mirror mount<br />

Aligna60 motorized mirror mount<br />

PSD4Di:<br />

PSD4De:<br />

Interfaces:<br />

protocol:<br />

®<br />

Aligna Control Unit<br />

µC:<br />

Electrical supply:<br />

Power consumption:<br />

484 x 343 x 150 mm<br />

40 x 40 x 63 mm<br />

60 x 60 x 63 mm<br />

100 x 147 x 47 mm<br />

200 x 110 x 60 mm<br />

USB, RS232 serial, (Ethernet optional)<br />

clear text ASCII commands, internal script language<br />

including visualization and measurement software<br />

incl. user-spec .adaptations, LabView VIs available<br />

32 Bit MC68332<br />

100...120/200..250 VAC, 50/60 Hz (24V DC opt.)<br />

< 97 W (72 W typ.)<br />

Servo bandwidth (4D):<br />

Number of calculation modules:<br />

Number of piezo amplifier modules:<br />

Number of motor driver modules:<br />

Output voltage of piezo amps:<br />

selectable, 0.1 Hz...20 kHz<br />

1 to 4 (up to 8 PSD2D or 4 PSD4D)<br />

1 or 2 (8 ... 24 HV channels)<br />

1 or 2 (2 to 4 mictrostepping motors/actuators)<br />

std: 0...150 V, active limitation (0..500V, 0..95 V opt.)<br />

Subject to change without notice<br />

10/2013


®<br />

μAligna<br />

Automated Laser Beam Alignment and<br />

Stabilization System<br />

- fully automated high-precision beam alignment<br />

- self-learning parameter settings<br />

- modular system, control of up to 2 beams, all wavelengths<br />

- 2D and 4D scanning (position X,Y and angle X,Y)<br />

- very compact form factor<br />

Applications<br />

- high precision material processing<br />

- compensation of thermal drifts<br />

- compensation of disturbance by moved optical components<br />

(delay lines, tuning elements, zoom optics, ...)<br />

- switching one laser between several applications<br />

- multi-dim scans for characterization of optical setups<br />

- automatic coupling / optimization to single-mode fibers<br />

or to High Harmonic Generation Capillaries<br />

- complete auto-alignment after laser replacement<br />

- parallelization of laser beams to moving axes<br />

µAligna<br />

www.<strong>TEM</strong>-Messtechnik.de


Principle of Operation<br />

Laser beams, used in an experiment or in industrial applications, can move<br />

in space for many reasons:<br />

µAligna<br />

1: thermal drifts<br />

inside the laser,<br />

movements by<br />

frequency detuning,<br />

by power variation, etc.<br />

Laser<br />

Cooling System<br />

2: thermal drifts<br />

of cooling system<br />

and mechanical laser<br />

mounts<br />

3: drifts of alignment<br />

and folding mirror<br />

holders<br />

4: air fluctuations and<br />

temperature gradients<br />

6: moved optical elements<br />

(delay lines, switching mirrors,<br />

motorized telescopes,...)<br />

5: thermal effects in<br />

optical elements and<br />

mirrors<br />

Target<br />

7: Movement of the experimental<br />

(optical) tables or vacuum chambers<br />

•<br />

•<br />

cw and pulsed lasers: rep. rates 5 kHz ... 200 MHz / cw<br />

flexible system, up to two beams controlled by one device<br />

• servo loop accuracy: < 1 µm, < 1 µrad<br />

• all wavelengths (with standard detectors: 380 ... 1100 nm,<br />

with special detectors 180 nm ... 10 µm, even THz), any beam diameter<br />

• several combinations of motorized actuators and PSDs or other detectors<br />

• full computer control via USB (serial or ethernet optional) and autarkic<br />

operation<br />

• connection of external measurement devices (power meters, PDs, ...)<br />

* with motorized mirror mounts "Aligna 40”<br />

PSD 4D e:<br />

Position Sensitive Detector 4D:<br />

Position X,Y, Angle X,Y<br />

Visualization and Control System<br />

- logging of pointing and power<br />

- several beams simultaneously<br />

- automatic learning of opto-mech setup


Control Electronics<br />

μAligna: Compact Control Electronics<br />

- μController, 8 bit<br />

- interfaces: USB (serial, ethernet or wireless optional)<br />

- up to eight motor driver outputs (more on request),<br />

1.5 A max<br />

- up to 16 input channels (±10V) for two PSD 4D<br />

detectors or other measurement heads (power meters,<br />

photo diodes, temperature, ...)<br />

- up to 16 output channels (±10V)<br />

2<br />

- SPI and I C bus<br />

Software<br />

Kangoo: Comprehensive Control Program<br />

- vizualization of all μController parameters<br />

- logging of any value vs. time<br />

- 2D or 4D scanning and measurement<br />

- fully scriptable<br />

- compatible with Windows 7, Vista, XP, 2k, 9x<br />

- plain-text communication with the μController<br />

for simple integration with other control software<br />

Opto-Mechanics<br />

µAligna<br />

Aligna 60: Motorized Mirror Mount 60x60 mm<br />

- two ultra microstepping linear actuators<br />

- manual adjustment by knurled knobs<br />

- reference optical encoder for both axes<br />

- several fixing methods for mirrors or other<br />

components<br />

(1", 1/2", 2", and others, any thickness)<br />

Aligna 40: Motorized Mirror Mount 40x40 mm<br />

- same as Aligna 40, smaller form factor<br />

- preferred for tight space requirements<br />

Aligna R: Rotational Stage<br />

- precise control of polarizing elemtents<br />

- laser intensity stabilization<br />

- rotations of cylindrical lenses<br />

Aligna60<br />

Aligna40<br />

PSD 4D i: Position Sensitive Detector "industrial"<br />

- 4D measurement of position X,Y and angle X,Y<br />

- cw and pulsed lasers<br />

(test beam pow. cw: 100 µW...10 mW, pulsed: >10 nJ)<br />

- high accuracy: < 1 µm, < 1 µrad<br />

Aligna R<br />

PSD 4D e: Position Sensitive<br />

Detector "experimental"<br />

- like "PSD 4D i", with discrete<br />

components<br />

- easily adapted to any<br />

experimental setup or to even<br />

higher accuracies (< 10 nm,<br />

< 10 nrad)<br />

PSD 4D i<br />

PSD 4D e


Technical Data<br />

µAligna<br />

Dimensions:<br />

control electronics:<br />

Aligna40 motorized mirror mount<br />

Aligna60 motorized mirror mount<br />

PSD-4D i:<br />

PSD-4D e:<br />

Interfaces:<br />

protocol:<br />

Aligna<br />

µC:<br />

Electrical supply:<br />

Power consumption:<br />

®<br />

µ Control Unit<br />

Number of input channels:<br />

Number of motor driver outputs:<br />

210 x 125 x 45 / 90 mm<br />

40 x 40 x 63 mm<br />

60 x 60 x 63 mm<br />

100 x 147 x 47 mm<br />

200 x 110 x 60 mm<br />

USB, RS232 serial, (ethernet optional)<br />

clear text ASCII commands, internal script language<br />

including visualization and measurement software<br />

incl. user-spec. adaptations, LabView VIs available<br />

AVR ATmega<br />

9 - 24V DC power Adapter, 3A<br />

< 50W (20W typ.)<br />

8 or 16 (up to 4 PSD-2D or 2 PSD-4D)<br />

4 or 8 (up to 4 Aligna40 or Aligna60 actuators)<br />

Subject to change without notice<br />

12/2013


Motor Control<br />

®<br />

μAligna Motor Control<br />

High-Precision Motor Control Electronics<br />

- µStep drivers for controlling motorized actuators<br />

- USB interface and PC software for remote steering and process<br />

automation<br />

- open software for user programming<br />

- combination movements and motorized scanning<br />

µAligna<br />

Applications<br />

• control of linear actuators for laser beam steering:<br />

- motorized mirror mounts for 4D beam positioning<br />

- movement of focusing optics, detectors etc.<br />

- control of optical elements in inaccessible<br />

locations<br />

- automated/scripted motion control<br />

• control of rotational actuators:<br />

- rotations of polarizing optics, shutters etc.<br />

- laser intensity control/modulation<br />

www.<strong>TEM</strong>-Messtechnik.de


µAligna Motor Control<br />

Control Electronics<br />

μAligna: Compact Control Electronics<br />

- μController, 8 bit<br />

- interfaces: USB, optionally serial, ethernet or<br />

wireless<br />

- supports multiple motor-driven actuators (up to four<br />

