19.11.2016 Views

Effect of bio compost, cow dung compost and NPK fertilizers on growth, yield and yield components of chili

Abstract To investigate the effects of bio compost, cow dung compost and NPK fertilizers on growth, yield and yield components of chili the experiment was conducted randomized block design with three replications at Botanical Garden of Rajshahi University Campus, Bangladesh during August 2008 to February 2009. There were 15 treatments viz. T1 = bio compost (3 kg/pot) + NPK, T2 = bio compost (2 kg/pot) + NPK, T3 = bio compost (1.5 kg/pot) + NPK, T4 = bio compost (3 kg/pot), T5 = bio compost (2 kg/pot), T6 = bio compost (1.5 kg/pot), T7 = cow dung compost 3 kg/pot + NPK, T8 = cow dung compost (2 kg/pot) + NPK, T9 = cow dung compost (1.5 kg/pot) + NPK, T10 = cow dung compost (3 kg/pot), T11 = cow dung compost (2 kg/pot), T12 = cow dung compost (1.5 kg/pot), T13= NPK, T14= bacterial suspension, T15= control (only soil). Bio compost and NPK significantly (p=0.05) influenced the growth and yield of chili. The treatment bio compost (3kg/pot) +NPK (T1) produced the highest germination (%), vigour index, growth and yield of chili and the lowest yield and yield contributing parameters were recorded in control (T15). The correlation matrix showed that yield per plant of chili had significant and positive correlation with plant height (r = 0.929**), leaf number (r = 0.808**), number of primary branch (r = 0.918**), secondary branch (r = 0.985**), root number (r = 0.953**), root length (r = 0.947**), total number of flower at maximum flowering time(r = 0.981**), total number of fruit ( r = 0.966**), fruit length (r = 0.917**), fresh fruit weight ( r = 0.990**), dry fruit weight ( r = 0.800**), number of seed/ fruit (r = 0.861**) and hundred seed weight ( r = 0.954**) and yield was significant and negative correlation (r = -0.906**) with number of days required for first flower initiation. The results suggest that inorganic fertilizers (NPK) with bio compost (3kg/pot) is suitable for better production of chili that may increase soil fertility and this integrated approach could be contributed to improve crop production.

Abstract
To investigate the effects of bio compost, cow dung compost and NPK fertilizers on growth, yield and yield components of chili the experiment was conducted randomized block design with three replications at Botanical Garden of Rajshahi University Campus, Bangladesh during August 2008 to February 2009. There were 15 treatments viz. T1 = bio compost (3 kg/pot) + NPK, T2 = bio compost (2 kg/pot) + NPK, T3 = bio compost (1.5 kg/pot) + NPK, T4 = bio compost (3 kg/pot), T5 = bio compost (2 kg/pot), T6 = bio compost (1.5 kg/pot), T7 = cow dung compost 3 kg/pot + NPK, T8 = cow dung compost (2 kg/pot) + NPK, T9 = cow dung compost (1.5 kg/pot) + NPK, T10 = cow dung compost (3 kg/pot), T11 = cow dung compost (2 kg/pot), T12 = cow dung compost (1.5 kg/pot), T13= NPK, T14= bacterial suspension, T15= control (only soil). Bio compost and NPK significantly (p=0.05) influenced the growth and yield of chili. The treatment bio compost (3kg/pot) +NPK (T1) produced the highest germination (%), vigour index, growth and yield of chili and the lowest yield and yield contributing parameters were recorded in control (T15). The correlation matrix showed that yield per plant of chili had significant and positive correlation with plant height (r = 0.929**), leaf number (r = 0.808**), number of primary branch (r = 0.918**), secondary branch (r = 0.985**), root number (r = 0.953**), root length (r = 0.947**), total number of flower at maximum flowering time(r = 0.981**), total number of fruit ( r = 0.966**), fruit length (r = 0.917**), fresh fruit weight ( r = 0.990**), dry fruit weight ( r = 0.800**), number of seed/ fruit (r = 0.861**) and hundred seed weight ( r = 0.954**) and yield was significant and negative correlation (r = -0.906**) with number of days required for first flower initiation. The results suggest that inorganic fertilizers (NPK) with bio compost (3kg/pot) is suitable for better production of chili that may increase soil fertility and this integrated approach could be contributed to improve crop production.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. Biosci. 2012<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bryan, 1994; Ozores-Hampt<strong>on</strong> et al., 1994a <str<strong>on</strong>g>and</str<strong>on</strong>g> b),<br />

watermel<strong>on</strong> (Citrullus vulgaris Schrad.) <str<strong>on</strong>g>and</str<strong>on</strong>g> tomato<br />

(Obreza <str<strong>on</strong>g>and</str<strong>on</strong>g> Vavrina, 1994; Obreza <str<strong>on</strong>g>and</str<strong>on</strong>g> Reeder, 1994),<br />

corn (Zea mays L.) (Gallaher <str<strong>on</strong>g>and</str<strong>on</strong>g> McSorley, 1994a <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

b), <str<strong>on</strong>g>and</str<strong>on</strong>g> pepper (Capsicum annuum L.) (Roe et al.,<br />

1993).<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> for vegetable producti<strong>on</strong> in large<br />

scale can solve the problem for disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> wastes <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

also solve the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. On the other<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>, a judicious combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients might be helpful to obtain a good<br />

ec<strong>on</strong>omic return with good soil health for the<br />

subsequent crops. Therefore, the main objectives <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this present investigati<strong>on</strong> were to evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different doses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g><br />

al<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> their combinati<strong>on</strong> with inorganic fertilizer<br />

<strong>on</strong> <strong>growth</strong>, <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> c<strong>on</strong>tributing characters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>chili</strong>.<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

