29.01.2013 Views

Stanford PNT hollberg Nov07 b - Stanford Center for Position ...

Stanford PNT hollberg Nov07 b - Stanford Center for Position ...

Stanford PNT hollberg Nov07 b - Stanford Center for Position ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sundial<br />

Atoms and Lasers <strong>for</strong> Precision Timing and <strong>Position</strong><br />

Leo Hollberg<br />

National Institute of Standards and Technology (NIST) , Boulder CO<br />

Atomic<br />

Astronomical<br />

Pendulum<br />

Harrison


Optical Frequency Measurements Group<br />

NIST, Boulder<br />

Optical Clocks<br />

Chris Oates<br />

Cold Ca<br />

Yann Le Coq → (SYRTE, Paris)<br />

Jason Stalnaker → (Oberlin)<br />

Guido Wilpers (Germany/NPL-UK)<br />

Anne Curtis (CU → NPL-UK)<br />

Kristin Beck (Rochester, SURF)<br />

Cold Yb<br />

Chad Hoyt (→ Bethel College)<br />

Zeb Barber (CU)<br />

Valeriey Yudin (Russia)<br />

Aleksei Taichanachev (Russia)<br />

Nathan Lemke (CU)<br />

Nicola Poli (LENS, Italy)<br />

Chip Scale Atomic Devices<br />

clocks, magnetometers …<br />

John Kitching<br />

Svenja Knappe (Germany)<br />

Peter Schwindt (Sandia)<br />

Vishal Shah → (Princeton)<br />

Vladi Gerginov (Bulgaria)<br />

Ying-Ju Wang (Taiwan)<br />

Clark Griffith<br />

Andy Geraci<br />

Hugh Robinson<br />

Liz Donley<br />

Eleanor Hodby (England)<br />

Alan Brannon (CU)<br />

Brad Lindseth (CU)<br />

Matt Eardley (CU)<br />

Susan Schima<br />

Lucas Willis (LSU, SURF)<br />

Nicolas VanMeter (SURF)<br />

•$$ NIST, DARPA-MTO, ONR-CU-MURI, NASA, LANL<br />

fs Frequency Combs<br />

Scott Diddams<br />

Tara Fortier (LANL)<br />

Jason Stalnaker → (Oberlin)<br />

Qudsia Quraishi (CU)<br />

Stephanie Meyer (C)U)<br />

Albrecht Bartels → (Konstance)<br />

L-S Ma, Z. Bi, (ECNU-BIPM)<br />

Y. Kobayashi (AIST Japan)<br />

Vela Mbele (South Africa)<br />

Matt Kirchner (CU)<br />

Andy Weiner* (Purdue)<br />

Danielle Braje<br />

Optical Length Metrology<br />

Richard Fox<br />

NIST Opto-Electronics<br />

Nate Newbury, Bill Swan ...


Accuracy of clocks through history<br />

Verge & Foliot Balance<br />

Year (AD)<br />

Primary Caesium Clocks<br />

Early Caesium Clocks<br />

Quartz Crystal<br />

Shortt<br />

Reifler<br />

Free Pendulum<br />

Harrison’s Chronometer<br />

Temperature Compensation<br />

Barometric Compensation<br />

Huygens Pendulum<br />

Chinese Hydro-mechanical<br />

Graham’s-Escapement<br />

Cross Beat Escapement<br />

1000 1200 1400 1600 1800 2000<br />

Future<br />

Fractional Error<br />

1ps / d<br />

1ns / d<br />

1 µs / d<br />

1ms / d<br />

1s / d<br />

1000 s / d<br />

Δt/t<br />

10 -15<br />

10 -9<br />

10 -3


Highest Accuracy Atomic Clocks


Current Microwave-Based Standards and Distribution<br />

Hydrogen<br />

Masers<br />

and<br />

Cesium<br />

Clocks<br />

NIST-F1<br />

NIST<br />

Measurement<br />

System<br />

Δf/f ~ 1x10 -15<br />

<strong>for</strong> standards<br />

and distribution<br />

Rb and/or Cs<br />

GPS<br />

Communications<br />

satellites<br />

Radio<br />

broadcasts<br />

Approaching the limit <strong>for</strong> standards and distribution systems.<br />