motors for the variant μAligna 004, up to eight for<br />

the variant μAligna 008, more motors on request)<br />

2<br />

- SPI and I C bus<br />

Software<br />

Kangoo: Comprehensive Control Program<br />

- vizualization of all μController parameters<br />

- logging of any value vs. time<br />

- 2D or 4D scanning and measurement<br />

- fully scriptable<br />

- compatible with Windows 7, Vista, XP, 2k,<br />

9x (Linux via Wine)<br />

- plain-text communication with the<br />

μController for simple integration with other<br />

control software<br />

Opto-Mechanics<br />

Aligna 60: Motorized Mirror Mount 60x60 mm<br />

- two ultra microstepping linear actuators<br />

- manual adjustment by knurled knobs<br />

- reference optical encoder for both axes<br />

- several fixing methods for mirrors or<br />

other components<br />

(1", 1/2", 2", and others, any thickness)<br />

Aligna 40: Motorized Mirror Mount 40x40 mm<br />

- same as Aligna 60, more compact in size<br />

- preferred for tight space requirements<br />

Aligna60<br />

Aligna40


®<br />

μAligna<br />

Ultra-high precision electronic crosshair<br />

- monitoring of the full 4D beam pointing<br />

- sub-mircometer & sub-microrad precision<br />

- comprehensive software for zoom display, measurements<br />

and aided alignments<br />

- all common wavelengths<br />

- compact form factor (125 x 210 x 44 mm)<br />

µAligna Crosshair<br />

Applications<br />

- replacement for mechanical crosshairs<br />

- live display of the beam pointing<br />

- measurement of mechanical deformations,<br />

e.g. of rails (static and dynamic)<br />

- measurement of thermal stabilities of the<br />

beam pointing<br />

- multi-dim scans for characterization of<br />

optical setups<br />

- software-aided alignment and parallelization<br />

of laser beams to moving axes<br />

www.<strong>TEM</strong>-Messtechnik.de


Basic Operation<br />

An Electronic Crosshair<br />

µAligna Crosshair<br />

The uAligna-system can measure the pointing of a<br />

laser beam to sub-micometer & sub-microrad precision.<br />

The control software Kangoo separately displays the<br />

measured beam position and angle. Thus, using the<br />

uAligna Crosshair is not only significantly more precise,<br />

but also much more convenient than a mechanical<br />

crosshair.<br />

Advanced Operation<br />

Opto-Mechanics<br />

The standard pointing detector is based on<br />

PSDs and has the following features:<br />

• cw and pulsed lasers: rep. rates 5 kHz ...<br />

200 MHz / cw<br />

• accuracy: < 1 µm, < 1 µrad<br />

• all wavelengths (with standard detectors: 380<br />

... 1100 nm, with special detectors 180 nm ...<br />

10 µm, even THz), any beam diameter<br />

• several different sizes: from very compact 2D<br />

detectors to fully-enclosed 4D detectors<br />

• simple power adjustment with HR mirrors or<br />

optical filters<br />

Software-assisted alignment and logging<br />

! software-controllable offsets and gains help with the<br />

alignment of optics on moving sleighs<br />

! logging of the measured beam pointing allows to easily<br />

and accurately determine the<br />

straightness of moving axes or<br />

deformations due to dynamic forces<br />

or thermal expansion<br />

! simple interfacing with customer<br />

software through clear-text<br />

commands


®<br />

FiberLock<br />

Automatic single-mode fiber coupling<br />

- single-mode fiber coupling is set up within seconds<br />

- automatic multidimensional tracking<br />

- compensation of thermal and mechanical drifts<br />

- easy optimization of coupling optics<br />

- NoiseEater mode<br />

- 3D visualtization of the coupling efficiency and intensity<br />

logging<br />

Principle<br />

piezo scanner<br />

laser<br />

single-mode fiber<br />

9V - 18V<br />

input<br />

FiberLock<br />

photo<br />

detector<br />

FiberLock<br />

power<br />

status<br />

lock<br />

intensity<br />

optional PC<br />

www.<strong>TEM</strong>-Messtechnik.de<br />

FiberLock<br />

output<br />

www.<strong>TEM</strong>-Messtechnik.de<br />

reset<br />

program


FiberLock<br />

Principle of Operation<br />

Usually, coupling into single-mode fibers is a time-consuming task since<br />

mechanical positioning with sub-micrometer precision has to be performed.<br />

Expensive moving or tilting units with very good long-term stability have to<br />

be used.<br />

With the FiberLock, the laser beam is scanned two-dimensionally by<br />

special piezo actuators with up to kHz frequencies and by up to several<br />

hundreds of micrometers. The light transmitted through the fiber is detected<br />

by a photo detector and is then displayed in 'real-time' as a 3D-view on a<br />

PC. Thus, the coupling can be monitored and optimized, e.g. by shifting or<br />

tilting of the focussing optics. This three-dimensionally displayed coupling<br />

profile can be viewed from any direction.<br />

bad focus improved focus optimized focus<br />

Lock: Once an intensity peak is found, the FiberLock can lock the piezo<br />

scanner to the point of maximum coupling efficiency. This is done with small<br />

circular modulations of the scanner angle and 2D lock-in regulator. While in<br />

lock, other degrees of freedom (e.g. the focus) can be optimized “live” in a<br />

fast and convenient way.<br />

NoiseEater mode: In addition to locking to the maximum intensity, the<br />

FiberLock can smooth intensity fluctuations by constantly adjusting the<br />

quality of the fiber coupling. The circular modulation of the scanner is now<br />

changed to follow a geodesic orbit, which cancels all intensity noise<br />

introduced by the fiber coupling or elsewhere along the optical path.<br />

In lock, the regulator gain and the size and<br />

shape of the modulation circle can be<br />

adjusted to account for different noise<br />

environments and beam shapes. A display<br />

for the scanner position and a chart recorder<br />

for the intensity make these further<br />

adjustments easy to perform.<br />

Intensity thresholds control the LEDs on the<br />

front of the FiberLock to allow easy operation<br />

without a PC.


FiberLock electronics: contains all<br />

necessary electronic components in a<br />

compact package:<br />

- an input amplifier with adjustable gain allows<br />

to stabilize on a wide range of signals (0 -<br />

10V or transimpedance input).<br />

- a fast piezo amplifier is integrated (+/- 30V<br />

for the standard actuator, other voltages, e.g.<br />

0 - 150V, on request).<br />

- a 32-bit microcontroller handles the signal<br />

processing, including a scan generator, two<br />

lock-in regulators, data processing for the 3D<br />

display and USB communication.<br />

Kangoo: comprehensive control program<br />

- visualization of all μController parameters<br />

- logging of intensity values vs. time<br />

- 2D scanning and 3D data visualization<br />

- fully scriptable<br />

- compatible with Windows 7, Vista, XP, 2k, 9x (and Linux via wine)<br />

- plain-text communication with the μController<br />

for simple integration with other control software<br />

Control Electronics<br />

Software<br />

FiberLock<br />

Opto-Mechanics<br />

BeamScan LV: standard 2D actuator<br />

- large angle scans (~25mrad)<br />

- medium speed (~ 1khz)<br />

- 10 x 15mm mirror<br />

- low voltage operation (+/- 30V)<br />

- mounts on standard 1" or 25mm mirror mounts<br />

BeamScan 1-inch: high-speed 2D actuator<br />

- medium angle scans (~2mrad)<br />

- high speed (up to ~10kHz)<br />

- high-voltage operation (0 - 150V)<br />

- standard 1" or 25mm mounts<br />

- flexible mirror size<br />

We supply a wide range of actuators for optics applications,<br />

which are easily paired with the FiberLock electronics, and we are<br />

happy to build custom-made designs. Please contact us for details.


