17.12.2016 Views

Effects of nitrogen sources and application time on yield attributes, yield and grain protein of rain-fed NERICA-3 rice in Gambella, Ethiopia - IJAAR

Abstract A field experiment was carried out under rain-fed conditions at Imla, Gambella Agricultural Research Institute in 2008 and 2009 main cropping seasons in order to compare the effects of N sources [ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2)] and their time of application (½ at sowing + ½ at tillering; ⅓ at sowing + ⅓ at tillering + ⅓ at panicle initiation; ½ at sowing + ½ at panicle initiation, and ½ at tillering + ½ at panicle initiation) on growth, yield attributes and yield of rice (Oryza sativa L.) variety NERICA-3 (O. sativa x O. glaberrima), in a factorial experiment laid out in a RCBD replicated thrice. Nitrogen from each source was applied at the rate of 92 kg N ha-1, and the plots received uniform dose of 46 kg P and 20 kg K ha-1 at sowing. The results revealed that effects of year on rice days to flowering, panicle length, number of grains and grain weight panicle-1, grain yield, grain protein content (P ≤ 0.01), plant height, and straw yield (P ≤ 0.05) were only significant. The responses of rice growth and yield components and grain protein to sources of N were not significant (P > 0.05). Plant height, panicle length and grain weight panicle-1 to application time were significant (P ≤ 0.05) while the other growth and yield components and grain protein were not (P > 0.05). Only grain and straw yield significantly (P ≤ 0.01) influenced by interaction of N sources and application time whereas the other yield and growth components and grain protein not (P > 0.05). Effects of sources of N, interactions of year by sources of N, year by application time and year by sources of N by application time were insignificant(P > 0.05) on the rice growth, yield components and grain protein. Significantly increased rice grain yield (6.33 t ha-1) obtained with NH4NO3 applied ½ at sowing + ½ at tillering. The, results were subjected to economic analysis using the partial budget procedure to determine sources of N and application time that would give acceptable returns to farmers. Economic analysis showed that CO(NH2)2 applied ½ at sowing + ½ at panicle initiation and ½ at tillering + ½ at panicle initiation are superior and stable within a price variability range of 15%. Hence, it may be recommended for production of NERICA-3 rice under the climatic conditions prevailing in the study area.

Abstract
A field experiment was carried out under rain-fed conditions at Imla, Gambella Agricultural Research Institute in 2008 and 2009 main cropping seasons in order to compare the effects of N sources [ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2)] and their time of application (½ at sowing + ½ at tillering; ⅓ at sowing + ⅓ at tillering + ⅓ at panicle initiation; ½ at sowing + ½ at panicle initiation, and ½ at tillering + ½ at panicle initiation) on growth, yield attributes and yield of rice (Oryza sativa L.) variety NERICA-3 (O. sativa x O. glaberrima), in a factorial experiment laid out in a RCBD replicated thrice. Nitrogen from each source was applied at the rate of 92 kg N ha-1, and the plots received uniform dose of 46 kg P and 20 kg K ha-1 at sowing. The results revealed that effects of year on rice days to flowering, panicle length, number of grains and grain weight panicle-1, grain yield, grain protein content (P ≤ 0.01), plant height, and straw yield (P ≤ 0.05) were only significant. The responses of rice growth and yield components and grain protein to sources of N were not significant (P > 0.05). Plant height, panicle length and grain weight panicle-1 to application time were significant (P ≤ 0.05) while the other growth and yield components and grain protein were not (P > 0.05). Only grain and straw yield significantly (P ≤ 0.01) influenced by interaction of N sources and application time whereas the other yield and growth components and grain protein not (P > 0.05). Effects of sources of N, interactions of year by sources of N, year by application time and year by sources of N by application time were insignificant(P > 0.05) on the rice growth, yield components and grain protein. Significantly increased rice grain yield (6.33 t ha-1) obtained with NH4NO3 applied ½ at sowing + ½ at tillering. The, results were subjected to economic analysis using the partial budget procedure to determine sources of N and application time that would give acceptable returns to farmers. Economic analysis showed that CO(NH2)2 applied ½ at sowing + ½ at panicle initiation and ½ at tillering + ½ at panicle initiation are superior and stable within a price variability range of 15%. Hence, it may be recommended for production of NERICA-3 rice under the climatic conditions prevailing in the study area.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Days to flower<strong>in</strong>g<br />

