18.11.2016 Views

Australian’s Molten Salt Reactor (MSR) Material Research Ondrej Muránsky

11_Ondrej_Muransky

11_Ondrej_Muransky

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Australian’s</strong> <strong>Molten</strong> <strong>Salt</strong> <strong>Reactor</strong> (<strong>MSR</strong>)<br />

<strong>Material</strong> <strong>Research</strong><br />

<strong>Ondrej</strong> <strong>Muránsky</strong>


Australia’s Resources


Uranium in Australia<br />

• Has the world’s largest<br />

reserves of uranium<br />

(23% of the world total)<br />

• Is the world's thirdranking<br />

producer behind<br />

Kazakhstan and Canada<br />

• In 2012, produced over<br />

7000 tonnes of uranium<br />

oxide concentrate<br />

(U 3 O 8 )<br />

• Exports to countries who<br />

have signed the Nuclear<br />

Non-Proliferation Treaty.<br />

Source: Geoscience Australia


• Carbonatite, Placer<br />

depositions, Vin-type<br />

deposits, Alkaline rocks:<br />

World resources: ~ 6 mil<br />

tons.<br />

• Australian Thorium<br />

resources estimate ~0.5<br />

mil tons.<br />

• ~ 8.8% of total world<br />

resources<br />

• No current production of<br />

thorium in Australia<br />

Thorium in Australia<br />

Source: Geoscience Australia


ANSTO<br />

Australian Nuclear Science and<br />

Technology Organisation


<strong>Australian’s</strong> Nuclear Lab for 50 Years<br />

AAEC<br />

1952 - 1987<br />

ANSTO<br />

1987 - Today


New ANSTO <strong>Research</strong> Structure<br />

ANSTO Gen IV and <strong>MSR</strong> <strong>Research</strong><br />

7


Australia and the Gen IV International Forum<br />

• In 2015, the Australia Federal<br />

Government petitioned to join the<br />

Generation IV International Forum<br />

• Petition presented to GIF Policy<br />

Group in Oct 2015<br />

• GIF Policy Group Delegation Visit to<br />

Sydney in Feb 2016<br />

• GIF Policy Group unanimously<br />

endorsed Australian membership in<br />

April, 2016<br />

• ANSTO signed the GIF Charter in<br />

June 2016 initiating Australia’s<br />

membership into the Forum<br />

GIF Policy Group Delegation to<br />

Australia, 2-4 February 2016<br />

Prof Lyndon Edwards, former<br />

Head, Institute of <strong>Material</strong>s Engineering now<br />

National Director, Australian Generation IV<br />

International Forum <strong>Research</strong>


Australian key capability overview<br />

• <strong>Reactor</strong> risk and safety analysis<br />

• Radiation damage<br />

• Creep, creep fatigue and code development<br />

• <strong>Molten</strong> salt corrosion and testing<br />

• Atomistic and molecular modelling<br />

• Structural Integrity and weld modelling<br />

Also some expertise on GIF relevant:<br />

• Education and Training<br />

• Economic Modelling (principally from UNSW)


Australia’s GIF <strong>Research</strong><br />

Following its success in gaining membership of GIF, Australia is<br />

proposing to join:<br />

• The Very High Temp <strong>Reactor</strong> (VHTR) SA<br />

• The <strong>Molten</strong> <strong>Salt</strong> <strong>Reactor</strong> (<strong>MSR</strong>) pSSC<br />

• The VHTR <strong>Material</strong> (MAT) PA<br />

• The Risk and Safety Working Group.<br />

In addition, with our University partners we are exploring how we<br />

might make contributions to:<br />

• The GIF Education and Training Working Group<br />

• The Economic Modelling Working Group<br />

SA - System Arrangements<br />

pSSC - Provisional System Steering Committee<br />

PA - Project Arrangements


<strong>Molten</strong> <strong>Salt</strong> <strong>Reactor</strong> (<strong>MSR</strong>)<br />

<strong>Material</strong> <strong>Research</strong>


ANSTO: Nuclear Fuel Cycle R&D<br />

• Fuel/cladding interactions<br />

– Use of atomistic modelling (e.g. DFT)<br />

• Structural materials performance under extreme<br />

conditions<br />

– Irradiation, corrosion, high temperatures and/or deformation<br />

• Separation science<br />

– Synthesis and analysis of titania frameworks for separation of U, Pu<br />

• Wasteform fabrication<br />

– Construction of a Synroc waste treatment plant to reduce volume of ANSTO<br />

nuclear by-products by 99%


ANSTO/SINAP T<strong>MSR</strong> <strong>Research</strong> Program<br />

• Shanghai Institute of Applied Physics<br />

(SINAP), Chinese Academy of<br />

Science (CAS)<br />

– Centre for Thorium <strong>Molten</strong> <strong>Salt</strong><br />

<strong>Reactor</strong> (T<strong>MSR</strong>) systems<br />

• Australia/China Science and<br />

<strong>Research</strong> Fund Grant 2013-2015<br />

• ANSTO-SINAP Joint <strong>Material</strong>s<br />

<strong>Research</strong> Centre<br />

– <strong>Material</strong>s technology for <strong>Molten</strong> <strong>Salt</strong><br />

<strong>Reactor</strong>s<br />

• <strong>Molten</strong> salt corrosion<br />

• Radiation damage<br />

• High temperature behaviour


ANSTO/SINAP T<strong>MSR</strong> <strong>Research</strong> Program<br />

• Shanghai Institute of Applied Physics<br />

(SINAP), Chinese Academy of<br />

Science (CAS)<br />

– Centre for Thorium <strong>Molten</strong> <strong>Salt</strong><br />

<strong>Reactor</strong> (T<strong>MSR</strong>) systems<br />

• Australia/China Science and<br />

<strong>Research</strong> Fund Grant 2013-2015<br />

• ANSTO-SINAP Joint <strong>Material</strong>s<br />

<strong>Research</strong> Centre<br />

– <strong>Material</strong>s technology for <strong>Molten</strong> <strong>Salt</strong><br />

