19.09.2015 Views

Astrochimistry – Spring 2013 Interstellar PAHs

Astrochimistry – Spring 2013 Interstellar PAHs - Course Pages of ...

Astrochimistry – Spring 2013 Interstellar PAHs - Course Pages of ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Astrochimistry</strong> <strong>–</strong> <strong>Spring</strong> <strong>2013</strong><br />

Lecture 4:<br />

<strong>Interstellar</strong> <strong>PAHs</strong><br />

NGC 7023 - HST<br />

Julien Montillaud<br />

8 th February <strong>2013</strong>


Outline<br />

I. From Unidentified to Aromatic Infrared Bands (7 p.)<br />

I.1 Historical background<br />

I.2 Observational evidence<br />

I.3 The PAH hypothesis<br />

II. General properties of “chemical” <strong>PAHs</strong> (9 p.)<br />

II.1 Overview of the PAH family<br />

II.2 Electronic properties<br />

II.3 Vibrational properties<br />

III. Evolution of interstellar <strong>PAHs</strong> (15 p.)<br />

III.1 Observational evidence<br />

III.2 Dissociation of <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

III.4 Formation of <strong>PAHs</strong><br />

IV. Influence of <strong>PAHs</strong> on the ISM evolution (3 p.)<br />

IV.1 Extinction curve<br />

IV.2 Photoelectric effect<br />

IV.3 Formation of H 2<br />

V. Summary<br />

VI. Some bibliographic references<br />

2


I. From Unidentified to Aromatic Infrared Bands<br />

I.1 Historical background<br />

Gillett et al. (1967): IR excess in the ?? range compared to free-free radio continuum<br />

extrapolation<br />

Russell et al. (1977): unidentified IR bands at 3.3, 3.4, 6.2, 7.7, 8.6 & 11.3 µm from reflection<br />

nebulea<br />

Duley & Williams (1981): notice the match between some PAH spectral features and UIBs<br />

Sellgren et al. (1983): near IR emission from reflection nebulae inconsistant<br />

with UV-photons thermally excited dust grains => transient heating of small particles ?<br />

Léger & Puget (1984): the “first first” attribution of UIBs to <strong>PAHs</strong><br />

(transient heating excitation model)<br />

Allamandola, Tielens & Barker (1985): the “second first” attribution of UIBs to <strong>PAHs</strong><br />

(non thermal excitation model)<br />

Désert et al. (1990): global model of dust grains including <strong>PAHs</strong><br />

1990': first big experiments and detailed theoretical models + Infrared Space Observatory era<br />

2000': multiplication of experiments and detailed models + Spitzer Space Telescope era<br />

