23.01.2015 Views

sodininkystė ir daržininkystė 25(4)

sodininkystė ir daržininkystė 25(4)

sodininkystė ir daržininkystė 25(4)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR LIETUVOS<br />

ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI<br />

SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF HORTICULTURE<br />

AND LITHUANIAN UNIVERSITY OF AGRICULTURE<br />

SODININKYSTË IR DARÞININKYSTË<br />

<strong>25</strong>(4)<br />

Eina nuo 1983 m.<br />

Published since 1983<br />

Babtai – 2006


UDK 634/635 (06)<br />

Redaktoriø kolegija<br />

Editorial Board<br />

Doc. dr. Èeslovas BOBINAS – p<strong>ir</strong>mininkas (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (LSDI, biomedicinos mokslai, agronomija),<br />

dr. Edite KAUFMANE (Latvija, Dobelës sodo augalø selekcijos stotis, biomedicinos mokslai,<br />

biologija), dr. Aleksandras KMITAS (LÞÛU, biomedicinos mokslai, agronomija),<br />

dr. Laimutis RAUDONIS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Vidmantas STANYS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Andrzej SADOWSKI (Varðuvos ÞÛA, biomedicinos mokslai, agronomija),<br />

dr. Audrius SASNAUSKAS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIÈIUS (LÞÛU, biomedicinos mokslai, agronomija).<br />

Redakcinë mokslinë taryba<br />

Editorial Scientific Council<br />

Doc. dr. Èeslovas BOBINAS – p<strong>ir</strong>mininkas (Lietuva),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (Lietuva), dr. Kalju KASK (Estija),<br />

dr. Edite KAUFMANE (Latvija), prof. habil. dr. Zdisùaw KAWECKI (Lenkija),<br />

prof. habil.dr. Albinas LUGAUSKAS (Lietuva), habil. dr. Maria LEJA (Lenkija),<br />

prof. habil. dr. Lech MICHALCZUK (Lenkija), prof. habil. dr. Andrzej SADOWSKI (Lenkija),<br />

dr. Audrius SASNAUSKAS (Lietuva), prof. dr. Ala SILAJEVA (Ukraina),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIÈIUS (Lietuva),<br />

prof. habil. dr. Vidmantas STANYS (Lietuva), prof. dr. Viktor TRAJKOVSKI (Ðvedija).<br />

Redakcijos adresas:<br />

Address of the Editorial Office:<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas<br />

LT-54333 Babtai, Kauno r.<br />

Tel. (8~37) 555 210<br />

Faksas: (8~37) 555 176<br />

El. paðtas institutas@lsdi.lt<br />

Lithuanian Institute of Horticulture<br />

LT-54333 Babtai, Kaunas district, Lithuania<br />

Phone: +370-37-555-210<br />

Telefax: +370-37-555-176<br />

E-mail: institutas@lsdi.lt<br />

Leidinio adresas internete www.lsdi.lt<br />

Leidinys cituojamas CAB Internacional <strong>ir</strong> VINITI duomenø bazëse<br />

© Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, 2006<br />

© Lietuvos þemës ûkio universitetas, 2006<br />

2


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

INTRODUKUOTØ OBELØ VEISLIØ BIOLOGINIØ<br />

SAVYBIØ TYRIMAS<br />

Audrius SASNAUSKAS, Dalia GELVONAUSKIENË,<br />

Bronislovas GELVONAUSKIS, Jûratë Bronë ÐIKÐNIANIENË,<br />

Gintarë ÐABAJEVIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>tos deðimties<br />

introdukuotø veisliø obelø (Malus domestica Borkh.) biologinës savybës. Ávertinta<br />

vaismedþiø su M.26 poskiepiu (4 x 2,5 m) fenologija, þiedø <strong>ir</strong> ûgliø paðalimas, vaismedþiø<br />

augumas, atsparumas rauplëms (Venturia inaequalis (Cke) Wint.), filostiktozei<br />

(Phyllosticta mali Pr. at Del.), vëþiui (Nectria galligena Bres.) bei fotosintezës<br />

pigmentø kiekis.<br />

Nustatyta, kad anksèiausiai þydëti baigia ‘Bolotovskoje’, vëliausiai – ‘Antej’,<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ vaismedþiai. Nuo pavasario<br />

ðalnø maþiausiai nukenèia ‘Katja’ vaismedþiø þiedai. Iðtvermingi þiemà yra ‘Pamiatj<br />

Siubarovoj’ obelø ûgliai. Maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

Rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’ <strong>ir</strong> ‘Sveþestj’ obelys. Filostiktozei atsparios<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ bei ‘Verbnoje’, vëþiui – ‘Sveþestj’<br />

obelys. Didþiausias fotosintezës pigmentø kiekis nustatytas veisliø ‘Sveþestj’ <strong>ir</strong> ‘Antej’<br />

lapuose, o maþiausias – ‘Kurnakovskoje’.<br />

Reikðminiai þodþiai: augumas, atsparumas ligoms, fenologija, fotosintezës pigmentai,<br />

obelys, veislës.<br />

Ávadas. Obelys (Malus domestica Borkh.) yra pagrindinë pasaulio verslinës sodininkystës<br />

kultûra. Lietuvoje jos uþima 76 proc. visø auginamø vaismedþiø ploto<br />

(Raudonis & Valiuðkaitë, 2003). Pastaraisiais metais verslinë sodininkystë intensyvinama<br />

sparèiais tempais (Sansavini <strong>ir</strong> kt., 2005; Cåäîâ, 2005; Ðabajevienë <strong>ir</strong> kt.,<br />

2006). Siekiama auginti veisles, kuriø vaismedþiai iðsisk<strong>ir</strong>tø derlingumu, iðtvermingumu<br />

þiemà, iðaugintø ekologiðkus, aukðtos kokybës, transportabilius, geros iðvaizdos,<br />

skanius <strong>ir</strong> paklausius rinkoje vaisius (Uselis, 2005).<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute iðt<strong>ir</strong>ta daug áva<strong>ir</strong>ios kilmës obelø<br />

veisliø (Bandaravicius <strong>ir</strong> kt., 2000; Bandaravicius <strong>ir</strong> kt., 2001; Sasnauskas <strong>ir</strong> kt.,<br />

2001; Sasnauskas <strong>ir</strong> kt., 2003; Sasnauskas <strong>ir</strong> kt., 2005; Sasnauskas <strong>ir</strong> kt., 2006).<br />

3


Obelø veislës t<strong>ir</strong>iamos kompleksiðkai, parenkami optimalûs poskiepio <strong>ir</strong> áskiepio deriniai,<br />

nustatomos geriausios sodø konstrukcijos (Uselis, 2001; Uselis, 2005).<br />

Darbo tikslas – iðt<strong>ir</strong>ti introdukuotø obelø veisliø su M.26 poskiepiu biologines<br />

savybes.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2006 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinta deðimties obelø veisliø dvimeèiai sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. Obelø veislës ‘Bolotovskoje’, ‘Kurnakovskoje’, ‘Jubiliar’,<br />

‘Sveþestj’ (Rusija), ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ (Baltarusija),<br />

‘Katja’ (Ðvedija) t<strong>ir</strong>tos kartu su ‘Antej’ (Baltarusija) bei ‘Delikates’ (Lenkija),<br />

áraðytomis á Nacionaliná augalø veisliø sàraðà.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet vaismedþiai purkðti nuo ligø<br />

fungicidais (5–6 kartus), o nuo kenkëjø – insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimo metais meteorologinës sàlygos buvo palankios<br />

arba vidutiniðkai palankios obelims þiemoti <strong>ir</strong> augti bei grybinëms ligoms vystytis <strong>ir</strong><br />

plisti. 2003 m., palyginti su daugiameèiais duomenimis, krituliø liepos mënesá iðkrito<br />

42,9 mm daugiau nei áprasta. 2004 m. uþregistruotos ankstyvos pavasario ðalnos<br />

(nuo -0,3°C iki -4,9°C), o kovo mënesio III deðimtadienio oro temperatûra buvo 3,1<br />

°C aukðtesnë uþ daugiametæ vidutinæ. 2005 m. geguþës mënesá iðkrito 22,8 mm krituliø<br />

daugiau nei daugiametis vidurkis.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatyta vaismedþiø þydëjimo tarpsniai<br />

(þydëjimo pradþia, masinio þydëjimo pradþia <strong>ir</strong> pabaiga, þydëjimo pabaiga); þiedø <strong>ir</strong><br />

ûgliø paðalimas (balais, 1–9); vaismedþiø augumas (medþio aukðtis (m), vainiko skersmuo<br />

(m), kamieno skersmuo 50 cm aukðtyje (cm), vainiko projekcijos plotas (m 2 ));<br />

atsparumas rauplëms, filostiktozei, vëþiui (balais, 0–5) bei fotosintezës pigmentai:<br />

chlorofilø <strong>ir</strong> karotinoidø kiekis (mg m -2 nedþiovintø lapø). Fotosintezës pigmentø<br />

(a, b chlorofilø <strong>ir</strong> karotinoidø) kiekis þalioje lapø masëje buvo nustatytas 100% acetono<br />

ekstrakte spektrofotometriniu Wettstein metodu (Beadle, 1987) spektrofotometru<br />

„Genesys 6“ (ThermoSpectronic, JAV). Tyrimo duomenys biometriðkai ávertinti<br />

dispersinës analizës metodais (Tarakanovas, Raudonius, 2003) naudojant ANOVA<br />

statistinæ programà.<br />

Rezultatai. Vegetacija. Þiediniø pumpurai sprogimo tarpsnis truko nuo 7 iki 15<br />

dienø. Tai priklausë nuo veislës <strong>ir</strong> meteorologiniø sàlygø. Anksèiausiai þiediniai pumpurai<br />

pradëjo sprogti balandþio mën. 11 d., vëliausiai – balandþio mën. <strong>25</strong> d. Obelø<br />

þiediniai pumpurai pradëjo sprogti vidutiniðkai balandþio mën. 15–20 dienomis.<br />

T<strong>ir</strong>tø veisliø vaismedþiai vegetacijos pabaigos tarpsnis truko 31 dienà. Anksèiausia<br />

vegetacijos pabaigos data – spalio mën. <strong>25</strong> d., vëliausia – lapkrièio mën. <strong>25</strong> d.<br />

Vidutinë obelø vegetacijos pabaigos data kito nuo spalio 30 d. iki lapkrièio 20 d.<br />

Þydëjimo tarpsniai. Atsiþvelgiant á veislæ, vidutinë obelø þydëjimo pradþia uþregistruota<br />

nuo geguþës mën. 13 d. iki geguþës mën. 16 dienos (1 lentelë).<br />

4


Veislë<br />

Cultivars<br />

1 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø þydëjimo tarpsniai<br />

Table 1. Dates of apple cultivars blossoming<br />

Babtai, 2000–2005 m.<br />

Þydëjimo<br />

pradžia,<br />

mën., d.<br />

Beginning of<br />

blossoming (month,<br />

day)<br />

Masiško<br />

þydëjimo pradþia,<br />

mën., d.<br />

Beginning of full<br />

blossoming (month,<br />

day)<br />

Masiško<br />

þydëjimo<br />

pabaiga, mën., d.<br />

End of full<br />

blossoming (month,<br />

day)<br />

Þydëjimo<br />

pabaiga, mën., d.<br />

End of blossoming<br />

(month, day)<br />

‘Antej’ 05-16 05-19 05-22 05-26<br />

‘Bolotovskoje’ 05-15 05-18 05-21 05-23<br />

‘Delikates’ 05-16 05-19 05-23 05-<strong>25</strong><br />

‘Jubiliar’ 05-15 05-19 05-22 05-24<br />

‘Katja’ 05-14 05-19 05-22 05-24<br />

‘Kovalenkovskoje’ 05-15 05-20 05-23 05-<strong>25</strong><br />

‘Kurnakovskoje’ 05-13 05-16 05-21 05-23<br />

‘Pamiatj Siubarovoj’ 05-16 05-19 05-23 05-<strong>25</strong><br />

‘Svežestj’ 05-15 05-19 05-23 05-<strong>25</strong><br />

‘Verbnoje’ 05-16 05-19 05-23 05-<strong>25</strong><br />

Veisliø vidurkis<br />

Mean<br />

05-15 05-19 05-22 05-<strong>25</strong><br />

R 05 /LSD 05 1,83 1,37 1,09 1,94<br />

T<strong>ir</strong>tos obelø veisliø grupës vaismedþiai masiðkai pradëjo þydëti vidutiniðkai geguþës<br />

16–20 dienomis. Masiðko þydëjimo pabaiga – vidutiniðkai geguþës 21–23 diena.<br />

Vidutinis masiðko þydëjimo tarpsnis truko 5–8 dienas. Anksèiausia vidutinë þydëjimo<br />

pabaigos data – geguþës 23 d., vëliausia – geguþës 26 d. Trumpiausiai þydëjo<br />

t<strong>ir</strong>tos obelø veisliø grupës ‘Bolotovskoje’ (8 dienas), ilgiausiai – ‘Antej’, ‘Katja’,<br />

‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ (10 dienø) vaismedþiai.<br />

Þiedø <strong>ir</strong> ûgliø paðalimas. 2003 m. pavasará stipriausiai paðalo (3,5 balo) ‘Pamiatj<br />

Siubarovoj‘ veislës þiedai. Kitø veisliø þiedai paðalo maþiau (2 balai). 2004 m. pavasario<br />

ðalnos stipriai paþeidë obelø þiedus (4,5–6,6 balo). 2003 m. metø þiemà stipriausiai<br />

paðalo veislës ‘Katja’ (4,2 balo) <strong>ir</strong> ‘Delikates’ (2,4 balo) ûgliai. 2004 m. taip pat<br />

stipriausiai paðalo veislës ‘Katja’ (2,9 balo) ûgliai (2 lentelë).<br />

Vaismedþiø augumas. Aðtuntaisiais augimo metais vidutinis vaismedþiø aukðtis,<br />

atsiþvelgiant á veislæ, buvo nuo 2,93 iki 3,28 m (aukðèiausi ‘Verbnoje’, ‘Antej’ <strong>ir</strong><br />

‘Katja’, þemiausi –‘Bolotovskoje’ <strong>ir</strong> ‘Delikates’ vaismedþiai) (3 lentelë). Obelø vainikø<br />

skersmuo kito nuo 2,31 iki 2,96 m. Plaèiausi vainikai – ‘Jubiliar’, ‘Verbnoje’ <strong>ir</strong><br />

‘Bolotovskoje’, siauriausi – ‘Delikates’, ‘Sveþestj’ <strong>ir</strong> ‘Antej’ vaismedþiø. Vaismedþiø,<br />

kuriø aukðtis <strong>ir</strong> vainiko plotis buvo ribojami genint, kamieno skersmuo tiksliau<br />

atspindëjo augimo stiprumà. Aðtuntaisiais metais kamienø skersmenys kito nuo 19<br />

iki 27,8 cm. Obelø veisliø grupëje augiausios buvo ‘Jubiliar’ <strong>ir</strong> ‘Verbnoje’, silpniausio<br />

augumo – ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

5


2 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø þiedø bei ûgliø paðalimas balais<br />

Table 2. Cold injury of apple cultivar flowers and one year old shoots, scores<br />

Babtai, 2003–2004 m.<br />

Veislë<br />

Cultivars<br />

Þiedø paðalimas pavasario ðalnø<br />

metu balais<br />

Flower injury in spring frost (scores)<br />

Ûgliø paðalimas þiemà balais<br />

Shoot injury in winter (scores)<br />

2003 m. 2004 m. 2003 m. 2004 m.<br />

‘Antej’ 1,8 ± 0,81 5,9 ± 1,07 1,0 ± 0,00 1,7 ± 0,19<br />

‘Bolotovskoje’ 1,0 ± 0,00 5,1 ± 1,40 1,8 ± 0,<strong>25</strong> 2,2 ± 0,40<br />

‘Delikates’ 1,0 ± 0,00 5,4 ± 0,97 2,4 ± 0,30 1,7 ± 0,39<br />

‘Jubiliar’ 1,4 ± 0,20 4,6 ± 1,75 1,8 ± 0,40 1,0 ± 0,00<br />

‘Katja’ 1,0 ± 0,00 4,8 ± 1,32 4,2 ± 0,26 2,9 ± 0,78<br />

‘Kovalenkovskoje’ 1,1 ± 0,09 6,6 ± 0,67 1,0 ± 0,00 1,7 ± 0,34<br />

‘Kurnakovskoje’ 1,6 ± 0,02 4,5 ± 1,<strong>25</strong> 1,3 ± 0,19 1,0 ± 0,00<br />

‘Pamiatj<br />

3,5 ± 0,60 6,3 ± 1,28 1,1 ± 0,10 1,0 ± 0,00<br />

‘Siubarovoj’<br />

‘Svežestj’ 1,0 ± 0,00 6,1 ± 1,57 1,1 ± 0,00 1,7 ± 0,19<br />

‘Verbnoje’ 1,8 ± 0,39 6,0 ± 1,62 1,7 ± 0,26 2,0 ± 0,85<br />

3 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø augumas<br />

Table 3. Tree growth of apple cultivars<br />

Babtai, 2006 m.<br />

Veislë<br />

Cultivars<br />

Vaismedþiø<br />

aukštis<br />

Tree height, m<br />

Vainiko<br />

skersmuo<br />

Crown diameter, m<br />

Vainiko<br />

projekcijos plotas<br />

Crown projection<br />

area, m 2<br />

Kamieno<br />

skersmuo<br />

Trunk diameter, cm<br />

‘Antej’ 3,20 abcd * 2,50 ab 4,96 b 22,1 bc<br />

‘Bolotovskoje’ 2,96 ab 2,96 e 6,89 i 24,4 cd<br />

‘Delikates’ 2,93 a 2,31 a 4,16 a 19,1 ab<br />

‘Jubiliar’ 3,10 abcd 2,90 cde 6,62 h 27,8 f<br />

‘Katja’ 3,<strong>25</strong> bcd 2,55 abc 5,08 c 22,0 bc<br />

‘Kovalenkovskoje’ 3,01 abcd 2,76 bcde 5,85 f 26,1 def<br />

‘Kurnakovskoje’ 3,03 abcd 2,66 bcde 5,32 d 24,6 cdef<br />

‘Pamiatj Siubarovoj’ 3,00 abcd 2,70 bcde 5,78 e 21,6 abc<br />

‘Svežestj’ 3,10 abcd 2,50 ab 4,95 b 19,0 a<br />

‘Verbnoje’ 3,28 d 2,80 bcde 6,2 g 27,0 def<br />

Veisliø vidurkis<br />

Mean<br />

3,08 2,66 5,58 23,4<br />

6


Vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui. T<strong>ir</strong>toje veisliø grupëje<br />

rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ obelys<br />

(4 lentelë.). Rauplëms santykinai atsparios ‘Katja’, ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’<br />

<strong>ir</strong> ‘Verbnoje’ (maksimalus lapø paþeidimas 1–2 balai) obelys. Kontroliniø<br />

veisliø ‘Antej’ bei ‘Delikates’ vaismedþiai jautrûs rauplëms (maksimalus lapø paþeidimas<br />

3–4 balai).<br />

Filostiktozës simptomø nepastebëta ant ‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’<br />

bei ‘Verbnoje’ vaismedþiø lapø. Kitø t<strong>ir</strong>tø obelø lapus filostiktozë paþeidë labai<br />

maþai (iki 1 balo).<br />

Vëþio simptomø pastebëta ant visø t<strong>ir</strong>tø obelø veisliø vaismedþiø kamienø (1–5<br />

balai), iðskyrus veislës ‘Sveþestj’ vaismedþius.<br />

4 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui<br />

Table 4. Apple tree resistance to scab, apple blotch and European cancer<br />

Babtai, 2003–2005 m.<br />

Rauplës<br />

Scab<br />

Filostiktozë<br />

Apple blotch<br />

Europinis vëþys<br />

European cancer<br />

min. – min. –<br />

vidutinis<br />

Veislë vidutinis<br />

maks. maks.<br />

þaizdø vidutinis<br />

min.-maks.<br />

–<br />

Cultivars pažeidimas<br />

pažeidimas pažeidimas<br />

skaièius, pažeidimo pažeidimas<br />

balais<br />

balais balais<br />

vnt. balas balais<br />

average score<br />

average average score min–max.<br />

of injury<br />

min. – max. min. – max.<br />

number of of injury score injury<br />

score injury score injury<br />

lesions<br />

‘Antej’ 1,5 1–3 0,1–1 1,2 0,4 1–5<br />

‘Bolotovskoje’ 0 0 0–1 1,2 2,6 3–4<br />

‘Delikates’ 2,4 1-4 0–1 0,2 0,7 1–2<br />

‘Jubiliar’ 0 0 0–0,1 1,4 1,8 1–5<br />

‘Katja’ 0,8 0,1–2 0 3 1,5 1–3<br />

‘Kovalenkovskoje’ 0,9 0,1–1 0 0,8 0,5 1–2<br />

‘Kurnakovskoje’ 0 0 0 0,4 0,4 1–3<br />

‘Pamiatj Siubarovoj’ 1,1 1–2 0–1 1,6 2,1 2–4<br />

‘Svežestj’ 0 0 0–1 0 0 0<br />

‘Verbnoje’ 1 1 0 1,2 0,7 1–2<br />

R 05 /LSD 05<br />

Fotosintezës pigmentai. Chlorofilo a kiekis áva<strong>ir</strong>iø veisliø lapuose áva<strong>ir</strong>avo nuo<br />

293 iki 456 mg m -2 (1 pav.). Didþiausias chlorofilo a kiekis nustatytas ‘Sveþestj’<br />

(456 mg m -2 ) <strong>ir</strong> ‘Antej’ (4<strong>25</strong> mg m -2 ) veisliø lapuose, o maþiausias – ‘Kurnakovskoje’<br />

(293 mg m -2 ). Didþiausias chlorofilo b (117 mg m -2 ) <strong>ir</strong> karotinoidø (atitinkamai<br />

175 <strong>ir</strong> 166 mg m -2 ) kiekis taip pat nustatytas ‘Sveþestj’ <strong>ir</strong> ‘Antej’ veisliø lapuose.<br />

Maþiausias fotosintezës pigmentø kiekis nustatytas ‘Kurnakovskoje’ veislës lapuose:<br />

chlorofilo b – 70 mg m -2 , o karotinoidø – 124 mg m -2 (1 pav.).<br />

7


1 pav. Fotosintezës pigmentø kiekis obelø lapuose<br />

Fig. 1. Amount of photosynthetic pigments in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Chlorofilø a <strong>ir</strong> b santykis áva<strong>ir</strong>avo nuo 3,3 iki 4,3 (2 pav.). Didþiausias chlorofilø<br />

a <strong>ir</strong> b santykis nustatytas ‘Kurnakovskoje’ (4,3) <strong>ir</strong> ‘Sveþestj‘ (4,0) veisliø, maþiausias<br />

– ‘Kovalenkovskoje’ (3,3) veislës vaismedþiø lapuose.<br />

2 pav. Chlorofilø a <strong>ir</strong> b santykis obelø lapuose<br />

Fig. 2. Ratio of chlorophylls a, b in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Praëjusio ðimtmeèio pabaigoje selekcininkai sukûrë daug naujø obelø<br />

veisliø (Menegazzo, Williams, 1988; Sansavini <strong>ir</strong> kt., 2005). Rinkoje vyrauja geros<br />

iðvaizdos, ilgai besilaikantys, kokybiðki geltoni, raudoni, þali bei 2–3 spalvø obuoliai.<br />

Taèiau prie vietos agroklimato sàlygø obelø veislës prisitaiko labai nevienodai (Bandaravièius<br />

<strong>ir</strong> kt., 2001; Sasnauskas <strong>ir</strong> kt., 2006).<br />

Lietuvos agroklimato sàlygomis pavasario ðalnø metu maþiausiai nukenèia ‘Katja’<br />

vaismedþiø þiedai. Nustatyta, kad iðtvermingiausios þiemà ‘Pamiatj Siubarovoj’<br />

obelys. Panaðius tyrimø rezultatus yra gavæ <strong>ir</strong> kiti autoriai (Ñåäîâ <strong>ir</strong> kt., 2005). Tai<br />

8


odo, kad ðios veislës labai atsparios abiotiniams faktoriams. Ávertinus minëtus poþymius,<br />

galima teigti, kad pastarøjø veisliø adaptyvumo lygis yra aukðtas.<br />

Augalo ðeimininko jautrumas ligoms pas<strong>ir</strong>eiðkia jas sukelianèiø patogenø epifitotijos<br />

metais (MacHardy, 1996). Maksimalus paþeidimø balas rodo potencialø augalo<br />

atsparumo ligoms lygá. Tyrimø rezultatai parodë, kad dalis t<strong>ir</strong>tø veisliø nes<strong>ir</strong>go<br />

rauplëmis. Tai nulëmë veislës genetinë prigimtis – monogeninis atsparumas rauplëms<br />

(genas Vf). Lietuvos agroklimato sàlygomis obelys labiau serga rauplëmis <strong>ir</strong><br />

vëþiu negu filostiktoze. T<strong>ir</strong>tø obelø veisliø vaismedþius rauplës paþeidë nuo 0 iki 4,<br />

vëþys – nuo 0 iki 5, filostiktozë – nuo 0 iki 1 (4 lentelë). Galime daryti prielaidà, kad<br />

t<strong>ir</strong>tø obelø atsparumà filostiktozei gali lemti genetinë kontrolë arba tai, kad Lietuvos<br />

filostiktozës sukëlëjo populiacijoje vyrauja av<strong>ir</strong>ulentiðki neagresyvûs patogeno kamienai.<br />

Veislës ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþest’ imunios rauplëms.<br />

Veislës ‘Kurnakovskoje’ vaismedþiai nes<strong>ir</strong>go rauplëmis <strong>ir</strong> filostiktoze. Tyrimø<br />

laikotarpiu veislës ‘Verbnoje’, ‘Katja’, ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’ atsparumas<br />

rauplëms buvo stabilus. Rauplëms jautriausi veisliø ‘Antej’ <strong>ir</strong> ‘Delikates’<br />

vaismedþiai.<br />

Lietuvos agroklimato sàlygos labai palankios europiniam vëþiui vystytis <strong>ir</strong> plisti.<br />

Ið t<strong>ir</strong>tø veisliø grupës vëþys nepaþeidë veislës ‘Sveþestj’ vaismedþiø, o ‘Bolotovskoje’,<br />

‘Pamiatj Siubarovoj’, ‘Jubiliar’, ‘Katja’ vaismedþiai buvo jautriausi vëþio patogenui.<br />

Nustatyta, kad veislë ‘Kurnakovskoje’ atspari rauplëms <strong>ir</strong> filostiktozei, ‘Sveþestj’<br />

– rauplëms <strong>ir</strong> europiniam vëþiui.<br />

Iðtyrus vaismedþiø augumo rodiklius, maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’<br />

obelys.<br />

Obelø, kaip <strong>ir</strong> kitø augalø, produktyvumo potencialà lemia optimalus fotosintezës<br />

pigmentø kiekis <strong>ir</strong> santykis lapuose. Chlorofilai <strong>ir</strong> karotinoidai fotosintezës procese<br />

atlieka specifines funkcijas, todël jø kiekis <strong>ir</strong> tam tikras santykis bûtini, kad fotosintezë<br />

vyktø efektyviai (Datt, 1998; Zarzo-Tejada <strong>ir</strong> kt., 2000). Obelø produktyvumà<br />

lemia daugelis rodikliø, taip pat <strong>ir</strong> chlorofilø <strong>ir</strong> karotinoidø kiekis lapuose. Ðie<br />

fotosintezës pigmentai – lapø fiziologinio aktyvumo indikatoriai (Curran <strong>ir</strong> kt., 1990).<br />

Daugiausia fotosintezës pigmentø nustatyta veisliø ‘Sveþestj‘ <strong>ir</strong> ‘Antej’ lapuose. Taip<br />

pat didelis ðiø veisliø chlorofilø a <strong>ir</strong> b santykis. Maþiausiai fotosintezës pigmentø<br />

nustatyta veislës ‘Kurnakovskoje’ lapuose, taèiau ðios veislës didþiausias chlorofilø a<br />

<strong>ir</strong> b santykis.<br />

Iðvados. 1. Anksèiausiai þydëti baigia ‘Bolotovskoje’, vëliausiai – ‘Antej’, ‘Katja’,<br />

‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ vaismedþiai.<br />

2. Pavasario ðalnø metu maþiausiai nukenèia ‘Katja’ vaismedþiø þiedai. Þiemà<br />

iðtvermingiausi ‘Pamiatj Siubarovoj’ vaismedþiai.<br />

3. Maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

4. Rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’<br />

obelys. Filostiktozei atsparios ‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ bei ‘Verbnoje’,<br />

vëþiui – ‘Sveþestj’ obelys. Kompleksiniu atsparumu rauplëms <strong>ir</strong> filostiktozei<br />

iðsisk<strong>ir</strong>ia veislës ‘Kurnakovskoje’ o rauplëms <strong>ir</strong> europiniam vëþiui – ‘Sveþestj’ vaismedþiai.<br />

9


5. Daugiausia fotosintezës pigmentø nustatyta veisliø ‘Sveþestj’ <strong>ir</strong> ‘Antej’, o<br />

maþiausiai – ‘Kurnakovskoje’ lapuose.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravicius A., Gelvonauskienë D., Sasnauskas A. Evaluation of apple cultivars<br />

// Estonian agricultural university. Proceedings of the international conference Fruit<br />

production and fruit breeding. Tartu, 2000. Vol. 207. P. 94–98.<br />

2. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø<br />

biologiniø <strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(1).<br />

P. 3–15.<br />

3. Beadle C. I. Plant growth analyses // J. Coombs, D. O. Hall, S. P. Long, J. M. O.<br />

Scurlock (eds.). Techniques in bioproductivity and photosynthesis. 1987. P. 20–<strong>25</strong>.<br />

4. Curran P. J., Dungan J. L., Gholz H. L. Exploring the relationship between reflectance<br />

red edge and chlorophyll content in slash pine // Tree Physiol. 1990. Vol. 7. P. 33–48.<br />

5. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

6. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2005. 211 p.<br />

7. MacHardy W. E. Apple scab. Biology, epidemiology and management. APS Press.<br />

St. Paul. Minesota, 1996. 632 p.<br />

8. Menegazzo G., Williams W. T. Evaluation of new apple varieties in the highlands of<br />

Guatemala // Acta Hort. 1988. Vol. 232. P. 74–75.<br />

9. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

T. 22(3). P. 3–14.<br />

10. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

11. Sasnauskas A., Gelvonauskienë D., Bandaravièius A. F<strong>ir</strong>st results of biologically<br />

and economically important traits of introduced apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. T. 20(3)–2. P. 317–324.<br />

12. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. Evaluation of<br />

biologically and economically important traits of apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. T. 22(3). P. 3<strong>25</strong>–334.<br />

13. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. B., Ðabajevienë<br />

G. Introdukuotø obelø veisliø biologinës savybës // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(1). P. 3–12.<br />

14. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J. B., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars<br />

// Fruit science. 2005. Vol. 222. P. 20–<strong>25</strong>.<br />

15. Ðabajevienë G., Uselis N., Duchovskis P. ‘Auksis’ veislës obelø su P 22 poskiepiu<br />

fotosintetinës pigmentø sistemos formavimas áva<strong>ir</strong>iø konstrukcijø soduose // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(1). P. 23–28.<br />

16. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Metodinë priemonë. Akademija, 2003. 57 p.<br />

10


17. Uselis N. Obelø su þemaûgiu poskiepiu biologiniø-ûkiniø savybiø tyrimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. T. 24(4). P. 22–32.<br />

18. Uselis N. Sodo konstrukcijø átaka þemaûgiø obelø augumui // Sodininkystë <strong>ir</strong><br />

darþininkystë. Babtai, 2001. T. 20(1). P. 35–43.<br />

19. Zarco-Tejada P. J., Miller J. R., Mohammed G. H., Noland T. L. Chlorophyll fluorescence<br />

effects on vegetation apparent reflectance: I Leaf-level measurements and model<br />

simulation // Rem. Sens. Env<strong>ir</strong>on. 2000. Vol. 74. P. 582–595.<br />

20. Ëó÷øèå ñîðòà ïëîäîâûõ è ÿãîäíûõ êóëúòóð ÂÍÈÈÑÏÊ (ðåä. Å. Í. Cåäîâ).<br />

ÂÍÈÈÑÏÊ. Îðåë, 2005. 124 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF BIOLOGICAL TRAITS OF APPLE<br />

CULTIVARS<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, P. Duchovskis<br />

Summary<br />

In 1999–2006 at the Lithuanian Institute of Horticulture phenology, blossoming<br />

abundance and shoot injury, growth, resistance to scab (Venturia inaequalis (Cke)<br />

Wint.), apple blotch (Phyllosticta mali Pr. at Del.), European cancer (Nectria galligena<br />

Bres.) and photosynthetic pigments of fruits were studied in 10 new apple<br />

(Malus domestica Borkh.) cultivars. Trees were grafted on M.26 rootstock and<br />

grown in an orchard at a spacing of 4 x 2.5 m.<br />

Investigations showed that early blossomed cvs. ‘Bolotovskoje’, late – ‘Antej’,<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ and ‘Sveþestj’ apple tree. The results<br />

of the flower resistance to frost showed that cv. ‘Katja’ are the highly resistance.<br />

Winter hardy are cvs. ‘Pamiatj Siubarovoj’ apple shoots. The weakest growth was<br />

in trees of cvs. ‘Sveþestj’ and ‘Delikates’. Immune to scab are cvs. ‘Bolotovskoje’,<br />

‘Jubiliar’ and ‘Sveþestj’. Resistant to apple blotch are cvs. ‘Katja’, ‘Kovalenkovskoje’,<br />

‘Kurnakovskoje’ and ‘Verbnoje’, to European cancer – ‘Sveþestj’. More photosynthetic<br />

pigments were accumulated in apple trees of cvs. ‘Sveþestj’ and ‘Antej’<br />

leaves, less – in ‘Kurnakovskoje’ leaves.<br />

Key words: apple, cultivars, growth, phenology, photosynthetic pigments, resistance<br />

to diseases.<br />

11


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

INTRODUKUOTØ OBELØ VEISLIØ PRODUKTYVUMO<br />

IR VAISIØ KOKYBËS TYRIMAS<br />

Audrius SASNAUSKAS, Dalia GELVONAUSKIENË, Bronislovas<br />

GELVONAUSKIS, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>ta deðimties<br />

veisliø obelø (Malus domestica Borkh.) su M.26 poskiepiu (4 x 2,5 m) produktyvumas,<br />

vaisiø kokybë <strong>ir</strong> cheminë sudëtis.<br />

T<strong>ir</strong>tø obelø veisliø grupëje didþiausià suminá obuoliø derliø iðaugina ‘Antej’ <strong>ir</strong><br />

‘Kovalenkovskoje’ vaismedþiai. Veisliø ‘Sveþestj’ vaisiø vartojimo laikas yra ilgiausias,<br />

o ‘Jubiliar’ – trumpiausias. Stambiausius vaisius iðaugina veisliø ‘Verbnoje’<br />

<strong>ir</strong> ‘Jubiliar’, smulkiausius – ‘Sveþestj’ obelys. Veisliø ‘Delikates’ bei ‘Sveþestj’<br />

vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta geriausiai. Odelës tv<strong>ir</strong>tumu iðsiskyrë ‘Verbnoje’,<br />

‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’, minkðtimo tv<strong>ir</strong>tumu – ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’<br />

obuoliai.<br />

Reikðminiai þodþiai: cheminë sudëtis, obelys, produktyvumas, vaisiø kokybë,<br />

veislës.<br />

Ávadas. Rinka kelia vis naujus obelø veisliø sortimento <strong>ir</strong> vaisiø kokybës reikalavimus.<br />

Per pastaràjá deðimtmetá Europos moksliniai centrai sukûrë daugiau kaip<br />

500 naujø obelø veisliø <strong>ir</strong> jau lenkia Ðiaurës Amerikos, Azijos bei Okeanijos mokslo<br />

institucijas (Sansavini <strong>ir</strong> kt., 2005). Daugelio Europos ðaliø obelø selekcinëse programose<br />

ypaè daug dëmesio sk<strong>ir</strong>iama vaisiø kokybei. Tai svarbi sodininkystës technologijø<br />

grandis <strong>ir</strong> viena aktualiausiø moksliniø tyrimø krypèiø. Veislës turi iðsisk<strong>ir</strong>ti<br />

vaisiø vienodumu, o pastarieji turi bûti patrauklios spalvos <strong>ir</strong> gero skonio, jø minkðtimas<br />

turi bûti standus, cheminë sudëtis gera (Della Strada, Fideghelli, 2002; Bradford,<br />

Alston, 2004). Ðià vaisiø kokybës charakteristikà lemia agroklimato sàlygos,<br />

technologijos bei augintojø profesionalumas.<br />

Darbo tikslas – iðt<strong>ir</strong>ti introdukuotø obelø veisliø su M.26 poskiepiu produktyvumà<br />

<strong>ir</strong> vaisiø kokybæ.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2005 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinti 10 veisliø dvimeèiai obelø sodinukai su M.26 poskiepiu. Sodinimo<br />

schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

12


Tyrimø objektas. Obelø veislës ‘Bolotovskoje’, ‘Kurnakovskoje’, ‘Jubiliar’,<br />

‘Sveþestj’ (Rusija), ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ (Baltarusija),<br />

‘Katja’ (Ðvedija) t<strong>ir</strong>tos kartu su ‘Antej’ (Baltarusija) bei ‘Delikates’ (Lenkija),<br />

áraðytomis á Nacionaliná augalø veisliø sàraðà.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet, vegetacijos laikotarpiu, vaismedþiai<br />

purkðti nuo ligø fungicidais (5–6 kartus), o nuo kenkëjø – insekticidais (3–4<br />

kartus).<br />

Meteorologinës sàlygos. Tyrimo metais meteorologinës sàlygos buvo palankios<br />

arba vidutiniðkai palankios vaismedþiams augti <strong>ir</strong> derëti. Jos buvo artimos daugiameèiam<br />

vidurkiui, iðskyrus tai, kad 2003 m., palyginti su daugiameèiais duomenimis,<br />

krituliø liepos mënesá iðkrito 42,9 mm daugiau nei áprasta. 2004 m. uþregistruotos<br />

ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C), o kovo mënesio III deðimtadienio<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ daugiametæ vidutinæ. 2005 m. geguþës<br />

mënesá iðkrito 22,8 mm krituliø daugiau nei daugiametis vidurkis.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatyta vaismedþiø derlius (t ha -1 ), vaisiø<br />

pasisk<strong>ir</strong>stymas á klases pagal skersmená (proc.), vaisiø skynimo laikas, laikymosi<br />

pabaiga, vaisiaus masë (g), kokybë (iðvaizda, patrauklumas, bendra kokybë balais) <strong>ir</strong><br />

cheminë sudëtis (t<strong>ir</strong>pios sausosios medþiagos, sausosios medþiagos, titruojamasis<br />

rûgðtingumas, odelës <strong>ir</strong> minkðtimo tv<strong>ir</strong>tumas). Tyrimo duomenys biometriðkai ávertinti<br />

dispersinës analizës metodais (Tarakanovas, Raudonius, 2003) naudojant ANO-<br />

VA statistinæ programà.<br />

Rezultatai. Derlingumas. Visø t<strong>ir</strong>tø obelø veisliø vaismedþiai pradëjo derëti treèiaisiais<br />

metais po to, kai buvo pasodinti á sodà. Veisliø ‘Kovalenkovskoje’ (7,2 t ha -1 )<br />

bei ‘Jubiliar’ (6,3 t ha -1 ) vaismedþiai iðaugino didþiausià derliø, o veisliø ‘Bolotovsko-<br />

1 pav. Suminis vaisiø derlius, t ha -1<br />

Fig. 1. Cumulative yield of apple cultivars (t ha -1 )<br />

Babtai, 2001–2005 m.<br />

13


je’ (0,3 t ha -1 ) <strong>ir</strong> ‘Kurnakovskoje’ (0,4 t ha -1 ) – maþiausià (1 pav.). Ketv<strong>ir</strong>taisiais<br />

augimo sode metais visø veisliø vaismedþiai derëjo negausiai. Penktaisiais augimo<br />

sode metais suminis vaisiø derlius svyravo nuo 0,6 iki 16,1 t ha -1 . Didþiausià suminá<br />

obuoliø derliø ðeðtaisiais augimo sode metais iðaugino ‘Kurnakovskoje’ (23,1 t ha -1 ) <strong>ir</strong><br />

‘Bolotovskoje’ (17,4 t ha -1 ) vaismedþiai. Septintaisiais augimo sode metais visø t<strong>ir</strong>tø<br />

obelø veisliø derlius buvo gana gausus <strong>ir</strong> kito nuo 13,8 iki 36,9 t ha -1 . Veisliø ’Delikates’<br />

(36,9 t ha -1 ) bei ‘Antej’ (36,4 t ha -1 ) vaismedþiai iðaugino didþiausià derliø, o<br />

‘Bolotovskoje’ (13,8 t ha -1 ) <strong>ir</strong> ‘Verbnoje’ (19,3 t ha -1 ) – maþiausià. T<strong>ir</strong>toje obelø<br />

veisliø grupëje didþiausià suminá obuoliø derliø nuo derëjimo pradþios iðaugino ‘Antej’<br />

<strong>ir</strong> ‘Kovalenkovskoje’ (atitinkamai 70,9 <strong>ir</strong> 67 t ha -1 , arba 1,6 <strong>ir</strong> 1,7 karto daugiau<br />

uþ kitø t<strong>ir</strong>tø veisliø vidutiná derliø) vaismedþiai.<br />

Ávertinus penkiø derëjimo metø derliaus vidurkiø duomenis, nustatyta, kad<br />

gausiausiai derëjo veisliø ‘Antej’ (14,2 t ha -1 ) <strong>ir</strong> ‘Kovalenkovskoje’ (13,4 t ha -1 )<br />

obelys (2 pav.). Obelø veisliø ‘Kovalenkovskoje’ (13,4 t ha -1 ), ‘Jubiliar’ (11,3 t ha -1 )<br />

<strong>ir</strong> ‘Katja’ (10,9 t ha -1 ) derlius buvo didesnis uþ t<strong>ir</strong>tø veisliø derliaus vidurká. Ið esmës<br />

prasèiausiai derëjo ‘Kurnakovskoje’ (9,3 t ha -1 ), ‘Sveþestj’ (8,6 t ha -1 ), ‘Bolotovskoje’<br />

(7,9 t ha -1 ) <strong>ir</strong> ‘Pamiatj Siubarovoj’ (6,7 t ha -1 ) veisliø vaismedþiai.<br />

2 pav. Vidutinis vaisiø derlius, t ha -1<br />

Fig. 2. Average fruit yield (t ha -1 )<br />

Babtai, 2001–2005 m.<br />

Pagal skersmená susk<strong>ir</strong>sèius obuolius á prekines klases nustatyta, kad daugumos<br />

t<strong>ir</strong>tø veisliø visi vaisiai buvo aukðèiausios klasës. ‘Katja’, ‘Kovalenkovskoje’ <strong>ir</strong><br />

‘Sveþestj’ veisliø dalis vaisiø (2–6 proc.) atitiko 1 <strong>ir</strong> 2 klases, o veislë ‘Pamiatj Siubarovoj’<br />

iðaugino 2 proc. nerûðiniø vaisiø (1 lentelë). Per 75 mm skersmená turëjusiø<br />

vaisiø daugiausia uþaugino veisliø ‘Delikates’ (54 proc.), ‘Bolotovskoje’ (39 proc.),<br />

‘Verbnoje’ (35 proc.) bei ‘Antej’ (31 proc.), maþiausiai – ‘Katja’ (1 proc.), ‘Kurnakovskoje’<br />

(6 proc.) bei ‘Pamiatj Siubarovoj’ (7 proc.) vaismedþiai.<br />

14


Veislës<br />

Cultivars<br />

1 lentelë. Vaisiø susk<strong>ir</strong>stymas á klases pagal skersmená, %<br />

Table 1. Distribution of fruits to classes according to diameter %<br />

Babtai, 2005 m.<br />

Aukðèiausia klasë<br />

The highest class<br />

per 75 mm<br />

65–75 mm<br />

iš viso<br />

more than 75 mm<br />

sum total<br />

‘Antej’ 31 69 100<br />

‘Bolotovskoje’ 39 61 100<br />

‘Delikates’ 54 46 100<br />

‘Jubiliar’ <strong>25</strong> 75 100<br />

Skynimo laikas, laikymosi pabaiga <strong>ir</strong> vaisiø kokybës rodikliai. T<strong>ir</strong>tø obelø vaisiø<br />

skynimo laikas buvo nevienodas. Anksèiausiai skinami ‘Jubiliar’ (08-<strong>25</strong>), vëliausiai<br />

– ‘Pamiatj Siubarovoj’ (09-27) bei ‘Antej’ (09-28) vaisiai (2 lentelë).<br />

Ilgiausias buvo ‘Sveþestj’ (iki 05-14), trumpiausias – ‘Jubiliar’ (iki 09-15) veislës<br />

vaisiø vartojimo laikas.<br />

Pagal obuoliø vartojimo laikà obelys sugrupuotos á:<br />

– vasariniø veisliø: ‘Jubiliar’. Obuoliai tinka vartoti iki rugsëjo mën.;<br />

– vëlyvø rudeniniø veisliø: ‘Delikates’, ‘Katja’, ‘Kovalenkovskoje’ <strong>ir</strong> ‘Kurnakovskoje’.<br />

Obuoliai tinka vartoti iki gruodþio mën.;<br />

– þieminiø veisliø: ‘Bolotovskoje’. Obuoliø vartojimo laikas pasibaigia vasario mën.;<br />

– vëlyvø þieminiø veisliø: ‘Antej’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ <strong>ir</strong> ‘Sveþestj’.<br />

Obuoliai tinka vartoti iki kovo mën. <strong>ir</strong> ilgiau.<br />

Stambiausius vaisius iðaugino veisliø ‘Verbnoje’ (207 g) <strong>ir</strong> ‘Jubiliar’ (194 g),<br />

smulkiausius – ‘Sveþestj’ (107 g) vaismedþiai.<br />

T<strong>ir</strong>toms obelø veislëms bûdingi geri (7–7,4 balo) vaisiø kokybës rodikliai. Veisliø<br />

‘Katja’ <strong>ir</strong> ‘Sveþestj’ vaisiø iðvaizda ávertinta geriausiai (7,5 balo), o ‘Pamiatj Siubarovoj’<br />

– prasèiausiai (7,1 balo). Geru skoniu iðsiskyrë veislës ‘Delikates’ (7,5 balo)<br />

obuoliai. Didþiausiu kokybës balu ávertinti veisliø ‘Delikates’ bei ‘Sveþestj’ (7,4 balo)<br />

obuoliai.<br />

Vaisiø cheminë sudëtis. Ið esmës didþiausiu t<strong>ir</strong>piø sausøjø medþiagø kiekiu iðsiskyrë<br />

veislës ‘Sveþestj’ (14,6 proc.) vaisiai (3 lentelë). Titruojamasis áva<strong>ir</strong>iø veisliø<br />

obuoliø rûgðtingumas kito nuo 0,26 iki 0,98 proc. Titruojamojo rûgðtingumo kiekiu<br />

iðsiskyrë ‘Sveþestj’ obuoliai. Daugiausia sausøjø medþiagø sukaupë ‘Kurnakovskoje’<br />

(17,3 proc.), maþiausiai – ‘Verbnoje’ (12,6 proc.) vaisiai.<br />

15<br />

1 <strong>ir</strong> 2 klasës<br />

1 and 2 classes<br />

60–64 mm<br />

‘Katja’ 1 93 94 6<br />

‘Kovalenkovskoje’ 12 86 98 2<br />

‘Kurnakovskoje’ 6 94 100<br />

‘Pamiatj<br />

Siubarovoj’<br />

Nerûðiniai<br />

Not specific<br />

iki 60 mm<br />

up to 60 mm<br />

7 87 94 4 2<br />

‘Svežestj’ 16 81 97 3<br />

‘Verbnoje’ 35 65 100


2 lentelë. Obelø vaisiø skynimo laikas, laikymosi pabaiga <strong>ir</strong> kokybës rodikliai<br />

Table 2. Harvest date, end of storage and fruit quality parameters of apple cultivars<br />

Babtai, 2001–2004 m.<br />

Skynimo<br />

Laikymosi<br />

Vaisiø<br />

Veislës<br />

laikas,<br />

pabaiga, Vaisiø Patrauklum Patrauklum-<br />

Cultivars mën., d.<br />

mën., d. masë<br />

Skonis kokybë<br />

lumas balais<br />

End of Fruit weight,<br />

balais balais<br />

Appearance<br />

Harvest date<br />

Taste (scores)<br />

Quality<br />

storage g (scores)<br />

evaluation<br />

(month, day)<br />

(month, day)<br />

(scores)<br />

‘Antej’ 09-28 f* 03-04 cd 157 c 7,4 cde 7,0 a 7,0 a<br />

‘Bolotovskoje’ 09-21 def 02-12 cd 140 b 7,2 ab 7,3 cd 7,2 b<br />

‘Delikates’ 09-09 ab 12-22 b 147 bc 7,4 cde 7,5 d 7,4 cd<br />

‘Jubiliar’ 08-<strong>25</strong> a 09-15 a 194 e 7,3 bc 7,1 ab 7,2 b<br />

‘Katja’ 09-10 bc 12-18 b 141 b 7,5 de 7,3 cd 7,3 bcd<br />

‘Kovalenkovskoje’ 09-16 bcd 12-24 b 175 f 7,3 bc 7,0 a 7,0 a<br />

‘Kurnakovskoje’ 09-20 c-f 12-23 b 140 b 7,2 ab 7,0 a 7,0 a<br />

‘Pamiatj Siubarovoj’ 09-27 ef 04-05 de 145 bc 7,1 a 7,2 bc 7,2 b<br />

‘Svežestj’ 09-23 def 05-14 e 107 a 7,5 de 7,3 cd 7,4 cd<br />

‘Verbnoje’ 09-<strong>25</strong> def 04-07 de 207 e 7,3 bc 7,2 bc 7,3 bcd<br />

Veisliø vidurkis<br />

Mean<br />

09-19 01-14 155,3 7,32 7,19 7,19<br />

Veislës<br />

Cultivars<br />

3 lentelë. Obelø veisliø vaisiø cheminë sudëtis<br />

Table 3. Biochemical fruit characteristics of apple cultivars<br />

Babtai, 2001–2004 m. vidurkiai / 2001–2004 average<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