<strong>Reactor</strong>s<br />

• <strong>Molten</strong> salt corrosion<br />

• Radiation damage<br />

• High temperature behaviour


SINAP - ANSTO<br />

<strong>Material</strong> Development


SINAP <strong>Material</strong> Development<br />

- Property of Hastelloy N:<br />

- Very good corrosion resistance to molten salt<br />

- Operated successfully in <strong>MSR</strong>E more than four years<br />

- Still the best choice for the <strong>MSR</strong> structural material<br />

- Only 704℃<br />

- Helium embrittlement<br />

Chao Yang, PhD<br />

Candidate,<br />

Prof. Xingtai Zhou<br />

12 months stay at<br />

ANSTO<br />

High-temperature<br />

strength<br />

Corrosion<br />

resistance<br />

Irradiation<br />

resistance<br />

Development of Ni-SiC and NiMo-SiC<br />

dispersion precipitation strengthened<br />

(DPS) alloys for future T<strong>MSR</strong> systems.<br />

Advantages of SiC: Ceramic material,<br />

Irradiation resistance, Corrosion<br />

resistance, High temperature stability<br />

F/M/A steel<br />

ODS steel<br />

Hastelloy N<br />

GH3535<br />

ODS alloy<br />

Ceramics<br />

- ODS nickel alloys(weak corrosion resistance )<br />

- Ceramics & ceramic matrix composites(lack of connection<br />

technology )


SINAP <strong>Material</strong>s<br />

• Development of new materials for molten salt reactor<br />

systems environments (high-temperature, corrosion,<br />

radiation)<br />

SINAP <strong>Material</strong>s:<br />

1. Ni-SiC, Ni-16Mo-SiC<br />

2. GH3535, a Chinese variant of Hastelloy N with<br />

the nominal composition of Ni–16Mo–7Cr–4Fe<br />

and Si used as an O getter<br />

3. Various Grades of Nuclear Graphite.


SINAP NiMo-SiC Alloy<br />

SiC<br />

SiC<br />

Ni 3 Si<br />

• SiC – dispersion strengthening<br />

• Ni 3 Si – precipitation strengthening<br />

• Mo 2 C – grain refinement, degradation of elongation<br />

C. Yang, O. Muransky, H. Zhu, G.J. Thorogood, H. Huang, X. Zhou, On the origin of strengthening mechanics in Ni-Mo alloys<br />

prepared via powder metallurgy, <strong>Material</strong>s and Design, DOI:10.1016/j.matdes.2016.10.024.


SINAP NiMo-SiC Alloy<br />

C. Yang, O. Muransky, H. Zhu, G.J. Thorogood, H. Huang, X. Zhou, On the origin of strengthening mechanics in Ni-Mo alloys<br />

prepared via powder metallurgy, <strong>Material</strong>s and Design, DOI:10.1016/j.matdes.2016.10.024.


SINAP NiMo-SiC Alloy<br />

Intensity [au]<br />

Lattice Spacing [A]<br />

C. Yang, O. Muransky, H. Zhu, G.J. Thorogood, H. Huang, X. Zhou, On the origin of strengthening mechanics in Ni-Mo alloys<br />

prepared via powder metallurgy, <strong>Material</strong>s and Design, DOI:10.1016/j.matdes.2016.10.024.