FiberLock<br />

Technical Data<br />

Dimensions:<br />

control electronics:<br />

BeamScan LV piezo actuator:<br />

Interfaces:<br />

protocol:<br />

FiberLock Control Unit<br />

µC:<br />

electrical supply:<br />

power consumption:<br />

number of input channels:<br />

number of piezo driver outputs:<br />

170 x 130 x 35 mm, for mounting on optical tables<br />

40 x 40 x 20 mm (fits 1" mirror mounts)<br />

mirror size: 10x15mm<br />

USB<br />

clear text ASCII commands, internal script language<br />

including visualization and measurement software<br />

incl. user-spec. adaptations, LabView VIs on request<br />

AVR32 controller<br />

9 - 18V DC power Adapter, 1.5A<br />

< 30W (10W typ.)<br />

1 (with voltage or current pre-amplifier)<br />

2 (+/- 30V or 0 - 120V)<br />

Subject to change without notice<br />

10/2014


®<br />

Digital LaseLock<br />

Fully digital stand-alone laser stabilization electronics<br />

! Compact, stand-alone locking electronics for diode lasers, dye lasers, Ti:Sa<br />

lasers, or optical resonators<br />

! Side-of-fringe and top-of-fringe stabilization<br />

! 2 independent PID regulators<br />

! Lock point validity detection and automatic "search" function<br />

! Built-in oscilloscope functionality<br />

! User interface with touch screen and colored signal display<br />

www.<strong>TEM</strong>-Messtechnik.de<br />

Digital LaseLock


Principle of Operation<br />

Two different methods can be applied:<br />

1) side-of-fringe stabilization<br />

Digital<br />

2) top-of-fringe stabilization<br />

(to maximum or minimum,<br />

'lock-in'-technique)<br />

Side-of-fringe stabilization is used when a direct discriminator signal can be derived<br />

from the measurement signal.<br />

In contrast, top-of-fringe stabilization uses a modulation technique and phasesynchronous<br />

detection. For this, the laser frequency (or a different physical measure<br />

like the resonator length) is modulated, a detector signal is multiplied with the<br />

modulation signal, and then the product signal is averaged by a low pass filter. The<br />

resulting 'lock-in'-signal represents the derivative of the signal with respect to the laser<br />

frequency (or the respective varied physical measure).<br />

This signal can be used directly for physical examinations, because in most cases it<br />

contains less disturbing signal parts (noise, offsets) than the directly measured signal.<br />

The zero-crossing of the derivative represents a maximum (or minimum) of the<br />

detected signal structure. For stabilization of a laser or resonator towards such an<br />

extremum, the 'lock-in' signal is processed by a regulator, which generates a suitable<br />

control signal that is fed back (either directly, or for piezo actuators via a high-voltage<br />

amplifier) to the frequency-determining element of the laser (or resonator). In this way<br />

the control loop is closed and the laser (or resonator) is locked actively to the maximum<br />

(or minimum).<br />

side-of-fringe side-of-fringe top-of-fringe<br />

Block Diagram


Components of LaseLock ®<br />

®<br />

Digital LaseLock combines all components required for or beneficial to this<br />

purpose in a user-friendly compact device:<br />

Input section<br />

Two separate fast input channels (2.5 MS/s)<br />

Up to 16 additional input channels (200 kS/s)<br />

Generation of input signal difference and/or ratio<br />

Optional: External preamplifier with supply and remote control from the lockbox<br />

Lock-in-amplifier section<br />

Sine/cosine oscillator with adjustable frequency<br />

Modulation output with adjustable amplitude<br />

Complex phase-synchronous detection<br />

2f / 3f demodulation, user selectable<br />

Adjustable detection phase (0 - 360°) and filter cut-off frequency<br />

Synchronisation input (optional)<br />

Scan generator section<br />

Triangular-shaped scan signal for system adjustment<br />

Scan range equal to the regulator output span<br />

Adjustable scan frequency and amplitude<br />

Output section<br />

Two high-bandwidth regulator output channels (2.5 MS/s)<br />

Up to 16 additional output channels (200 kS/s)<br />

LaseLock Aligna ®<br />

PID regulator section<br />

Two PID regulators for simultaneous control of two laser tuning elements (e.g.<br />

grating piezo and laser current in an ECDL)<br />

Individually adjustable proportional, integral and differential regulator coefficients<br />

Second order low pass filter for resonance suppression in mechanical systems<br />

Modulation input, e.g. for set point and/or output modulation<br />

Search logic<br />

Discriminator logic for recognition of valid and invalid regulation ranges<br />

User-selectable action upon loss of regulator input signal: Automatic search scan /<br />

regulator hold / reset<br />

Monitor outputs<br />

Analog output of relevant internal signals and levels for display on a scope screen<br />

Drivers (optional):<br />

HV AMP:<br />

HC AMP:<br />

CCTC:<br />

Suitable sensors:<br />

High-voltage amplifier for piezo actuators<br />

High-current amplifier for galvo scanners<br />

TEC/current drivers for diode lasers<br />

CoSy : Compact saturation spectroscopy module (Rb, Cs, K cells)<br />

Fabry-Pérot interferometer with detection after Hänsch-Couillaud (PDR-HC)<br />

Fabry-Pérot interferometer with detection after Pound-Drever-Hall (PDH)<br />

www.<strong>TEM</strong>-Messtechnik.de


Colored TFT touch screen<br />

Digital<br />

®<br />

Laselock scans the laser frequency.<br />

The user can search the absorption lines and<br />

select the desired line peak for regulation using<br />

two threshold values (red and blue line).<br />

The built-in dither generator modulates the output<br />

voltage. The demodulated input signal is used for<br />

the regulation. The yellow line defines the set point<br />

level.<br />

After switching from “scan“ to “lock“, LaseLock<br />

stabilizes the frequency to the desired absorption<br />

peak. The input signal is always compared with<br />

user defined thresholds. If the signal exseeds<br />

these thresholds, the regulator will start a search<br />

scan and then relock automatically.<br />

PC interface (USB, RS232, optional: Ethernet)<br />

Full remote control of all parameters<br />

Read-out of measurement data<br />

Control and visualization software Kangoo<br />

Free LabView drivers<br />

!<br />

4.3" TFT touch screen with<br />

adjustable backlight brightness<br />

! full control of all parameters<br />

! relevant parameters and system<br />

status on the home screen<br />

! graphical user interface<br />

! visualization of signal and<br />

parameter levelson screen<br />

! selection wheel for parameter<br />

setting and menu scrolling


Application Example<br />

Stabilization of the frequency of an external cavity diode laser to an atomic absorption line<br />

atomic reference<br />

preamp box<br />

scope<br />

Y X trig<br />

laser<br />

HV out 1<br />

(rear side)<br />

piezo<br />

input<br />

This application requires the following components:<br />

diode<br />

current<br />

control<br />

laser driver<br />

• one digital LaseLock®<br />

with HV option<br />

• one laser the frequency of which can be tuned via a piezo-actuator<br />

(e.g., a TOPTICA DL100 diode laser)<br />

• one spectroscopic absorption cell*<br />

• one beam splitter<br />

• two photo detectors<br />

In this application, the frequency of a tunable laser (e.g., a diode laser, Ti: Sapphire- or<br />

dye laser) is stabilised with the help of a reference cell. The aim is to regulate the laser<br />

frequency to a value for which the sample shows maximum or minimum absorption.<br />