T. Parker et al.


Examples of Atomic Clocks <strong>for</strong> the Future Today ?<br />

• Optical Atomic clocks – use lasers rather than<br />

microwaves to probe atoms<br />

• CSAC (Chip Scale Atomic Clocks) <strong>for</strong> hand held portable<br />

systems<br />

Microwave Atomic frequency Standard<br />

Cs<br />

Microwave<br />

clock transition<br />

Laser cooling<br />

and detection<br />

852 nm<br />

9,192,163,707 Hz<br />

Laser Cooling<br />

and detection<br />

(Blue or UV)<br />

Optical Atomic frequency Standard<br />

Optical ‘Clock<br />

transition 10 15 Hz


Relative position, dimensional metrology, surveying instruments rely<br />

on the fixed speed of light c and frequency references<br />

discharge lamps, lasers and purely classical optics<br />

Michelson Interferometer,<br />

BIPM, Paris, circa 1910 ?<br />

HeNe 633 nm<br />

Frequency Lock<br />

electronics<br />

I 2<br />

Lunar ranging w/<br />

laser pulses<br />

" =<br />

c<br />

n!


NIST F1, Cs atomic fountain clock<br />

Primary frequency Std. of U.S.<br />

S. Jefferts, L. Donley, T. Heavner, T. Parker


Feedback System<br />

Locks LO to<br />

atomic resonance<br />

High-Q resonator<br />

Quartz<br />

Fabry Perot cavity<br />

Local Oscillator<br />

Generic Atomic Clock<br />

Microwave Synthesizer<br />

Laser<br />

Δν<br />

Atoms<br />

υ<br />

Counter<br />

Detector<br />

Ca<br />

456 986 240 494 158


Advantages of Optical Clocks Quantum Projection Noise<br />

Fractional Frequency instability ~<br />

1 P<br />

Cooling/<br />

detection<br />

transition<br />

S<br />

f<br />

3 P or D<br />

Clock<br />

transition<br />

0<br />

f optical<br />

microwave<br />

! = observation time<br />

N = number of atoms<br />

10<br />

!<br />

10<br />

0 !<br />

15<br />

10<br />

5<br />

10<br />

• Large number of atoms 10 6 or more<br />

• High signal/noise<br />

• Possibility of lattices<br />

# =<br />

One atomic clock is always “perfect”<br />

Two similar clocks -- hard to detect systematic errors<br />

Different types of clocks can determine most accurate and stable<br />

y<br />

K<br />

$ "<br />

"<br />

T<br />

N<br />

cycle<br />

atoms<br />

!<br />

Candidate neutral atoms<br />

Ca, Sr, Yb, Mg, H, Ag, Hg…<br />

0<br />

Δν<br />

ν 0<br />

ν


Laser source<br />

Ca Oven<br />

Optical Atomic Clocks<br />

Cold Atom Optical Frequency Reference<br />

I(f)<br />

0<br />

f r<br />

Optical Synthesizer<br />

Divider / Counter<br />

f n = nf r<br />

f<br />

µ-wave out<br />

optical out<br />

Stable optical<br />

Cavity


σ(τ)<br />

Oscillator Stability<br />

Ca<br />

Optical<br />

Cavities<br />

1 fs<br />

Cs<br />

Ca projected<br />

H-maser<br />

Hg +<br />

projected<br />

GPS<br />

1 day 1 month<br />

0.5 Hz @<br />

500 THZ


Fractional Frequency Uncertainty<br />

1.0E-09<br />

1.0E-10<br />

1.0E-11<br />

1.0E-12<br />

1.0E-13<br />

1.0E-14<br />

1.0E-15<br />

1.0E-16<br />

1.0E-17<br />

Accuracy of Atomic Frequency Standards - History<br />

state-of-the-art Cs microwave<br />

Infrared<br />

Visible<br />

Ion<br />

Alk. Earth<br />

1.0E-18<br />

1970 1975 1980 1985 1990<br />

Year<br />

1995 2000 2005 2010 2015


1 P1 (4s4p)<br />

423 nm cooling<br />

Δν = 34 MHz<br />

1 S0 (4s 2 ) m=0<br />

Percent of Atoms Excited<br />

40<br />

30<br />

20<br />

10<br />

Cold Calcium optical atomic clock<br />

3 P1 (4s4p) m=0<br />

657 nm clock<br />

Δν = 400 Hz<br />

0<br />

0 2 4 6 8 10 12<br />

Relative 657 nm Probe Detuning (MHz)<br />

5x10 6 atoms<br />

423 nm MOT<br />

Demodulated Signal (V)<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

Ca<br />

60 seconds data acquisition 400 Hz<br />

linewidth<br />

0 1000 2000 3000 4000<br />

Relative Probe Frequency (Hz)