<strong>Material</strong> Testing in Extreme<br />

Environments


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature creep


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature creep


Neutron Irradiation Specimens<br />

• Miniature dog-bone samples<br />

• Small punch discs<br />

• Compact tension discs<br />

• Quarter-size Charpy samples<br />

• Corrosion samples<br />

1 dpa/yr


Samples Currently in OPAL (or Planned for Insertion)<br />

<strong>Material</strong> Sample type Irradiation time Source<br />

MA957 TEM discs 460 days IME/ORNL i<br />

CLAM “ “ IME i<br />

TiAl FT “ “ IME/LANL ii<br />

AlMg5 Mini tensile “ IME/OPAL Surveillance iv<br />

Zr-3.5Sn “ 460 days IME/Queens ii<br />

TiAl DP TEM discs 460 days IME/LANL ii<br />

Ti-6Al-4V “ “ IME i<br />

Zr-2.5Nb “ “ IME i<br />

Zr-4 CT 460 days OPAL Surveillance iv<br />

Zr-4 CT 5 years OPAL Surveillance iv<br />

Zr-4 CT 10 years OPAL Surveillance iv<br />

NiCrMoFe Small Punch 460 days IME/SINAP JRC iii<br />

NiCrMoFe “ 920 days IME/SINAP JRC iii<br />

Ti45Al “ 460 days IME i<br />

Ti45Al2Nb “ “ IME i<br />

Ti45Al TEM disc “ IME i<br />

Ti45Al2Nb “ “ IME i<br />

Zr-2.5Nb “ “ IME/OPAL i<br />

NiCrMoFe “ “ IME/SINAP JRC iii<br />

Zr-3.5Sn Mini Tensile 5 years IME/Queens ii<br />

NiCrMoFe “ 460 days IME/SINAP JRC iii<br />

Al6061 “ 5 years OPAL Surveillance iv<br />

i<br />

Internal research<br />

ii<br />

unfunded collaborative research<br />

iii<br />

partially funded research with external partners<br />

iv<br />

OPAL <strong>Material</strong>s Surveillance Program (MSP)<br />

• Zr and Al alloys<br />

– Predominantly for OPAL support<br />

• Titanium Aluminides<br />

– Internal research<br />

• Ni alloys<br />

– Collaborative work (SINAP <strong>MSR</strong>)<br />

• Additional planned materials<br />

– A508 (PM, WM, HIP)<br />

– ODS<br />

– Graphite<br />

– Tungsten<br />

26


Active Sample Machining and Testing<br />

• Active samples sent to MEHC, which contains:<br />

– Mechanical testing facilities for active material<br />

– Micromachining facilities to allow samples to exit cells<br />

• MEHC currently in licensing/commissioning stage<br />

27


Ion Irradiation at ANSTO<br />

• 1MV VEGA accelerator<br />

• 2MV STAR tandetron accelerator<br />

• 6MV SIRIUS tandem accelerator<br />

• 10MV ANTARES tandem<br />

accelerator<br />

– Energies from < 1 MeV to 100<br />

MeV


Single Crystal Ni, He+ Ion Irradiation<br />

11.85 µm<br />

~ 19 dpa<br />

Irradiation<br />

direction<br />

Front surface<br />

(Entry surface)<br />

Back surface<br />

(Exit surface)<br />

~ 10 dpa<br />

SRIM (The Stopping and Range of Ions in Matter) estimates for He+ irradiation of Ni<br />

29


In-site 1MeV Kr + ion irradiation at RT & 450C<br />

Argonne National<br />

Laboratory Hitachi<br />

H9000NAR IVEM<br />

operated at 200 kV<br />

In-situ irradiation experiments were performed on TEM<br />

thinned (~ 100 nm) Ni-Mo-Cr-Fe alloys using 1 MeV Kr +<br />

ions at room temperature (25ᵒC) and 450ᵒC up to to 100<br />

dpa (1.77 x 10 18 ions/cm 2 ). [110] zone axis.<br />

M. Reyes et al., Microstructural Evolution of an Ion Irradiated Ni-Mo-Cr-Fe Alloy at Elevated Temperatures.<br />

<strong>Material</strong>s Transactions, 2014, 55, pp. 428-433.


Dislocation Structure<br />

• In-situ 1 MeV Kr + ion irradiation at<br />

450 o C<br />

• Post Facto TEM analysis<br />

• High densities of both faulted and unfaulted<br />

loops observed<br />

• Analysis shows they are un-faulted<br />

½〈110〉 SIA loops and faulted 1/3〈111〉<br />

vacancy Frank loops<br />

• MD simulations of defects near ½〈110〉<br />

edge dislocations suggests that<br />

redistribution of displaced atoms from<br />

the cascade region towards the<br />

dislocation core may result in<br />

dislocation climb so remaining<br />

vacancies may partially collapse and<br />

form 1/3〈111〉 faulted vacancy Frank<br />

loops nearby.<br />

b<br />

• Faulted Loop<br />

• Faulted Loop<br />

a<br />

• Un-Faulted Loop


In situ micro tensile testing of He +2 ion irradiated and implanted single crystal nickel film.<br />

Acta <strong>Material</strong>ia, 2015, 100, pp. 147-154.<br />

Micromechanical Tensile Testing<br />

Radiation direction


Trends in Radiation Strengthening with Dose<br />

• Ion irradiation provides useful qualitative information<br />

• Full-sample performance does not explicitly consider localised damage<br />

In situ micro tensile testing of He +2 ion irradiated and implanted single crystal nickel film.<br />

Acta <strong>Material</strong>ia, 2015, 100, pp. 147-154.


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature


SINAP GH3535 vs Hastelloy N<br />

Larson Miller Parameter (LMP)<br />

LMP = T [log (t r ) + C]<br />

T - temperature ( o K)<br />

t r - time to rupture (hrs)<br />

C - constant (17.5)


SINAP GH3535 vs Hastelloy N<br />

Dorn-Shephard Parameter for 1% creep<br />

Log(1/ t 1%creep ) + Log(exp(42600/T)<br />

T - temperature ( o K)<br />

t 1%creep - time to 1% creep strain (hrs)<br />

Creep exponent<br />

n = 4


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature


ANSTO Corrosion Testing<br />

• ANSTO-SINAP JRC (<strong>MSR</strong>)<br />

– FLiNaK salt composition<br />

– Tests conducted at 650ºC - 750ºC for<br />

10, 100 and 200 h<br />

• SINAP <strong>Material</strong>s<br />

– GR 3535, Graphite, NiMo-SiC,<br />

Hastelloy-N<br />

Hastelloy-N, Electron Back-Scatter Diffraction (EBSD) and<br />

Energy Dispersive Spectroscopy (EDS) chromium (Cr)<br />

distribution map, 200h/650C, FLiNaK.


Corrosion/<strong>Salt</strong> Infiltration into Graphite<br />

• <strong>Salt</strong> infiltration into various grades of graphite at<br />

different pressures (a) 1.0 atm; (b) 1.5 atm; (c) 3.0 atm;<br />

and (d) 5.0 atm.<br />

Z. He et al., <strong>Molten</strong> FLiNaK salt infiltration into degassed nuclear<br />

graphite under inert gas pressure, Carbon, 2015, 84, pp. 511-518.


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature


SINAP GH3535: Irradiation & Corrosion<br />

GH3535: Vapour etch top figures, salt corrosion bottom figures<br />

H. Zhu et al. High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt<br />

Corrosion Science, 2015, 91, pp. 1-6.


SINAP GH3535: Irradiation & Corrosion<br />

As-Received<br />

Irradiated, No Corrosion<br />

Corrosion, No Radiation<br />

Irradiated + Corrosion<br />

• GH3535 alloy, FLiNaK salt, 10 17 ions/cm 2 He+<br />

• Helium ion irradiation increases the thickness of the corrosion layer in the<br />

irradiated and corroded sample to more 30 times than in the un-irradiated sample.<br />

H. Zhu et al. High-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt<br />

Corrosion Science, 2015, 91, pp. 1-6.