3


I. From Unidentified to Aromatic Infrared Bands<br />

I.2 Observational evidence<br />

NGC 7023<br />

4


I. From Unidentified to Aromatic Infrared Bands<br />

I.2 Observational evidence<br />

HII region<br />

Edge of molecular cloud<br />

NGC 7023<br />

Proto-planetary nebula<br />

5<br />

Planetary nebula


I. From Unidentified to Aromatic Infrared Bands<br />

I.2 Observational evidence<br />

Band positions: typical of C-H and<br />

C-C stretches or bends in aromatic<br />

material<br />

Plateaux at short wavelength:<br />

High temperature, small species<br />

Simple reasoning:<br />

→ Plateau up to ~3.4 µm<br />

→ T~1000 K (black body approx.)<br />

→ 1 photon @ E=10 eV<br />

→ Cv=3kN=E/T<br />

=> N=39 atoms<br />

Possible reading: Sellgren (1984)<br />

6


I. From Unidentified to Aromatic Infrared Bands<br />

I.3 The PAH hypothesis<br />

Astrophysical PAH = carrier of the Aromatic Infrared Bands<br />

PAH = polycyclic aromatic hydrocarbon<br />

“chemical” PAH = one model for “astrophysical” PAH<br />

Other models are reasonnable<br />

Graphitic grains/<br />

PAH clusters<br />

Free flying PAH<br />

molecules<br />

Hydrogenated<br />

amorphos carbon<br />

7


I. From Unidentified to Aromatic Infrared Bands<br />

I.3 The PAH hypothesis<br />

Still no individual spectroscopic identification<br />

Pilleri et al. 2009<br />

Pilleri et al. 2009<br />

Kokkin et al. 2008<br />

Not symmetric<br />

→ permanent electric dipole<br />

→ strong rotational emission<br />

…<br />

Undetected in Red Rectangle<br />

in the millimetric range (1→3mm)<br />

at IRAM-30m<br />

Electronic transition<br />

in the visible<br />

8


Related detections<br />

I. From Unidentified to Aromatic Infrared Bands<br />

I.3 The PAH hypothesis<br />

Fullerene C60: not a PAH, but very close<br />

Also:<br />

- C 70<br />

- C 6<br />

H 6<br />

9


II. General properties of “chemical” <strong>PAHs</strong><br />

I. From Unidentified to Aromatic Infrared Bands<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

II.1 Overview of the PAH family<br />

II.2 Electronic properties<br />

II.3 Vibrational properties<br />

III. Grain-catalyzed formation of H 2<br />

IV. From processes to interstellar H 2<br />

formation rate<br />

V. Summary<br />

10


II. General properties of “chemical” <strong>PAHs</strong><br />

II.1 Overview of the PAH family<br />

5-cycles<br />

Catacondensed<br />

Irregular<br />

Pericondensed<br />

11


Electron delocalization (=resonance) and aromaticity<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

Molecular orbitals = combination of atomic orbitals<br />

original p-atomic orbitals<br />

Resulting molecular<br />

(delocalized) orbital<br />

Electrostatic potential<br />

map of benzene<br />

Images from Paula Yurkanis Bruice, Cleveland, OH -<br />

http://wps.prenhall.com/wps/media/objects/724/741576/chapter_07.html<br />

12


Electron delocalization (=resonance) and aromaticity<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

• Bonding MO: constructive (in-phase) overlap<br />

• Antibonding MO: destructive (out-of-phase) overlap<br />

13


Electron delocalization (=resonance) and aromaticity<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

n(e) = 4n+2 => extra stabilisation (aromatic)<br />

n(e) = 4n => extra de-stabilisation (anti-aromatic)<br />

n(e) = 4n+1 or 4n+3 => nothing special<br />

NB:<br />

- changing the charge changes the aromaticity<br />

- changing the number of H-atoms changes the aromaticity<br />

Le Page et al. 2001<br />

14


II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

Ionization potential<br />

Empirical classical model: PAH = thin conducting disk<br />

Reasonable agreement with detailed quantum calculations (Density Functional Theory)<br />

Z=1 Z=2<br />

Malloci et al. 2007<br />

15


II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

Electronic spectrum<br />

Extinction curve<br />

Visible<br />

UV<br />

→ *<br />

Lyman cut (13.6 eV)<br />

→ *<br />

→ *<br />

→ *<br />

16


II. General properties of “chemical” <strong>PAHs</strong><br />

II.2 Electronic properties<br />

Electronic spectrum<br />

E n<br />

~ n / L<br />

n=level number<br />

E n<br />

= energy of level n<br />

L = well width<br />

17


II. General properties of “chemical” <strong>PAHs</strong><br />

II.3 Vibrational properties<br />

Experimental spectra<br />

Theoretical spectra<br />

Joblin et al. 1994<br />

http://www.astrochem.org/pahdb/<br />

18


II. General properties of “chemical” <strong>PAHs</strong><br />

II.3 Vibrational properties<br />

PAH spectroscopy: only little variations<br />

Neutral<br />

Anion<br />

-<br />

-<br />

-<br />

-<br />

19


III. Evolution of interstellar <strong>PAHs</strong><br />

I. From Unidentified to Aromatic Infrared bands<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

III. Evolution of interstellar <strong>PAHs</strong><br />

III.1 Observational evidence<br />

III.2 Photodissociation of <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

III.4 Formation of <strong>PAHs</strong><br />

IV. From processes to interstellar H 2<br />

formation rate<br />

V. Summary<br />

20


In HII regions and reflection nebulae: from region to region<br />

III. Evolution of interstellar <strong>PAHs</strong><br />

III.1 Observational evidence<br />

Peeters et al. 2004 & 2002<br />

21


In the reflection nebulae NGC 7023: within one region<br />

III. Evolution of interstellar <strong>PAHs</strong><br />

III.1 Observational evidence<br />

Berné et al. 2007<br />

Peeters et al. 2004 & 2002<br />

22


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

Direct photodissociation ?<br />

→ apparently not efficient<br />

(Buch 1989, Jochims et al. 1994)<br />

Other possibility:<br />

→ statistical photodissociation<br />

23


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

Relaxation processes of an isolated PAH<br />

IVR: internal vibrational redistribution<br />

IC: internal conversion<br />

24


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

(diagram for a PAH cluster, but similar to H-loss or C-loss for an isolated PAH molecule)<br />

