04.04.2017 Views

A Level Fur ther Mathematics for AQA

2o8iTBt

2o8iTBt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Brighter Thinking<br />

A <strong>Level</strong> <strong>Fur</strong> <strong>ther</strong><br />

<strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong><br />

Student Book 1 (AS/ Year 1)<br />

Stephen Ward and Paul Fannon<br />

This resource has been entered into the <strong>AQA</strong> approval process.


Contents<br />

Contents<br />

Introduction.............................................................. iv<br />

How to use this book................................................v<br />

1 Complex numbers<br />

1: Definition and basic arithmetic of i......................1<br />

2: Division and complex conjugates.......................6<br />

3: Geometric representation....................................9<br />

4: Locus in the complex plane...............................20<br />

5: Operations in modulus–argument <strong>for</strong>m...........24<br />

2 Roots of polynomials<br />

1: Factorising polynomials......................................31<br />

2: Complex solutions to polynomial<br />

equations.............................................................34<br />

3: Roots and coefficients........................................38<br />

4: Finding an equation with given roots...............43<br />

5: Trans<strong>for</strong>ming equations......................................48<br />

3 Graphs and inequalities<br />

1: Cubic and quartic inequalities...........................55<br />

2: Functions of the <strong>for</strong>m y =<br />

ax + b<br />

cx + d .......................58<br />

2<br />

3: Functions of the <strong>for</strong>m y =<br />

ax + bx + c<br />

2<br />

...............62<br />

dx + ex + f<br />

4: Oblique asymptotes...........................................65<br />

5: Reciprocal trans<strong>for</strong>mations of functions...........66<br />

6: Modulus trans<strong>for</strong>mation.....................................71<br />

4 Hyperbolic functions<br />

1: Defining hyperbolic functions and<br />

hyperbolic identities...........................................80<br />

2: Hyperbolic identities..........................................85<br />

3: Solving harder hyperbolic equations................87<br />

5 Series<br />

1: Sigma notation....................................................92<br />

2: Using standard <strong>for</strong>mulae....................................94<br />

3: Method of differences........................................99<br />

4: Maclaurin series.................................................103<br />

Focus on … Proof 1.............................................111<br />

Focus on … Problem solving 1...........................113<br />

Focus on … Modelling 1.....................................115<br />

Cross-topic review exercise 1.............................117<br />

6 Matrices<br />

1: Addition, subtraction and<br />

scalar multiplication..........................................120<br />

2: Matrix multiplication.........................................126<br />

3: Determinants and inverses of<br />

2×<br />

2 matrices..................................................... 131<br />

4: Linear simultaneous equations........................140<br />

7 Matrix trans<strong>for</strong>mations<br />

1: Matrices as linear trans<strong>for</strong>mations................... 147<br />

2: <strong>Fur</strong><strong>ther</strong> trans<strong>for</strong>mations in 2D..........................155<br />

3: Invariant points and invariant lines..................162<br />

4: Trans<strong>for</strong>mations in 3D....................................... 167<br />

8 <strong>Fur</strong><strong>ther</strong> vectors<br />

1: Vector equation of a line..................................177<br />

2: Cartesian equation of the line.........................184<br />

3: Intersections of lines.........................................190<br />

4: Angles and the scalar product.........................193<br />

5: The vector product...........................................202<br />

9 Polar coordinates<br />

1: Curves in polar coordinates.............................212<br />

2: Some features of polar curves.........................215<br />

3: Changing between polar and Cartesian<br />

coordinates........................................................219<br />

10 <strong>Fur</strong><strong>ther</strong> calculus<br />

1: Volumes of revolution.......................................225<br />

2: Average value of a function.............................230<br />

Focus on … Proof 2............................................ 236<br />

Focus on … Problem solving 2.......................... 238<br />

Draft sample<br />

Focus on … Modelling 2.....................................241<br />

Cross topic review exercise 2............................244<br />

Practice paper 1 ...................................................248<br />

Formulae................................................................250<br />

Answers to exercises ............................................253<br />

Glossary .................................................................296<br />

Index ..................................................................... 297<br />