SINAP Graphite: Irradiation & Corrosion<br />

Graphite, FLiNaK salt, 10 17 ions/cm 2 He+<br />

As-Received<br />

Irradiated, No Corrosion<br />

Corrosion, No Radiation<br />

Irradiated + Corrosion<br />

• Un-irradiated<br />

• Irradiated<br />

• Graphite test coupons were irradiated with 30 keV He+ ions<br />

• One section was masked to prevent radiation damage<br />

• The samples exposed to molten FLiNaK salt (150h@750 ºC).<br />

• Clear variations in the corroded structures are visible<br />

• NEXAFS suggests Fluorination of surface<br />

Damaged<br />

Masked


ANSTO <strong>Material</strong> Testing<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature creep<br />

– Irradiation under high temperature


SINAP GH 3535 Creep Testing in <strong>Molten</strong> <strong>Salt</strong><br />

GH3553 creep rupture test (190 MPa @ 700 ºC)<br />

Initial results show significant effect of salt on creep life


SINAP GH 3535 Creep Testing in <strong>Molten</strong> <strong>Salt</strong><br />

SEM Band contrast Cr Mo<br />

20 µm<br />

EDS chemical<br />

composition<br />

(Average wt%)<br />

Region Ni Mo Cr Fe Mn Si<br />

Bulk sample 71.1 16.3 7.3 4.1 0.7 0.5<br />

<strong>Salt</strong> affected regions (st dev) 82.8 (0.5) 12.1 (0.4) 1.5 (0.2) 3.2 (0.2) 0.2 (0) 0.1 (0)


SINAP GH 3535 Creep Testing in <strong>Molten</strong> <strong>Salt</strong><br />

SEM<br />

Euler Map<br />

Cr<br />

20 µm<br />

Evidence of preferential<br />

grain boundary attack


SINAP GH 3535 Weld Characterisation<br />

48


ANSTO’s Numerical Weld<br />

Modelling


Prediction of Weld Residual Stress<br />

- ANSTO has developed complex<br />

models of microstructure and<br />

stress state around multi-pass<br />

welded joints<br />

- Used to support plant<br />

maintenance and design<br />

decisions<br />

NeT TG6 three-pass Inconel 82 slot-weld in an Inconel<br />

600 (international benchmark specimen). The Abaqus<br />

half model depicting the basic plate geometry and three<br />

consecutive passes filling the slot. The insert shows in<br />

detail elements associated with passes 1 to 3.<br />

76 mm (Z)<br />

200 mm (Z)<br />

150 mm (X)


Thermal Analysis<br />

PASS.3<br />

PASS.2<br />

PASS.1<br />

Welding Direction<br />

1380C Isotherm<br />

Weld Metal<br />

Parent Metal


<strong>Material</strong> Properties<br />

Comparison of the room temperature cyclic responses of Inconel 600 (parent metal) and<br />

Inconel 82 (weld metal) predicted by mixed isotropic-kinematic hardening plasticity<br />

model when using the first and second cycle to derive mixed hardening parameters.


Prediction of Weld Residual Stress<br />

Z<br />

X<br />

- Weld Metal: Inconel 82<br />

- Parent Metal: Inconel 600<br />

- 3-Pass Slot weld<br />

D Plane


Prediction of Weld Residual Stress<br />

D2 Line<br />

D10 Line


Thank you


High Temperature Irradiation (Planned)<br />

• Motivation<br />

– Radiation damage is controlled by a thermally<br />

activated processes, so some temperature<br />

control is desirable<br />

• Planned Work<br />

– Neutronics/gamma heating calculations<br />

– Thermal hydraulics calculations (safety case)<br />

– Can design and T&C specifications<br />

Muroga (2001)<br />

OPAL contains empty space (“hot<br />

source”) in the RPV. By developing a<br />

suitable holder (such as the ORNL<br />

HFIR sample heating holder, left),<br />

samples may be irradiated in OPAL at<br />

higher temperatures, thereby enabling<br />

elevated-temperature damage mechanisms<br />

to be characterised.


Effect of water ingress<br />

• XRD shows the formation of hydroxide species in the salt<br />

– Potassium hydroxide, sodium hydroxide and hydrated versions of these<br />

• Solid state nuclear magnetic resonance spectroscopy (NMR)<br />

– Exploits magnetic properties of certain nuclei<br />

• Nuclei absorb electromagnetic radiation and signals shift based on bonding environment<br />

(hydrogen and fluorine are good nuclei – allows for quantitative determinations)<br />

• Hydroxide and other species measured by proton NMR, Fluorine NMR used to measure main<br />

slat components which show good agreement to the literature<br />

– Extra peaks associated with Na are due to higher resolution instrument and larger spectral window<br />

X-ray diffraction<br />

19<br />

F Solid-state nuclear magnetic<br />

resonance spectroscopy


Effect of water ingress<br />

• Vibrational spectroscopy allows the<br />

chemical speciation to be determined<br />

– Raman spectroscopy measures bond<br />

polarisation<br />

– Infrared measures dipole moments<br />

• Observe the formation of HF species<br />

in the salt<br />

– Associated with KF (extremely<br />

hygroscopic and deliquescent)


H 2 O Decomposition in Fluoride <strong>Salt</strong>s<br />

• Molecular dynamics using DFT used to study the stability of H 2 O in fluoride salts.<br />

• Deviation from stoichiometry found to break H 2 O into OH - and free H + (forming<br />

HF in hyper-stoichiometric salt).<br />

• Calculations carried out at 1000 K with a time step of 1 fs. (Run for 0.1 ns).<br />

