19.03.2015 Views

Hole spin relaxation in Ge-Si core-shell nanowire qubits - Lieber ...

Hole spin relaxation in Ge-Si core-shell nanowire qubits - Lieber ...

Hole spin relaxation in Ge-Si core-shell nanowire qubits - Lieber ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LETTERS<br />

NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2011.234<br />

a<br />

1.5<br />

0<br />

1.5<br />

30 g dd (nS)<br />

a<br />

1,370<br />

dg s /dV L (a.u.)<br />

0<br />

150<br />

b<br />

0<br />

V SD (mV)<br />

b<br />

g dd (nS)<br />

−1.0<br />

B = 0 −1.0<br />

B = 5T<br />

652 658 652<br />

658<br />

V LP (mV)<br />

V LP (mV)<br />

25<br />

B = 0<br />

0<br />

0<br />

V SD (mV)<br />

V SD (mV)<br />

N + 1 N N + 1 N<br />

g dd (nS)<br />

25<br />

B = 5 T<br />

0<br />

0.8 0<br />

0.8<br />

V SD (mV)<br />

V L (mV)<br />

1,350<br />

1,330<br />

A<br />

B<br />

C<br />

D<br />

E<br />

ΔV (mV) ΔV (mV)<br />

c<br />

−1<br />

1<br />

0<br />

0<br />

−1<br />

1<br />

0<br />

0<br />

−1<br />

1<br />

0<br />

A−B<br />

D−E<br />

0<br />

B (T)<br />

B−C<br />

C−D<br />

E−F<br />

5<br />

c<br />

0.4<br />

ΔE Z<br />

1,310<br />

0 B (T)<br />

F<br />

5<br />

−1<br />

0<br />

g = 1.0<br />

B (T)<br />

5<br />

ΔE Z (meV)<br />

0.0<br />

0<br />

B (T)<br />

Figure 2 | Zeeman splitt<strong>in</strong>g of conf<strong>in</strong>ed holes <strong>in</strong> a s<strong>in</strong>gle quantum dot.<br />

a, Differential conductance g dd as a function of source–dra<strong>in</strong> bias V SD and<br />

gate voltage V LP . Bright features with V SD . 0correspondtodiscrete<br />

quantum states of N þ 1holes(N ¼ even) <strong>in</strong> a s<strong>in</strong>gle dot formed between<br />

gates L and M. b, Slices of g dd along dashed l<strong>in</strong>es <strong>in</strong> a (V LP ≈ 655 mV)<br />

reveals Zeeman splitt<strong>in</strong>g of the N þ 1 ground state for a magnetic field of<br />

B ¼ 5T.c, Zeeman splitt<strong>in</strong>g DE Z versus B and a l<strong>in</strong>ear fit (dashed l<strong>in</strong>e)<br />

yield a g-factor of 1.02+0.05.<br />

LP and RP (orange) tune the energy levels of each dot and gates EL<br />

and ER (purple) <strong>in</strong>crease the carrier densities near the source (S dd )<br />

and dra<strong>in</strong> (D dd ) to provide efficient charge transmission between<br />

<strong>nanowire</strong> and contacts. A tun<strong>in</strong>g gate S (yellow) operates the<br />

sensor dot near a Coulomb oscillation where the sensor conductance<br />

g s (measured by ≏30 mV rms excitation standard lock<strong>in</strong>g<br />

techniques) is most sensitive to the potential of the float<strong>in</strong>g gate.<br />

We first performed transport spectroscopy <strong>in</strong> a s<strong>in</strong>gle quantum<br />

dot def<strong>in</strong>ed by top gates L and M, while leav<strong>in</strong>g all other gate electrodes<br />

at smaller gate voltages to allow hole flow through the <strong>nanowire</strong>.<br />

Investigat<strong>in</strong>g the differential conductance g dd ¼ dI/dV SD as a<br />

function of bias V SD and gate voltage V LP (Fig. 2a) revealed<br />

Coulomb diamonds and the excitation spectrum of the dot. The<br />

data show a set of conductance l<strong>in</strong>es parallel to the diamond edge<br />

due to tunnell<strong>in</strong>g through asymmetric barriers <strong>in</strong>to excited<br />

quantum states (Fig. 2c, <strong>in</strong>set). First, we note that for V SD . 0 the<br />

lowest excited state appears ≏0.6 meV above the ground-state<br />

resonance. Such a high level spac<strong>in</strong>g constitutes an advantage<br />

for <strong>sp<strong>in</strong></strong> <strong>qubits</strong> where the lowest <strong>sp<strong>in</strong></strong> states need to be addressed<br />

