12.07.2015 Views

ASPECTS OF IWASAWA THEORY OVER FUNCTION FIELDS 1 ...

ASPECTS OF IWASAWA THEORY OVER FUNCTION FIELDS 1 ...

ASPECTS OF IWASAWA THEORY OVER FUNCTION FIELDS 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IWASAWA</strong> <strong>THEORY</strong> <strong>OVER</strong> <strong>FUNCTION</strong> <strong>FIELDS</strong> 10Lemma 3.3. Let F d ⊂ F e be an inclusion of multiple Z p -extensions, e > d. Assume thatA[p ∞ ](F) = 0 or that F itt Λ(Fd )(S(F d )) is principal. Thenπ FeF d(F itt Λ(Fe)(S(F e ))) ⊆ F itt Λ(Fd )(S(F d )) .Proof. Consider the natural map a e d : Sel A(F d ) p → Sel A (F e ) Γe dpand dualize to getwhere (as in Theorem 2.6)S(F e )/I e d S(F e) → S(F d ) ↠ (Ker a e d )∨Ker a e d ↩→ H1 (Γ e d , A[p∞ ](F e ))is finite. If A[p ∞ ](F) = 0 then (Ker a e d )∨ = 0 andIf (Ker a e d )∨ ≠ 0 one hasπ e d (F itt Λ e(S(F e ))) = F itt Λd (S(F e )/I e d S(F e)) ⊆ F itt Λd (S(F d )) .F itt Λd (S(F e )/I e d S(F e))F itt Λd ((Ker a e d )∨ ) ⊆ F itt Λd (S(F d )) .The Fitting ideal of a finitely generated torsion module contains a power of its annihilator,so let σ 1 , σ 2 be two relatively prime elements of F itt Λd ((Ker a e d )∨ ) and θ d a generator ofF itt Λd (S(F d )). Then θ d divides σ 1 α and σ 2 α for any α ∈ F itt Λd (S(F e )/I e d S(F e)) (it holds,in the obvious sense, even for θ d = 0). Henceπ e d (F itt Λ e(S(F e ))) = F itt Λd (S(F e )/I e d S(F e)) ⊆ F itt Λd (S(F d )) .Remark 3.4. In the case A = E an elliptic curve, the hypothesis E[p ∞ ](F) = 0 is satisfiedif j(E) ∉ (F ∗ ) p , i.e., when the curve is admissible (in the sense of [5]); otherwise j(E) ∈(F ∗ ) pn − (F ∗ ) pn+1 and one can work over the field F pn . The other hypothesis is satisfied ingeneral by elementary Λ(F d )-modules or by modules having a presentation with the samenumber of generators and relations.Let π Fd be the canonical projection from Λ to Λ(F d ) with kernel I Fd . Then the previouslemma shows that, as F d varies, the (π Fd ) −1 (F itt Λ(Fd )(S(F d ))) form an inverse system ofideals in Λ.Definition 3.5. Assume that A[p ∞ ](F) = 0 or that F itt Λ(Fd )(S(F d )) is principal for any F d .Define˜F itt Λ (S(F)) := lim←−(π Fd ) −1 (F itt Λ(Fd )(S(F d )))Fdto be the pro-Fitting ideal of S(F) (the Pontrjagin dual of Sel E (F) p ).Proposition 3.6. Assume that A[p ∞ ](F) = 0 or that F itt Λ(Fd )(S(F d )) is principal forany F d . If corank Zp Sel A (F 1 ) Γ(F 1)p ≥ 1 for any Z p -extension F 1 /F contained in F, then˜F itt Λ (S(F)) ⊂ I (where I is the augmentation ideal of Λ).Proof. Recall that I F dis the augmentation ideal of Λ(F d ), that is, the kernel of π F d: Λ(F d ) →Z p . By hypothesis F itt Zp ((Sel A (F 1 ) Γ(F 1)p ) ∨ ) = 0. Thus, since Z p = Λ(F 1 )/I F 1and (Sel A (F 1 ) Γ(F 1)p ) ∨ =S(F 1 )/I F 1S(F 1 ),0 = F itt Zp ((Sel A (F 1 ) Γ(F 1)p ) ∨ ) = π F 1(F itt Λ(F1 )(S(F 1 ))) ,i.e., F itt Λ(F1 )(S(F 1 )) ⊂ Ker π F 1= I F 1.For any Z d p-extension F d take a Z p -extension F 1 contained in F d . Then, by Lemma 3.3,π F dF 1(F itt Λ(Fd )(S(F d ))) ⊆ F itt Λ(F1 )(S(F 1 )) ⊂ I F 1.□

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!