• Phenomenon seen in non-stoichiometric F 2 LiNa and F 3 LiNaK.<br />

Stoichiometric F 3 LiNaK<br />

Non-Stoichiometric F 3 LiNaK


FE Model<br />

- Thermo-Mechanical<br />

Analysis<br />

- 3D Half Model<br />

- 407222 (HEX,<br />

Quadratic)<br />

- Thermal Analysis:<br />

DC3D20<br />

- Mechanical<br />

Analysis: C3D20R<br />

76 mm (Z)<br />

200 mm<br />

(Z)<br />

► NeT TG6 three-pass Inconel 82 slot-weld in<br />

an Inconel 600 (international benchmark<br />

specimen). The Abaqus half model depicting<br />

the basic plate geometry 01 and three<br />

150 mm (X)


<strong>Material</strong> Properties<br />

► Comparison of the room temperature cyclic responses of Inconel 600 (parent metal) and Inconel 82 (weld metal) predicted by<br />

mixed isotropic-kinematic hardening plasticity model when using the first and second cycle to derive mixed hardening<br />

parameters.<br />

02


WRS - FE Modelling<br />

Y<br />

X<br />

Z<br />

D Plane<br />

04


WRS - FE Modelling<br />

Y<br />

X<br />

Z<br />

B Plane<br />

04


ND Measurement<br />

150 mm (X)<br />

200 mm<br />

(Y)<br />

- Monochromator: bent Si single crystal<br />

- Monochromator angle: 33.52<br />

- Take-off angle: 66.98°<br />

- Detector angle: 88.0°<br />

- Wavelength: 1.498Å<br />

- Measured reflection: {311}<br />

- Primary slit: 2mm<br />

- Secondary slit: radial collimator<br />

- Gauge volume: 2x2x2mm 2<br />

ε 311 ij = d ij<br />

311 311<br />

− d 0,ij<br />

311<br />

d 0,ij<br />

Parent Metal<br />

Weld Metal<br />

σ 311 E 311<br />

ij =<br />

(1 + υ 311 ) ε ij +<br />

υ 311<br />

1 − 2υ 311 (ε 11<br />

311 + ε 311 22 + ε 311 33 )<br />

Big Grains in<br />

the Weld<br />

Region<br />

05


d0 Measurements<br />

06


WRS - Modelling & Measurement<br />

Something seems to be<br />

wrong here. It looks that<br />

for the transverse<br />

direction we are B2 using Line<br />

the d0 from the parent<br />

B6 Line<br />

metal, while for the<br />

longitudinal direction we<br />

seems to be using the<br />

d0 from the weld metal.<br />

Can you please double<br />

check this. Something is<br />

certainly not right,<br />

because the model<br />

agrees in one direction<br />

and disagree in another<br />

direction. It should<br />

behave consistently<br />

between transverse and<br />

longitudinal. Similar to<br />

lines B2 and B10.<br />

07


WRS - Modelling & Measurement<br />

B10 Line<br />

BD Line<br />

08


WRS - Modelling & Measurement<br />

D2 Line<br />

D5 Line<br />

09


WRS - Modelling & Measurement<br />

This doesn’t seem to be<br />

right. We are measuring<br />

lower stresses along<br />

D7.5 than along Line<br />

D10. And again the<br />

model agrees in two<br />

directions and disagree<br />

in one direction, that<br />

doesn’t seem to be right.<br />

For D7.5 line we should<br />

use the same d0s as for<br />

line D10. How did we get<br />

the d0s along the line<br />

D7.5 line? I don’t see a<br />

reason why it should be<br />

different from the D10.<br />

D7 Line<br />

D10 Line<br />

10


Admiral Hyman Rickover (US Navy)<br />

An academic reactor or reactor plant almost always<br />

has the following basic characteristics:<br />

(1) It is simple.<br />

(2) It is small.<br />

(3) It is cheap.<br />

(4) It is light.<br />

(5) It can be built very quickly.<br />

(6) It is very flexible in purpose.<br />

(7) Very little development will be required. It will<br />

use off-the-shelf components.<br />

(8) The reactor is in the study phase. It is not being<br />

built now.


Admiral Hyman Rickover (US Navy)<br />

On the other hand a practical reactor can be<br />

distinguished by the following characteristics:<br />

(1) It is being built now.<br />

(2) It is behind schedule.<br />

(3) It requires an immense amount of development<br />

on apparently trivial items.<br />

(4) It is very expensive.<br />

(5) It takes a long time to build because of its<br />

engineering development problems.<br />

(6) It is large.<br />

(7) It is heavy.<br />

(8) It is complicated.


Admiral Hyman Rickover (US Navy)<br />

• The tools of the academic designer are a piece of paper and a<br />

pencil with an eraser. If a mistake is made, it can always be<br />

erased and changed.<br />

• If the practical-reactor designer errs, he wears the mistake<br />

around his neck; it cannot be erased. Everyone sees it.<br />

• The academic-reactor designer is a dilettante. He has not had to<br />

assume any real responsibility in connection with his projects.<br />

He is free to luxuriate in elegant ideas, the practical<br />

shortcomings of which can be relegated to the category of "mere<br />

technical details.”<br />

• The practical-reactor designer must live with these same<br />

technical details. Although recalcitrant and awkward, they must<br />

be solved and cannot be put off until tomorrow. Their solution<br />

requires manpower, time and money.<br />

In Nuclear, materials are usually in this<br />

category of “mere technical details”


Overview of R&D Activities at ANSTO<br />

Cory J Hamelin<br />

Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights NSW 2234 Australia<br />

