05.12.2012 Views

Biological Chemistry - School of Physics and Astronomy - The ...

Biological Chemistry - School of Physics and Astronomy - The ...

Biological Chemistry - School of Physics and Astronomy - The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MAJOR<br />

GRANTS<br />

High-Resolution Mass Spectrometer for<br />

<strong>The</strong> University <strong>of</strong> Manchester<br />

Department <strong>of</strong> <strong>Chemistry</strong>, EPSRC, £449k.<br />

Potentially Prebiotic Synthesis <strong>and</strong><br />

Replication <strong>of</strong> RNA, EPSRC, £418k.<br />

Completion <strong>of</strong> a Synthesis <strong>of</strong> Bryostatins,<br />

EPSRC, £260k.<br />

Stereochemical Communication: Relaying<br />

Information by Conformational<br />

Interactions, EPSRC, £247k.<br />

Biochemical <strong>and</strong> kinetic analysis <strong>of</strong> wildtype<br />

mutant acyltransferase variants,<br />

DSM Anti-Infectives, £207k.<br />

Preclinical Development <strong>of</strong> [IdoA(2S)-<br />

GlcNS]4; an Anti-Tumour <strong>and</strong> Anti-<br />

Angiogenic Antagonist <strong>of</strong> FGF-2, Cancer<br />

Research UK, £180k.<br />

Directed evolution in the production <strong>of</strong><br />

Cephalosporin antibiotics, BBSRC, £166k.<br />

Chemical predisposition: Divergent<br />

synthesis <strong>of</strong> an array <strong>of</strong> natural <strong>and</strong><br />

unnatural fatty acid derivatives, EPSRC,<br />

£116k.<br />

10<br />

Organic <strong>Chemistry</strong><br />

P.D. Bailey, J.P. Clayden, J.M. Gardiner, P. Quayle, A.C. Regan, J.D. Sutherl<strong>and</strong>,<br />

E.J. Thomas, T.W. Wallace, C.I.F. Watt, <strong>and</strong> R.C. Whitehead.<br />

<strong>The</strong> powerful tools <strong>of</strong> synthesis <strong>and</strong> mechanistic analysis,<br />

assisted by an ever exp<strong>and</strong>ing analytical arsenal, make 21st<br />

century Organic <strong>Chemistry</strong> an intellectually stimulating <strong>and</strong><br />

practically useful subject in its own right, <strong>and</strong> endow organic<br />

chemists with the ideal skills for the exploration <strong>of</strong> biology <strong>and</strong><br />

materials science. Substantial grant income, outst<strong>and</strong>ing<br />

publications, new appointments <strong>and</strong> a strong dem<strong>and</strong> for our<br />

graduates <strong>and</strong> postdoctorals in industry all show that organic<br />

chemistry in Manchester is thriving. What follows is a<br />

'snapshot' <strong>of</strong> research in this grouping designed to highlight<br />

the excitement <strong>of</strong> working at the forefront <strong>of</strong> Organic<br />

<strong>Chemistry</strong> <strong>and</strong> at its boundaries with other subjects.<br />

Stereoselectivity <strong>and</strong> stereospecificity are<br />

crucial to synthesis. Short-range stereocontrol<br />

has arguably been mastered in many cases,<br />

but long-range stereocontrol had been more<br />

elusive until the development <strong>of</strong> methodology<br />

using allyl stannanes here in Manchester.<br />

Recently, indium (III) <strong>and</strong> bismuth (III)<br />

promoters have been found to reverse<br />

stereoselectivity 1 <strong>and</strong> tin-free methods using<br />

bismuth (0) have been developed. 2 In<br />

complementary work, the synthesis was<br />

achieved <strong>of</strong> a class <strong>of</strong> molecules –<br />

oligo(xanthenedicarboxamides) – whose<br />

reactions exhibit remote stereocontrol even<br />

though the controlling centre may be<br />

separated from the reaction site by over 20<br />

bond lengths <strong>and</strong> by a linear distance <strong>of</strong> over<br />

2.5 nm (Figure 1). Transmission <strong>of</strong> information<br />

from the controlling centre to the reaction<br />

site has been achieved by relayed<br />

conformational changes, <strong>and</strong> provides the<br />

basis for a chemical model <strong>of</strong> allostery with<br />

potential for future elaboration as a molecular<br />

mechanism for communicating <strong>and</strong><br />

processing information. 3<br />

In related work, complementary kinetic <strong>and</strong><br />

thermodynamic resolution <strong>of</strong> a chiral biaryl<br />

axis was demonstrated. 4 Still in a chiral vein<br />

but in a biochemical context, insight into<br />

chiral discrimination <strong>of</strong> the Class II Aldolases<br />

was afforded by examination <strong>of</strong> the structure<br />

<strong>of</strong> tagatose-1,6-bisphoshate aldolase. 5 In<br />

chemistry pursued for its possible etiological<br />

relevance, the aldolisation <strong>of</strong> glyceraldehyde-<br />

2-phosphoglycolaldehyde was shown to be<br />

intra- rather than inter-molecular <strong>and</strong>, <strong>of</strong> the<br />

four possible aldopentose-2,4-cyclic<br />

phosphate products, the ribo- <strong>and</strong> xylo-<br />

stereochemistries were, as predicted,<br />

dominant. 6 In subsequent work, it has been<br />

shown that the same products can be<br />

obtained from the reaction <strong>of</strong> bisgylcolaldehyde<br />

phosphate diester <strong>and</strong><br />

formaldehyde.<br />

Manchester has long been a powerhouse <strong>of</strong><br />

organic synthesis <strong>and</strong> the arrival <strong>of</strong> Darren<br />