Acknowledgements............................................. 000<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

iii


4 Hyperbolic functions<br />

In this chapter you will learn how to:<br />

••<br />

define the hyperbolic functions sinh x, cosh x and tanh x<br />

••<br />

recognise and use the graphs, range and domain of the hyperbolic<br />

functions<br />

••<br />

work with identities involving hyperbolic functions<br />

••<br />

write the inverse hyperbolic functions in terms of logarithms<br />

••<br />

solve equations involving hyperbolic functions.<br />

Be<strong>for</strong>e you start…<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 7<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 3<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 10<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 10<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 5<br />

AS/A <strong>Level</strong> <strong>Mathematics</strong><br />

Student Book 1,<br />

Chapter 9<br />

You should be able to work with<br />

natural logarithms.<br />

You should be able to solve<br />

quadratic equations.<br />

You should be able to work with<br />

the symmetries of trigonometric<br />

functions.<br />

You should be able to work with<br />

trigonometric identities.<br />

You should be able to interpret<br />

trans<strong>for</strong>mations of graphs<br />

graphically.<br />

You should be able to complete<br />

binomial expansions of brackets<br />

with positive integer powers.<br />

What are hyperbolic functions?<br />

Trigonometric functions are sometimes called circular functions. This<br />

is because of the definition that states: a point on the unit circle (with<br />

2 2<br />

equation x + y =1) at an angle θ to the positive x-axis, has coordinates<br />

(cos θ,sin θ ).<br />

2 2<br />

A related curve, with equation x − y =1, is called a hyperbola. Points on<br />

this hyperbola have coordinates (cosh θ,sinh θ) although θ can no longer<br />

be interpreted as an angle.<br />

x<br />

1 Given that 2 = 5, write x in the <strong>for</strong>m ln a<br />

ln b<br />

.<br />

2<br />

2 Solve x + 3x = 1.<br />

3 Given that sin 40°= a find sin 220°.<br />

2 2<br />

4 Simplify 3sin 2x+<br />

3cos 2x.<br />

5 What trans<strong>for</strong>mation changes f( x) to<br />

3f( x + 1) ?<br />

6 Expand (2 + x ) 3 .<br />

Draft sample<br />

–1<br />

y<br />

1<br />

O 1<br />

–1<br />

O<br />

y<br />

(cos , sin )<br />

x<br />

(cosh , sinh )<br />

x<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

79


A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

Section 1: Defining hyperbolic functions and<br />

hyperbolic identities<br />

Although the geometric definition of hyperbolic functions gives some<br />

helpful insight, a more useful definition is related to the number e.<br />

Key point 4.1<br />

• cosh x =<br />

e<br />

• sinh x =<br />

e<br />

e<br />

2<br />

x x<br />

+ −<br />

x x<br />

− e<br />

−<br />

2<br />

You can define the tanh x function by analogy with the trigonometric<br />

definition (of tan x).<br />

Key point 4.2<br />

O<br />

1<br />

y<br />

y = cosh x<br />

sinh x x<br />

tanh x ≡ ≡<br />

e − e<br />

x<br />

cosh x e + e<br />

There are not many special values of these functions that you need to<br />

know, but from Key points 4.1 and 4.2 you should be able to see that<br />

cosh (0) = 1, sinh (0) = 0and tanh (0) = 0.<br />

To investigate the domain and range you need to consider the graphs.<br />

Key point 4.3<br />

x<br />

Function Domain Range<br />

cosh x<br />

All real numbers y 1<br />

−x<br />

−x<br />

y<br />

O<br />

y = sinh x<br />

sinh x<br />

All real numbers All real numbers<br />

tanh x<br />

All real numbers − 1< y < 1<br />

x<br />

Fast <strong>for</strong>ward<br />

In <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> Student<br />

Book 2, you will see that the<br />

trigonometric functions can<br />

also be defined in a similar way<br />

in terms of complex numbers.<br />

Tip<br />

Cosh is pronounced as it reads,<br />

sinh is pronounced ‘sinsh’ or<br />

sometimes ‘shine’ and tanh is<br />

pronounced ‘tansh’.<br />

Did you know?<br />

The tanh function is frequently<br />

used in physics, particularly in<br />

the context of special relativity<br />

and the study of entropy.<br />

1<br />

–1<br />

y<br />

O<br />

y = tanh x<br />

Draft sample<br />

Did you know?<br />

You may think that the graph<br />

of cosh x looks like a parabola,<br />

but it is slightly flatter. It is<br />

called a catenary,<br />

which is the shape<br />

<strong>for</strong>med by a<br />

hanging chain.<br />

x<br />

80<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

WORKED EXAMPLE 4.1<br />

Find the range and domain of tanh 2<br />

x + 1.<br />

Tip<br />

The domain of tanh 2 x is any real number. Since the domain of tanh x is any real number, the<br />

