05.12.2012 Views

Human Life: Caught in the Food Web - NUT Nutrition Software

Human Life: Caught in the Food Web - NUT Nutrition Software

Human Life: Caught in the Food Web - NUT Nutrition Software

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

349<br />

350<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

359<br />

360<br />

361<br />

362<br />

363<br />

364<br />

365<br />

366<br />

367<br />

368<br />

369<br />

370<br />

371<br />

372<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

BookID 142306_ChapID 14_Proof# 1 - 24/1/2009<br />

14 W.E.M. Lands<br />

Fig. 14.2 Higher proportions of n-6 <strong>in</strong> HUFA predict higher CHD mortality rates. The figure is<br />

derived from an earlier version (Lands 2003a) . Squares <strong>in</strong>dicate qu<strong>in</strong>tiles <strong>in</strong> <strong>the</strong> MRFIT Study <strong>in</strong> <strong>the</strong><br />

USA, where 80% <strong>in</strong>dividuals clustered closely<br />

14.4 Which DNA-Coded Prote<strong>in</strong>s Discrim<strong>in</strong>ate<br />

N-3 and N-6 Structures?<br />

14.4.1 Putt<strong>in</strong>g EFA <strong>in</strong>to Triacylglycerols and Phospholipids<br />

Many enzymes are like animal species that consume readily available food without<br />

regard to downstream consequences. They are promiscuous and relatively <strong>in</strong>discrim<strong>in</strong>ate<br />

<strong>in</strong> handl<strong>in</strong>g fatty acids with different structural features. Enzymes convert<strong>in</strong>g<br />

nonesterified fatty acids (NEFA) of 14–24 carbons to acyl-CoA esters consume<br />

whatever fatty acids are supplied without appreciably select<strong>in</strong>g for cha<strong>in</strong> length or<br />

for numbers and locations of double bonds. Never<strong>the</strong>less, a selective transfer of<br />

palmitic acid (16:0) from its CoA ester to <strong>the</strong> 1-position of glycerol-3-phosphate<br />

beg<strong>in</strong>s <strong>the</strong> “ de novo ” lipid pathway that <strong>in</strong>cludes transfer to <strong>the</strong> 2-position of readily<br />

available unsaturated 16- or 18-carbon acids (e.g., palmitoleate (16:1n-7), oleate<br />

(18:1n-9), or l<strong>in</strong>oleate (18:2n-6)). This leads to diacylglycerols with a saturated<br />

acid at <strong>the</strong> 1-position and an unsaturated acid at <strong>the</strong> 2-position (Hill et al. 1968) .<br />

Enzymes convert<strong>in</strong>g diacylglycerols (DAG) to triacylglycerols (TAG) consume<br />

acyl-CoA mostly <strong>in</strong> accord with supply abundance and not with cha<strong>in</strong> length or<br />

number and location of double bonds. The nonessential saturated and monoenoic<br />

acids are steadily ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong>ir CoA esters by syn<strong>the</strong>sis and transport. However,<br />

a greater daily dietary supply of an EFA gives l<strong>in</strong>early greater amounts of EFA<br />

accumulated <strong>in</strong> tissue acyl-CoA and TAG. Rearrangements occur as lipases cleave<br />

TAG to DAG and provide mixtures of diverse DAG that can be acylated to TAG<br />

with little specificity for acyl-CoA structure or for <strong>the</strong> acyl content of <strong>the</strong> DAG<br />

0000875883.INDD 14 1/24/2009 8:34:30 PM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!