Dixon, from Cambridge, <strong>and</strong> David Procter,<br />

from Glasgow, in autumn 2004 will add<br />

further to our strength in this area. Over the<br />

period <strong>of</strong> the report, much has been achieved<br />

synthetically. In the natural product arena<br />

approaches to, <strong>and</strong> total syntheses <strong>of</strong><br />

bryostatins <strong>and</strong> phomactins, 7 manzamenones<br />

(Figure 2), 8 raumacline, 9 podophyllotoxin, 10<br />

kainoids, 11 PTX-B 12 <strong>and</strong> Mycalamide A, 13 <strong>and</strong><br />

aflatoxins (Figure 3) were described. <strong>The</strong>se<br />

targets have served to validate <strong>and</strong> showcase<br />

a wide variety <strong>of</strong> new strategies <strong>and</strong><br />

methodologies developed in the grouping<br />

including: novel tin chemistry; predisposed<br />

synthesis; surfactant catalysis; lithiationdearomatizing<br />

cyclization; photochemical ring<br />

expansion <strong>of</strong> lithiated benzamides; 14<br />

controlled chemoselective lithiation; 15 Dötz<br />

benzannulation; atom transfer radical<br />

cyclisation; 16 green oxidation reactions; 17 aza-<br />

Diels-Alder cycloadditions; 18 cis-specific Pictet-<br />

Spengler reaction; 19 <strong>and</strong> new enantioselective<br />

catalysis. 20, 21 Chemists' unique ability to<br />

synthesise unnatural substances finds its<br />

widest employment in organic chemistry <strong>and</strong><br />

members <strong>of</strong> the grouping have prepared <strong>and</strong><br />

evaluated glycolaldehyde di- <strong>and</strong><br />

triphosphate 22 <strong>and</strong> a variety <strong>of</strong> fluorinated<br />

shikimates, 24 most notably 6,6difluoroshikimic<br />

acid. 25<br />

At the interface <strong>of</strong> chemistry <strong>and</strong> biology,<br />

organic chemistry flourishes <strong>and</strong> the grouping<br />

has made many contributions. An exit<br />

transporter for the PepT1 mediated transport<br />

<strong>of</strong> peptides across the small intestine has<br />

been discovered. 26 <strong>The</strong> crystal stucture for a<br />

cleavage mutant <strong>of</strong> acyl coenzyme<br />

A:isopenicillin N acyltransferase from<br />

Penicillium chrysogenum has been<br />

determined in collaboration with a Dutch<br />

group. 27 <strong>The</strong> kinetics <strong>and</strong> thermodynamics <strong>of</strong><br />

transcription factor NF-kB homodimerization<br />

have been analysed. 28 Finally, the first results<br />

<strong>of</strong> exploratory studies to investigate a linked<br />

prebiotic origin <strong>of</strong> RNA <strong>and</strong> coded peptides<br />

