17.05.2015 Views

Numerical Integration Over Polygonal Domains using Convex ... - Ijecs

Numerical Integration Over Polygonal Domains using Convex ... - Ijecs

Numerical Integration Over Polygonal Domains using Convex ... - Ijecs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

u<br />

4<br />

uk<br />

<br />

<br />

<br />

M<br />

k<br />

( , )<br />

(6)<br />

v<br />

k1<br />

vk<br />

where ( u<br />

k<br />

, vk<br />

), (k = 1,2,3,4) are the vertices of the quadrilateral element Q * e in the ( u,<br />

v)<br />

plane and M k<br />

( ,<br />

)<br />

denotes the shape function of node k and they are expressed in the standard texts[1-3]:<br />

1<br />

M<br />

k<br />

( ,<br />

)<br />

(1 k<br />

)(1 <br />

k<br />

)<br />

(7a)<br />

4<br />

( <br />

k<br />

, k<br />

), k 1,2,3,4 <br />

(<br />

1,<br />

1),<br />

(1, 1),<br />

(1,1), ( 1,1)<br />

<br />

(7b)<br />

From eqns. (6) and (7), we have<br />

4<br />

u<br />

M<br />

k 1<br />

uk<br />

[( u1<br />

u2<br />

u3<br />

u4<br />

) ( u1<br />

u2<br />

u3<br />

u4<br />

) ]<br />

(8a)<br />

<br />

k 1<br />

<br />

4<br />

4<br />

u<br />

M<br />

k 1<br />

uk<br />

[( u1<br />

u2<br />

u3<br />

u4<br />

) ( u1<br />

u2<br />

u3<br />

u4<br />

) ]<br />

(8b)<br />

<br />

k 1<br />

<br />

4<br />

Similarly,<br />

4<br />

v<br />

M<br />

k 1<br />

vk<br />

[( v1<br />

v2<br />

v3<br />

v4<br />

) ( v1<br />

v2<br />

v3<br />

v4<br />

) ]<br />

(8c)<br />

<br />

k 1<br />

<br />

4<br />

4<br />

v<br />

M<br />

k 1<br />

vk<br />

[( v1<br />

v2<br />

v3<br />

v4<br />

) ( v1<br />

v2<br />

v3<br />

v4<br />

) ]<br />

(8d)<br />

<br />

k 1<br />

<br />

4<br />

Hence, from eqns.(8), the Jacobian can be expressed as<br />

* (<br />

u,<br />

v)<br />

u<br />

v<br />

u<br />

v<br />

J <br />

(9a)<br />

(<br />

,<br />

)<br />

<br />

<br />

<br />

<br />

where, [( u4 u2<br />

)( v1<br />

v3)<br />

( u3<br />

u1)(<br />

v4<br />

v2<br />

)] 8,<br />

[( u4 u3)(<br />

v2<br />

v1<br />

) ( u1<br />

u2<br />

)( v4<br />

v3)]<br />

8,<br />

[( u4 u1)(<br />

v2<br />

v3)<br />

( u3<br />

u2<br />

)( v4<br />

v1)]<br />

8<br />

(9b)<br />

4.3 Explicit form of Jacobian for Special Quadrilaterals<br />

Lemma 3. Let ABCbe an arbitrary triangle with vertices A( 1,0), B(0,1),<br />

C(0,0)<br />

and let<br />

D( 1 2,1 2), E(0,1<br />

2) and F(1<br />

2,0)<br />

be midpoints of sides AB, BC and CA respectively and also let<br />

G(1<br />

3,1 3) be its centroid. Then the Jacobian of the three special quadrilaterals Qˆ e (e = 1, 2, 3) viz<br />

G , E,<br />

C,<br />

F , G,<br />

F,<br />

A,<br />

D and G , D,<br />

B,<br />

E have the same expression given by:<br />

ˆ (<br />

u,<br />

v)<br />

J Jˆ<br />

(<br />

,<br />

)<br />

e<br />

<br />

1<br />

96<br />

(4 ),<br />

( e 1,2,3)<br />

Proof: We can immediately verify that eqn.(10a) is true by substituting the nodal values of Qˆ e in eqn. (9ab).<br />

The general result for special quadrilaterals Q<br />

e (e =1,2,3) follows by direct substitution of geometric<br />

coordinates of the vertices in eqns. (9a-9b) or by chain rule of partial differentiation and use of eqn.(1):<br />

<br />

e ( x,<br />

y)<br />

(<br />

x,<br />

y)<br />

(<br />

u,<br />

v)<br />

4 pqr<br />

J J <br />

2<br />

pqr<br />

<br />

4<br />

<br />

(10b)<br />

(<br />

,<br />

)<br />

(<br />

u,<br />

v)<br />

(<br />

,<br />

)<br />

96 48<br />

5 Problem Statement<br />

In some physical applications, we are required to compute integrals of some functions which are expressed<br />

in explicit form. In finite element and boundary element method, evaluation of two dimensional integrals<br />

with explicit functions as integrands is of great importance. This is the subject matter of several<br />

investigations [ 4-15]. We now consider the evaluation of the integral<br />

(10a)<br />

II ( f ) f ( x,<br />

y)<br />

dxdy,<br />

: polygonal domain (11)<br />

<br />

<br />

<br />

H. T. Rathod a IJECS Volume 2 Issue 8 August, 2013 Page No.2576-2610 Page 2579

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!