expression tanh 2 x will likewise not be restricted<br />

in any way.<br />

The range of tanh 2 x is 0 y < 1<br />

The range of tanh x is from − 1 to 1, but its square<br />

will always be positive.<br />

So the range of tanh 2<br />

x + 1 is 1 y < 2<br />

The inverse functions of the hyperbolic functions are called arsinh x,<br />

arcosh x and artanh x.<br />

The graphs of these functions look like this:<br />

y<br />

O<br />

y = arsinh x<br />

x<br />

y<br />

O<br />

y = arcosh x<br />

Just as in trigonometry,<br />

2 2<br />

tanh x ≡ (tanh x ) .<br />

You just add one to the previous result.<br />

x<br />

Tip<br />

y<br />

O<br />

y = artanh x<br />

Draft sample<br />

On your calculator they might<br />

−<br />

be called sinh 1 −<br />

x, cosh 1 x and<br />

−<br />

tanh 1 x.<br />

Rewind<br />

You saw in the AS/A <strong>Level</strong><br />

<strong>Mathematics</strong> Student Book 2,<br />

Chapter 2, how to <strong>for</strong>m the<br />

graphs of inverse functions<br />

from the original function.<br />

x<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

81


A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

Key point 4.4<br />

Function Domain Range<br />

arcosh x<br />

x 1 y 0<br />

arsinh x<br />

All real numbers All real numbers<br />

artanh x<br />

− 1< x < 1<br />

All real numbers<br />

You can use the inverse hyperbolic functions to solve simple equations<br />

involving hyperbolic functions. For example, if sinh x = 2 then<br />

x = arsinh 2, which you can evaluate, on a calculator, as 1.4436....<br />

However, you can use the definition of sinh x to derive a logarithmic <strong>for</strong>m<br />

of this result. You can do this <strong>for</strong> all three inverse hyperbolic functions.<br />

Key point 4.5<br />

( )<br />

(<br />

2<br />

)<br />

2<br />

• arcosh x = ln x+ x −1<br />

• arsinh x = ln x+ x + 1<br />

( )<br />

• artanh x =<br />

1 + x<br />

2 ln 1 1−<br />

x<br />

PROOF 4<br />

( )<br />

Prove that arcosh x = ln x+ x −1<br />

2 .<br />

Let y = arcosh x<br />

Let y = arcosh x and then look to find an expression <strong>for</strong> y.<br />

Then cosh y = x<br />

Take cosh of both sides.<br />

y<br />

e + e −<br />

2<br />

y<br />

= x<br />

y − y<br />

e + e = 2x<br />

y<br />

e +<br />

1<br />

y<br />

= 2x<br />

e<br />

y 2<br />

( e ) + 1=<br />

2xe<br />

y 2 y<br />

( e ) − 2xe<br />

+ 1=<br />

0<br />

y<br />

Use the definition of cosh y.<br />

Rearrange into a disguised quadratic in e y .<br />

Draft sample<br />

Continues on next page<br />

82<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

So<br />

e<br />

y<br />

2<br />

2 x± (2 x) −4<br />

=<br />

2<br />

=<br />

2x± 4x 2 −4<br />

2<br />

2x± 4( x 2 −1)<br />

=<br />

2<br />

Use the quadratic <strong>for</strong>mula.<br />

2<br />

=<br />

2x± 4 x −1<br />

Use the algebra of surds to simplify the expression.<br />

2<br />

= x± x 2 −1<br />

But arcosh x is a function so it can<br />

only take one value.<br />

y<br />

∴ e = x+ x 2 −1<br />

( )<br />

2<br />

y = ln x+ x − 1<br />

But y = arcosh x<br />

( )<br />

2<br />

So arcosh x = ln x+ x − 1<br />

When you are trying to solve equations involving hyperbolic cosines,<br />

using the inverse function – un<strong>for</strong>tunately – does not give all the<br />