*We recommend to use <strong>TEM</strong> Messtechnik´s compact spectroscopy module CoSy,<br />

which includes a complete setup for Doppler-free saturation absorption spectroscopy.<br />

LaseLock Aligna ®<br />

www.<strong>TEM</strong>-Messtechnik.de


Digital LaseLock<br />

Technical Data<br />

Signal input Impedance 1 MOhm<br />

Voltage range<br />

+/- 1.0 V (fast inputs)<br />

+/- 10.0 V (slow inputs) (others on request)<br />

Bandwidth<br />

300 kHz (higher BW on request)<br />

Sampling Rate<br />

2.5 MSps (fast inputs)<br />

200 kSps (slow inputs)<br />

Outputs Voltage range +/- 10.0 V at 1 kOhm load<br />

Impedance<br />

50 Ohm<br />

Sampling Rate<br />

2.5 MSps<br />

Lock-In amplifier Modulation frequency 0.1 Hz ... 1 MHz<br />

Phase adjustment 0 ... 360°<br />

Cut-off frequency<br />

25 Hz ... 850 kHz<br />

Twin PID regulator Combinations independent / parallel / series<br />

Over-all delay approx. 2 µs<br />

Scan generator Output frequency 100 mHz ... 20 kHz (triangular or saw<br />

tooth shape, TTL trigger output)<br />

Supply Voltage range 100...240 V AC, 50...60 Hz (auto detect)<br />

Power consumption Typ. < 10 W, (20 W with HV option,<br />

max. 100 W @ full load)<br />

Housing Dimensions H x W x D 88mm x 260mm x 373mm<br />

Display Size 4.3" (11 cm)<br />

Resolution<br />

480 x 272, 16-bit color<br />

Technology<br />

resistive touchscreen, LED backlight<br />

Subject to change without notice<br />

11/2013


iScan<br />

iScan ®<br />

The interferometric frequency control for tunable lasers<br />

The iScan is designed for research laboratories as a universal tool<br />

for static and dynamic control of the frequency and mode properties of tunable<br />

lasers.<br />

! fast and precise scanning of tunable lasers<br />

! stepping to different arbitrary wavelengths<br />

! surveillance of the scan behaviour of tunable lasers<br />

! Measurement of the wavelength and single-mode stability of tunable<br />

lasers<br />

PB A<br />

I a<br />

a<br />

b<br />

BS<br />

PB B<br />

FPI<br />

I b<br />

Quadrature Signal<br />

Photo Detectors<br />

laser beam to<br />

experiment<br />

Wedged<br />

Beam Splitter<br />

Fabry-Perot-<br />

Interferometer<br />

Normalisation<br />

Photo Detectors<br />

Quadrature Signals<br />

l<br />

Laser Wavelength<br />

www.<strong>TEM</strong>-Messtechnik.de<br />

TC<br />

Temperature<br />

Stabilisation<br />

Patents: US 6,178,002 ; DE 197 43 493 A 1


Components of the iScan System<br />

iScan<br />

The iScan system consists of a<br />

measurement head and the control<br />

electron ics.<br />

The iScan system is suitable for<br />

almost any kind of tunable lasers:<br />

diode lasers, DBR and DBF diodes,<br />

Ti: Sapphire lasers, dye lasers...<br />

The iScan Control Electronics evaluates the<br />

signals of the iScan measurement head.<br />

It optionally controls the diode laser as well<br />

(current, power, temperature). When operated in<br />

a closed feedback loop, the control electronics<br />

provides a regulator signal to stabilize or tune the<br />

laser frequency.<br />

The measurement head<br />

contains the interferometer<br />

optics, photo detectors,<br />

preamplifiers, temperature<br />

sensing and control.<br />

Tunable<br />

Laser<br />

to the experiment<br />

FC<br />

iScan<br />

Measurement Head<br />

Temperature<br />

stabilization<br />

Interferometer<br />

signals<br />

Regulator signal<br />

for frequency stabilization<br />

iScan<br />

Control Electronics<br />

USB or RS232<br />

PC<br />

Frequency or Scan<br />

function preset<br />

Key Features:<br />

! Laser wavelength stabilization to arbitrary values within the tuning range of the<br />

laser<br />

! Highly accurate stabilization of the laser frequency whilst tuning, thus:<br />

elimination of hysteresis, non-linearities, mechanical vibrations and drift<br />

! High measurement speed with simultaneously high resolution (MHz bandwidth)<br />

! Measurement of long-term and short-term wavelength stability without the need<br />

to keep the laser frequency constant. (mechanical or thermal drift, jitter,<br />

technical bandwidth)<br />

! Comfortable tool for adjustment and optimization of the scanning laser cavity<br />

! Available as stand-alone module or in combination with an ECDL<br />

! Compact design


The iScan Measurement Head<br />

The iScan system employs a patented interferometer setup with four independent<br />

photo detectors. The detectors receive several interference signals with a phase<br />

difference of approx. 90° (quadrature signals), allowing for monitoring of the tuning<br />

behaviour and detection of mode hops.<br />

PB A<br />

I a<br />

a<br />

TC<br />

PB B<br />

b<br />

FPI<br />

I b<br />

BS<br />

Quadrature Signal<br />

Photo Detectors<br />

laser beam to<br />

experiment<br />

Wedged<br />

Beam Splitter<br />

Fabry-Perot-<br />

Interferometer<br />

Normalisation<br />

Photo Detectors<br />

Temperature<br />

Stabilisation<br />

Patents:<br />

US 6,178,002<br />

DE 197 43 493 A 1<br />

Quadrature Signals<br />

l<br />

Laser Wavelength<br />

iScan<br />

Displaying the quadrature signals on a 2-channel oscilloscope in xy-mode yields<br />

characteristic figures (Lissajous figures), which correspond to the properties of the<br />

laser.<br />

Single-mode-scan:<br />

The quadrature signals<br />

describe a circle with<br />

fixed radius.<br />

Mode hop:<br />

Sudden jump across the<br />

circle.<br />

Multi-mode-scan:<br />

Circle with a significantly<br />

smaller and non-constant<br />

radius.<br />

The iScan processes information given in polar coordinates:<br />

The phase corresponds to the wavelength.<br />

The radius corresponds to the mode purity.


Technical Features<br />

iScan<br />

Measurement Head:<br />

! Interferometer suitable for 380 to 1100 nm wavelength range (other wavelength<br />

on request)<br />

! Different Free Spectral Ranges of 2GHz to 1.5 THz available<br />

! Entire optical setup is thermally stabilized to high precision<br />

! FC-APC Fiber connector for coupling of arbitrary laser sources, or free beam<br />

aperture<br />

! OEM versions on request<br />

Control Electronics:<br />

! Digital interfaces: USB and/or RS232<br />

! Arbitrary scans can be realized, including scans for accurate linear frequency<br />

tuning of any tunable laser<br />

! Driver and control electronics are integrated either in a desktop or 19"-rack<br />

case.<br />

Drivers (optional):<br />

! High voltage amplifiers (single or multi channel)<br />

! Current drivers for galvos<br />

! Laser diode drivers (current and temperature control)<br />

Additional sensors (optional):<br />

! CoSy (compact saturation spectoscopy module) as absolute frequency /<br />

wavelength reference<br />

! FPI (Fabry-Pérot cavity)<br />

! FiberEtalon (fiber-based marker etalon for extremely linear scans)<br />

Options:<br />

! Adaptation to tunable solid state lasers such as Alexandrite or Ti:Sapphire lasers,<br />

tunable dye lasers and frequency-doubled systems<br />

! Optics and detectors for communication wavelengths<br />

! Stabilization of several lasers relative to each other possible<br />

Literature<br />

J. Brachmann et al.:Calibrating an interferometric laser frequency stabilization to<br />

megahertz precision 10 August 2012 / Vol. 51, No. 23 / APPLIED OPTICS<br />

(http://arxiv.org/pdf/1208.2375v1.pdf)<br />

A. Deninger et al.:High-Power Dual-Color Diode Laser System with Precise<br />

Frequency Control for CW-THz Generation.OSA, 2007<br />

A. Deninger, et al.:Precisely tunable continuous-wave terahertz source with<br />

interferometric frequency control. REVIEW OF SCIENTIFIC INSTRUMENTS 79,<br />

044702 (2008)<br />

Th. Kinder, Th. et al.:Absolute distance interferometer with grating-stabilized tunable<br />

diode laser at 633 nm.Journal of Optics A: Vol 4 No. 6 (2002) p. S364-S368


Application Example I<br />

Acquisition of mode stability charts<br />

Tunable Diode<br />

Laser<br />

grating angle<br />

cavity temperatur<br />

diode current<br />

Temperature<br />

Control<br />

iScan<br />

Head<br />

iScan<br />

Control Unit<br />

(µC)<br />

PC<br />

Photo Detector<br />

Signals<br />

Oscilloscope<br />

iScan<br />

In general, tuneable lasers contain a number of electrically driven resonator elements.<br />