16<br />

Titruojamasis<br />

rûgðtingumas<br />

Titratable acidity, %<br />

Sausosios medžiagos<br />

Dry matter, %<br />

‘Antej’ 13,2 0,81 15,4<br />

‘Bolotovskoje’ 13,7 0,38 15,4<br />

‘Delikates’ 11,0 0,31 13,3<br />

‘Jubiliar’ 11,2 0,86 13,3<br />

‘Katja’ 12,1 0,66 13,7<br />

‘Kovalenkovskoje’ 12,3 0,26 15,1<br />

‘Kurnakovskoje’ 12,8 0,61 17,3<br />

‘Pamiatj Siubarovoj’ 12,4 0,82 16,8<br />

‘Svežestj’ 14,6 0,98 16,3<br />

‘Verbnoje’ 12,8 0,65 12,6<br />

Veisliø vidurkis<br />

Mean<br />

12,6 0,63 14,9<br />

R 05 / LSD 05 1,21 0,07 1,90


Odelës tv<strong>ir</strong>tumu iðsiskyrë ‘Verbnoje’ (45,6 kg/cm 2 ), ‘Bolotovskoje’ (45,2 kg/cm 2 )<br />

<strong>ir</strong> ‘Sveþestj’ (44,8 kg/cm 2 ) obuoliai (3 pav). Minkðèiausia buvo ‘Katja’ <strong>ir</strong> ‘Delikates’<br />

obuoliø odelë.<br />

3 pav. Obuoliø odelës tv<strong>ir</strong>tumas, kg/cm 2<br />

Fig. 3. F<strong>ir</strong>mness of apple skin (kg/cm 2 )<br />

Babtai, 2003–2004 m<br />

Minkðtimo tv<strong>ir</strong>tumu iðsiskyrë ‘Bolotovskoje’ (7,7 kg/cm 2 ) <strong>ir</strong> ‘Sveþestj’ (7 kg/cm 2 )<br />

obuoliai. Ið esmës minkðèiausi ‘Kovalenkovskoje’ (3,7 kg/cm 2 ), ‘Delikates’ (4,1 kg/cm 2 ),<br />

‘Katja’ (4,3 kg/cm 2 ) <strong>ir</strong> ‘Jubiliar’ (5,4 kg/cm 2 ) obuoliai (4 pav.).<br />

Minkðtimo tv<strong>ir</strong>tumas / F<strong>ir</strong>mness of flesh, kg/cm 2<br />

4 pav. Obuoliø minkðtimo tv<strong>ir</strong>tumas, kg/cm 2<br />

Fig. 4. F<strong>ir</strong>mness of apple flesh (kg/cm 2 )<br />

Babtai, 2003–2004 m.<br />

17


Aptarimas. Obelø derlingumo tyrimai parodë, kad ‘Antej’ <strong>ir</strong> ‘Kovalenkovskoje’<br />

vaismedþiai iðaugina didþiausià derliø. Panaðius tyrimø rezultatus gavo <strong>ir</strong> Rusijos<br />

mokslininkai (Ñåäîâ <strong>ir</strong> kt., 2004; Ñåäîâ <strong>ir</strong> kt., 2005). Tai rodo ðiø veisliø aukðtà<br />

adaptyvumo lygá. Mûsø tyrimø duomenimis, veislës ‘Pamiatj Siubarovoj’ obelø derlius<br />

buvo negausus. Taèiau Baltarusijos mokslininkai ‘Pamiatj Siubarovoj’ obelø veislæ<br />

iðsk<strong>ir</strong>ia kaip derlingà (Êîçëîâñêàÿ, 2003). Matyt, ðio poþymio atþvilgiu pastarajai<br />

veislei bûdingas nestabilumas, kurá lemia agroklimato sàlygos.<br />

Perd<strong>ir</strong>bimo pramonei reikia nuolat deranèiø obelø, kuriø vaisiuose bûtø daug<br />

cukraus, vidutiniðkai – rûgðèiø, daugiau kaip 1200 mg/l kalio, apie 11 proc. t<strong>ir</strong>piø<br />

sausøjø medþiagø (Fischer <strong>ir</strong> kt., 1999).<br />

Lietuvos agroklimato sàlygomis t<strong>ir</strong>toje veisliø grupëje ‘Delikates’ bei ‘Sveþestj’<br />

veisliø vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta geriausiai. Sk<strong>ir</strong>tingø ðaliø mokslininkø<br />

atliktø tyrimø rezultatai analogiðki (Porebski <strong>ir</strong> kt., 2000; Uselis, 2002; Sasnauskas<br />

<strong>ir</strong> kt., 2003; Ñåäîâ, 2005). Tai rodo aukðtà ðiø veisliø adaptyvumo lygá <strong>ir</strong> jø<br />

augimo arealo plëtimosi galimybæ.<br />

Iðvados. 1. Didþiausià suminá obuoliø derliø iðaugina veisliø ‘Antej’ <strong>ir</strong> ‘Kovalenkovskoje’<br />

vaismedþiai.<br />

2. Ilgiausias ‘Sveþestj’, trumpiausias ’Jubiliar’ vaisiø vartojimo laikas. Stambiausius<br />

vaisius iðaugina veisliø ‘Verbnoje’ <strong>ir</strong> ‘Jubiliar’, smulkiausius – ‘Sveþestj’<br />

vaismedþiai.<br />

3. Veisliø ‘Delikates’ bei ‘Sveþestj’ vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta<br />

geriausiai.<br />

4. Odelës tv<strong>ir</strong>tumu iðsisk<strong>ir</strong>ia ‘Verbnoje’, ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’, minkðtimo<br />

tv<strong>ir</strong>tumu – ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’ obuoliai.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bradford K. J., Alston J. M. Horticultural biotechnology: Challenges for commercial<br />

development // Chronica Horticulturae. 2004. Vol. 44(4). P. 4–8.<br />

2. Della Strada G., Fideghelli C. Le cultivar di pomacee introdote dal 1991–2001 //<br />

L’informatore Agrario. 2002. Vol. 41. P. 65–70.<br />

3. Fischer M., Schüler W., Fischer C., Gerber H. J. Nutzung Pillnitzer apfelsorten für<br />

die herstellung von verarbeitungsprodukten aus biologisch orientiertem Anbau // Erwerbsobstbau.<br />

1999. Vol. 41. P. 93–99.<br />

4. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2005a. 211 p.<br />

5. Porebski S., Ponedzialek W., Rzeznicka B. Porownanie wartosci sensorycznych<br />

owocow osiemnastu odmian jabloni // Zeszyty naukowe instytutu sadownictwa I kwiaciarstwa<br />

w Skierniewicach. 2000. T. 8. P. 355–359.<br />

6. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

7. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. Evaluation of<br />

biologically and economically important traits of apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. 22(3). P. 3<strong>25</strong>–334.<br />

18


8. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

9. Uselis N. Assessment of productivity and fruit quality of apple cultivars on<br />

rootstock M26 in the fruit bearing orchard // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002.<br />

21(3). P. 14–28.<br />

10. Êîçëîâñêàÿ Ç. À. Ñîâåðøåíñòâîâàíèå ñîðòèìåíòà ÿáëîíè â Áåëà-ðóñè.<br />

Ìèíñê, 2003. 167 ñ.<br />

11. Ëó÷øèå ñîðòà ïëîäîâûõ è ÿãîäíûõ êóëüòóð ÂÍÈÈÑÏÊ (ðåä. Å. Í.<br />

Ñåäîâ). ÂÍÈÈÑÏÊ. Îðåë, 2005. 124 ñ.<br />

12. Ñîðòà ÿáëîíè è ãðóøè (ðåä. Å. Í. Ñåäîâ). ÂÍÈÈÑÏÊ. Îðåë, 2004. 208 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY, FRUIT QUALITY AND CHEMICAL<br />

CHARACTERISTIC OF INTRODUCED APPLE CULTIVARS<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis, P. Viðkelis<br />

Summary<br />

Productivity, fruit quality and biochemical characteristic of 10 new apple (Malus<br />

domestica Borkh.) cultivars were studied at the Lithuanian Institute of Horticulture<br />

in 1999–2005. Trees were grafted on M.26 rootstock at a spacing of 4 x 2.5 m.<br />

Investigations showed that apple trees of cvs. ‘Antej’ and ‘Kovalenkovskoje’<br />

produced the highest cumulative apple yield. The longest period of storage was that<br />

of cv. ‘Sveþestj’, the shortest one – of cv. ‘Jubiliar’ fruits. The largest fruits have<br />

cvs. ‘Verbnoje’ and ‘Jubiliar’, the smallest – cv. ‘Sveþestj’. Fruits of cv. ‘Delikates’<br />

and ‘Sveþestj’ had better quality and chemical characteristic in comparison with<br />

other apple cultivars. ‘Verbnoje’, ‘Bolotovskoje’ and ‘Sveþestj’ were distinguished<br />

for f<strong>ir</strong>mness of skin, ‘Bolotovskoje’ and ‘Sveþestj’ – for f<strong>ir</strong>mness of flesh.<br />

Key words: apple, chemical characteristic, cultivars, fruit quality, productivity.<br />

19


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ SELEKCINIØ NUMERIØ BIOLOGINIØ<br />

SAVYBIØ TYRIMAS<br />

Dalia GELVONAUSKIENË, Audrius SASNAUSKAS,<br />

Bronislovas GELVONAUSKIS, Jûratë Bronë ÐIKÐNIANIENË,<br />

Gintarë ÐABAJEVIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

2000–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>tos ðeðiolikos<br />

selekciniø numeriø obelø (Malus domestica Borkh.) biologinës savybës. Ávertinta<br />

vaismedþiø su M.26 poskiepiu (4 x 2,5 m) fenologija, þiedø <strong>ir</strong> ûgliø paðalimas, vaismedþiø<br />

augumas, atsparumas rauplëms (Venturia inaequalis (Cke) Wint.), filostiktozei<br />

(Phyllosticta mali Pr. at Del.), vëþiui (Nectria galligena Bres.) bei fotosintezës<br />

pigmentø kiekis lapuose.<br />

Nustatyta, kad anksèiausiai þydëti baigia Nr. 19646, o vëliausiai – Nr. 19942 <strong>ir</strong><br />

kontrolinës veislës ‘Antej’ vaismedþiai. Pavasario ðalnoms atspariausi Nr. 20427,<br />

jautriausi – Nr. 20016, Nr. 19436 <strong>ir</strong> Nr. 19709 <strong>ir</strong> veislës ‘Antej’ vaismedþiai. Iðtvermingiausi<br />

þiemà Nr. 19436, Nr. 19646, Nr. 19707, Nr. 20429, Nr. 20978, neiðtvermingiausi<br />

– Nr. 19399, Nr. 20242, Nr. 20427 vaismedþiai. Visi t<strong>ir</strong>ti selekciniai numeriai<br />

imunûs rauplëms. Europinis vëþys nepaþeidë Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427,<br />

rauplëmis <strong>ir</strong> vëþiu – Nr. 19436. Kompleksiniu atsparumu visoms t<strong>ir</strong>toms ligoms<br />

pasiþymëjo Nr. 20016 <strong>ir</strong> Nr. 20429. Selekciniai numeriai skyrësi vaismedþiø aukðèiu,<br />

vainiko skersmeniu <strong>ir</strong> jo projekcijos plotu bei kamieno skersmeniu. Þemiausiø<br />

vaismedþiø aukðtis siekë 2,70, aukðèiausiø – 3,73 m. Maþiausias vainiko skersmuo –<br />

2,53 m, projekcijos plotas – 4,77 m 2 . Nustatyti selekciniø numeriø sk<strong>ir</strong>tumai pagal<br />

chlorofilo a, b <strong>ir</strong> karotinoidø kieká vaismedþiø lapuose. Didþiausias fotosintezës<br />

pigmentø kiekis nustatytas selekcinio numerio 22170 obelø lapuose, maþiausias –<br />

20429 obelø lapuose.<br />

Reikðminiai þodþiai: augumas, atsparumas ligoms, fenologija, fotosintezës pigmentai,<br />

obelys, selekciniai numeriai.<br />

Ávadas. Obelys (Malus domestica Borkh.) – plaèiausiai pasaulyje auginama sodø<br />

kultûra. Lietuvoje jos uþima 76 proc. visø auginamø vaismedþiø ploto (Raudonis<br />

& Valiuðkaitë, 2003). Baltijos ðaliø regiono agroklimato sàlygomis vaismedþiai paðàla<br />

þiemà, nukenèia nuo grybiniø ligø: raupliø (Venturia inaequalis (Cke) Wint., filostik-<br />

20


tozës (Phyllosticta mali Pr. at Del.) (Ikase & Dubravs, 2001) <strong>ir</strong> europinio vëþio<br />

(Nectria galligena Bres), (Kozlovskaya, 2001; Valiuðkaitë <strong>ir</strong> kt., 2003).<br />

Introdukuotø obelø savybës <strong>ir</strong> prisitaikymas prie sk<strong>ir</strong>tingø agroklimato sàlygø<br />

yra labai nevienodas (Bandaravièius <strong>ir</strong> kt., 2001; Uselis, 2001; Sasnauskas <strong>ir</strong> kt.<br />

2005). Daugumos introdukuotø komerciniø obelø veisliø, auginamø mûsø klimato<br />

zonoje, vaisiø kokybë pablogëja, vaismedþiai paðàla. Sodininkystës poreikiams tenkinti<br />

reikia vis naujø veisliø, kuriø biologinës savybës turi tiesioginës átakos vaismedþiø<br />

produktyvumui. Ypaè reikðmingos veislës, labai gerai prisitaikanèios prie nepalankiø<br />

biotiniø <strong>ir</strong> abiotiniø veiksniø (Kozlovskaya <strong>ir</strong> kt., 2000; Sansavini <strong>ir</strong> kt., 2005).<br />

Obelø selekcija <strong>ir</strong> toliau iðlieka aktuali mokslo kryptis. Lietuvoje kryptingi obelø selekcijos<br />

darbai pradëti 1952 m. LSD institute sukurtos komercinës obelø veislës:<br />

‘Auksis’, ‘Noris’, ‘Ðtaris’, ‘Aldas’. 2005 m. sukurtos rauplëms imunios veislës:<br />

‘Skaistis’ <strong>ir</strong> ‘Rudenis’ (Sasnauskas <strong>ir</strong> kt., 2005). Pastaruoju metu þinoma daugiau<br />

kaip 50 genø, lemianèiø áva<strong>ir</strong>ius obelø poþymius (Ïîíoìàðåíêî, Äçþáèíà, 2001).<br />

Obelø selekcijos sëkmë priklauso nuo genetiniø ðaltiniø áva<strong>ir</strong>ovës, tikslingo <strong>ir</strong> sëkmingo<br />

jø panaudojimo kryþminant. Vienas ið prioritetiniø obelø selekcijos programos<br />

tikslø – sukurti imunias <strong>ir</strong> atsparias ligoms, iðtvermingas þiemà, iðauginanèias geros<br />

kokybës vaisius, tinkamas komercinei <strong>ir</strong> ekologinei sodininkystei veisles.<br />

Darbo tikslas – iðt<strong>ir</strong>ti LSD institute sukurtø obelø selekciniø numeriø su M.26<br />

poskiepiu biologines savybes.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 1999–2006 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø veisliø tyrimo sode. 1999 m.<br />

pavasará pasodinta 16 selekciniø numeriø dvimeèiai obelø sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. T<strong>ir</strong>ta 16 perspektyviø obelø hibridø, sukurtø Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118, (‘Prima’ x ‘Idared’), Nr. 19436,<br />

Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235, Nr. 20239,<br />

Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170, (‘Noris’ x ‘Prima’), Nr. 20490 (‘Auksis’ x<br />

‘Prima’) Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x ‘Idared’) kartu su á<br />

Nacionaliná augalø veisliø sàraðà áraðytomis ‘Antej’ <strong>ir</strong> ‘Delikates’ obelø veislëmis.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos,<br />

2005). Nuo ligø vaismedþiai kasmet purkðti fungicidais (5–6 kartus), nuo kenkëjø<br />

– insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimo laikotarpiu buvo sk<strong>ir</strong>tingos meteorologinës sàlygos.<br />

Jos turëjo átakos vaismedþiø biologinëms savybëms bei ligø sukëlëjø vystymuisi<br />

<strong>ir</strong> plitimui. Oro temperatûra <strong>ir</strong> krituliø kiekis tyrimo metais buvo artimi daugiameèiams<br />

vidurkiams, iðskyrus tai, kad 2001 m. liepos mënuo buvo 4°C ðiltesnis, <strong>ir</strong> per<br />

mënesá iðkrito 64 mm krituliø daugiau, palyginti su daugiameèiu vidurkiu. 2002 m.<br />

pavasaris buvo ðiltesnis, taèiau sausesnis uþ vidutiná daugiametá. B<strong>ir</strong>þelá krituliø iðkrito<br />

63 mm daugiau, palyginti su daugiameèiu vidurkiu. 2003 m. pavasará <strong>ir</strong> vasaros<br />

pradþioje oro temperatûra buvo artima daugiametei, o krituliø iðkrito maþiau. B<strong>ir</strong>þelio<br />

<strong>ir</strong> liepos mënesiais orai buvo ðilti <strong>ir</strong> drëgni. 2004 m. kovo mënesio III dekados<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ vidutinæ daugiametæ. Vaismedþiø þydëjimo<br />

laikotarpiu uþregistruotos ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C).<br />

21


2005 m. geguþës mënesá iðkrito 22,8 mm krituliø daugiau nei daugiametis vidurkis.<br />

2002–2003 m. gruodþio mën. temperatûra buvo 5°C þemesnë, o vasario – 1,7°C<br />

aukðtesnë uþ daugiametá vidurká. 2003–2004 m. gruodis <strong>ir</strong> vasaris buvo atitinkamai<br />

1,9°C <strong>ir</strong> 2,5°C ðiltesni, o sausis 2,1°C ðaltesnis uþ daugiametá vidurká.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Obelø hibridø biologiniø savybiø tyrimas<br />

atliktas pagal EUFRIN Obelø <strong>ir</strong> kriauðiø veisliø tyrimo metodikà. Nustatyti vaismedþiø<br />

þydëjimo tarpsniai (þydëjimo pradþia, gausiausio þydëjimo pradþia <strong>ir</strong> pabaiga,<br />

þydëjimo pabaiga), þiedø <strong>ir</strong> ûgliø paðalimas (balais), vaismedþiø augumas (medþio<br />

aukðtis, m, vainiko skersmuo, m, kamieno skersmuo 50 cm aukðtyje, cm, vainiko<br />

projekcijos plotas, m 2 ), atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui (balais) bei fotosintezës<br />

pigmentai (chlorofilø <strong>ir</strong> karotinoidø kiekiai, mg m -2 ). Fotosintezës pigmentø<br />

(chlorofilø a, b <strong>ir</strong> karotinoidø) kiekis þalioje lapø masëje buvo nustatytas 100% acetono<br />

ekstrakte spektrofotometriniu Wettstein metodu (Beadle, 1987) spektrofotometru<br />

„Genesys 6“ (ThermoSpectronic, JAV). Selekciniø hibridø atsparumo rauplëms<br />

genetinei kontrolei nustatyti naudoti DNR þymenys. Tam tikslui obelø bendroji<br />

DNR iðsk<strong>ir</strong>ta ið skystame azote homogenizuoto lapo audinio (0,2 g) taikant CTAB<br />

metodà (Doyle <strong>ir</strong> Doyle, 1990). Vf1 geno specifiniam DNR fragmentui amplifikuoti<br />

buvo naudota pradmenø pora:<br />

VF1SPF (5’-TCTATCTCAGTAGTTTCTATAATTCC-3’),<br />

VF1SPR (5’-GTAGTTACTCTCAAGATTAAGAACTT-3’). Pradmenys parinkti<br />

pagal Genø banko (NCBI) sekà AJ297739, publikuotà internete http://<br />

www.ncbi.nlm.nih.gov/entrez/. PGR sàlygos: DNR denatûracija atlikta 94°C temperatûroje<br />

4 min., toliau 35 ciklø – 94°C 1 min. 45 s, 47°C 1 min. 45 s, 72°C 2 min.<br />

30 s, pabaigoje – 72°C 6 min. PGR reakcijai naudota 1,<strong>25</strong> vieneto polimeraziø miðinio<br />

High Fidelity PCR Enzyme Mix* (fermentas). Reakcija vyko esant 1,5 mM MgCl 2<br />

,<br />

1 µM pradmenø <strong>ir</strong> 0,2 mM dNTP.<br />

Eksperimentiniai duomenys biometriðkai ávertinti dispersinës analizës metodais<br />

(Tarakanovas, Raudonius, 2003), naudojant ANOVA statistinæ programà.<br />

Rezultatai. Þydëjimo tarpsniai <strong>ir</strong> trukmë. Tyrimo laikotarpiu kontrolinës veislës<br />

<strong>ir</strong> selekciniai numeriai pradëdavo þydëti vidutiniðkai geguþës 13–17 dienomis (1<br />

lentelë). Anksèiausiai þydëjo selekciniai numeriai 19436, 19646 <strong>ir</strong> 20427. Praëjus 2–<br />

5 dienoms nuo vaismedþiø þydëjimo pradþios, uþregistruotas jø masinis þydëjimas.<br />

Greièiausiai masiðkai suþydëjo sëjinuko Nr. 19707 vaismedþiai. Vëliausiai prasidëjo<br />

Nr. 19942 vaismedþiø masinio þydëjimo tarpsnis. Masinis þydëjimas truko 2–6 dienas.<br />

Trumpiausias jis buvo Nr. 19942, ilgiausias – Nr. 19436 <strong>ir</strong> Nr. 20978 vaismedþiø.<br />

Kontrolinës veislës <strong>ir</strong> selekciniai numeriai baigë þydëti geguþës 23–26 dienomis.<br />

Þydëjimo tarpsnis truko 8–11 dienø. Trumpiausiai, 8 dienas, þydëjo Nr. 19709 vaismedþiai,<br />

dar 6 sëjinukø <strong>ir</strong> kontrolinës veislës ‘Delikates’ – 9 dienas.<br />

Þiedø <strong>ir</strong> ûgliø paðalimas. 2003 m. pavasario ðalnos stipriausiai paþeidë selekciniø<br />

numeriø 19436 <strong>ir</strong> 20978 obelø þiedus. Jø paþeidimai ávertinti atitinkamai 3,5 <strong>ir</strong> 3,0 balais<br />

(2 lentelë). 2004 m. pavasará ðalnos stipriai paþeidë (3,7–6,9 balo) visø t<strong>ir</strong>tø obelø þiedus.<br />

Maþiausiai nukentëjo Nr. 20427 þiedai. 2003 m. þiemà stipriausiai paðalo selekciniø numeriø<br />

20242 <strong>ir</strong> 19399 obelø ûgliai (atitinkamai 4,4 <strong>ir</strong> 4,0 balai). Kontrolinës veislës ‘Antej’ <strong>ir</strong><br />

Nr. 19436 ûgliai paðalo maþiausiai (1,0 <strong>ir</strong> 1,1 balo). 2004 m. stipriausiai paðalo (3,2 balo)<br />

selekcinio numerio 20235, silpniausiai (1,0 balas) – 19436 obelø ûgliai.<br />

22


Selekciniai<br />

numeriai<br />

Selections<br />

1 lentelë. Obelø selekciniø numeriø vaismedþiø þydëjimo tarpsniai<br />

Table 1. Dates of blossoming time of apple selections<br />

Babtai, 2000–2005 m.<br />

Þydëjimo<br />

pradžia,<br />

mën., d.<br />

Beginning of<br />

blossoming, month,<br />

day<br />

Masinio þydëjimo<br />

pradþia, mën., d.<br />

Beginning of full<br />

blossoming, month,<br />

day<br />

Masinio þydëjimo<br />

pabaiga, mën., d.<br />

The end of full<br />

blossoming, month,<br />

day<br />

Þydëjimo<br />

pabaiga,<br />

mën., d.<br />

The end of<br />

blossoming,<br />

month, day<br />

Þydëjimo<br />

trukmë<br />

dienomis<br />

Length of<br />

blossoming<br />

duration, days<br />

19399 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

19436 05-13 05-17 05-23 05-24 11<br />

19646 05-13 05-16 05-21 05-23 10<br />

19707 05-16 05-18 05-21 05-<strong>25</strong> 9<br />

19709 05-16 05-19 05-22 05-24 8<br />

19942 05-17 05-21 05-23 05-26 9<br />

20016 05-16 05-19 05-22 05-<strong>25</strong> 9<br />

20235 05-14 05-18 05-22 05-24 10<br />

20239 05-16 05-19 05-23 05-<strong>25</strong> 9<br />

20242 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

20427 05-13 05-18 05-22 05-24 11<br />

20429 05-15 05-18 05-22 05-<strong>25</strong> 10<br />

20490 05-15 05-19 05-23 05-<strong>25</strong> 10<br />

20978 05-14 05-18 05-24 05-<strong>25</strong> 11<br />

22170 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

21118 05-15 05-18 05-22 05-24 9<br />

‘Delikates’ 05-16 05-19 05-23 05-<strong>25</strong> 9<br />

‘Antej’ 05-16 05-19 05-22 05-26 10<br />

Vidurkis<br />

Mean<br />

05-15 05-18 05-22 05-24 9,9<br />

R 05 / LSD 05 1,99 3,37 2,01 1,01 0,96<br />

Vaismedþiø augumas. Septintaisiais augimo sode metais aukðèiausi buvo<br />

Nr. 20016 <strong>ir</strong> Nr. 20235 vaismedþiai (atitinkamai 3,73 <strong>ir</strong> 3,50 m) (3 lentelë). Þemiausi<br />

buvo Nr. 19707 (2,70 m.) <strong>ir</strong> Nr. 19436 (2,86 m) medeliai. Didþiausiu vainiko skersmeniu<br />

(atitinkamai 3,40 <strong>ir</strong> 3,26 m) <strong>ir</strong> vainiko projekcijos plotu (atitinkamai 9,07 <strong>ir</strong><br />

8,34 m 2 ) pasiþymëjo Nr. 20239 <strong>ir</strong> Nr. 20429. Minëtø selekciniø numeriø vainiko<br />

rodikliai buvo ið esmës didesni uþ kontroliniø veisliø vainiko rodiklius. Maþiausiu<br />

vaismedþio vainiko skersmeniu (atitinkamai 2,53, 2,56 <strong>ir</strong> 2,56 m) bei projekcijos<br />

plotu (atitinkamai 4,77, 5,16 <strong>ir</strong> 5,16 m 2 ) ið selekciniø numeriø iðsiskyrë Nr. 20490,<br />

Nr. 20427 <strong>ir</strong> Nr. 20242. Pastarøjø selekciniø numeriø vaismedþiø kamieno skersmenys<br />

buvo maþiausi arba vieni maþiausiø.<br />

23


2 lentelë. Obelø selekciniø numeriø vaismedþiø þiedø bei ûgliø paðalimas balais<br />

Table 2. Blossoms and one shoot injury of apple selections, scores<br />

Babtai, 2003–2004 m.<br />

Selekciniai Nr.<br />

<strong>ir</strong> veislës<br />

Selections and<br />

cultivars<br />

Þiedø paðalimas pavasario ðalnø<br />

metu balais<br />

Injury of blossoms caused by spring<br />

frosts, scores<br />

Ûgliø paðalimas þiemà balais<br />

Injury of one year shoots caused by<br />

winter cold, scores<br />

2003 m. 2004 m. 2003 m. 2004 m.<br />

19399 1,5 ± 0,54 5,6 ± 1,24 4,0 ± 0,19 2,0 ± 0,39<br />

19436 3,5 ± 0,60 6,3 ± 1,28 1,1 ± 0,10 1,0 ± 0<br />

19646 2,1 ± 0,62 4,5 ± 1,17 1,4 ± 0,16 2,1 ± 0,45<br />

19707 1,0 ± 0 5,7 ± 1,68 1,4 ± 0,14 2,3 ± 0,34<br />

19709 1,0 ± 0 6,2 ± 0,74 2,6 ± 0,30 2,6 ± 1,<strong>25</strong><br />

19942 - - - -<br />

20016 1,0 ± 0 6,9 ± 1,34 2,0 ± 0,43 1,9 ± 0,30<br />

20235 1,8 ± 0,81 4,6 ± 1,72 1,9 ± 0,26 3,2 ± 1,91<br />

20239 - 4,7 ± 1,56 2,0 ± 0,42 2,9 ± 0,40<br />

20242 1,7 ± 0,43 5,4 ± 1,80 4,4 ± 0,51 2,6 ± 0,30<br />

20427 - 3,7 ± 1,62 3,2 ± 0,57 2,0 ± 0,19<br />

20429 1,0 ± 0 5,5 ± 1,13 1,4 ± 0,07 2,3 ± 0,62<br />

20490 1,4 ± 0,36 4,6 ± 1,44 2,2 ± 0,31 1,9 ± 0,22<br />

20978 3,0 ± 1,40 5,4 ± 1,04 1,6 ± 0,26 1,8 ± 0,62<br />

22170 2,5 ± 0,32 4,9 ± 1,61 2,9 ± 0,58 1,4 ± 0,22<br />

21118 - 5,3 ± 1,58 2,0 ± 0,57 1,4 ± 0,22<br />

‘Delikates’ 1,0 ± 0 5,4 ± 0,97 2,4 ± 0,30 1,7 ± 0,39<br />

‘Antej’ 1,8 ± 0,81 5,9 ± 1,07 1,0 ± 0 1,7 ± 0,19<br />

24


3 lentelë. Obelø selekciniø numeriø vaismedþiø augumas<br />

Table 3. Growth vigour of apple tree selections<br />

Babtai, 2006 m.<br />

Selekciniai<br />

Nr. <strong>ir</strong><br />

Vainiko projekcijos<br />

Vaismedþiø aukðtis Vainiko skersmuo<br />

Kamieno skersmuo<br />

veislës<br />

plotas<br />

Tree height, m Crown diameter, m<br />

Selections<br />

Crown section area, m 2 Trunk diameter, cm<br />

and cultivars<br />

19399 3,43 efgh* 2,93 ef 6,73 d 28,0 efg<br />

19436 2,86 ab 2,83 cdef 6,29 c <strong>25</strong>,0 cd<br />

19646 3,0 bcd 2,60 bcd 5,30 g 29,0 fghi<br />

19707 2,70 a 3,13 fghi 7,69 m 31,5 i<br />

19709 3,06 bcd 2,93 ef 6,73 d 27,0 def<br />

19942 3,16 cde 2,90 def 6,60 j 26,8 def<br />

20016 3,73 h 3,03 efg 7,18 l 26,9 def<br />

20235 3,50 fgh 2,86 cdef 6,43 i <strong>25</strong>,1 cd<br />

20239 3,20 def 3,40 i 9,07 o 30,0 ghi<br />

20242 3,03 bcd 2,56 abc 5,16 b 23,1 bc<br />

20427 3,03 bcd 2,56 abc 5,16 b 22,6 b<br />

20429 3,20 def 3,26 ghi 8,34 n 29,1 fghi<br />

20490 3,03 bcd 2,53 ab 4,77 e <strong>25</strong>,6 de<br />

20978 3,16 cde 2,83 cdef 6,29 c 26,2 de<br />

22170 3,26 def 3,00 efg 7,03 k 22,8 bc<br />

21118 3,06 bcd 2,76 bcde 5,96 h 27,6 efg<br />

‘Delikates’ 2,90 abc 2,3 a 4,16 a 19,1 a<br />

‘Antej’ 3,20 def 2,5 ab 4,96 f 22,1 b<br />

Vidurkis<br />

Mean<br />

3,14 2,83 6,32 <strong>25</strong>,9<br />

* Duomenys apskaièiuoti pagal Dunkano kriterijø / Duncan’s multiple range t-test<br />

Tarp vidurkiø, paþymëtø tomis paèiomis raidëmis, nëra esminiø sk<strong>ir</strong>tumø, kai P=0,05 /<br />

Means followed by the same letter are not significantly different at P=0.5<br />

Vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui. Vizualiai ávertinus vaismedþiø<br />

atsparumà grybinëms ligoms, nustatyta, kad selekciniai numeriai rauplëmis<br />

nes<strong>ir</strong>go, o veislës ‘Delikates’ vaismedþius rauplës labai paþeidë – paþeidimas ávertintas<br />

4 balais, ‘Antej’ veislës – 3 balais (4 lentelë).<br />

<strong>25</strong>


4 lentelë. Obelø selekciniø numeriø vaismedþiø atsparumas grybinëms ligoms<br />

Table 4. Resistance of apple selections to fungal diseases<br />

Babtai, 2003–2005 m.<br />

Selekciniai<br />

Nr. <strong>ir</strong><br />

veislës<br />

Selections<br />

and cultivars<br />

Rauplës<br />

Scab<br />

Filostiktozë<br />

Apple blotch<br />

Europinis vëþys<br />

European cancer<br />

vidutinis min.–maks. min.–maks.<br />

vidutinis<br />

vidutinis<br />

pažeidimas pažeidimas pažeidimas<br />

þaizdø<br />

paþeidimø<br />

balais balais balais<br />

kiekis, vnt.<br />

balas<br />

average<br />

average score min-max. score min-max. score<br />

average score<br />

number of<br />

of injury of injury of injury<br />

of injury<br />

lesions<br />

9399 0 0 0 1,8 0,4 1–3<br />

min.–maks.<br />

pažeidimas<br />

balais<br />

min-max. score<br />

of injury<br />

19436 0 0 0–1 0 0 0<br />

19646 0 0 0 1,5 1,5 1–4<br />

19707 0 0 0 1,0 0,6 1–3<br />

19709 0 0 0–0,1 1,2 1,2 1–3<br />

19942 0 0 0 5,8 3,2 1–5<br />

20016 0 0 0 0 0 0<br />

20235 0 0 0 1,0 0,8 1–2<br />

20239 0 0 0 2,8 1,4 1–3<br />

20242 0 0 0–0,1 1,4 1,0 1–3<br />

20427 0 0 0–1 0,8 0,3 0–1<br />

20429 0 0 0 0 0 0<br />

20490 0 0 0–0,1 1,8 0,7 1–3<br />

20978 0 0 0 1,2 0,8 1–2<br />

22170 0 0 0–0,1 1,2 1,3 1–3<br />

21118 0 0 0–0,1 2,0 0,4 1–3<br />

‘Delikates’ 2,4 1–4 0–1 0,2 0,7 1–2<br />

‘Antej’ 1,5 1–3 0,1–1 1,2 0,4 1–5<br />

26


Atlikus PGR su Vf genui specifiniais VF1SPF, VF1SPR pradmenimis, nustatyta,<br />

kad visi t<strong>ir</strong>ti selekciniai numeriai, kaip <strong>ir</strong> veislë ‘Prima’, kurios atsparumà lemia Vf<br />

genas, turi ðiam genui bûdingà 500 bp DNR fragmentà (1 pav). Rauplëms jautrios<br />

veislës ‘Noris’ vaismedþiai ðio DNR fragmento neturi.<br />

1 pav. Obelø selekciniø numeriø Vf geno fragmento elektroforegrama<br />

Fig. 1. Electrophoregram of Vf gene fragment<br />

1 – 19399; 2 – 19436; 3 – 19646; 4 – 19707; 5 – 19709; 6 – 20016; 7 – 20235; 8 – 19942; 9 –<br />

21118; 10 – 20239; 11 – 20242; 12 – 20427; 13 – 20429; 14 – 20490; 15 – 20978; 16 – 22170;<br />

N – ‘Noris’; P – ‘Prima’; M – DNR grandinës ilgio þymuo O’GeneRuler TM 1 kb DNA Ladder<br />

(fermentas)<br />

Filostiktozë obelø selekciniø numeriø nepaþeidë arba paþeidimai buvo neþymûs.<br />

Visi t<strong>ir</strong>ti selekciniai numeriai, iðskyrus Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429, turëjo<br />

europinio vëþio simptomø. Vëþio sukëlëjui ið esmës jautriausias Nr. 19942. Rauplëmis<br />

<strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427, rauplëmis <strong>ir</strong><br />

vëþiu – Nr. 19436, në viena t<strong>ir</strong>ta liga – Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

Fotosintetiniai pigmentai. Chlorofilo a kiekis áva<strong>ir</strong>iø selekciniø numeriø obelø<br />

lapuose áva<strong>ir</strong>avo nuo 293 iki 466 mg m -2 (2 pav.). Didþiausias (466 mg m -2 ) chlorofilo<br />

a kiekis nustatytas selekcinio numerio 22170 obelø lapuose, maþiausias – 20429<br />

obelø lapuose (293 mg m -2 ). Kontroliniø veisliø ‘Delikates’ <strong>ir</strong> ‘Antej’ obelø lapuose<br />

chlorofilo a kiekis buvo atitinkamai 380 <strong>ir</strong> 4<strong>25</strong> mg m -2 . Didþiausias (134 mg m -2 ) chlorofilo<br />

b kiekis buvo taip pat selekcinio numerio 22170 obelø lapuose, t. y. 29 mg m -2<br />

didesnis nei kontrolinës veislës ‘Delikates’ <strong>ir</strong> 17 mg m -2 – nei ‘Antej’ obelø lapuose.<br />

2 pav. Fotosintezës pigmentø kiekis selekciniø numeriø obelø lapuose<br />

Fig. 2. Amount of photosynthetic pigments in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

27


Maþiausias chlorofilo b (77 mg m -2 ) <strong>ir</strong> karotinoidø (119 mg m -2 ) kiekis nustatytas<br />

selekcinio numerio 20429 obelø lapuose. Didþiausias karotinoidø kiekis (178 mg m -2 )<br />

nustatytas taip pat selekcinio numerio 22170 obelø lapuose. Jis taip pat buvo didesnis<br />

nei kontroliniø veisliø obelø lapuose (2 pav.).<br />

Chlorofilø a <strong>ir</strong> b santykis áva<strong>ir</strong>avo nuo 3,5 iki 4,1 (3 pav.). Didþiausias chlorofilø<br />

a <strong>ir</strong> b santykis nustatytas selekciniø numeriø 20490, 19707, 20239 <strong>ir</strong> 20978, maþiausias<br />

– Nr. 22170 vaismedþiø lapuose. Taèiau esminiø sk<strong>ir</strong>tumø nebuvo.<br />

Selekciniai Nr. <strong>ir</strong> veislës / Selections and cultivars<br />

3 pav. Chlorofilo a <strong>ir</strong> b santykis selekciniø numeriø obelø lapuose<br />

Fig. 3. Relationship of chlorophylls a, b in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Obelø þydëjimo laikas yra svarbi jø savybë. Anksti þydintiems vaismedþiams<br />

kyla grësmë, kad jø þiedus paþeis pavasarinës ðalnos. Ðalnø tikimybë yra<br />

didesnë geguþës mënesio pradþioje nei vëlesniais laikotarpiais. Ið t<strong>ir</strong>tø selekciniø numeriø<br />

vëliausiai pradëdavo þydëti Nr. 19942 – praþysdavo vidutiniðkai geguþës 17<br />

dienà (1 lentelë). Dar ðeði t<strong>ir</strong>ti hibridai, kaip <strong>ir</strong> abi kontrolinës veislës, pradëdavo<br />

þydëti dienà anksèiau. Ilgiau þydinèioms obelø veislëms lengviau parinkti veisles dulkininkes.<br />

Ilgiau þydinèios veislës ilgiau þydi kartu, todël didesnë tikimybë, kad tuo<br />

laikotarpiu ar bent jo dalá bus palankios sàlygos vaismedþiams apdulkinti.<br />

Atsparumas pavasario ðalnoms <strong>ir</strong> þiemos ðalèiams yra viena bûtiniausiø obelø<br />

savybiø Lietuvoje. Obelø þiedø atsparumas pavasario ðalnoms priklauso nuo þiedø<br />

iðsivystymo tarpsnio <strong>ir</strong> ðalnos stiprumo. Kai kuriø t<strong>ir</strong>tø selekciniø numeriø vaismedþiai<br />

buvo atsparesni minëtiems neigiamiems aplinkos veiksniams arba jø atsparumas<br />

buvo panaðus á kontroliniø veisliø atsparumà. Nustatytas atsparumo lygis turëtø<br />

bûti pakankamas, kad vaismedþiø produktyvumas mûsø ðalies klimato sàlygomis<br />

bûtø optimalus.<br />

Ekologiniu <strong>ir</strong> komerciniu aspektais vertingiausios yra kompleksiniu atsparumu<br />

ligoms pasiþyminèios obelø veislës (Kellerhals <strong>ir</strong> kt., 2004). Natûraliame sukëlëjo<br />

infekciniame fone, sode, ant selekciniø numeriø vaismedþiø raupliø poþymiø nepastebëta<br />

(4 lentelë). Visø atrinktø selekciniø numeriø vienas ið tëvø buvo veislë ‘Prima’,<br />

turinti Vf genà. Naudojant specifinius Vf genui DNR þymenis, nustatyta, kad<br />

visi t<strong>ir</strong>ti selekciniai numeriai turëjo Vf genui bûdingà DNR fragmentà (2 pav.). Tai<br />

rodo, kad visø hibridø imunumà rauplëms lemia Vf genas.<br />

28


Baltijos ðaliø klimato sàlygos labai palankios europiniam vëþiui plisti <strong>ir</strong> vystytis.<br />

Ið þievës ligø sukëlëjø labiausiai paplitæs N. galligena. Jis paþeidþia jaunus, greitai<br />

auganèius vaismedþius. LSD institute buvo t<strong>ir</strong>tas 20 veisliø atsparumas vëþiui. Nustatyta,<br />

kad visø veisliø vaismedþiai buvo paþeisti ðios ligos sukëlëjo (Valiuðkaitë <strong>ir</strong><br />

kt., 2003). T<strong>ir</strong>tø selekciniø numeriø grupëje vëþiu nes<strong>ir</strong>go Nr. 19496 (‘Katja x ‘Prima’),<br />

Nr. 20016 (‘Prima’ x ‘Idared’) <strong>ir</strong> Nr. 20429 (‘Noris’ x ‘Prima’) vaismedþiai.<br />

Vëþio sukëlëjui ið esmës jautriausias Nr. 19942 (‘Noris’ x ‘Prima’). Nëra iðt<strong>ir</strong>ta obelø<br />

atsparumo vëþiui <strong>ir</strong> filostiktozei genetinë kontrolë. Tikëtina, kad ðiuos poþymius lemia<br />

monogeniniam atsparumui alternatyvus genetinis mechanizmas. Atsparumas áva<strong>ir</strong>ioms<br />

ligoms priklauso nuo sk<strong>ir</strong>tingos genetinës kontrolës. Tai suteikia galimybiø sukurti genotipus,<br />

pasiþyminèius kompleksiniu atsparumu keletui ligø <strong>ir</strong> kenkëjø (Fischer, 2000).<br />

Ið visø LSD institute sukurtø selekciniø numeriø në viena ið t<strong>ir</strong>tø ligø nes<strong>ir</strong>go Nr. 20016<br />

<strong>ir</strong> Nr. 20429. Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707,<br />

Nr. 20427, rauplëmis <strong>ir</strong> vëþiu – Nr. 19436.<br />

Obelø veislës, kuriø vaismedþiai yra riboto augumo, ypaè naudingos veisiant<br />

intensyvius verslinius sodus. T<strong>ir</strong>tø selekciniø numeriø vaismedþiø aukðtis tarpusavyje<br />

skyrësi iki vieno metro. Þemiausi buvo Nr. 19707 vaismedþiai, taèiau jø vainiko<br />

skersmuo <strong>ir</strong> projekcijos plotas buvo vieni didþiausiø (3 lentelë). Selekciniai numeriai<br />

(Nr. 20016 <strong>ir</strong> Nr. 20235), kuriø vaismedþiai aukðèiausi, nepasiþymëjo plaèiais vainikais<br />

ar dideliu kamienø skersmeniu.<br />

Augalø produktyvumà lemia glaudþiai susijæ augimo <strong>ir</strong> vystymosi procesai, kuriø<br />

metu keièiasi augalø fotosintezës <strong>ir</strong> kvëpavimo intensyvumas, asimiliacinis plotas,<br />

fotosintetinis potencialas <strong>ir</strong> fotosintezës produktyvumas (Òðåòüÿêîâ, 1998).<br />

Vienas svarbiausiø veiksniø, uþtikrinanèiø augalø fotosintetiná potencialà, yra optimalus<br />

fotosintezës pigmentø kiekis <strong>ir</strong> santykis lapuose (Datt, 1998). Vienas rodikliø,<br />

charakterizuojanèiø augalø bûklæ, yra fotosintetinio aparato darbas, lemiantis pigmentø<br />

kieká lapuose. Mûsø t<strong>ir</strong>tø selekciniø numeriø obelø lapuose fotosintezës pigmentø<br />

kiekis buvo labai áva<strong>ir</strong>us: didþiausias nustatytas selekcinio numerio 22170,<br />

maþiausias – 20429 obelø lapuose. Ðie selekciniai numeriai minëtu rodikliu lenkë<br />

kontrolines veisles ‘Delikates’ <strong>ir</strong> ‘Antej’.<br />

Iðvados. 1. Vertinant t<strong>ir</strong>tø obelø selekciniø numeriø þydëjimo laikà, nustatyta,<br />

kad vëliausia vaismedþiø þydëjimo data yra geguþës 17 diena, o ilgiausias þydëjimo<br />

laikotarpis – 11 dienø.<br />

2. Nuo 2003 m. pavasario ðalnø maþiausiai nukentëjo keturiø selekciniø numeriø<br />

þiedai. Po 2004 m. stipresniø ðalnø vieno hibrido (Nr. 20427) þiedai pas<strong>ir</strong>odë atspariausi.<br />

Selekcinis numeris 19436 iðsiskyrë iðtvermingumu þiemà: jo metûgliai buvo<br />

paþeisti 1–1,4 balo.<br />

3. Selekciniai numeriai imunûs rauplëms. Tai lemia Vf genas. Europinis vëþys<br />

nepaþeidë Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429. Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go<br />

Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427, rauplëmis <strong>ir</strong> vëþiu – Nr. 19436. Komleksiniu<br />

atsparumu visoms t<strong>ir</strong>toms ligoms pasiþymëjo Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

4. Selekciniai numeriai skyrësi vaismedþiø aukðèiu, vainiko skersmeniu <strong>ir</strong> jo projekcijos<br />

plotu bei kamieno skersmeniu. Þemiausiø vaismedþiø aukðtis siekë 2,70 m<br />

(Nr. 19707), aukðèiausiø – 3,73 m. (Nr. 20016). Maþiausias vainiko skersmuo buvo<br />

2,53 m (Nr. 20490), projekcijos plotas – 4,77 m 2 (Nr. 20490).<br />

29


5. Nustatyti selekciniø numeriø sk<strong>ir</strong>tumai pagal chlorofilo a, b <strong>ir</strong> karotinoidø<br />

kieká vaismedþiø lapuose. Esminiø sk<strong>ir</strong>tumø pagal chlorofilø a <strong>ir</strong> b santyká tarp t<strong>ir</strong>tø<br />

numeriø nenustatyta.<br />

Gauta 2006-11-20<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø biologiniø<br />

<strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1). P. 3–15.<br />

2. Beadle C. I. Plant growth analyses // Coombs J., Hall D. O., Long S. P., Scurlock J.<br />

M. O. (eds.). Techniques in bioproductivity and photosynthesis. 1987. P. 20–<strong>25</strong>.<br />

3. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

4. Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue // Focus. 1990.<br />

12(1). P. 13-15.<br />

5. Fischer C. Multiple resistant apple cultivars and consequences for apple breeding<br />

in the future // ActaHorticulturae. 2000. 538(1). P. 229–234.<br />

6. Ikase, L. & Dumravs, R. Apple breeding for disease resistance in Latvia. Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 265–274.<br />

7. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Babtai:<br />

LSDI, 2005. 211 p.<br />

8. Kellerhals M., Bertschinger L., Gessler C. Use of genetic resources in apple breeding<br />

and for sustainable fruit production // Journal of fruit and ornamental plant research.<br />

2004. Vol. XII. P. 51–62<br />

9. Kozlovskaya Z. Apple genetic resources and the<strong>ir</strong> potential for breeding in Belarus.<br />

// Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 43–49.<br />

10. Kozlovskaya Z. A., Marudo G. M., Ryabtsev A. S. Some results of the apple<br />

breeding programme in Belarus // Acta Horticulturae. 2000. No 538. V. 1. P. 219–223.<br />

11. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

22(3). P. 3–14.<br />

12. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

13. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J. B., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars<br />

// Fruit science. 2005. Vol. 222. P. 20–<strong>25</strong>.<br />

14. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT–PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

15. Uselis N. Assessment of biological and economical trails of 20 apple varieties<br />

on M.26 rootstock in the f<strong>ir</strong>st–fifth years in orchard // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 318–333.<br />

16. Valiuðkaitë A., Raðinskienë A., Uselis N., Raudonis L. Investigation of apple<br />

canker (Nectria galligena Bres.) in intensive medium dwarf apple orchard // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2003. 22(3). P. 194–200.<br />

17. http://www.ncbi.nlm.nih.gov/entrez/<br />

30


18. Ïîíîìàðåíêî Â. Â., Äçþáèíà À. À. Èñïîëüçîâàíèå ìèðîâîé êîëëåê-öèè ÿáëîíè<br />

Âñåðîññèéñêîãî èíñòèòóòà ðàñòåíèåâîäñòâà èì. Í. È. Âàâèëîâà â ñåëåêöèè XXI<br />

âåêà. // Ñîñòîÿíèå è ïåðñïåêòèâû ñåëåêöèè ïëîäîâûõ êóëü-òóð. Ìàòåðèàëû<br />

ìåæäóíàðîäíîé íàó÷íî–ïðàêòè÷åñêîé êîíôåðåíöèè. Ìèíñê, 2001. C. 15–16.<br />

19. Òðåòüÿêîâ Í. Í. Ôèçèîëîãèÿ è áèîõèìèÿ ñåëüñêîõîçÿéñòâåííûõ ðàñòåíèé.<br />

Ìîñêâà, 1998. 639 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF BIOLOGICAL IMPORTANT TRAITS<br />

OF APPLE SELECTIONS<br />

D. Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, P. Duchovskis<br />

Summary<br />

Biological traits of 16 apple (Malus domestica Borkh.) selections were investigated<br />

at the Lithuanian Institute of Horticulture in 2000–2006. Phenology, resistance<br />

of flowers to spring frosts, winterhardiness, apple tree vigour, resistance to scab<br />

(Venturia inaequalis (Cke) Wint.), European canker (Nectria galligena Bres.), apple<br />

blotch (Phyllosticta mali Pr. at Del.) were evaluated and content of pigments in<br />

leaves of apple trees grafted on rootstock M.26 were tested.<br />

It was detected that selection number No. 19464 ended the flowering most early,<br />

No. 19942 and standard cultivar ‘Antej’ – several days later. Flowers of No. 20427<br />

were the most resistant to spring frosts and flowers of No. 20016, No. 19436,<br />

