29.12.2012 Views

A Copper- and Amine-Free Sonogashira Reaction Employing ...

A Copper- and Amine-Free Sonogashira Reaction Employing ...

A Copper- and Amine-Free Sonogashira Reaction Employing ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Copper</strong>- <strong>and</strong> <strong>Amine</strong>-<strong>Free</strong> <strong>Sonogashira</strong> <strong>Reaction</strong><br />

dimerization to give diaryldiacetylenes when they are<br />

exposed to air or an oxidant (a reaction known as the<br />

Glaser coupling). 9 These byproducts are generally difficult<br />

to separate from the desired products. Furthermore,<br />

the copper acetylide is a potential explosive reagent.<br />

Some examples of “palladium-only” catalysts have been<br />

reported in this cross-coupling reaction. 10<br />

Trivalent aminophosphines that contain one or more<br />

P-N bonds have been recently employed as lig<strong>and</strong>s in<br />

transition-metal-catalyzed cross-coupling reactions. 11 A<br />

few reports on the coordination chemistry of aminophosphine<br />

compounds revealed that the function of amino<br />

groups was more diversified than that of alkoxy groups<br />

in phosphites. 12 In mono- <strong>and</strong> diaminophosphines, alkyl<strong>and</strong>/or<br />

arylamino groups served as strong electrondonating<br />

groups, making the phosphines stronger σ-donor<br />

lig<strong>and</strong>s. In our previous work, we found phosphinamides<br />

L1, L4, <strong>and</strong> L5 (Scheme 1) were highly efficient<br />

lig<strong>and</strong>s in the Suzuki cross-coupling reaction. 13 We<br />

attempted to extend the use of this type of lig<strong>and</strong> to the<br />

<strong>Sonogashira</strong> reaction. Herein, we report a copper- <strong>and</strong><br />

amine-free <strong>Sonogashira</strong> reaction employing aminophosphine<br />

lig<strong>and</strong>s.<br />

Results <strong>and</strong> Discussion<br />

We first chose p-bromoanisole (2a) <strong>and</strong> phenylacetylene<br />

(1a) as substrates <strong>and</strong> L1 as lig<strong>and</strong> to investigate<br />

the <strong>Sonogashira</strong> reaction in the absence of a copper salt.<br />

Treatment of a mixture of 1a (245 mg, 2.4 mmol), 2a<br />

(374 mg, 2 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), <strong>and</strong> L1<br />

(43 mg, 0.15 mmol) in Et3N (5 mL) at 65 °C under an<br />

inert atmosphere for 8 h produced the desired product<br />

(9) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int.<br />

Ed. 2000, 39, 2632-2657.<br />

(10) <strong>Copper</strong>-free <strong>Sonogashira</strong> coupling reactions are not common.<br />

See: (a) Böhm, V. P.; Hermann, W. A. Eur. J. Org. Chem. 2000, 3679-<br />

3681. (b) Pal, M.; Parasuraman, K.; Gupta, S.; Yaleswarapu, K. R.<br />

Synlett 2002, 12, 1976-1982 <strong>and</strong> references therein. (c) Fu, X.; Zhang,<br />

S.; Yin, J.; Schumacher, D. Tetrahedron Lett. 2002, 43, 6673-6676.<br />

(d) Alonso, D. A.; Nájera, C.; Pacheco, M. C. Tetrahedron Lett. 2002,<br />

43, 9365-9368. (e) Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato,<br />

M.; Ryu, I. Org. Lett. 2002, 4, 1691-1694 <strong>and</strong> references therein. (f)<br />

Méry, D.; Heuzé, K.; Astruc, D. Chem. Commun. 2003, 1934-1935.<br />

(g) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org.<br />

Lett. 2000, 2, 1729-1731. (h) Heuzé, K.; Méry, D.; Gauss, D.; Astruc,<br />

D. Chem. Commun. 2003, 2274-2275. (i) Soheili, A.; Albaneze-Walker,<br />

J.; Murry, J. A.; Dormer, P. G., Hughes, D. L. Org. Lett. 2003, 5, 4191-<br />

4194. (j) Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu., X.; Andrus,<br />

M. B. Org. Lett. 2003, 5, 3317-3319. (k) Nájera, C.; Gil-Moltó, J.;<br />

Karlström, S.; Falvello, L. R. Org. Lett. 2003, 5, 1451-1454. (l) Alonso,<br />

D. A.; Nájera, C.; Pacheco, M. C. Adv. Synth. Catal. 2003, 345, 1146-<br />

1158. (m) Buchmeiser, M. R.; Schareina, T.; Kempe, R.; Wurst, K. J.<br />

Organomet. Chem. 2001, 634, 39-46. (n)Uozumi, Y.; Kobayashi, Y.<br />

Heterocycles 2003, 59, 71-74.<br />

(11) (a) Clarke, M. L.; Cole-Hamilton, D. J.; Woollins, J. D. J. Chem.<br />

Soc., Dalton Trans. 2001, 2721-2723. (b) Schareina, T.; Kempe, R.<br />

Angew. Chem., Int. Ed. 2002, 41, 1521-1523. (c) Urgaonkar, S.;<br />

Nagarajan, M.; Verkade, J. G. Tetrahedron Lett. 2002, 43, 8921-8924.<br />

(d) Clarke, M. L.; Cole-Hamilton, D. J.; Slawin, A. M. Z.; Woollins, J.<br />

D. Chem. Commun. 2000, 2065-2066. (e) Urgaonkar, S.; Nagarajan,<br />

M.; Verkade, J. G. J. Org. Chem. 2003, 68, 452-459. (f) Urgaonkar,<br />

S.; Nagarajan, M.; Verkade, J. G. Org. Lett. 2003, 5, 815-818. (g) You,<br />

J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003-8007. (h) Urgaonkar,<br />