A mode-hop free frequency scan requires a set of complicated voltage and/or current<br />

functions to be applied to these elements. E.g. external cavity diode lasers need the<br />

cavity temperature, the injection current and the grating position to be adjusted<br />

simultaneously.<br />

As the iScan system includes a more-dimensional arbitrary waveform generator and a<br />

microprocessor, it can scan through all accessible parameters automatically and find<br />

single-mode "corridors" in the parameter space.<br />

Mode chart of a tunable diode laser,<br />

recorded with the setup described<br />

above.<br />

The plot characterizes laser operation as<br />

a function of temperature and injection<br />

current of the laser diode. Red stripes<br />

indicate areas of stable single mode<br />

operation, compared to the blue stripes<br />

indicating multi mode operation.


Application Example II: cw THz<br />

Precision Frequency Metrology and Stabilization for Continuous Wave (cw)<br />

THz Sources Based on Two-Color Laser Mixing<br />

iScan<br />

One method of generating THz radiation is optical heterodyning of two continuous laser fields<br />

on a semiconductor photomixer. The advantage of a cw THz source compared to pulsed<br />

sources is the fact that measurements can take place at arbitrarily chosen, fixed or variable<br />

THz frequencies for unlimited and uninterrupted time intervals. This allows, e.g., for high<br />

resolution spectroscopy, or for interferometric distance or refractive index measurements.<br />

Laser1<br />

Laser2<br />

BS1<br />

BS1<br />

iScan<br />

#1<br />

iScan<br />

#2<br />

X1<br />

Fig.1: Typical cw THz setup with interferometric frequency control (Laser1/2: Tunable DFB diode lasers;<br />

iScan 1,2: iScan interferometer; BS: Fiber coupler; EA, RA: emitting/receiving antenna; EL/RL:<br />

emitter/receiver lens; SG bias signal generator; TIA: transimpedance amplifier; LIA: lock-in amplifier; SP:<br />

signal processing)<br />

EA<br />

THzR<br />

EL<br />

SG<br />

T<br />

RL<br />

RA<br />

TIA<br />

LIA<br />

SP<br />

frequency shift /GHz<br />

beat frequency /MHz<br />

Example 1: Precisely linear 1000GHz scan with<br />

some seconds hold at either end<br />

Example 2: Long-term stable optical beat<br />

frequency (at 1K change of ambient temperature)<br />

Servo loop for DFB laser diodes<br />

The servo consists of a pair of nested<br />

PID loops. The first PID adjusts the<br />

laser current such that the laser<br />

frequency approaches its target<br />

value. In order to prevent changes of<br />

the laser power, a second PID<br />

controls the temperature in a way that<br />

the output power remains constant.<br />

actual<br />

j<br />

j 0<br />

Dj<br />

set point<br />

(µC)<br />

control<br />

deviation<br />

PID-<br />

PID<br />

Regler<br />

laser current<br />

DFB diode<br />

I LD<br />

TEC<br />

Literature:<br />

Deninger et al.: Precisely tunable<br />

continuous-wave terahertz source<br />

with interferometric frequency control<br />

R E V I E W O F S C I E N T I F I C<br />

INSTRUMENTS 79, 044702 (2008)<br />

temperature<br />

rate action (µC)<br />

PID-<br />

PID<br />

Regler<br />

temperature<br />

control


Application Example III<br />

Phase Shifting Interferometry<br />

Extremely precise inspection of<br />

high quality optics with a Fizeau<br />

Interferometer<br />

Laser<br />

Regulator signal<br />

for frequency stabilisation<br />

Temperaturstabilization<br />

iScan<br />

Measurement Head<br />

iScan<br />

control electronics<br />

PC<br />

Interferometer<br />

signals<br />

Frequency setting,<br />

Scan definition<br />

Telescope<br />

Test object<br />

Reference<br />

Surface<br />

CCD-camera<br />

iScan<br />

Conventional phase shifting interferometers need the reference surface to be moved<br />

in l/8 steps for the phase extraction. This mechanical motion can be replaced by an<br />

adequate shift of the laser wavelength. In this case, the iScan system guarantees<br />

high-accuracy wavelength stepping at arbitrary step width and duration.


Application Example IV<br />

iScan<br />

LIDAR and spectroscopy<br />

The usage of iScan allows for<br />

• dynamic frequency hopping,<br />

• variable offset stabilization,<br />

• top-of-fringe stabilization and<br />

• side-of-fringe stabilization.<br />

DIAL<br />

Switching amplitude:<br />

arbitrary (limited by the laser)<br />

Switching frequency: ~1 kHz<br />

(limited by laser mechanics)<br />

(small jumps: up to 100 kHz)<br />

Switching accuracy: ~10 MHz<br />

Switching repeatability:~1MHz<br />

Complex Measurements<br />

Use of spectroscopic features to<br />

optimize tuning parameters.<br />

Arbitrary number of measurement<br />

points.<br />

Spectroscopic reference<br />

Use of a well known atomic<br />

transition as reference.<br />

Automatic online recalibration of<br />

laser tuning parameters.


Technical data<br />

Interferometer wavelength range:<br />

Power requirements:<br />

Free spectral range of interferometer:<br />

Beam diameter for free-beam head:<br />

Frequency stability:<br />

Frequency linearity:<br />

Frequency scale error:<br />

Fiber connector:<br />

Dimensions:<br />

measurement head<br />

control electronics in 19“-rack<br />

Interface:<br />

Electrical supply:<br />

380 nm to 1100 nm<br />

800nm to 1700nm (IR option)<br />

1200nm to 2700nm (IRext option)<br />

(other wavelengths on request)<br />

minimum 20 … 100 µW (wavelength dependent)<br />

maximum 50mW<br />

2 / 4 / 8 or 100 GHz (others on request)<br />

0.7 … 3 mm<br />


iScan<br />

03/2013


CoSy<br />

CoSy<br />

Compact Spectroscopy unit for absorption saturation<br />

spectroscopy<br />

The method of saturation spectroscopy allows to represent a<br />

wavelength with extremely high precision, e.g., for absolute<br />

stabilization of tunable lasers.<br />

Example<br />

Doppler-free absorption<br />

saturation spectrum<br />

of the Cs-D line 2<br />

www.<strong>TEM</strong>-Messtechnik.de


Principle of Operation<br />

CoSy<br />

The method of saturation spectroscopy<br />

allows to represent a wavelength with<br />

extremely high precision, e.g., for<br />

absolute stabilization of tunable lasers.<br />

Light from a tunable laser is led into a<br />

glass cell filled with a suitable gas, the<br />

particles of which absorb light of<br />

particular wavelengths. By the technique<br />

of Doppler-free saturation spectroscopy,<br />

a suitable optical setup consisting of<br />

several part beams compensates for the<br />

Doppler broadening of atomic lines to a<br />

large extent, which highly increases the<br />

resolution of the measured absorption<br />

lines.<br />

Usually this is achieved by using a<br />

relatively complex opto-mechanical<br />

setup. The truly compact CoSy system<br />

contains this setup and also all the<br />

evaluation electronics needed to obtain<br />

a Doppler-free saturation spectrum as<br />

an output voltage directly observable on<br />

an oscilloscope.<br />

CoSy measurement head<br />

and CoSyControl electronics<br />

The laser irradiating the system can thus be stabilized to any of the detected lines.<br />