No. 19709 and ‘Antej’ – were the most sensitive. Selection No. 19436 was estimated<br />

as the most winterhardy. Fruit trees of No. 19646, No. 19707, No. 20429,<br />

No. 20978 were fa<strong>ir</strong>ly winterhardy though injuries of one-year-old shoots were little<br />

higher. Winterhardiness of selections No. 19399, No. 20242, No. 20427 were lower.<br />

All investigated selections were immune to apple scab. Apple trees of No. 19496,<br />

No. 20016 and No. 20429 were not damaged by European canker. Symptoms of<br />

scab and apple blotch were not detected for No. 19399, No. 19646, No. 19707 and<br />

No. 20427, to scab and European canker – for No. 19436. Selections No. 20016 and<br />

No. 20429 were resistant to all investigated diseases.<br />

Tested selections differed by tree height, crown diameter, crown section area and<br />

trunk diameter. The height of the lowest trees was 2.70 m and this of the highest –<br />

3.73 m. The lowest crown diameter was 2.53 m and crown section area – 4.77 m 2 .<br />

Significant differences among selections were detected for chlorophyll a, b and carotenoid<br />

content in leaves. Selection No. 22170 had the highest content of photosynthetic<br />

pigments in leaves and No. 20429 – the lowest.<br />

Key words: apple, cultivars, growth, phenology, photosynthetic pigments, resistance<br />

to diseases.<br />

31


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ SELEKCINIØ NUMERIØ PRODUKTYVUMO IR<br />

VAISIØ KOKYBËS TYRIMAS<br />

Dalia GELVONAUSKIENË, Audrius SASNAUSKAS,<br />

Bronislovas GELVONAUSKIS, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2006 m. t<strong>ir</strong>ta 16 perspektyviø obelø selekciniø numeriø, sukurtø Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118 (‘Prima’ x ‘Idared’),<br />

Nr. 19436, Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235,<br />

Nr. 20239, Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170 (‘Noris’ x ‘Prima’), Nr. 20490<br />

(‘Auksis’ x ‘Prima’), Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x<br />

‘Idared’) kartu su ‘Antej’ <strong>ir</strong> ‘Delikates’ veislëmis. Dvimeèiai obelø sodinukai su M.26<br />

poskiepiu pasodinti 1999 m. pavasará. Sodinimo schema – 4 x 2,5 m, po vienà vaismedá<br />

laukelyje 5 pakartojimais. T<strong>ir</strong>tas vaismedþiø derlius (t/ha), vaisiø skynimo laikas,<br />

laikymasis, vaisiø kokybë <strong>ir</strong> cheminë sudëtis.<br />

Nustatyta, kad didþiausià suminá obuoliø derliø iðaugina ðie selekciniai numeriai:<br />

19436 (vëlyvas þieminis) <strong>ir</strong> 19707 (þieminis). Pagal obuoliø laikymosi laikotarpio<br />

trukmæ selekciniai numeriai sugrupuoti á: vëlyvus rudeninius – Nr. 19646 <strong>ir</strong> Nr. 22170;<br />

þieminius – Nr. 19707, Nr. 19709, Nr. 19942, Nr. 20235, Nr. 20239, Nr. 20242, Nr. 20490;<br />

vëlyvus þieminius – Nr. 19399, Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429, Nr. 20978,<br />

Nr. 21118. Nustatyta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242,<br />

20490, 21118, 19399, 19707, 20429, 20016 vaisiai. Vaisiø dydþio vienodumu iðsiskyrë<br />

Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978. Stambiausius vaisius iðaugino Nr. 22170 (201,3 g)<br />

<strong>ir</strong> Nr. 19646 (199,0 g) vaismedþiai. Tv<strong>ir</strong>èiausia buvo Nr. 19646, Nr. 20242, Nr. 20429,<br />

Nr. 21118 (> 400 N/cm 2 ) vaisiø odelë. Tv<strong>ir</strong>èiausias buvo Nr. 19646 (115 N/cm 2 ).<br />

vaisiø minkðtimas. Ávertinus t<strong>ir</strong>tø poþymiø visumà nustatyta, kad vertingiausi buvo<br />

19436, 19707 obelø selekciniai numeriai. Juos galima registruoti kaip veisles, tinkamas<br />

ekologinei verslinei sodininkystei. Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø<br />

poþymiø genetiniai ðaltiniai.<br />

Reikðminiai þodþiai: cheminë sudëtis, obelys, produktyvumas, selekciniai<br />

numeriai, vaisiø kokybë.<br />

Ávadas. Obelø (Malus domestica Borkh.) selekcijos tikslus lemia rinka <strong>ir</strong><br />

visuomenës poreikiai. Per pastaràjá deðimtmetá Europos moksliniai centrai sukûrë<br />

daugiau kaip 500 naujø obelø veisliø (Sansavini <strong>ir</strong> kt., 2005). Pastaruoju metu pasaulyje<br />

paplitusios obelø veislës – ‘Golden Delicious’, ‘Gala’, ‘Fuji’ <strong>ir</strong> ‘Braeburn’ (Kellerhals<br />

32


<strong>ir</strong> kt., 2004). Introdukuotø obelø veisliø biologinës <strong>ir</strong> ûkinës savybës sk<strong>ir</strong>tingomis<br />

agroklimato sàlygomis yra labai nevienodos (Bandaravièius <strong>ir</strong> kt., 2001; Uselis, 2001;<br />

Sasnauskas <strong>ir</strong> kt., 2005). Mûsø klimato zonoje daugumos introdukuotø komerciniø<br />

obelø veisliø vaisiø kokybë pablogëja, vaismedþiai paðàla. Obelø veislës, pritaikytos<br />

prie tam tikros agroklimato zonos, yra svarbios ekonomine <strong>ir</strong> ekologine prasme<br />

(Kellerhals <strong>ir</strong> kt., 2004). Viena ið pagrindiniø Europos ðaliø obelø selekciniø programø<br />

krypèiø – produktyvumo didinimas <strong>ir</strong> vaisiø kokybës gerinimas. Veislës turi gausiai <strong>ir</strong><br />

kasmet derëti, jø vaisiai turi bûti vienodi, patrauklios spalvos, gero skonio, standaus<br />

minkðtimo, juose turi bûti gausu maisto medþiagø.<br />

Darbo tikslas – iðt<strong>ir</strong>ti Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtø<br />

perspektyviø obelø selekciniø numeriø su M.26 poskiepiu produktyvumà <strong>ir</strong> vaisiø kokybæ.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2006 m.<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinti 16 selekciniø numeriø dvimeèiai obelø sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. T<strong>ir</strong>ta 16 perspektyviø obelø hibridø, sukurtø Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118, (‘Prima’ x ‘Idared’),<br />

Nr. 19436, Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235,<br />

Nr. 20239, Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170, (‘Noris’ x ‘Prima’), Nr. 20490<br />

(‘Auksis’ x ‘Prima’), Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x<br />

‘Idared’) kartu su áraðytomis á Nacionaliná augalø veisliø 2006 m sàraðà ‘Antej’ <strong>ir</strong><br />

‘Delikates’ obelø veislëmis.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet vegetacijos laikotarpiu vaismedþiai<br />

purkðti nuo ligø fungicidais (5–6 kartus), nuo kenkëjø – insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimø laikotarpiu buvo sk<strong>ir</strong>tingos meteorologinës<br />

sàlygos. Jos turëjo átakos vaismedþiø biologinëms savybëms bei ligø sukëlëjø<br />

vystymuisi <strong>ir</strong> plitimui. Oro temperatûra <strong>ir</strong> krituliø kiekis tyrimo metais buvo artimi<br />

daugiameèiams vidurkiams, iðskyrus 2001 m. liepos mënesá, kai temperatûra buvo<br />

4°C aukðtesnë, o krituliø per mënesá iðkrito 64 mm daugiau nei daugiametis vidurkis.<br />

2002 m. pavasaris buvo ðiltesnis, taèiau sausesnis, palyginti su daugiameèiu vidurkiu.<br />

B<strong>ir</strong>þelá krituliø iðkrito 63 mm daugiau uþ daugiametá vidurká. 2003 m. pavasará <strong>ir</strong><br />

vasaros pradþioje oro temperatûra buvo artima daugiametei, o krituliø iðkrito maþiau.<br />

B<strong>ir</strong>þelio <strong>ir</strong> liepos mënesiais orai buvo ðilti <strong>ir</strong> drëgni. 2004 m. kovo mënesio III dekados<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ daugiametæ vidutinæ. Vaismedþiø þydëjimo<br />

laikotarpiu uþregistruotos ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C). 2005 m.<br />

geguþës mënesá iðkrito 22,8 mm krituliø daugiau uþ daugiametá vidurká. 2002–2003 m.<br />

þiemà gruodþio mën. temperatûra buvo 5°C þemesnë, o vasario – 1,7°C aukðtesnë uþ<br />

daugiametæ vidutinæ. 2003–2004 m. þiemà gruodis <strong>ir</strong> vasaris buvo ðiltesni atitinkamai<br />

1,9°C <strong>ir</strong> 2,5°C, o sausis – 2,1°C ðaltesnis uþ daugiametá vidurká.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatytas vaismedþiø derlius (t/ha), vaisiø<br />

pasisk<strong>ir</strong>stymas á klases (proc.) pagal skersmená (aukðèiausia klasë – 65–75 mm, 1 <strong>ir</strong> 2<br />

klasës – 60–64 mm, nerûðiniai – iki 60 mm), vaisiø skynimo laikas, laikymosi pabaiga,<br />

vaisiaus masë (g), kokybë (iðvaizda, patrauklumas, bendra kokybë balais) <strong>ir</strong> cheminë<br />

sudëtis (t<strong>ir</strong>pios sausosios medþiagos, sausosios medþiagos, titruojamasis rûgðtingumas,<br />

33


odelës <strong>ir</strong> minkðtimo tv<strong>ir</strong>tumas). Bendras sausøjø medþiagø kiekis nustatytas gravimetriðkai<br />

– iðdþiovinus vaisius 105°C temperatûroje iki nekintamos masës – Food anglysis, 1986),<br />

t<strong>ir</strong>pios sausosios medþiagos – refraktometru, titruojamasis rûgðtingumas – titruojant<br />

0,1 N NaOH t<strong>ir</strong>palu <strong>ir</strong> perskaièiavus á citrinos rûgðtá (Åðìàêîâ <strong>ir</strong> kt., 1987).<br />

Eksperimentiniai duomenys biometriðkai ávertinti dispersinës analizës metodais<br />

(Tarakanovas, Raudonius, 2003), naudojant ANOVA statistinæ programà.<br />

Rezultatai. Derlius. Obelø selekciniai numeriai <strong>ir</strong> kontrolinës veislës pradëjo<br />

derëti treèiaisiais augimo sode metais. T<strong>ir</strong>tø selekciniø numeriø <strong>ir</strong> veisliø vidutinis<br />

suminis vaisiø derlius siekë 73 t/ha (1 pav.). Kontroliniø veisliø ‘Antej’ <strong>ir</strong> ‘Delikates’<br />

suminis derlius (atitinkamai 55 t/ha <strong>ir</strong> 67 t/ha) buvo maþesnis uþ bandymo derliaus<br />

vidurká. Ið t<strong>ir</strong>tø selekciniø numeriø maþiausiai vaisiø (37 t/ha) subrandino Nr. 20235,<br />

daugiausia (159 t/ha) – Nr. 19436. Pastarojo selekcinio numerio derlius buvo daugiau<br />

nei du kartus didesnis uþ vidurká.<br />

1 pav. Suminis obelø selekciniø numeriø <strong>ir</strong> veisliø vaisiø derlius, t/ha<br />

Fig. 1. Cumulative yield of apple selections and cultivars (t/ ha)<br />

Babtai, 2002–2005 m.<br />

2 pav. Vidutinis obelø selekciniø numeriø <strong>ir</strong> veisliø vaisiø derlius, t/ha<br />

Fig. 2. Cumulative yield of apple selections and cultivars (t/ha)<br />

Babtai, 2001–2005 m.<br />

34


2002–2005 m. vidutinis selekcinio numerio ar veislës derlius siekë nuo 7 t/ha<br />

(Nr. 20235) iki 32 t/ha (Nr. 19436) (2 pav.). Selekciniø numeriø <strong>ir</strong> veisliø derliaus<br />

vidurkis siekë beveik 15 t/ha. Aðtuoni selekciniai numeriai davë didesná vidutiná derliø<br />

uþ bandymo derliaus vidurká. Selekcinio numerio 19436 vidutinis derlius ið esmës<br />

skyrësi nuo kitø selekciniø numeriø <strong>ir</strong> kontroliniø veisliø vidutinio derliaus.<br />

Visi t<strong>ir</strong>ti selekciniai numeriai ðeðtaisiais augimo sode metais (2005 m.) derëjo<br />

gausiai. Kalibruojant vaisius nustatyta, kad 11 selekciniø numeriø vaismedþiai iðaugino<br />

tik aukðèiausios kokybës vaisius (1 lentelë). 1–2 klasës obuoliø kiekis áva<strong>ir</strong>avo nuo 1<br />

(Nr. 20427, Nr. 20490) iki 9 procentø (Nr. 20978). Trys selekciniai numeriai iðaugino<br />

1–2 proc. nerûðiniø obuoliø.<br />

Veislë<br />

Cultivar<br />

1 lentelë. Vaisiø susk<strong>ir</strong>stymas á klases pagal skersmená, %.<br />

Table 1. Classification of fruits according to diameter (%)<br />

Babtai, 2005 m.<br />

Aukðèiausia klasë<br />

The highest class<br />

per 75 mm<br />

65–75 mm<br />

iš viso<br />

more than 75 mm<br />

total<br />

19399 35 65 100<br />

19436 39 61 100<br />

19646 78 22 100<br />

19707 13 87 100<br />

35<br />

I <strong>ir</strong> II klasës<br />

I and II classes<br />

60–64 mm<br />

Nerûðiniai<br />

Not specific<br />

iki 60 mm<br />

up to 60 mm<br />

19709 91 91 7 2<br />

19942 28 72 100<br />

20016 72 28 100<br />

20235 21 75 96 3 1<br />

20239 45 55 100<br />

20242 41 59 100<br />

20427 12 86 98 1 1<br />

20429 57 43 100<br />

20490 20 79 99 1<br />

20978 5 86 91 9<br />

22170 73 27 100<br />

21118 29 71 100<br />

‘Delikates’ 54 46 100<br />

‘Antej’ 31 69 100<br />

Skynimo laikas, laikymosi pabaiga <strong>ir</strong> vaisiø kokybës rodikliai. T<strong>ir</strong>tø obelø<br />

selekciniø numeriø vaisiø skynimo laikas skyrësi. Anksèiausiai skinami Nr. 19707<br />

(09 10), vëliausiai – Nr. 21118 (09 29) vaisiai (2 lentelë).<br />

Ilgiausiai iðsilaikë Nr. 21118 <strong>ir</strong> Nr. 20978 (iki balandþio mën. II dekados),<br />

trumpiausiai – Nr. 19646 <strong>ir</strong> Nr.22170 (atitinkamai iki 11 14 <strong>ir</strong> 12 16) vaisiai.


Pagal obuoliø laikymosi laikotarpio trukmæ selekciniai numeriai sugrupuoti á:<br />

1) vëlyvus rudeninius: Nr. 19646 <strong>ir</strong> Nr. 22170 – vaisius tinka vartoti iki gruodþio mën.;<br />

2) þieminius: Nr. 19707, Nr. 19709, Nr. 19942, Nr. 20235, Nr. 20239, Nr. 20242,<br />

Nr. 20490 – vaisiø vartojimo laikas pasibaigia vasario mën.;<br />

3) vëlyvus þieminius: Nr. 19399, Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429,<br />

Nr. 20978, Nr. 21118 – vaisius tinka vartoti iki kovo mën. <strong>ir</strong> ilgiau.<br />

2 lentelë. Obuoliø skynimo laikas, laikymosi pabaiga <strong>ir</strong> kokybës rodikliai<br />

Table 2. Harvest date, end of storage and fruit quality parameters of apple cultivars and selections<br />

Babtai, 2002–2005 m<br />

Veislë<br />

Cultivar<br />

Skynimo<br />

laikas, mën.,<br />

d.<br />

Harvest date<br />

(month, day)<br />

Laikymosi<br />

pabaiga,<br />

mën., d.<br />

End of storage<br />

(month, day)<br />

Vaisiø masë<br />

Fruit weight, g<br />

36<br />

Patrauklumas<br />

balais<br />

Appearance<br />

(scores)<br />

Skonis<br />

balais<br />

Taste (scores)<br />

Vaisiø<br />

kokybë<br />

balais<br />

Quality<br />

evaluation<br />

(scores)<br />

19399 09 20 03 14 144,6 7,5 7,3 7,3<br />

19436 09 22 03 13 149,0 7,1 7,2 7,1<br />

19646 09 23 11 14 199,0 7,3 7,1 7,1<br />

19707 09 15 01 19 130,6 7,4 7,2 7,3<br />

19709 09 10 01 23 119,6 7,3 7,3 7,3<br />

19942 09 22 01 16 156,0 7,3 5,9 5,9<br />

20016 09 09 03 21 146,6 7,3 7,2 7,2<br />

20235 09 20 02 12 148,7 7,4 7,1 7,2<br />

20239 09 14 01 16 150,0 7,3 6,7 7,0<br />

20242 09 27 01 17 147,7 7,4 7,4 7,4<br />

20427 09 18 03 15 109,0 7,3 7,1 7,2<br />

20429 08 18 03 12 138,0 7,2 7,2 7,2<br />

20490 09 21 02 21 161,7 7,6 7,3 7,4<br />

20978 09 19 04 20 102,7 7,5 7,2 7,2<br />

22170 09 26 12 16 201,3 7,4 7,1 7,2<br />

21118 09 29 04 22 103,4 7,4 7,4 7,4<br />

‘Delikates’ 09 12 12 23 138,7 7,5 7,3 7,4<br />

‘Antej’ 09 26 03 05 171,4 7,3 7,0 7,1<br />

Vidurkis<br />

Mean<br />

09 19 01 15 145,4 7,37 7,12 7,17<br />

R 05 / LSD 05 6,18 7,74 18,3 0,18 0,28 0,12<br />

Ávertinus vaisiaus vidutinæ masæ nustatyta, kad stambiausius vaisius iðaugino<br />

Nr. 22170 (201,3 g) <strong>ir</strong> Nr. 19646 (199,0 g), o smulkiausius – Nr. 20978, Nr. 21118,<br />

Nr. 20427 (102,7–109,0 g) vaismedþiai.


Selekciniai numeriai vaisiø patrauklumu prilygo kontrolinëms veislëms.<br />

Daugumos hibridø vaisiø skonis buvo panaðus á kontroliniø veisliø vaisiø skoná.<br />

Ávertinta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242, 20490 <strong>ir</strong><br />

21118 vaisiai. Hibridø Nr. 19942 <strong>ir</strong> Nr. 20239 vaisiø skonis <strong>ir</strong> kokybë ávertinta<br />

prasèiausiai (2 lentelë).<br />

Vaisiø cheminë sudëtis. T<strong>ir</strong>piø sausøjø medþiagø kiekis t<strong>ir</strong>tø selekciniø numeriø<br />

vaisiuose siekë 11,8–14,0 procentø (3 lentelë). Daugiausia (14,0 proc.) t<strong>ir</strong>piø sausøjø<br />

medþiagø rasta Nr. 19707 <strong>ir</strong> Nr. 19646 vaisiuose. Maþiausiu titruojamuoju rûgðtingumu<br />

iðsiskyrë Nr. 19707 <strong>ir</strong> Nr. 20490 (atitinkamai 0,46 <strong>ir</strong> 0,49 proc.), didþiausiu –<br />

Nr. 20235 <strong>ir</strong> Nr. 20016 (atitinkamai 1,01 <strong>ir</strong> 0,93 proc.) vaisiai. Daugiausia sausøjø<br />

medþiagø (16,0 proc.) rasta Nr. 21118 obuoliuose.<br />

Veislë<br />

Cultivar<br />

3 lentelë. Obuoliø cheminë sudëtis<br />

Table 3. Biochemical characteristic of fruits<br />

Babtai, 2002–2005 m. vidurkiai / average<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Soluble solids, %<br />

Titruojamasis<br />

rûgðtingumas<br />

Titratable acidity, %<br />

Sausosios medžiagos<br />

Dry matter, %<br />

19399 12,7 0,8 14,5<br />

19436 11,8 0,57 12,9<br />

19646 13,8 0,81 14,6<br />

19707 14,0 0,46 15,5<br />

19709 13,3 0,68 14,2<br />

19942 12,6 0,54 14,6<br />

20016 12,6 0,93 14,1<br />

20235 12,1 1,01 14,2<br />

20239 13,7 0,49 15,9<br />

20242 13,2 0,53 15,7<br />

20427 12,5 0,83 13,5<br />

20429 11,9 0,57 13,1<br />

20490 12,1 0,49 14,1<br />

20978 11,8 0,85 13,5<br />

21118 12,5 0,52 16,0<br />

22170 13,4 0,67 14,2<br />

‘Delikates’ 11,0 0,31 13,3<br />

‘Antej’ 14,3 0,80 17,5<br />

Vidurkis<br />

Mean<br />

12,7 0,66 14,5<br />

R 05 / LSD 05 0,89 0,189 1,19<br />

37


Vaisiø sulèiø iðeiga kito nuo 53 (Nr. 20239) iki 75 procentø (Nr. 20978) (3 pav.).<br />

Selekciniø numeriø 19436, 20016 <strong>ir</strong> 20490 vaisiuose sulèiø buvo apie 70 procentø.<br />

Vidutinis sulèiø kiekis t<strong>ir</strong>tuose selekciniø numeriø vaisiuose siekë 67 procentus.<br />

3 pav. Obuoliø sulèiø iðeiga, %<br />

Fig. 3. Output of apple juice (%)<br />

Babtai, 2005 m.<br />

T<strong>ir</strong>tø selekciniø numeriø vaisiø odelës tv<strong>ir</strong>tumas labai skyrësi (4 pav.). Trapiausia<br />

buvo (1<strong>25</strong> g/cm 2 ) Nr. 20239 vaisiø odelë. Jos tv<strong>ir</strong>tumas buvo maþesnis uþ kontroliniø<br />

veisliø (360 N/cm 2 , 220 N/cm 2 ) <strong>ir</strong> bandymo vidurká (350 N/cm 2 ). Tv<strong>ir</strong>èiausia buvo<br />

(daugiau kaip 400 g/cm 2 ) selekciniø numeriø 19646, 20242, 20429, 21118 vaisiø<br />

odelë. Ðeðiø selekciniø numeriø odelë buvo tv<strong>ir</strong>tesnë uþ bandymo vidurká <strong>ir</strong> kontroliniø<br />

veisliø vaisiø odelæ.<br />

4 pav. Obuoliø odelës tv<strong>ir</strong>tumas, g/cm 2<br />

Fig 4. F<strong>ir</strong>mness of apple skin (g/cm 2 )<br />

Selekciniai numeriai labai skyrësi vaisiø minkðtimo tv<strong>ir</strong>tumu (5 pav.). Tv<strong>ir</strong>èiausias<br />

buvo Nr. 19646 minkðtimas – 5 N/cm 2 . Minkðèiausius vaisius (41 N/cm 2 <strong>ir</strong> 49 N/cm 2 )<br />

38


iðaugino Nr. 19942 <strong>ir</strong> Nr. 20239. Ðiuo poþymiu pastarieji selekciniai numeriai ið esmës<br />

nesiskyrë nuo kontroliniø ‘Antej’ <strong>ir</strong> ‘Delikates’ (58 N/cm 2 <strong>ir</strong> 40 N/cm 2 ) veisliø.<br />

5 pav. Obuoliø minkðtimo tv<strong>ir</strong>tumas, N/cm 2<br />

Fig. 5. F<strong>ir</strong>mness of apple flesh (N/cm 2 )<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Tobulëjant sodininkystës, vaisiø perd<strong>ir</strong>bimo technologijoms, augant<br />

rinkos <strong>ir</strong> visuomenës poreikiams reikia vis naujø obelø veisliø. Naujausi genetikos <strong>ir</strong><br />

biotechnologijos pasiekimai suteikia galimybiø viename genotipe sujungti daugelá<br />

vertingø poþymiø, lemiamø sk<strong>ir</strong>tingos genetinës kontrolës. Ypaè reikðmingos yra tos<br />

veislës, kurios gerai prisitaiko prie biotiniø <strong>ir</strong> abiotiniø veiksniø (Kozlovskaya <strong>ir</strong> kt.,<br />

2000; Sansavini <strong>ir</strong> kt., 2005), o perd<strong>ir</strong>bamajai pramonei reikia derlingø, nuolat deranèiø<br />

obelø veisliø, kuriø vaisiuose bûtø daug cukraus, vidutiniðkai – rûgðèiø, apie 11 proc.<br />

t<strong>ir</strong>piø sausøjø medþiagø (Fischer <strong>ir</strong> kt., 1999).<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtø perspektyviø, rauplëms<br />

imuniø selekciniø numeriø tyrimai parodë, kad kasmet nuo derëjimo pradþios<br />

daugumos jø derlius didëjo (1 pav.). Tyrimø laikotarpiu didþiausià suminá derliø davë<br />

Nr. 19436 <strong>ir</strong> Nr. 19707 (‘Katja’ x ‘Prima’ kryþminimo kombinacijos sëjinukai). Labai<br />

derlingas buvo <strong>ir</strong> Nr. 20490, taèiau jo vaismedþiai prameèiavo kaip <strong>ir</strong> kontrolinë veislë<br />

‘Antej’. Þinoma, kad obelø veisliø derlingumas priklauso ne tik nuo genetinës kontrolës,<br />

bet <strong>ir</strong> nuo klimato sàlygø (Ñåäîâ <strong>ir</strong> kt., 2005). Kadangi ‘Antej’ vaismedþiai yra labai<br />

produktyvûs, kasmet derantys (Êîçëîâñêàÿ, 2003), tikëtina, kad jø derëjimo<br />

nepastovumui galëjo átakos turëti nepalankûs abiotiniai veiksniai.<br />

Vienas ið svarbiø vaisiø poþymiø yra jø vienodumas (Laurens, 1998). T<strong>ir</strong>tø<br />

selekciniø numeriø 91–100 proc. vaisiø buvo aukðèiausios klasës. Vaisiø dydþio<br />

vienodumu iðsiskyrë Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978, taèiau jø vaisiai yra gan<br />

smulkûs (1 lentelë). Vaisiø patrauklumas, skonis vertinami subjektyviai. Sk<strong>ir</strong>tingø<br />

ðaliø þmoniø skoniai sk<strong>ir</strong>iasi, pvz., Kinijoje, Japonijoje, Brazilijoje, Indijoje paklausesni<br />

saldûs, o Europoje didesnæ paklausà turi saldþiarûgðèiai, sultingi, trapaus minkðtimo<br />

obuoliai (Êîíäðàòåíêî, Õîìÿê, 2001). Visø selekciniø numeriø (iðskyrus Nr. 19942)<br />

vaisiø kokybë ið esmës prilygo ar tai vienos, ar kitos kontrolinës veislës vaisiø kokybei.<br />

39


Veislës, kuriø vaisiai tinkami perd<strong>ir</strong>bti, turi atitikti su galutiniu produktu (sultys,<br />

dþiovinti vaisiai <strong>ir</strong> kt.) susijusius kriterijus. Belgijoje, Prancûzijoje, Ispanijoje viena ið<br />

obelø selekcijos krypèiø – sukurti veisles, kuriø vaisiai tiktø sultims <strong>ir</strong> sidrams gaminti.<br />

(Êîçëîâñêàÿ, 2003). T<strong>ir</strong>tø selekciniø numeriø vaisiø sulèiø iðeiga kito nuo 53<br />

(Nr. 20239) iki 75 proc. (Nr. 20978) (3 pav.). Selekciniø numeriø 20978, 19436,<br />

20016 <strong>ir</strong> 20490 vaisiai buvo labai sultingi.<br />

Viena svarbiausiø versliniø obelø veisliø savybiø yra geras vaisiø transportabilumas.<br />

Ið t<strong>ir</strong>tø selekciniø numeriø odelës <strong>ir</strong> vaisiaus minkðtimo tv<strong>ir</strong>tumu iðsiskyrë<br />

Nr. 19646. Maþiausias buvo Nr. 20239 vaisiø abiejø audiniø tv<strong>ir</strong>tumas. Ávertinus t<strong>ir</strong>tø<br />

poþymiø visumà nustatyta, kad vertingiausi obelø selekciniai numeriai – 19436 <strong>ir</strong><br />

19707. Juos galima registruoti kaip veisles, tinkamas ekologinei verslinei sodininkystei.<br />

Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø poþymiø genetiniai ðaltiniai<br />

Iðvados. 1. Didþiausià suminá obuoliø derliø iðaugino selekciniai numeriai 19436<br />

(vëlyvas þieminis) <strong>ir</strong> 19707 (þieminis). Aðtuoni selekciniai numeriai davë didesná vidutiná<br />

derliø uþ bandymo vidurká.<br />

2. Pagal obuoliø laikymosi laikotarpio trukmæ selekciniai numeriai sugrupuoti á:<br />

vëlyvus rudeninius – Nr. 19646 <strong>ir</strong> Nr. 22170; þieminius – Nr. 19707, Nr. 19709,<br />

Nr. 19942, Nr.20235, Nr.20239, Nr.20242, Nr.20490; vëlyvus þieminius – Nr. 19399,<br />

Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429, Nr. 20978, Nr. 21118.<br />

3. Ávertinta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242,<br />

20490, 21118, 19399,19707, 20429, 20016 vaisiai. Vaisiø dydþio vienodumu iðsiskyrë<br />

Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978. 11 selekciniø numeriø vaismedþiai iðaugino tik<br />

aukðèiausios klasës vaisius. Stambiausius vaisius iðaugino Nr. 22170 (201,3 g) <strong>ir</strong><br />

Nr. 19646 (199,0 g) vaismedþiai.<br />

4. Tv<strong>ir</strong>èiausià odelæ turëjo Nr. 19646, Nr. 20242, Nr. 20429, Nr. 21118 (> 400 g/cm 2 )<br />

vaisiai. Tv<strong>ir</strong>èiausias minkðtimas buvo Nr. 19646 (115 N/cm 2 ) vaisiø.<br />

5. Ávertinus t<strong>ir</strong>tø poþymiø visumà, nustatyta, kad vertingiausi yra 19436, 19707<br />

obelø selekciniai numeriai. Juos galima registruoti kaip veisles, tinkamas ekologinei<br />

verslinei sodininkystei. Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø poþymiø<br />

genetiniai ðaltiniai.<br />

Padëka. Autoriai dëkoja Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui uþ paramà<br />

atliekant ðiuos tyrimus.<br />

Gauta 2006-11-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø<br />

biologiniø <strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1).<br />

P. 315.<br />

2. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Babtai:<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, 2005. 211 p.<br />

40


3. Fischer M., Schüler W., Fischer C., Gerber H. J. Nutzung Pillnitzer apfelsorten für<br />

die herstellung von verarbeitungsprodukten aus biologisch orientiertem Anbau //<br />

Erwerbsobstbau. 1999. Vol. 41. P. 93–99.<br />

4. Food analysis: general techniques, additives, contaminants, and composition.<br />

Rome: FAO, 1986. 205 p.<br />

5. Kellerhals M., Bertschinger L., Gessler C. Use of genetic resources in apple breeding<br />

and for sustainable fruit production // Journal of fruit and ornamental plant research. 2004.<br />

Vol. XII. P. 51–62.<br />

6. Kozlovskaya Z. Apple genetic resources and the<strong>ir</strong> potential for breeding in Belarus //<br />

Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 43–49.<br />

7. Kozlovskaya Z. A., Marudo G.M., Ryabtsev A. S. Some results of the apple breeding<br />

programme in Belarus // Acta Horticulturae. 2000. No 538. V. 1. P. 219–223.<br />

8. Laurens F. Review of the current apple breeding programmes in the world: objectives<br />

for scion cultivar improvements // Acta Horticulturae. 1998. Vol. 477. P. 163–170<br />

9. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

10. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars //<br />

Fruit science. Vol. 222. 2005. P. 20–<strong>25</strong>.<br />

11. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

12. Uselis N. Assessment of biological and economical trails of 20 apple varieties on<br />

M.26 rootstock in the f<strong>ir</strong>st-fifth years in orchard // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 318–333.<br />

13. Åðìàêîâ Ô. È., Àðèñèìîâè÷ Â. Â., ßðî÷ Í. Ï., Ïåðóàíñêèé Þ. Â., Ëó-êîâíèêîâà<br />

Ã. À., Èêîííèêîâà Ì. È. Ìåòîäû áèîõèìè÷åñêîâà èññëåäîâàíèÿ ðàñòåíèé (Ïîä<br />

ðåä. À. È. Åðìàêîâà). Ëåíèíãðàä, 1987. 431 ñ.<br />

14. Êîíäðàòåíêî Ò. Å., Õîìÿê Ì. ß. Ñó÷ñíié ñòàí âèðîáíèöòâà ñà-äèâíîãî<br />

ìàòåðiàëó ÿáëóí â Óêðàiíi // Càäiâíèöòâî. 2001. Âèï. 52. C. 64–69<br />

15. Êîçëîâñêàÿ Ç. À. Ñîâåðøåíñòâîâàíèå ñîðòèìåíòà ÿáëîíè â Áåëàðó-ñè.<br />

Ìèíñê, 2003. 167 ñ.<br />

16. Ñîðòà ÿáëîíè è ãðóøè (ðåä. Ñåäîâ Å. Í.) // ÂÍÈÈÑÏÊ. Îðåë, 2004. 208 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY AND FRUIT QUALITY OF APPLE<br />

SELECTIONS<br />

D. Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis, P. Viðkelis<br />

Summary<br />

Advanced selections received at the Lithuanian Institute of Horticulture<br />

(No. 19399, No. 21118, (‘Prima’ x ‘Idared’), No. 19436, No. 19707, No. 19709,<br />

No. 19646 (‘Katja’ x ‘Prima’), No. 19942, No. 20235, No. 20239, No. 20242,<br />

No. 20427, No. 20429, No. 22170, (‘Noris’ x ‘Prima’), No. 20490 (‘Auksis’ x ‘Prima’)<br />

41


No. 20978 (‘Tellissaare’ x ‘Prima’), No. 20016 (‘Prima’ x ‘Idared’) and standard<br />

cultivars ‘Antej’ and ‘Delikates’ were tested in 1999–2006. Two-years-old apple<br />

trees on rootstock M.26 were planted in an orchard in 1999. Trees were placed 4 x<br />

2.5 m and selection was presented by 5 trees, 1 tree per replication. Apple tree yield<br />

(t ha -1 ), fruit size, fruits picking time, storage time, fruit quality and fruit chemical<br />

content was investigated.<br />

It was determined that cumulative yield of selections No. 19436 and 19707 was<br />

the highest. According to storage time, selections were grouped as late autumn cultivars<br />

– No. 19646 and No. 22170, winter cultivars – No. 19707, No. 19709, No. 19942,<br />

No. 20235, No. 20239, No. 20242, No. 20490, late winter cultivars – No. 19399,<br />

No. 19436, No. 20016, No. 20427, No. 20429, No. 20978, No. 21118. Fruits taste<br />

and quality of selections No. 20242, No. 20490, No. 21118, No. 19399, No. 19707,<br />

No. 20429 and No. 20016 were the best. Selections No. 19709, No. 20427 and No.<br />

20978 had uniform fruit size. The largest fruits had selections No. 22170 (201.3 g)<br />

and No. 19646 (199.0 g). Fruit skin f<strong>ir</strong>mness of selections No. 19646, No. 20242,<br />

No. 20429 and No. 21118 (>400 N/cm 2 ) was the highest, flesh f<strong>ir</strong>mness – of selection<br />

No. 19646 (115 N/cm 2 ).<br />

Selections No. 19436 and No. 19707 can be selected as the best ones among<br />

the tested selections.<br />

Kay words: apple selections, chemical content, fruit quality, productivity.<br />

42


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

BRAÐKIØ VEISLIØ TYRIMAS LIETUVOJE<br />

PAGAL TARPTAUTINÆ COST 863 PROGRAMÀ<br />

Rytis RUGIENIUS, Audrius SASNAUSKAS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-45333, Babtai, Kauno r.<br />

El. paðtas r.rugienius@lsdi.lt<br />

2003–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute pagal tarptautinæ<br />

COST863 programà t<strong>ir</strong>tos 10 veisliø <strong>ir</strong> hibridiniø klonø, pasodintø 2003 <strong>ir</strong> 2004<br />

metais, braðkiø biologinës <strong>ir</strong> ûkinës savybës. Vidurio Lietuvos agroklimato sàlygomis<br />

iðtvermingiausios þiemà ið t<strong>ir</strong>tø veisliø buvo ‘Salut’ <strong>ir</strong> ‘Roxana’ braðkës. Labiausiai<br />

paðalo ‘Irma’ <strong>ir</strong> ‘Alba’ veisliø augalai. Pagal derëjimo laikà veislës ‘Qeen Eliza’,<br />

’Salut’, ‘Alba’, ‘Roxana’ prisk<strong>ir</strong>tinos prie vidutinio ankstyvumo, hibridinis klonas<br />

(toliau – h. k.) VR96582 – prie vidutiniðkai vëlyvø, o h. k. 92.340.3 – prie vëlyvø<br />

braðkiø veisliø. Veislë ‘Irma’ yra nejautri dienos ilgumui, dera vidutiniðkai anksti.<br />

Vidutiniðkai per dvejus metus (2004 <strong>ir</strong> 2005) derlingiausia buvo ‘Roxana’ veislë<br />

(19,6 t/ha) <strong>ir</strong> h. k. 92.340.3 (18,5t/ha), 2005 <strong>ir</strong> 2006 metais – ‘Roxana’ (16,5 t/ha) <strong>ir</strong><br />

‘Salut’ (13,8 t/ha). Didþiausias uogas uþaugino ‘Roxana’, ‘Qeen Eliza’ veislës <strong>ir</strong> h. k.<br />

92.340.3. Iðoriniu patrauklumu iðsiskyrë ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkiø uogos.<br />

Tv<strong>ir</strong>tos konsistencijos buvo h. k. 92.340.3, ‘Alba’ <strong>ir</strong> h. k. VR96582 uogos, geriausias<br />

skonis – ‘Irma’ uogø. Pagal ûkiðkai svarbiø savybiø visumà tinkamiausios Lietuvoje<br />

auginti yra ‘Roxana’, ‘Salut’ veisliø <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

Reikðminiai þodþiai: Fragaria ananassa Duch., derlingumas, iðtvermingumas<br />

þiemà, uogø kokybë.<br />

Ávadas. Iðsamios þinios apie naujausias Europoje <strong>ir</strong> pasaulyje sukurtas braðkiø<br />

veisles yra svarbios ne tik augintojams, siekiantiems maksimalaus pelno maþiausiomis<br />

sànaudomis, vartotojams, kuriems svarbi uogø kokybë, bet <strong>ir</strong> selekcininkams,<br />

kurie siekia iðvesti naujas, tobulesnes, visø rinkos dalyviø poreikius atitinkanèias,<br />

þmogaus sveikatà <strong>ir</strong> aplinkà tausojanèias veisles. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute braðkiø veislës buvo t<strong>ir</strong>iamos nuolat, nuolat vykdoma jø selekcija<br />

(Misevièiûtë, Lukoðevièius, 1988; Uselis, Raðinskienë, 1999, 2001; Raðinskienë, Uselis,<br />

2000; Rugienius, Sasnauskas, 2005). Lietuvai ástojus á ES, iðsiplëtë ne tik selekcininkø<br />

<strong>ir</strong> veisliø tyrëjø bendradarbiavimo galimybës, bet <strong>ir</strong> iðkilo naujø uþdaviniø. Pagrindinis<br />

tarptautinës COST programos tikslas yra plëtoti ðaliø bendradarbiavimà mokslo<br />

srityje, skatinti mokslo <strong>ir</strong> verslo sàveikà vartotojo <strong>ir</strong> aplinkos interesais (Faedi, 2004).<br />

Nuo 2001m. LSDI ásijungë á tarptautinæ COST836 (vëliau <strong>ir</strong> á jos tæsiná – COST863)<br />

programà <strong>ir</strong> á jos esminæ veiklà – Europos veisliø tyrimo tinklà. Ðios veiklos tikslas –<br />

43


iðt<strong>ir</strong>ti naujausias braðkiø veisles áva<strong>ir</strong>aus klimato <strong>ir</strong> auginimo technologijø sàlygomis<br />

(Mezzetti, 2004). Kuriant ðá tinklà taip pat buvo siekiama per trumpà laikà ávertinti naujø<br />

veisliø prisitaikymà, tinkamumà auginti <strong>ir</strong> vartoti konkreèioje ðalyje teikiant reikalingà<br />

informacijà augintojams apie naujø veisliø ypatybes, galimybes ðiomis veislëmis uþpildyti<br />

niðas, susidariusias ðiø ðaliø rinkose, ávertinti, ar uogø kokybës rodikliai atitinka<br />

konkretaus vartotojo interesus. Kadangi tos paèios veislës buvo t<strong>ir</strong>iamos visose tinkle<br />

dalyvaujanèiose ðalyse vienu metu, buvo galima plaèiau iðt<strong>ir</strong>ti genotipo <strong>ir</strong> aplinkos sàveikà<br />

(Navatel, Krüger, 2004). Pagal 2001–2004 m. tyrimø rezultatus ðiaurës ðalyse<br />

buvo siûloma auginti ‘Florence’, ‘Kimberly’, ‘Vima Zanta’, ‘Filon’, ‘Madeleine’ <strong>ir</strong> ‘Alice’<br />

veisles (Hietaranta <strong>ir</strong> kt., 2004). Lenkijoje, be ðiø minëtø veisliø, gerai buvo vertinamos<br />

<strong>ir</strong> ‘Tarda’, ‘Civmad’, ‘Maya’, ‘Paros’, ‘Elkat’, ‘Patty’ (Krüger <strong>ir</strong> kt., 2004; Masny,<br />

Zurawicz, 2004). Nuo 2003 m. ðalyse COST836 narëse, tarp jø <strong>ir</strong> Lietuvoje, pradëtos<br />

t<strong>ir</strong>ti naujos veislës. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas gavo Europos<br />

medelynuose iðaugintø naujø veisliø daigus bendriems tyrimams. Braðkës tyrimams<br />

augintos pagal Lietuvoje taikomas auginimo technologijas, o vertinimai atlikti pagal<br />

COST836 veikloje priimtas visose ðalyse vienodas metodikas.<br />

Darbo tikslas – ávertinti naujø braðkiø veisliø <strong>ir</strong> selekciniø numeriø, pateiktø<br />

tarptautiniams (COST836 <strong>ir</strong> COST863 veiklø) tyrimams, tinkamumà auginti Lietuvos<br />

agroklimato sàlygomis.<br />

Medþiagos <strong>ir</strong> metodai. Tyrimas atliktas 2003–2006 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto selekciniame uogyne. Tyrimui naudotos braðkiø Fragaria<br />

x ananassa Duch. veislës <strong>ir</strong> selekciniai numeriai, iðvesti Italijos Cesena regiono Forli<br />

bandymø stotyje: ‘Roxana’, ’Alba’ ‘Qeen Eliza’ (iðvesta kaip hibridinis klonas (h. k.)<br />

Nr. 94.568.2), ‘Irma’ (iðvesta kaip h. k. VR 95.42.03), h. k. VR 96.58.2 bei h. k.<br />

92.340.3. Taip pat Lenkijos sodininkystës <strong>ir</strong> gëlininkystës institute Skiernievicuose<br />

iðvesta veislë ‘Salut’. Standartinës veislës – ‘Honeoye’, ’Venta’ <strong>ir</strong> ‘Dangë’. Atliekant<br />

mûsø tyrimà, augalai sodinti <strong>ir</strong> priþiûrëti pagal LSDI priimtas intensyvias sodø <strong>ir</strong><br />

uogynø auginimo technologijas (Uselis, 2002). D<strong>ir</strong>voþemis – sekliai karbonatingas<br />

giliau glëjiðkas rudþemis (RDg4-k1). Braðkës buvo sodinamos du kartus – 2003 m.<br />

(I sodinimas) <strong>ir</strong> 2004 m. (II sodinimas) – eilëmis 0,8 m x 0,3 m atstumu. Apskaitiniame<br />

bandymø laukelyje – 15 augalø. Atlikti keturi bandymo pakartojimai. Abejais<br />

metais sodintø veisliø sudëtis panaði, tik antraisiais metais buvo sodinamos veislës<br />

‘Salut’ <strong>ir</strong> ‘Venta’, bet nebuvo sodinama ‘Honeoye’. Vertinta: augalø paðalimas po<br />

þiemos, balandþio–geguþës mënesá (9 balai – þuvæs, 0 – nepaðalæs); augalø bûklë po<br />

derliaus nuëmimo (9 balai – puiki, 0 – augalai þuvæ), þydëjimo pradþia (data, kai<br />

praþydo 3–5 proc. þiedø); uogø nokimo pradþia (data, kai 3–5 proc. uogø buvo<br />

skynimo brandos); uogø derlius (perskaièiuotas á t/ha), didþiausios uogos masë (trijø<br />

didþiausiø p<strong>ir</strong>mojo ar antrojo skynimo uogø vidutinë masë, g), vidutinë uogos masë<br />

derëjimo pradþioje (antrojo skynimo vidutinë uogos masë, g), vidutinë uogos masë<br />

masinio derëjimo metu (skynimo, kurio metu priskinta daugiausiai uogø, daþniausiai<br />

ketv<strong>ir</strong>tojo ar penktojo, 100 uogø vidutinë masë, g). LSDI pomologinë komisija atliko<br />

uogø iðorinio patrauklumo, minkðtimo konsistencijos, bendros kokybës ávertinimà<br />

balais (1 – maþiausia iðraiðka, 5 – didþiausia iðraiðka). Tyrimø duomenys statistiðkai<br />

ávertinti naudojant programà ANOVA.<br />

Meteorologinës sàlygos tyrimø metais braðkëms augti buvo tipiðkos <strong>ir</strong> vidutiniðkai<br />

palankios. 2004–2005 <strong>ir</strong> 2005–2006 m. þiemà tam tikrais laikotarpiais temperatû-<br />

44


os svyravimai v<strong>ir</strong>ðijo 30°C <strong>ir</strong>, esant nepakankamai sniego dangai, augalai gerokai<br />

paðalo, o tai turëjo átakos jautresniø veisliø augimui <strong>ir</strong> derëjimui. Pavasario ðalnos<br />

tyrimo laikotarpiu didesnës þalos derliui nepadarë. Vegetacijos metu 2004 m. b<strong>ir</strong>þelio<br />

<strong>ir</strong> rugpjûèio mënesiais buvo tarpsniø, kai krituliø iðkrito 1,6 karto daugiau uþ normà<br />

<strong>ir</strong> dël lietaus <strong>ir</strong> drëgmës pertekliaus pablogëjo d<strong>ir</strong>vos aeracija. 2005 metais derëjimo<br />

sàlygos buvo palankios, o 2006 m. derëjimo pabaigos laikotarpis buvo sausas, dël to<br />

uogos susmulkëjo <strong>ir</strong> sutrumpëjo derëjimo laikas.<br />

Rezultatai. Braðkiø iðtvermingumas 2003–2004 m. þiemà buvo sk<strong>ir</strong>tingas <strong>ir</strong><br />

paðalimo þiemà poþymiai 2004 m. pavasará, atsiþvelgiant á veislæ, skyrësi nuo 4,0 iki<br />

7,4 balo (1 lentelë). Jautriausi þiemojimo sàlygoms buvo veislës ‘Irma’ augalai (paðalimas<br />

– 7,4 balo), nuo jos ið esmës nesiskyrë h. k. VR96.58.2, ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong><br />

h. k. 92.340.3 augalai. Maþiau paðalo veisliø ‘Honeoye’, ‘Roxana’ <strong>ir</strong> ‘Dangë’ braðkës.<br />

Paðalimas turëjo átakos augalø bûklei tais paèiais metais. Geriausia buvo ‘Honeoye’,<br />

‘Roxana’ augalø bûklë, prasèiausia – ‘Irma’ <strong>ir</strong> ‘Alba’ augalø, jie po þiemos<br />

paðalimo per vasarà nevisiðkai atsigavo. Hibridinio klono 92.340.3 augalai po paðalimo<br />

atsigavo geriau. Labiausiai 2004–2005 m. þiemà nukentëjo ‘Irma’ veislës augalai<br />

(paðalimas – 7,3–7,6 balo). Nuo jos nedaug skyrësi ‘Alba’ <strong>ir</strong> h. k.VR96.58.2. Hibridinio<br />

klono 92.340.3 augalai nukentëjo maþiau, taèiau veislës ‘Roxana’ augalai buvo<br />

paþeisti labiau nei 2004 m. Áprastos mûsø klimato zonoje veislës paðalo gerokai maþiau<br />

(paðalimas – 2,0–2,7 balo) nei italø selekcijos veislës. 2006 metais matyti panaðios<br />

tendencijos kaip <strong>ir</strong> 2005 m. Dësninga, kad geriausios bûklës 2005 <strong>ir</strong> 2006 m.<br />

vasarà buvo ‘Salut’, ‘Venta’, ‘Dangë’ augalai, taèiau nuo jø nedaug skyrësi <strong>ir</strong> ‘Qeen<br />

Eliza’, ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

1 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø augalø paðalimas þiemà <strong>ir</strong> bûklë balais<br />

Table 1. Cold injury and plant state of different strawberry cultivars (scores)<br />