solutions: it just gives the positive one. Just as when taking the<br />

square root of both sides, you need to use a ‘plus or minus’ sign to<br />

get both possible solutions. This may be clear if you consider the<br />

graph of cosh x.<br />

WORKED EXAMPLE 4.2<br />

Conventionally, you take the positive root, so this makes<br />

y<br />

e > 1 and y > 0.<br />

( )<br />

( )<br />

Given that cosh 2 x − cosh x = 2 , express x in the <strong>for</strong>m ln a + b or ln a−<br />

b .<br />

cosh 2 x −cosh x − 2=<br />

0<br />

(coshx<br />

− 2)(cosh x + 1) = 0<br />

cosh x = 2 or cosh x =−1<br />

But cosh x 1so the only relevant solution is<br />

cosh x = 2.<br />

−<br />

x =± cosh 1 2<br />

–arcosh k<br />

1<br />

O<br />

y<br />

arcosh k<br />

The expression is a disguised quadratic, so<br />

rearrange it to make one side zero and then factorise<br />

it. You could also have used the quadratic <strong>for</strong>mula.<br />

Draft sample<br />

Use the inverse cosh function to find x. Remember<br />

that you need a plus or minus ( ± ).<br />

x<br />

y = k<br />

2<br />

( 2 2 1)<br />

=± ln + −<br />

( 2 3)<br />

=± ln +<br />

Then use the identity from Key point 4.4 to convert it<br />

to logarithmic <strong>for</strong>m.<br />

Continues on next page<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

83


.<br />

b<br />

b<br />

b<br />

b<br />

A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

So<br />

ln<br />

⎛<br />

or ln<br />

1<br />

⎜<br />

⎝ 2+<br />

3<br />

x = ( 2+<br />

3)<br />

⎞<br />

⎟<br />

⎠<br />

−1 Use the fact that −ln x ≡ ln ( x ) ≡ ln (<br />

1<br />

x ).<br />

⎛ ⎞ ⎛<br />

⎜ ⎟ =<br />

− ⎞<br />

ln<br />

1<br />

ln<br />

2 3<br />

⎜<br />

⎟<br />

⎝ 2+<br />

3 ⎠ ⎝ (2+ 3)(2 − 3) ⎠<br />

⎛<br />

=<br />

− ⎞<br />

ln<br />

2 3<br />

⎜ ⎟<br />

⎝ 1 ⎠<br />

So x = ln (2+<br />

3) or x = ln(2 − 3)<br />

EXERCISE 4A<br />

1 Use your calculator to evaluate each expression where possible.<br />

2 2<br />

a i cosh ( − 1)<br />

ii sinh 3 b i tanh 1<br />

ii cosh 3<br />

c i 3sinh 0.2 + 1 ii 5tanh 1 + 8<br />

2<br />

d i<br />

e<br />

i<br />

−1<br />

tanh 2<br />

ii<br />

−1<br />

cosh 0<br />

2 Find the domain and range of each function.<br />

−1<br />

sinh 0.5<br />

ii<br />

−1<br />

cosh 2<br />

a i 3sinh x − 2<br />

ii 4cosh x + 1<br />

b i 3tanh x + 2<br />

ii 2tanh x − 1<br />

c i 2cosh 2<br />

x − 3 ii sinh 2<br />

x −1<br />

d i 3tanh 2<br />

x + 1<br />

ii tanh 2<br />

x −1<br />

−<br />

e i 2cosh 1 −<br />

x ii 3sinh 1 −1 −1 x + 2<br />

f i 2tanh ( x + 1) + 1 ii 3tanh ( x − 2) + 1<br />

3 Solve each equation, giving your answers to 3 significant figures.<br />

a i sinh x =− 2<br />

ii sinh x = 0.1<br />

b i 2cosh x = 5<br />

ii cosh x = 4<br />

c i 4tanh x = 3<br />

ii tanh x = 0.4<br />

d i 3tanh x = 4<br />

ii 3cosh x = 1<br />

−<br />

e i sinh 1 −<br />

x = 5<br />

ii cosh 1<br />

x = 4<br />