This may be done for example using <strong>TEM</strong> Messtechnik´s LaseLock or the modules<br />

PID110 or LIR110 by TOPTICA Photonics. In this way a frequency uncertainty below<br />

-9 .<br />

1 MHz can be achieved, corresponding to a relative uncertainty of 10<br />

The complete opto-mechanical setup, consisting of beamsplitters, mirrors, detectors,<br />

and the spectroscopy glass cell, is integrated in the CoSy measurement head. As the<br />

degree of absorption depends on the vapor pressure of the chemical element in the<br />

glass cell and therefore on its temperature, the CoSy head is equipped with a<br />

regulated cell heating.<br />

CoSy integrated into<br />

DL 100<br />

alkali spectrocopy cell<br />

CoSy head from<br />

the inside


Block Diagram<br />

For operation, a laser beam is<br />

directed into the CoSy head.<br />

For easy adjustment, an FC<br />

single-mode fiber connector<br />

can be mounted at the input<br />

aperture.<br />

PD Amp Gain<br />

Set Temp<br />

optional: Magnet Mod<br />

Supply<br />

CoSy Control<br />

Saturation<br />

Spectroscopy<br />

Optics<br />

Normalization<br />

Difference<br />

A<br />

B<br />

Intensity<br />

outputs<br />

signal selection<br />

mains connector<br />

(200...240 VAC /<br />

100...120 VAC)<br />

CoSy<br />

Beam<br />

Splitter<br />

CoSy Head<br />

The CoSy head is controlled by the power supply and control electronics<br />

CoSyControl. This includes the power supply module, the processing unit for<br />

generation of normalisation and difference signals, the BNC-connectors for the output<br />

signals (A, B and Intensity), as well as the temperature control unit, and optionally the<br />

magnetic modulation unit.<br />

CoSyControl generates the doppler free saturation spectrum of the chosen chemical<br />

element from the CoSy head signals by amplification and electronic signal processing.<br />

<strong>Product</strong> Variants<br />

"FC":<br />

"FC-APC":<br />

"COIL":<br />

For easier adjustment, the CoSy head can be equipped with an FC<br />

single-mode fiber connector.<br />

As "FC", but for APC- (angle-polished-) fibers.<br />

For some applications the CoSy system provides optionally the<br />

possibility to apply a magnetic field (AC or DC) to the cell. This is<br />

done by a coil, which is located around the cell.


Technical Data<br />

CoSy<br />

Dimensions of the glass cells: ˘ 25 mm x 25 mm or ˘ 25 mm x 15 mm<br />

Glass cell filled with one of the following elements:<br />

85<br />

87<br />

Rubidium (mixture of Rb and Rb)<br />

39 41<br />

Potassium (mixture of K and K)<br />

133<br />

Caesium ( Cs)<br />

Other cells on request.<br />

Recommended optical input power: < 1mW, depends on used element<br />

Size of free beam:<br />

< 3 mm diam.<br />

Polarization of free beam:<br />

perpendicular to table top<br />

Gain of the photo detector amplifiers: adjustable via range switch (coarse)<br />

and trim potentiometer (fine)<br />

Output level: max. 10 Vpp<br />

Set temperature of the glass cell: adjustable via trim potentiometer,<br />

in the range of 20 to 40 °C (no cooling)<br />

Optional AC or DC magnetic field: magnetic flux density adjustable,<br />

maximum current 0.1 Ampere<br />

Housing dimensions:<br />

CoSy head:<br />

80 mm x 80 mm x 114 mm<br />

CoSyControl mini:<br />

88 mm x 125 mm x 209 mm (2 height units)<br />

Power supply of CoSyControl: 100...120 VAC / 200...240 VAC, 50...60 Hz<br />

10/2013


PhaseLock<br />

Universal and compact phase stabilization electronics<br />

PhaseLock<br />

!<br />

Compact, stand-alone locking electronics for pulsed lasers<br />

! Pulse timing stabilization<br />

! 2 independent PID regulators<br />

! High-voltage output for piezo actuators<br />

! Lock point validity detection and automatic "search" function<br />

! Multi-channel monitor for display of regulator signals<br />

Application<br />

! Stabilization of the repetition rate<br />

and pulse timing of pulsed lasers<br />

! Phase locking of the optical<br />

frequency of continuous lasers<br />

! Control of the pulse envelope<br />

phase (carrier offset frequency) of<br />

femtosecond lasers<br />

! Stabilization of frequency or phase<br />

of electronic oscillators<br />

www.<strong>TEM</strong>-Messtechnik.de


PhaseLock<br />

Block Diagram<br />

PhaseLock combines all components required for or beneficial to phase stabilization in a<br />

user-friendly compact device:<br />

! fast input amplifiers<br />

! phase comparator<br />

! 2 independent PID regulators, adapted especially to resonant systems like piezo-driven<br />

optical components<br />

! scan generator, for adjustment or supervision of the physical system<br />

! output amplifier, user-selectable as high-voltage amplifier for piezo actuators, or as lowvoltage<br />

amplifier generating a control signal for external amplifier sections<br />

! logic section for automatic recognition of successful locking<br />

Signal Diagram<br />

If the frequency difference of the input signals is<br />

too large, a simple PID controller will not be able<br />

to align the input frequencies within one cycle of<br />

the difference signal. Then, the control loop will<br />

fail to lock. In order to avoid this problem, the<br />

PhaseLock is equipped with a discriminator: As<br />

long as the frequency difference is higher than a<br />

preset value, the output voltage ramps through<br />

its full range. As soon as the frequency<br />

difference is lower than a preset value<br />

(“frequency lock window”), the PID loop is<br />

closed.<br />

lock window


Application Example<br />

The PhaseLock compares the phase of an RF input signal with a local oscillator (LO).<br />

fs oscillator<br />

RF synthesizer<br />

2)<br />

The PhaseLock needs two input signals:<br />

1) the signal of the oscillator under control<br />

(e.g. for a pulsed laser, the signal of a fast<br />

photo diode)<br />

2) the signal of a reference oscillator (e.g.<br />

from an RF synthesizer)<br />

The PhaseLock mixes (multiplies) the<br />

input signals. This results in an<br />

intermediate signal, the frequency of which<br />

is the difference of the frequencies of the<br />

input signals.<br />

1)<br />

I<br />

setpoint<br />

Q<br />

delay 1/4f<br />

PID<br />

PID<br />

lock<br />

detection<br />

slow<br />

PZTs<br />

fast<br />

PhaseLock<br />

a) IQ (quadrature) mixer output<br />

(while unlocked)<br />

b) Phase memory analog output<br />

(while unlocked). The amplitude<br />

of 10Vpp corresponds to full 8192<br />

cycles!<br />

c) IQ (quadrature) mixer output<br />

when locked<br />

Option MCPC<br />

If phase excursions exceed +/-p, a conventional RF mixer loses cycles. This<br />

results in phase slips, which is sometimes not acceptable. In order to avoid this<br />

problem, the PhaseLock can be equipped with a phase counter, which acts as a<br />

"memory" for lost cycles (option MCPC). The output of this add-on circuit is an<br />

analog voltage proportional to the phase difference within a range as large as +/-<br />

8192p. This provides a long time for the PID servo loop to settle, thus enabling<br />

phase locks even in diffcult situations in which standard locking schemes would<br />

fail.