have been published. 29,30<br />

Figure 1<br />

Remote stereocontrol: a single conformation <strong>of</strong> the<br />

starting material is favoured, as the shape at A governs<br />

the orientation <strong>of</strong> u, u governs v etc., through to z,<br />

which controls the local environment at B. Addition <strong>of</strong><br />

the Grignard reagent then occurs with remote<br />

stereocontrol operating through more than 20 bonds.<br />

Figure 2<br />

Manzamenone A, isolated from a marine sponge,<br />

has been synthesised using ideas <strong>of</strong> predisposed<br />

synthesis.<br />

Figure 3<br />

Aflatoxin B2, a potent mycotoxin produced by<br />

Aspergillus flavus, <strong>and</strong> which is found to<br />

contaminate many cereal crops, has been<br />

synthesised using organochromium chemistry.<br />

1 S. Donnelly, E. J. Thomas, E. A. Arnott, J. Chem.<br />

Soc., Chem. Commun. 2003, 1460.<br />

2 S. Donnelly, M. Fielding, E. J. Thomas,<br />

Tetrahedron Lett., 2004, 45, 6779.<br />

3 J. Clayden, A. Lund, L. Vallverdú, M. Helliwell,<br />

Nature 2004, in press.<br />

4 D. J. Edwards, R. G. Pritchard, T. W. Wallace,<br />

Tetrahedron Lett. 2003, 44, 4665.<br />

5 D. R. Hall, C. R. Bond, G. Leonard, C. I. F. Watt,<br />

A. Berry, <strong>and</strong> W. N. Hunter, J. Biol. Chem. 2002,<br />

277, 22018.<br />

6 J. M. Smith, V. Borsenberger, J. Raftery, J. D.<br />

Sutherl<strong>and</strong>, accepted for publication in Chem.<br />

Biodiv. 2004.<br />

7 A. S. Balnaves, G. McGowan, P. D. P. Shapl<strong>and</strong>,<br />

E. J. Thomas, Tetrahedron Lett. 2003, 44, 2713.<br />

8 J. R. Doncaster, H. Ryan, R. C. Whitehead,<br />

Synlett, 2003, 651.<br />

9 P. D. Bailey, P. D. Clingan, R. A. Price, R. G.<br />

Pritchard, Chem. Commun. 2003, 2800.<br />

10 J. P. Clayden, M. N. Kenworthy, M. Helliwell,<br />

Org. Lett. 2003, 6, 831.<br />

11 J. P. Clayden, Strategies <strong>and</strong> Tactics in Organic<br />

Synthesis, vol. 4, ed Michael Harmata, Academic<br />

Press, 2004.<br />

12 J. M. Gardiner, P. E. Giles, M. M. L. Martin,<br />

Tetrahedron Lett. 2002, 43, 5415.<br />

13 J. M.Gardiner, R.Mills, T. Fessard, Tetrahedron<br />

Lett. 2004, 45, 1215.<br />

14 J. P. Clayden, F. E. Knowles, C. J. Menet, J. Am.<br />

Chem. Soc. 2003, 110, 9278.<br />

15 D. R. Armstrong, S. R. Boss, J. P. Clayden, R.<br />

Haigh, B. A. Kirmani, D. J. Linton, P. <strong>School</strong>er, A.<br />

E. H. Wheatley, Angew. Chem. Int. Ed. 2004,<br />

43, 2135.<br />

16 P. Quayle, D. Fengas, S. Richards, Synlett, 2003,<br />

1797.<br />

17 E. C. Boyd, R. V. H. Jones, P. Quayle, A. J.<br />

Waring, Green <strong>Chemistry</strong>, 2003, 5, 679.<br />

18 P.D. Bailey, P.D. Smith, F. Pederson, W. Clegg,<br />

G.M. Rosair, S.J. Teat, Tetrahedron Lett. 2002,<br />

43, 1067.<br />

19 L. Alberch, P. D. Bailey, P. D. Clingan, T. J. Mills,<br />

R. A. Price, R. G. Pritchard, Eur. J. Org. Chem.<br />

2004, 1887.<br />

20 J. M. Gardiner, P. D. Crewe, G. E. Smith, K. T.<br />

Veal, R. G. Pritchard, J. E. Warren, Organic Lett.<br />

2003, 5, 467.<br />

21 J. M. Gardiner, P. D. Crewe, G. E. Smith, K. T.<br />

Veal, Chem. Commun. 2003, 618.<br />

22 A. J. Lawrence, J. D. Sutherl<strong>and</strong>, Synlett 2002,<br />

170.<br />

23 J. M.Box, L. M.Harwood, J. L. Humphreys, G. A.<br />

Morris, P. M. Redon, R. C. Whitehead, Synlett<br />

2002, 358.<br />

24 L. Begum, J. M. Box, M. G. B. Drew, L. M.<br />

Harwood, J. L. Humphreys, D. J. Lowes, G. A.<br />

Morris, P. M. Redon, F. M. Walker, R. C.<br />

Whitehead, Tetrahedron 2003, 59, 4827.<br />

25 J. L. Humphreys, D. J. Lowes, K. A. Wesson, R. C.<br />

Whitehead, Tetrahedron Lett. 2004, 45, 3429.<br />

26 E. J. Shepherd, N. Lister, J. A. Affleck, J. R.<br />

Bronk, G. L. Kellett, I. D. Collier, P. D. Bailey,<br />

C.A.R. Boyd, Biochem. Biophys. Res. Commun.<br />

2002, 918.<br />

27 C. M. H. Hensgens, E. A. Kroezinga, B. A. van<br />

Montfort, J. M. van der Laan, J. D. Sutherl<strong>and</strong>,<br />

B. W. Dijkstra, Acta Crystallogr., Sect. D: Biol.<br />

Crystallogr., 2002, D58, 4, 716.<br />

28 Y. S. N. Day, S. L. Bacon, Z. Hughes-Thomas, J.<br />

M. Blackburn, J. D. Sutherl<strong>and</strong>, ChemBioChem<br />

2002, 3, 1192.<br />

29 A.-A. Ingar, R. W. A. Luke, B. R. Hayter, J. D.<br />

Sutherl<strong>and</strong>, ChemBioChem, 2003, 4, 504.<br />

30 V. Borsenberger, M. A. Crowe, J. Lehbauer, J.<br />

Raftery, M. Helliwell, K. Bhutia, T. A. Cox, J. D.<br />

Sutherl<strong>and</strong>, <strong>Chemistry</strong> & Biodiversity 2004 1, 203.<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!