Babtai, 2004–2006 m.<br />

Pašalimas<br />

Pašalimas<br />

Pašalimas<br />

2004 m. Bûklë 2004 m. 2005 m. Bûklë 2005 m. 2006 m. Bûklë 2006 m.<br />

Veislë, h. k. pavasará vasar¹ pavasará vasar¹ pavasará vasar¹<br />

Cultivar (h.c.) Cold injury, Plant state,<br />

Cold<br />

Plant state,<br />

Cold<br />

Plant state,<br />

spring of summer of 2004<br />

injury,<br />

summer of 2005<br />

injury,<br />

summer of 2006<br />

spring of<br />

spring of<br />

2004<br />

2005<br />

2006<br />

‘Alba’ 6,0 3,4 6,0 4,3 6,0 4,0<br />

‘Qeen Eliza’ 6,0 5,4 4,3 7,0 4,7 6,7<br />

‘Irma’ 7,4 2,6 7,3 2,3 7,6 2,6<br />

VR96.58.2 6,6 4,6 6,3 4,7 6,3 4,3<br />

‘Roxana’ 4,0 7,4 6,0 6,8 6,3 6,0<br />

92.340.3 6,0 5,4 4,3 6,7 4,6 7,0<br />

‘Salut’ - 2,0 8,7 2,3 8,7<br />

‘Honeoye’ 4,0 6,0 2,7 - - -<br />

‘Venta’ - 2,0 7,3 2,3 7,6<br />

‘Dangë’ 4,6 5,4 2,0 9,0 2,0 8,7<br />

R 05 / LSD 05 1,8 1,6 1,1 1,5 1,3 1,4<br />

45


2004 m. braðkës þydëjo <strong>ir</strong> derëjo áprastu laiku (2 lentelë). Anksèiausiai (05-12)<br />

praþydo ‘Qeen Elizos’ <strong>ir</strong> ’Irmos’ augalai, vëliausiai, net aðtuoniomis dienomis vëliau –<br />

hibridinio klono 92.340.3 augalai. Anksèiausiai derëti pradëjo veisliø ‘Alba’ <strong>ir</strong> ‘Roxana’<br />

braðkës, vëliausiai, net 10 dienø vëliau – h. k. 92.340.3 augalai. 2005 metais<br />

abiejø sodinimø (1-ojo – 2003 m. <strong>ir</strong> 2-ojo – 2004 m.) augalai þydëjo <strong>ir</strong> derëjo vienodai,<br />

todël ðiame straipsnyje pateikiami 2005 m. abiejø sodinimø suminiai duomenys.<br />

Dël palyginti þemos oro temperatûros balandþio–geguþës mënesá augalai þydëti pradëjo<br />

vëliau nei 2004 m. Vëliau, orui atðilus, klimato sàlygos buvo palankios braðkëms<br />

derëti. Anksèiausiai 2005 m., kaip <strong>ir</strong> 2004 m., pradëjo þydëti <strong>ir</strong> derëti veislës ‘Irma’<br />

braðkës (atitinkamai 05-21 <strong>ir</strong> 06-18). Nuo jos pagal ðiuos poþymius maþai skyrësi<br />

kitos veislës <strong>ir</strong> h. k. 2005 metais þydëjimo <strong>ir</strong> derëjimo sk<strong>ir</strong>tumai tarp veisliø buvo<br />

maþesni nei 2004 m. Vëliausiai þydëti <strong>ir</strong> derëti tais metais pradëjo h. k. 92.340.3<br />

augalai. 2006 metais matyti tos paèios tendencijos kaip <strong>ir</strong> 2005 metais – vëlesná<br />

þydëjimà lëmë vëluojantis pavasaris, o derëjimo laikas dël smarkaus oro atðilimo b<strong>ir</strong>þelio<br />

pabaigoje buvo beveik artimas vidutiniam. Sk<strong>ir</strong>tumai tarp veisliø taip pat nebuvo<br />

labai dideli – anksèiausiai derëjo ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong> ‘Salut’, vëliausiai – h. k.<br />

92.340.3 braðkës.<br />

2 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø fenologinës fazës<br />

Table 2. Flowering and fruiting time of different strawberry cultivars and hybrid clones<br />

Þydëjimo<br />

Derëjimo<br />

Þydëjimo<br />

Derëjimo<br />

Þydëjimo Derëjimo<br />

pradžia<br />

Veislë<br />

pradžia<br />

pradžia<br />

pradžia<br />

pradžia pradžia<br />

2004 m.<br />

Cultivars<br />

2004 m.<br />

2005 m.<br />

2005 m.<br />

2006 m. 2006 m.<br />

Beginning of<br />

Beginning of<br />

Beginning of Beginning of<br />

Beginning of<br />

Beginning of<br />

flowering,<br />

flowering,<br />

flowering, fruiting,<br />

fruiting, 2004<br />

fruiting, 2005<br />

2004<br />

2005<br />

2006 2006<br />

‘Alba’ 05-14 06-20 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Qeen Eliza’ 05-12 06-<strong>25</strong> 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Irma’ 05-12 06-22 05-21 06-18 05-23 06-23<br />

VR96.58.2 05-19 06-<strong>25</strong> 05-22 06-20 05-24 06-23<br />

‘Roxana’ 05-14 06-20 05-23 06-19 05-<strong>25</strong> 06-21<br />

92.340.3 05-20 06-30 05-24 06-23 05-27 07-28<br />

‘Salut’ - - 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Honeoye’ 05-14 06-22 05-22 06-18 - -<br />

‘Venta’ - - 05-22 06-18 05-<strong>25</strong> 06-23<br />

‘Dangë’ 05-16 06-<strong>25</strong> 05-23 06-22 05-<strong>25</strong> 06-28<br />

P<strong>ir</strong>mojo sodinimo braðkiø derlius 2004 m. priklausë nuo genotipo <strong>ir</strong> svyravo<br />

nuo 7,3 iki 22,6 t/ha (3 lentelë). 2005 m. veisliø sk<strong>ir</strong>tumai pagal derlingumà buvo dar<br />

didesni (2,9–23,7 t/ha). Derlingumu 2004 m. kitas veisles ið esmës lenkë veislë ‘Roxana’<br />

(22,6 t/ha), o 2005 m. ði veislë nusileido h. k. 92.340.3 (23,7 t/ha) <strong>ir</strong> veislei<br />

‘Dangë’ (20,1 t/ha). Ðiø trijø veisliø vidutinis derlius (2004–2005 m.) buvo didesnis<br />

negu likusiø t<strong>ir</strong>tøjø. Maþiausiai derlinga buvo veislë ‘Irma’ (5,5 t/ha), kurios derlius<br />

2005 metais, kaip <strong>ir</strong> veislës ‘Roxana’, palyginti su 2004 m., ið esmës sumaþëjo. H. k.<br />

46


92.340.3 <strong>ir</strong> veislës ‘Dangë’ derlius 2005 metais labai padidëjo. 2004 metø sodinimo<br />

braðkiø derlius ið esmës maþesnis nei 2003 m. sodinimo. Kaip <strong>ir</strong> p<strong>ir</strong>mojo sodinimo<br />

didþiausià derliø p<strong>ir</strong>maisiais derëjimo metais davë veislë ‘Roxana’ (21,3 t/ha). Ið esmës<br />

nuo jos nesiskyrë <strong>ir</strong> ‘Salut’ (16,0 t/ha). 2006 m. derlius buvo gerokai maþesnis,<br />

o sk<strong>ir</strong>tumai tarp veisliø ne tokie ryðkûs kaip ankstesniais tyrimo metais. Didþiausià<br />

vidutiná 2005–2006 metø derliø davë veislës ‘Roxana’ (16,5 t/ha), ‘Salut’ (13,8 t/ha)<br />

<strong>ir</strong> ‘Dangë’ (12,6 t/ha), maþiausià – ‘Irma’ (6,4 t/ha), ‘Alba’ (6,3 t/ha). Palyginti su<br />

p<strong>ir</strong>mojo sodinimo augalais, labai sumaþëjo h. k. 92.340.3 derlingumas.<br />

3 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø derlius<br />

Table 3. Strawberry yield of different strawberry cultivars<br />

Babtai, 2004–2006 m.<br />

I sodinimas 2004–2005 m.<br />

II sodinimas 2005–2006 m.<br />

I trial (2004–2005)<br />

II trial (2005–2006)<br />

Veislë, h. k.<br />

Cultivars (h.c.)<br />

2004–2005 m.<br />

2004–2005 m.<br />

2004 m. 2005 m. vidurkis 2005 m. 2006 m. vidurkis<br />

Mean of 2004–2005<br />

Mean of 2004–2005<br />

‘Alba’ 10,0 10,5 10,3 8,8 3,7 6,3<br />

‘Qeen Eliza’ 7,3 11,6 9,5 12,4 8,4 1,4<br />

‘Irma’ 8,0 2,9 5,5 7,7 5,2 6,4<br />

VR96.58.2 9,3 8,2 8,8 10,3 6,9 8,6<br />

‘Roxana’ 22,6 16,7 19,6 21,3 11,8 16,5<br />

92.340.3 13,4 23,7 18,5 8,7 7,5 8,1<br />

‘Salut’ - - - 16,0 11,6 13,8<br />

‘Honeoye’ 10,1 13,4 11,7 - -<br />

‘Venta’ - - - 12,9 9,3 11,1<br />

‘Dangë’ 14,1 20,1 17,7 13,9 11,4 12,6<br />

R 05 / LSD 05 4,7 6,6 8,1 7,5 5,5 8,6<br />

Didþiausios bei derëjimo pradþios vidutinës uogø masës duomenys pateikti 4<br />

lentelëje, o vidutinës uogø masës masinio derëjimo metu – 5 lentelëje. Atsk<strong>ir</strong>os veislës<br />

ið esmës skyrësi pagal ðiuos rodiklius. Didþiausia buvo h. k. 92.340.3 vidutinë<br />

uogos masë, jos maksimali masë siekë 57,7 g. Veisliø ‘Qeen Eliza’, ‘Roxana’, h. k.<br />

VR96.58.2 didþiausios uogos masë taip pat v<strong>ir</strong>ðijo 50 g. Ðiø veisliø didþiausia buvo<br />

p<strong>ir</strong>møjø skynimø vidutinë uogos masë. Uogø dydis 2006 m.buvo gerokai maþesnis,<br />

kitais tyrimo metais jis buvo gana stabilus. P<strong>ir</strong>mojo sodinimo braðkiø uogø dydis<br />

2005 m. buvo ðiek tiek maþesnis negu antrojo sodinimo braðkiø, bet ið esmës dydþiu<br />

skyrësi tik veislës ‘Alba’ (didþiausia uoga) <strong>ir</strong> h. k. 92.340.3 bei ‘Qeen Eliza’ (derëjimo<br />

pradþios) uogos.<br />

Vertingiausiø braðkiø veisliø uogos derëjimo metu smulkëja neþymiai. Atliekant<br />

mûsø tyrimà, pakankamai stabilus uogø dydis buvo bûdingas ‘Qeen Eliza’, VR96.58.2,<br />

‘Roxana’‚ Dangës’ <strong>ir</strong> h. k. 92.340.03 braðkëms (5 lentelë). Kekerinio puvinio sk<strong>ir</strong>tingø<br />

veisliø uogos buvo paþeistos nevienodai. Ðis paþeidimas priklausë nuo konkreèiø<br />

47


metø klimato sàlygø, ypaè nuo drëgmës reþimo. 2004 m. paþeistø uogø kiekis svyravo<br />

nuo 6,4 iki 17,8 proc., 2005 m. – nuo 1,0 iki 10,0 proc., 2006 m. buvo paþeista<br />

labai maþai uogø (0–1,4 proc.). Daugiausia paþeista buvo h. k. 9.234.03 bei ‘Irma’<br />

veislës uogø, maþiausiai – ‘Alba’ <strong>ir</strong> ‘Honeoye’.<br />

4 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø p<strong>ir</strong>mojo (I) <strong>ir</strong> antrojo (II) sodinimø didþiausios<br />

bei derëjimo pradþios vidutinë uogos masë<br />

Table 4. Average weight of the biggest berry and average berry weight at<br />

the beginning of fruiting of different strawberry cultivars and hybrid clones<br />

of f<strong>ir</strong>st (I) and second (II) planting<br />

Babtai, 2004–2005 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

2004 m.<br />

(I)<br />

Didþiausios uogos masë<br />

Weight of the biggest berry, g<br />

2005 m.<br />

(I)<br />

2005 m.<br />

(II)<br />

2006 m.<br />

(II)<br />

Derëjimo pradþios vidutinë uogos masë<br />

Average berry weight at the beginning of<br />

fruiting, g<br />

2004 m.<br />

(I)<br />

2005 m.<br />

(I)<br />

2005 m.<br />

(II)<br />

2006 m.<br />

(II)<br />

‘Alba’ 37,3 33,7 48,7 24,0 13,8 16,1 24,5 11,4<br />

‘Qeen Eliza’ 50,3 46,7 52,7 27,3 20,4 15,1 23,9 15,2<br />

‘Irma’ 30,3 <strong>25</strong>,3 31,3 <strong>25</strong>,3 11,2 12,3 11,7 9,4<br />

VR96.58.2 43,7 44,7 49,3 27,3 15,8 23,9 21,4 10,1<br />

‘Roxana’ 47,3 44,0 50,7 23,0 26,2 17,2 23,0 11,1<br />

92.340.3 49,0 47,7 57,7 31,0 <strong>25</strong>,4 16,3 22,9 13,6<br />

‘Salut’ - - 48,7 <strong>25</strong>,7 - 16,2 9,9<br />

‘Honeoye’ 21,7 31,3 - - 9,3 15,7 - -<br />

‘Venta’ - - 39,0 28,3 - - 17,4 12,6<br />

‘Dangë’ 29,7 <strong>25</strong>,3 34,7 20,0 15,4 15,4 15,9 8,9<br />

R 05 / LSD 05 7,2 8,1 11,7 4,9 4,9 5,5 6,7 3,0<br />

Iðoriðkai patrauklius vaisius iðaugino ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkës (6 lentelë).<br />

Nuo jø ið esmës nesiskyrë ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong> ‘Dangës’ veisliø uogø patrauklumas.<br />

Maþiau patrauklios buvo ‘Irma’, ‘Salut’, ‘Honeoye’ <strong>ir</strong> ‘Ventos’ uogos.<br />

Tv<strong>ir</strong>èiausias minkðtimas buvo h. k. 92.340.3 (4,8 balo), ‘Alba’ <strong>ir</strong> h. k. VR96582<br />

uogø, maþiausiai tv<strong>ir</strong>tos ‘Irmos’ (3,9 balo), ‘Ventos’ (4,1 balo), ‘Honeoye’ <strong>ir</strong> ‘Dangës’<br />

(4,2 balo) uogos. Uogø skonis, atsiþvelgiant á veislæ, buvo ávertintas nuo 4,0<br />

balø (‘Honeoye’) iki 4,6 balo (‘Irma’). Pastarosios veislës uogø skonis panaðus á<br />

‘Ventos’ uogø. Ðios veislës uogø skonis vertinamas labai gerai arba puikiai. ‘Honeoye’<br />

<strong>ir</strong> ‘Salut’ veisliø uogos skoniu neiðsiskyrë. Bendra sk<strong>ir</strong>tingø veisliø uogø kokybë<br />

labai nesiskyrë. Geriausiai ávertinta veisliø ‘Qeen Eliza’, h. k. VR9.658.2 <strong>ir</strong> 9.234.03<br />

bendra uogø kokybë (4,4 balo), prasèiausiai – ‘Honeoye’ (3,9 balo).<br />

48


5 lentelë. Sk<strong>ir</strong>tingø veisliø vidutinë uogos masë (g) (vum) <strong>ir</strong> kekerinio puvinio paþeistø<br />

uogø (%) (s) masinio derëjimo metu<br />

Table 5. Average berry weight (g) (vum) and percentage of berries, injured by grey mold<br />

(s) in the middle of cropping season<br />

Babtai, 2004–2005 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

I sodinimas<br />

I trial<br />

II sodinimas<br />

II trial<br />

2004 m. 2005 m. 2005 m. 2006 m.<br />

vum s vum s vum s vum s<br />

‘Alba’ 11,3 6,4 10,3 2,3 8,8 6,7 8,3 0<br />

‘Qeen Eliza’ 17,2 12,8 8,2 3,0 14,1 4,5 9,2 0<br />

‘Irma’ 11,0 15,7 8,8 4,5 7,2 10,0 9,6 0<br />

VR96.58.2 11,5 8,3 12,1 4,3 10,7 4,2 6,2 0<br />

‘Roxana’ 20,2 9,8 7,6 2,0 11,8 3,6 6,9 1,4<br />

92.340.3 15,9 17,8 11,4 4,5 12,3 6,0 7,2 0<br />

‘Salut’ - - - - 7,7 5,1 7,9 0<br />

‘Honeoye’ 8,0 6,7 6,1 1,0 - - - 0<br />

‘Venta’ - - - - 8,1 10,0 6,8 0<br />

‘Dangë’ 11,8 9,0 11,1 2,2 9,5 4,2 6,6 0<br />

R 05 / LSD 05 4,9 2,6 4,1 1,3 3,5 2,2 1,5 0,3<br />

6 lentelë Sk<strong>ir</strong>tingø braðkiø veisliø uogø kokybë balais<br />

Table 6. Quality of strawberry berries of different cultivars<br />

Babtai, 2004–2006 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

Vaisiaus išorinis<br />

patrauklumas<br />

External appearance<br />

Minkštimo<br />

konsistencija<br />

F<strong>ir</strong>mness<br />

Vaisiaus<br />

skonis<br />

Taste<br />

Bendras vaisiaus<br />

kokybës ávertinimas<br />

General evaluation<br />

‘Alba’ 4,4 4,6 4,4 4,3<br />

‘Qeen Eliza’ 4,5 4,4 4,4 4,4<br />

‘Irma’ 4,0 3,9 4,6 4,3<br />

VR96.58.2 4,5 4,6 4,4 4,4<br />

‘Roxana’ 4,6 4,3 4,1 4,3<br />

92.340.3 4,6 4,8 4,4 4,4<br />

‘Salut’ 4,1 4,3 4,2 4,2<br />

‘Honeoye’ 4,0 4,2 4,0 3,9<br />

‘Venta’ 3,8 4,1 4,5 4,2<br />

‘Dangë’ 4,4 4,2 4,4 4,2<br />

R 05 / LSD 05 0,2 0,3 0,1 0,3<br />

49


Aptarimas. Mûsø duomenimis, pagal derëjimo laikà veisles ‘Qeen Eliza’, ‘Irma’,<br />

‘Salut’, ‘Alba’, ’Roxana’ galima bûtø prisk<strong>ir</strong>ti prie vidutinio ankstyvumo,<br />

VR96.58.2 – prie vidutiniðkai vëlyvø, o selekciná numerá 92.340.3 – prie vëlyvø braðkiø<br />

veisliø. Veislës ‘Qeen Eliza’ <strong>ir</strong> ‘Alba’ autoriø (Faedi <strong>ir</strong> kt., 2002a) yra prisk<strong>ir</strong>iamos<br />

prie ankstyvøjø, bet Lietuvos agroklimato sàlygomis jos þydi <strong>ir</strong> dera panaðiu laiku<br />

kaip veislës ‘Venta’ <strong>ir</strong> ‘Honeoye’, todël mes jas taip pat priskyrëme prie vidutinio<br />

ankstyvumo veisliø.<br />

Mûsø duomenimis, daugelis t<strong>ir</strong>tø Italijoje sukurtø braðkiø veisliø nëra pakankamai<br />

prisitaikiusios augti mûsø klimato zonoje. Visos jos, iðskyrus veislæ ‘Roxana’,<br />

paðalo kur kas labiau nei veislës, sukurtos Lietuvoje (‘Venta’, ‘Dangë’) ar ðalyse,<br />

kuriø klimato sàlygos panaðios á Lietuvos (‘Saliut’, ‘Honeoye’). Veislës ‘Roxana’<br />

augalai maþiau paðalo 2004 m., taèiau 2005 <strong>ir</strong> 2006 metais paðalo panaðiai kaip <strong>ir</strong><br />

kitos italiðkos veislës. Matyt, átakos turëjo tai, kad po gausaus derëjimo antraisiais<br />

augimo – p<strong>ir</strong>maisiais derëjimo metais augalai nepajëgë tinkamai pas<strong>ir</strong>uoðti þiemoti.<br />

Panaðias tendencijas, kad daugelis Europos pietuose sukurtø veisliø blogiau þiemoja<br />

<strong>ir</strong> sunkiau atsigauna po derëjimo, pastebëjo <strong>ir</strong> kitø veisliø tyrëjai, dalyvaujantys<br />

COST863 veikloje (Hietaranta <strong>ir</strong> kt., 2004; Krüger <strong>ir</strong> kt., 2004; Masny, Zurawicz,<br />

2004). Sk<strong>ir</strong>tingø veisliø augalai po þiemos atsigavo nevienodai. Veislës ‘Irma’, o ið<br />

dalies <strong>ir</strong> ‘Alba’ bei h. k. VR96.58.2 augalai vegetacijos metu taip <strong>ir</strong> neatsigavo, o kitø<br />

veisliø (‘Qeen Eliza’, ‘Roxana’, h. k. 92.340.3) augalø bûklë vegetacijos metu buvo<br />

daugiau ar maþiau patenkinama. Sk<strong>ir</strong>tingo iðtvermingumo þiemà átaka ypaè akivaizdi<br />

veisliø ‘Irma’ <strong>ir</strong> ‘Roxana’ derliui. Veislës ‘Irma’ augalai jautriausiai reagavo á þiemojimo<br />

sàlygas, tai padarë didelæ átaka derliui. Ði veislë, kaip raðo autoriai Faedi <strong>ir</strong> Baruzzi<br />

(2004) <strong>ir</strong> kaip pastebëta atliekant mûsø tyrimus, yra nejautri dienos ilgumui <strong>ir</strong> antrà<br />

kartà dera liepos antroje pusëje. Taèiau antrasis metø derlius yra gerokai maþesnis<br />

nei p<strong>ir</strong>masis <strong>ir</strong> sudaro tik 20 proc. p<strong>ir</strong>mojo derliaus. Antrasis derlius gali bûti didelis<br />

Italijos sàlygomis, nes ten nuo vieno ðios veislës augalo priskinama daugiau kaip 1 kg<br />

uogø, bet Lietuvos sàlygomis, kur p<strong>ir</strong>masis derlius daug maþesnis <strong>ir</strong> siekia tik 200 g<br />

ið augalo, antrojo derliaus ekonominis naudingumas yra abejotinas. Galima teigti, kad<br />

antrasis derëjimas (kaip <strong>ir</strong> p<strong>ir</strong>masis derëjimas sodinimo metais), nors derlius <strong>ir</strong> nëra<br />

labai gausus, iðsekina augalus, <strong>ir</strong> jie dël trumpesnio nei Italijoje vegetacijos laikotarpio<br />

nespëja tinkamai pas<strong>ir</strong>uoðti þiemoti, paðàla þiemà <strong>ir</strong> kitais metais dera negausiai. Ðia<br />

veislæ Lietuvoje dar reikëtø iðt<strong>ir</strong>ti kartu su kitomis dienos ilgumui nejautriomis veislëmis<br />

taikant specialià auginimo technologijà. Veislës ‘Roxana’ dideles derlingumo potencines<br />

galimybes, pas<strong>ir</strong>eiðkusias 2004 m., lëmë didesnis jos iðtvermingumas þiemà,<br />

taèiau, esant blogesnëms þiemojimo sàlygoms vëlesniais metais, sumaþëjo <strong>ir</strong> ðios<br />

veislës augalø derlingumas. Iðtvermingesniø þiemà veisliø (‘Dangë’, h. k. 92.340.3,<br />

‘Saliut’) <strong>ir</strong> derlingumas buvo didesnis bei stabilesnis. Nagrinëjant abiejø (2003 <strong>ir</strong><br />

2004 m.) sodinimø braðkiø derlingumà konkreèiais metais matyti, kad veislës labai<br />

nevienodai reagavo ne tik á þiemojimo, bet <strong>ir</strong> augimo sàlygas. Konkreèiø metø derliui,<br />

bent jau kai kuriø veisliø, átakos turëjo ankstesniø metø augimo sàlygos. Tuo galima<br />

paaiðkinti <strong>ir</strong> h. k. 92.340.3 antrojo sodinimo augalø gerokai maþesná derliø 2005 metais<br />

nei p<strong>ir</strong>mojo sodinimo augalø. Apibendrinat galima teigti, kad panaðaus á Lietuvos<br />

klimato zonoje sukurtos veislës yra gerokai stabilesnës <strong>ir</strong> patikimesnës, negu sukurtosios<br />

kitose klimato juostose, taèiau pasitaiko <strong>ir</strong> iðimèiø – veislës ‘Roxana’ derlingu-<br />

50


mo potencinës galimybës <strong>ir</strong> patenkinamas iðtvermingumas lëmë tai, kad jos derlius<br />

prilygo, o kai kurias metais <strong>ir</strong> v<strong>ir</strong>ðijo tradiciðkai Lietuvoje auginamø veisliø derliø.<br />

Reikia manyti, kad naudojant reikiamas agrotechnikos priemones (mulèiavimas, priedangos,<br />

laistymas <strong>ir</strong> kt.) ðià veislæ galima bûtø sëkmingai auginti Lietuvoje.<br />

Uogø dydis yra svarbus desertiniø braðkiø rodiklis <strong>ir</strong> vartotojui, <strong>ir</strong> augintojui.<br />

Tai, kad 2005 metais skyrësi veisliø ‘Alba’, ‘Qeen Eliza’, ‘Roxana’ <strong>ir</strong> h. k. 92.340.3<br />

p<strong>ir</strong>mojo <strong>ir</strong> antrojo sodinimø braðkiø uogø vidutinë masë, rodo, kad ðiø veisliø uogø<br />

kokybë priklauso nuo augimo sàlygø bei nuo augalø amþiaus (p<strong>ir</strong>mojo ar antrojo<br />

sodinimo). Mûsø klimato zonoje ðiø veisliø derlius antraisiais derëjimo metais kokybës<br />

poþiûriu yra gerokai prastesnis, nors jo dydis <strong>ir</strong> prilygsta p<strong>ir</strong>møjø metø derliui.<br />

VR96.58.2 <strong>ir</strong> ‘Dangës’ braðkiø uogø masë maþiau priklausë nuo augalø amþiaus. Kiti<br />

desertinëms braðkëms svarbûs rodikliai yra uogø patrauklumas <strong>ir</strong> jø transportabilumas.<br />

T<strong>ir</strong>tø veisliø uogø kokybë ðiuo poþiûriu buvo ðiek tiek geresnë negu kontroliniø<br />

veisliø. Tai yra dësninga, nes jau daug metø braðkiø selekcijoje didelis dëmesys kreipiamas<br />

á uogø kokybæ <strong>ir</strong> ypaè á jø prekinæ iðvaizdà (Faedi <strong>ir</strong> kt, 2002; Roudeillac,<br />

Trajkovski, 2004). Ið t<strong>ir</strong>tø veisliø iðoriðkai patraukliausios buvo ‘Roxanos’, h. k.<br />

92.340.3 <strong>ir</strong> ‘Qeen Elizos’ uogos. Hibridiniø klonø VR96.58.2 <strong>ir</strong> 92.340.3 uogø minkðtimas<br />

buvo tv<strong>ir</strong>èiausios konsistencijos. Ðios keturios minëtos veislës galëtø bûti naudojamos<br />

veislëms, turinèioms poþymiø, kuriø trûksta lietuviðkoms <strong>ir</strong> Lietuvoje auginamoms<br />

veislëms – patrauklià iðvaizdà <strong>ir</strong> tv<strong>ir</strong>tas uogas, kurti. Ankstesnës selekcijos<br />

italø <strong>ir</strong> apskritai Pietø Europos veisliø braðkiø skonis nebuvo geras (Masny, Ýurawicz,<br />

2004). Ádomu paþymëti, kad veisliø, t<strong>ir</strong>tø ðiuo tyrimu, uogø skonis panaðus á<br />

‘Ventos’ veislës uogø skoná <strong>ir</strong> yra kur kas geresnis uþ Lietuvoje paplitusios veislës<br />

‘Honeoye’ uogø skoná. Tai rodo, kad ðiuo metu selekcijoje kreipiamas didesnis dëmesys<br />

á ðá poþymá <strong>ir</strong> pasiekta daug geresniø rezultatø kuriant braðkiø veisles, kuriø<br />

uogos skanesnës.<br />

Iðvados. 1. Vidurio Lietuvos agroklimato sàlygomis iðtvermingiausios þiemà ið<br />

t<strong>ir</strong>tø veisliø yra ‘Salut’ <strong>ir</strong> ‘Roxana’ braðkës. Labiausiai paðàla veisliø ‘Irma’ <strong>ir</strong> ‘Alba’<br />

augalai.<br />

2. Tyrimø duomenimis, pagal derëjimo laikà veisles ‘Qeen Eliza’, ‘Irma’, ‘Salut’,<br />

‘Alba’, ‘Roxana’ galima bûtø prisk<strong>ir</strong>ti prie vidutinio ankstyvumo, hibridiná klonà<br />

VR96.58.2 – prie vidutiniðkai vëlyvø, o h. k. 92.340.3 – prie vëlyvøjø braðkiø veisliø.<br />

3. Derlingiausi 2004–2005 metais buvo ‘Roxana’ veislë (19,6 t/ha) <strong>ir</strong> h. k.<br />

92.340.3 (18,5 t/ha), 2005–2006 metais – ‘Roxana’ (16,5 t/ha) <strong>ir</strong> ‘Salut’ (13,8 t/ha).<br />

Didþiausias uogas uþaugina ‘Roxana’, h. k. 92.340.3 <strong>ir</strong> ‘Qeen Eliza’ veislë.<br />

4. Didþiausiu patrauklumu iðsisk<strong>ir</strong>ia ‘Roxana’ <strong>ir</strong> h. k. 9.234.03 braðkës. Tv<strong>ir</strong>èiausios<br />

yra h. k. 92.340.3, ‘Alba’ <strong>ir</strong> h. k. VR96.58.2 uogos, geriausias ‘Irma’ veislës<br />

uogø skonis.<br />

5. Pagal ûkiðkai svarbiø savybiø visumà tinkamiausios Lietuvoje auginti yra ‘Roxana’,<br />

‘Salut’ <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

Padëka. Dëkojame, kad ðá darbà parëmë Tarptautiniø mokslo <strong>ir</strong> technologijø<br />

plëtros programø agentûra.<br />

Gauta 2006-11-24<br />

Parengta spausdinti 2006-12-11<br />

51


Literatûra<br />

1. Faedi W., Baruzzi G., Cubicciotti G., Lucchi P., Magnani S., Turci P. Recent progress<br />

in strawberry breeding in Italy // Acta Horticulturae. 2002b. T. 567. P. 157–160.<br />

2. Faedi W., Baruzzi G. New strawberry cultivars from Italian breeding activity // Acta<br />

Horticulturae. 2004 T. 649. P. 81–84.<br />

3. Faedi F. COST: Past, Present, Future // Acta Horticulturae. 2004 T. 649. P. 21–24.<br />

4. Faedi W., Morgues F., Rosati C. Strawberry breeding and varieties: situation and<br />

perspectives // Acta Horticulturae. 2002a. T. 567. P. 51–60.<br />

5. Hietaranta T., Svensson B., Daugaard H. European network for strawberry cultivar<br />

evaluation: summary results of the strawberry cultivar trials from the Nordic countries //<br />

Acta Horticulturae. 2004. T. 649. P. 131–136.<br />

6. Intensyvios sodø <strong>ir</strong> uogynø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2002. P. 190.<br />

7. Krüger E., Krieg R., Innerhofer G., Latet G., Lieten F., MacNaeidhe F., Evenhuis B.,<br />

Kruczynska D. Synthesis of the Central European strawberry cultivar results // Acta<br />

Horticulturae. 2004. T. 649. P. 137–140.<br />

8. Masny A., Ýurawicz E. Field performance of selected strawberry genotypes collected<br />

at the Research Institute of Pomology and Floriculture (RIPF), Skierniewice, Poland //<br />

Acta Horticulturae. 2004. T. 649. P. 147–150.<br />

9. Mezzetti B. COST836: European cooperation on berry research // Acta Horticulturae.<br />

2004. T. 649. P. <strong>25</strong>–26.<br />

9. Misevièiûtë A., Lukoðevièius A. Sodo augalø veisliø tyrimas <strong>ir</strong> selekcija // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1988. T. 7. P. 26–46.<br />

10. Navatel J. C., Krüger E. From Finland to Turkey the European strawberry cultivar<br />

network // Acta Horticulturae. 2004. T. 649. P. 1<strong>25</strong>–130.<br />

11. Raðinskienë A., Uselis N. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(1). P. 53–68.<br />

12. Roudeillac P., Trajkovski K. Breeding for fruit quality and nutrition in strawberries<br />

// Acta Horticulturae. 2004. T. 649. P. 55–60.<br />

13. Rugienius R., Sasnauskas A. Braðkiø veisliø <strong>ir</strong> hibridiniø klonø tyrimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. T. 24(1). P. 34–41.<br />

14. Uselis N., Raðinskienë A. Investigation of strawberry varieties in Lithuania //<br />

Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1999. T. 18(1). P. 165–173.<br />

15. Uselis N., Raðinskienë A. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(2). P. 18–31.<br />

52


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF STRAWBERRY CULTIVARS<br />

ACCORDING TO INTERNATIONAL COST 863<br />

PROGRAMME IN LITHUANIA<br />

R. Rugienius, A. Sasnauskas<br />

Summary<br />

Ten strawberry cultivars and hybrid clones were investigated according to<br />

COST863 action in 2003–2006. Strawberries were planted in two stages – at 2003<br />

and 2004. Under the agroclimatic conditions of the middle of Lithuania cultivars<br />

‘Salut’ <strong>ir</strong> ‘Roxana’ were the most winterhardy. ‘Irma’ and ‘Alba’ were the most<br />

cold susceptible ones. According to our data, ‘Qeen Eliza’, ‘Irma’, ‘Salut’, ‘Alba’,<br />

‘Roxana’ are medium early, hybrid clone (h.c.) VR96582 is medium late, h.c. 92.340.3<br />

is late. ‘Irma’ is weekday neutral. The highest two-year (2004–2005) average yield<br />

of f<strong>ir</strong>st planting was received from ‘Roxana’ (19,6 t/ha) and h.c. 92.340.3 (18,5 t/<br />

ha), the highest yield of another planting (2005–2006) – ‘Roxana’ (16,5 t/ha) and<br />

‘Salut’ (13,8 t/ha). ‘Roxana’, h.c. 923403 and ‘Qeen Eliza’ had the biggest berries.<br />

The best appearance was of ‘Roxana’ and h.c. 9.234.03, berry f<strong>ir</strong>mness – of h.c.<br />

92.340.3, ‘Alba’ and h.c. VR96.582, best taste of ‘Irma.’ Among investigated cultivars<br />

the most promising under Lithuanian conditions were ‘Roxana’, ‘Salut’ and<br />

h.c. 92.340.3 strawberries.<br />

Key words: Fragaria ananassa Duch., fertility, cold resistance, berry quality.<br />

53


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

GROWTH AND FRUITING OF APPLE TREE<br />

CV. ‘JONICA’ ON DIFFERENT ROOTSTOCKS<br />

Przemysùaw BANACH, Maciej GÀSTOÙ<br />

Department of Pomology and Apiculture Agricultural University in<br />

KrakówAl. 29 Listopada 54, 31-4<strong>25</strong> Kraków, Poland.<br />

E-mail przemek351@op.pl<br />

Abstract: The aim of the experiment, conducted in 1999-2003, was to estimate<br />

the influence of five rootstocks (M.9, M.26, P 22, P 59 and P 60) on the growth,<br />

cropping and fruit quality of apple trees ‘Jonica’. The investigated rootstocks significantly<br />

influenced trees’ vigour expressed as trunk cross-section area (TCSA). The<br />

weakest growth was obtained for trees grafted on rootstocks P 59 and P 22 (10.9<br />

and 11.3 cm 2 TCSA), while stronger on M.9 and P 60 (<strong>25</strong>.6 cm 2 and 19.1 cm 2 , respectively).<br />

The trees on M.26 were characterized by the strongest vigour (30.6 cm 2 ).<br />

Weather conditions, especially rainfalls, had a great impact on the growth of the<br />

assessed trees. The growth of trees expressed as crown volume was especially<br />

decreased by rootstocks P 22 and P 59. The highest flowering abundance in comparison<br />

to rootstock M.9 (3.3 in scale 0-5) was observed for P 22 (4.0) followed by P<br />

59 and P 60 (3.5) and M.26 (3.3). Rootstocks did not have an impact on fruit set.<br />

The highest fruit set was observed in 2001 and 2002, and consequently the highest<br />

yield was obtained in these seasons. Though some differences between rootstocks<br />

were found in the respect of yielding, they were not statistically significant. The total<br />

yield varied from 37.5 kg/tree for M.9, 36.4 kg for M.26, 33.3 kg for P 22, 26.1 kg<br />

for P 60 and <strong>25</strong>.3 kg/tree. However, some differences concerning productivity of<br />

trees were found. As far as yield efficiency index is concerned, the most productive<br />

trees were those grafted on rootstocks P 22 and P 59 (2.96 and 2.40 kg/cm 2 , respectively).<br />

Trees on rootstocks M.9, P 60 and M.26 were less productive, with the yield<br />

efficiency index of 1.51, 1.40 and 1.20 kg/cm 2 , respectively. Rootstocks used for<br />

this study significantly differentiated the mean weight of fruit, which varied from<br />

220 g for M.9, followed by M.26 (204 g) and P 60 (197 g), P 22 (178 g) and P 59<br />

(186 g). Rootstocks did not affect fruit coloring.<br />

Key words: apple, rootstock, growth, fruit quality.<br />

Introduction. Rootstock as an integrated part of fruit tree strongly influences<br />

its vigour, productivity and quality of fruits. However, there is no universal rootstock<br />

for all climatic and soil conditions. Altough trees of ‘Jonagold’ grafted on<br />

54


semi-dwarf rootstocks, such as M.26 or P 60 show good orchard performance on<br />

light soils, on fertile ones they grow too vigorously (Skrzyñski and Poniedziaùek<br />

1999). On the other hand, rootstock M.9 with its many advantages (Webster,<br />

1992; Webster and Hollands, 1999) in some conditions is not winter hardy enough<br />

(Czynczyk, 1979, 1997; Webster and Hollands, 1999) and suffers from droughts<br />

(Czynczyk and Omieciñska, 1990; Makosz and Wùodarczyk, 1993). Therefore, it<br />

is necessary to select the rootstock, which is best suited to our severe climatic<br />

conditions. As rootstock of Polish origin are thought to be more frost resistant<br />

(Zagaja et al. 1998), we tried to assess the performance of ‘Jonica’ trees, one of<br />

the most popular cultivars in our orchards, grafted on Polish selection rootstocks:<br />

P 22, P 59 and P 60 in comparison to standard ones: M.9 and M.26. The second<br />

goal was to find a rootstock best adapted to soil and climate conditions, specific<br />

for southern Poland.<br />

Material and methods. The experiment was established in the spring of 1997<br />

in the Experimental Station in Garlica Murowana, near Krakow. The soil of the plot<br />

where the fruit trees were planted was in the valuation class II b. It is of the brown<br />

soil type developed from loess and represents a species determined as silt loam. The<br />

experimental material was composed of one-year-old budded trees of cultivar ‘Jonica’<br />

on five rootstocks: M.9, M.26, P 22, P 59 and P 60. In the orchard the soil<br />

cultivation system was herbicidal fallow in rows and grass in inter-rows. The apple<br />

trees were spaced 1.0 × 4.0 m. The crowns of trees were trimmed in a slender<br />

spindle form. The protection of the trees was carried out according to the recommendations<br />

accepted for commercial plantations. However, no preventive spraying<br />

with calcium salts was applied.<br />

The experiment was established in a randomized blocks design, each treatment<br />

being represented by four replications – plots of five trees each.<br />

The following measurements and observation were made during the experiment:<br />

Growth of trees was estimated as the increase of trunk cross-section area<br />

(TCSA) measured at the height of 30 cm, for biennial periods. Additionally, the<br />

crown volume was annually ascertained.<br />

The flowering abundance was evaluated in scale 0 to 5, where 0 – no flowering,<br />

5 – very intensive flowering. Some branches were labeled and flowers were<br />

counted. In July fruit set was recorded.<br />

At harvest, for each plot, the yield was weighted, the blush area and weight of<br />

100 randomly chosen fruits was recorded. Moreover, the efficiency index was calculated.<br />

The measurements were listed and subjected to analysis of variance. Differences<br />

between the means were ascertained with a multiple Duncan Test, using a Statistica<br />

6.0 program. The mean values for the combinations labeled with the same<br />

letters do not significantly differ at the significance level α = 0.05.<br />

Results and discussion. Used rootstocks significantly affected vegetative growth<br />

of trees (Table 1 and Table 2). As far as trunk cross-sectional area is concerned, the<br />

weakest tree vigour was obtained for P 22 and P 59 rootstock, stronger for P 60 and<br />

M.9. Trees grafted on M.26 revealed the strongest vigour.<br />

55


Table 1. Trunk cross-section area increase (cm 2 ) during 1999-2002 as influenced by<br />

different rootstocks and year of study<br />

1 lentelë. Kamieno skerspjûvio ploto (KSP) priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo<br />

metø 1999–2002 m.<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Initial TCSA,<br />

spring of 1999<br />

TCSA increase<br />

KSP padidëjimas, cm 2<br />

Pradinis KSP 1999 m.<br />

pavasará, cm 2 1999 2000 2001 2002<br />

Final TCSA,<br />

autumn of 2002<br />

Galutinis KSP 2002 m.<br />

rudená, cm 2<br />

‘Jonica’/M.9 2.79 3.84 * bc 6.50 b 6.52 b 5.95 b <strong>25</strong>.6 bc<br />

‘Jonica’/P 60 2.20 3.24 b 4.45 ab 3.50 a 5.72 b 19.1 b<br />

‘Jonica’/M.26 2.73 4.36 c 7.83 b 7.58 b 8.07 c 30.6 c<br />

‘Jonica’/P 22 2.14 1.32 a 1.66 a 2.06 a 4.10 ab 11.3 a<br />

‘Jonica’/P 59 2.05 1.28 a 1.95 a 2.71 a 2.93 a 10.9 a<br />

2.80 a 4.48 b 4.58 b 5.34 c<br />

* Means followed by the same letter do not differ at α = 0.05; Duncan ‘s Multiply Range Test<br />

* Tarp tomis paèiomis raidëmis skiltyse paþymëtø reikðmiø pagal Dunkano kriterijø (α = 0,05)<br />

esminiø sk<strong>ir</strong>tumø nëra.<br />

Table 2. Mean canopy volume (m 3 ) of ‘Jonica’ trees as influenced by different rootstocks<br />

and year of study<br />

2 lentelë. ‘Jonica’ veislës vaismedþiø vidutinio vainiko dydþio priklausomumas nuo<br />

poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Canopy volume<br />

Vainiko dydis, m 3<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinio<br />

vidurkis<br />

1999 2000 2001 2002<br />

‘Jonica’/M.9 1.73 b 1.12 b 1.00 b 2.94 bc 1.70 c<br />

‘Jonica’/P 60 1.53ab 1.00 b 0.79 ab 2.34 b 1.41 bc<br />

‘Jonica’/M.26 1.89 b 1.06 b 1.11 b 3.36 c 1.86 c<br />

‘Jonica’/P 22 1.01 a 0.43 a 0.57 a 1.03 a 0.76 a<br />

‘Jonica’/P 59 1.08 a 0.52 a 0.65 a 1.30 a 0.87 a<br />

1.47 b 0.85 a 0.84 a 2.24 c<br />

This is in accordance with previous reports of Mika et al. (1983), Pätzold and<br />

Fisher (1991), Webster (1997), Baab (1998) and S³owiñski (2001). Skrzyñski and<br />

Poniedziaùek (1998) reported that ‘Jonagold’ trees on rootstocks P 14 and M.26<br />

grew more vigorously, while grafted on P 22 weaker than on M.9. Although some<br />

differences were found between rootstocks M.9 and P 60, they were not statistically<br />

significant. The same reported Voltz et al. (1993) and Ostrowska et al. (2001).<br />

The growth of trees expressed as crown volume was especially decreased by P 22<br />

56


and P 59 rootstocks. This conf<strong>ir</strong>med previous findings of Kruczyñska and Czynczyk<br />

(1998a), Lipecki (1994), Kurlus and Ugolik (1994) and Gruca (2001).<br />

Table 3. Flowering abundance (scale 0-5) of ‘Jonica’ trees as influenced by<br />

different rootstocks and year of study<br />

3 lentelë. ’Jonica‘ veislës vaismedþiø þydëjimo gausos (0–5 skalë) priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Flowering abundance (scale 0-5)<br />

Þydëjimo gausa (0–5 skalë)<br />

1999 2000 2001 2002<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong> poskiepio<br />

derinio vidurkis<br />

‘Jonica’/M.9 4.15 ab 3.60 a 3.<strong>25</strong> bc 2.20 a 3.30 ab<br />

‘Jonica’/P 60 4.05 ab 4.30 a 2.60 ab 2.97 a b 3.48 b<br />

‘Jonica’/M.26 3.85 a 4.35 b 2.00 a 1.95 a 3.03 a<br />

‘Jonica’/P 22 4.80 b 4.20 a 3.40 c 3.66 b 4.01 c<br />

‘Jonica’/P 59 4.50 ab 3.87 a 3.30 bc 2.55 a 3.55 b<br />

4.24 b 4.06 b 2.88 a 2.61 a<br />

Table 4. Fruit set of ‘Jonica’ trees as influenced by different rootstocks<br />

and year of study<br />

4 lentelë. ‘Jonica’ veislës vaismedþiø vaisiø uþuomazgø priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Fruit set<br />

Vaisiø uþuomazgos, %<br />

1999 2000 2001 2002<br />

Mean for treatment<br />

Veislës <strong>ir</strong> poskiepio<br />

derinio vidurkis<br />

‘Jonica’/M.9 8.17 ab 1.60 a 12.7 a 18.6 a 10.26 a<br />

‘Jonica’/P 60 7.47 a 1.27 a 13.2 a 14.9 a 9.21 a<br />

‘Jonica’/M.26 9.00 ab 2.45 a 17.45 a 15.32 a 11.05 a<br />

‘Jonica’/P 22 7.80 ab 5.60 b 15.72 a 20.93 a 12.51 a<br />

‘Jonica’/P 59 9.42 b 1.55 a 15.00 a 13.70 a 9.91 a<br />

8.37 b 2.49 a 14.81 c 16.69 c<br />

Wagenmakers (1994) stated that too strong growth causes poorer light perception,<br />

and consequently decreases flowering intensity. Some authors (Brown et<br />

al., 1985; Bauger et al., 1994; Stutte et al., 1994) pointed out rootstock, which<br />

significantly influences this feature. This experiment also proved it. The highest<br />

flowering abundance in comparison to rootstock M.9 was observed for P 22,<br />

followed by P 59, P 60 and M.26. Rootstocks did not affect the fruit set (Table 4),<br />

however, big differences between seasons regarding this feature were recorded.<br />

The highest fruit set was noted in 2001 and 2002 (14.8% and 16.7%, respectively),<br />

the highest yielding for these years was obtained. Though in some years of the<br />

57


experiment the differences in yield were observed, the total yield was not differentiated<br />

(Table 5).<br />

Table 5. The total yield (kg/tree) of ‘Jonica’ trees and the<strong>ir</strong> efficiency index (kg/cm 2<br />

TCSA) as influenced by different rootstocks and year of study<br />

5 lentelë. ‘Jonica’ veislës vaismedþiø suminio derliaus (kg/vaismedis) <strong>ir</strong> jo produktyvumo<br />

indekso (kg/cm 2 KSP) priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Yield (kg/tree)<br />

Veislës <strong>ir</strong><br />

Derlius, kg/vaismedis<br />

poskiepio<br />

derinys 1999 2000 2001 2002<br />

Total, 1999-<br />

2002<br />

1999–2002 m.<br />

suminis derlius<br />

Efficiency index<br />

Produktyvumo<br />

indeksas, kg/cm 2<br />

KSP<br />

‘Jonica’/M.9 8.86 c 6.24 a 9.16 a 13.2 b 37.5 a 1.51 a<br />

‘Jonica’/P 60 4.88 a 4.36 a 6.52 a 10.3 ab 26.1 a 1.40 a<br />

‘Jonica’/M.26 6.04 ab 5.90 a 15.71 a 8.8 ab 36.4 a 1.20 a<br />

‘Jonica’/P 22 7.82 bc 5.82 a 8.92 a 10.7 ab 33.3 a 2.96 b<br />

‘Jonica’/P 59 7.50 bc 3.76 a 6.90 a 7.2 a <strong>25</strong>.3 a 2.40 b<br />

7.02 ab 5.21 a 9.44 b 10.03 b<br />

This is in a line with the previous reports of Kviklys et al. (1999) and Skrzyñski<br />

and Poniedziaùek (1999) who did not record any differences between rootstocks<br />

M.9 and P 60. However, many authors (Baab, 1998; Czynczyk, 1998; Sùowiñski,<br />

2001) pointed out that rootstock M.9 yielded better than P 22 and worse in comparison<br />

to P 60. The most productive trees were those grafted on rootstocks P 22 and<br />

P 59 (2.96 and 2.40 kg/cm 2 , respectively). Trees on rootstocks M.9, P 60 and M.26<br />

were less productive, with the yield efficiency index of 1.51, 1.40 and 1.20 kg/cm 2 ,<br />

respectively.<br />

Table 6. Mean fruit weight (g) of ‘Jonica’ apples as influenced by<br />

different rootstocks and year of study<br />

6 lentelë. ‘Jonica’ veislës vaismedþiø vidutinës vaisiø masës (g)<br />

priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Fruit weight<br />

Mean for<br />

Treatment<br />

Veislës <strong>ir</strong><br />

Vaisiaus masë, g<br />

treatment<br />

poskiepio derinys<br />

Veislës <strong>ir</strong> poskiepio<br />

1999 2000 2001 2002 derinio vidurkis<br />

‘Jonica’/M.9 218 b 206 b 233 b 224 c 220 d<br />

‘Jonica’/P 60 182 a 188 ab 227 b 192 ab 197 bc<br />

‘Jonica’/M.26 196 ab 194 ab 214 ab 210 bc 204 c<br />

‘Jonica’/P 22 169 a 163 a 195 a 186 a 178 a<br />

‘Jonica’/P 59 178 a 169 a 194 a 202 abc 186 ab<br />

190 a 185 a 214 b 204 b<br />

58


M.9 rootstock favored larger fruits, whereas P 22 and P 59 – smaller ones<br />

(Table 6). This conf<strong>ir</strong>med previous findings of Kruczyñska and Czynczyk (1998)<br />

and Skrzyñski (2002). Some authors reported that rootstock M.9 favored better<br />

fruit coloring, whereas worse for P 22 and M.26 (Pätzold and Fisher, Baab, 1998).<br />

However, this was not true for this experiment – investigated rootstocks did not<br />

affected fruit coloring (Table 7).<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Table 7. Blush area (scale 0-5) of apple fruit skin as influenced by<br />

different rootstock and year of study<br />

7 lentelë. Obuoliø þievës paraudimo ploto (0–5 skalë) priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Blush area<br />

Paraudimo plotas (0–5 skalë)<br />

1999 2000 2001 2002<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinio<br />

vidurkis<br />

‘Jonica’/M.9 4.00 a 4.<strong>25</strong> ab 3.<strong>25</strong> a 2.<strong>25</strong> a 3.43 a<br />