4 Solve the equation 3cosh( x − 1) = 5.<br />

5 Find and simplify the exact value of cosh (ln2).<br />

6 Find and simplify a rational expression <strong>for</strong> tanh (ln3).<br />

7 Solve the equation sinh 3x = 5<br />

2<br />

.<br />

8 Solve the equation 2tanh 2<br />

x+ 2=<br />

5tanh x.<br />

−<br />

9 Find and simplify an expression <strong>for</strong> cosh (sinh 1<br />

x ).<br />

−1 2<br />

10 Prove that sinh x = ln ( x+ x + 1) .<br />

Simplify the second solution by<br />

rationalising the denominator to<br />

produce the required <strong>for</strong>m.<br />

Draft sample<br />

84<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

11 Prove that tanh =<br />

+<br />

( − )<br />

− 1<br />

2 ln 1 1<br />

x<br />

x<br />

1<br />

x .<br />

12<br />

−<br />

In the derivation of cosh 1 x you found that two possible expressions were ln ( x+ x<br />

−1)<br />

ln ( x − x2<br />

−1)<br />

Show that their sum is zero and hence explain why the chosen expression is<br />

non-negative.<br />

Section 2: Hyperbolic identities<br />

You can use the definitions of hyperbolic functions given in Key point 4.1<br />

and Key point 4.2 to find and prove identities relating hyperbolic functions.<br />

WORKED EXAMPLE 4.3<br />

2 2<br />

Prove that cosh x−sinh x ≡1.<br />

⎛<br />

x<br />

2<br />

cosh x =<br />

e + e<br />

⎜<br />

⎝ 2<br />

−x<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

−<br />

=<br />

e + 2e e + e<br />

4<br />

=<br />

e<br />

2x x x −2x<br />

+ 2+ e<br />

−<br />

4<br />

2x<br />

2x<br />

⎛<br />

x<br />

2<br />

sinh x =<br />

e − e<br />

⎜<br />

⎝ 2<br />

cosh<br />

−x<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

−<br />

=<br />

e − 2e e + e<br />

4<br />

=<br />

e<br />

x−sinh<br />

2 2<br />

2x x x −2x<br />

2x<br />

+ − 2x<br />

− 2 e<br />

4<br />

Did you know?<br />

2x −2x 2x −2x<br />

x ≡<br />

e + 2+<br />

e<br />

−<br />

e − 2+<br />

e<br />

4<br />

4<br />

2x −2x 2x −2x<br />

e + 2 + e −( e − 2 + e )<br />

≡<br />

4<br />

2x −2x 2x −2x<br />

≡<br />

e + 2+ e − e + 2−<br />

e<br />

4<br />

≡<br />

4<br />

4<br />

≡ 1<br />

Start from the definition of one of<br />

the hyperbolic functions. It doesn’t<br />

matter which one. It is squared in the<br />

expression so square it and simplify.<br />

x −x Since e e = 1.<br />

Repeat with the sinh 2 x term.<br />

x −x e e = 1 again.<br />

Combine the two terms and simplify.<br />

Draft sample<br />

Rewind<br />

Osborn’s rule links identities <strong>for</strong> hyperbolic functions with identities <strong>for</strong><br />

trigonometric functions. The rule states that you replace every occurrence<br />

of sine or cosine with the corresponding hyperbolic sine or cosine, except<br />

when <strong>ther</strong>e is a product of two sines. This is replaced with a negative<br />

product of two hyperbolic sines. This is a useful rule to help you remember<br />