25


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

Arrhenius law<br />

k diss<br />

(T) = A diss<br />

exp(-E 0<br />

/kT)<br />

k diss<br />

= dissociation rate coefficient<br />

T = vibrational temperature<br />

→ also kinetic temperature if enough<br />

collisions for thermalization<br />

A diss<br />

= prefactor<br />

E 0<br />

= dissociation energy<br />

Laplace<br />

transform<br />

Approximated microcanonical expression<br />

k diss<br />

= dissociation rate coefficient<br />

E = internal (vibrational) energy<br />

A diss<br />

= prefactor<br />

→ vibrational frequency<br />

→ entropy cost (structural changes)<br />

→ difficult to estimate theoretically,<br />

but not impossible<br />

E 0<br />

= dissociation energy<br />

= vibrational density of state(VDOS) of<br />

the parent molecule => one has to know<br />

26<br />

the vibrational modes


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

Anharmonicity<br />

= different from a parabolic potential well<br />

→ always the case for dissociation<br />

→ mode frequency vary<br />

with internal energy<br />

→ much more difficult to<br />

find the frequencies, and<br />

to compute VDOS from<br />

frequencies<br />

→ VDOS directly<br />

accessible from<br />

molecular dynamics<br />

simulations<br />

In practice, astronomers still use the harmonic VDOS<br />

27


III. Evolution of interstellar <strong>PAHs</strong><br />

III.2 Photodissociation of <strong>PAHs</strong><br />

General trends<br />

Ekern et al. 1998<br />

Experimental results:<br />

More compact =><br />

more photostable<br />

Bigger =><br />

more photostable<br />

Loss E 0<br />

[eV] A diss<br />

[s -1 ]<br />

H(even) 4.5-4.8 6.8e17<br />

H(odd) 3.2 6.8e17<br />

C 7.4 6.2e15<br />

C2 8.5 3.5e17<br />

C3 8.0 1.5e18<br />

(Joblin et al. <strong>2013</strong>, Léger et al. 1989)<br />

28


III. Evolution of interstellar <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

Reactivity with hydrogen<br />

Montillaud et al. <strong>2013</strong><br />

No data on neutral<br />

Only qualitative data on super-hydrogenated (more H-atoms than in “normal” <strong>PAHs</strong>)<br />

Measurement/calculation for dehydrogenated only for small <strong>PAHs</strong><br />

Fast reactions with H<br />

No or slow reactions with H 2<br />

29


III. Evolution of interstellar <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

Reactivity with other atoms<br />

Le Page et al. (1999)<br />

Fast reactions for normal and dehydrogenated cations with O and N<br />

=> it is likely that a more general population than strict <strong>PAHs</strong> populate the ISM<br />

Tentative “family identification”, using NASA Ames database, but not convincing (so far...)<br />

30


III. Evolution of interstellar <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

Physisorption of bigger atoms (Si, Fe, ...)<br />

Joalland et al. (2009)<br />

Thermodynamically favorable<br />

Weak spectral signature => not impossible but difficult<br />

E 0<br />

= 1.5 eV => easily photodissociated<br />

31


III. Evolution of interstellar <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

Aggregation of <strong>PAHs</strong><br />

(C 24<br />

H 12<br />

) 11<br />

(C 96<br />

H 24<br />

) 4<br />

32


III. Evolution of interstellar <strong>PAHs</strong><br />

III.3 Reactivity of <strong>PAHs</strong><br />

Aggregation of <strong>PAHs</strong><br />

Formation of PAH clusters:<br />

→ dilution of the excess energy within the numerous vibrational degrees of freedom<br />

(see movie, credit: Mathias Rapacioli, IRSAMC, Toulouse, France)<br />

Destruction of PAH clusters:<br />

→ analogous to PAH photodissociation<br />

→ difficulty to deal with all the degrees of freedom => rigid molecules approximation ?<br />