‘Jonica’/P 60 4.<strong>25</strong> a 4.50 b 3.50 a 3.00 abc 3.81 a<br />

‘Jonica’/M.26 4.00 a 4.<strong>25</strong> ab 3.00 a 2.<strong>25</strong> ab 3.37 a<br />

‘Jonica’/P.22 3.66 a 3.33 a 3.00 a 3.33 c 3.33 a<br />

‘Jonica’/P.59 3.<strong>25</strong> a 4.<strong>25</strong> ab 2.50 a 3.<strong>25</strong> bc 3.31 a<br />

3.84 b 4.16 b 3.05 a 2.79 a<br />

Conclusions. 1. The investigated rootstocks significantly influenced trees’ vigour<br />

expressed as trunk cross-section area (TCSA).<br />

2. Rootstocks did not have an impact on fruit set.<br />

3. The total yield did not depend on used rootstock. The most productive trees<br />

were those grafted on rootstocks P 22 and P 59 followed by M.9, P 60 and M.26.<br />

4. Rootstocks significantly differentiated the mean weight of fruit.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Baab G. Apfelunterlagen Gestern und Heute. Erwerbsobstbau. 1998. 40. P. 162–169.<br />

2. Bauger T. A., Singla S. S, Leach D. W., Walter S. P. Growth, productivity, spur<br />

quality, light transmission and net photosynthesis of ‘Golden Delicious’ apple trees on<br />

four rootstocks in three training systems. Fruit Var. J. 1994. 48. P. <strong>25</strong>1–<strong>25</strong>5.<br />

3. Brown C. S., Young E., Pharr D. M. Rootstock and scion effects on the seasonal<br />

distribution on dry weight and carbohydrates in young apple trees. J. Amer. Soc. Hort.<br />

Sci. 1985. 110. P. 696–701.<br />

4. Czynczyk A. Effect of M.9, B9 and M.26 rootstock on growth, fruiting and frost<br />

resistance of apple trees. J. Fruit Ornam. Plant Res. 1997. 6. P. 143–152.<br />

5. Czynczyk A. Effect of M.9, B9, and M.26 rootstocks on growth, fruiting and winter<br />

hardiness of three apple cultivars. Fruit Sci. rep. 1979. 1. P. 26–33.<br />

59


6. Czynczyk A., Omieciñska B. Karùowe i póùkarùowe podkùadki dla jabùoni. Sad Nowoczesny.<br />

1990. 8. P. 11–16.<br />

7. Czynczyk A. Podkùadki sùaborosnàce podstawowym czynnikiem intensyfikacji<br />

sadów // XXXVIII Ogólnopolska Konferencja Sadownicza. ISiK, Skierniewice, 1998.<br />

P. 101–110.<br />

8. Gruca Z. Wpùyw podkùadki i formy korony na wzrost i plonowanie i jakoúã owoców<br />

jabùoni odmiany ‘Jonagold’ i ‘Melrose’. Zeszyty Naukowe ISiK, Skierniewice, 2001. 9.<br />

P. 101–107.<br />

9. Kruczyñska D., Czynczyk A. Wpùyw podkùadek sùaborosnàcych i wstawek skarlajàcych<br />

na wzrost, plonowanie oraz skùad mineralny liúci trzech odmian jabùoni. Czæúã I.<br />

Wzrost i plonowanie drzew. Zesz. Nauk. ISiK w Skierniewicach, 1998a. T. 5. P. 23–36.<br />

10. Kruczyñska D., Czynczyk A. Wpùyw podkùadek sùaborosnàcych i wstawek skarlajàcych<br />

na wzrost, plonowanie oraz skùad mineralny liúci trzech odmian jabùoni. Czæúã II.<br />

Jakoúãæ owoców. Zesz. Nauk. ISiK w Skierniewicach, 1998b. T. 5. P. 37–46.<br />

11. Kurlus R., Ugolik M. Wzrost i plonowanie odmiany ‘Szampion’, ‘Royal Gala’, i<br />

‘Jonagored’ na podkùadkach polskiej hodowli. XXVI Ogólno. Nauk. Konf. Sad., Skierniewice,<br />

1996. P. 271–273.<br />

12. Kviklys D., Uselis N., Kvikliene N. Rootstock effect on ‘Jonagold’ apple tree<br />

growth, yield fruit quality. Proceedings of the International Seminar “Apple Rootstocks<br />

for Intensive Orchard”. Warszawa, 1999. P. 67–68.<br />

13. Lipecki J. Wzrost drzew i plonowanie jabùoni odmiany ‘Melrose’ i ‘Jonagold’ na<br />

podkùadce M.9 i M.26. XXIII Nauk. Konf. Sad., Skierniewice, 30-08–01-09-1994. P. 8–11.<br />

14. Makosz E., Wùodarczyk P. Wzrost i plonowanie róýnych odmian jabùoni na<br />

podkùadce M.9 w 1992 roku. Ogrodnictwo. 1993. 4. P. 5–8.<br />

15. Mika A., Grochowska M. J., Karoszewska A. Effect of dormant and summerpruning,<br />

disbudding and growths retardants on growth, flower bud formation and fruiting of<br />

young apple trees. Am. Soc. Hort. Sci. 1983. 108. P. 655–660.<br />

16. Naukowa Konferencja Sadownicza Skierniewice 1996. P. 271–273.<br />

17. Ostrowska K., Zdzieszyñska–Mazutrczak R. Wpùyw podkùadek na wzrost i plonowanie<br />

mùodych drzew jabùoni odm ’Jonagold‘. Zesz. Nauk. ISiK Skierniewice, 2001. T. 9.<br />

P. 95–100.<br />

18. Pätzold G., Fischer M. Ergebnisse aus Obstunterlagenprufungen. Teil 1, Schwachwachsende<br />

Apfelunterlagen. Erwerbsobstbau. 1991. T. 33(1). P. 7–10.<br />

19. Skrzyñski J., Poniedzia³ek W. Growth and cropping of ‘Jonagold’ apple trees on<br />

six different rootstocks: M.9, M.26, P 14, P 22 and P 60. Miêdz. Symp. “Apple rootstocks<br />

for intensive orchard”. Warszawa–Ursynów, 1999. P. 97–98.<br />

20. Skrzyñski J., Poniedziaùek W. Ocena wzrostu i owocowania odmiany ‘Jonagold’<br />

na podkùadkach sùaborosnacych. Zesz. Nauk. A.R. w Krakowie, 1998. 333. P. 597–602.<br />

21. Skrzyñski J. Wpùyw podkùadki na wzrost i plonowanie drzew oraz jakoúã i zdolnoúã<br />

przechowalniczà jabùek odmiany ‘Jonagold’. Zesz. Nauk. AR w Krakowie, S., Rozprawy,<br />

2002. 287 p.<br />

22. Sùowiñski A. Numerical compilation of orchard trial results on apple rootstocks.<br />

Department of Pomology and Basic Natural Sciences in Horticulture, Warsaw Agricultural<br />

University–SGGW, 2001.<br />

23. Stutte G. W., Baugher T. A., Walter S. P., Leach D. W., Glenn D. M., Tworkowski<br />

T. J. Rootstock and training system affect dry master and carbohydrate distribution in<br />

‘Golden Delicious’ apple trees. J. Amer. Soc. Hort. Sci. 1994. 119. P. 492–497.<br />

24. Volz R. K., Ferguson I. B., Bowen J. H., Watkins C. B. Crop load effects on fruit<br />

mineral nutrition, maturity, fruiting, and tree growth of ‘Cox’s Orange Pippin’ apple.<br />

J. Hort. Sci. 1993. 68. P. 127–138.<br />

60


<strong>25</strong>. Wagenmakers P. S. Light relations in orchard systems: Praca doktorska. Uniwersytet<br />

Wageningen, Holandia, 1994.<br />

26. Webster A. D. A review of fruit tree rootstocks research, and development. Acta<br />

Hort. 1997. 451. P. 53–73.<br />

27. Webster A. D., Hollands M. S. A rootstocks studies: Comparison of polish,<br />

Russian, USA and UK selection as rootstocks for the apple cultivar ‘Cox Orange Pippin’<br />

(Malus domestica Borkh.). J. Hort. Sci. Biotech. 1999. 74. P. 367–374.<br />

28. Webster A. D. The status of apple rootstocks development // Proc. 88 th Annual<br />

Meeting of the Washington State Hort. Ass. 1992. P. 113–119.<br />

29. Zagaja S. W., Czynczyk A., Jakubowski T. Omieciñska B. Breeding and evaluating<br />

of apple rootstocks for Northern Europe. Hort. Science. 1988. 23. P. 109–112.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

OBELØ VEISLËS ‘JONICA’ SU SKIRTINGAIS<br />

POSKIEPIAIS AUGIMAS IR DERËJIMAS<br />

P. Banach, M. Gàstoù<br />

Santrauka<br />

1999–2003 metais atlikto bandymo tikslas buvo nustatyti penkiø poskiepiø (M.9,<br />

M.26, P 22, P 59 <strong>ir</strong> P 60) átakà obelø veislës ‘Jonica’ augimui, derëjimui <strong>ir</strong> vaisiø<br />

kokybei. T<strong>ir</strong>ti poskiepiai turëjo esminës átakos vaismedþiø augumui – kamieno skerspjûvio<br />

plotui (KSP). Prasèiausiai augo vaismedþiai su P 59 <strong>ir</strong> P 22 poskiepiais (KSP –<br />

atitinkamai 10,9 <strong>ir</strong> 11,3 cm 2 ), geriau – su M.9 <strong>ir</strong> P 60 poskiepiais (KSP – atitinkamai<br />

<strong>25</strong>,6 <strong>ir</strong> 19,1 cm 2 ). Vaismedþiai su M.26 poskiepiu iðsiskyrë stipriausiu augumu (KSP –<br />

30,6 cm 2 ). T<strong>ir</strong>tø vaismedþiø augimui didelæ átakà darë oro sàlygos, ypaè lietûs. Vaismedþiø<br />

vainiko augimà ypaè stabdë P 22 <strong>ir</strong> P 59 poskiepiai. Palyginti su M.9 poskiepiu<br />

(vaismedþiø su juo þydëjimas 0–5 skalëje vertinamas 3,3 balo), gausiausiai þydëjo vaismedþiai<br />

su P 22 (4,0 balai), kiek maþiau – su P 59 <strong>ir</strong> P 60 (3,5 balo) <strong>ir</strong> dar maþiau – su<br />

M.26 poskiepiu (3,3 balo). Poskiepiai nedarë átakos vaisiø uþuomazgoms. Daugiausia<br />

vaisiø obelys uþmezgë 2001 <strong>ir</strong> 2002 metais, taigi bûtent tais metais buvo gautas<br />

didþiausias derlius. Nors vaismedþiø su sk<strong>ir</strong>tingais poskiepiais derlius skyrësi, tie<br />

sk<strong>ir</strong>tumai buvo neesminiai. Obelø su M.9 poskiepiu suminis derlius buvo 37,5 kg ið<br />

vaismedþio, su M.26 – 36,4 kg, su P 22 – 33,3 kg, su P 60 – 26,1 kg <strong>ir</strong> <strong>25</strong>,3 kg ið<br />

vaismedþio. Pagal derliaus produktyvumo indeksà derlingiausi buvo vaismedþiai su<br />

P 22 <strong>ir</strong> P 59 poskiepiais (atitinkamai 2,96 <strong>ir</strong> 2,40 kg/cm 2 ). Vaismedþiai su M.9, P 60<br />

<strong>ir</strong> M.26 poskiepiais buvo maþiau produktyvûs, jø derliaus produktyvumo indeksas<br />

buvo atitinkamai 1,51; 1,40 <strong>ir</strong> 1,20 kg/cm 2 . Ðiam tyrimui naudoti poskiepiai turëjo esminës<br />

átakos vidutinei vaisiaus masei: vaismedþiø su M.9 poskiepiu vaisiaus masë buvo<br />

220 g, su M.26 – 204 g, su P 60 – 197 g, su P 22 – 178 g <strong>ir</strong> su P 59 – 186 g. Poskiepiai<br />

neturëjo átakos vaisiø spalvai.<br />

Reikðminiai þodþiai: obelys, poskiepiai, augimas, vaisiø kokybë.<br />

61


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

SODINAMOSIOS MEDÞIAGOS SVEIKUMO ÁTAKA<br />

OBELØ AUGIMUI IR DERLIUI<br />

Darius KVIKLYS, Jûratë STANKIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas d.kviklys@lsdi.lt<br />

Henk KEMP<br />

Applied Plant Research, Research Unit Fruit Lingewal 1, 6668 LA Randwijk,<br />

The Netherlands<br />

2003–2006 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute atlikti sk<strong>ir</strong>tingo<br />

sveikumo sodinamosios medþiagos átakos vaismedþiø augimui, derliui <strong>ir</strong> jo kokybei<br />

tyrimai. T<strong>ir</strong>ti obelø veisliø ‘Ðampion’ <strong>ir</strong> ‘Jonagold’ su M.9 <strong>ir</strong> M.26 poskiepiais<br />

sertifikuoti dev<strong>ir</strong>usuoti (VF) <strong>ir</strong> nesertifikuoti (NT) sodinukai. Atlikus vaismedþiø v<strong>ir</strong>usologinës<br />

bûklës tyrimus, nesertifikuotuose ‘Ðampion’ vaismedþiuose su M.9 <strong>ir</strong><br />

M.26 poskiepiais nustatyti obelø þiedinës chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno<br />

vagotumo (ASGV) v<strong>ir</strong>usai. Obelø mozaikos v<strong>ir</strong>uso (ApMV) nerasta. 2006 m.<br />

v<strong>ir</strong>usø koncentracija turëjo tendencijà didëti visuose variantuose <strong>ir</strong> ‘Jonagold’ veislës<br />

vaismedþiuose su M.9NT poskiepiais nustatytas ASGV v<strong>ir</strong>usas. Sodo áveisimo metais<br />

sertifikuotø vaismedþiø vegetatyvinis augimas buvo ið esmës intensyvesnis nei<br />

nesertifikuotø vaismedþiø. Antraisiais–ketv<strong>ir</strong>taisiais augimo sode metais vaismedþiø<br />

vegetatyvinë <strong>ir</strong> generatyvinë raida bei vidutinë vaisiaus masë nepriklausë nuo sodinamosios<br />

medþiagos sveikumo.<br />

Reikðminiai þodþiai: derlius, obelys, sodinamoji medþiaga, vaismedþiø ligos,<br />

vegetatyvinis augimas, v<strong>ir</strong>usologinë bûklë.<br />

Ávadas. Be grybiniø <strong>ir</strong> bakteriniø ligø, didelæ þalà þemës ûkio augalams daro v<strong>ir</strong>usinës<br />

ligos. Pagal patv<strong>ir</strong>tintà sodo augalø dauginimo sistemà á rinkà patenkanti sodinamoji<br />

medþiaga privalo bûti sertifikuota. Sertifikuojama tik dev<strong>ir</strong>usuota sodinamoji medþiaga,<br />

taèiau prekiaujama <strong>ir</strong> nesertifikuota CAC kategorijos sodinamàja medþiaga, kurios<br />

kilmë <strong>ir</strong> v<strong>ir</strong>usologinë bûklë nenustatyta. V<strong>ir</strong>usai yra ypaè pavojingi dar <strong>ir</strong> dël to, kad<br />

jø sukelta infekcija yra sisteminio pobûdþio, o simptomai, nelygu augalo veislë <strong>ir</strong> sukëlëjo<br />

tipas, daþniausiai maþai iðreikðti arba jø visai nëra. Todël sveiki, neturintys visø<br />

þinomø v<strong>ir</strong>usø <strong>ir</strong> jiems giminingø organizmø (fitoplazmø, v<strong>ir</strong>oidø, rikecijø) augalai yra<br />

geresnës kokybës, derlingesni <strong>ir</strong> ilgiau gyvena. Ypaè tai svarbu sodo augalams, kurie<br />

turi iðlikti produktyvûs keliolika ar keliasdeðimt metø. Obelyse randama per 40 v<strong>ir</strong>usiniø<br />

62


ligø sukëlëjø, kuriø dauguma priklauso latentiniø v<strong>ir</strong>usø grupei <strong>ir</strong> yra daþniausiai perduodami<br />

tik su sodinamàja medþiaga (Cieszlinska <strong>ir</strong> Malinowski, 2002; Nemeth, 1986).<br />

Pastaraisiais metais, naudojant jautrius v<strong>ir</strong>usø identifikavimo metodus, atrandami nauji<br />

v<strong>ir</strong>usai, jø ðtamai, fitoplazmos, rikecijos <strong>ir</strong> v<strong>ir</strong>oidai (Cieszlinska <strong>ir</strong> kt., 1995; Chunjiang<br />

<strong>ir</strong> kt., 2000; Malinowski <strong>ir</strong> kt., 1997; Malinowski <strong>ir</strong> kt., 1998). V<strong>ir</strong>usø daroma þala<br />

sustiprëja, jeigu augalai uþkrësti keliais v<strong>ir</strong>usais tuo paèiu metu. V<strong>ir</strong>usuoti medþiai tampa<br />

jautresni grybinëms bei bakterinëms ligoms <strong>ir</strong> áva<strong>ir</strong>iems stresams augimo metu (Desvignes,<br />

1999; Zawadzka <strong>ir</strong> kt., 1989; Zawadzka, Guzewska, 1986). Jau net jaunø tokiø<br />

medþiø produktyvumas yra þymiai maþesnis. V<strong>ir</strong>usiniø ligø neigiamà poveiká galima<br />

matyti ne tik sode, bet <strong>ir</strong> dauginimo metu medelyne: sodinukai auga prasèiau, yra ne<br />

tokie veðlûs bei nevienodi (Golis <strong>ir</strong> kt., Maxim <strong>ir</strong> kt., 2004).<br />

Lietuvoje labiausiai paplitæ <strong>ir</strong> ekonomiðkai þalingi yra obelø latentinës þiediðkosios<br />

dëmëtligës (ACLSV), obelø mozaikos (ApMV) <strong>ir</strong> obelø kamieno vagotumo<br />

(ASGV) v<strong>ir</strong>usai. Tyrimø duomenimis, Lietuvoje tarp obelø veisliø <strong>ir</strong> poskiepiø labiausiai<br />

paplitæs yra obelø latentinës þiediðkosios dëmëtligës v<strong>ir</strong>usas. Kiti v<strong>ir</strong>usai randami<br />

tik kai kuriose veislëse <strong>ir</strong> nedidelëmis koncentracijomis (Stankienë <strong>ir</strong> kt., 2000).<br />

Pavojø sodininkystei kelia nepatikrintos v<strong>ir</strong>usologiniu aspektu sodinamosios medþiagos<br />

naudojimas augalams dauginti. V<strong>ir</strong>usai gali sparèiai paplisti per uþsikrëtusius<br />

poskiepius <strong>ir</strong> skiepûglius (Nemeth, 1986).<br />

Darbo tikslas – ávertinti sk<strong>ir</strong>tingos v<strong>ir</strong>usologinës bûklës sodinamosios medþiagos<br />

átakà obelø augimui, derëjimui <strong>ir</strong> vaisiø kokybei.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimai atlikti 2003–2006 metais Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute. T<strong>ir</strong>tos obelø veislës ‘Ðampion’ <strong>ir</strong> ‘Jonagold’ su<br />

M.9 <strong>ir</strong> M.26 poskiepiais. Obelø sodas áveistas 2003 m. pavasará.<br />

Tyrimø schema:<br />

1. M.9 poskiepis, nesertifikuota sodinamoji medþiaga (toliau M.9NT).<br />

2. M.9 poskiepis, sertifikuota dev<strong>ir</strong>usuota sodinamoji medþiaga (toliau M.9VF).<br />

3. M.26 poskiepis, nesertifikuota sodinamoji medþiaga (toliau M.26NT).<br />

4. M.26 poskiepis, sertifikuota dev<strong>ir</strong>usuota sodinamoji medþiaga (toliau M.26VF).<br />

Nesertifikuota sodinamoji medþiaga, kaip <strong>ir</strong> sertifikuota dev<strong>ir</strong>usuota, iðauginta<br />

tame paèiame Nyderlandø medelyne, taèiau skiepûgliai dauginimui imti ið motininiø<br />

medþiø, kuriø v<strong>ir</strong>usologinë bûklë neiðt<strong>ir</strong>ta. Tai reiðkia, kad ði sodinamoji medþiaga<br />

nebûtinai gali turëti v<strong>ir</strong>usø <strong>ir</strong> kitø giminingø organizmø, taèiau nëra t<strong>ir</strong>ta pagal bûtinus<br />

sertifikavimo etapus <strong>ir</strong> procedûras.<br />

Vaismedþiai su M.9 poskiepiu sodinti 3 x 1 m atstumais, o su M.26 – 3 x 1,5 m.<br />

Sodas priþiûrëtas pagal priimtas intensyvias sodø prieþiûros technologijas (Intensyvios<br />

obelø <strong>ir</strong> kriauðiø auginimo technologijos, 2005).<br />

2005 <strong>ir</strong> 2006 m. atliktas v<strong>ir</strong>usologinis vaismedþiø ávertinimas, analizuojant jungtiná<br />

bandiná, paimtà ið kiekvieno varianto. Obelø þiedinës chlorotinës dëmëtligës v<strong>ir</strong>usas<br />

(ACLSV), obelø mozaikos v<strong>ir</strong>usas (ApMV) <strong>ir</strong> obelø kamieno vagotumo v<strong>ir</strong>usas<br />

(ASGV) buvo nustatyti laboratorijoje modifikuotu imunofermentinës analizës DAS-<br />

ELISA metodu (Clark <strong>ir</strong> kt; 1977, Fleg <strong>ir</strong> kt; 1979, Maat; 1992, Fuchs <strong>ir</strong> kt; 1988).<br />

Sode buvo vertinta: kamienëlio storis (mm) 30 cm nuo þemës pav<strong>ir</strong>ðiaus; vidutinis<br />

derlius ið medþio (kg); vidutinë vaisiaus masë (g) sveriant 100 vaisiø ið pakartojimo.<br />

63


Tyrimo variantai kartoti 4 kartus. Variante – 20 vaismedþiø. Duomenys apdoroti<br />

trifaktorinës dispersinës analizës bûdu su „Anova“ kompiuterine programa.<br />

Meteorologinës sàlygos. 2003 m. þiemà krituliø iðkrito daug maþiau, o oro temperatûra<br />

buvo þemesnë negu daugiametis vidurkis. Pavasará iðkrito krituliø 33 procentais<br />

maþiau, bet buvo truputá ðilèiau negu daugiametis vidurkis. 2003 m. vasara <strong>ir</strong><br />

rugsëjo mën. buvo ðiek tiek ðiltesni negu vidutinë daugiametë norma, bet krituliø<br />

kiekis buvo artimas daugiameèiam.<br />

2004 m. sausis buvo ðaltesnis negu áprasta, taèiau sodams didesnës þalos nepadarë.<br />

Balandþio <strong>ir</strong> geguþës mënesiai buvo sausesni negu áprasta. Po palyginti ðiltoko<br />

balandþio geguþës mënuo buvo vësus. Geguþës 14 <strong>ir</strong> 17 dienomis po ðilto periodo<br />

buvo didelës -3 – -2,5°C ðalnos, kurios labai pakenkë sodo augalø þiedams <strong>ir</strong> net<br />

uþuomazgoms, todël p<strong>ir</strong>masis derlius buvo maþesnis.<br />

2005 m. pavasará po ilgo <strong>ir</strong> ðalto periodo staiga atðilus, þydëjimo laikas buvo<br />

trumpas, taèiau tai nepakenkë vaisiø uþmezgimui.<br />

2006 m. ilgas <strong>ir</strong> ðaltas periodas þydëjimo metu, taèiau be ðalnø þiedø apdulkinimui<br />

<strong>ir</strong> vaisiø uþmezgimui átakos neturëjo. Dël ilgalaikës sausros <strong>ir</strong> karðèio liepos<br />

mënesá sumaþëjo vaisiø masë <strong>ir</strong> derlius ið vaismedþio.<br />

Rezultatai. Atlikus vaismedþiø v<strong>ir</strong>usologinës bûklës tyrimus, nesertifikuotuose<br />

‘Ðampion’ veislës vaismedþiuose su M.9 <strong>ir</strong> M.26 poskiepiais 2005 m. nustatyti obelø<br />

þiedinës chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno vagotumo (ASGV) v<strong>ir</strong>usai.<br />

ASVG v<strong>ir</strong>uso koncentracija buvo maþesnë nei ACLSV v<strong>ir</strong>uso. ‘Jonagold’ veislës<br />

vaismedþiuose buvo nustatyta nedidelë obelø kamieno vagotumo v<strong>ir</strong>uso (ASGV) koncentracija.<br />

2006 m. atlikti v<strong>ir</strong>usologiniai tyrimai parodë, kad ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø<br />

koncentracijà ‘Ðampion’ M.9 NT vaismedþiuose padidëjo, palyginti su ACLSV v<strong>ir</strong>uso<br />

koncentracija 2005 m. ‘Ðampion’ veislës vaismedþiuose su M.26NT poskiepiu.<br />

2006 m. ACLSV v<strong>ir</strong>uso koncentracija buvo nepakitusi, o ASGV – padidëjo. T<strong>ir</strong>iant<br />

‘Jonagold’ veislës nesertifikuotø vaismedþiø su M.9NT poskiepiu v<strong>ir</strong>usologinæ bûk-<br />

Variantas<br />

Treatment<br />

1 lentelë. ACLSV v<strong>ir</strong>uso koncentracija 2005 <strong>ir</strong> 2006 m.<br />

Table 1. Detected ACLSV concentration in 2005–2006<br />

2005 m. 2006 m.<br />

‘Šampion’<br />

M.9NT 0,194 ± 0,002 0,220 ± 0,005<br />

M.9VF neigiama / negative (0,078 ± 0,001) neigiama / negative (0,106 ± 0,006)<br />

M.26NT 0,268 ± 0,004 0,269 ± 0,002<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,120 ± 0,003)<br />

‘Jonagold’<br />

M.9NT neigiama / negative (0,078 ± 0,002) neigiama / negative (0,146 ± 0,004)<br />

M.9VF neigiama / negative (0,079 ± 0,001) neigiama / negative (0,091 ± 0,003)<br />

M.26NT neigiama / negative (0,078 ± 0,001) neigiama / negative (0,117 ± 0,002)<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,095 ± 0,007)<br />

64


læ, 2006 m. buvo aptiktas ASGV v<strong>ir</strong>usas. ACLSV koncentracija nev<strong>ir</strong>ðijo paklaidos<br />

ribø, palyginti su 2005 m. Lyginant 2005 <strong>ir</strong> 2006 metø duomenis, nustatyta, kad<br />

sertifikuotuose dev<strong>ir</strong>usuotuose ‘Ðampion <strong>ir</strong> ‘Jonagold’ veisliø vaismedþiuose su poskiepiais<br />

M.9VF <strong>ir</strong> M.26.VF ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø nerasta. Obelø mozaikos (AMV)<br />

v<strong>ir</strong>uso nerasta në viename variante (1, 2 lentelës).<br />

Variantas<br />

Treatment<br />

2 lentelë. ASGV v<strong>ir</strong>uso koncentracija 2005 <strong>ir</strong> 2006 m.<br />

Table 2. ASGV v<strong>ir</strong>us concentration in 2005–2006<br />

2005 m. 2006 m.<br />

‘Šampion’<br />

M.9NT 0,160 ± 0,002 0,190 ± 0,006<br />

M.9VF neigiama / negative (0,072 ± 0,002) neigiama / negative (0,072 ± 0,002)<br />

M.26NT 0,159 ± 0,003 0,199 ± 0,002<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,070 ± 0,003)<br />

‘Jonagold’<br />

M.9NT neigiama / negative (0,073 ± 0,003) 0,170 ± 0,005<br />

M.9VF neigiama / negative (0,072 ± 0,002) neigiama / negative (0,095 ± 0,004)<br />

M.26NT neigiama / negative (0,075 ± 0,002) neigiama / negative (0,129 ± 0,006)<br />

M.26VF neigiama / negative (0,070 ± 0,002) neigiama / negative (0,100 ± 0,003)<br />

Augumas. Lyginant sertifikuotus dev<strong>ir</strong>usuotus <strong>ir</strong> nesertifikuotus vaismedþius<br />

2003 m., nustatyta, kad abiejø t<strong>ir</strong>tø veisliø sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø<br />

su abiem poskiepiais kamienëliai storesni negu nesertifikuotø (3 lentelë). 2004 m.<br />

‘Ðampion’ veislës M.9VF vaismedþiai buvo ið esmës storesni nei M.9NT, taèiau<br />

su M.26 poskiepiu nesertifikuotø vaismedþiø kamienëlio skersmuo buvo didesnis<br />

nei dev<strong>ir</strong>usuotø. Treèiaisiais augimo sode metais – 2005 m. M.9VF <strong>ir</strong> M.9NT<br />

kamienëliø skersmuo susilygino, o su M.26 poskiepiu iðliko esminiai sk<strong>ir</strong>tumai<br />

kaip <strong>ir</strong> ankstesniais metais. Ketv<strong>ir</strong>taisiais augimo sode metais – 2006 m. su M.26<br />

poskiepiu nesertifikuoti vaismedþiai buvo ið esmës storesni. ‘Jonagold’ veislës<br />

sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø su abiem poskiepiais kamienëliø storiai p<strong>ir</strong>maisiais,<br />

antraisiais <strong>ir</strong> treèiaisiais augimo metais buvo ið esmës didesni negu nesertifikuotø.<br />

Ketv<strong>ir</strong>taisiais metais nesertifikuotø vaismedþiø skersmuo priaugo ið<br />

esmës daugiau nei sertifikuotø. Vertinant sertifikuotø dev<strong>ir</strong>usuotø <strong>ir</strong> nesertifikuotø<br />

‘Ðampion’ veislës vaismedþiø abu poskiepius kartu, nustatyta, kad sodinimo<br />

metais dev<strong>ir</strong>usuoti vaismedþiai augo stipriau, o 2004 <strong>ir</strong> 2005 metais kamienëlio<br />

skersmens sk<strong>ir</strong>tumai buvo neesminiai. 2006 m. ið esmës pastorëjo nesertifikuotø<br />

vaismedþiø kamienëliai. ‘Jonagold’ veislës nesertifikuotø vaismedþiø kamienëliø<br />

storio dydþiø sk<strong>ir</strong>tumas taip pat buvo esminis, palyginti su sertifikuotais dev<strong>ir</strong>usuotais<br />

2005 <strong>ir</strong> 2006 m. Pastarieji augo veðliau 2005 m., taèiau 2006 m. jau ið<br />

esmës silpniau negu nesertifikuoti.<br />

65


3 lentelë. Sodinamosios medþiagos sveikumo átaka vaismedþiø augimui<br />

Table 3. Effect of health status of planting material on tree growth<br />

Variantas<br />

Treatment<br />

Kamienëlio<br />

skersmuo<br />

2003 m., mm<br />

Trunk diameter<br />

(mm) 2003<br />

Kamienëlio<br />

skersmuo<br />

2004 m., mm<br />

Trunk diameter<br />

(mm) 2004<br />

‘Šampion’<br />

Kamienëlio<br />

skersmuo<br />

2005 m., mm<br />

Trunk diameter<br />

(mm) 2005<br />

Kamienëlio<br />

skersmuo<br />

2006 m., mm<br />

Trunk diameter<br />

(mm) 2006<br />

M.9NT 17,3 <strong>25</strong>,4 30,3 35,75<br />

M.9VF 18,7 27,4 30,3 34,75<br />

M.26NT 18,3 32,4 41,3 50,50<br />

M.26VF 18,7 29,7 39,4 43,00<br />

R 05 / LSD 05 0,59 0,81 1,52 2,69<br />

NT 17,8 28,9 35,8 43,10<br />

VF 18,7 28,6 34,9 38,90<br />

R 05 / LSD 05 0,35 0,51 0,95 1,90<br />

‘Jonagold’<br />

M.9NT 17,2 26,4 33,0 41,00<br />

M.9VF 17,7 26,7 34,8 40,00<br />

M.26NT 18,0 30,5 40,0 53,50<br />

M.26VF 20,0 31,8 45,0 49,<strong>25</strong><br />

R 05 / LSD 05 1,21 1,37 1,52 2,69<br />

NT 17,6 28,5 36,5 47,30<br />

VF 18,8 29,2 39,9 44,60<br />

R 05 / LSD 05 0,85 0,97 1,<strong>25</strong> 1,90<br />

Derlius. 2004 m., antraisiais augimo sode metais, po dideliø pavasariniø ðalnø<br />

buvo skintas negausus obuoliø derlius. Ið esmës gausiausiai derëjo M.9VF vaismedþiai.<br />

Nuo ‘Ðampion’ veislës vaismedþio buvo priskinta vidutiniðkai 2,10 kg, arba<br />

6,93 t/ha obuoliø (4 lentelë). Sertifikuoti dev<strong>ir</strong>usuoti vaismedþiai buvo ið esmës derlingesni<br />

uþ nesertifikuotus. 2005 m. didþiausias derlius buvo skintas nuo M.26NT.<br />

Gausiausias gautas vaismedþiø su M.9 poskiepiu derlius ið hektaro (iki <strong>25</strong> t), esminiø<br />

sk<strong>ir</strong>tumø tarp M.9NT <strong>ir</strong> M.9VF nebuvo. 2006 m. gausiau derëjo dev<strong>ir</strong>usuoti ‘Ðampion’<br />

veislës vaismedþiai su M.26 poskiepiu – 12,88 kg, arba 28,59 t/ha obuoliø<br />

nuo medþio. Lyginant ‘Ðampion’ veislës vaismedþius su abiem poskiepiais, uþfiksuotas<br />

didesnis sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø derlius, o ‘Jonagold’ veislës ið<br />

esmës didesná derliø ið ploto vieneto davë nesertifikuoti vaismedþiai su M.26 poskiepiu<br />

(4, 5 lentelës). Esminiø sk<strong>ir</strong>tumø tarp sertifikuotø <strong>ir</strong> nesertifikuotø vaismedþiø<br />

su M.9 poskiepiu nebuvo.<br />

66


4 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Ðampion’<br />

veislës vaismedþiø derëjimui<br />

Table 4. Effect of health status of planting material on ‘Sampion’ apple yield<br />

2004 m. 2005 m. 2006 m.<br />

Variantas<br />

Treatment kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/tree<br />

kg/tree<br />

kg/tree<br />

M.9NT 1,67 5,52 7,45 24,83 7,24 24,12<br />

M.9VF 2,10 6,93 7,37 24,56 8,64 28,77<br />

M.26NT 0,76 1,66 9,85 21,89 9,86 20,89<br />

M.26VF 1,00 2,20 7,74 17,20 12,88 28,59<br />

R 05 / LSD 05 0,27 0,78 1,20 3,31 3,20 8,21<br />

NT 1,22 3,59 8,65 23,26 8,55 23,01<br />

VF 1,55 4,57 7,56 20,88 10,76 28,68<br />

R 05 / LSD 05 0,16 0,48 0,73 2,02 2,26 5,70<br />

5 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Jonagold’ veislës<br />

vaismedþiø derëjimui<br />

Table 5. Effect of health status of planting material on ‘Jonagold’ apple yield<br />

2004 m. 2005 m. 2006 m.<br />

Variantas<br />

Treatment kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/tree<br />

kg/tree<br />

kg/tree<br />

M.9NT 0,08 0,28 4,89 16,3 6,55 21,81<br />

M.9VF 0,17 0,58 4,52 15,1 5,74 19,11<br />

M.26NT 0,05 0,11 3,82 8,5 12,40 27,53<br />

M.26VF 0,01 0,01 4,67 10,4 5,95 13,21<br />

R 05 / LSD 05 0,27 0,78 1,20 3,31 3,2 8,21<br />

NT 0,07 0,20 4,37 12,4 9,5 24,67<br />

VF 0,09 0,29 4,59 12,8 5,84 16,16<br />

R 05 / LSD 05 0,16 0,48 0,73 2,02 2,26 5,70<br />

Vaisiø kokybë. 2004 m. ‘Ðampion’ veislës vaismedþiø vidutinë vaisiaus masë<br />

nuo M.9NT <strong>ir</strong> M.26NT buvo didesnë atitinkamai uþ M.9VF <strong>ir</strong> M.26VF, nors esminiø<br />

sk<strong>ir</strong>tumø nenustatyta (6 lentelë). Taèiau vidutinë nesertifikuotø vaismedþiø vaisiaus<br />

masë buvo ið esmës didesnë uþ sertifikuotø dev<strong>ir</strong>usuotø. 2005 m., prieðingai, sertifikuotø<br />

dev<strong>ir</strong>usuotø vaismedþiø vidutinë vaisiaus masë buvo ið esmës didesnë nei nesertifikuotø.<br />

Atsk<strong>ir</strong>ai vertinant poskiepius, nustatyta, kad M.26VF vaisiai buvo ið<br />

esmës didesni uþ M.26NT, o tarp M.9VF <strong>ir</strong> M.9NT sk<strong>ir</strong>tumo nebuvo. 2006 m. didesnë<br />

vaisiaus masë buvo vaismedþiø su nesertifikuotais M.9NT poskiepiais. Vaismedþiø<br />

su M.26 poskiepiu vidutinei vaisiaus masei sodinamosios medþiagos sveikumo<br />

lygis átakos neturëjo. 2004 <strong>ir</strong> 2005 m. ‘Jonagold’ veislës vaismedþiø vaisiaus<br />

masei vaismedþiø sveikumo lygis esminës átakos neturëjo. 2006 m. didesne vaisiaus<br />

67


mase iðsiskyrë sertifikuoti dev<strong>ir</strong>usuoti vaismedþiai su M.9VF poskiepiu, taèiau esminiø<br />

sk<strong>ir</strong>tumø nenustatyta nei su M9.NT, nei lyginant abu poskiepius kartu (7 lentelë).<br />

6 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Ðampion’ veislës<br />

vidutinei vaisiaus masei, g<br />

Table 6. Effect of health status of planting material on ‘Sampion’ apple fruit weight, g<br />

Variantas<br />

Treatment<br />

2004 m. 2005 m. 2006 m.<br />

M.9NT 195 121 163<br />

M.9VF 183 124 148<br />

M.26NT 172 133 171<br />

M.26VF 161 147 172<br />

R 05 / LSD 05 15,2 7,6 13,9<br />

NT 183 127 167<br />

VF 172 136 160<br />

R 05 / LSD 05 8,8 4,7 9,8<br />

7 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Jonagold’ veislës<br />

vidutinei vaisiaus masei, g<br />

Table 7. Effect of health status of planting material on ‘Jonagold’ apple fruit weight, g<br />

Variantas<br />

Treatment<br />

2004 m. 2005 m. 2006 m.<br />

M.9NT 150 139 165<br />

M.9VF 150 136 172<br />

M.26NT 157 143 165<br />

M.26VF 150 139 164<br />

R 05 / LSD 05 12.1 7.6 13,9<br />

NT 154 141 165<br />

VF 150 138 168<br />

R 05 / LSD 05 8,7 4,7 9,83<br />

Aptarimas. Atlikus v<strong>ir</strong>usologinius obelø vaismedþiø tyrimus, surasti obelø þiedinës<br />

chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno vagotumo (ASGV) v<strong>ir</strong>usai.<br />

Obelø mozaikos v<strong>ir</strong>uso ApMV nebuvo rasta. ACLSV priklauso patogeniniø latentiniø<br />

obelø v<strong>ir</strong>usø grupei. Tai vienas labiausiai paplitusiø augalø, taip pat <strong>ir</strong> obelø, v<strong>ir</strong>usø,<br />

daþnai aptinkamø kartu su kitais latentiniais v<strong>ir</strong>usais, o tai sustiprina jø poveiká <strong>ir</strong><br />

pas<strong>ir</strong>eiðkimà. Árodyta, kad ACLSV gali sumaþinti poskiepio <strong>ir</strong> áskiepio atitikimà (Nemeth,<br />

1986). ASGV v<strong>ir</strong>usas yra randamas obelyse <strong>ir</strong> kriauðëse <strong>ir</strong> taip pat priklauso II<br />

latentiniø v<strong>ir</strong>usø tipui. V<strong>ir</strong>usas yra pakankamai stabilus, taèiau randamas augaluose<br />

tik kartu su kitais latentiniais v<strong>ir</strong>usais <strong>ir</strong> retais atvejais sukelia poskiepiø þuvimà (Yanase,<br />

1983). Nors nustatyti v<strong>ir</strong>usai gali pakenkti obelø atsparumui, poskiepio <strong>ir</strong> áskiepio<br />

68


atitikimui <strong>ir</strong> augimui sode (Maxim <strong>ir</strong> kt., 2004), taèiau jø koncentracija t<strong>ir</strong>tuose bandiniuose<br />

buvo maþa <strong>ir</strong> turëjo tendencijà didëti. Todël galima manyti, kad ðiø v<strong>ir</strong>usø<br />

átaka vaismedþiø augimui <strong>ir</strong> derëjimui yra minimali <strong>ir</strong> priklauso daugiau nuo veislës <strong>ir</strong><br />

meterologiniø sàlygø. Taèiau negalima teigti, kad nesertifikuoti vaismedþiai nebuvo<br />

uþkrësti <strong>ir</strong> kitais v<strong>ir</strong>usais, kurie galëjo neigiamai paveikti obelø vegetatyviná <strong>ir</strong> generatyviná<br />

vystymàsi. Dev<strong>ir</strong>usuotuose vaismedþiuose v<strong>ir</strong>usø nebuvo rasta. Ketv<strong>ir</strong>taisiais<br />

augimo sode metais – 2006 m. vaismedþiuose su poskiepiu M.9NT jau buvo nustatytas<br />

ASGV v<strong>ir</strong>usas. Bûtø galima daryti prielaidà, kad nesertifikuotuose ‘Jonagold‘<br />

veislës su poskiepiu M.9NT vaismedþiuose su ASGV ðio v<strong>ir</strong>uso koncentracija didës<br />

bei daugës medþiø, uþkrëstø ASGV. Be to, negalima atmesti prielaidos, kad nesertifikuotuose<br />

vaismedþiuose, bëgant metams, bus aptiktas <strong>ir</strong> ApMV v<strong>ir</strong>usas.<br />

Sertifikuotuose dev<strong>ir</strong>usuotuose vaismedþiuose ACLSV <strong>ir</strong> ASGV koncentracija,<br />

nors <strong>ir</strong> didëjo, bet nelabai stipriai. Galima manyti, kad vëlesniu sodo augimo<br />

metu, ats<strong>ir</strong>andant naujiems v<strong>ir</strong>usams <strong>ir</strong> didëjant jø koncentracijai, nesertifikuoti<br />

vaismedþiai blogiau vegetatyviðkai vystysis <strong>ir</strong> derës negu sertifikuoti, taèiau ðiuo<br />

metu nustatyti aiðkiø tendencijø <strong>ir</strong> sk<strong>ir</strong>tumø tarp sertifikuotø <strong>ir</strong> nesertifikuotø vaismedþiø<br />

augimo <strong>ir</strong> derëjimo dar negalima. Taip pat negalima teigti, kad vaismedþiø<br />

augimo, derëjimo ar vaisiø kokybës vienodumas priklausë nuo sodinamosios medþiagos<br />

sveikumo lygio.<br />

Sveika sodinamoji medþiaga garantuoja geresná vaismedþiø prigijimà <strong>ir</strong> veðlesná<br />

augimà p<strong>ir</strong>maisiais metais (Ciezsliñska, Malinowski, 2002). Tai ypaè svarbu ðiuolaikiniuose<br />

intensyviuose soduose, kad vaismedþiai greièiau uþpildytø jiems sk<strong>ir</strong>tà plotà<br />

<strong>ir</strong> pradëtø kuo anksèiau derëti. V<strong>ir</strong>usai gali susilpninti medþiø augimà <strong>ir</strong> medelyne<br />

(Golis <strong>ir</strong> kt., 2000; Maxim <strong>ir</strong> kt., 2004, Hammond; 2005) <strong>ir</strong> sode (Wertheim, 1998).<br />

Atlikti tyrimai patv<strong>ir</strong>tino, kad dev<strong>ir</strong>usuoti vaismedþiai sodinimo metais stipriau vystësi<br />

vegetatyviðkai.<br />

Nors medþiø v<strong>ir</strong>usologinë bûklë gali turëti átakos vaisiø kokybei (Zawadska,<br />

Guzewska, 1986), taèiau ðiais tyrimais to nenustatyta. Vidutinë vaisiaus masë koreliavo<br />

su derliumi. 2004 m. ‘Ðampion’ veislës dev<strong>ir</strong>usuoti vaismedþiai derëjo gausiau,<br />

bet jø vidutinë vaisiaus masë buvo maþesnë uþ nesertifikuotø. Taèiau kitais metais,<br />

nuo nesertifikuotø obelø skinant didesná derliø, dev<strong>ir</strong>usuoti vaismedþiai uþaugino ið<br />

esmës didesnës masës vaisius. Visais tyrimø metais ‘Jonagold’ veislës vaismedþiø<br />

vaisiaus masës esminiø sk<strong>ir</strong>tumø nenustatyta.<br />

Iðvados. 1. Sodo áveisimo metais dev<strong>ir</strong>usuotø ‘Ðampion’ bei ‘Jonagold’ obelø<br />

veislës vaismedþiø vegetatyvinis augimas yra ið esmës intensyvesnis nei nesertifikuotø<br />

vaismedþiø.<br />

2. Antraisiais–ketv<strong>ir</strong>taisiais augimo sode metais vaismedþiø vegetatyvinë <strong>ir</strong> generatyvinë<br />

raida bei vidutinë vaisiaus masë nepriklausë nuo sodinamosios medþiagos<br />

sveikumo lygio.<br />

3. ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø koncentracija turëjo tendencijà didëti abiejø veisliø<br />

obelø su abiem poskiepiais vaismedþiuose. Ketv<strong>ir</strong>taisiais augimo sode metais <strong>ir</strong> ‘Jonagold’<br />

veislës vaismedþiuose su poskiepiu M.9NT buvo nustatytas ASGV v<strong>ir</strong>usas.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

69


Literatûra<br />

1. Chunjiang L., Nobu Y., Tsuyoshi T., Tsutae I., Kouji Y., H<strong>ir</strong>oki K. Nucleotide sequent<br />

and genome organization of Apple latent spheric v<strong>ir</strong>us: a new v<strong>ir</strong>us classified into the<br />

family Comov<strong>ir</strong>idaE // Journal of General V<strong>ir</strong>ology. 2000. Vol. 81. P. 541–547.<br />

2. Cieszliñska M., Malinowski T. V<strong>ir</strong>us and v<strong>ir</strong>us-like diseases of fruit trees and small<br />

fruits // Zeszyty Naukowe Instytuta Sadownictwa. 2002. Vol. 10. P. 197–206.<br />

3. Cieszliñska M, Malinowski T, Zawadzka B. Studies on several strains of apple<br />

chlorotic leaf spot v<strong>ir</strong>us (ACLSV) isolated from different fruit tree species // Acta Horticulturae.<br />

1995. Vol. 386. P. 63–71.<br />

4. Clark M, Adams A. N. Characteristics of microplate method of enzyme linked<br />

immunosorbent assay for detection of plant v<strong>ir</strong>us // Journal of General V<strong>ir</strong>ology. 1977.<br />

Vol. 34. P. 479–483.<br />

5. Desvignes J. C. V<strong>ir</strong>us Diseases of Fruit Trees. Ctifl, 1999. 202 pp.<br />

6. Fleg L. C., Clark M. F. The detection of Apple Chlorotic leafspot v<strong>ir</strong>us by modified<br />

procedure of enzyme linked immunosorbent assay (ELISA) // Annual Applied Biology.<br />

1979. Vol. 91. P. 61–65.<br />

7. Fuchs E., Gruntzig M., Al Kai B. Das serologische Nachweis mechanisch Übertagbaren<br />

V<strong>ir</strong>en des Kern – und Steinobstes // Nachrichen blat für den Pflanenschutz in der<br />

DDR. 1988. Vol. 42(10). P. 208–211.<br />

8. Golis T., Bielicki P., Zawadzka B., Czynczyk A. Jakocê drzewek jabloni uzyskanych<br />

w szkólce w zaleznoszci od stopnia porazenia w<strong>ir</strong>usami podkladek i zrazów // Rocz. AR<br />

Poznañ CCCXXIII. 2000. Vol. 31(2). P. 45–50.<br />

9. Hammond, R. Plant V<strong>ir</strong>us-Based Vectors In Agriculture And Biotechnology // In<br />

Vitro Cellular And Developmental Biology – Plants. 2005. Vol. 41. P. 405–410.<br />

10. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). LSDI.<br />

Babtai, 2005. 212 p.<br />

11. Kviklys D., Stankiene J. Sodinamosios medþiagos sveikatingumo átaka obelø<br />

veislës Ðampion augimui <strong>ir</strong> derëjimui jauname sode // Sodininkystë <strong>ir</strong> darþininkystë. Babtai,<br />

2005. 24(4). P. 48–56.<br />

12. Maat D. Z. Enzyme-linked immunosorbent assay (ELISA) (1). 1992. P. 1–13.<br />

13. Malinowski T., Cieszliñska M., Zawadzka B., Interewicz B., Porêbska A. Characterization<br />

of monoclonal antibodies against applechlorotic leaf spot v<strong>ir</strong>us (ACLSV) and<br />

the<strong>ir</strong> application for detection of ACLSV and identification of its strains // Phytopathologia<br />

Polonia. 1997. Vol. 14. P. 35–40.<br />

14. Malinowski T., Komorowska B., Golis T., Zawadzka B. Detection of apple stem<br />

pitting v<strong>ir</strong>us and pear vein yellows v<strong>ir</strong>us using reverse transcription – polymerase chain<br />

reaction // Acta Horticulturae. 1998. Vol. 472. P. 87–95.<br />

15. Maxim A., Zagrai L., Zagrai I., Isac M. Studies on the influence of Apple stem<br />

grooving v<strong>ir</strong>us on tree growth of various apple cultivars in the nursery // Acta Horticulturae.<br />

2004. Vol. 657. P. 41–44.<br />

16. Nemeth M. V<strong>ir</strong>us, Mycoplazma and Ricketsia Diseases of Fruit Trees. Academia<br />

Kiado, Budapest. 1986. 841 p.<br />

17. Stankiene J., Stanys V. Investigations of Apple V<strong>ir</strong>us Diseases and obtaining<br />

V<strong>ir</strong>us Free Clones of some Apple Cultivars and Rootstocks in Lithuania // Fruit science.<br />

2000. Vol. 207. P. 51–55.<br />

18. Wrona D., C. Kot. Cropping and fruit quality of ‘Sampion’ apple trees on M.9,<br />

depending on fertilization // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002. T. 21(3). P. 120–<br />