PhaseLock<br />

Technical Data<br />

Signal inputs Impedance: 50 Ohm<br />

RF bandwidth<br />

1GHz<br />

Input power<br />

LO: +13dBm<br />

IF Bandwidth<br />

300kHz (standard, higher BW on request)<br />

Sampling Rate<br />

2.5MS/s<br />

Option MCPC Phase memory (cycles) +/-4096·2p<br />

Outputs Voltage range +/- 10V at 1kOhm load<br />

Impedance<br />

50 Ohm<br />

Sampling Rate<br />

2.5MS/s<br />

Drivers (optional) HV amplifier 2x 150V, 50mA, BNC<br />

Lock detection Frequency window adjustable<br />

Twin PID regulator combinations<br />

independent / parallel / series<br />

over-all delay<br />

400ns<br />

Scan generator Output frequency 100mHz ... 20kHz (triangular shape)<br />

Supply Voltage range 100..120V / 220..240V AC, 50..60Hz<br />

Housing Dimensions HxWxD 88mmx260mmx373mm<br />

Display Size 4.3"<br />

Resolution<br />

480x272<br />

Colors<br />

65 536 (16 bit)<br />

Costumer specific values on request. Subject to change without notice.<br />

03/2013


NoiseEater<br />

NoiseEater<br />

Universal laser intensity stabilization<br />

=<br />

Intensity noise cancellation<br />

=<br />

Controlled laser power setting or switching<br />

=<br />

Fixed or automatic set point adjustment<br />

=<br />

For use with AOM, EOM or micro stepping motor<br />

=<br />

Including drivers HV or RF, resp. optional<br />

Example<br />

intensity(t)<br />

minimum<br />

setpoint<br />

input intensity<br />

intensity(t)<br />

setpoint<br />

output intensity<br />

www.<strong>TEM</strong>-Messtechnik.de<br />

t<br />

t


NoiseEater<br />

Principle of Operation<br />

Laser intensity stabilization<br />

By means of acousto-optic or electro-optic<br />

modulators, or by rotating polarization<br />

optics, the power of a transmitted laser<br />

beam may be controlled electronically. The<br />

fast PID regulator of the NoiseEater allows<br />

to stabilize the laser power to a fixed value,<br />

thus reducing the undesired intensity<br />

noise.<br />

Laser<br />

Auto set point<br />

AOM*<br />

NoiseEater driver<br />

PD input<br />

output<br />

photo detector<br />

beam splitter<br />

diffracted beam<br />

* or EOM, or rotating wave plate.<br />

The NoiseEater offers a feature for automatic set point adjustment. That is, the user<br />

chooses a fixed average transmission of the AOM / EOM, say 90%, e,g. The<br />

NoiseEater PID then cancels out all short-term fluctuations of the laser power, while<br />

the long-term transmission of the AOM / EOM remains constant. The result is a sort<br />

of optical intensity lowpass filter.<br />

Block diagram<br />

PID-<br />

Regulator<br />

output amplifier<br />

PD input<br />

PDA<br />

PD gain<br />

setpoint<br />

offset<br />

fix<br />

auto<br />

actual<br />

set<br />

on<br />

off<br />

manual<br />

output<br />

(to driver)<br />

-<br />

S<br />

dt


1 input gain<br />

2 set point<br />

3 discrimination of the error sign<br />

4 fixed or automatic set point<br />

5 regulator gain<br />

6 P coefficient of regulator<br />

7 I coefficient of regulator<br />

8 regulator on/off or<br />

manual control<br />

9 module on / off<br />

10 input level indicator<br />

11 input for photo detector<br />

12 input offset compensation<br />

13 output PD monitor signal<br />

14 input for set point modulation<br />

15 D coefficient of regulator<br />

16 input for output modulation<br />

17 output level indicator<br />

18 output to AOM-/EOM driver<br />

19 output sign switch pos/neg<br />

User Elements<br />

1 2 3 4 5 7 8 9<br />

setpoint<br />

switch<br />

man auto<br />

The NoiseEater output voltage controls either the RF power driving an AOM, the voltage<br />

applied to an EOM, or the position of a micro-stepping motor. As an option, the suitable<br />

drivers are available as external or internal modules.<br />

setpoint<br />

PD gain<br />

0<br />

PD in<br />

clip<br />

ok<br />

low int<br />

PD offset<br />

error<br />

PD monitor<br />

set<br />

ok<br />

actual<br />

P<br />

gain<br />

I<br />

D<br />

ext.<br />

setpoint<br />

adj<br />

off<br />

reg<br />

output<br />

mod.<br />

NoiseEater 3V0<br />

regulator<br />

switch<br />

pos<br />

output<br />

10 11 12 13 14 15 16 17 18<br />

6<br />

sign<br />

switch<br />

neg<br />

clip<br />

ok<br />

19<br />

NoiseEater<br />

Description<br />

The NoiseEater contains an input amplifier with its gain switchable in steps of 1 / 3 /<br />

10 / 30. If switch (8) is set to "adj", the output voltage can be adjusted directly by pot<br />

(2). If switch (8) is set to "reg", the output voltage is controled by the PID regulator in<br />

such a way that the measured power equals the setpoint chosen by pot (2). If switch<br />

(4) is set to "auto", the NoiseEater chooses the setpoint automatically for best noise<br />

