10.07.2015 Views

Lecture 16: Winds, Jets and Outflows

Lecture 16: Winds, Jets and Outflows

Lecture 16: Winds, Jets and Outflows

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> <strong>16</strong>: <strong>Winds</strong>, <strong>Jets</strong> <strong>and</strong> <strong>Outflows</strong>HH 212 H 2 (Mc Caughrean & Zinnecker VLT)


Losing Material from the Outer DiskThrough Photoevaporation


Formation & viscous spreading of disk


Formation & viscous spreading of disk


Formation & viscous spreading of disk


Photoevaporation of disks(Very brief)Ionization of disk surface creates surface layer of hot gas. Ifthis temperature exceeds escape velocity, then surfacelayer evaporates.v esc≈ GM 1/ 2⎛⎛ ⎞⎞⎜⎜ ⎟⎟⎝⎝ r ⎠⎠Evaporation proceeds for radii beyond:€r ≥ GM ≡ r2 grc sHII


The Edge of The Solar System:Evaporation of Disks by UV RadiationCenter of OrionNebulaHot O <strong>and</strong> B-typestars producepowerful UVradiation field.Young disk bathed inUV light.


Why is there an Edge to the Solar System:Evaporation of Disks by UV Radiation


Losing Material from the Inner Disk:through Accretion <strong>and</strong> Outflow9


Magnetospheric accretionFree-fall <strong>and</strong> accretion shockFrom r A down to star: matteris in supersonic free-fall.Accretion shockFree-fallregionNear the star the matter getsto a halt in a st<strong>and</strong>-off shock.r iShock velocity:v s=2GM 1− r *r *r iDissipated energy (=accretion luminosity from shock):⎛⎛L€accr= 1− r ⎞⎞*⎜⎜ ⎟⎟ G M ˙ M⎝⎝ ⎠⎠r ir *


Bipolar outflows<strong>Jets</strong> originatefrom innerregions ofprotoplanetarydisksHubble Space Telescope image


Magnetically threaded disksSuppose disk is treaded by magnetic field:Inward motion of gas in disk drags field inward:B-field aquiresangle with disk


€Disk windsSlingshot effect. Bl<strong>and</strong>ford & Payne (1982)(courtesy:C. Fendt)Use cylindricalcoordinates r,zGravitational potential:Φ = −GMr 2 + z 2Effective gravitationalpotential along field line (incl.sling-shot effect): €Φ = − GM ⎡⎡1 ⎛⎛⎢⎢ ⎜⎜r 0 ⎣⎣ ⎢⎢ 2 ⎝⎝rr 0⎞⎞⎟⎟⎠⎠2+r 0r 2 + z 2⎤⎤⎥⎥⎦⎦ ⎥⎥


Disk windsBl<strong>and</strong>ford & Payne (1982)€Φ = − GM ⎡⎡1 ⎛⎛⎢⎢ ⎜⎜r 0 ⎣⎣ ⎢⎢ 2 ⎝⎝rr 0⎞⎞⎟⎟⎠⎠2+r 0r 2 + z 2Critical angle: 60 degreeswith disk plane. Beyondthat: outflow of matter.⎤⎤⎥⎥⎦⎦ ⎥⎥InfallOutflowGas will bend field lines


Disk + star: X-wind model of Frank ShuShu 1994


Different kinds of <strong>Winds</strong>Ferreira, Dougados, Cabrit 2006Bl<strong>and</strong>ford & Payne 1982Konigl & Pudritz 2000Shu et al. 1994Matt & Pudritz 2005,…Configuration favorable for outflowsPirated from talk byMarina RomanovaBunching, α v > α d18


Magnetocentrifugal <strong>Winds</strong>Romanova et al. 2005; Ustyugova et al. 2006; Romanova et al. 2009


<strong>Jets</strong> or <strong>Winds</strong>?


Wind Blown Cavities


Bipolar <strong>Outflows</strong> driven by WindShu et al. 1991


Equations for core:Wind Blown BubbleEquations for wind:


Wind Blown Bubble


Wind Blown Bubble


Creating <strong>Jets</strong>


Creating <strong>Jets</strong>: Magnetic field winding - confinementC. Fendt


€Magnetic field winding - confinement(courtesy:C. Fendt)€j = c4π ∇ × Bf = 1 cj × BRight-h<strong>and</strong> rule:force pointsinwards


Hydrodynamic confinement in jet:Shock only reduces the velocity component perpendicularto shock front. Therefore obliquely shocked gas isdeflected toward the shock plane.