1 P1 (6s6p)<br />

Atom number [a.u.]<br />

Ytterbium optical atomic clock<br />

- Excellent prospects <strong>for</strong> high stability and small absolute uncertainty<br />

398.9 nm,<br />

28 MHz<br />

3 P0 : 578.42 nm,<br />

~15 mHz<br />

Clock Transition<br />

full width ~ 4 Hz (Q >10 14 )<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Frequency offset [Hz]<br />

Lattice<br />

759 nm<br />

3 P0,1,2 (6s6p)<br />

3 P1 : 555.8<br />

nm, 182 kHz<br />

Chad Hoyt<br />

Zeb Barber<br />

Chris Oates<br />

Candidates:<br />

Sr, Yb, Ca, Hg


Allan deviation σ y (τ)<br />

1E-14<br />

1E-15<br />

1E-16<br />

Stability of two optical freq. ref: Yb and Ca<br />

1 10 100<br />

Averaging time (s)<br />

1<br />

0.1<br />

Frequency precision [Hz]


Feedback System<br />

Locks LO to<br />

atomic resonance<br />

High-Q resonator<br />

Quartz<br />

Fabry Perot cavity<br />

Local Oscillator<br />

Generic Atomic Clock<br />

Microwave Synthesizer<br />

Laser<br />

Δν<br />

Atoms<br />

υ<br />

Counter<br />

Detector<br />

Ca<br />

456 986 240 494 158


Enthusiasm <strong>for</strong> Optical Atomic Clocks and fs Combs<br />

Tara<br />

Fortier<br />

Scott<br />

Diddams<br />

Nobel Prize<br />

2005<br />

Jan Hall<br />

Ted Hänsch


Count Optical Frequencies with Optical Frequency Combs<br />

Ultra-short and repetitive pulses of light<br />

20 fs<br />

time<br />

Ultrashort optical pulse, plus nonlinear fiber → Broad Spectum<br />

Repetitive pulse train → Frequency Comb → “ruler <strong>for</strong> frequency/time”<br />

Power<br />

Wavelength<br />

•Initial ef<strong>for</strong>ts/ideas: J. Eckstein, A. Ferguson & T. Hänsch (1978), V. P. Chebotayev (1988)


Self-Referenced Optical Frequency Sythesizer<br />

I(f)<br />

0<br />

Microwave out<br />

Jones, et al. Science 288, 635 (2000)<br />

Ideas, existed many places, Telle &<br />

Keller …, Udem, Hänsch …<br />

f n = n f rep + f o<br />

f o<br />

f rep<br />

x2 f 2n = 2nf rep + f o<br />

Pump<br />

f o<br />

532 nm<br />

convex<br />

Optical Freq. Ref<br />

f<br />

Ti:Sapphire<br />

Gain


The frequency of a mode is simply F N = N * f rep – f 0<br />

Where N is and integer ~ 10 6<br />

0<br />

f r =1/ τ r.t.<br />

f 0<br />

f rep ~ 1000 MHz<br />

0<br />

Frequency


500 THz<br />

Optical Oscillator<br />

CW Laser Output<br />

500 THz<br />

fs Pulse Train<br />

(Clock Output)<br />

Diddams, et al.<br />

~2 fs<br />

1 ns<br />

~5 x 10 5 Magnification<br />

time


Hg +<br />

~1 fs per<br />

tooth<br />

Mechanical Analogy of the Optical Clock<br />

Femtosecond Laser Comb<br />

1,000,000:1 Reduction Gear<br />

(not to scale)<br />

Microwave Output<br />

~1 ns per tooth<br />

Counter &<br />

Display


Applications of Optical Frequency Ref. and Combs<br />

•Advanced communication systems (security, autonomous synchronization)<br />

•Advanced Navigation (position determination and control)<br />

•Precise timing (moving into the fs range)<br />

•Tests of fundamental physics (special and general relativity, time variation of<br />