S.; Xu, J.-H.; Verkade, J. G. J. Org. Chem. 2003, 68, 8416-8423.<br />

(12) (a) Rømming, C.; Songstad, J. Acta Chem. Sc<strong>and</strong>., Ser. A 1978,<br />

32, 689-699. (b) Rømming, C.; Songstad, J. Acta Chem. Sc<strong>and</strong>., Ser.<br />

A 1979, 33, 187-197. (c) Rømming, C.; Songstad, J. Acta Chem. Sc<strong>and</strong>.,<br />

Ser. A 1982, 36, 665-671. (d) Moloy, K. G.; Petersen, J. L. J. Am. Chem.<br />

Soc. 1995, 117, 7696-7710. (e) Socol, S. M.; Jacobson, R. A.; Verkade,<br />

J. G. Inorg. Chem. 1984, 23, 88-94.<br />

(13) Cheng, J.; Wang, F.; Xu, J.; Pan, Y.; Zhang, Z. Tetrahedron Lett.<br />

2003, 44, 7095-7098.<br />

TABLE 1. Effect of Bases in the <strong>Sonogashira</strong><br />

Cross-Coupling <strong>Reaction</strong> a<br />

entry base<br />

yield b<br />

(%) entry base<br />

yield b<br />

(%)<br />

1 Et3N 83 c 6 Na2CO3 25 (88) d<br />

2 Et3N 21 7 NaHCO3 23<br />

3 pyridine NR 8 K3PO4‚3H2O 90<br />

4 morpholine 24 9 KOH NR<br />

5 K2CO3 97 10 KF 7<br />

a All reactions were run with p-bromoanisole (374 mg, 2 mmol),<br />

phenylacetylene (245 mg, 2.4 mmol), Pd(OAc)2 (11 mg, 0.05 mmol),<br />

<strong>and</strong> L1 (43 mg, 0.15 mmol) with the indicated base (6 mmol) in 5<br />

mL of THF at 65 °C for 8 h. b Isolated yield. c Et3N was employed<br />

as solvent. d 30 h.<br />

TABLE 2. Effects of Lig<strong>and</strong>s <strong>and</strong> Solvents in the<br />

<strong>Sonogashira</strong> <strong>Reaction</strong> between p-Bromoanisole <strong>and</strong><br />

Phenylacetylene a<br />

entry lig<strong>and</strong> solvent<br />

3aa yieldb (%)<br />

1 L1 THF 97<br />

2 L2 THF 91<br />

3 L3 THF 67<br />

4 L4 THF 9<br />

5 L5 THF 11<br />

6 L1 dioxane 80<br />

7 L1 toluene 77<br />

8 L1 DMF 93<br />

9 L1 CH3CN 95<br />

a All reactions were run with p-bromoanisole (374 mg, 2 mmol),<br />

phenylacetylene (245 mg, 2.4 mmol), Pd(OAc)2 (11 mg, 0.05 mmol),<br />

K2CO3 (828 mg, 6 mmol), <strong>and</strong> lig<strong>and</strong> (0.15 mmol) in 5 mL of the<br />

indicated solvent at 65 °C for 8 h. b Isolated yield.<br />

3aa in 83% yield. This is a promising result, since no<br />

copper salt was required. If we can reduce the amount<br />

of the base, or realize the reaction in a commonly used<br />

organic solvent, the reaction would be more attractive.<br />

However, only a 21% yield of product was obtained when<br />

the reaction was performed in THF (5 mL) with Et3N (6<br />

mmol) as the base (Table 1, entries 1 <strong>and</strong> 2). To improve<br />

the efficiency of the reaction in a common organic solvent<br />

other than triethylamine, we investigated the effect of<br />

the commonly used organic <strong>and</strong> inorganic bases in THF.<br />

The results are summarized in Table 1.<br />

A significant effect of bases was found in the reaction.<br />

With a strong base such as KOH, no desired product was<br />

isolated (Table 1, entry 9). Morpholine, which is commonly<br />

employed to accelerate the <strong>Sonogashira</strong> reaction,<br />

<strong>and</strong> KF failed to give good yields under this reaction<br />

condition (Table 1, entries 4 <strong>and</strong> 10). K3PO4‚3H2O showed<br />

high efficiency, giving the product in 90% yield (Table 1,<br />

entry 8). However, the best base was K2CO3, which<br />

provided a 97% yield of the desired product (Table 1,<br />

entry 5).<br />

We then turned our attention to lig<strong>and</strong> <strong>and</strong> solvent<br />

effects. The results are summarized in Table 2.<br />

Both L1 <strong>and</strong> L2 are highly effective lig<strong>and</strong>s in this<br />

reaction (Table 2, entries 1 <strong>and</strong> 2), while other lig<strong>and</strong>s<br />

J. Org. Chem, Vol. 69, No. 16, 2004 5429

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!