the identities, but it will not be tested in the examination.<br />

The result in Worked example<br />

4.3 proves that (cosh x,sinh x)<br />

2 2<br />

lies on the hyperbola x − y =1,<br />

as described in the introduction<br />

to this chapter.<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

85


A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

WORKED EXAMPLE 4.4<br />

Prove that sinh 2x = 2sinh x cosh x.<br />

LHS ≡<br />

e<br />

2x<br />

− e<br />

− 2x<br />

2<br />

−<br />

RHS≡ 2×<br />

e − e<br />

×<br />

e + e<br />

2 2<br />

x x x −x<br />

x −x x −x<br />

( e − e ) × ( e + e )<br />

≡<br />

2<br />

x<br />

( e ) − ( e<br />

≡<br />

− x)<br />

2<br />

2 2<br />

2x<br />

− − 2x<br />

≡<br />

e e<br />

2<br />

≡ LHS<br />

EXERCISE 4B<br />

1 Prove that cosh x−sinh x ≡e<br />

−x<br />

.<br />

2 Simplify 1+<br />

sinh 2 x .<br />

2 2<br />

3 Prove that cosh 2x ≡ cosh x+<br />

sinh x.<br />

2<br />

4 Prove that 1−tanh<br />

x ≡<br />

1<br />

cosh<br />

2<br />

x .<br />

2tanh x<br />

5 Prove that tanh 2x<br />

≡<br />

1 + tanh 2 x .<br />

6 Prove that cosh −1 ≡<br />

1 ( −<br />

2 e0.5 e−<br />

0.5<br />

)<br />

2<br />

On the LHS use the definition of sinh x and replace each x<br />

with 2 x.<br />

Then work from the RHS. Substitute the definitions of<br />

sinh x and cosh x.<br />

Multiply out the brackets, using the difference of two<br />

squares.<br />

Using the rules of indices.<br />

x x<br />

x . Hence prove that cosh x 1.<br />

7 Prove that cosh A+ cosh B ≡ 2cosh<br />

A+ B<br />

cosh<br />

A−<br />

B<br />

( 2 ) ( 2 ).<br />

Draft sample<br />

8 Use the binomial theorem to show that sinh 3<br />

x ≡<br />

1<br />

−<br />

4 sinh 3 x<br />

3<br />

4 sinh x.<br />

9 a<br />

3<br />

3<br />

Explain why (cosh x+ sinh x) ≡ cosh 3x+<br />

sinh 3x and (cosh x−sinh x) ≡cosh 3x−<br />

sinh 3x.<br />

3 2<br />

Hence show that cosh 3x ≡ cosh x+<br />

3cosh x sinh x.<br />

b Write cosh 3 x in terms of cosh x.<br />

10 Given that tan y = sinh x show that sin y =± tanh x.<br />

86<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

Section 3: Solving harder hyperbolic equations<br />

When you are solving equations involving hyperbolic functions you have<br />

several options:<br />

• Rearrange to get a hyperbolic function that is equal to a constant and<br />

use inverse hyperbolic functions.<br />

• Use the definition of hyperbolic functions to get an exponential<br />

function that is equal to a constant and use logarithms.<br />

• Use an identity <strong>for</strong> hyperbolic functions to simplify the situation to<br />

one of the two preceding options.<br />

It is only with experience that you will develop an instinct about which<br />

method will be most efficient.<br />

WORKED EXAMPLE 4.5<br />

Solve sinh x+ cosh x = 4.<br />

sinh x + cosh x = 4<br />

−<br />

e − e<br />

+<br />

e + e<br />

2 2<br />

x x x −x<br />

2e<br />

2<br />

= 4<br />

x<br />

= 4<br />

x<br />

e = 4<br />

x = ln 4<br />

WORKED EXAMPLE 4.6<br />

Use the definitions of<br />

sinh x and cosh x.<br />

Solve cosh 2<br />

x+ 1=<br />

3sinh x, giving your answer in logarithmic <strong>for</strong>m.<br />

cosh 2 x + 1=<br />

3sinh<br />

x<br />

(1 + sinh 2 x ) + 1=<br />

3 sinh x<br />

sinh 2 x − 3sinh<br />

x + 2=<br />

0<br />

This is a quadratic.<br />

Tip<br />

When you are dealing with<br />

the sum or difference of two<br />

hyperbolic functions, it is often<br />

useful to use the exponential<br />

<strong>for</strong>m.<br />

The equation involves two types of function. You can use<br />

2 2<br />

the identity cosh x−sinh x ≡1<br />

to replace the cosh 2 term.<br />

( sinh x−2)( sinh x− 1) = 0<br />

Factorise (or use the quadratic <strong>for</strong>mula).<br />

sinh x = 1or sinh x = 2<br />

x = arsinh 1 or x = arsinh 2<br />

You will find useful hyperbolic<br />

identities in the <strong>for</strong>mula book<br />

provided in the examination.<br />

Draft sample<br />

Tip<br />

x = ln (1+<br />

2) or x = ln (2+<br />

5)<br />

Use the logarithm <strong>for</strong>m of arsinh.<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

