12.07.2015 Views

Malmsten's Proof of the Integral Theorem

Malmsten's Proof of the Integral Theorem

Malmsten's Proof of the Integral Theorem

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

In <strong>the</strong> next part Malmsten uses <strong>the</strong> <strong>Theorem</strong> II twice in a pro<strong>of</strong> <strong>of</strong> asimilar <strong>the</strong>orem for complex valued functions. I.e. he shows that <strong>the</strong> sumS n = (z 1 − z 0 )f(z 0 ) + (z 2 − z 1 )f(z 1 ) + . . . + (Z − z n−1 )f(z n−1 ),where z = x + iy and(f synectic) as n → ∞ and <strong>the</strong> differencesf(z) = ϕ(x, y) + iψ(x, y), (9)z 1 − z 0 , z 2 − z 1 , . . . , Z − z n−1i.e. <strong>the</strong> differencesx 1 − x 0 , x 2 − x 1 , . . . , X − x n−1 ,y 1 − y 0 , y 2 − y 1 , . . . , Y − y n−1decrease indefinitely, is independent <strong>of</strong> n as well as <strong>of</strong> <strong>the</strong> valuesz 1 , z 2 , z 3 , . . . , z n−1 .To prove this Malmsten constructs <strong>the</strong> sumS n = P n + iQ nwhereP n = (x 1 − x 0 ) · ϕ(x 0 , y 0 ) − (y 1 − y 0 ) · ψ(x 0 , y 0 )+(x 2 − x 1 ) · ϕ(x 1 , y 1 ) − (y 2 − y 1 ) · ψ(x 1 , y 1 )+ . . .+(X − x n−1 ) · ϕ(x n−1 , y n−1 ) − (Y − y n−1 ) · ψ(x n−1 , y n−1 )andQ n = (x 1 − x 0 ) · ψ(x 0 , y 0 ) + (y 1 − y 0 ) · ϕ(x 0 , y 0 )+(x 2 − x 1 ) · ψ(x 1 , y 1 ) + (y 2 − y 1 ) · ϕ(x 1 , y 1 )+ . . .+(X − x n−1 ) · ψ(x n−1 , y n−1 ) + (Y − y n−1 ) · ϕ(x n−1 , y n−1 )17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!