Experimental design<br />

The experiment was carried out at the Botanical Garden,<br />

Rajshahi University, Bangladesh during August 2007 to<br />

February 2008 to assay the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g>, <str<strong>on</strong>g>cow</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>NPK</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizers</str<strong>on</strong>g> <strong>on</strong> <strong>growth</strong>, <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>yield</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>chili</strong> (Capsicum annum L). The<br />

experiment was arranged in r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized block design<br />

with three replicates <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 <strong>chili</strong> plants were used in each<br />

replicates. There were 15 treatments viz. T1 = <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g><br />

(3 kg/pot) + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T2 = <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (2 kg/pot) + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T3<br />

= <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (1.5 kg/pot) + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T4 = <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (3<br />

kg/pot), T5 = <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (2 kg/pot), T6 = <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g><br />

(1.5 kg/pot), T7 = <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> 3 kg/pot + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T8 =<br />

<str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (2 kg/pot) + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T9 = <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g><br />

<str<strong>on</strong>g>compost</str<strong>on</strong>g> (1.5 kg/pot) + <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T10 = <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (3<br />

kg/pot), T11= <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (2 kg/pot), T12 = <str<strong>on</strong>g>cow</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g> (1.5 kg/pot), T13 = <str<strong>on</strong>g>NPK</str<strong>on</strong>g>, T14 = bacterial<br />

suspensi<strong>on</strong>, T15 = c<strong>on</strong>trol (<strong>on</strong>ly soil). Each pot c<strong>on</strong>tain total<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 kg with respective amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g>, <str<strong>on</strong>g>NPK</str<strong>on</strong>g> (0.54 gm urea, 0.08 gm TSP,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 0.48 gm MoP) <str<strong>on</strong>g>and</str<strong>on</strong>g> soil. The respective amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g><br />

<str<strong>on</strong>g>compost</str<strong>on</strong>g>, <str<strong>on</strong>g>cow</str<strong>on</strong>g> <str<strong>on</strong>g>dung</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g>, urea, TSP <str<strong>on</strong>g>and</str<strong>on</strong>g> MoP were<br />

applied at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> filling <str<strong>on</strong>g>of</str<strong>on</strong>g> soil into the pot. The rest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

urea was applied at 20 days after sowing <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds. For<br />

bacterial suspensi<strong>on</strong> treatment, combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

bacterial strains suspensi<strong>on</strong> (Bacillus sp., Micrococcus sp.<br />

Cellulom<strong>on</strong>us spp. <str<strong>on</strong>g>and</str<strong>on</strong>g> Pseudom<strong>on</strong>us spp.) were applied<br />

at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 ml/pot by pouring the liquid <strong>on</strong>to the pot<br />

soil at 7 days intervals up to harvesting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>chili</strong>.<br />

Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g><br />

For producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g> <str<strong>on</strong>g>compost</str<strong>on</strong>g>, kitchen waste was<br />

collected from student hall dining, Rajshahi University<br />

Campus, Bangladesh <str<strong>on</strong>g>and</str<strong>on</strong>g> chopped into small pieces <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pile method was followed (Rahman, 2009). Each pile<br />

c<strong>on</strong>tained 300 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> chopped kitchen waste. The<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each pile was approximately 60 cm (width)<br />

× 132 cm (length) × 60 cm (height). For enhance<br />

<str<strong>on</strong>g>compost</str<strong>on</strong>g>ing process combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four bacterial strains<br />

viz. Bacillus sp., Micrococcus sp., Cellulom<strong>on</strong>us spp., <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Pseudom<strong>on</strong>us spp. were used as effective microorganism<br />

which were collected from the <str<strong>on</strong>g>bio</str<strong>on</strong>g>technology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

micro<str<strong>on</strong>g>bio</str<strong>on</strong>g>logy laboratory, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, Rajshahi<br />

University, Bangladesh <str<strong>on</strong>g>and</str<strong>on</strong>g> these were previously isolated<br />

from soil, humus <str<strong>on</strong>g>and</str<strong>on</strong>g> garbage samples by Rahman<br />

(2008). Each bacterial strain were combined grew <strong>on</strong><br />

BCD (Czapeck Dox) broth medium <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed well with<br />

the chopped kitchen waste at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 ml/kg <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

finally covered with polythene sheet. Every seven days,<br />

the moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the treated kitchen waste was<br />

adjusted to 60 % through the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water before <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

during the <str<strong>on</strong>g>compost</str<strong>on</strong>g>ing process c<strong>on</strong>tinued. When the<br />

temperature in <str<strong>on</strong>g>compost</str<strong>on</strong>g> piles reached the ambient<br />

temperature, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water was stopped although the<br />

<str<strong>on</strong>g>compost</str<strong>on</strong>g>ing process c<strong>on</strong>tinued. Each <str<strong>on</strong>g>compost</str<strong>on</strong>g> pile was<br />

manually mixed with a shovel for about 10 minutes to<br />

turn the pile <str<strong>on</strong>g>and</str<strong>on</strong>g> provide aerati<strong>on</strong>. This was d<strong>on</strong>e every 3-<br />

4 days until the <str<strong>on</strong>g>compost</str<strong>on</strong>g> piles reached maturity. At days 7,<br />

14, 21, 28, 35, 42 <str<strong>on</strong>g>and</str<strong>on</strong>g> 49, after turning the <str<strong>on</strong>g>compost</str<strong>on</strong>g> piles,<br />

a 50 gm sub-samples was r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly collected from the<br />

<str<strong>on</strong>g>compost</str<strong>on</strong>g> pile <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed using some physical, <str<strong>on</strong>g>bio</str<strong>on</strong>g>logical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> chemical parameters. Physical <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>bio</str<strong>on</strong>g>logical<br />

parameters were determined in the Biotechnology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

48<br />

Rahman et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!