87


A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

WORK IT OUT<br />

Solve sinh 2x cosh2x = 6sinh2x.<br />

Which is the correct solution? Identify the errors made in the incorrect solutions.<br />

Solution 1 Solution 2 Solution 3<br />

Dividing by 2:<br />

sinh x cosh x = 3sinh x<br />

sinh x cosh x− 3sinh x = 0<br />

sinh x(cosh x− 3) = 0<br />

sinh x = 0orcosh x = 3<br />

−1 −1<br />

x = sinh 0or x = cosh 3<br />

x = 0or x = 1.76<br />

EXERCISE 4C<br />

1 Find the exact solution to cosh x = 5− sinh x.<br />

2 Solve cosh x− sinh x = 2, giving your answer in the <strong>for</strong>m ln k.<br />

=<br />

Dividing by sinh 2 x :<br />

sinh 2x cosh2x 6sinh2x<br />

x =<br />

1<br />

+<br />

2 ln (6 35) −1 −1<br />

2x<br />

= sinh 0 or 2x<br />

=± cosh 6<br />

x = 0or x =± 1.24<br />

cosh 2x<br />

= 6<br />

−<br />

2x<br />

= cosh 6<br />

= ln (6 + 35)<br />

sinh 2x cosh2x− 6sinh2x<br />

= 0<br />

sinh 2 x(cosh 2x− 6) = 0<br />

sinh 2x<br />

= 0 or cosh 2x<br />

= 6<br />

3 Solve 3(2sinh x −1)(cosh x − 4) = 0, giving your answers correct to 3 significant figures.<br />

4 Solve sinh 2x = cosh x, giving your answer in logarithmic <strong>for</strong>m.<br />

5 Find the exact solution to 2sinh x = 1+ cosh x.<br />

6 Solve sinh 2<br />

x = cosh x + 1, giving your answer in logarithmic <strong>for</strong>m.<br />

7 Solve tanh x =<br />

1<br />

, giving your answer in logarithmic <strong>for</strong>m.<br />

cosh x<br />

8 Solve sinh x =<br />

1<br />

, giving your answer in logarithmic <strong>for</strong>m.<br />

cosh x<br />

9 sinh x+ sinh y =<br />

21<br />

8<br />

cosh x+ cosh y =<br />

27<br />

8<br />

x y −<br />

a Show that e = 6−e<br />

and e = 0.75 −e<br />

b<br />

Draft sample<br />

x − y<br />

.<br />

Hence find the exact solutions to the simultaneous equations.<br />

10 Find a sufficient condition on p, q and r <strong>for</strong> p 2 cosh x+ q 2 sinh x = r 2 to have at least one solution.<br />

88<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

Checklist of learning and understanding<br />

• Definitions of hyperbolic functions:<br />

• cosh x =<br />

e<br />

• sinh x =<br />

e<br />

e<br />

2<br />

x x<br />

+ −<br />

e<br />

2<br />

x x<br />

− −<br />

sinh x x<br />

• tanh x ≡ ≡<br />

e − e<br />

x<br />

cosh x e + e<br />

−x<br />

−x<br />

• Domain and range of hyperbolic and inverse hyperbolic functions:<br />

Function Domain Range<br />

cosh x<br />

All real numbers y 1<br />

sinh x<br />

All real numbers All real numbers<br />

tanh x<br />

All real numbers − 1< y < 1<br />

arcosh x<br />

x 1 y 0<br />

arsinh x<br />

All real numbers All real numbers<br />

artanh x<br />

• Logarithmic <strong>for</strong>m of inverse hyperbolic functions:<br />

( )<br />

(<br />

2<br />

)<br />

2<br />

• arcosh x = ln x+ x −1<br />

• arsinh x = ln x+ x + 1<br />

( )<br />

• artanh x =<br />

1 + x<br />

2 ln 1 1−<br />

x<br />

− 1< x < 1<br />

All real numbers<br />

Draft sample<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

89


A <strong>Level</strong> <strong>Fur</strong><strong>ther</strong> <strong>Mathematics</strong> <strong>for</strong> <strong>AQA</strong> Student Book 1<br />

