12.07.2015 Views

Adsorption and Thermal Decomposition of Acetaldehyde on Si (111 ...

Adsorption and Thermal Decomposition of Acetaldehyde on Si (111 ...

Adsorption and Thermal Decomposition of Acetaldehyde on Si (111 ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Acetaldehyde</str<strong>on</strong>g> <strong>on</strong> <strong>Si</strong>(<strong>111</strong>)-7×7 J. Phys. Chem. B, Vol. 101, No. 10, 1997 1875baFigure 5. (a) TPD for m/e ) 48 (CD 3CDO) at the indicated dosingtime. The relative coverage is discussed in the text. (b) TPD <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 3-CDO <strong>on</strong> <strong>Si</strong>(<strong>111</strong>)7×7 for m/e ) 3, 4, 28, <str<strong>on</strong>g>and</str<strong>on</strong>g> 44. The <strong>Si</strong>(<strong>111</strong>) surfacewas exposed to CH 3CDO at 120 K for 60 s.dependence would predict. We speculate that this is due to aninitial c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parent molecules by the dosing line asthey first enter the vacuum chamber. The parent mass (m/e )48) showed a single peak at ∼320 K. At lower coverages, thereis a shoulder at ∼350 K.At higher temperatures, other fragments were observed asshown in Figure 5b. For CH 3 CDO, m/e ) 3 (DH) <str<strong>on</strong>g>and</str<strong>on</strong>g> m/e )4(D 2 ) showed single peaks at 750 K due to the desorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the surface hydrogen. In the corresp<strong>on</strong>ding CD 3 CDO experiment,m/e ) 4 also showed a single peak at 750 K with a muchsmaller peak at ∼300 K, presumably caused by the cracking <str<strong>on</strong>g>of</str<strong>on</strong>g>the parent molecules in the RGA. For m/e ) 44, two majorcomp<strong>on</strong>ents at ∼320 <str<strong>on</strong>g>and</str<strong>on</strong>g> ∼1000 K were evident in the spectrum.Discussi<strong>on</strong>The thermal stability <str<strong>on</strong>g>of</str<strong>on</strong>g> acetaldehyde adsorbed <strong>on</strong> <strong>Si</strong>(<strong>111</strong>)7×7was studied by using HREELS, XPS, UPS, <str<strong>on</strong>g>and</str<strong>on</strong>g> TPD techniques.The molecular adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acetaldehyde <strong>on</strong> the <strong>Si</strong>(<strong>111</strong>) surfaceat 120 K was clearly evident in HREELS <str<strong>on</strong>g>and</str<strong>on</strong>g> UPS. In the CH 3 -CHO HREEL spectrum, all the molecular vibrati<strong>on</strong>s wereobserved <str<strong>on</strong>g>and</str<strong>on</strong>g> compared with the IR/Raman results for thegaseous/liquid CH 3 CHO (see Table 1). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the modes werenot resolved in the spectrum with the resoluti<strong>on</strong> used in thisstudy. However, with the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectra taken from CH 3 -CDO <str<strong>on</strong>g>and</str<strong>on</strong>g> CD 3 CDO, the assignment <str<strong>on</strong>g>of</str<strong>on</strong>g> each mode is fairlystraightforward. For example, the 185 meV peak for CH 3 CHOis composed <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 3 deformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> CH bending modes. Inthe CH 3 CDO spectrum, the relative intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the 185 meVpeak decreased <str<strong>on</strong>g>and</str<strong>on</strong>g> the 140 meV peak became broader becausethe CH bending mode shifted from 185 to ∼140 meV. In thecorresp<strong>on</strong>ding CD 3 CDO spectrum, the 185 meV peak vanisheddue to the shift <str<strong>on</strong>g>of</str<strong>on</strong>g> CH deformati<strong>on</strong> mode from ∼180 to 130meV.In the C 1s XPS spectrum, the C 1s signal showed two peaks at285.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 287.8 eV. They are from the carb<strong>on</strong> atoms in CH 3<str<strong>on</strong>g>and</str<strong>on</strong>g> C(H)dO groups, respectively. <strong>Si</strong>milarly, two C 1s XPSpeaks were observed for the acetaldehyde <strong>on</strong> Fe(100) <str<strong>on</strong>g>and</str<strong>on</strong>g> Cu-(110) surfaces. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 3 CHO/Fe(100), 1 the lowerBE peak was more intense than the higher BE <strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> thepeak intensity difference was attributed to the partial dissociati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the molecules up<strong>on</strong> adsorpti<strong>on</strong>. In the present study <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 3 -CHO <strong>on</strong> <strong>Si</strong>(<strong>111</strong>)7×7, we also noticed that the two C 1s XPSpeak intensities were different. This may indicate a partialdissociative adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acetaldehyde <strong>on</strong> <strong>Si</strong>(<strong>111</strong>). The argumentis c<strong>on</strong>sistent with the high-temperature XPS result, e.g.,at 350 K, where the C 1s XPS shows a single broad peak at 284.5eV due to the breaking <str<strong>on</strong>g>of</str<strong>on</strong>g> the C-C b<strong>on</strong>d (see later discussi<strong>on</strong>).Furthermore, the O 1s XPS peak shows some c<strong>on</strong>tributi<strong>on</strong> fromthe 530.8 eV comp<strong>on</strong>ent, which becomes the dominant featureat temperatures above 350 K. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the differencein C 1s XPS peak intensity at

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!