Presented at the 13 th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

Jeju, Republic of Korea, 7-9 September 2015


74


ANSTO and Nuclear Fuel Cycle R&D<br />

• Fuel/cladding interactions<br />

– Use of atomistic modelling (e.g. DFT)<br />

• Structural materials performance under extreme<br />

conditions<br />

– Irradiation, corrosion, high temperatures and/or deformation<br />

• Separation science<br />

– Synthesis and analysis of titania frameworks for separation of U, Pu<br />

• Wasteform fabrication<br />

– Construction of a Synroc waste treatment plant to reduce volume of ANSTO<br />

nuclear by-products by 99%<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

75


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

76


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

77


Radiation Damage Test Environments at ANSTO<br />

• 1MV VEGA accelerator<br />

• 2MV STAR tandetron accelerator<br />

• 6MV SIRIUS tandem accelerator<br />

• 10MV ANTARES tandem accelerator<br />

– Energies from < 1 MeV to 100 MeV<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

78


79


Specimens for Neutron Irradiation<br />

• Miniature dogbone samples<br />

• Small punch discs<br />

• Compact tension discs<br />

• Quarter-size Charpy samples<br />

• Corrosion samples<br />

1 dpa/yr<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

80


Samples Currently in OPAL (or Planned for Insertion)<br />

<strong>Material</strong> Sample type Irradiation time Source<br />

MA957 TEM discs 460 days IME/ORNL i<br />

CLAM “ “ IME i<br />

TiAl FT “ “ IME/LANL ii<br />

AlMg5 Mini tensile “ IME/OPAL Surveillance iv<br />

Zr-3.5Sn “ 460 days IME/Queens ii<br />

TiAl DP TEM discs 460 days IME/LANL ii<br />

Ti-6Al-4V “ “ IME i<br />

Zr-2.5Nb “ “ IME i<br />

Zr-4 CT 460 days OPAL Surveillance iv<br />

Zr-4 CT 5 years OPAL Surveillance iv<br />

Zr-4 CT 10 years OPAL Surveillance iv<br />

NiCrMoFe Small Punch 460 days IME/SINAP JRC iii<br />

NiCrMoFe “ 920 days IME/SINAP JRC iii<br />

Ti45Al “ 460 days IME i<br />

Ti45Al2Nb “ “ IME i<br />

Ti45Al TEM disc “ IME i<br />

Ti45Al2Nb “ “ IME i<br />

Zr-2.5Nb “ “ IME/OPAL i<br />

NiCrMoFe “ “ IME/SINAP JRC iii<br />

Zr-3.5Sn Mini Tensile 5 years IME/Queens ii<br />

NiCrMoFe “ 460 days IME/SINAP JRC iii<br />

Al6061 “ 5 years OPAL Surveillance iv<br />

i<br />

Internal research<br />

ii<br />

unfunded collaborative research<br />

iii<br />

partially funded research with external partners<br />

iv<br />

OPAL <strong>Material</strong>s Surveillance Program (MSP)<br />

• Zr and Al alloys<br />

– Predominantly for OPAL support<br />

• Titanium Aluminides<br />

– Internal research<br />

• Ni alloys<br />

– Collaborative work (SINAP <strong>MSR</strong>)<br />

• Additional planned materials<br />

– A508 (PM, WM, HIP)<br />

– ODS<br />

– Graphite<br />

– Tungsten<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

81


Active Sample Machining and Testing<br />

• Active samples sent to MEHC, which contains:<br />

– Mechanical testing facilities for active material<br />

– Micromachining facilities to allow samples to exit cells<br />

• MEHC currently in licensing/commissioning stage<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

82


The Role of Ion Irradiation<br />

• Current limitations on neutron fluence<br />

– Irradiating at coolant water temperature (higher temperatures desirable)<br />

• Ion irradiation allows for higher dpa<br />

– Proton and alpha damage of thin samples<br />

– Self irradiation of energetic heavier ions<br />

• Must be accompanied by modelling of the processes<br />

to enable correlation of ion vs. neutron damage<br />

• Useful for preliminary qualification of nuclear structural<br />

materials<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

83


Single Crystal Ni, He+ Ion Irradiation<br />

11.85 µm<br />

~ 19 dpa<br />

Irradiation<br />

direction<br />

Front surface<br />

(Entry surface)<br />

Back surface<br />

(Exit surface)<br />

~ 10 dpa<br />

SRIM (The Stopping and Range of Ions in Matter) estimates for He+ irradiation of Ni<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

84


Micromechanical Testing<br />

Radiation direction<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

85


Trends in Irradiation Strengthening with Dose<br />

• <strong>Material</strong>s performance under ion irradiation provides useful qualitative information<br />

• Full-sample performance does not explicitly consider localised damage<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

86


Layered Irradiation Studies<br />

Ar implanted layer<br />

Ar implanted layer<br />

He implanted<br />

layer<br />

Cu tape<br />

• Increases width of peak damage layer in specimen<br />

– Subjected to hardness testing to determine deformation mechanism(s)<br />

• <strong>Material</strong>s tested include Ti6Al4V, ODS (MA957), Zr-4<br />

and AISI 316<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

87


Variation in Radiation Damage Morphology<br />

Cross-section TEM of irradiated and indented AISI 316 sample (extracted with FIB)<br />

Top surface<br />

Few bubbles<br />

(Ar)<br />

Radiation damage<br />

Ar<br />

He<br />

Bubbles<br />

(He)<br />

Bubbles<br />

(He)<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

88


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

89


Creep Rupture Assessment<br />

• Member of the R5 EDF Energy Code of Practice development panel (“Assessment<br />

Procedure for the High Temperature Response of Structures”)<br />

• Component life assessment using advanced damage accumulation models (SMDE,<br />

SEDE), considering multi-axial effects<br />

• <strong>Material</strong>s studied largely ferritic steels (P22, P91, CMV, etc.), some austenitic steels<br />