Mixed practice 4<br />

2<br />

1 Find the range of y = 3tanh x + 2.<br />

Choose from these options.<br />

A<br />

2 y < 5<br />

B −1 y 5<br />

C − 1< y < 5<br />

D All real numbers<br />

2 Solve sinh x+ cosh x = k, giving your answer in terms of k.<br />

Choose from these options.<br />

A<br />

arsinh<br />

k<br />

2<br />

3 Simplify tanh (1 + ln p)<br />

.<br />

( ) B k<br />

arcosh (2 ) C e k D ln k<br />

4 Solve cosh ( x + 1) = 3, giving your answer in terms of logarithms.<br />

x −<br />

5 a Express 5sinh x+ cosh x in the <strong>for</strong>m Ae<br />

+ Be<br />

x<br />

, where A and B are integers.<br />

b Solve the equation 5sinh x + cosh x + 5= 0, giving your answer in the <strong>for</strong>m ln a, where a is a<br />

rational number.<br />

[©<strong>AQA</strong> 2008]<br />

6 a Use the definitions sinh θ =<br />

1<br />

(e θ −e 2 −θ<br />

) and cosh θ =<br />

1<br />

(e θ + e<br />

2 −θ<br />

) to show that 1 + 2sinh θ cosh 2θ<br />

b Solve the equation 3cosh2θ<br />

= 2sinhθ<br />

+ 11, giving each of your answers in the <strong>for</strong>m ln p.<br />

7 Solve sinh 2x = 2cosh x, giving your answer in logarithmic <strong>for</strong>m.<br />

8 Find the exact solutions to cosh 2x+ cosh x =<br />

27<br />

.<br />

8<br />

9 Find the exact solutions to 2cosh x+ sinh x = 2.<br />

10 Prove that 2sinh 2<br />

A≡cosh2A −1.<br />

11 Prove that cosh x > sinh x.<br />

12 Find and simplify an expression <strong>for</strong> tanh (arsinh x).<br />

13 Use the binomial theorem to show that cosh 4<br />

x ≡<br />

1<br />

+ +<br />

8 cosh 4 x<br />

1<br />

2 cosh 2 x<br />

3<br />

.<br />

8<br />

14 a Sketch the graph of y = tanh x.<br />

[©<strong>AQA</strong> 2009]<br />

Draft sample<br />

b Given that u = tanh x, use the definitions of sinh x and cosh x in terms of e x −<br />

and e x to show that<br />

x =<br />

1 u<br />

2 ln 1 +<br />

( 1 − u ).<br />

c i Show that the equation<br />

3<br />

+ 7tanh x = 5 can be written as 3tanh 2<br />

x− 7tanh x + 2=<br />

0.<br />

cosh<br />

2<br />

x<br />

ii Show that the equation 3tanh 2<br />

x− 7tanh x + 2=<br />

0has only one solution <strong>for</strong> x .<br />

Find this solution in the <strong>for</strong>m<br />

1<br />

ln a where a is an integer.<br />

2<br />

90<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.


4 Hyperbolic functions<br />

θ θ<br />

15 a Using the definition sinh θ =<br />

1<br />

(e −e 2 − ), prove the identity 4sinh 3 θ + 3sinh θ = sinh 3θ<br />

.<br />

3<br />

b Given that x = sinh θ and 16x + 12x − 3=<br />

0, find the value of θ in terms of a natural logarithm.<br />

c<br />

3<br />

Hence find the real root of the equation 16x + 12x − 3=<br />

0, giving your answer in the <strong>for</strong>m 2 − 2<br />

where p and q are rational numbers.<br />

3<br />

16 a Prove the identity cosh 3x = 4cosh x−3cosh<br />

x.<br />

3<br />

b If 48u −36u − 13 = 0 and u = cosh x find the value of x .<br />

p q<br />

,<br />

[©<strong>AQA</strong> 2014]<br />

3<br />

c Hence find the exact real solution to 48u −36u − 13 = 0, giving your answer in a <strong>for</strong>m without<br />

logarithms.<br />

17 Solve these simultaneous equations, giving your answers in exact logarithmic <strong>for</strong>m.<br />

sinh x+ sinh y = 3.15<br />

cosh x + cosh y = 3.85<br />

18 Using the logarithmic definition, prove that arsinh ( − x) = − arsinh ( x)<br />

.<br />

Draft sample<br />

© Cambridge University Press 2017<br />

The third party copyright material that appears in this sample may still be pending clearance and may be subject to change.<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!