fundamental constants)<br />

•Sensors (strain, gravity, length metrology ……)<br />

•Ultrahigh speed data, multi-channel parallel broadcast, or receivers,<br />

coherent communications<br />

•Low noise microwaves, and electronic timing signals<br />

•Scientific applications ( precision spectroscopy, chemistry, trace gas<br />

detection… )<br />

•Quantum in<strong>for</strong>mation ( Ivan Deutsch …)<br />

•Fourier synthesized arbitrary wave<strong>for</strong>m generation


Optical<br />

reference<br />

f opt<br />

M3<br />

I(f)<br />

PUMP<br />

fs frequency combs as Optical Frequency Divider<br />

Generation of microwaves with low phase noise<br />

0<br />

f µ-wave<br />

M1 M2<br />

f<br />

Optical outputs<br />

µ-wave out<br />

OC<br />

20 fs<br />

I(f)<br />

f µ-wave = f opt /N<br />

time<br />

1 ns<br />

Microwave pulses<br />

30<br />

ps<br />

Microwave comb w/<br />

1 GHz mode spacing<br />

Microwave frequency<br />

f


L(f) dBc/Hz<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

-140<br />

-160<br />

10 0<br />

Low phase-noise microwaves, 10 GHz<br />

atoms<br />

Cavity kT<br />

State of the art sapphire oscillator<br />

10 1<br />

10 2<br />

Optical Frequency<br />

Divider<br />

10 3<br />

Frequency (Hz)<br />

Opt. Divider Data from Hollberg et al. proceeds IEEE MWP meeting Oct. 04<br />

J. McFerran et al. Elect. Letter 2005<br />

Hg+ optical cavity<br />

State of the art microwave synthesizer<br />

10 4<br />

Photo detected shot-noise<br />

10 5<br />

10 6


Source Lab<br />

Laser Source<br />

563 nm<br />

linewidth ∆n


I(f)<br />

f rep<br />

GPS<br />

Optical Frequencies Measured via GPS<br />

optical<br />

x2<br />

Self-Referencing<br />

f unknown<br />

Fox et al. Applied Optics, 05,<br />

Even commercial systems now<br />

available – CLEO/QELS trade show<br />

f<br />

R. Fox, S. Diddams NIST,<br />

also similar work at NPL …<br />

Red, 633nm I 2 – Stabilized HeNe laser


Next generation Grace<br />

laser ranging ?<br />

Advanced cold atom clocks or<br />

Laser ranging/imaging in/from Space<br />

T2L2<br />

ESA<br />

PARCS<br />

NASA<br />

HYPER, …<br />

ACES<br />

ESA


NIST Time and Frequency<br />

John Kitching<br />

Svenja Knappe<br />

Vladislav Gerginov<br />

Vishal Shah<br />

CSAC<br />

Susan Schima<br />

Peter Schwindt<br />

Clark Griffith<br />

Brad Lindseth<br />

CSAM<br />

Ying-Ju Wang<br />