(e.g. AISI 316H) and Ni alloys (Ni 201, Inconel 600)<br />

1000<br />

450 C<br />

Stress (MPa)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

ANSTO<br />

NIMS<br />

JAEA<br />

CFAT<br />

CRIEPA<br />

ORNL<br />

NIMS-2<br />

ORNL2<br />

Energy Density MJ/m 3<br />

100<br />

10<br />

500 C<br />

550 C<br />

600 C<br />

650 C<br />

700 C<br />

Fit 450 C<br />

Fit 500 C<br />

Fit 550 C<br />

Fit 600 C<br />

Fit 650 C<br />

100<br />

ODIN<br />

Fit 700 C<br />

50<br />

0<br />

1 10 100 1000 10000 100000<br />

Time to Rupture (Hours)<br />

1<br />

0.000001 0.00001 0.0001 0.001 0.01 0.1 1<br />

Average Strain Rate (1/hr)<br />

Creep rupture data for P91, taken from a variety of sources (left). Energy density predictions using hybrid energy models (right).<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

90


Predicting Creep Rupture<br />

• FEA prediction of in-service materials performance<br />

• User-defined material models for creep strain/damage<br />

Prediction (via FEA) of creep rupture during an accelerated creep test in ex-service AISI 316H stainless steel using<br />

a Strain Energy Ductility Exhaustion (SEDE) creep damage model<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

91


Quantification of Accumulated Creep via EBSD<br />

• Data analysis for performance trends<br />

– Quantifying plasticity (creep vs. fatigue) via EBSD<br />

– Studies on Ni-201 and P22 (underway)<br />

Example of damage characterisation in Ni-201 material: (left) virgin material; (centre) material subjected to<br />

15% creep strain; and (right) damage curve constructed to assess creep life<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

92


Creep-Fatigue Tests<br />

• Laboratory testing predominantly high-Cr ferritic steels (P91, P92) as part of<br />

collaborative study in MATTER FP7 (MATerials Testing and Rules for Generation IV<br />

<strong>Reactor</strong>s), WP4 (Prenormative R&D for Codes and Standards)<br />

Observed Nf<br />

100000<br />

10000<br />

1:1<br />

X2<br />

X2<br />

Energy Modified Exhaustion<br />

Stress Modified Exhaustion<br />

RCC-MR (Time Fraction)<br />

Time Fraction<br />

Ductility (Elongation)<br />

Power (Energy Modified Exhaustion)<br />

Power (Stress Modified Exhaustion)<br />

Power (RCC-MR (Time Fraction))<br />

Power (Time Fraction)<br />

Power (Ductility (Elongation))<br />

1000<br />

100<br />

10 100 1000 10000 100000<br />

Predicted Nf<br />

ANSTO P91 creep-fatigue tests were used with test data from ORNL, CEA, EPRI and IGCAR to assess the accuracy of new and existing<br />

damage models (TF, SMDE and SEDE shown) in predicting material failure. Test data conducted at 450-700 ºC, resulting in rupture times<br />

ranging from 2-50,000 h.<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

93


P91 Japan Sodium-Cooled Fast <strong>Reactor</strong> Tubesheet<br />

• Hot transient sodium temp = 600 C (2hr dwell)<br />

• Cold transient temp = 250 C (1 hr hold)<br />

• Rate Change = 5 C/s<br />

• Cycle length = 3 h and 140s per cycle<br />

• Number of test cycles = 1873<br />

• Crack initiation mode creep-fatigue<br />

• Maximum Crack Length = 3.7 mm<br />

Ando (2014)<br />

Original JAEA analyses performed using RCC-MR<br />

time fraction (TF) models for P91. Strain ranges<br />

derived using: (i) Stress Redistribution Locus, SRL;<br />

(ii) Simple Elastic Follow-Up, SEF; and (iii) direct<br />

inelastic implementation using FEA. ANSTO-EDF<br />

Energy analyses (in red) used inelastic strain range<br />

with ductility exhaustion models.<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

94


Creep-Fatigue <strong>Material</strong>s Database<br />

• Creation of a materials database for creep-fatigue<br />

performance<br />

Full C-F Model<br />

1Cr0.5Mo (P12) 1.25Cr0.5Mo (P11) 2.25Cr1Mo (P22)<br />

0.5Cr0.5Mo0.25V (CMV) 1Cr1Mo0.25V (CMV) 1.25Cr1Mo0.25V (CMV)<br />

P9 X10CrMoVNb (P91) 9Cr0.5Mo1.8WVNbB (P92)<br />

AISI 304 AISI 316 25Cr35NiNbMa (HK40)<br />

X20CrMoV12-1 7-9Cr2WV P23<br />

Hastelloy XR Fe0.75Ni0.5MoCrV Fe2.25Cr1Mo0.25V<br />

Under Development<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

95


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

96


Corrosion Testing<br />

• ANSTO-SINAP JRC (<strong>MSR</strong>)<br />

– FLiNaK salt composition<br />

– Tests conducted at 750ºC for 10, 100<br />

and 200 h<br />

• <strong>Material</strong>s tested<br />

– NiCrMoFe<br />

– Graphite<br />

– AISI 316<br />

Controlled atmosphere furnace (above) with temperature<br />

control directly linked to salt temperature; exposed NiCrMoFe<br />

is examined via EDS (left) to determine surface degradation.<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

97


<strong>Salt</strong> Infiltration into Graphite<br />

<strong>Salt</strong> infiltration into various grades of graphite (right, top) at different pressures<br />

(above): (a) 1.0 atm; (b) 1.5 atm; (c) 3.0 atm; and (d) 5.0 atm. Location of salt<br />

quantified via EDS (right) and neutron tomography (DINGO).<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

