Views
3 years ago

Resonance and fractal geometry

Resonance and fractal geometry

Hopf saddle-node

Hopf saddle-node II0.1boxH0.05d10-0.05-0.1O0.2 0.4 0.6 0.8 1 1.2 1.4Id2HH.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of3D-diffeomorphisms, analysis of a resonance ‘bubble’. Physica D 237 (2008) 1773-1799H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of3D-diffeomorphisms, the Arnol ′ d resonance web. Bull. Belgian Math. Soc. Simon Stevin 15(2008) 769-787H.W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solidtorus. DCDS-B 14(3) (2010) 871-905

Hopf saddle-node III1n=0.46C1C100-1-1 0 1xy-1zx-1 0 11n=0.4555D1D100-1-1 0 1xy-1zx-1 0 1corresponding dynamics: quasi-periodicity and chaos...

Resonance and fractal geometry - Rijksuniversiteit Groningen
Resonance and fractal geometry - Universidad de Oviedo
The Fractal Geometry of Experience, 1993 (PDF) - Stephen Shore
Geometry Review.ppt
FRACTALS FOR ELECTRONIC APPLICATIONS
Integra R2 Series - Fractal Design
Faith, Fractals and Filenes - Regis College
KUPKA'S FRACTAL PAINTINGS - Ralph Abraham
Fractals Presentation (PDF) - Seattle University
Arithmetic Properties of Fractal Estimates - Department of ...
KUPKA'S FRACTAL PAINTINGS - Ralph Abraham
What is fractal - Inkaba.org
Applied Spectral Fractal Dimension
Fractal small-world human brain functional networks