24.05.2018 Views

Final Chemistry Notebook

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Example: Converting between mass and moles<br />

Knowing a substance’s molar mass is useful, because the molar mass acts as a conversion factor<br />

between the mass of a sample and the number of moles in that sample (Equation 1). For converting<br />

between the number of moles in a sample and the number of molecules in the sample, Avogadro’s<br />

number acts as the conversion factor, as shown in Equation 2 below.<br />

Equation 1<br />

Sample mass (g) = Moles in sample (mol)<br />

Sample's molar mass (g/mol)<br />

Equation 2<br />

Moles in sample (mol) x Avogadro's number (number/mol) = Number of sample molecules<br />

To understand how molar mass and Avogadro’s number act as conversion factors, we can turn to an<br />

example using a popular drink: How many CO2 molecules are in a standard bottle of carbonated<br />

soda?<br />

Thanks to molar mass and Avogadro’s number, figuring this out doesn’t require counting each<br />

individual CO2 molecule! Instead, we can start by determining the mass of CO2 in this sample. In an<br />

experiment, a scientist compared the mass of a standard 16-ounce (454 milliliters) bottle of soda<br />

before it was opened, and then after it had been shaken and left open so that the CO2 fizzed out of<br />

the liquid. The difference between the masses was 2.2 grams—the sample mass of CO2 (for this<br />

example, we’re going to assume that all the CO2 has fizzled out). Before we can calculate the number<br />

of CO2 molecules in 2.2 grams, we first have to calculate the number of moles in 2.2 grams of CO2<br />

using molar mass as the conversion factor (see Equation 1 above):<br />

Equation 3<br />

Now that we’ve figured out that there are 0.050 moles in 2.2 grams of CO2, we can use Avogadro’s<br />

number to calculate the number of CO2 molecules (see Equation 2 above):<br />

Equation 4<br />

94<br />

While scientists today commonly use the concept of the mole to interconvert number of particles and<br />

mass of elements and compounds, the concept started with 19th-century chemists who were puzzling<br />

out the nature of atoms, gas particles, and those particles’ relationship with gas volume.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!