Spectroscopy of PAH clusters:<br />

→ are they responsible for continuum emission in the mid-IR ?<br />

33


III. Evolution of interstellar <strong>PAHs</strong><br />

III.4 Formation of <strong>PAHs</strong><br />

Asymptotic Giant Branch Stars (AGB)<br />

IRC 10216<br />

Cherchneff et al. 1992<br />

Shocks<br />

→ local dense and cold points<br />

→ condensation of some dust grains<br />

→ acceleration of grains by radiation pressure<br />

→ wind acceleration by dragging<br />

⇒ coupling stellar wind dynamics <strong>–</strong> dust formation<br />

34<br />

Model of AGB circumstellar material


III. Evolution of interstellar <strong>PAHs</strong><br />

III.4 Formation of <strong>PAHs</strong><br />

Most classical model: the HACA mechanism<br />

in circumstellar regions of AGB stars<br />

(H-abstraction, C-addition)<br />

Frenklach et al. 1984<br />

Consistent with observations ?<br />

CRL 2688<br />

IRC 10216<br />

AGB stars<br />

No UV<br />

Protoplanetary nebula: some UV<br />

IC 418<br />

Planetary nebula<br />

Intense UV RF<br />

35


IV. From processes to interstellar H 2<br />

formation rate<br />

I. From Unidentified to Aromatic Infrared Bands<br />

II. General properties of “chemical” <strong>PAHs</strong><br />

III. Evolution of interstellar <strong>PAHs</strong><br />

IV. Influence of <strong>PAHs</strong> on ISM evolution<br />

IV.1 Photoelectric heating<br />

IV.2 Extinction curve<br />

IV.3 Formation of H2<br />

V. Summary<br />

36


IV. Influence of <strong>PAHs</strong> on the ISM evolution<br />

IV.1 Photoelectric heating<br />

PDR model for NGC 7023<br />

37


IV. Influence of <strong>PAHs</strong> on the ISM evolution<br />

IV.2 Extinction curve<br />

38


IV. Influence of <strong>PAHs</strong> on the ISM evolution<br />

IV.3 Formation of H2<br />

Rauls & Hornekaer 2008<br />

39


V. Summary<br />

“Astronomical” <strong>PAHs</strong> are defined as the carriers of the AIBs<br />

“Chemical” <strong>PAHs</strong> are one good model for astronomical <strong>PAHs</strong><br />

→ no individual spectroscopic identification<br />

→ but identification of 3 large aromatic molecules: C 6<br />

H 6<br />

, C 60<br />

, C 70<br />

Many theoretical and experimental studies provide molecular data, but still not enough<br />

→ Theoretical spectral database of <strong>PAHs</strong> (Cagliari, Italy)<br />

→ NASA Ames PAH IR Spectroscopic Database<br />

Understanding is limited by:<br />

- confusion in mid-IR spectroscopy<br />

- scarcity in UV-visible spectroscopy<br />

- the huge number of parameters (e.g. molecule size, structure, charge, ...)<br />

- the absence of emission in UV-poor environments<br />

- the large size of interstellar <strong>PAHs</strong><br />

=> difficult (if not impossible) for both theoretical and experimental studies<br />

Deep coupling between PAH and ISM evolutions through photoelectric heating, extinction<br />

curve and H 2<br />

formation<br />

In the future, progresses should be achieved from on-going laboratory and theoretical studies<br />

40<br />

for large species + spectroscopic observations (DIBs, AIBs, far-IR rotation lines) + coupling<br />

with chemistry of other species (H 2<br />

formation/excitation, small hydrocarbons, evaporating VSGs)


VI. Some bibliographic references<br />

PAH review:<br />

- Tielens, A. G. G. M., The Physics and Chemistry of the <strong>Interstellar</strong> Medium, Cambridge University Press (2005)<br />

- Tielens, A. G. G. M., ARA&A, (2008)<br />

Chemical evolution:<br />

- Le Page et al., ApJSS, 132: 233-251, (2001)<br />

- Le Page et al., ApJ, 584: 316-330 (2003)<br />

-<br />

-<br />

Theoretical chemistry aspects (mainly for astronomers)<br />

- Malloci et al., A&A, 462: 627-635, (2007)<br />

- Léger et al. A&A, 213: 351-359 (1989)<br />

-<br />

Experimental chemistry aspects<br />

-<br />

-<br />

Modelling aspects<br />

-<br />

-<br />

-<br />

-<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!