98


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

99


Combined Effects of Corrosion and Ion Irradiation<br />

• NiCrMoFe alloy, FLiNaK salt, 10 17 ions/cm 2 He+<br />

As-Received<br />

Irradiated, No Corrosion<br />

Corrosion, No Radiation<br />

Irradiated + Corrosion<br />

Pt-Ni interface measured using STEM-EDS under four conditions representing various combinations of corrosion and radiation damage. The<br />

relative increase in interface layer before and after corrosion represents the corrosion layer. This layer is 20 nm for the as-received material,<br />

and 700 nm for the irradiated material.<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

100


Combined Effects of Corrosion and Ion Irradiation<br />

• Graphite, FLiNaK salt, 10 17 ions/cm 2 He+<br />

As-Received<br />

Irradiated, No Corrosion<br />

Corrosion, No Radiation<br />

Irradiated + Corrosion<br />

Graphite test coupons were irradiated using 30 keV He+ ions; one section of the<br />

sample was masked to prevent radiation damage (right). The samples were<br />

then exposed to molten FLiNaK salt (150 h @ 750 ºC). Clear variations in the<br />

corroded structures are visible (above).<br />

Damaged<br />

Masked<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

101


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

102


<strong>Material</strong>s Testing at High Temperatures<br />

• NiCrMoFe creep rupture test (190 MPa @ 700 ºC)<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

103


ANSTO and Generation IV Structural <strong>Material</strong>s R&D<br />

• Irradiation<br />

– Neutron, ion damage studies<br />

• High temperature<br />

– Creep testing<br />

• Corrosion<br />

– Testing in molten salt environments<br />

• Combined environments<br />

– Irradiation + corrosion (<strong>MSR</strong>)<br />

– Corrosion + high temperature<br />

– Irradiation under high temperature<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

104


High Temperature Irradiation (Planned)<br />

• Motivation<br />

– Radiation damage is controlled by a thermally<br />

activated processes, so some temperature<br />

control is desirable<br />

• Planned Work<br />

– Neutronics/gamma heating calculations<br />

– Thermal hydraulics calculations (safety case)<br />

– Can design and T&C specifications<br />

Muroga (2001)<br />

OPAL contains empty space (“hot<br />

source”) in the RPV. By developing a<br />

suitable holder (such as the ORNL<br />

HFIR sample heating holder, left),<br />

samples may be irradiated in OPAL at<br />

higher temperatures, thereby enabling<br />

elevated-temperature damage mechanisms<br />

to be characterised. Kiritani (1988)<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

105


Additional Considerations: Welding<br />

• Understanding of microstructure and stress state<br />

around single- and multi-pass welded joints<br />

• Heavily involved in international round-robin<br />

programmes designed to identify best practise for joint<br />

characterisation and process simulation<br />

– NeT (AISI 316, Inconel 600, A508)<br />

– USNRC (DMW)<br />

• ANSTO carries out materials testing for materials data<br />

set required for simulation, as well as characterisation<br />

and performance evaluation of welded joints<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

106


<strong>Material</strong> Test Data (High-Temperature LCF)<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

107


Process Simulation: DMW<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

108


Process Simulation: EB Weld (A508)<br />

Temperature<br />

Distribution<br />

Stress<br />

Distribution<br />

Martensite<br />

Formation<br />

Bainite<br />

Formation<br />

Courtesy A. Vasileiou, University of Manchester<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

109


ANSTO-University of Manchester RCA<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

110


Weld Characterisation (NiCrMoFe)<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

111


Conclusions<br />

• Variety of structural materials R&D has been, is and will<br />

be conducted at ANSTO<br />

– Much of that work is related to Generation IV systems, particularly for VHTR and<br />

<strong>MSR</strong> environments<br />

• Radiation, high-temperature, and corrosion<br />

environments considered (alone or in concert)<br />

– Characterisation (both ex situ and in situ), testing and analysis performed<br />

• Numerous materials under investigation<br />

– Apart from materials critical to ANSTO infrastructure, feedback through bodies<br />

such as the VHTR PMB essential for future research planning<br />

Overview of ANSTO R&D Activities<br />

13th Meeting of the <strong>Material</strong>s Project Management Board for the GIF VHTR System<br />

112


ANSTO as a National Laboratory<br />

• Undertake and facilitate research in the national<br />

interest<br />

• Produce and provide state-of-the-art<br />

radiopharmaceuticals for Australia and the world<br />

• Provide trusted advice to Government in all<br />

aspects of the Nuclear Fuel Cycle<br />

• Operating ANSTO’s nuclear facilities including the<br />

OPAL nuclear research reactor in a safe and<br />

efficient manner


ANSTO Nuclear Medicine Project<br />

• 80% of all nuclear medicine procedures use<br />

Mo-99/Tc-99m<br />

• Diagnosing heart disease, cancer,<br />

neurological disorders and more.<br />

SINAP NiMo-SiC Alloy<br />

• 40 million patients per year<br />

• Global market of US$550 million per annum<br />

• Potential critical worldwide Mo-99 shortage<br />

• A new Australian Mo-99 production facility<br />

• Mo-99 production capacity to allow for<br />

increased exports<br />

• First full scale operational Synroc facility in<br />

the world


GH3535 Creep Conclusions<br />

• GH3535 alloy creep tested at 650, 700, and 750 o C at 85-320 MPa.<br />

• Alloy displayed no primary creep and good creep ductility (above 30%.)<br />

• Using minimum creep rates the calculated stress exponent is n = 5-6 so<br />

dislocation climb is the main creep mechanism<br />

• Formation of dislocation networks and sub-grains confirmed by TEM and<br />

EBSD analysis.<br />

• The Dorn Shepard and Larson Miller master curves were derived to 1%<br />

creep strain and creep rupture respectively.<br />

• Using ASME BPVC guidelines the maximum allowable design stress at<br />

700 o C is 35 MPa.<br />

• There is substantial second phase particle precipitation during creep.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!