Matt Eardley<br />

Elizabeth Donley<br />

Eleanor Hodby<br />

Hugh G. Robinson<br />

NIST Electromagnetics<br />

John Moreland<br />

Li-Anne Liew<br />

Gyro<br />

CSADs Team<br />

Dir.<br />

Coup.<br />

MEMS<br />

University of Colorado<br />

Z. Popović<br />

A. Brannon LO<br />

J. Breitbarth<br />

J. Maclennan Wall coatings<br />

Y. Li


Chip Scale Atomic Devices<br />

CSAC (clock), CSAM (magnetometer), CSAG (gyro)<br />

Optical excitation, atoms, MEMS, VCSEL lasers, low power<br />

Battery powered devices, connect to application requirements


Cell Fabrication: Anodic Bonding<br />

• Pre<strong>for</strong>m created by KOH etching or<br />

DRIE of Si<br />

• Pyrex bonded on one side with<br />

anodic bonding<br />

• Cell pre<strong>for</strong>m filled with Cs<br />

– BaN 6 + CsCl → BaCl + Cs + 3N 2<br />

@ 150 ºC<br />

• Diced cells made at NIST using the<br />

anodic bonding technique<br />

– Interior: 1 mm x ∅ 0.9 mm<br />

– Exterior: 1.33 mm x (1.45 mm) 2<br />

L. Liew, et al., Appl. Phys. Lett., 84, 2694, 2004.<br />

1 mm<br />

1 mm<br />

Pyrex 7740 (125 µm)<br />

Silicon (375 µm)<br />

Pyrex 7740 (200 µm)


4.2 mm<br />

1.5 mm<br />

NIST Chip-Scale Atomic Clock: 2004<br />

1 mm<br />

S. Knappe, et al., Appl. Phys. Lett. 85, 1460 (2004).<br />

Volume:<br />

9.5 mm 3<br />

Cell volume:<br />

0.81 mm 3<br />

Cell temp:<br />

85 ºC<br />

Heating<br />

power:<br />

75 mW<br />

Stability:<br />

σ y (1 sec.) =<br />

2.5×10 -10


Short-term stability: 4×10 -11 @ 1 sec<br />

S. Knappe, et al., Opt. Express 13, 1249-<br />

1253 (2005).<br />

Relative Frequency<br />

(10 -9<br />

)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

CSAC Frequency Stability<br />

1 mm<br />

20000 30000 40000 50000<br />

Time (sec)<br />

Longer-term stability: 1×10 -11 @ 1 hr<br />

S. Knappe, et al. Opt. Lett. 30, 2351-2353<br />

(2005).<br />

Allen Deviation, !f/f<br />

10 -9<br />

10 -10<br />

10 -11<br />

10 -12<br />

Drift<br />

Cs CSAC: -2 x 10 -8 /day<br />

87 Rb Cell:


(A Very Rough) Oscillator Comparison<br />

Adapted from figure by R. Lutwak, Symmetricom<br />

Quartz Crystal<br />

Oscillators


Applications of Microfabricated Atomic Clocks<br />

• Size (1 cm 3 )<br />

• Power (30 mW)<br />

Integration in portable,<br />

battery-operated devices<br />

• Precise timing: higher-per<strong>for</strong>mance, more reliable operation<br />