cancellation.<br />

Both set point and output voltage may be modulated via BNC inputs.<br />

<strong>Product</strong> Variants<br />

"NoiseEater EOM":<br />

"NoiseEater AOM":<br />

"NoiseEater µSTEP":<br />

“NoiseEater MZM”:<br />

"option TTL":<br />

"option USB":<br />

Including high voltage amplifier<br />

Including RF driver and power amplifier<br />

Including micro step driver for motors<br />

Including driver for Mach - Zehnder fiber modulator<br />

Digital input for triggered pulses<br />

external control of parameters by PC via USB interface


NoiseEater<br />

Technical Data<br />

General:<br />

Input voltage range:<br />

Bandwidth:<br />

Optional AOM driver:<br />

Frequency:<br />

RF power:<br />

Optional EOM driver:<br />

Output voltage range:<br />

Output current:<br />

Housing (H x W x L):<br />

w/o driver:<br />

with driver:<br />

Power supply:<br />

Subject to change without notice.<br />

switchable 30 mV / 100 mV /300 mV / 1 V<br />

up to1MHz (depending on actuator)<br />

customer specific: 40..220 MHz<br />

up to 6 W<br />

customer specific: up to 1000 V<br />

depending on output voltage range<br />

88 mm x 125 mm x 209 mm (2 height units)<br />

88 mm x 260 mm x 261 mm (2 height units)<br />

100...120 VAC / 200...240 VAC, 50...60 Hz<br />

06/2011 11/2011


miniScan<br />

miniScan<br />

Scan generator, piezo driver and PD amp - for Fabry-Perot<br />

interferometers and other applications.<br />

The FPI is tuned by moving a resonator mirror via<br />

a piezo element. The output amplitude and the<br />

frequency behavior of the scan generator and<br />

piezo driver have been adapted to these piezo<br />

actuators (up to 150 Volts, 200 Hz).<br />

The flexible low noise photo diode amplifier,<br />

incorporated in the same laboratory housing,<br />

allows to monitor for example the single<br />

longitudinal mode behavior of tunable lasers.<br />

www.<strong>TEM</strong>-Messtechnik.de


miniScan<br />

Scan Generator<br />

• Frequency: 100 mHz … 200 Hz (linear<br />

ramp),adjustable via a three stage range<br />

switch (coarse) and a potentiometer<br />

(fine)<br />

• Bandwidth limit adapted to piezo actuators<br />

• HV / LV power supply (low noise linear<br />

regulator, no switching power supply)<br />

• HV amplifier with very low noise class-A driver<br />

• Offset and amplitude of output signal<br />

adjustable via potentiometer<br />

• Output amplitude 0 to + 100 volts, maximum<br />

2.5 mA (other voltages/currents on request)<br />

• Standard trigger output with TTL level (5V)<br />

• Direct supply connection (100...120 V /<br />

200...240 VAC, 50...60 Hz), automatic supply<br />

voltage detection<br />

Photo Diode Amplifier<br />

! Universal pre-amplifier for photo<br />

diodes, transimpedance amplifier<br />

(current-to-voltage converter)<br />

! Connection of different photo detector types<br />

via a shielded cable (to BNC socket)<br />

! Very robust against oscillations, so that an<br />

adaption to the photo diode and cable<br />

used can be omitted in most cases<br />

! Amplification of the photo diode input signal<br />

adjustable via range switch (coarse switch<br />

with 6 positions) and via potentiometer<br />

4 7<br />

(fine,10 to 100%), 3.3 x 10 … 1 x 10 V/A<br />

! Offset compensation of the photo diode<br />

input signal adjustable via potentiometer<br />

! Output coupling switchable between AC<br />

(10 Hz), AC-HF (300 Hz) or DC coupling<br />

! Bandwidth: 30 kHz<br />

! Laboratory housing 125 x 88 x 205 mm<br />

Subject to change without notice<br />

03/2013


PulsePicker<br />

PulsePicker<br />

Repetition Rate Reduction System<br />

! for optical gating with a fiber-based electro-optical (EOM) or<br />

acousto-optical (AOM) modulator<br />

! user-friendly front panel with LCD menu<br />

! full PC control via USB or RS232<br />

! for EOM: automatic control of offset voltage<br />

! modular system<br />

Application example (EOM)<br />

pulsed laser<br />

PulsePicker<br />

pulse train<br />

n<br />

EOM<br />

offset<br />

control<br />

picked pulse train<br />

www.<strong>TEM</strong>-Messtechnik.de


PulsePicker<br />

Technical Data<br />

Trigger frequency range:<br />

Trigger amplitude:<br />

10 MHz ... 500 MHz<br />

‡ 50mVpp<br />

32<br />

Divisor: 2...255 (optional: 2...2 -1)<br />

Input trigger sign:<br />

pos / neg switchable<br />

Output amplitude (switching pulses): 1V...3.5V @ 50W<br />

Output offset voltage (EOM version) -4V...+4V @ 50W (-10V...+10V @ 1MW),<br />

automatic control<br />

Analog output voltage for AOM<br />

power control (AOM version)<br />

Operation modes:<br />

Housing dimensions:<br />

Interfaces:<br />

Software / Drivers:<br />

Power supply:<br />

0...+5V @ 50W<br />

Picking / All through / All blocked<br />

88 x 260 x 373 mm<br />

USB, RS232 serial, (Ethernet optional)<br />

including visualization and measurement software<br />

Kangoo, LabView VIs available<br />

100...120/200..250 VAC, 50/60 Hz<br />

Subject to change without notice<br />

03/2013


PDA-S<br />

PDA-S<br />

The PDA-S is a universal, sensitive transimpedance<br />

amplifier for photo diodes.<br />

This versatile amplifier is very robust against oscillations and can be<br />

directly connected to various types of photo diodes by a shielded<br />

cable without further adaption. Photo diodes with positive, negative<br />

or without reverse voltage can be used.<br />

Principle of operation<br />

input<br />

offset<br />

gain<br />

AC-LF<br />

AC-HF<br />

DC<br />

+ +<br />

The two independently driven output<br />

channels are used for application and<br />

monitoring without inteference.<br />

offset A<br />

offset B<br />

+<br />

output A<br />

output B<br />

www.<strong>TEM</strong>-Messtechnik.de


Technical Data<br />

Housing dimensions:<br />

Overall dimensions:<br />

84 mm x 55 mm x 24 mm<br />

112 mm x 55 mm x 37mm<br />

PDA-S<br />

Amplification switchable:<br />

Amplification fine-tuning:<br />

Lower cut-off frequency switchable:<br />

Upper cut-off frequency:<br />

Supply voltage:<br />

33 / 100 / 330 / 1,000 /<br />

3,300 / 10,000 V/mA<br />

10% ... 100%<br />

DC / 10Hz / 300Hz<br />

45kHz ... 1MHz<br />

(depends on amplification)<br />

+12 V DC (AC adapter<br />

included 230V or 115V)<br />

Technical specifications are subject to change without notice.<br />

06/2011


miniPiA<br />

miniPiA<br />

f 0<br />

The compact piezo amplifier<br />

The miniPiA is a fast multi-channel high voltage amplifier in a<br />

compact design, especially developed for low-noise driving of<br />

piezoelectric actuators.<br />

Electronic filters serve to suppress mechanical resonance effects.<br />

Block Diagram<br />

Input<br />

X<br />

Gain<br />

S<br />

offset<br />

f 0<br />

Low Pass<br />

Filter<br />

overload<br />

detection<br />

HV Amplifier<br />

output<br />

www.<strong>TEM</strong>-Messtechnik.de


Description<br />

miniPiA<br />

Both gain factor and DC output level are individually user adjustable for each channel by<br />

means of potentiometers. Moreover, each amplifier is equipped with a second order lowpass<br />

filter, the cut-off frequency of which can be adjusted individually as well. By means of<br />

these filters, resonances in piezo driven systems can be suppressed. Thus, servo loops<br />

show significantly better perfomance.<br />

Technical Data<br />

Input voltage range:<br />

Gain:<br />

Small-signal bandwidth:<br />

Output voltage / current:<br />

Housing dimensions:<br />

Supply voltage:<br />

<strong>Product</strong> variants:<br />

Specifications are subject to change without notice.<br />

-5...+5 V<br />

user adjustable (0 ... 15x)<br />

adjustable 150 Hz...8 kHz<br />

0...150 V, 15 mA average per channel,<br />

average sum current max. 25mA<br />

higher voltage/current values on request!<br />

88 mm x 125 mm x 209 mm (H x W x D)<br />

100...120 / 200...240 V, 50...60 Hz<br />

"miniPiA 103": triple channel<br />

"miniPiA FiberLock": double channel with<br />

multi-pin connectors<br />

06/2011


miniSupply<br />

miniSupply<br />

Universal symmetric DC power supply<br />

! +/- 15V, 250mA<br />

+/- 15V, 250mA<br />

! low noise<br />

low noise<br />

! feed-through of signals from connected <strong>TEM</strong> devices<br />

! feed-through of signals from connected <strong>TEM</strong> devices<br />

Variants<br />

! miniSupply:<br />

! miniSupply PSD:<br />

! miniSupply Quad:<br />

! miniSupply APD:<br />

general purpose: photo<br />

detectors, active filters,<br />

signal generators<br />

position sensitive<br />

detectors<br />

4-quadrant detectors<br />

high voltage supply for<br />

avalanche photo diodes<br />

Application example: PSD<br />

www.<strong>TEM</strong>-Messtechnik.de


Technical Data<br />

miniSupply<br />

Output voltage: +/-15 V DC (other values on request)<br />

Maximum current (peak):<br />

Maximum current (cont.):<br />

Housing dimensions:<br />

Supply voltage (AC):<br />

... 2 1<br />

15 ...<br />

1A<br />

250mA<br />

44 mm x 125 mm x 209 mm (1 height unit)<br />

100...120 VAC / 200...240 VAC, 50...60 Hz<br />

1 ... 5:<br />

6:<br />

7:<br />

10, shield:<br />

signals to BNC outlets<br />

+15 V<br />

-15 V<br />

ground<br />

Subject to change without notice<br />

06/2011


Development, Manufacturing and Distribution<br />

12/2013<br />

<strong>TEM</strong> Messtechnik GmbH<br />

Grosser Hillen 38<br />

30559 Hannover<br />

Germany<br />

tel. +49-511-51089630<br />

fax +49-511-51089638<br />

info@tem-messtechnik.de<br />

www.tem-messtechnik.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!