1<strong>25</strong>.<br />

70


19. Yanase H. Back transmission apple stem grooving v<strong>ir</strong>us to apple seedlings and<br />

introduction of symptoms of apple topwork disease in Mitsuba kaido (Malus sieboldii)<br />

and Kobano zumi (Malus sieboldii, var. arborescens) rootstocks // Acta Horticulturae.<br />

1983. T. 130. P. 117–122.<br />

20. Zawadzka B., Guzewska I. The influence of apple mosaic and apple rubbery wood<br />

diseases on storage disorders and fruit quality of Jonared, McIntosh, and Spartan cultivars<br />

// Fruit Science Reports. 1986. Vol. 13(4). P. 185–191.<br />

21. Zawadzka, B. The influence of v<strong>ir</strong>us and mycoplasma diseases on frost damage<br />

of apple trees // Acta Horticulturae. 1989. Vol. 235. P. 59–67.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EFFECT OF HEALTH STATUS OF PLANTING MATERIAL<br />

ON APPLE TREE GROWTH AND YIELD<br />

D. Kviklys, J. Stankienë, H. Kemp<br />

Summary<br />

Trials on the effect of planting material of different health status on fruit tree<br />

growth, yield and fruit quality were conducted at the Lithuanian Institute of Horticulture<br />

during 2003–2006. Certified v<strong>ir</strong>us free and not tested trees of cvs. ‘Ðampion’<br />

and ‘Jonagold’ on M.9 and M.26 rootstocks were tested. Low concentrations<br />

of Apple chlorotic leave spot v<strong>ir</strong>us (ACLSV) and Apple stem groowing v<strong>ir</strong>us (ASGV)<br />

v<strong>ir</strong>uses were detected in not certified planting material of cv. ‘Ðampion’ in 2005 and<br />

Apple stem groowing v<strong>ir</strong>us (ASGV) in not certified planting material on M.9 of cv.<br />

‘Jonagold’ in 2006. Concentration of v<strong>ir</strong>uses had tendency to increase. V<strong>ir</strong>us free<br />

trees had stronger vegetative growth (total shoot length and stem diameter) at planting<br />

year than not tested ones. During second and fourth year in the orchard vegetative<br />

and generative development of apple trees and fruit weight did not depend on<br />

health status of planting material.<br />

Key words: apple, planting material, vegetative growth, v<strong>ir</strong>us diseases, v<strong>ir</strong>us<br />

status, yield.<br />

71


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

AGROTECHNINIØ (ÛKININKAVIMO) SISTEMØ ÁTAKA<br />

‘ELISE’ VEISLËS OBELØ DERLIUI, PRODUKCIJOS<br />

KOKYBEI IR DIRVOÞEMIO SUDËÈIAI<br />

Sk<strong>ir</strong>mantas NOMINAITIS, Vida Marija RUTKOVIENË<br />

Lietuvos þemës ûkio universitetas, LT-53345, Studentø g. 11, Akademija,<br />

Kauno r., el. paðtas ai@nora.lzua.lt; sk<strong>ir</strong>mantas.nominaitis@lzuu.lt<br />

Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas biochem@lsdi.lt<br />

Palyginamasis tyrimas darytas 2002–2005 metais Kauno kolegijos Kraðtotvarkos<br />

fakulteto mokomajame sode, áveistame karbonatingame sekliai glëjiðkame iðplautþemyje.<br />

T<strong>ir</strong>ta sk<strong>ir</strong>tingø agrotechniniø sistemø átaka obelø veislës ‘Elise’ derëjimo<br />

dinamikai <strong>ir</strong> derliui bei vaisiø kokybei.<br />

Nustatyta, kad taikant sk<strong>ir</strong>tingo intensyvumo – áprastinæ <strong>ir</strong> ekologinæ – agrotechnines<br />

sistemas, ‘Elise’ obelø derlingumas ið esmës skyrësi paskutiniaisiais tyrimo<br />

metais. Didesnis derlius gautas ekologinës gamybos variante. Ekologiðkuose obuoliuose<br />

buvo daugiau vitamino C, geresnës buvo jø elektrocheminës savybës.<br />

Reikðminiai þodþiai: obuoliø kokybë, derlingumas, ekologinë gamyba, cheminë<br />

sudëtis<br />

Ávadas. Ekologinë gamyba vaidina vis svarbesná vaidmená ágyvendinant ES aplinkosaugos<br />

programas, daugiau dëmesio sk<strong>ir</strong>iant aplinkai <strong>ir</strong> iðteklius tausojantiems ûkininkavimo<br />

metodams, sprendþiant maisto saugos uþdavinius (Tauscher <strong>ir</strong> kt. 2003;<br />

Alfoeldi <strong>ir</strong> kt. 1996) Vis daugiau kalbama apie taupias, efektyvias, tausojanèias, tvarias<br />

sistemas, kurios maþina áva<strong>ir</strong>iø iðtekliø naudojimà, saugo aplinkà <strong>ir</strong> vartotojus aprûpina<br />

saugiu bei geros kokybës maistu (Kadþiulienë, 2004). Þemës ûkio produktø <strong>ir</strong> þaliavø<br />

gamybos intensyvinimas, didinantis aplinkos tarðà, ðiandien tampa nebeaktualus dar <strong>ir</strong><br />

todël, kad daugeliui ðaliø pavyko iðspræsti maisto produktø nepritekliø problemà (Spiekermann,<br />

2001). Pagamintos produkcijos pertekliø eksportuoti á besivystanèius kraðtus<br />

ateityje bus nenaudinga, nes pasaulio prekybos politika remia idëjà skatinti vietos<br />

gamintojus aps<strong>ir</strong>ûpinti þemës ûkio þaliavomis <strong>ir</strong> produktais (Tauscher <strong>ir</strong> kt., 2003).<br />

Intensyviai tobulëjant genø inþinerijai, produktø ávaizdþio kûrimo ar augalø auginimo<br />

be substrato technologijoms, vël kyla didelis susidomëjimas vidine maisto produktø<br />

kokybe. Ðie gyvybiniø procesø valdymo technologiniai pasiekimai kelia sus<strong>ir</strong>ûpinimà<br />

daugeliui þmoniø (Huber, Fuchs, 2003).<br />

72


Daugiau kaip pusæ amþiaus sodo, kaip <strong>ir</strong> kitø kultûriniø augalø, selekcininkai<br />

derino savo tyrimus prie augalo produktyvumà skatinanèiø intensyvios gamybos technologijø<br />

(Bloksma, 2003). Sumedëjæ sodo augalai yra daugiametë kultûra <strong>ir</strong> gamintojams<br />

pradëjus ûkininkauti ekologiðkai, be sintetiniø pesticidø <strong>ir</strong> greitai t<strong>ir</strong>pstanèiø tràðø,<br />

iðkyla uþdavinys palaikyti optimalø augalø derëjimà <strong>ir</strong> sveikatà bei produkcijos<br />

kokybæ (Bloksma, Northolt <strong>ir</strong> kt., 2004) (Geipel, Kreckl, 2006).<br />

Darbo tikslas – kompleksiðkai ávertinti obelø veislës ‘Elise’ vaisiø kokybæ <strong>ir</strong><br />

derëjimà, taikant áprastinæ <strong>ir</strong> ekologinæ agrotechnines sistemas, bei ðiø sistemø poveiká<br />

d<strong>ir</strong>voþemiui.<br />

Tyrimo objektas <strong>ir</strong> metodai. Bandymas atliktas 2002–2005 metais Kauno kolegijos<br />

Kraðtotvarkos fakulteto mokomajame sode pagal schemà:<br />

I – taikytos intensyvios agrotechninës priemonës. Træðta du kartus: amonio<br />

salietra <strong>ir</strong> „Kem<strong>ir</strong>a Kombi“. Augalø apsaugos nuo ligø <strong>ir</strong> kenkëjø priemonës per vegetacijà<br />

naudotos vidutiniðkai 9 kartus;<br />

II – ekologinës gamybos variante sintetiniai pesticidai <strong>ir</strong> tràðos nenaudoti. Skystomis<br />

natûralios kilmës tràðomis „Biokal 01“ <strong>ir</strong> „Biokal 02“ træðta per lapus, o „Biokal 03“<br />

granuliø presuoti kubeliai iðberti pomedþiuose. Rudená ekologinës gamybos variantas<br />

(pomedþiai) træðtas kompostu – 8 kg/m 2 .<br />

Tyrimui pas<strong>ir</strong>inkta þieminë obelø veislë ‘Elize’, sukurta Olandijoje. Vaisiai vidutinio<br />

dydþio, apvalaus kûgio formos, odelë pasidengusi raudoniu su bronzos atspalviu.<br />

Vaismedþiai vidutinio augumo, vidutiniðkai iðtvermingi þiemà, vidutiniðkai jautrûs<br />

rauplëms, jautrûs þievës ligoms.<br />

Veislës ‘Elize’, poskiepis M.9, sodinimo schema 3,5 x 1,2 m. Sodas pasodintas<br />

2002 m. pavasará, sodinamoji medþiaga importuota ið Olandijos. Sodas lietintas laðeline<br />

drëkinimo sistema. Vaismedþiø pomedþiuose áprastinës gamybos variante palaikytas<br />

herbicidinis pûdymas, ekologinës gamybos variante – juodasis pûdymas. Abiejø<br />

variantø pomedþiai mulèiuoti medþio droþlëmis. Bandymo plotas – lyguma su nedideliu<br />

nuolydþiu ðiaurës kryptimi. Bandymo vietoje vyrauja karbonatingieji sekliai<br />

glëjiðki iðplautþemiai (Calcari – Hipogleyic Luvisols), vidutinio sunkumo <strong>ir</strong> sunkûs<br />

priemoliai, kur d<strong>ir</strong>voþemio pH KCl<br />

6,8–7,5, humuso kiekis nedidelis – 1,2–1,8%, P 2<br />

O 5<br />

–<br />

126–155 mg/kg, K 2<br />

O – 130–151 mg/kg.<br />

Meteorologinës sàlygos vertintos remiantis Kauno meteorologinës stoties duomenimis.<br />

Visais tyrimo metais vidutinës mënesio temperatûros vegetacijos pradþioje<br />

nedaug skyrësi, o vegetacijos vidurys <strong>ir</strong> pabaiga buvo ðiltesni, iðskyrus 2003 metus,<br />

kai spalio mënesio vidutinë temperatûra buvo 2,2°C þemesnë uþ daugiametá vidurká.<br />

Krituliø kiekis áva<strong>ir</strong>avo labiau: 2003 metais lietingas buvo liepos, o 2005 m. – rugpjûèio<br />

mënuo. Ávertinus temperatûros svyravimus visais tyrimo metais, galima teigti,<br />

kad sàlygos sodo augalams augti buvo palankios.<br />

Obuoliø cheminës analizës atliktos LSDI Biochemijos <strong>ir</strong> technologijos laboratorijoje.<br />

T<strong>ir</strong>pios sausosios medþiagos nustatytos refraktometru (Ïåòåðáóðãñêèé, 1963),<br />

monosacharidai bei sacharozë – Bertrano metodu (Åðìàêîâ <strong>ir</strong> kt., 1987), titruojamasis<br />

rûgðtingumas, iðreikðtas obuoliø rûgðtimi – titruojant 0,1 N natrio ðarmo t<strong>ir</strong>palu,<br />

askorbo rûgðtis – titruojant 2,6-dichlorfenolindofenolio natrio druskos t<strong>ir</strong>palu<br />

(Åðìàêîâ <strong>ir</strong> kt., 1987), nitratai – potenciometriðkai, su jonselektyviu elektrodu (Metodiniai<br />

nurodymai, 1990), sausosios medþiagos – gravimetriðkai, iðdþiovinus 105°C<br />

temperatûroje iki nekintamos masës (Food analysis, 1986). Vaisiø odelës tv<strong>ir</strong>tumas<br />

73


nustatytas penetrometru IDP-500, audiniø tv<strong>ir</strong>tumas – penetrometru FT 327. Ið kiekvieno<br />

varianto imta po 10 vaisiø, tv<strong>ir</strong>tumas matuotas prieðingose vaisiaus pusëse.<br />

Vaisiø elektrocheminiai tyrimai atlikti LÞÛU Aplinkotyros laboratorijoje. Vandenilio<br />

jonø koncentracija nustatyta tiesioginës potenciometrijos metodu, matuojant jonometru<br />

Methrom AG CH -9101, redokso potencialas (rH vertë) nustatytas tiesioginës<br />

potenciometrijos metodu, matuojant jonometru Methrom AG CH –9101, naudojant<br />

platinos elektrodà, savitasis elektrinis laidis (rho vertë) matuotas konduktometru<br />

intoLAB WTW. Iðvestinio dydþio P vertë, charakterizuojanti produkto energinæ vertæ,<br />

apskaièiuota pagal NERST-o lygtá:<br />

P[µW] = [29,07 (rH-2pH)] 2 x rho -1<br />

Rezultatai. Tyrimo metais abiejø variantø derlius akivaizdþiai didëjo, nes tyrimas<br />

pradëtas antraisiais po sodo pasodinimo metais. P<strong>ir</strong>møjø <strong>ir</strong> antrøjø derëjimo<br />

metø duomenimis, obelø veislës ’Elise’ derëjimo dinamikos sk<strong>ir</strong>tumai, taikant sk<strong>ir</strong>tingo<br />

ûkininkavimo sistemas, neesminiai. 2005 metais ekologinës gamybos variante<br />

gautas 5 proc. didesnis derlius (1 pav.).<br />

1 pav. Ûkininkavimo sistemos átaka derliui<br />

Fig. 1. Farming system effect on yield<br />

2 pav. Ûkininkavimo sistemos átaka ‘Elise’<br />

vaisiø odelës kietumui<br />

Fig. 2. Farming system effect on ‘Elise’ fruit skin<br />

f<strong>ir</strong>mness<br />

3 pav. Ûkininkavimo sistemos átaka<br />

‘Elise’ vaisiø minkðtimo kietumui<br />

Fig. 3. Farming system effect on<br />

‘Elise’ fruit tissue f<strong>ir</strong>mness<br />

74


Sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas obuoliø technologinëms savybëms, t. y.<br />

obuoliø odelës tv<strong>ir</strong>tumui <strong>ir</strong> minkðtimo kietumui, esminës átakos neturëjo.<br />

1 lentelë. Ûkininkavimo sistemos átaka ‘Elise’ veislës obuoliø cheminei sudëèiai<br />

Table 1. Farming system effect on ‘Elise’ fruit chemical composition<br />

Variantai<br />

Treatment<br />

Ekologinë<br />

gamyba<br />

Organic farming<br />

Áprastinë gamyba<br />

Conventional<br />

farming<br />

Bendrasis cukrus<br />

Total sugar content,<br />

%<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

Askorbo rugštis<br />

Vitamin C, mg%<br />

10,9 12,6 14,7 2,27<br />

10,56 12,8 14,9 1,93<br />

R 05 / LSD 05 1,04 1,00 1,14 0,28<br />

Vertinant obuoliø cheminæ sudëtá, nustatyta, kad visais tyrimo metais bendrojo<br />

cukraus, t<strong>ir</strong>piø sausøjø medþiagø <strong>ir</strong> sausøjø medþiagø kiekiø sk<strong>ir</strong>tumai tarp variantø<br />

buvo neesminiai (1 lentelë).<br />

2 lentelë. Ûkininkavimo sistemos átaka ‘Elise’ veislës obuoliø mineralinei sudëèiai<br />

Table 2. Farming system effect on ‘Elise’ fruit mineral composition<br />

Variantai<br />

%<br />

Treatment N P K Ca<br />

Ekologinë gamyba<br />

Organic farming<br />

0,23 0,08 0,72 0,08<br />

Áprastinë gamyba<br />

Conventional farming<br />

0,27 0,08 0,66 0,04<br />

R 05 / LSD 05 0,11 0,01 0,07 0,19<br />

Nustatyti esminiai vitamino C kiekio sk<strong>ir</strong>tumai: ekologiðki obuoliai jo sukaupë<br />

daugiau. Analizuojant vaisiø mineralinæ sudëtá, tyrimo metais esminiø sk<strong>ir</strong>tumø tarp<br />

variantø nenustatyta (2 lentelë).<br />

LÞÛU Aplinkotyros laboratorijoje iðtyrus ‘Elise’ veislës ekologiðkø <strong>ir</strong> pagal áprastines<br />

technologijas auginamø obuoliø elektrochemines savybes derëjimo metu, nustatyta,<br />

kad ekologinës gamybos obuoliø elektrocheminës savybës geriausios ðiems<br />

pasiekus skynimo brandà (spalio mën.). Obuolius sandëliuojant nemodifikuotos aplinkos<br />

sàlygomis, ðios savybës blogëja, taèiau ekologiðkø obuoliø P vertë gruodþio<br />

mënesá buvo didesnë nei áprastiniø obuoliø (4 pav).<br />

75


4 pav. Agrotechninës sistemos átaka obuoliø elektrocheminiø savybiø<br />

kitimui derëjimo <strong>ir</strong> laikymo metu<br />

Fig. 4. Farming system effect on the data of electrochemical parameter variation<br />

during yielding and storage of ‘Elise’ fruit<br />

5 pav. Agrotechniniø sistemø átaka vario kiekiui v<strong>ir</strong>ðutiniame d<strong>ir</strong>voþemio<br />

sluoksnyje sodo pomedþiuose<br />

Fig. 5. Agrotechnical system influence on copper amount in top horizon of orchard soil<br />

Vertinant d<strong>ir</strong>voþemio sudëties kitimà pomedþiø v<strong>ir</strong>ðutiniame sluoksnyje 2003–2005<br />

metais, nustatyta, kad humuso <strong>ir</strong> bendrojo azoto kiekis ið esmës nekito. Nustatyti Cu<br />

kiekio esminiai sk<strong>ir</strong>tumai tarp variantø. Paskutiniaisiais tyrimo metais ekologinës gamybos<br />

variante judriøjø vario formø susikaupë net 43 proc. daugiau nei áprastinës<br />

sistemos variante, taèiau didþiausios leidþiamos koncentracijos (DLK) nev<strong>ir</strong>ðijo (5 pav.).<br />

Aptarimas. Rezultatai rodo, kad sk<strong>ir</strong>tingos agrotechninës sistemos turëjo átakos<br />

vaisiø derliui tik paskutiniaisiais tyrimo metais, o jø cheminei sudëèiai <strong>ir</strong> technologinëms<br />

savybëms esminës átakos neturëjo, taèiau pastebëtos tendencijos patv<strong>ir</strong>tino<br />

kitø mokslininkø gautus rezultatus. Weibel <strong>ir</strong> kt. (2000) palyginamuoju bandymu tyrë<br />

‘Golden Delicious’ obuolius, uþaugintus tausojanèios <strong>ir</strong> ekologinës gamybos variantuose.<br />

Ekologiðkø obuoliø vaisiø minkðtimo kietumas buvo 14 proc. didesnis, nusta-<br />

76


tyta, kad ekologiðki ‘Golden Delicious’ obuoliai sukaupë 31 proc. daugiau fosforo,<br />

19 proc. daugiau fenoliø, geresnës buvo jø juslinës savybës <strong>ir</strong> elektrocheminiai rodikliai.<br />

Velim<strong>ir</strong>ov <strong>ir</strong> kt. (1995), Ruth (2001) ‘Golden Delicious’ ekologiðkuose obuoliuose<br />

aptiko daugiau vitamino C, nustatë, kad jø vaisiø minkðtimas kietesnis. Mûsø<br />

atliktame bandyme ekologiðkuose obuoliuose taip pat buvo daugiau vitamino C. Ekologiðkø<br />

‘Elize’ vaisiø minkðtimas <strong>ir</strong> odelës kietumas bandymo metais prilygo ðiems<br />

pagal áprastines technologijas auginamø obuoliø rodikliams.<br />

Maisto chemijos <strong>ir</strong> technologijø srities mokslo darbuotojai dabartinius produktø<br />

kokybës vertinimo metodus (Tauscher 2003), pagrástus produkto sudedamøjø daliø<br />

analize, siûlo papildyti metodais, kurie apibûdintø produktà kaip visumà. Ði produktø<br />

gyvybingumà <strong>ir</strong> tinkamumà vartoti apibûdinanti kokybës sàvoka buvo iðplëtota praëjusio<br />

ðimtmeèio paskutiniaisiais deðimtmeèiais. Tam pas<strong>ir</strong>inktas produkto elektrocheminiø<br />

rodikliø iðvestinis dydis – produkto vertë P. Rodiklis apskaièiuojamas iðmatavus<br />

pH vertæ, redokso potencialà <strong>ir</strong> elektriná laidumà augalo sultyse. Vertingesni tie<br />

produktø mëginiai, kuriø P vertë yra þemesnë, – jø gyvybingumas didesnis (Velim<strong>ir</strong>ov<br />

2002). Analizuojant produkto energinæ P vertæ, nustatyti akivaizdûs obuoliø kokybës<br />

sk<strong>ir</strong>tumai tarp variantø laikymo metu. Tai patv<strong>ir</strong>tina <strong>ir</strong> Weibel <strong>ir</strong> kt. (2000)<br />

atlikti tyrimai. Ávertinus pomedþiø v<strong>ir</strong>ðutinio d<strong>ir</strong>voþemio sluoksnio savybiø kitimà,<br />

galima teigti, kad sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas esminës átakos neturëjo.<br />

Ðio bandymo rezultatai rodo, kad obelø veislæ ‘Elise’ galima auginti intensyviuose<br />

<strong>ir</strong> ekologinës gamybos soduose, nes ekologiðkø <strong>ir</strong> áprastai auginamø vaisiø kokybë<br />

buvo panaði.<br />

Iðvados. 1. Sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas vaisiø mineralinei <strong>ir</strong> cheminei<br />

sudëèiai átakos neturëjo.<br />

2. Ekologiðki ‘Elise’ veislës obuoliai sukaupia daugiau vitamino C nei pagal áprastines<br />

gamybos technologijas auginami tos paèios veislës obuoliai.<br />

3. Ekologiðki ‘Elise’ veislës obuoliai laikymo metu pasiþymi geresnëmis elektrocheminëmis<br />

savybëmis.<br />

Gauta 2006-11-17<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Alföldi T., Mäder P., Niggli U., Spiess E., Dubois D., Besson J. Quality of plant<br />

products. Darmstadt, 1996.<br />

2. Benavides A., Recasens I., Casero T., Soria Y., Puy J. Multivariate analysis of<br />

quality and mineral parameters on golden smoothie apples treated before harvest with<br />

calcium and stored in controlled atmosphere // Food Science and Technology International.<br />

2002. Vol.8. P. 139–146.<br />

3. Bloksma J. Biologische appels en Peren. Driebergen – LBI 2003.<br />

4. Bloksma J., Northolt M., Machteld H., Jansonius P., Zanen M. Parameters for apple<br />

quality. LBI. 2004. P. 15–21.<br />

5. Geipel K., Kreckl W. Organic apple farming without pesticide application. Ecofruit -<br />

12th International Conference on Cultivation Technique and Phytopathological Problems<br />

in Organic Fruit-Growing 2006. P. 133–137.<br />

77


6. Huber K., Fuchs N. Wie w<strong>ir</strong>kt die Erzeugungsqualität von Lebensmitteln Lebendige<br />

Erde, Nr.: 4/2003.<br />

7. Kadþiulienë Þ. Ankðtiniø þolynai ekologinei <strong>ir</strong> tausojamajai þemd<strong>ir</strong>bystei. Mano<br />

ûkis, 2004. Nr. 9.<br />

8. Kviklienë N. Influence of harvest date on physiological and biochemical processes<br />

in apple fruit. Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2004. T. 23. P. 412–420.<br />

9. Metodiniai nurodymai nitratams nustatyti augalininkystës produkcijoje. Vilnius,<br />

1990.<br />

10. Spiekermann U. Ernährung und Lebens(mittel)qualität – ein historischer Rückblick<br />

bis zur Gegenwart. Bona, 2001.<br />

11. Tauscher B. <strong>ir</strong> kt. Bewertung von Lebensmitteln unterschiedener Produktionsverfahren.<br />

Münster-Hiltrup 2003.<br />

12. Velim<strong>ir</strong>ov A. Integrative Methods of Product Quality Assessment in Connection<br />

with the P-Value-Determination. Lednice, 2002.<br />

13. Velim<strong>ir</strong>ov A., Plochberger K., Schott W., Walz V. Neue Untersuchungen zur Qualität<br />

unterschiedlich angebauter Äpfel Bioskop. 1995.<br />

14. Weibel F. P.; Bickel R.; Leuthold S., Alfoeldi T. Are organically grown apples<br />

tastier and healthier Acta Horticulturae 2000. P. 417–426.<br />

15. Wrona D., Kot C. Cropping and fruit quality of Sampion apple trees on M.9,<br />

depending on N fertilization. Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002. T. 21. P. 120–1<strong>25</strong>.<br />

16. Ìåòîäû áèîõèìè÷åñêîãî èññëåäîâàíèÿ ðàñòåíèé // Ïîä ðåä. À. È. Åðìàêîâà.<br />

Ëåíèíãðàä, 1987.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF DIFFERENT AGROTECHNICAL<br />

MEASURES ON APPLE-TREE ‘ELISA’ YIELD,<br />

PRODUCTION QUALITY AND COMPOSITION OF SOIL<br />

S. Nominaitis, V. M. Rutkovienë, P. Viðkelis<br />

Summary<br />

Investigations were carried out in 2002–2005 in the Demonstration orchard of<br />

Land management faculty in Kaunas College. There was investigated an effect of<br />

different agro technical measures (organic and conventional farming) on yield of<br />

apple-tree ‘Elisa’ yield, production quality and composition of soil.<br />

It was established that during f<strong>ir</strong>st two farming years, differences of apples<br />

yield between systems were not defined. On the th<strong>ir</strong>d year of investigation yield of<br />

organic apple-trees has been higher than conventional. The results of production<br />

quality study showed, that amount of vitamin C was significantly greater in organic<br />

apples. Electrochemical properties were better in organic apples too.<br />

Key words: apple quality, harvest, organic farming, chemical composition.<br />

78


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POSKIEPIØ ÁTAKA OBELØ VAISMEDÞIØ<br />

FOTOSINTEZËS SISTEMOS VEIKLAI<br />

Gintarë ÐABAJEVIENË 1 , Darius KVIKLYS 1 ,<br />

Nomeda KVIKLIENË 1 , Aistë KASIULEVIÈIÛTË 2 ,<br />

Pavelas DUCHOVSKIS 1<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas G.Sabajeviene@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio universitetas, LT-53067 Akademija, Kauno r.<br />

2004–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute buvo atlikti fotosintezës<br />

pigmentø sistemos obelø lapuose tyrimai.T<strong>ir</strong>tos ‘Belaruskoje malinovoje’<br />

veislës obelys su 9 poskiepiais: Bulboga, Pure 1, B.9, B.396, B.491, M.9, M.26,<br />

P 60, P 22. Tyrimo laikotarpiu fotosintezës pigmentø kiekiai <strong>ir</strong> jø santykis kito. Obelims<br />

gausiai derant, bendras fotosintezës pigmentø kiekis lapuose buvo didesnis, jø<br />

santykis – maþesnis. Fotosintezës pigmentø kiekis lapuose priklausë nuo obelø poskiepiø.<br />

Vaismedþiø su Pure 1 <strong>ir</strong> P 22 poskiepiais lapai chlorofilø <strong>ir</strong> karotinoidø sintetino<br />

daugiausiai, o su M.26 <strong>ir</strong> B.396 – maþiausiai. Vidutinis vaismedþiø lapo plotas<br />

taip pat priklausë nuo poskiepio <strong>ir</strong> derliaus. Vidutinis lapo plotas buvo maþiausias su<br />

Pure 1 <strong>ir</strong> M.9, o didþiausias su Bulboga <strong>ir</strong> P 60 poskiepiais. Obelims gausiau derant,<br />

maþëjo vidutinis lapo plotas.<br />

Reikðminiai þodþiai: derlius, fotosintezës pigmentai, lapo plotas, obelis, poskiepiai.<br />

Ávadas. Lietuvoje <strong>ir</strong> kitose ðalyse atliktais tyrimais nustatyta, kad poskiepis turi<br />

átakos áskiepio derëjimo pradþiai, derlingumui, vaisiø kokybei, vaismedþio fiziologiniams<br />

rodikliams (Fallahi <strong>ir</strong> kt., 2002; Marini <strong>ir</strong> kt., 2002; Kviklys <strong>ir</strong> kt., 2006; Kviklienë,<br />

Kviklys, 2006; Ðabajevienë <strong>ir</strong> kt, 2006). Taèiau fiziologiniai <strong>ir</strong> biocheminiai<br />

mechanizmai, kurie lemia morfologinius sk<strong>ir</strong>tumus nëra visiðkai iðaiðkinti. Nukrypimas<br />

nuo vaismedþiø rûðiai ar netgi atsk<strong>ir</strong>ai veislei bûtinø specifiniø optimaliø fiziologiniø<br />

sàlygø gali sukelti stresà. Vienas rodikliø, leidþianèiø nustatyti vaismedþio bûsenà,<br />

yra fotosintezës aparato darbas <strong>ir</strong> já lemiantis pigmentø kiekis obels lapuose (Gitelson,<br />

Merzlyak, 1995; Merzlyak <strong>ir</strong> kt., 1999).<br />

Sk<strong>ir</strong>tingos chlorofilø formos bei karotinoidai, kaip fotosintezës aparato dalys,<br />

atlieka specifines fotosintezës proceso funkcijas, todël jø kiekis <strong>ir</strong> tam tikras santykis<br />

bûtini, kad fotosintezë vyktø efektyviai (Datt, 1998; Zarco-Tejada <strong>ir</strong> kt., 2000). Chlorofilai<br />

yra pagrindiniai pigmentai, paverèiantys ðviesos energijà kaupiamàja chemine<br />

79


energija. Nuo fotosintezës pigmentø veikimo priklauso lapo absorbuotos saulës ðviesos<br />

kiekis. Taigi nuo chlorofilø kiekio tiesiogiai priklauso fotosintezës potencialas <strong>ir</strong><br />

p<strong>ir</strong>minë produkcija (Curran <strong>ir</strong> kt.,1990; Filella <strong>ir</strong> kt., 1995). Chlorofilai taip pat tiesiogiai<br />

rodo augalo mitybos bûsenà, nes didþioji lapuose esanèio azoto dalis áeina á chlorofilø<br />

sudëtá (Moran <strong>ir</strong> kt., 2000). Karotinoidai aktyviai dalyvauja fotosintezës aparato<br />

veikloje. Kintant augimo sàlygoms, keièiasi <strong>ir</strong> jø kiekis lapuose (Demmig-Adams,<br />

Adams, 1996).<br />

Darbo tikslas – iðt<strong>ir</strong>ti ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais poskiepiais<br />

fotosintezës pigmentø sistemos formavimàsi.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. 2004–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute deranèiame sode t<strong>ir</strong>tos ‘Belaruskoje malinovoje’ veislës obelys su 9<br />

poskiepiais (Bulboga, Pure 1, B.9, B.396, B.491, M.9, M.26, P 60, P 22). Vaismedþiai<br />

formuoti laibos verpstës formos vainikais, sodinimo schema – 4 x 1,5 m. Tyrimas<br />

atliktas keturiais pakartojimais, po 3 medþius kiekviename. Pakartojimai iðdëstyti<br />

atsitiktine tvarka.<br />

Lapø ëminiai imti rugpjûèio mënesá nuo trijø medþiø ið pietinës pusës. Fotosintezës<br />

pigmentø analizei paimta 0,2–0,4 g þalios masës (ið visiðkai iðsivysèiusio lapo),<br />

sutrinta su 1 g CaCO 3<br />

, filtruota <strong>ir</strong> praskiesta 100% acetonu iki 50 ml pagal Wetshtein<br />

(Ãàâðèëåíêî <strong>ir</strong> kt. 2003). T<strong>ir</strong>iamøjø medþiagø koncentracija nustatyta spektrofotometru<br />

(Genesys 6, ThermoSpectronic). Matavimai atlikti 3 biologiniais pakartojimais.<br />

Lapø plotas matuotas automatiniu matuokliu WinDias. Tyrimo duomenys ávertinti<br />

dispersinës analizës metodu naudojant ANOVA statistinæ programà.<br />

2004 m. sausis buvo ðaltesnis negu áprasta, taèiau sodams didesnës þalos nepadarë.<br />

Balandþio <strong>ir</strong> geguþës mënesiai buvo sausesni negu áprasta. Po palyginti ðilto<br />

balandþio geguþës mënuo buvo vësus. Geguþës 14 <strong>ir</strong> 17 dienomis po ðilto laikotarpio<br />

buvo didelës -3° – -2,5°C ðalnos, kurios labai pakenkë sodo augalø þiedams <strong>ir</strong> net<br />

uþuomazgoms, todël derlius buvo maþesnis.<br />

2005 m. pavasará po ilgo <strong>ir</strong> ðalto laikotarpio staiga atðilus, þydëjimo laikas buvo<br />

trumpas, taèiau tai nepakenkë vaisiø uþuomazgoms.<br />

2006 m., obelims þydint, ilgà laikotarpá buvo ðalta, taèiau ðalnø nebuvo, taigi<br />

neigiamos átakos ðios meteorologinës sàlygos þiedø apdulkinimui <strong>ir</strong> vaisiø uþmezgimui<br />

neturëjo. Dël ilgalaikës sausros <strong>ir</strong> karðèio liepos mënesá sumaþëjo vaisiø masë <strong>ir</strong><br />

derlius ið vaismedþio.<br />

Rezultatai. Fotosintezës pigmentø kiekio <strong>ir</strong> santykio kitimas obelø su sk<strong>ir</strong>tingais<br />

poskiepiais lapuose priklausë nuo metø (1 <strong>ir</strong> 2 lentelës). 2004 m. t<strong>ir</strong>ti vaismedþiai<br />

fotosintezës pigmentø sintetino maþiausiai (obelø su B.396, B.146 poskiepiais lapuose<br />

bendras chlorofilø kiekis nesiekë 300 mg m -2 ), taèiau iðsiskyrë dideliu chlorofilø<br />

santykiu. Daugiausia chlorofilø (bendras jø kiekis – 394,3 mg m -2 ) kaupë vaismedþiai<br />

su Pure 1 poskiepiu. Efektyviausiai fotosintezës pigmentø sintezë vyko vaismedþiø<br />

su Pure 1 <strong>ir</strong> Bulboga poskiepiais lapuose, chlorofilø a/b santykis juose v<strong>ir</strong>ðijo 4.<br />

Maþiausias chlorofilø a/b santykis buvo nustatytas ‘Belaruskoje malinovoje’ obelø su<br />

P 22 poskiepiu lapuose (3,67). Intensyviausiai fotosintezës pigmentø kaupimas ‘Belaruskoje<br />

malinovoje’ obelø su sk<strong>ir</strong>tingais poskiepiais lapuose vyko 2005 m. Daugiausia<br />

chlorofilø sintetino vaismedþiai su Pure 1, P 60 <strong>ir</strong> P 22 poskiepiais (bendras jø<br />

kiekis – apie 520 mg m -2 ). Didþiausias chlorofilø a/b santykis nustatytas vaismedþiø<br />

80


su P 22 poskiepiu lapuose (3,5). 2006 metais daugiausia chlorofilø kaupë vaismedþiai<br />

su Pure 1 <strong>ir</strong> B.146 poskiepiais (483 mg m -2 ). Silpniausiai ðiø pigmentø sintezë<br />

vyko obelø su M.9 poskiepiu lapuose (363 mg m -2 ). Chlorofilø a/b santykis ðiais<br />

metais t<strong>ir</strong>tuose vaismedþiuose skyrësi nereikðmingai <strong>ir</strong> buvo apie 3.<br />

1 lentelë. Chlorofilø a/b santykis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose<br />

Table 1. Chlorophyll a/b ratio in leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 4,06 b* 3,18 abc 3,15 b 3,46<br />

B.146 3,9 ab 3,21 abc 3,1 ab 3,4<br />

B.396 4,0 ab 3,28 abc 3,06 ab 3,45<br />

B.9 3,92 ab 3,39 bc 3,06 ab 3,46<br />

P 22 3,67 a 3,53 c 3,05 ab 3,42<br />

P 60 3,91 ab 3,<strong>25</strong> abc 3,03 ab 3,4<br />

M.9 3,99 ab 3,26 abc 2,96 ab 3,4<br />

M.26 3,97 ab 3,02 a 3,03 ab 3,34<br />

Bulboga 4,01 ab 3,18 abc 3,06 ab 3,42<br />

Vidurkis<br />

Average 3,92 3,26 3,06<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Karotinoidø sintezë obelø su sk<strong>ir</strong>tingais poskiepiais lapuose visais tyrimo metais<br />

vyko analogiðkai chlorofilø sintezei (3 lentelë). 2004 m. vaismedþiai karotinoidø kaupë<br />

maþiausiai (obelø su B.146 poskiepiu lapuose jø kiekis buvo tik 100 mg m -2 ).<br />

Daugiausia karotinoidø sintetino vaismedþiai su M.9 <strong>ir</strong> Pure 1 poskiepiais. 2005 m.<br />

ðiø pigmentø sintezë vyko intensyviausiai. Daugiausia karotinoidø kaupë obelys<br />

su P 60 <strong>ir</strong> P 22 poskiepiais (apie 145 mg m -2 ). 2006 m. didþiausias karotinoidø<br />

kiekis nustatytas vaismedþiuose su Pure 1, B.146 <strong>ir</strong> Bulboga poskiepiais (apie<br />

130 mg m-2). Obelys su M.9 poskiepiu karotinoidø kaupë ypaè maþai (98,7 mg m -2 ).<br />

81


2 lentelë. Bendras chlorofilø a + b kiekis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose, mg m -2<br />

Table 2. Chlorophyll a + b content (mg m -2 ) in leaves of apple tree cv. ‘Belaruskoje<br />

malinovoje’ on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 394,3 e* 528,6 e 83,2 e 468,7<br />

B.146 292,4 a 486 bcd 483,0 e 420,47<br />

B.396 292,4 a 464 abc 404,2 bc 386,87<br />

B.9 330,2 bc 466,2 abc 423,4 c 406,6<br />

P 22 353,6 cd 521,0 cd 449,8 d 441,47<br />

P 60 326,3 abc 522,6 d 394,4 bc 414,43<br />

M.9 375,6 de 441,8 ab 363,3 a 393,57<br />

M.26 304,7 ab 433,6 a 392,1 bc 376,8<br />

Bulboga 300,4 ab 493,0 bcd 415,7 c 403,03<br />

Vidurkis<br />

Average 330,0 484,1 423,2<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

3 lentelë. Karotinoidø kiekis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose, mg m -2<br />

Table 3. Carotenoid content (mg m -2 ) in leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 112,8 bc* 135,9 cd 133 e 127,23<br />

B.146 100 a 137,9 d 127,8 e 121,9<br />

B.396 105,2 ab 126,5 abc 112,3 bc 114,67<br />

B.9 108,6 ab 133,1 bcd 111,0 abc 117,57<br />

P 22 110,9 bc 147,8 e 120,0 de 126,23<br />

P 60 111,7 bc 144,1 d 116,3 cd 124,03<br />

M.9 121,1 c 123,0 ab 98,7 a 114,27<br />

M.26 103,5 ab 122,2 a 105,6 ab 110,43<br />

Bulboga 104,6 ab 132,4 bc 128,7 e 121,9<br />

Vidurkis<br />

Average 108,7 133,7 117,0<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

82


Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais poskiepiais lapo<br />

plotas taip pat priklausë nuo metø (4 lentelë). Didþiausias vidutinis lapo plotas nustatytas<br />

2004 m. (39,18 cm 2 ). Didþiausius lapus augino vaismedþiai su Bulboga, o<br />

maþiausius – su Pure 1 <strong>ir</strong> M.9 poskiepiais. 2005 metais fotosintezei obelø lapuose<br />

vykstant efektyviausiai, vidutinis lapo plotas buvo maþiausias (31,83 cm 2 .). Didþiausias<br />

lapo plotas vaismedþiø su P 60 <strong>ir</strong> P 22 poskiepiais, o maþiausias – su M.9. 2006 m.<br />

didþiausius lapus augino vaismedþiai su Bulboga (40,84 cm 2 ), o maþiausius – su Pure<br />

1 (32,03 cm 2 ) poskiepiu. Per visus tyrimo metus vaismedþiø su Pure 1 <strong>ir</strong> M.9 poskiepiais<br />

lapai buvo maþesni, o su Bulboga <strong>ir</strong> P 60 poskiepiais – didþiausi.<br />

4 lentelë. Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais<br />

poskiepiais lapo plotas, cm 2<br />

Table 4. Average leaf area of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 35,67 a* 30,64 ab 32,03 a 32,78<br />

B.146 40,94 ab 31,35 ab 35,85 b 36,05<br />

B.396 38,95 ab 32,79 ab 33,96 ab 35,23<br />

B.9 39,67 ab 30,67 ab 34,79 ab 35,04<br />

P 22 36,48 ab 33,87 b 36,55 bc 35,64<br />

P 60 41,75 ab 35,35 b 36,55 b 37,88<br />

M.9 35,44 a 28,38 a 35,93 b 33,<strong>25</strong><br />

M.26 41,11ab 31,34 ab 37,05 bc 36,50<br />

Bulboga 42,58b 32,08 ab 40,84 c 38,50<br />

Vidurkis<br />

Average 39,18 31,83 35,95<br />

35,65<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05).<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Dël pavasario ðalnø 2004 m. vidutinis obelø derlius buvo labai maþas – vidutiniðkai<br />

7 kg ið vaismedþio. Maþiau nuo ðalnø nukentëjo vaismedþiai su M.9 <strong>ir</strong> B.396<br />

poskiepiais. Gausiausiai obelys derëjo 2005 m. – 18 kg. Ið esmës derlingiausi buvo<br />

vaismedþiai su B.146 <strong>ir</strong> M.26, o 2006 m. – su Bulboga <strong>ir</strong> M.9 poskiepiais. Vidutiniðkai<br />

per trejus tyrimo metus didþiausias derlius surinktas nuo vaismedþiø su stipriausiai<br />

auganèiais B.146 <strong>ir</strong> Bulboga poskiepiais, o maþiausias derlius – su nykðtukiniu<br />

poskiepiu P 22.<br />

83


5 lentelë. Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais<br />

poskiepiais derlius, kg/ið vaismedþio<br />

Table 5. Average yield of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks (kg/tree)<br />

Poskiepis<br />

Rootstock<br />

Metai<br />

Year<br />

2004 2005 2006<br />

Vidurkis<br />

Average<br />

Pure 1 6,9 bc 12,0 a 11,49 b 10,13<br />

B.146 3,04 a 30,9 d 16,45 c 16,80<br />

B.396 10,54 d 22,6 c 7,49 b 13,54<br />

B.9 9,56 cd 8,02 a 17,38 c 11,65<br />

P 22 6,87 bc 9,04 a 7,75 b 7,89<br />

P 60 3,81 ab 22,7 c 10,90 b 12,47<br />

M.9 11,34 d 10,4 a 18,56 cd 13,43<br />

M.26 9,07 cd 29,0 d 2,17 a 13,41<br />

Bulboga 4,07 ab 17,9 b 22,22 d 14,73<br />

Vidurkis<br />

Average<br />

7,24 18,06 12,71 12,67<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05).<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Aptarimas. Vienas svarbiausiø veiksniø, uþtikrinanèiø aukðtà augalø agrobiologiná<br />

potencialà, yra optimalus fotosintezës pigmentø kiekis <strong>ir</strong> jø santykis lapuose<br />

(Datt, 1998). Chlorofilø kiekis – svarbus veiksnys, lemiantis fotosintezës intensyvumà,<br />

o chlorofilø a/b santykis bei chlorofilø sumos su karotinoidais santykis – fotosintezës<br />

aktyvumo rodikliai. Analizuojant tyrimo duomenis, nustatytas ryðys tarp chlorofilø<br />

sintezës efektyvumo <strong>ir</strong> derliaus. Panaðûs dësningumai uþfiksuoti atliekant <strong>ir</strong><br />

ankstesnius mûsø tyrimus su ‘Auksis’ veisle (Ðabajevienë <strong>ir</strong> kt., 2006). Didþiausias<br />

chlorofilø santykis nustatytas 2004 m., kai ‘Belaruskoje malinovoje’ veislës obelys<br />

nebuvo produktyvios. 2005 m. <strong>ir</strong> 2006 m., vaismedþiams derant labai gausiai, chlorofilø<br />

a/b santykis sumaþëjo. Nepaisant to, chlorofilø a/b santykis t<strong>ir</strong>tø ‘Belaruskoje<br />

malinovoje’ veislës obelø lapuose iðliko pakankamai didelis (didesnis nei 3) <strong>ir</strong> fotosintezës<br />

nelëtino. Nors áva<strong>ir</strong>iais metais poskiepiø átaka chlorofilø a/b santykiui buvo<br />

sk<strong>ir</strong>tinga <strong>ir</strong> uþfiksuoti esminiai jø sk<strong>ir</strong>tumai, taèiau vidutiniðkai per tyrimø metus poskiepiø<br />

nulemtas chlorofilø a/b santykis buvo labai panaðus, iðskyrus M.26 poskiepá,<br />

iðsiskyrusá kiek maþesniu santykiu. Panaðûs duomenys gauti <strong>ir</strong> atliekant tyrimus su<br />

obelø veisle ‘Auksis’, taèiau, jà t<strong>ir</strong>iant, maþesnis chlorofilø a/b santykis nustatytas<br />

obelø su P 22 poskiepiu lapuose (Ðabajevienë <strong>ir</strong> kt., 2006).<br />

Chlorofilø <strong>ir</strong> karotinoidø kiekio kitimas lapuose rodo vaismedþio fiziologinæ bûsenà<br />

(Merzlyak <strong>ir</strong> kt., 1999). Kintant augimo sàlygoms, keièiasi <strong>ir</strong> jø kiekis lapuose<br />

(Demmig-Adams, Adams, 1996). 2004 metais dël pavasario ðalnø sumaþëjus derliui,<br />

fotosintezës pigmentø sintezë sulëtëjo <strong>ir</strong> suaktyvëjo vegetatyvinis augimas. Tyrimo<br />

84


metais ‘Belaruskoje malinovoje’ veislës obelys daugiausia chlorofilø <strong>ir</strong> karotinoidø<br />

kaupë su stipriausiai vaismedþiø vegetatyviná augumà ribojanèiais poskiepiais Pure 1<br />

<strong>ir</strong> P 22, o maþiausiai – su M.26 <strong>ir</strong> B.396 poskiepiais. T<strong>ir</strong>iant poskiepius su obelø<br />

veisle ‘Auksis’, obelys su M.26 poskiepiu fotosintezës pigmentø taip pat sintetino<br />

maþiausiai (Ðabajevienë <strong>ir</strong> kt., 2006).<br />

Vaismedþiø gebëjimas pask<strong>ir</strong>styti <strong>ir</strong> naudoti ðviesos energijà priklauso nuo genotipo<br />

<strong>ir</strong> nuo aplinkos sàlygø (Greer <strong>ir</strong> kt., 1997). Nustatytas ryðys tarp vidutinio lapo<br />

ploto <strong>ir</strong> derliaus gausumo. Didëjant derliui, maþëjo vidutinis lapo plotas. Maþiausi<br />

lapo ploto pokyèiai uþfiksuoti vaismedþiø su P 22 (apie 3 cm 2 ) <strong>ir</strong> Pure 1 (5 cm 2 )<br />

poskiepiais, kuriø derlius trejø metø laikotarpiu taip pat kito maþiausiai. Didþiausi<br />

lapo ploto pokyèiai pastebëti su Bulboga, M.26 <strong>ir</strong> B.146 poskiepiais (iki 10 cm 2 ),<br />

kuriø vidutinis vaismedþio derlius skyrësi nuo 5 iki 10 kartø. Taèiau iðryðkëjo <strong>ir</strong><br />

sk<strong>ir</strong>tinga poskiepiø átaka lapo ploto <strong>ir</strong> derliaus priklausomumui. Nebuvo nustatyti<br />

bendri vaismedþiø su B.9, P 60 <strong>ir</strong> M.9 poskiepiais dësningumai – jø vidutinio lapo<br />

ploto pokyèiai priklausë ne tik nuo derliaus pokyèiø.<br />

Silpniau auganèiø vaismedþiø su Pure 1 <strong>ir</strong> M.9 poskiepiais vidutinis lapo plotas<br />

buvo maþiausias, o stipriau auganèiø su Bulboga <strong>ir</strong> P 60 poskiepiais – didþiausias.<br />

Taèiau tiesioginis ryðis tarp poskiepio nulemto vaismedþio augumo <strong>ir</strong> vidutinio lapo<br />

ploto nebuvo nustatytas, nes <strong>ir</strong> su nykðtukiniu P 22, <strong>ir</strong> su pusiau þemaûgiu M.26<br />

poskiepiu vidutinis lapo plotas buvo artimas tyrimø vidurkiui.<br />

Iðvados. 1. Nustatytas ryðys tarp chlorofilø sintezës efektyvumo <strong>ir</strong> derliaus.<br />

Obelims gausiai derant, bendras fotosintezës pigmentø kiekis lapuose buvo didesnis,<br />

jø santykis – maþesnis.<br />

2. Poskiepio genotipas lemia fotosintezës pigmentø sintezæ. Vaismedþiø su Pure 1<br />

<strong>ir</strong> P 22 poskiepiais lapai chlorofilø <strong>ir</strong> karotinoidø sintetino daugiausia, o su M.26 <strong>ir</strong><br />

B.396 – maþiausiai.<br />

3. Vidutinis lapo plotas buvo maþiausias su Pure 1 <strong>ir</strong> M.9, o didþiausias – su<br />

Bulboga <strong>ir</strong> P 60 poskiepiais. Obelims gausiau derant, maþëja vidutinis lapo plotas.<br />

Padëka. Darbo autoriai dëkingi Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui<br />

uþ finansinæ paramà.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Curran P. J., Dungan J. L., Gholz H. L. Exploring the relationship between reflectance<br />

red edge and chlorophyll content in slash pine // Tree Physiol. 1990. Vol. 7. P. 33–48.<br />

2. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

3. Demmig-Adams B., Adams W. W. The role of xanthophylls cycle carotenoids in<br />

the protection of photosynthesis // Trends in plant science. 1996. Vol. 1. No. 1. P. 62–73.<br />

4. Fallahi E., Colt W. M, Fallahi B., Chun I. J. The importance of apple rootstocks on<br />

three growth, yield, fruit quality, leaf nutrition and photosynthesis with an emphasis on<br />