Hydrodynamic confinement in jet:


Bipolar outflows driven by <strong>Jets</strong>Swept-up material(molecular outflow)Terminal shockHydrodynamicconfinement?Hot bubble of old jet materialMagnetic confinementMagneto-centrifugallaunching (


Head of the jet:Turbulent mixing between old jetmaterial <strong>and</strong> swept-up environment(entrainment)St<strong>and</strong>-off shock (most of jetenergy dissipated here)Contact discontinuity(boundary between jet<strong>and</strong> external medium)Back flowBow shockShocked external medium gas(molecular outflow)Jet flow much faster than propagation of bow shock.Jet material much more tenuous than external medium


Most Likely a Combination of Both


The Propeller RegimeDisk radius > Corotation Axis:Magnetic field rotating faster than diskUstyugova et al. 2006


<strong>Outflows</strong> at the Propeller Stage:Conical <strong>Winds</strong> + Axial JetA star spins-down due to axial magnetic jetPirated from talk by Marina Romanova23


Observed knot movement


Observations of <strong>Jets</strong> <strong>and</strong> <strong>Winds</strong>


Herbig-Haro ObjectsDiscovered independently by George Herbig <strong>and</strong> Guillermo Haroin 1950sSmall knots of nebulosity in dark cloudsDisplayed lines of hydrogen <strong>and</strong> forbidden lines of [OI], [NII] <strong>and</strong>[SII].Now known to be shock ionized nebulae.More than 400 Herbig Haro (HH) objects are known.Only trace a small fraction of the outflowing gas


Reipurth et al1989Forbidden Lines, Atomic HydrogenLines <strong>and</strong> Molecular Hydrogen LinesReipurth et al1989Carratti o Garatti et al. 2008


HH 111Knots are probably internal shocks, where faster knots are crashing intoslower knots[Fe II] + KHa + [SII]NICMOSWFPC2


HH 212 H 2 (Mc Caughrean & Zinnecker VLT)


HH 46/47 NTT [OΙΙ] Ηα [SΙΙ] = 0.38, 0.65, 0.67 µmBally & Reipurth (06 “Birth of Stars & Planets” CUP = BR06)


HH 46/47 Spitzer H 2 PAH 3.6, 4.5, 8 µm(Noriega-Crespo 04; BR06)


HST 1994HH 46/47(Hartigan et al. 05, AJBR06)


HST 1997HH 46/47(Hartigan et al. 05, AJBR06)


HH 2 HH 1HST 1997 - 1994


HH 2 HH 1HST 1997 - 1994


HH 1 jetHST 1997 - 1994


HH 1 jetHST 1997 - 1994


HH 1HST 1997 - 1994


HH 1HST 1997 - 1994


HH 2HST 1997 - 1994


HH 2HST 1997 - 1994


HH 34HST 1997 - 1994


HH 34HST 1997 - 1994


Molecular <strong>Outflows</strong>


Molecular<strong>Outflows</strong>:Line WingsBally & Lada1983


Molecular<strong>Outflows</strong>:BipolarityBally & Lada1983


Molecular <strong>Outflows</strong>: Basic PropertiesBally & Lada 1983


Molecular <strong>Outflows</strong>: Mechanical Luminosity<strong>and</strong> Momentum FluxBally & Lada 1983


MolecularOutflow: the“Hubble Law”NGC 2264 GFich & Lada1998


DistinguishingBow shockbetweenWind <strong>and</strong> JetModelsLee et al. 2001Wind


HH 288:Contours: CO(2-1)Greyscale: H 2


HH 211Contours: CO(2-1)


VLA 05487: example of wind (Lee et al. 2001)


DistinguishingBow shockbetweenWind <strong>and</strong> JetModelsLee et al. 2001Wind


HH 212: example of jet (Lee et al. 2001)


Detecting <strong>Jets</strong> in Molecular GasHH 211 jet


Detecting <strong>Jets</strong> in Molecular GasSiO mm-wave rotational lines are an excellent tracer of jets:abundance enhanced by a few orders of magnitude in jets


HH 211 Lee et al. 2007


SiO HH 212 Codella et al. 2008


HH212Lee etal.2007


HH 212 Lee et al. 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!