Key application areas:<br />

• Global positioning and navigation (GPS)<br />

• Faster acquisition time<br />

• More precise altitude determination<br />

• Direct P(Y)/M code acquisition → anti-jam capability<br />

• <strong>Position</strong> solution with < 4 satellites visible<br />

• Wireless communications, network synchronization<br />

• Fewer dropped cell phone calls<br />

• Avoidance of data accumulation<br />

• Data logging, seismology, remote sensors…<br />

• Others we don’t even know about


?<br />

GPS <strong>Position</strong>ing with < 4<br />

τ 3<br />

τ 4<br />

(τ 1 , τ 2 , τ 3 , τ 4 )<br />

(x, y, z, t)<br />

Satellites<br />

τ 2<br />

GPS<br />

Receiver<br />

Atomic<br />

clock<br />

τ 1


Commercialization of Chip-Scale Atomic Clocks<br />

Symmetricom/Draper/Sandia<br />

(courtesy R. Lutwak)<br />

RF output<br />

< 10 mW<br />

power requirement<br />

Complete functioning CSACs<br />

10 cm 3<br />

108 mW<br />

5×10 -11<br />

@ 100 s<br />

Honeywell<br />

(courtesy D. Youngner)<br />

solder<br />

titanium getter<br />

vcsel<br />

optical path<br />

optics<br />

vacuum<br />

Trans -Impedance Amp<br />

gold reflector<br />

rubidium +AR/N2<br />

solder<br />

Photo -detector<br />

top top cap cap<br />

wafer wafer<br />

cavity cavity cavity<br />

wafer wafer wafer<br />

bench bench bench bench wafer wafer wafer wafer<br />

1.7 cm 3<br />

57 mW<br />

4×10 -12<br />

@ 1 hr


Magnetometry with Chip-Scale Devices<br />

Atom Energy<br />

Hyperfine<br />

splitting<br />

-2 -1 0 +1 +2<br />

mFj ћω HF<br />

Zeeman splitting<br />

ћω L = ½µ ΒΒ


M X Magnetometer<br />

• Improved sensitivity; no GHz oscillator<br />

Energy<br />

D1<br />

Optical<br />

Microwave<br />

Vapor<br />

cell<br />

λ/4<br />

Filter<br />

A. Bloom, E. Alexandrov, A. Weis, and many others<br />

ν hf<br />

Photodetector<br />

B<br />

Semiconductor<br />

Laser<br />

ΔB<br />

RF<br />

Coils


Heater Currents<br />

Laser Current<br />

Local Oscillator<br />

Driving RF Coils<br />

Loop<br />

Filter<br />

Data<br />

Acquisition<br />

CSAM Operation<br />

Photo-<br />

Diode<br />

Signal<br />

Lock-in<br />

Amplifier<br />

2 kHz Sidebands<br />

Width = 1.7 kHz<br />

or 243 nT


M X CSAM Per<strong>for</strong>mance<br />

Sensitivity Frequency Response<br />

F 3dB = 1 kHz


Magnetocardiography with a CSAM<br />

• At U. Pittsburgh with Dr. V. Shusterman<br />

• Mouse anaesthetized, placed near CSAM<br />

• ECG and MCG signals recorded<br />

(a) (b)<br />

4.5 mm<br />

1<br />

2<br />

1.7 mm<br />

6<br />

5<br />

4<br />

3


CSAM Sensitivity Comparison<br />

Adapted from R. L. Fagaly,<br />

Rev. Sci. Instrum., 77 (2006).<br />

SQUID<br />

Susceptometry<br />

Geophysical<br />

Magnetocardiography Transient<br />

Electromagnetics<br />

Magnetic Anomaly<br />

Detection<br />

Non-Destructive Test and Evaluation<br />

2004<br />

Magnetoencephalography<br />

87 Rb, 1 mm 3 atom shot noise<br />

2006<br />

2005<br />

High Tc SQUID<br />

Low Tc SQUID


Nuclear Spin Gyroscopes<br />

• Much work in 1970s and 1980s<br />

– Fraser (1963), Bayley, Greenwood, Simpson (1973)<br />

– Commercial development: Litton, Singer-Kearfott, TI<br />

Alkali<br />

atom<br />

Spin<br />

Exchange<br />

129 Xe<br />

S (V)<br />

Noble gas<br />

atom<br />

Lock In signal<br />

Fit includes linear drift<br />

f=y0+c*x+a*exp(-x/d)*cos(2*3.14159265359*x/b)<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

-0.7<br />

1e-1<br />

1e-2<br />

1e-3<br />

1e-4<br />

T 2 ~ 6 s<br />

-0.8<br />

0 5 10 15 20<br />

t (s)<br />

FFT of Lock-In Signal<br />

! = 100 us, S=200 mV<br />

Ω R<br />

M ng<br />

1<br />

B 0<br />

M Al<br />

N B0N<br />

R B !<br />

! + " 0<br />

ΔB 1 ΔB 2<br />

100 µs<br />

58 ms<br />

Time<br />

PD


OPTICS + atoms/molecules new capabilities<br />

• Cold atoms, stable lasers and femotosecond optical frequency combs<br />

having tremendous impact on fundamental science, precision measurements,<br />

and metrology<br />

• Optical/Laser era in frequency standards and precision timing, spectroscopy …<br />

• Already providing lowest phase-noise, timing jitter<br />

– fs jitter soon common place<br />

– Lowest phase noise microwave signals<br />

• Some applications of stable sources and combs<br />

– new capabilities <strong>for</strong> science fundamental physics<br />

– Ultralow timing jitter, ultrafast sampling A/D, synchronization<br />

– Frequency standard precision spanning the spectrum 1 GHz to 500 THz +<br />

– Stabilized fs optical frequency combs enabling several new directions in<br />

spectroscopy, Fourier synthesis<br />

• Chip Scale Atomic Devices – practical route to bring atomic precision to<br />

field devices<br />

– Combination of MEMS, diode lasers, atomic physics<br />

– Clocks, Magnetometers, Gyros ..

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!