24.05.2018 Views

differentiation

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

322 DIFFERENTIAL CALCULUS<br />

x 2 + y 2 = 25 is the equation of a circle, centre at<br />

the origin and radius 5, as shown in Fig. 30.1. At<br />

x = 4, the two gradients are shown.<br />

x 2 + y 2 = 25<br />

y<br />

5<br />

3<br />

Gradient<br />

= − 4 3<br />

−5 0 4 5 x<br />

Rearranging gives:<br />

8x + 2y 3 = (10y − 6xy 2 ) dy<br />

dx<br />

dy<br />

and<br />

dx =<br />

(b) When x = 1 and y = 2,<br />

8x + 2y3<br />

10y − 6xy 2 =<br />

4x + y3<br />

y(5 − 3xy)<br />

dy 4(1) + (2)3<br />

=<br />

dx 2[5 − (3)(1)(2)] = 12<br />

−2 = −6<br />

−3<br />

−5<br />

Gradient<br />

= 4 3<br />

Problem 9. Find the gradients of the tangents<br />

drawn to the circle x 2 + y 2 − 2x − 2y = 3 at<br />

x = 2.<br />

Figure 30.1<br />

Above, x 2 + y 2 = 25 was differentiated implicitly;<br />

actually, the equation could be transposed to<br />

y = √ (25 − x 2 ) and differentiated using the function<br />

of a function rule. This gives<br />

dy<br />

dx = 1 2 (25 − x2 ) −1<br />

x<br />

2 (−2x) =−√ (25 − x 2 )<br />

and when x = 4,<br />

obtained above.<br />

dy<br />

dx =− 4<br />

√<br />

(25 − 4 2 ) =±4 3<br />

Problem 8.<br />

(a) Find dy in terms of x and y given<br />

dx<br />

4x 2 + 2xy 3 − 5y 2 = 0.<br />

(b) Evaluate dy when x = 1 and y = 2.<br />

dx<br />

(a) Differentiating each term in turn with respect to<br />

x gives:<br />

d<br />

dx (4x2 ) + d dx (2xy3 ) − d dx (5y2 ) = d dx (0)<br />

[ (<br />

i.e. 8x + (2x) 3y 2 dy ) ]<br />

+ (y 3 )(2)<br />

dx<br />

− 10y dy<br />

dx = 0<br />

i.e. 8x + 6xy 2 dy<br />

dx + 2y3 − 10y dy<br />

dx = 0<br />

as<br />

The gradient of the tangent is given by dy<br />

dx<br />

Differentiating each term in turn with respect to x<br />

gives:<br />

d<br />

dx (x2 ) + d dx (y2 ) − d dx (2x) − d dx (2y) = d dx (3)<br />

i.e.<br />

2x + 2y dy<br />

dx − 2 − 2 dy<br />

dx = 0<br />

Hence (2y − 2) dy<br />

dx = 2 − 2x,<br />

dy<br />

from which<br />

dx = 2 − 2x<br />

2y − 2 = 1 − x<br />

y − 1<br />

The value of y when x = 2 is determined from the<br />

original equation<br />

Hence (2) 2 + y 2 − 2(2) − 2y = 3<br />

i.e. 4 + y 2 − 4 − 2y = 3<br />

or y 2 − 2y − 3 = 0<br />

Factorising gives: (y + 1)(y − 3) = 0, from which<br />

y =−1ory = 3<br />

When x = 2 and y =−1,<br />

dy<br />

dx = 1 − x<br />

y − 1 = 1 − 2<br />

−1 − 1 = −1<br />

−2 = 1 2<br />

When x = 2 and y = 3,<br />

dy<br />

dx = 1 − 2<br />

3 − 1 = −1<br />

2<br />

Hence the gradients of the tangents are ± 1 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!