22.12.2012 Views

Convex Geometry of Orbits - MSRI

Convex Geometry of Orbits - MSRI

Convex Geometry of Orbits - MSRI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

70 ALEXANDER BARVINOK AND GRIGORIY BLEKHERMAN<br />

Pro<strong>of</strong>. We have<br />

dk ≤<br />

m�<br />

k�<br />

i=1 j=1<br />

n + j − i<br />

k − j + 1 ≤<br />

� k� �m n + j − 1<br />

=<br />

k − j + 1<br />

j=1<br />

� n + k − 1<br />

n − 1<br />

� m<br />

.<br />

Hence<br />

� �<br />

n + k − 1<br />

n + k − 1 n + k − 1<br />

lndk ≤ mln<br />

≤ m(n − 1)ln + mk ln<br />

n − 1<br />

n − 1 k<br />

� � � �<br />

n + k − 1<br />

k<br />

≤ m(n − 1) ln + 1 = m(n − 1) ln + 2 ;<br />

n − 1 n − 1<br />

compare the pro<strong>of</strong> <strong>of</strong> Corollary 3.2.<br />

If m ≥ 3 then lnm ≥ 1 and k/(n − 1) ≥ mlnm. Since the function ρ −1 lnρ<br />

is decreasing for ρ ≥ e, substituting ρ = k/(n − 1), we get<br />

ρ −1 lnρ =<br />

Therefore, for m ≥ 3, we have<br />

If m ≤ 2 then<br />

n − 1<br />

k<br />

ln<br />

k lnm + ln lnm<br />

≤<br />

n − 1 mlnm .<br />

1<br />

2k lndk<br />

lnm + lnlnm<br />

≤ +<br />

2lnm<br />

1 1 1 1<br />

≤ + +<br />

lnm 2 2e ln 3 .<br />

n − 1<br />

k<br />

ln<br />

k<br />

n − 1 ≤ e−1 ,<br />

since the maximum <strong>of</strong> ρ −1 lnρ for is attained at ρ = e. Therefore,<br />

1<br />

2k lndk ≤ e −1 + 1 < 1 1 1<br />

+ +<br />

2 2e ln 3<br />

The pro<strong>of</strong> now follows. ˜<br />

To understand the convex geometry <strong>of</strong> an orbit, we would like to compute the<br />

maximum value <strong>of</strong> a “typical” linear functional on the orbit. Theorem 3.1 allows<br />

us to replace the maximum value by an L p norm. To estimate the average value<br />

<strong>of</strong> an L p norm, we use the following simple computation.<br />

Lemma 3.5. Let G be a compact group acting in a d-dimensional real vector space<br />

V endowed with a G-invariant scalar product 〈 ·,·〉 and let v ∈ V be a point.<br />

Let Sd−1 ⊂ V be the unit sphere endowed with the Haar probability measure dc.<br />

Then, for every positive integer k, we have<br />

� �� �1/2k S d−1<br />

〈c,gv〉<br />

G<br />

2k dg<br />

Pro<strong>of</strong>. Applying Hölder’s inequality, we get<br />

� �� �1/2k ��<br />

dc ≤<br />

S d−1<br />

〈c,gv〉<br />

G<br />

2k dg<br />

�<br />

2k〈v,v〉<br />

dc ≤ .<br />

d<br />

S d−1<br />

�<br />

G<br />

〈c,gv〉 2k �1/2k dg dc<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!