There was a significant (P ≤ 0.01) difference <strong>in</strong> days<br />

to flower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> between the means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental years. Ma<strong>in</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N, year by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> days to flower<strong>in</strong>g however, were<br />

not significant (P > 0.05) (Table 2). Days to<br />

flower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> delayed dur<strong>in</strong>g 2009 than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2008 may be resulted from meteorological changes<br />

between the experimental years (Figure 4.2). For<br />

example, Kabuye <str<strong>on</strong>g>and</str<strong>on</strong>g> Drew (2000) reported that<br />

any drought that occurs after seedl<strong>in</strong>g germ<strong>in</strong>ati<strong>on</strong><br />

to maximum tiller<strong>in</strong>g period will reduce the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tillers <str<strong>on</strong>g>and</str<strong>on</strong>g> prol<strong>on</strong>g the <strong>rice</strong> maturity period by a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> days (7-14 days). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> tim<strong>in</strong>g had no<br />

significant (P > 0.05) effect <strong>on</strong> days to flower<strong>in</strong>g<br />

although days to flower<strong>in</strong>g tended to <strong>in</strong>crease from<br />

73.75 to 74.25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 73.67 to 74.56 days, respectively<br />

(Table 3). Maximum days to flower<strong>in</strong>g (74.25 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

74.56 days) were obta<strong>in</strong>ed with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO<br />

(NH2)2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ each<br />

at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong>, respectively.<br />

This fact <strong>in</strong>dicated that when N was applied before<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> stem el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> at first node stage,<br />

the total N uptake was greater (Mossedaq <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Smith, 1994). Accord<strong>in</strong>gly, accelerated root<br />

(efficient uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> water) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

vegetative (efficient photosynthesis) growth might<br />

be a factor for resist<strong>in</strong>g drought that delayed<br />

flower<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> crop maturity (Haque et al., 2006).<br />

Leaf area <strong>in</strong>dex<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> different N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental year with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

or <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental year with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> the <strong>rice</strong> leaf area <strong>in</strong>dex was not<br />

significant (P > 0.05) (Table 2). In ma<strong>in</strong> effect,<br />

however, (NH4)2SO4 showed higher leaf area <strong>in</strong>dex<br />

(1.05) followed by CO (NH2)2 (0.96) whereas<br />

NH4NO3 obta<strong>in</strong>ed the lowest (0.88) (Table 3) <strong>in</strong> an<br />

acidic soil <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental site. Kushwaha et al.<br />

(1992) believe that lower N volatilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

denitrificati<strong>on</strong> from (NH4)2SO4 is resp<strong>on</strong>sible for a<br />

higher leaf area <strong>in</strong> <strong>rice</strong> treated with this fertilizer.<br />

But TNAU (2008) reported that (NH4)2SO4 fertilizer<br />

is not effective <strong>in</strong> acid soils <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> did not absorb<br />

N <strong>in</strong> nitrate form s<strong>in</strong>ce the amm<strong>on</strong>ium i<strong>on</strong>s are<br />

readily absorbed <strong>on</strong> the colloidal complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil. Whereas, Reddy (2006) reported that<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrates <strong>in</strong> the early<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> growth may not have any effect s<strong>in</strong>ce<br />

nitrates are easily leached or may prove even<br />

deleterious to the plant due to c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate<br />

to nitrite.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertilizers ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

produced highest leaf area <strong>in</strong>dex followed by ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> (Table 3). The<br />

lowest was observed with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers<br />

½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g followed by ⅓ at<br />

sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>.<br />

Plant height<br />

Experimental year <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> had a<br />

significant (P ≤ 0.01) effect <strong>on</strong> plant height. Rice<br />

plant height, however, did not show significant (P ><br />

0.05) differences with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, year by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> (Table 2). C<strong>on</strong>trarily to this<br />

study, Assefa et al. (2009) found significant effect<br />

<strong>on</strong> <strong>rice</strong> plant height us<strong>in</strong>g urea, amm<strong>on</strong>ium nitrate,<br />

amm<strong>on</strong>ium sulfate, di-amm<strong>on</strong>ium phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

calcium amm<strong>on</strong>ium nitrate each at 120 kg N ha -1 as<br />

a source <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the hot-humid North-western part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Ethiopia</strong>.<br />

The average <strong>rice</strong> plant height was 104.98 <str<strong>on</strong>g>and</str<strong>on</strong>g> 101.85<br />

cm <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009, respectively (Table 3). Even<br />

though not significantly affected by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

the plants <strong>in</strong> NH4NO3 treated plots atta<strong>in</strong>ed the<br />

maximum height (103.74 cm) followed by<br />

(NH4)2SO4 (103.45 cm). The higher plant height<br />

obta<strong>in</strong>ed with NH4NO3 or (NH4)2SO4 might

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!