‘Fuji’ // MortTecnology. 2002. Vol. 12. P. 38–44.<br />

85


5. Filella I., Serrano I., Serra J., Peuelas J. Evaluating wheat nitrogen status with<br />

canopy reflectance indices and discriminant analysis // Crop Sci. 1995. Vol. 35. P. 1400–<br />

1405.<br />

6. Gitelson A. A., Merzlyak M. N. Remote Sensing of Chlorophyll Concentration in<br />

Higher Plant Leaves // Adv. Space Res. 1998. Vol. 22. P. 689–692.<br />

7. Greer D. H., Wünsche J. N., Palmer J. W. Effects of fruiting on seasonal apple leaf<br />

chlorophyll fluorescence // Acta Horticulturae.1997. 451. P. 345–350.<br />

8. Kviklienë N., Kviklys D. Rootstock effect on maturity and quality of ‘Auksis’<br />

apples // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. <strong>25</strong>8–263<br />

9. Kviklys D., Kviklienë N., Bite A., Lepsis J., Lukut T., Haak E. Baltic fruit rootstock<br />

studies: evaluation of 12 rootstocks for apple cultivar ‘Auksis’ // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(3). P. 334–341.<br />

10. Marini R. P., Barden J. A., Cline J. A., Perry R. L., Robinson T. Effect of apple<br />

rootstocks on average ‘Gala” fruit weight at four locations after adjusting for crop load //<br />

Amr. Sci. Hort. Sci. 2002. Vol. 127. P. 749–753.<br />

11. Merzlyak M. N, Gitelson A. A., Chivkunova O. B., Rakitin V. Y. Nondestructive<br />

optical detection of leaf senescence and fruit ripening // Physiol Plant. 1999. Vol. 106.<br />

P. 135–141.<br />

12. Moran J. A., Mitchell A. K., Goodmanson G., Stockburger K. A. Differentiation<br />

among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance:<br />

a comparison of methods. // Tree Physiol. 2000. Vol. 20. P. 1113–1120.<br />

13 Ðabajevienë G., Kviklys D., Duchovskis P. Rootstock effect on photosynthetic<br />

pigment formation in leaves of apple cv. ‘Auksis’ // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(3). P. 357–363.<br />

14. Zarco-Tejada P. J., Miller J. R., Mohammed G. H., Noland T. L. Chlorophyll fluorescence<br />

effects on vegetation apparent reflectance: I Leaf-level measurements and model<br />

simulation // Rem. Sens. Env<strong>ir</strong>on. 2000. Vol. 74. P. 582–595.<br />

15. Ãàâðèëåíêî Â. Ô., Ëàäûãèíà Ì. Å., Õàíäðîáèíà Ë. Ì. Áîëüøîé ïðàêòèêóì<br />

ïî ôèçèîëîãèè ðàñòåíèé. Ìîñêâà, Aêaäåìèÿ, 2003. <strong>25</strong>6 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

ROOTSTOCK EFFECT ON PHOTOSYNTHETIC PIGMENT<br />

SYSTEM FORMATION IN APPLE TREE LEAVES<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë, A. Kasiulevièiûtë, P. Duchovskis<br />

Summary<br />

Photosynthetic pigment system in the leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks was investigated at the Lithuanian Institute of Horticulture<br />

during 2004–2006. Nine rootstocks were included: Bulboga, Pure1, B.9,<br />

B.396, B.416, M.9, M.26, P 60, P 22. The photosynthetic pigment content and<br />

ratios of apple tree cv. ‘Belaruskoje malinovoje’ on different rootstocks varied between<br />

years. Photosynthetic pigment content and chlorophyll a/b ratio in apple leaves<br />

depended on crop load: the higher crop the higher photosynthetic pigment content<br />

86


and lower chlorophyll a/b ratio. Rootstock genotype determines accumulation of<br />

photosynthetic pigments. Apple rootstocks Pure 1 and P 22 accumulated the largest<br />

amount of total chlorophyll and carotenoid content. The lowest photosynthetic pigment<br />

content was found in apple trees with M.26 and B. 396 rootstocks. Average<br />

leaf area depended on crop load and rootstock. The biggest leaves were on fruit<br />

trees with Bullboga and P 60, and the smallest with Pure 1 and M.9 rootstocks.<br />

Increasing crop load decreased average leaf area.<br />

Key words: leaf area, Malus x domestica, photosynthetic pigment, rootstock,<br />

yield.<br />

87


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

QUALITY OF ‘JONICA’ APPLE FRUIT AS<br />

INFLUENCED BY ROOTSTOCKS<br />

Jan SKRZYÑSKI, Maciej GÀSTOÙ<br />

Department of Pomology and Apiculture, Faculty of Horticulture, Agricultural<br />

University in Kraków, Al. 29 Listopada 54, 31-4<strong>25</strong> Kraków, Poland.<br />

E-mail jskrzy@wp.pl<br />

Abstract. The influence of five vegetative rootstocks (M.9, M.26, P 22, P 59<br />

and P 60) on fruit quality was evaluated. Fruit size, flesh f<strong>ir</strong>mness, seed number,<br />

starch index (SI), soluble solids content (SSC), and titratable acidity (TA) were<br />

measured during two consecutive seasons. The analysis was performed at optimum<br />

harvest date time and after 6 months of storage, followed by simulated shelf life<br />

period at 20°C. There was no evident effect of rootstocks on fruit maturity at harvest<br />

as determined by Streif’s index and starch index. However, fruit from trees on<br />

P 22 tended to have less starch and lower F/RS values. At harvest flesh f<strong>ir</strong>mness of<br />

apples from trees on rootstocks P 22 and P 59 was the highest, respectively the<br />

lowest one was observed for M.26 rootstock. Fruits from trees grafted on M.9 and<br />

M.26 had the highest mean weight (223 g and 218 g, respectively), whereas P 22<br />

and P 59 – 179 g and 170 g. A negative correlation between fruit size and flesh<br />

f<strong>ir</strong>mness was observed. After storage and additional shelf life period flesh f<strong>ir</strong>mness<br />

of fruits from M.9 rootstock was the lowest, while those on P 22 and P 59, like at<br />

harvest time, had higher values. Soluble solids content was significantly influenced<br />

by rootstock type, especially in 2004. Fruit from trees on rootstocks P 22 and P 59<br />

had high SSC at harvest and at two post storage evaluations. The lowest values for<br />

respective time of analysis were noted for fruit from M.9 and M.26, respectively.<br />

Titratable acidity was influenced by the rootstock type and the year of study. Higher<br />

values were observed in 2004. Rootstock P 59 favoured high TA in ‘Jonica’ fruit.<br />

Correlations between studied parameters were established and will be discussed.<br />

Key words: Malus x domestica, fruit size, flesh f<strong>ir</strong>mness, soluble solids, acids,<br />

Streif’s index.<br />

Introduction. The effect of type of rootstock, on which specific cultivar is<br />

raised, on the whole tree performance and fruit quality components are one of the<br />

most important issues in fruit science. The decision, which rootstock should be<br />

selected for a given planned orchard, is crucial for future orchard management and<br />

profitability.<br />

88


The main objectives of planting trees on vegetative rootstocks are: regulation<br />

of tree size, growth rate and crown volume, induction of early bearing and high<br />

cropping, adaptation of root system to existing soil and climatic conditions (water<br />

deficit toleration, winter hardiness, etc.). Expected beneficial effect on quality of<br />

fruit is often listed at the end of objectives. However, the influence on fruit quality<br />

in an existing worldwide overproduction of apples becomes now more important<br />

issue.<br />

According to Webster and Hollands (1999), we knew still too little about interactions<br />

between rootstock and scion. Rootstock and scion cultivar affect each<br />

other mutually, therefore each combination of those components should be treated<br />

separately (Schneider et al., 1978). The most commonly used in Europe rootstock<br />

M.9 is lately more often criticized (Groot, 1997; Riesen and Husistein, 1998). Studies<br />

on similar crown volumes trees suggest that the more dwarfing rootstock the<br />

better light penetration and photosynthetic productivity could be observed (Baugher<br />

et al., 1994). This logically should influence the whole tree performance and most<br />

importantly – fruit quality. According to Kader (1985), quality is a combination of<br />

features including appearance, texture, flavour, nutritive value and safety. Consumer<br />

demands are already high for flesh f<strong>ir</strong>mness and taste (Autio et al., 1996). For citrus<br />

fruit the influence of rootstock on quality is already well defined (Castle, 1995). For<br />

‘Jonagold’ fruit (and its sport’s as well) flesh f<strong>ir</strong>mness is considered to be the most<br />

important parameter, which by 50% decide internal components of quality (Pladett<br />

et al., 1992). Soluble solids content and acidity in an equal share contribute to the<br />

remaining part of those components. Balanced sugars and acid ratio in apple fruit<br />

could provide sweet but refreshing taste. The latter may occur only when appropriate<br />

acid content is maintained (Vangdal, 1985; Sekse, 1992). For commercially important<br />

apple cultivars such as ‘Jonagold’, there are already known minimal values<br />

for the<strong>ir</strong> acceptability in a selling period – soluble solids should be within 13–14%<br />

and flesh f<strong>ir</strong>mness no lower than 45 N (Hoehn et al., 2001).<br />

The objective of our study was to compare the effect of new Polish rootstocks<br />

and well-known English ones on the main quality features of ‘Jonica’ apples.<br />

Materials and methods. The experiments were carried out on ‘Jonica’ trees<br />

planted on rootstocks of Polish selection: P 22, P 59, P 60 and of Malling Series: M.26,<br />

M.9. The studies were realized in the period of the beginning of full production capacity<br />

of the experimental orchard (4–6 years after planting). Trees were planted at a<br />

spacing of 4 x 1.2 m, in four, 5 trees per each replication. Each 6 th tree in a row was a<br />

pollinator – ‘Ðampion’. All trees were trained as slender spindle. From the middle of<br />

September, fruits from boundary rows around experimental plots were sampled in<br />

weekly intervals for optimum harvest date evaluation. Fruits were picked when Streif’s<br />

harvest index values calculated according to formula F(RS) -1 were within recommended<br />

range (Streif, 1983). Mean fruit size (as weight in grams) and percent of blush<br />

coloured area were evaluated on a 100 fruit sample. Fruit quality evaluation and analysis<br />

(fruit flesh f<strong>ir</strong>mness, soluble solids content, titratable acidity, starch pattern, etc.)<br />

were carried out according to standard methods (Johnson, 1992). The analyses were<br />

performed at optimum harvest date and respective ones after storage for 6 months,<br />

89


followed by simulated shelf life period of 7 days at 20°C. Fruits were stored in a<br />

conventional refrigerated room at 1–2°C, 90–92% RH for 180 days.<br />

Results were subjected to the analysis of variance using Duncan’s Multiple<br />

Range test. Tables contain means for 2 consecutive seasons (2003 and 2004), since<br />

similar relationships were observed during both years of study.<br />

Results and discussion. On the average, fruit size, expressed on a weight<br />

basis of apples from trees on studied rootstocks (Table 1) were within or slightly<br />

below optimal for consumption for ‘Jonica’ (200–220 g). However, trees on M.9<br />

tended to produce significantly larger fruits and on P 22 – smaller ones. Fruits<br />

from trees grafted on M.9 and M.26 had the highest mean weight (223 g and 218<br />

g, respectively), whereas these on P 22 and P 59 – 179 g and 170 g. The results<br />

for rootstock M.9 were in agreement with other reports (Babalar and Primoradian,<br />

1996; Groot, 1997), and seemed to be non-dependent on crop volume (within<br />

optimum range) as suggested by Ferguson and Watkins (1992). Webster and Hollands<br />

(1999) and Pätzold and Fisher (1991) also report about the smallest fruits<br />

from trees on P 22.<br />

Very little information exists on the importance of seed number in apple fruit so<br />

far. However, taking into account physiological involvement of seeds in Ca uptake<br />

and transport into apple fruit this phenomena deserves more attention. The most<br />

numerous seeds were present in fruits from trees on rootstock P 60, where also<br />

high fruit Ca was observed (data not published).<br />

Table 1. Fruit size, seed number and blush area of ‘Jonica’ apples at harvest<br />

1 lentelë. ‘Jonika’ veislës obelø vaisiø dydis, sëklø skaièius <strong>ir</strong> paraudimo<br />

plotas derliaus nuëmimo metu<br />

Rootstock<br />

Poskiepis<br />

Fruit size<br />

Vaisiø dydis,<br />

g<br />

Seed number<br />

Sëklø skaièius, vnt.<br />

Blush area<br />

Paraudimo plotas,<br />

%<br />

M.9 223 e 4.7 c 60 ab<br />

M.26 218 d 4.3 ab 63 a<br />

P 22 179 b 4.6 bc 71 b<br />

P 59 170 a 4.0 a 66 ab<br />

P 60 197 c 4.8 c 60 a<br />

*Means within columns followed by the same letter do not differ at α = 0.05<br />

* Tarp skiltyse ta paèia raide paþymëtø skaièiø nëra esminiø sk<strong>ir</strong>tumø, kai α = 0,05.<br />

In practical terms there was no effect of rootstock on area covered by blush of<br />

‘Jonica’ fruit. All fruits satisfy minimal requ<strong>ir</strong>ement for that cultivar to be classified<br />

according to EU standards at Class I (at least 1/3 of skin area covered by blush). In<br />

other studies with vigorous cultivars, such as ‘Jonica’, fruits from trees on P 22<br />

were having more % blush than on other rootstocks (Autio et al., 1996; Baab, 1998).<br />

Our study conf<strong>ir</strong>ms those earlier results. In some other experiments better coloration<br />

was also observed for fruits from trees on MM.106, while in others – on the<br />

most dwarfing M.27 (Drake et al., 1991).<br />

90


Table 2. Fruit flesh f<strong>ir</strong>mness, starch index, Streif’s index, total soluble solids and<br />

titratable acidity of ‘Jonica’ apples as affected by rootstocks at harvest<br />

2 lentelë. Poskiepiø átaka ’Jonika‘ veislës obelø vaisiø minkðtimo kietumui,<br />

krakmolo indeksui, Streifo indeksui, bendram t<strong>ir</strong>piø sausøjø medþiagø kiekiui <strong>ir</strong><br />

titruojamajam rûgðtingumui derliaus nuëmimo metu<br />

Rootstock<br />

Poskiepis<br />

Flesh f<strong>ir</strong>mness<br />

Minkštimo<br />

kietumas, kg cm -2<br />

Starch index<br />

(scale1-10)<br />

Krakmolo indeksas<br />

(skalë 1–10)<br />

Streif’s<br />

index<br />

Streifo<br />

indeksas<br />

Total soluble<br />

solids<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos, %<br />

Titratable acidity (mg<br />

malate 100 g -1 )<br />

Titruojamasis<br />

rûgðtingumas, mg malato<br />

100 g -1 )<br />

M.9 8.1 b 9.3 bc 0.07 n.s. 12.6 b 635 b<br />

M.26 7.9 a 8.9 a 0.07 12.0 a 601 ab<br />

P 22 8.6 c 9.6 d 0.07 13.3 c 586 a<br />

P 59 8.6 c 9.4 c 0.07 13.2 c 630 b<br />

P 60 8.1 b 9.2 b 0.07 12.6 b 603 ab<br />

* Means within columns followed by the same letter do not differ at α = 0.05<br />

* Tarp skiltyse ta paèia raide paþymëtø skaièiø nëra esminiø sk<strong>ir</strong>tumø, kai α = 0,05.<br />

There was no evident effect of rootstocks on fruit maturity at harvest as determined<br />

by Streif index and starch index (Table 2). However, fruits from trees on P 22<br />

tended to have less starch and lower F/RS values. At harvest flesh f<strong>ir</strong>mness of<br />

apples from trees on rootstocks P 22 and P 59 was the highest. Respectively, the<br />

lowest ones were observed for M.26 rootstock. In opposition to those findings, in<br />

both reports of Drake et al., (1991) and Autio (1994) it was evident that the more<br />

dwarf rootstock the higher fruit flesh f<strong>ir</strong>mness. According to Johnson (1992), rootstock<br />

and flesh f<strong>ir</strong>mness are ind<strong>ir</strong>ectly related through a negative correlation – fruit<br />

size and flesh f<strong>ir</strong>mness. Presented study seems to conf<strong>ir</strong>m such relationship, small<br />

apple fruits originating from trees on P 22 rootstock were having the highest flesh<br />

f<strong>ir</strong>mness at harvest.<br />

‘Jonica’ fruit from trees on rootstock M.9 reached harvest maturity usually 3–<br />

5 days earlier than on other rootstocks (unpublished results), and tend to obtain the<br />

lowest values of Streif’s index for fruits from trees on P 22.<br />

Rootstock did affect the content of carbohydrates and organic acids (Table 2).<br />

Soluble solids content was the highest for fruits from trees on P 22 and P 59. This<br />

conf<strong>ir</strong>m the results of Autio et al., (1996), who stated that fruits from trees on<br />

rootstocks from P series tended to contain more soluble solids than from M.26 or<br />

M.9, respectively. Results of cited above author and of our study are in opposition<br />

to earlier reports stating that fruits from trees on M.9 and M.26 tended to have<br />

more soluble solids (Autio 1994). Some authors claimed that soluble solids content<br />

was negatively correlated to trunk cross sectional area (Autio et al., 1996). Such<br />

tendency could be observed in a reported study only for fruit from trees on P 22<br />

and P 59.<br />

91


Table 3. The effect of rootstocks on fruit flesh f<strong>ir</strong>mness, total soluble<br />

solids and titratable acidity of ‘Jonica’ apples after storage and simulated<br />

shelf life period of 7 days at 20°C<br />

3 lentelë. Poskiepiø átaka ’Jonika‘ veislës obelø vaisiø minkðtimo kietumui,<br />

bendram t<strong>ir</strong>piø sausøjø medþiagø kiekiui <strong>ir</strong> titruojamajam rûgðtingumui po<br />

laikymo <strong>ir</strong> 7 dienas palaikius 20°C temperatûroje<br />

After storage<br />

Po laikymo<br />

After storage in optimal conditions for 180 days ‘Jonica’ apples in general satisfy<br />

quality criteria for Class 1 or Extra (Table 3). The results have shown that<br />

rootstocks influenced the quality of fruits after storage and additional period of simulated<br />

shelf life. The maintenance of ‘Jonica’ apple flesh f<strong>ir</strong>mness after storage for<br />

180 days and 7 days at 20°C was the best for fruits from trees on P 22 and P 59.<br />

Drake et al. (1991), however, observed such tendency for fruits from trees on more<br />

vigorous rootstocks. Fruits from all rootstocks/scion combinations in our study<br />

maintained after storage flesh f<strong>ir</strong>mness above 4.5 kg. This should satisfy consumers’<br />

minimal requ<strong>ir</strong>ements of 45 N for fruit acceptability as indicated by P³ocharski<br />

and Konopacka (1999) and Hoehn et al. (2001). However, Goffings and Herregods<br />

(1994) suggested slightly higher value of 5 kg. The retention of total soluble<br />

solids (TSS) after storage and a period of simulated shelf life reflected the relationships<br />

observed at harvest time (Skrzyñski, 2006). There were on the average 1%<br />

smaller values of TSS, which is a common result after storage in regular a<strong>ir</strong>. The<br />

best retention of titratable acidity was for fruit from trees on rootstocks of M. series<br />

after storage. After additional 7 days at room temperature fruits from trees on P 59<br />

and P 60 tended to have higher titratable acidity.<br />

Fruits from those rootstocks may fully satisfy consumer expectations for fresh<br />

consumption due to balanced sugars and acids content as suggested by Vangdal (1985)<br />

and Sekse (1992). It was not conf<strong>ir</strong>med that in general apples from trees on rootstock<br />

M.26 tend to produce fruits with more balanced components (Vangdal, 1985).<br />

Conclusions. 1. The effects of rootstocks on the main fruit quality attributes at<br />

harvest were significant.<br />

2. Rootstocks affect ‘Jonica’ fruit quality retention after storage and shelf life.<br />

3. Trees on P60 and M.9 were of balanced vigor and fruits from those trees<br />

were of the best quality.<br />

92<br />

After 7 days storage at 20°C<br />

Palaikius 7 dienas 20°C temperatûroje<br />

titratable<br />

total<br />

flesh<br />

acidity<br />

total<br />

Rootstock<br />

soluble<br />

Poskiepis f<strong>ir</strong>mness<br />

(mg malate flesh f<strong>ir</strong>mness soluble<br />

solids<br />

minkštimo<br />

100 g -1 ) minkštimo solids<br />

kietumas,<br />

t<strong>ir</strong>pios titruojamasis<br />

kietumas,<br />

kg cm -2 sausosios rûgðtingumas, kg cm -2 sausosios<br />

medžiagos,<br />

medžiagos, % mg malato<br />

%<br />

100 g -1<br />

M.9 5.1 b 12.1 a 292 cd 4.8 b 12.3 c 234 n.s.<br />

titratable<br />

acidity (mg<br />

malate 100 g -1 )<br />

titruojamasis<br />

rûgðtingumas, mg<br />

malato 100 g -1<br />

M.26 4.9 a 12.0 a 301 d 4.7 a 11.9 a 247<br />

P 22 5.6 e 13.0 d <strong>25</strong>3 a 5.1 d 12.7 d 230<br />

P 59 5.5 d 12.8 c 275 b 5.1 d 12.5 d <strong>25</strong>8<br />

P 60 5.4 c 12.3 b 287 bc 4.9 b 12.1 b <strong>25</strong>3


Acknowledgements. This work was partially supported by the State Committee<br />

for Scientific Research (KBN) under contract 3 P06 R 058<strong>25</strong>.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Autio W. R., Hayden R. A., Micke W. C., Brown G. R. Rootstock affects ripening,<br />

color, and shape of ‘Starkspur Supreme Delicious’ apples in the 1984 NC-140 cooperative<br />

planting. Fruit Var. J. 1996. 50(1). P. 45–53.<br />

2. Autio W. R. Rootstock affects apple ripening, quality and storability. Compact<br />

Fruit Tree. 1994. 27. P. 41–47.<br />

3. Baab G. Apfelunterlagen Gestern und Heute. Erwerbsobstbau. 1998. 40. P. 162–169.<br />

4. Babalar M., Primoradian M. Rootstock effect on ethylene production, fruit size,<br />

fruit shape and other quality parameters during growth period of ‘Red Delicious’ apples.<br />

Iranian J. Agric. Sci. 1996. 27(1). P. 33–39.<br />

5. Baugher T. A., Singha S., Leach D. W., Walter S. P. Growth, productivity, spur<br />

quality, light transmission and net photosynthesis of ‘Golden Delicious’ apple trees on<br />

four rootstocks in three training systems. Fruit Var. J. 1994. 48. P. <strong>25</strong>1–<strong>25</strong>5.<br />

6. Castle W. S. Rootstock as a fruit quality factor in citrus and deciduous tree crops.<br />

New Zealand J. Crop Hort. Sci. 1995. 23(4). P. 383–394.<br />

7. Drake S. R, Larsen F. E., Higgins S. S. Quality and storage of ‘Granny Smith’ and<br />

‘Greenspur’ apples on seedling, M.26, and MM.111 rootstocks. J. Amer. Soc. Hort. Sci.<br />

1991. 116(2). P. 261–264.<br />

8. Ferguson I. B., Watkins C. B. Crop load affects mineral concentrations and incidence<br />

of Bitter Pit in ‘Cox’s Orange Pippin’ apple fruit. J. Amer. Soc. Hort. Sci. 1992. 117(3).<br />

P. 373–376.<br />

9. Groot M. J. FPO-onderzoek naar economische aspecten onderstammenkeuze. M.9<br />

niet altijd de beste keuze. Fruitteelt. 1997. 87. P. 18–19.<br />

10. Hoehn E. H., Gasser F., Guggenbuhl B., Casutt M. M. Consumer demands on<br />

eating quality of apples: minimum requ<strong>ir</strong>ements on f<strong>ir</strong>mness, soluble solids and acidity. VI<br />

Intern. CA Research Conference, Rotterdam, Abstract 16-02, 2001.<br />

11. Johnson D. S. The effect of flower and fruit thinning on the f<strong>ir</strong>mness of ‘Cox’s<br />

Orange Pippin’ apples at harvest and after storage. J. Hort. Sci. 1992. 61. P. 95–101.<br />

12. Kader A. A. Quality factors: definition and evaluation for fresh horticultural<br />

crops // Postharvest technology of horticultural crops. Eds: Kader et al. Cooperative<br />

Extension, Univ. Calif., Davies, Spec. Publ. 1985. 3311. P. 118–121.<br />

13. Pätzold G., Fisher M. Ergebnisse aus Obstunterlagenprüfungen // Schwachwachsende<br />

Apfelunterlagen. Erwerbsobstbau. 1991. 33. P. 7–10.<br />

14. P³ocharski W. J., Konopacka D. The relation between mechanical and sensory<br />

parameters of apples and pears. Acta Hort. 1999. P. 485, 309–317.<br />

15. Riesen W., Husistein A. Influence of rootstocks on apple fruit quality. Acta Hort.<br />

1998. 466. P. 161–167.<br />

16. Schneider G. W., Chaplin C. E., Martin D. C. Effects of apple rootstocks, tree<br />

spacing, and cultivar on fruit and tree size, yield and foliar mineral composition. J. Amer.<br />

Soc. Hort. Sci. 1978. 103. P. 230–232.<br />

17. Sekse L. Changes in the content of soluble solids and titratable acids in apples<br />

during ripening and storage. Norw. J. Agric. Sci. 1992. P. 6, 111–119.<br />

93


18. Skrzyñski J. Growth and productivity of apple trees and fruit quality at harvest as<br />

affected by rootstocks. Acta Hort. (in print). 2006.<br />

19. Streif J. Der optimale Erntetermin beim Äpfel. I. Qualitätsentwicklung und Reife.<br />

Gartenbauwissenschaft. 1983. 48. P. 154–159.<br />

20. Vangdal E. Quality criteria for fruit for fresh consumption. Acta Agric. Scand.<br />

1985. P. 35, 41–47.<br />

21. Webster A. D., Hollands M. S. Apple rootstock studies: comparison of Polish,<br />

Russian, USA and UK selections as rootstocks for the apple cultivar ‘Cox’s Orange Pippin’<br />

(Malus domestica Borkh.). J. Hort. Sci. Biotech. 1999. 74. P. 367–374.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

’JONIKA‘ VEISLËS OBELØ VAISIØ KOKYBËS PRIKLAUSOMUMAS NUO<br />

POSKIEPIØ<br />

J. Skrzyñski, M. Gàstoù<br />

Santrauka<br />

Ðiuo tyrimu ávertinta penkiø vegetatyviniø poskiepiø (M.9, M.26, P 22, P 59 <strong>ir</strong><br />

P 60) átaka vaisiø kokybei. Du sezonus ið eilës buvo matuotas vaisiø dydis, minkðtimo<br />

tv<strong>ir</strong>tumas, krakmolo indeksas (KI), t<strong>ir</strong>piø sausøjø medþiagø (TSM) kiekis, titruojamasis<br />

rûgðtingumas (TR), nustatytas sëklø skaièius. Analizë buvo atlikta optimaliu<br />

derliaus nuëmimo metu <strong>ir</strong> praëjus 6 laikymo mënesiams, po kuriø obuoliai<br />

buvo papildomai laikomi 20°C temperatûroje. Streifo indeksas <strong>ir</strong> krakmolo indeksas<br />

parodë, kad poskiepiai vaisiø brandai akivaizdþios átakos neturëjo. Taèiau vaismedþiø<br />

su P 22 poskiepiu vaisiuose buvo maþiau krakmolo <strong>ir</strong> maþesnës F <strong>ir</strong> RS santykio<br />

reikðmës. Derliaus nuëmimo metu kieèiausi buvo vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais,<br />

minkðèiausi – vaismedþiø su P 26 poskiepiu obuoliai. Vidutinë didþiausia buvo<br />

vaismedþiø, áskiepytø á M.9 <strong>ir</strong> M.26, vaisiø masë (atitinkamai 223 <strong>ir</strong> 218 g), o vaismedþiø,<br />

áskiepytø á P 22 <strong>ir</strong> P 59, – atitinkamai 179 <strong>ir</strong> 170 g. Nustatyta neigiama<br />

koreliacija tarp vaisiø dydþio <strong>ir</strong> minkðtimo kietumo. Po laikymo <strong>ir</strong> papildomo vaisiø<br />

laikymo minkðèiausi buvo vaismedþiø su M.9 poskiepiu vaisiai. Kaip <strong>ir</strong> derliaus nuëmimo<br />

metu, kietesni buvo vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais vaisiai. Poskiepiø<br />

rûðis darë esminæ átakà t<strong>ir</strong>piø sausøjø medþiagø kiekiui, ypaè 2004 metais. Derliaus<br />

nuëmimo metu <strong>ir</strong> atliekant dvi analizes po laikymo daugiausia t<strong>ir</strong>piø sausøjø medþiagø<br />

nustatyta vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais vaisiuose. Analiziø duomenimis,<br />

maþiausiai ðiø medþiagø buvo vaismedþiø su M.9 <strong>ir</strong> M.26 poskiepiais vaisiuose. Titruojamajam<br />

rûgðtingumui darë átakà poskiepio rûðis <strong>ir</strong> tyrimo metai. Didesnës jo reikðmës<br />

buvo nustatytos 2004 metais. Didelá TR kieká ‘Jonika’ vaisiuose lëmë P 59<br />

poskiepis. Buvo nustatyti koreliaciniai ryðiai tarp t<strong>ir</strong>tø rodikliø.<br />

Reikðminiai þodþiai: Malus x domestica, vaisiø dydis, minkðtimo kietumas,<br />

t<strong>ir</strong>pios sausosios medþiagos, rûgðtys, Streifo indeksas.<br />

94


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

TECHNIQUES FOR COLD HARDINESS RESEARCH<br />

FOR APPLE ROOTSTOCKS<br />

Jean-Pierre PRIVÉ<br />

Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food<br />

Canada, Bouctouche New Brunswick, E4S 2J2, Canada.<br />

E-mail privej@agr.gc.ca<br />

Abstract. Three reliable methods are explained for estimating different types of<br />

cold hardiness in Malus. They include: 1) a whole plant controlled freezing experiment<br />

for the assessment of low mid-winter injury, 2) electrical impedance spectroscopy<br />

(Z), for the estimation of multiple freeze-thaw cycling injury and 3) a controlled<br />

freezing protocol to facilitate the rapid screening of large populations of Malus<br />

seedlings. The aim of this manuscript is not the results of these three methods but<br />

rather the description of the methods for cold hardiness testing. With the f<strong>ir</strong>st method,<br />

plant mortality and morbidity (shoot, trunk and root regrowth) proved to be<br />

good indicators for evaluating low mid-winter cold hardiness. Of these, incremental<br />

root growth was the most sensitive to cold temperatures. The results from this<br />

study were validated by the good correlations between the laboratory findings and<br />

the 2004 field survival data from New York, USA following a test winter. The next<br />

method, Z, used root pieces of Ottawa 3 subjected to one, two and three controlled<br />

freeze-thaw cycles at temperatures of -3, -6, -9 and -12°C. Root tissue integrity, as<br />

measured by Z, was severely reduced with multiple events of freeze-thaw cycling<br />

and conf<strong>ir</strong>ms that freeze-thaw cycling is more detrimental to apple rootstock viability<br />

than periods of constant freezing. Screening for cold hardiness in seedlings of<br />

Malus, 16–20 weeks after radicle emergence, was the th<strong>ir</strong>d method and holds promise<br />

in segregating large seedling populations and could increase the efficacy of<br />

breeding for cold hardiness.<br />

Key words: cold stress, electrical impedance spectroscopy, Malus, seedling<br />

screening, whole plant freezing and regrowth.<br />

Introduction. The cold hardening process of plants in temperate zones of the<br />

world parallels the march of the seasons. Canada, situated between the arctic and<br />

the 42°N latitude, has many different growing areas, all with the<strong>ir</strong> own particular<br />

env<strong>ir</strong>onments. Recently, studies have begun to examine the relationship between<br />

local climate and apple production (Caprio and Quamme, 1999). In the Okanagan<br />

95


Valley of British Columbia, low temperatures during late fall and early winter were<br />

the main climatic factors limiting apple production in this area. Similar studies have<br />

been done for Atlantic Canada but low temperatures were not found to be associated<br />

with low production (Privé et al., 2000). However, what seems common to apple<br />

rootstock injury in the Maritimes are the multiple freeze-thaw events which occur<br />

throughout the winter, causing a melting of the insulating snow cover and permitting<br />

freeze-thaw cycling to occur deep below the soil surface. Although soil temperatures<br />

at 10 cm in 1992 dropped to near -9°C, this temperature is not known to harm<br />

most of the rootstocks in our region (Privé and LeBlanc, 1999). However, the midwinter<br />

thaw was very stressful to plant integrity since tree mortality and vigour were<br />

seriously affected in the subsequent growing season.<br />

In cold hardiness studies, there is the challenge of evaluating many plant samples<br />

for the<strong>ir</strong> survival at various developmental stages and freezing stresses. It is the<br />

purpose of this manuscript to examine three techniques used to assess apple rootstock<br />

hardiness at Agriculture and Agri-Food Canada in Eastern Canada. These include<br />

1) using whole plant controlled freezing tests and regrowth parameters; 2) cell<br />

integrity of root pieces subjected to freeze-thaw cycling and assessed using electrical<br />

bioimpedance spectroscopy (Z) and 3) a seedling screening protocol used to<br />

facilitate rapid progress in breeding programs.<br />

Materials and methods. Plant material. Uniform specimens of various apple<br />

rootstocks were lifted from the nursery in the autumn, packed in moist sawdust,<br />

and placed in refrigerated storage at 3°C. Following two months in storage, whole<br />

plants were removed for whole plant controlled freezing tests and roots pieces from<br />

these same plants were cut from each of the rootstocks for the Z-analysis.<br />

Freezing experiments. In the whole plant controlled freezing experiment, trees<br />

were removed from cold storage, rinsed with water to remove soil and sawdust.<br />

Roots were then equipped with thermocouples, placed in plastic bags as described<br />

by Privé and Embree (1997), and all groups except the control were placed into a 3<br />

x 3 m walk-in controlled-climate chamber preset to -3°C. The bagged control trees<br />

were returned to cold-storage. A CR-7 datalogger (Campbell Scientific, Calgary,<br />

AB) was programmed to read all thermocouples every minute and to output 15<br />

minute average values, including minimum and maximum values. The six freezethaw<br />

treatments were based on freezing cycles of 16 hours at -12°C and thawing<br />

cycles of 16 hours at +2°C. Once all the treatments were completed, trees were<br />

returned to cold storage and sawdust was added to each of the bags to conserve<br />

moisture until the trees could be potted. All trees were bare-rooted in the bags for the<br />

same period, including the control. No root dehydration or injury due to the freezing<br />

treatments was visible d<strong>ir</strong>ectly after the treatments. Prior to potting the plants, initial<br />

measurements were taken on trunk cross-sectional area (TCA/cm 2 ) and root volume<br />

(cm 3 ). Root volume was calculated using the Archimedes principle: W a<strong>ir</strong><br />

– W water<br />

= B<br />

= Vρ; where W = mass; B = buoyant force; V = volume and ρ = liquid density.<br />

Following these initial measurements, rootstocks were planted in 16-liter pots with a<br />

soilless mixture (Agro-Mix, Fafard, Shippagan, N. B.), placed in trenches in the<br />

field, and grown under normal cultural practices for the area. Pots were drip-<strong>ir</strong>rigated<br />

as requ<strong>ir</strong>ed and fertilized weekly until late July with 20N-20P-20K (1 g·liter -1 ).<br />

96


For the Z experiment, root pieces (2–4 mm diameter) were randomly selected<br />

from apple rootstocks and cut into 3–4 cm long segments. The samples were prepared<br />

and frozen as described by Privé and Zhang (1996). Cooling rates were programmed<br />

at 4.8°C·hr -1 and held for one hour at the pre-selected test temperatures of<br />

-3, -6, -9, and -12°C, then removed and allowed to thaw for 20 minutes at 20°C<br />

before being analysed using Z (this is considered a 1X freeze-thaw treatment). One<br />

advantage of measuring tissue impedance (Æ) as an indicator of physiological status<br />

is that the tissue is not destroyed while useful data are being obtained. This permitted<br />

the same root segments to be analyzed for multiple freeze-thaw events. Hence, our<br />

samples were again placed into the test tubes, re-frozen at the pre-selected test<br />

temperatures for a second time, re-thawed and re-analysed for a second time (treatment<br />

2X). This procedure was repeated once again (treatment 3X).<br />

For the rootstock seedling experiments, seeds were stratified in moist sand at 3<br />

to 5°C for 9 weeks. At the f<strong>ir</strong>st sign of radicle emergence, 60 seeds for each of the<br />

three genotypes were planted in a soilless mixture in Styro seedling trays (240 cells/<br />

tray, Beaver Plastics Ltd., Edmonton AB, Canada). All exterior cells of the tray were<br />

filled with seedlings and acted as buffers for the treatment seedlings. Plants were<br />

grown in a greenhouse for 6–8 weeks under good growing conditions (16 h, 20–<br />

30°C, 900 μmol·m -2·s -1 , fertilised with 200 ppm of 10N-52P-10K once a week for 3<br />

weeks followed by 200 ppm of 20N-20P-20K at 3x/week for another 3 weeks until<br />

plants were 5–7 cm.). Seedlings were then acclimated in controlled env<strong>ir</strong>onment<br />

chambers (8 h of 600 μmol·m -2·s -1 , 12-15°C/3–4°C D/N, 100 ppm 20N-20P-20K<br />

once a week for 6 weeks). Two frost events (-3°C for 16 h) were then given in the<br />

next two weeks while growing at 10/3°C D/N and 8 h light periods. Following this,<br />

the trays were placed in insulated boxes with vermiculite and heating cables to prevent<br />

the roots from freezing and placed in programmable freezers. Cooling rates<br />

were programmed at 2°C·hr -1 and held for one hour at the pre-selected test temperatures<br />

of -10, -20, -<strong>25</strong>, -30, and -40°C, removed and held in cold storage (3–5°C)<br />

overnight.<br />

Cold hardiness evaluations. For the whole-plant controlled freezing experiment,<br />

tree mortality was recorded, final root volume and trunk cross-sectional area (TCSA)<br />

were measured to calculate the growth increment over the season, and new shoot<br />

growth dry weight was determined after oven drying at 80°C for one week. Root<br />

and shoot regrowth data were only taken from surviving trees at each of the selected<br />

temperatures. Validation of mortality was done by comparing our laboratory results<br />

with field results (percent survival) from the Champlain Valley in New York, USA in<br />

2004.<br />

For the electrical impedance experiment, the spectra between 100 Hz and 800<br />

kHz were measured by a computer-controlled Hewlett Packard 4284A Precision<br />

LCR Meter using needle electrodes (Zhang and Willison, 1992). The impedance<br />

spectra were analyzed by a complex nonlinear least squares program called BIA,<br />

which was written in Visual Basic (available upon request from Dr. Zhang). The<br />

formula used in the program was: Z = R ∞<br />

+ (R o<br />

- R ∞<br />

) / [1 + (jωτ) ψ ], where Z is<br />

impedance; R o<br />

corresponds to extracellular resistance or the resistance at extremely<br />

low frequency; R ∞<br />

corresponds to total tissue resistance or the resistance at<br />

97


extremely high frequency as though all membranes were destroyed; τ is a generalized<br />

time constant of the tissue; ψ is a distribution factor of the time constant<br />

(Repo et al., 1993); ψ is a complex number operator [(-1) 1/2 ] and ω is angular<br />

frequency of the alternate current. The ô and ø parameters characterize the whole<br />

system and describe the distribution of cell sizes. Impedance parameters were<br />

normalized to values for 1 cm 3 of tissue. In this report, all data are normalized and<br />

all resistances are expressed as ohm·cm -1 .<br />

For the seedling experiment, mortality tests were conducted on the plants once<br />

they were removed from cold storage, moved to the greenhouse, defoliated with<br />

scissors, and regrown for four weeks. Plant viability was measured as percent seedling<br />

survival. This was collected as binomial data with each plant given a rating of<br />

either 1 or 0. Only plants that had a ≥ 50% stem death were recorded as 0. Percentages<br />

of plant population mortality were then calculated by dividing the number of<br />

plants given a rating of zero over the total number of seedlings per tray per selection<br />

population.<br />

Statistical analysis. With the f<strong>ir</strong>st method, the mortality of apple cultivars was<br />

related to a series of freezing temperatures by logistic regression, from which the<br />

temperature that 20% of trees died was determined (i.e., LT 20<br />

). The predicted values<br />

for LT 20<br />

were obtained from a mixed model (REML) analysis, with year and cultivar<br />

as fixed factors. The morbidity of the surviving trees, which were planted in the<br />

field, was assessed by the increases in root volume and trunk diameter and reduction<br />

in shoot growth. The increase in root volume was calculated for each individual tree.<br />

Both root volume and trunk diameter increases were regressed on the log scale for<br />

each group of cultivar and replicate trees; the percentage increase was calculated<br />

from the ratio of the mean final to mean initial measurements. This ratio of the<br />

means is a more precise estimate of the fractional increase than from the mean of the<br />

ratios from individual trees. To calculate the temperature at which 50% regrowth<br />

occurred a “linear divided by linear” functional relationship was used, i.e., Y = a + (b /<br />

(1 + c t)), where t = temperature, and from which the temperature at RT 50<br />

was<br />

calculated using the estimated parameters. A hardiness index was computed by averaging<br />

the results of the four regrowth attributes. Correlations between our results<br />

(root volume RT 50<br />

) and the Champlain Valley field results (% survival) were used to<br />

validate our findings.<br />

With the second method, unit weighting statistical procedures were used for all<br />

impedance spectral analyses. In most analyses, the full range impedance data (100<br />

Hz to 800 KHz) were used. Please refer to Privé and Zhang (1996) for details.<br />

With the last method, the survival of the three genotypes to freezing was analysed<br />

as a General Linear Model (GLM), (SAS Institute Inc., Cary, N. C.) with the<br />

number of plants surviving as a binomial variant with a logistic link function (McCullagh<br />

and Nelder, 1983). The data were back-transformed [y = 100×exp(p)/(1 +<br />

exp(p))] in order to express the data as percentages.<br />

Results. The whole-plant controlled freezing experiments followed by regrowth<br />

measurements provided a good segregation of the cold hardiness of various<br />

apple rootstocks (Table 1). In the subsample of rootstocks presented in this<br />

manuscript, KSC28 had the highest (-14.3°C) while M.4 had the lowest (-8.1°C)<br />

98


hardiness index. Other rootstocks that had good hardiness indices include M.9Emla,<br />

CG6179, M.26Emla and P 2. Differences in cold hardiness are evident between<br />

rootstocks but also between the various components used to calculate overall hardiness.<br />

Rootstock mortality (LT 20<br />

) was highest for M.4 and G.16 and lowest for<br />

KSC28, G65, M.9Emla, M.26Emla, P 2, CG6179 and B.118. Root volume increase<br />

was the most sensitive to cold injury while both incremental increases in new<br />

shoot growth and trunk diameters were quite similar in the<strong>ir</strong> sensitivity. CG6179,<br />

M.9Emla and M.26Emla had a 50% reduction in root growth at temperatures between<br />

-11 and -12°C (RT 50<br />

) while B.9 and A.2 reported the same reduction at<br />

temperatures between -4.7 and -5.3°C (Table 1). To validate our results we compared<br />

our laboratory results with those from the 2004 test winter from the Champlain<br />

Valley of New York in 2004. A good correlation was found between the field<br />

tree survival data and our controlled freezing results (r = -0.70) (Fig. 1) thus<br />

indicating a good fit.<br />

Table 1. Whole plant rootstock screening<br />

1 lentelë. Poskiepio testavimas<br />

Rootstock<br />

Poskiepis<br />

New shoot<br />

growth<br />

Naujø ûgliø<br />

augimas<br />

(RT 50 , °C)<br />

Trunk diameter<br />

increase<br />

Kamieno<br />

padidëjimas<br />

(RT 50 , °C)<br />

Root volume<br />

increase<br />

Ðaknø tûrio<br />

padidëjimas<br />

(RT 50 , °C)<br />

Mortality<br />

Žuvimas<br />

(LT 20, °C)<br />

Hardiness index<br />

Atsparumo rodiklis<br />

(°C)<br />

A.2 -10.9 -13.8 -5.3 -11.8 -10.4<br />

B.9 -9.7 -10.7 -4.7 -10.7 -9.0<br />

B.118 -12.6 -11.0 -8.0 -12.0 -10.9<br />

CG179 -13.5 -13.3 -12.3 -12.4 -12.9<br />

CG202 -9.7 -10.8 -7.7 -11.1 -9.8<br />

CG210 -14.1 -13.2 -8.5 -11.1 -11.7<br />

G.16 -12.7 -13.0 -9.4 -9.8 -11.2<br />

G.30 -12.6 -13.1 -8.8 -11.8 -11.6<br />

G.65 -14 -9.6 -9.9 -12.9 -11.6<br />

KSC28 -16.9 -16.5 -9.4 -14.1 -14.3<br />

M.26 -11.4 -15.0 -6.5 -12.1 -11.3<br />

M.26EMLA -13.0 -14.2 -11.3 -12.6 -12.8<br />

M.27 -12.9 -9.5 -5.3 -12.4 -10.0<br />

M.4 -7.9 -10.6 -5.8 -8.2 -8.1<br />

M.9 -13.4 -12.5 -5.2 -11.1 -10.6<br />

M.9.EMLA -14.5 -14.3 -11.9 -12.7 -13.3<br />

P 2 -13.4 -14.4 -9.8 -12.5 -12.5<br />

99


Fig. 1. Correlation between controlled freezing results (as indicated by root hardiness<br />

(RT 50<br />

for root volume increase) and field data from New York in 2002 (% survival)<br />

1 pav. Koreliacija tarp kontroliuojamo ðalèio rezultatø (ðaknø atsparumas, ðaknø tûrio<br />

padidëjimas RT 50<br />

) <strong>ir</strong> lauko duomenø Niujorke 2002 metais (iðlikusiø poskiepiø, %)<br />

Electrical impedance (Z) proved to be a very sensitive tool in monitoring for<br />

changes in cell integrity associated to cold stress. The exponential decrease in extracellular<br />

resistance with decreasing temperatures can be described by the equations:<br />

Ro = 44298.23×exp (0.1894×T), Ro = 17798.33×exp (0.1640×T), Ro = 12242.27×exp<br />

(0.1349×T) for the root pieces receiving the 1X, 2X or 3X freeze-thaw cycling<br />

treatments, respectively (Fig. 2). At each of the temperatures, it was obvious that<br />

freeze-thaw cycling was very detrimental to the viability of these root pieces. At<br />

-3°C, two freeze-thaw events were enough to severely injure the root tissue and at<br />

-9°C, one freeze-thaw event was enough to severely reduce root viability to the<br />

extent that further freeze-thaw cycling had no additional effect. Two freeze-thaw<br />

events at -3°C equalled the damage from one freeze-thaw event at -9°C.<br />

Fig. 2 Extracellular resistance (Ro), derived from Z measurements from<br />

Ottawa 3 apple root pieces subjected to one (1X), two (2X) and three (3X)<br />

freeze-thaw cycle treatments<br />

2 pav. Ottawa 3 poskiepio làsteliø atsparumas (Ro), ávertintas Z rodikliais, ið<br />

3 ðaknies daliø, veiktø vienu (1X), dviem (2X) <strong>ir</strong> trimis ðaldymo-atðildymo ciklais<br />

100


Only genotype 1 was able to survive temperatures < -20°C (Fig. 3). Temperatures<br />

at which seedling survival was reduced by 50% were -13.6, -15.7 and -17.5°C<br />

for genotypes 2, 3 and 1, respectively. For these three genotypes it seems that the<br />

best screening temperatures for differentiating the population were between -10 and<br />

-20°C but this is specific to the genotypes undergoing evaluation.<br />

Fig.3 Mortality of three apple rootstock seedlings following controlled<br />

acclimation and freezing<br />

3 pav. Obelø su trimis sk<strong>ir</strong>tingais poskiepiais þuvimas kontroliuojamomis<br />

aklimatizacijos <strong>ir</strong> ðaldymo sàlygomis<br />

Discussion. Mortality, shoot, trunk and root regrowth results were summarized<br />

in an attempt to segregate populations of different apple rootstocks according<br />

to the<strong>ir</strong> cold hardiness (Table 1). Low mid- winter injury is the type of<br />

cold stress for which this method is best suited. Most of the results from the<br />

present study agree with the literature (Czynczyk and Holubowicz, 1984; Quamme,<br />

1990) and since they were well correlated with in vivo field data, we recommend<br />

this whole-plant recovery evaluation method for cold hardiness screening<br />

of apple rootstocks.<br />

Freeze-thaw cycling was very detrimental to either cell viability or regrowth.<br />

Using the Z-technique, the extracellular resistance parameter (R o<br />

), was very responsive<br />

to freeze-thaw cycling, decreasing exponentially with increasing cold<br />

stress. The decrease in R o<br />

is mostly due to release of intracellular electrolytes to<br />

extracellular space (Zhang et al., 1992). It is speculated that the release of electrolytes<br />

to extracellular space is due to membrane rupture and reseal during freezethaw<br />

cycling, but the event of rupture-reseal does not necessarily involve membrane<br />

functional loss in non-lethal freeze-thaw stresses (Zhang et al., 1994). Membrane<br />

rupture could have been caused by the piercing of the cellular membranes by<br />

ice crystals or by the osmotic contraction and expansion of the membranes due to<br />

the drastic difference in solute concentrations between the frozen and un-frozen<br />

state. This latter explanation seems most likely because most evidence seems to<br />

suggest that solute loading and vesicle expansion are very important to plant freezing<br />

tolerance (Kaye and Guy, 1995). Freeze-thaw cycling caused more root inju-<br />

101


y than constant periods of cold. Although more complicated than the whole-plant<br />

method, this technique is best suited for the evaluation of freeze-thaw cycling as it<br />

is non-destructive and allows for continual sampling of the same tissues over<br />

multiple freeze-thaw cycles.<br />

Screening seedlings of Malus, 16–20 weeks after emergence, using a protocol<br />

to induce acclimation and select the hardiest individuals could improve the efficacy<br />

of breeding for cold hardiness by eliminating a large proportion of cold-tender seedlings<br />

before time and maintenance costs are invested in field plantings. Plant viability,<br />

collected in the form of binomial values and used to calculate percent seedling survival<br />

was a simple, efficient and precise method to segregate seedling populations for<br />

cold hardiness. We are presently running field trials with these same genotypes in the<br />

hopes of getting a test winter to compare our controlled studies to in vivo field<br />

results.<br />

Acknowledgements. Thanks to K. McRae and B. Walker for the<strong>ir</strong> statistical<br />

help and A. LeBlanc and M. Cao for the<strong>ir</strong> technical assistance.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Caprio J. M. and Quamme H. A., Weather conditions associated with apple production<br />

in the Okanagan Valley of British Columbia. Can. J. Plant Sci. 1999. 79. P. 129–137.<br />