7<br />

Figure 3 | <strong>Hole</strong>-<strong>sp<strong>in</strong></strong> doublets <strong>in</strong> a <strong>Ge</strong>–<strong>Si</strong> double dot. a, Differential<br />

conductance dg s /dV L through the sensor dot versus B <strong>in</strong> the absence of<br />

current through the double quantum dot (source–dra<strong>in</strong> bias ¼ 0). Peaks <strong>in</strong><br />

dg s /dV L versus V L <strong>in</strong>dicate ground-state transitions when holes are<br />

removed from the left dot. b, B dependence of reduced Coulomb spac<strong>in</strong>gs,<br />

DV(B) =[V N (B)−V N+1 (B)] − [V N (B ≈ 0)−V N+1 (B ≈ 0)], whereV N are<br />

the peak ord<strong>in</strong>ates (emphasized black dotted l<strong>in</strong>es <strong>in</strong> a). c, Dataofb plotted<br />

with guide l<strong>in</strong>es g ¼ 1.0 assum<strong>in</strong>g a gate coupl<strong>in</strong>g efficiency a ¼ 0.37<br />

extracted from the s<strong>in</strong>gle dot device <strong>in</strong> Fig. 2.<br />

without occupation of higher orbitals. Second, a f<strong>in</strong>ite magnetic<br />

field splits the <strong>sp<strong>in</strong></strong>-degenerate ground-state transition <strong>in</strong>to a <strong>sp<strong>in</strong></strong>up<br />

and <strong>sp<strong>in</strong></strong>-down resonance (Fig. 2b). Their separation allows us<br />

to extract the Zeeman energy E Z ¼ |g|m B B, where g is the g-factor<br />

and m B ¼ 5.8 × 10 25 eV T 21 is the Bohr magneton. A l<strong>in</strong>ear fit to<br />

Zeeman splitt<strong>in</strong>gs at different magnetic fields (Fig. 2c, g ≈ 1.02)<br />

yields a g-factor that is significantly smaller than that of unperturbed<br />

light holes <strong>in</strong> germanium (|g ‖ |≈2|k|≈2 × 3.41 ¼ 6.82) 28,29 , probably<br />

due to strong conf<strong>in</strong>ement and heavy-hole light-hole mix<strong>in</strong>g.<br />

Although g = 2 provides <strong>in</strong>direct evidence for the presence of<br />

<strong>sp<strong>in</strong></strong>–orbit coupl<strong>in</strong>g, the observed twofold <strong>sp<strong>in</strong></strong> degeneracy is consistent<br />

with recent experiments on holes <strong>in</strong> germanium and<br />

silicon quantum dots 19,20,30,31 . Note that <strong>in</strong> the absence of external<br />

or <strong>in</strong>ternal (that is, nuclear) magnetic fields, hole states with half<strong>in</strong>teger<br />

total angular momentum are expected to be (at least)<br />

twofold degenerate due to time-reversal symmetry, so it is natural<br />

to create <strong>sp<strong>in</strong></strong> <strong>qubits</strong> from such Kramers doublets, <strong>in</strong> close<br />

analogy to the s<strong>in</strong>glet–triplet <strong>qubits</strong> of two-electron <strong>sp<strong>in</strong></strong> states.<br />

To form a double quantum dot <strong>in</strong> the <strong>sp<strong>in</strong></strong>-blockade regime 25 ,we<br />

raised the barriers and lowered the hole density by tun<strong>in</strong>g the gate<br />

voltages. The number of holes <strong>in</strong> each dot was estimated to be<br />

between 10 and 50. In this regime, we verify the even–odd fill<strong>in</strong>g<br />

of <strong>sp<strong>in</strong></strong>-degenerate ground states us<strong>in</strong>g the charge sensor described<br />

previously 16 . Figure 3a shows the sens<strong>in</strong>g data of six subsequent<br />

charge transitions of the double dot, visible as discrete peaks <strong>in</strong><br />

the differential sensor dot conductance dg S /dV L . With <strong>in</strong>creas<strong>in</strong>g<br />

magnetic field the transitions <strong>in</strong>crease or decrease <strong>in</strong> energy (gate<br />

voltage), depend<strong>in</strong>g on the direction of the added hole <strong>sp<strong>in</strong></strong>. To<br />

clarify this field dependence we plotted the voltage spac<strong>in</strong>g DV<br />

48<br />

NATURE NANOTECHNOLOGY | VOL 7 | JANUARY 2012 | www.nature.com/naturenanotechnology<br />

© 2012 Macmillan Publishers Limited. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!