24.05.2018 Views

differentiation

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

316 DIFFERENTIAL CALCULUS<br />

[<br />

(a) x = 4(θ − sin θ),<br />

hence dx<br />

(a) − 1 ]<br />

1<br />

cot θ (b) −<br />

= 4 − 4 cos θ = 4(1 − cos θ)<br />

4 16 cosec3 θ<br />

dθ dy<br />

y = 4(1 − cos θ), hence dy<br />

4. Evaluate at θ = π radians for the<br />

dθ = 4 sin θ<br />

dx 6<br />

hyperbola whose parametric equations are<br />

x = 3 sec θ, y = 6 tan θ. [4]<br />

From equation (1),<br />

dy<br />

5. The parametric equations for a rectangular<br />

dy<br />

dx = dθ 4 sin θ<br />

=<br />

dx 4(1 − cos θ) = sin θ<br />

hyperbola are x = 2t, y = 2 dy<br />

. Evaluate<br />

t dx<br />

(1 − cos θ) when t = 0.40<br />

[−6.25]<br />

dθ<br />

The equation of a tangent drawn to a curve at<br />

(b) From equation (2),<br />

point (x<br />

( ) ( )<br />

1 , y 1 ) is given by:<br />

d dy d sin θ<br />

d 2 y<br />

dx 2 = dθ dx dθ 1 − cos θ<br />

y − y 1 = dy 1<br />

(x − x 1 )<br />

=<br />

dx 1<br />

dx 4(1 − cos θ)<br />

Use this in Problems 6 and 7.<br />

dθ<br />

6. Determine the equation of the tangent drawn<br />

(1 − cos θ)(cos θ) − (sin θ)(sin θ)<br />

(1 − cos θ)<br />

=<br />

2<br />

to the ellipse x = 3 cos θ, y = 2 sin θ at θ = π 6 .<br />

[y =−1.155x + 4]<br />

4(1 − cos θ)<br />

= cos θ − cos2 θ − sin 2 θ<br />

7. Determine the equation of the tangent drawn<br />

4(1 − cos θ) 3<br />

to the rectangular hyperbola x = 5t, y = 5<br />

= cos θ − ( cos 2 θ + sin 2 θ )<br />

t at<br />

t = 2. [<br />

4(1 − cos θ) 3<br />

y =− 1 ]<br />

4 x + 5<br />

= cos θ − 1<br />

4(1 − cos θ) 3<br />

−(1 − cos θ)<br />

=<br />

4(1 − cos θ) 3 = −1 29.4 Further worked problems on<br />

4(1 − cos θ) 2<br />

<strong>differentiation</strong> of parametric<br />

equations<br />

Now try the following exercise.<br />

Problem 5. The equation of the normal drawn<br />

Exercise 128 Further problems on <strong>differentiation</strong><br />

of parametric equations<br />

to a curve at point (x 1 , y 1 ) is given by:<br />

1. Given x = 3t − 1 and y = t(t − 1), [ determine ]<br />

y − y 1 =− 1 (x − x<br />

dy<br />

1<br />

dy 1 )<br />

1<br />

dx in terms of t. 3 (2t − 1) dx 1<br />

2. A parabola has parametric equations:<br />

Determine the equation of the normal drawn to<br />

x = t 2 , y = 2t. Evaluate dy<br />

dx when t = 0.5 the astroid x = 2 cos 3 θ, y = 2 sin 3 θ at the point<br />

θ = π<br />

[2] 4<br />

3. The parametric equations for an ellipse<br />

are x = 4 cos θ, y = sin θ. Determine (a) dy x = 2 cos 3 θ, hence dx<br />

dx<br />

dθ =−6 cos2 θ sin θ<br />

(b) d2 y<br />

dx 2 y = 2 sin 3 θ, hence dy<br />

dθ = 6 sin2 θ cos θ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!