2. Kaye C. and Guy C. L. Perspective of plant cold tolerance; physiology and molecular<br />

responses. Sci. Prog. 1995. 78. P. 271–299.<br />

3. McCullagh P. and Nelder J. A. Generalized Linear Models, Chapman and Hall,<br />

London, 1983.<br />

4. Privé J.-P., Caprio J. M., Quamme H. A. and Embree C. Weather conditions associated<br />

with apple production in the Annapolis Valley of Nova Scotia and the Okanagan<br />

Valley of British Columbia. Proc. of the 11 th Atlantic Region Hydrotechnical Conference.<br />

2000. p. 33 (Abstr.)<br />

5. Privé J.-P., Embree C.G. Freezing media affects cooling rate and regrowth of KSC28<br />

apple rootstocks. Can. J. Plant Sci. 1997. 77. P. 461–471.<br />

6. Privé J.-P., LeBlanc A. Apple and small fruits research report. AAFC technical<br />

report no 99–01. 1999. 77 pp.<br />

7. Privé J.-P., Zhang M. I. N. Estimating cold stress in ‘Beautiful Arcade’ apple roots<br />

using electrical impedance analysis. HortTech. 1996. 6. P. 54–58.<br />

8. Repo T., Zhang M. I. N. Modelling woody plant tissues using a distributed electrical<br />

c<strong>ir</strong>cuit. J. Expt. Bot. 1993. 44. P. 977–982.<br />

9. Zhang M. I. N., Willison J. H. M. Electrical impedance analysis in plant tissues: In<br />

vivo detection of freezing injury. Can. J. Bot. 1992. 70. P. 2<strong>25</strong>4–2<strong>25</strong>8.<br />

10. Zhang M. I. N., Willison J. H. M., Xiao X. and Cheung C. H. Membrane-damage<br />

due to freeze-thaw stress in enhanced by post-thaw immersion in hypotonic solution.<br />

Can. J. Plant Sci. 1994. 74. P. 357–358.<br />

102


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

OBELØ POSKIEPIØ ATSPARUMO ÐALÈIUI TYRIMAI<br />

J.-P. Privé<br />

Santrauka<br />

Ðiuo bandymu t<strong>ir</strong>ti trys esminiai obelø atsparumo ðalèiui ávertinimo metodai:<br />

1) viso augalo ðaldymas kontroliuojamomis sàlygomis þemø vidurþiemio temperatûrø<br />

paþeidimams ávertinti, 2) elektrinës varþos spektrometrija (Z) pasikartojanèiø uþðalimo-atðilimo<br />

ciklø daromiems paþeidimams ávertinti, 3) kontroliuojamas ðaldymas<br />

obelø sëjinukø populiacijoms bûdingø bruoþø kaupimui palengvinti. Ðio darbo tikslas<br />

– atsparumo ðalèiui vertinimo metodø ávertinimas, apibendrinimas, o ne rezultatai,<br />

gauti naudojant ðiuos metodus. P<strong>ir</strong>masis metodas árodo, kad augalo m<strong>ir</strong>tingumas <strong>ir</strong><br />

ligotumas, ðaknø, kamieno <strong>ir</strong> ðakø ataugimas yra tinkami rodikliai nustatant atsparumà<br />

þiemos ðalèiams. Ðaknø prieaugis jautriausias þemoms temperatûroms. Ðie duomenys<br />

pagrásti stipria koreliacija tarp laboratoriniø <strong>ir</strong> lauko bandymø, atliktø 2004<br />

metø þiemà Niujorke, JAV. Antruoju (Z) metodu ávertintas làsteliø atsparumas Ottawa<br />

3 poskiepio obelø ðaknyse, veiktose vienu, dviem <strong>ir</strong> trimis ðaldymo-atðildymo<br />

ciklais, keièiant -3, -6, -9 <strong>ir</strong> -12°C temperatûras. Didelis taip veikiamø poskiepiø<br />

ðaknø audiniø vientisumo sumaþëjimas rodo, kad ðaldymo-ðildymo ciklø padaryta<br />

þala daug didesnë nei nuolatinio ðaldymo. Treèiasis metodas naudotas atliekant obelø<br />

sëjinukø atsparumo ðalèiui tyrimus. Didelëms populiacijoms bûdingø bruoþø sukaupimas<br />

padidina ðalèiui atspariø veisliø efektyvumà.<br />

Reikðminiai þodþiai: ataugimas, elektrinës varþos spektroskopija, obelys, sëjinukø<br />

testavimas, ðalèio stresas, viso augalo ðaldymas.<br />

103


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

MIÐKINËS OBELS (MALUS SYLVESTRIS MILL.)<br />

SKIRIAMIEJI YPATUMAI<br />

Raimundas PETROKAS<br />

Lietuvos miðkø institutas, Liepø 1, LT-53101, G<strong>ir</strong>ionys, Kauno r.<br />

El. paðtas raimundaspetrokas@myway.com<br />

Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas p.duchovskis@lsdi.lt<br />

Lapø peroksidazës izofermentinës sudëties kaitos fone buvo nagrinëjami miðkinës<br />

obels (Malus sylvestris Mill.) vaisiø dengiamosios spalvos ypatumai. Darbo objektas<br />

– miðke aptiktos savaime plintanèios obelys <strong>ir</strong> jø trimeèiai generatyviniai palikuonys,<br />

iðauginti LSDI medelyne. T<strong>ir</strong>iant peroksidazës þymenis, ávertintas jos izoformø<br />

elektroforetinis mobilumas bei t<strong>ir</strong>tø ðeimø spektrai. Nustatyta, kad miðkiniø<br />

obelø, kuriø vaisiai neturi dengiamosios spalvos, visø palikuoniø peroksidazës spektruose<br />

nëra izoformø, kuriø Rf = 0,43, o laukinës obels sk<strong>ir</strong>iamuoju poþymiu reikëtø<br />

laikyti peroksidazës izoformà, kurios Rf = 0,67. Vaisiø dengiamosios spalvos nebuvimas<br />

taip pat yra sk<strong>ir</strong>iamasis Malus sylvestris Mill. medþiø, auganèiø ne tik miðke, bet<br />

<strong>ir</strong> atv<strong>ir</strong>ose vietose bei pamiðkëse, poþymis.<br />

Reikðminiai þodþiai: fenotipas, miðkinë obelis, peroksidazës izoformos.<br />

Ávadas. Manoma, kad ðalèiui atspari miðkinë obelis (Malus sylvestris Mill.) ats<strong>ir</strong>ado<br />

antrojo ledynmeèio epochoje ið Malus orientalis Uglitz., iðplitusios ið Kaukazo á<br />

ðiauræ (Ñêèáèíñêàÿ, 1966). Miðkinës obels kilmës centras – tarp iðtisinio ledyno<br />

Dnepro <strong>ir</strong> Dono lieþuviø – Kursko, Voroneþo sritys. Traukiantis ledynui, miðkinës<br />

obelys iðplito á ðiauræ iki Karelijos sàsmaukos <strong>ir</strong> á Europà. Miðkinë obelis prarado<br />

plaukuotumà, kuris bûdingas jos protëviams (Malus orientalis Uglitz.), kilusiems ið<br />

Malus sieversii (Ledeb.) M. Roem. – sekcijos Eumalus Zbl. tikrosios obels, iðsisk<strong>ir</strong>ianèios<br />

savo poþymiø pastovumu. Bûdingiausias M. sieversii poþymis – antocianinas,<br />

esantis ðakø þievëje, lapø gyslose <strong>ir</strong> koteliuose, iðtisinë violetiðkai raudona nokstanèiø<br />

<strong>ir</strong> raudona prinokusiø vaisiø spalva. Ið Malus orientalis Uglitz. miðkinë obelis<br />

galëjo paveldëti pradiná jaunø ûgliø augimo taðkø plaukuotumà, horizontalø lapø iðsidëstymà<br />

apatinëse ðakose (kad efektyviau vyktø fotosintezë drëgnoje miðko tankmëje),<br />

stiprø lajos ðakojimàsi bei vëlyvesná derëjimà. Kai kuriø autoriø (Ñàìèãóëëèí <strong>ir</strong><br />

kt., 1994) duomenimis, genetiðkai M. sylvestris artimiausia Ðiaurës Kaukazo <strong>ir</strong> Vidu-<br />

104


inës Azijos rûðims – M. orientalis <strong>ir</strong> M. sieversii (1 pav.), o maþiausias genetinis<br />

atstumas nustatytas iki Malus sieversii (Ledeb.) M. Roem. – pagrindinio M. domestica<br />

p<strong>ir</strong>mtako (Forte <strong>ir</strong> kt., 2001).<br />

1 pav. Galimi giminystës ryðiai tarp Malus rûðiø. D – nukrentantys taurëlapiai, P –<br />

iðliekantys taurëlapiai, L – skiautëti lapai, NL – beskiauèiai lapai, G – yra sklereidþiø,<br />

NG – nëra sklereidþiø (Juniper <strong>ir</strong> kt., 1999)<br />

Fig. 1. Possible relationships between Malus species. D – calyx deciduous, P – calyx<br />

persistent, L – leaves lobed, NL – leaves not lobed, G – grit cells, NG – no grit cells<br />

Antrinë, arba dengiamoji, obels vaisiø spalva priklauso nuo daþanèiø medþiagø<br />

gausumo odelës làstelëse (Tuinyla <strong>ir</strong> kt., 1990). Massimo Pigliucci (1996) raðo, kad<br />

augalai, kuriø áprastos augavietës yra ten, kur nuolatinës paunksmës nëra, patekæ á<br />

paunksmæ su maþu raudonøjø <strong>ir</strong> infraraudonøjø spinduliø santykiu, slopina chlorofilo<br />

<strong>ir</strong> antriniø pigmentø sintezæ. Taigi iðeitø, kad miðko radavietëse kultûriniø obelø vaisiai<br />

gali neturëti dengiamosios spalvos.<br />

Biocheminiuose procesuose, kuriø katalizatoriai – fermentai, atsispindi augalø<br />

reakcija á aplinkos veiksnius. Fermentø makromolekuliø funkciniai elementai yra ið<br />

dalies arba visiðkai savarankiðki to paties baltymo polipeptidai – domenai. Augalø<br />

peroksidaziø makromolekules paprastai sudaro du tokie domenai (Rosby, 2000, Aucla<strong>ir</strong>,<br />

2004), todël juos gali nulemti ne tik to paties geno subvienetai, bet <strong>ir</strong> sk<strong>ir</strong>tingi,<br />

nealeliniai genai. Peroksidazës katalizuojamø biocheminiø reakcijø efektas gali bûti<br />

prisk<strong>ir</strong>iamas genams modifikatoriams, komplementariems genams arba netgi poligenams.<br />

Peroksidazë (1.11.1.7.) priklauso oksidoreduktaziø klasës fermentams (Glemþa,<br />

1987). Pagal jos izoformø kitimà lapø ekstraktuose identifikuojamos obelø veislës <strong>ir</strong><br />

rûðys (Vinterhalter, James, 1982, Ìàëû÷åíêî, Ãðóøèí, 1986, Barnes, 1993, Manganaris,<br />

Alston, 1993, Gelvonauskis, Ðikðnianienë, 2001). Tø paèiø organø izofermentø<br />

sudëtá atitinkamame ontogenezës etape lemia tik genotipas (Êîíàðåâ, 1987).<br />

Darbo tikslas – nustatyti miðkinës obels vaisiø fenotipinius ypatumus lapø peroksidazës<br />

izofermentinës sudëties kaitos fone.<br />

Tyrimo objektas <strong>ir</strong> metodai. Siekiant iðt<strong>ir</strong>ti miðkinës obels genotipiná kintamumà,<br />

buvo ávertinti 27 generatyvinës brandos medþiai (1 lentelë). 1997–1999 m. surinkti<br />

jø prinokæ vaisiai – maþiausiai po trisdeðimt nuo kiekvienos obels. Ið sëklø<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute (LSDI) buvo iðauginti 27 ðeimø<br />

sëjinukai. Peroksidazës izofermentinës sudëties kaita t<strong>ir</strong>ta septyniø ðeimø trimeèiø<br />

105


sodinukø (108 genotipai) lapuose. Ðiam tyrimui pagal motininiø medþiø fenotipinio<br />

ávertinimo rezultatus buvo parinktos tokios miðke aptiktø obelø ðeimos: tipiðkos miðkinës<br />

obels Nr. 3, miðkinës obels Nr. 22, kuri turëjo pagrindinio Malus domestica Borkh.<br />

p<strong>ir</strong>mtako – Malus sieversii (Ledeb.) M. Roem. – poþymiø, Nr. 18 bei Nr. 13, miðke<br />

aptiktos kultûrinës kilmës obels Nr. 1, seniausios (~70 m. amþiaus) netikrojo branduolio<br />

neturëjusios miðkinës obels Nr. 4 <strong>ir</strong> miðko gilumoje uþaugusios obels Nr. 23 ðeimos.<br />

Motininë obelis Nr. 1 <strong>ir</strong> Nr. 3 auga Vaiðvydavos g<strong>ir</strong>ininkijoje, Nr. 4 – Ðilënø, Nr. 13 –<br />

Balskø, Nr. 18 – Stempliø, Nr. 22 – Lanèiûnavos <strong>ir</strong> Nr. 23 – Ðilinës g<strong>ir</strong>ininkijoje. Miðkinës<br />

obels sk<strong>ir</strong>iamieji poþymiai, kuriais vadovaujantis atrinkti motininiai medþiai, buvo<br />

ðie: 2–2,5 cm ploèio vaisiai, rutuliðki arba plokðti, gelsvi, be dengiamosios spalvos arba<br />

rausvaðoniai, vaiskoèio <strong>ir</strong> vaisiaus ilgiø santykis = 1, ûgliai ploni, trumpaûgliai baigiasi<br />

dygliu (dygliaûgliai), pumpurai <strong>ir</strong> lapai pliki, lapø ilgis < 6 cm, plotis < 4 cm (Öåòòåðìàí,<br />

1950, Ëèõîíîñ, 1963, Íîâèêîâ, 1965, Wagner, 1995 bei tyrimø medþiaga). Fenotipiniø<br />

poþymiø ypatumai tipiðkose miðkinës obels radavietëse ávertinti pagal tyrimui parengtus<br />

morfologiniø poþymiø deskriptorius (Petrokas, 2002).<br />

Sodinukø lapø peroksidazës izofermentinës sudëties tyrimas atliktas LSDI Augalø<br />

fiziologijos laboratorijoje 2004 m. liepos II deðimtadiená, nes nustatyta, kad peroksidazës<br />

izoformø kiekis obelø lapuose kinta vegetacijos metu (Gelvonauskis, Ðikðnianienë,<br />

2001), o daugiausia jø <strong>ir</strong> geriausias ryðkumas gelyje – liepos mënesá.<br />

Ëminiø paëmimas <strong>ir</strong> paruoðimas. Lapø (4–6 lapas nuo ûglio v<strong>ir</strong>ðûnës) ëminiai<br />

paimti p<strong>ir</strong>moje dienos pusëje <strong>ir</strong> padëti á laboratorijos ðaldytuvà (anksti ryte, visi vienu<br />

metu). Netrukus 0,<strong>25</strong> g lapo audinio sutrinta trintuvëje ant ledo, pridëta 2 ml trisglicininio<br />

buferio (pH 8,3), 0,015 g askorbo, 0,03 g glutamo rûgðties (izofermentams<br />

stabilizuoti) <strong>ir</strong> 0,05 g polivinylp<strong>ir</strong>olidono (fenoliniams junginiams „suriðti“ – mëginiams<br />

iðgryninti). Obels lapø mëginiai centrifuguoti 4 min. 8000 aps./min. greièiu<br />

kambario temperatûroje. Po to pridëta bromfenolo mëlynojo daþo (daþas parodo elektroforezës<br />

pabaigà).<br />

Elektroforetinis buferis. Tris-glicininis buferis (pH 8,3) – 2-amino-2-(hydroksimetyl)-1,3-propandiolio<br />

(Tris) – 3 g, glicino – 14,4 g – praskiestas distiliuotu vandeniu<br />

iki 500 ml. Naudotas tokios koncentracijos t<strong>ir</strong>palas: 100 ml buferio <strong>ir</strong> 900 ml<br />

vandens.<br />

Poliakrilamidinio gelio gamyba. Poliakrilamidinis nedenatûruojantis gelis ruoðtas<br />

pagal Daviso (1964) metodikà. Koncentruojanèio gelio polimerizacija inicijuota apðvieèiant<br />

t<strong>ir</strong>palà (riboflavinà) ultravioletiniø spinduliø lempa.<br />

Elektroforezë vyko vertikalaus gelio aparate nuo katodo (-) link anodo (+),<br />

srovë – 20 mA, átampa – 120V. Kai daþas pasiekdavo frakcionuojantá gelá, perjungta<br />

40 mA srovë <strong>ir</strong> 220 V átampa. Px izoformos pasiþymi sk<strong>ir</strong>tingu elektrostatiniu krûviu,<br />

todël elektriniame lauke juda sk<strong>ir</strong>tingu greièiu <strong>ir</strong> po tam tikrà laikotarpá trukusios<br />

elektroforezës gelyje uþima sk<strong>ir</strong>tingas pozicijas.<br />

Gelio daþymas. Peroksidazës (Px) izoformos elektroforegramose iðryðkintos<br />

pagal modifikuotà Jaaska (1972) metodikà.<br />

Pagal peroksidazës izoformø pozicijas, po elektroforezës iðryðkintas gelyje, elektroforegramose<br />

buvo apskaièiuotas jø elektroforetinis mobilumas (dviem pakartojimais)<br />

pagal formulæ Rf = r i<br />

R -1 , kur: r i<br />

– atstumas nuo frakcionuojanèio gelio pradþios<br />

iki izofermento pozicijos; R – atstumas nuo sk<strong>ir</strong>iamojo gelio pradþios iki bromfenolio<br />

mëlynojo juostos gelio apaèioje.<br />

106


1 lentelë. Generatyvinæ brandà pasiekusios Pietvakariø <strong>ir</strong> Vidurio Lietuvos miðkinës<br />

obelys, kuriø palikuonys iðauginti LSDI medelyne<br />

Table 1. Data of mature wild apple trees from the forests of southwestern and central<br />

Lithuania, which progeny was grown in LIH nursery-garden<br />

Medžio<br />

Nr.<br />

Tree<br />

No.<br />

15<br />

16<br />

8<br />

26<br />

23<br />

9<br />

10<br />

11<br />

19<br />

14<br />

3<br />

27<br />

20<br />

13<br />

22<br />

24<br />

<strong>25</strong><br />

4<br />

Radavietë<br />

Habitat<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

Pamiðkë<br />

F. edge<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Pamiðkë<br />

F. edge<br />

Amžiaus kl.<br />

Age class<br />

(10 yr)<br />

III<br />

IV<br />

V<br />

D 1,3 ,<br />

cm<br />

H, m<br />

H /<br />

H LAJOS/<br />

107<br />

CROWN<br />

H /<br />

D LAJOS/<br />

CROWN<br />

13 5 1,42 1,00<br />

16 8 1,14 2,00<br />

13 8 1,33 1,33<br />

13 10 1,11 1,81<br />

10 11 1,37 2,20<br />

21 11 1,22 2,20<br />

11 7 1,75 1,40<br />

14 10 1,42 2,22<br />

16 12 1,20 2,66<br />

17 14 1,40 2,15<br />

15 14 1,16 3,11<br />

24 14 2,00 2,54<br />

15,5 11 1,22 2,00<br />

12 13 1,18 2,60<br />

13 13 1,18 5,20<br />

14 14 1,40 2,54<br />

VI 29 17 1,41 3,09<br />

VII <strong>25</strong> 12 1,20 2,40<br />

Stiebo<br />

išreikštumas<br />

Stem expression<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki v<strong>ir</strong>ðûnës<br />

Up to the tree top<br />

Iki 1/2 lajos<br />

Up to ½ of crown<br />

height<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki 1/2 lajos<br />

Up to ½ of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki v<strong>ir</strong>ðûnës<br />

Up to the tree<br />

top<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Iki 3/4 lajos<br />

Up to ¾ of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Keli stiebai<br />

Few stems from<br />

the ground<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Branduolio<br />

bûklë<br />

Heartwood<br />

condition<br />

Patamsëjæs<br />

Dark<br />

Nëra<br />

Indiscernible<br />

Patamsëjæs<br />

Dark<br />

Nëra<br />

Indiscernible<br />

Átrûnijæs<br />

Rotten<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs/<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Šviesus<br />

Pale<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Šviesus<br />

Pale<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Iki lajos<br />

Nëra<br />

Up to the crown<br />

Indiscernible<br />

basis<br />

Pastaba: paryðkintu ðriftu paþymëti medþiai, kuriø palikuoniø lapuose t<strong>ir</strong>tos peroksidazës þymenos.<br />

Note: female-trees, which progeny was examined with the aid of peroxidase analysis, are in bold.


Rezultatai. Prielaida, kad miðko radavietëse vaisiai neturi dengiamosios spalvos<br />

<strong>ir</strong> tai <strong>ir</strong> yra sk<strong>ir</strong>iamasis miðkinës obels poþymis (2 lentelë), neatitinka mokslo<br />

literatûroje pateikto miðkinës obels apraðymo (Öåòòåðìàí, 1950, Ëèõîíîñ, 1963,<br />

Íîâèêîâ, 1965, Wagner, 1995). Matyt, pagrindinis dengiamosios spalvos nebuvimo<br />

veiksnys yra apðvietimo pobûdis miðkinës obels gamtinëse augavietëse – netiesioginë,<br />

iðsklaidyta saulës ðviesa <strong>ir</strong> nepalankus raudonøjø <strong>ir</strong> infraraudonøjø spinduliø<br />

santykis dël kaimyniniø augalø, sugerianèiø fotosintetiðkai aktyvius raudonuosius spindulius<br />

(Pigliucci 1996, Du Preez <strong>ir</strong> kt., 2004), bei ultravioletiniø spinduliø (370 nm)<br />

trûkumas. Taèiau reakcijos á tiesioginá saulës apðvietimà (Tuinyla <strong>ir</strong> kt., 1990) <strong>ir</strong><br />

antocianino produkcijos didëjimo galimybës koncepcijà paneigia obels Nr. 18 (Ðilutës<br />

miðkø urëdija, Stempliø g<strong>ir</strong>ininkija), auganèios atv<strong>ir</strong>oje vietoje, poþymiai – jos<br />

vaisiai <strong>ir</strong>gi neturëjo dengiamosios spalvos. Galbût visai neatsitiktinai peroksidazës<br />

izoformos, kuriø Rf = 0,55 <strong>ir</strong> Rf = 0,67, buvo visø ðios obels palikuoniø spektruose,<br />

sk<strong>ir</strong>tingai nuo kitø t<strong>ir</strong>tø kultûrinës kilmës <strong>ir</strong> miðkiniø obelø ðeimø (3 lentelë, 2 pav.).<br />

Dengiamosios spalvos taip pat neturëjo miðkiniø obelø Nr. 13 <strong>ir</strong> Nr. 3 vaisiai. Në<br />

vienas ið trijø minëtø obelø palikuoniø neturëjo lapø peroksidazës izoformø, kuriø<br />

Rf = 0,43 <strong>ir</strong> Rf = 0,63. Kad bûtø nustatyta, kaip tai susijæ su dengiamosios spalvos<br />

nebuvimu, reikëtø tolesnio tyrimo. Kita vertus, maþai yra obelø veisliø (‘Paprastasis<br />

antaninis’, ‘Popierinis’), kuriø obuoliai bûna vienspalviai, <strong>ir</strong> panaðu, kad dengiamosios<br />

spalvos nebuvimas yra sk<strong>ir</strong>iamasis miðkinës obels medþiø, auganèiø ne tik miðke,<br />

bet <strong>ir</strong> atv<strong>ir</strong>ose vietose bei pamiðkëse (miðkinë obelis Nr. 18 <strong>ir</strong> Nr. 4 – 1 lentelë),<br />

poþymis.<br />

2 lentelë. Savaime plintanèiø obelø vaisiø áva<strong>ir</strong>ovë<br />

Table 2. Spine bearing and fruit diversity of wild apples<br />

Medžio<br />

Nr.<br />

Tree No.<br />

26*<br />

27*<br />

23<br />

22<br />

14<br />

<strong>25</strong><br />

3, 8<br />

15<br />

11<br />

24<br />

Ðakeliø<br />

dygliuotumas<br />

Spine bearing<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Nëra<br />

Absent<br />

Vaisiø forma<br />

Fruit shape<br />

Plokšèia<br />

Flat<br />

Plokšèia<br />

Flat<br />

Kriaušiška<br />

Pear-shaped<br />

Plokšèia<br />

Flat<br />

Plokšèia<br />

Flat<br />

Rutuliška<br />

Globular<br />

Rutuliška<br />

Globular<br />

Kûgiðka<br />

Conic<br />

Kiaušiniška<br />

Ovoid<br />

Plokšèia<br />

Flat<br />

Pagrindinë<br />

vaisiø spalva<br />

Fruit ground<br />

colour<br />

Geltona<br />

Yellow<br />

Gelsva<br />

Yellowish<br />

Žalia<br />

Green<br />

Gelsva<br />

Yellowish<br />

Žalia<br />

Green<br />

Geltona<br />

Yellow<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Dengiamoji<br />

vaisiø spalva<br />

Fruit over colour<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Rausva<br />

Reddish<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

-<br />

-<br />

-<br />

Dengiamosios<br />

spalvos pobûdis<br />

Pattern of over<br />

colour<br />

Šonai<br />

Sides<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

108


17<br />

19<br />

13*<br />

4**<br />

6*<br />

1<br />

7<br />

9<br />

16, 20<br />

10<br />

5<br />

18<br />

Absent Flat Yellowish Absent<br />

Nëra<br />

Plokšèia Gelsva Geltona<br />

Absent Flat Yellowish Yellow<br />

Nëra<br />

Rutuliška Geltona Nëra<br />

Absent Globular Yellow Absent<br />

Nëra<br />

Rutuliška Gelsva Nëra<br />

Absent Globular Yellowish Absent<br />

Nëra<br />

Rutuliška Gelsva Nëra<br />

Absent Globular Yellowish Absent<br />

Nëra<br />

Rutuliška Gelsva Geltona<br />

Absent Globular Yellowish Yellow<br />

Nëra<br />

Rutuliška Gelsva Rausva<br />

Absent Globular Yellowish Reddish<br />

Nëra<br />

Rutuliška Žalsva Geltona<br />

Absent Globular Greenish Yellow<br />

Nëra<br />

Rutuliška Žalsva Rausva<br />

Absent Globular Greenish Reddish<br />

Nëra<br />

Rutuliška Žalia Nëra<br />

Absent Globular Green Absent<br />

Nëra<br />

Kûgiðka Žalsva Nëra<br />

Absent Conic Greenish Absent<br />

Nëra<br />

Kiaušiniška Gelsva Nëra<br />

Absent Ovoid Yellowish Absent<br />

Nëra<br />

Kriaušiška Geltona Nëra<br />

Absent Pear-shaped Yellow Absent<br />

Šonai<br />

Sides<br />

-<br />

-<br />

-<br />

Šonai<br />

Sides<br />

Dëmës<br />

Spots<br />

Šonai<br />

Sides<br />

Dëmës<br />

Spots<br />

-<br />

-<br />

-<br />

-<br />

*Lapø apaèioje reti plaukeliai / Sparse pubescence on the underneath of leaves<br />

**Lapø apaèia plaukuota / Pubescence on the underneath of leaves<br />

2 pav. Obels Nr. 18 palikuoniø lapø peroksidazës izofermentø elektroforegrama<br />

Fig. 2. The progeny of wild apple tree No. 18: peroxidase ‘runs’ in polyacrylamide gels<br />

109


Aptarimas. Paþymëtina, kad obelis Nr. 18, kitais savo poþymiais visiðkai nepanaði<br />

á kultûrinës kilmës obelis (tokias kaip, pavyzdþiui, Nr. 1), iðaugino miðkinëms<br />

obelims nebûdingus kriauðiðkus vaisius (2 lentelë). Neolito epochos iðkasenose aptikti<br />

p<strong>ir</strong>mykðtës Malus sylvestris vaisiai (4 lentelë) – taip pat kriauðiðkos (arba apvalios)<br />

formos (Klichowska, 1990). Neolito (prieð 11 200 m.) <strong>ir</strong> Bronzos (prieð 4500 m.)<br />

epochø Europos gyventojai vaisius skynë iðimtinai nuo laukiniø medþiø (Hopf, 1973,<br />

Schweingruber, 1979, Zohary, Hopf, 1988, Dolatowski, 1990), kita vertus, Linnaeus’as<br />

(1753) pripaþino tik keturias Maloideae poðeimio gentis: tuo metu obelys<br />

laikytos Pyrus genties rûðimis. Gal visi ðie faktai turi „bendrà vardiklá“ Jeigu taip,<br />

tuomet lapø peroksidazës izoformà, kurios Rf = 0,67, reikëtø laikyti sk<strong>ir</strong>iamuoju<br />

Malus sylvestris Mill. poþymiu, nes tokiø izoformø nebuvo në viename kultûrinës<br />

kilmës obels Nr. 1 <strong>ir</strong> obels Nr. 22 palikuoniø spektre. Obelis Nr. 22 (1 lentelë) Këdainiø<br />

urëdijos Lanèiûnavos g<strong>ir</strong>ininkijoje aptikta miðko masyve esanèioje k<strong>ir</strong>tavietëje.<br />

Ðios obels aukðèio <strong>ir</strong> lajos ploèio santykis buvo iðsk<strong>ir</strong>tinai didelis, be to, ji augo viena<br />

tarp kitø medþiø. Jos iðsivystæ lapai plaèiai elipsiðki <strong>ir</strong> stori, iki 9,5 cm ilgio (lapkotis<br />

iki 4 cm) <strong>ir</strong> iki 6 cm ploèio, lapo kotelis priaugimo vietoje lenktas. Panaðaus dydþio<br />

lapai buvo <strong>ir</strong> lajos v<strong>ir</strong>ðutinëje, <strong>ir</strong> apatinëje dalyje. Obels pagrindinës lapø gyslos, lapkoèiai<br />

<strong>ir</strong> nokstantys vaisiai – su violetiðkai raudonu atspalviu, o metûgiai – rausvai<br />

rudi. Tai rodo, kad ði obelis galëjo turëti iðryðkëjusiø Malus sieversii (Ledeb.) M.<br />

Roem. poþymiø. M. sieversii – pagrindinis M. domestica p<strong>ir</strong>mtakas (Forte <strong>ir</strong> kt.,<br />

2001). Ðios obels, kaip <strong>ir</strong> kultûrinës kilmës obels Nr. 1, palikuoniø spektruose nebuvo<br />

lapø peroksidazës izoformø, kuriø Rf – 0,67, 0,73 <strong>ir</strong> 0,77 (3 lentelë).<br />

Šeimos<br />

Nr.<br />

Progeny<br />

No.<br />

3 lentelë. Obels ðeimø sk<strong>ir</strong>tumai pagal lapø peroksidazës izoformø<br />

elektroforetiná mobilumà Rf<br />

Table 3. Specificity of peroxidase isoforms in apple leaf extracts according to<br />

relative mobility of bands Rf<br />

Kiekis,<br />

vnt.<br />

Number<br />

Px izoformø Rf vertës/ Rf values<br />

0,<strong>25</strong> 0,43 0,49 0,55 0,60 0,63 0,65 0,67 0,73 0,77 0,84 0,90<br />

3 11 N N N<br />

18 20 N V N V<br />

13 22 N N<br />

4 20 N<br />

22 11 N N N N N N<br />

23 9 N N V N N N N<br />

1 11 N N N N N<br />

Pastaba: V – Px izoforma bûdinga visiems palikuonims, N – izoformos neturëjo në vienas ið<br />

palikuoniø, tuðti langeliai – Px izoformà turëjo kai kurie palikuonys.<br />

Note: V – isoform detected in a whole progeny, N – missing isoform, empty cells – isoform<br />

detected in the part of progeny.<br />

110


4 lentelë. Ðveicarijoje Neolito epochos iðkasenose aptiktø Malus sylvestris<br />

vaisiø forma <strong>ir</strong> vidutiniai matmenys (Klichowska, 1990)<br />

Table 4. Malus sylvestris fruit shape and mean measurements of fruits from<br />

Neolithic Switzerland<br />

Vietovë<br />

Vaisiø forma Vaisiø ilgis, mm Sëklø ilgis, mm<br />

Locality<br />

Fruit shape<br />

Fruit length<br />

Seed length<br />

Auvernier Kriaušiška / Pear-shaped 21,5–<strong>25</strong>,0 7,7–8,0<br />

Burgäschisee-Süd Kriaušiška / Pear-shaped 29,0–34,0 8,2–9,0<br />

Apvali / Globular 22,0–26,0 5,0–6,7<br />

Iðvada. 1. Vaisiø dengiamosios spalvos nebuvimas yra sk<strong>ir</strong>iamasis Malus sylvestris<br />

Mill. poþymis. Tokiu poþymiu taip pat reikëtø laikyti lapø peroksidazës izoformà,<br />

kurios Rf = 0,67.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Aucla<strong>ir</strong> J. J. Peroxydase // http://perso.wanadoo.fr/svt.ronsard/svt.ronsard/exaosite/<br />

peroxydase.htm. Somma<strong>ir</strong>e-Atelier SVT, 2004.<br />

2. Barnes M. F. Leaf peroxidase and catechol oxidase polymorphosm and the identification<br />

of commercial apple varieties // New Zealand J. of Crop and Hort. Scien. 1993.<br />

T. 21(2). P. 207–210.<br />

3. Davis B. J. Disc electrophoresis // Ann. N. Y. Acad. 1964. Vol. 121(2). P. 404–427.<br />

4. Dolatowski J. Historia uprawy sadowniczej dzikich drzew owocowych // Dzikie<br />

drzewa owocowe. Nasze drzewa leúne 18. Polska Akademia Nauk Instytut Dendrologii w<br />

Kórniku. Poznañ, 1990. P. 146–174.<br />

5. Du Preez M. G., Labuschagné I. F., Rees D. J. G. Differential Gene Expression<br />

Patterns for Red and Green Phenotypes of ‘Bon Rouge’ Pear Trees, Pyrus communis L. //<br />

Acta Hort. 2004 (ISHS). 663. P. 337–340.<br />

6. Forte A. V., Dorochov D. B., Savelyev N. I. Phylogeny of wild Malus species<br />

revealed by morphology, RAPD markers, ITS1, 5.8S rRNA, ITS2 and chloroplast gene<br />

matK sequences // Salað P., Yalta B. (Eds.). Proceedings of 9 th International Conference of<br />

Horticulture, September 3 th –6 th 2001. Fruit growing and viticulture I. Mendel University of<br />

Agriculture and Forestry, International Association of Young Scientists, Lednice, Czech<br />

Republic, 2001. P. 60–65.<br />

7. Gelvonauskis B., Ðikðnianienë J. Peroxidase and polyphenoloxidase polymorphism<br />

in apple cultivars of different scab resistance // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 37–44.<br />

8. Glemþa A. Fermentai. Vilnius, 1987. P. 168.<br />

9. Hopf M. Äpfel (Malus communis L.), Aprikose (Prunus armeniaca L.) // H. Jankuhn,<br />

K. Ranke, R. Wenskus. Reallexikon der Germanische Altertumskunde. Walter de<br />

Guyter, Berlin, 1973. P. 363–372, 375.<br />

10. Jaaska V. Electrophoretic enzyme studies in the genus Secale L. // Esti NSV Tead.<br />

Akad. Biol. 1972. T. 21. P. 61–69.<br />

111


11. Juniper B. E., Watkins R., Harris S. A. The Origin of the Apple // Proc. of the<br />

Eucarpia Symp. on Fruit Breeding and Genetics. Eds. K. R. Tobutt F. H. Alston. Acta Hort.<br />

484, ISHS. 1999. P. 27–33.<br />

12. Klichowska M. Drzewa owocowe w znaleziskach archeologicznych // Dzikie drzewa<br />

owocowe. Nasze drzewa leúne 18. Polska Akademia Nauk Instytut Dendrologii w<br />

Kórniku. Poznañ, 1990. P. 9–62.<br />

13. Linnaeus C. Species plantarum. Ed. 11. Berlin, 1753. Vol. 1. P. 475–480.<br />

14. Manganaris A. G., Alston F. H. Peroxidase isoenzyme genes in the identification<br />

of apple cultivars and Malus Species // Hort. Sci. 1993. Vol. 68(5). P. 775–781.<br />

15. Petrokas R. Growth Vigorousness of Wild Apple Trees // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2002. 21(2). P. 11–21.<br />

16. Pigliucci M. How organisms respond to env<strong>ir</strong>onmental changes: from phenotypes<br />

to molecules (and vice versa) // Tree. 1996. Vol. 11. No. 4. P. 168–173.<br />

17. Rosby Quiambao, Paul and Rojas, Nina Rosario L. Peroxidase Presentation. http://<br />

www.chem.admu.edu.ph/~nina/rosby/main.htm. March 2000, Ateneo de Manila University.<br />

18. Schweingruber F. H. Wildäpfel und prähistorische Äpfe //. Archaeo-Physik. 1979.<br />

P. 283–294.<br />

19. Tuinyla V., Lukoðevièius A., Bandaravièius A. Lietuvos pomologija: Atlasas.<br />

T. 1. V.: Mokslas, 1990. 333 p.<br />

20. Vinterhalter D. V., James D. J. The use of peroxidase polymorphism in the identification<br />

of apple // Hort. sci. 1982/1983. Vol. 18. P. <strong>25</strong>3–261.<br />

21. Wagner I. Identifikation von Wildapfel (Malus sylvestris (L.) Mill.) und Wildb<strong>ir</strong>ne<br />

(Pyrus pyraster (L.) Burgsd.). Vorausetzung zur Generhaltung des einheimischen Wildobstes<br />

// Forstarchiv. 1995. 66. P. 39–47<br />

22. Zohary D., Hopf M. Domestication of Plants in the Old World. Clarendon Press,<br />

Oxford, 1988.<br />

23. Êîíàðåâ Â. Ã. Áåëêîâûå ìàðêåðû â ñîðòîâîé èäåíòèôèêàöèè è ðåãèñòðàöèè<br />

ãåíåòè÷åñêèõ ðåñóðñîâ êóëüòóðíûõ ðàñòåíèé // Ñáîð. íàó÷. òðóä. ïî ïðèêë. áîò.,<br />

ãåíåò. è ñåëåê. Ëåíèíãðàä, 1987. Ò. 114. C. 3–14.<br />

24. Ëèõîíîñ Ô. Ä. Íåêîòîðûå äàííûå ïî ñèñòåìàòèêå âèäîâ è êóëüòóðíûõ<br />

ñîðòîâ ÿáëîíè // Áþëëåòåíü Ãëàâíîãî Áîòàíè÷åñêîãî Ñàäà, ÀÍ ÑÑÑÐ. Ìîñêâà,<br />

1963. Âûï. 51. C. 61.<br />

<strong>25</strong>. Ìàëû÷åíêî Â. Â., Ãðóøèí À. À. Èñïîëüçîâàíèå èçîïåðîêñèäàçíûõ ñïåêòðîâ<br />

äëÿ èäåíòèôèêàöèè ôîðì ñîðòà ÿáëîíè ÿíäèêîâñêîé // Áèîëîãèÿ, ÂÈÐ. 1986. Ò. 166.<br />

C. 13–16.<br />

26. Íîâèêîâ À. Ë. Îïðåäåëèòåëü äåðåâüåâ è êóñòàðíèêîâ â áåçëèñòíîì<br />

ñîñòîÿíèè. Ìèíñê: Âûñøàÿ Øêîëà, 1965. C. 217–219.<br />

27. Ñàìèãóëëèí Ò. Õ., Ìèðîøíè÷åíêî Ã. Ï., Àíòîíîâ À. Ñ., ßêîâëåâ Ñ. Ï.,<br />

ßíêîâñêàÿ Ì. Á. Ñðàâíèòåëüíîå èçó÷åíèå ðèáîñîìíûõ ïîâòîðîâ ÄÍÊ ïëîäîâûõ<br />

ðàñòåíèé (ñåìåéñòâî Rosaceae Juss.) // Áèîõèìèÿ. 1994. T. 59. Bûï. 9. C. 1349–<br />

1359.<br />

28. Ñêèáèíñêàÿ À. Ì. Èñòîðè÷åñêàÿ ãåîãðàôèÿ ðîäà Malus // Áþëëåòååíü<br />

Ãëàâíîãî Áîòàíè÷åñêîãî Ñàäà. Bûï. 61. ÀÍ ÑÑÑÐ, Ìîñêâà, 1966. C. 52–56.<br />

29. Öåòòåðìàí Í. Î. Malus praecox // Ôëîðà ÁÑÑÐ. T. 3. Ìèíñê: Àêàäåìèÿ Íàóê<br />

Áåëîðóññêîé ÑÑÐ, 1950. C. 38–39.<br />

112


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

DISTINCTIVE CHARACTERISTICS OF MALUS<br />

SYLVESTRIS MILL.<br />

R. Petrokas, P. Duchovskis<br />

Summary<br />

The over colour of wild apple fruit was studied in the context of leaf peroxidase<br />

analysis. The th<strong>ir</strong>d-year progenies of wild apple have been selected for the analysis<br />

according to the phenotypic evaluation of different female-trees at the<strong>ir</strong> natural habitats.<br />

The specificity of peroxidase polymorphism of the progenies was revealed.<br />

Peroxidase band at Rf = 0.43 was not detected at all in the progenies of the femaletrees<br />

without fruit over colour. Hypothetically, peroxidase band at Rf = 0.67 and the<br />

absence of fruit over colour are the identification characteristics of Malus sylvestris<br />

Mill. at the inside and outside of forest cover.<br />

Key words: Malus sylvestris Mill., peroxidase polymorphism, phenotype.<br />

113


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ LIGØ IR KENKËJØ PLITIMO ÁVERTINIMAS<br />

SKIRTINGOS PRAMONINËS TARÐOS RAJONUOSE<br />

Laisvûnë DUCHOVSKIENË*, Jurga SAKALAUSKAITË*,<br />

Darius KVIKLYS*, Jûratë Bronë ÐIKÐNIANIENË*,<br />

Eugenija KUPÈINSKIENË**<br />

*Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas a.valiuskaite@lsdi.lt<br />

**Lietuvos þemës ûkio universitetas, Studentø g. 11, LT-53361 Akademija,<br />

Kauno r., el. paðtas likup@takas.lt<br />

Rajonø, kuriø pramonës ámoniø tarða yra sk<strong>ir</strong>tinga, apylinkëse – prie naftos<br />

perd<strong>ir</strong>bimo ámonës AB „Maþeikiø nafta“, cemento gamyklos AB „Akmenës cementas“<br />

bei azoto tràðø gamyklos AB „Achema“ – atlikti oro terðalø koncentracijos <strong>ir</strong> ligø<br />

bei kenkëjø paþeistø ‘Paprastojo antaninio’ veislës obelø lapø tyrimai. Prie AB „Akmenës<br />

cementas“ <strong>ir</strong> AB „Achema“ SO 2<br />

<strong>ir</strong> NO 2<br />

koncentracijos buvo maþos <strong>ir</strong> prilygo<br />

Lietuvos neuþterðtø vietø koncentracijoms, tik prie AB „Maþeikiø nafta“ SO 2<br />

koncentracija<br />

buvo ðiek tiek didesnë. 2005–2006 m. daugiausia filostiktozës (Phylosticta<br />

mali Prill et Del.) paþeistø lapø buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse. 2005 m.<br />

lapø chlorozë gausiausiai pas<strong>ir</strong>eiðkë Maþeikiø <strong>ir</strong> Kauno apylinkëse (Babtuose), o kitais<br />

metais ðios ligos paþeistø lapø daugiausia aptikta Maþeikiø, N. Akmenës apylinkëse.<br />

Obelø raupliø (Venturia inaequalis (Cooke) Aderh.) aptikta tik Maþeikiø rajone<br />

<strong>ir</strong> prie N. Akmenës. 2006 m. ligø gausumas <strong>ir</strong> intensyvumas buvo kur kas maþesnis<br />

nei pernai. Ið filostiktozës paþeistø lapø buvo iðsk<strong>ir</strong>ti 4 ðios ligos sukëlëjus lydintieji<br />

grybai. 2005–2006 m. lapus grauþianèiøjø kenkëjø paþeidimø visuose uþterðtuose<br />

rajonuose buvo rasta daug, o lapsukiø paþeistø lapø daugiausia aptikta netoli AB<br />

„Maþeikiø nafta“. 2006 m. rasta fitofaginiø <strong>ir</strong> entomofaginiø erkiø bei tripsø, bet jø<br />

buvo negausu. Susumavus ligø ar kenkëjø paþeistus <strong>ir</strong> sveikus lapus tyrimo metais,<br />

paaiðkëjo, kad visuose regionuose, kur didelë tarða, kenkëjø <strong>ir</strong> ligø paþeistø obelø lapø<br />

buvo þymiai daugiau nei Kauno apylinkëse (Babtuose).<br />

Reikðminiai þodþiai: chlorozë, filostiktozë, obelø rauplës, grauþiantieji kenkëjai,<br />

lapsukiai.<br />

Ávadas. Dël þmogaus intensyvios ûkinës veiklos praëjusiame ðimtmetyje atmosferoje<br />

pagausëjo áva<strong>ir</strong>iø oro priemaiðø – NO, NO 2<br />

, SO 2<br />

, NH 3<br />

, O 3<br />

, dulkiø. Atmosferos<br />

terðalø poveikis sumedëjusiems augalams pradëtas nagrinëti t<strong>ir</strong>iant didelës koncentracijos<br />

dujø sukeltas ûmias augalø ligas – chlorozæ, lapø audiniø apm<strong>ir</strong>imà, lapø<br />

114


numetimà (Welburn, 1988). E. Kupèinskienës (2003) duomenimis, t<strong>ir</strong>tame ruoþe<br />

prie AB „Maþeikiø nafta“, AB „Akmenës cementas“, AB „Achema“ SO 2<br />

<strong>ir</strong> rûgðèiø<br />

dujiniø terðalø NO 2<br />

kiekis nuolat kinta. Mokslininkai pripaþásta, kad oro terðalai gali<br />

neigiamai veikti medþiø augimà. Kai kurie autoriai pastebi, kad atmosferos tarðos<br />

poveikis augalams daþniausiai ats<strong>ir</strong>anda tik esant labai didelëms koncentracijoms <strong>ir</strong><br />

pas<strong>ir</strong>eiðkia nedideliu mastu (Manion, Lachance, 1992). Kiti (Bruch, 1985) ilgalaikæ<br />

atmosferos tarðà laiko veiksniu, silpninanèiu medþiø gyvybingumà <strong>ir</strong> kartu maþinanèiu<br />

jø atsparumà kitiems, biotiniams <strong>ir</strong> abiotiniams, veiksniams. Atlikti tyrimai<br />

rodo, kad miesto, pramonës ámoniø ar transporto sukeliama tarða, veikianti kaip<br />

sudëtingas áva<strong>ir</strong>iø kenksmingø medþiagø miðinys, greièiau ardo augalø vaðkinius<br />

pav<strong>ir</strong>ðius, taip pagreitina jø senëjimà, palengvina oro terðalø patekimà á lapus, sudaro<br />

palankesná mikroklimatà patogeniniams grybams, parazitiniams mikroorganizmams<br />

vystytis (Barnes, Brown, 1990). Per paskutiniuosius deðimtmeèius t<strong>ir</strong>tas<br />

gamyklø rûgðèiø terðalø poveikis spygliuoèiams (Turunen, Huttunen, 1990; Krupa,<br />

2003), o sumedëjæ kultûriniai augalai dar labai maþai t<strong>ir</strong>ti (Titus, Kang, 1982). Lietuvoje,<br />

be intensyviø versliniø sodø, yra dar daug ekstensyviø, be to, veisiami<br />

ekologiniai sodai, kuriems pramonës ámoniø tarða yra labai kenksminga (Duchovskis,<br />

1998, Uselis, Kviklys, 1999). Ir praëjusiame, <strong>ir</strong> ðiame deðimtmetyje dël gamybos<br />

apimties bei technologijø kaitos Lietuvos ámonëse mûsø kraðto pramonës objektø<br />

sukeliama oro tarða labai keièiasi, todël <strong>ir</strong> retrospektyviniu, <strong>ir</strong> perspektyviniu<br />

poþiûriu bûtina nuolat stebëti atmosferos tarðà <strong>ir</strong> jos padarinius gyviems <strong>ir</strong> negyviems<br />

ekosistemos elementams (Kupèinskienë, 2000). Tarðos poveiká augalams<br />

netiesiogiai rodo <strong>ir</strong> ligø bei kenkëjø daroma þala lapijai <strong>ir</strong> vaisiams (Jenks, Ashworth,<br />

1999; Krebs, 2001).<br />

Darbo tikslas – iðt<strong>ir</strong>ti, koká poveiká sk<strong>ir</strong>tingos cheminës prigimties pramonës<br />

ámoniø tarða daro ligø <strong>ir</strong> kenkëjø, paþeidþianèiø ‘Paprastojo antaninio’ obelø (Malus<br />

domestica L.) lapus, gausumui <strong>ir</strong> intensyvumui.<br />

Tyrimo vieta, metodai <strong>ir</strong> sàlygos. Tyrimai atlikti 2005–2006 m. liepos–rugpjûèio<br />

mënesiais netoli Lietuvos pramonës ámoniø – naftos perd<strong>ir</strong>bimo AB „Maþeikiø<br />

nafta“, N. Akmenës cemento gamyklos AB „Akmenës cementas“ bei Jonavos azoto<br />

tràðø gamyklos AB „Achema“. Kauno r. (Babtai) pas<strong>ir</strong>inktas kaip kontrolinis, santykinai<br />

maþiau uþterðtas rajonas. Rûgðèiø dujiniø terðalø NO 2<br />

<strong>ir</strong> SO 2<br />

koncentracijos<br />

buvo nustatomos naudojant Didþiojoje Britanijoje pagamintus standartinius difuzinius<br />

vamzdelius. Eksponuojant terðalus, vamzdeliai tv<strong>ir</strong>tai pritv<strong>ir</strong>tinami prie mediniø kuoleliø<br />

1,6 m aukðtyje (Atkins <strong>ir</strong> kt., 1978). Pasibaigus ekspozicijos laikui, neuþkimðti<br />

vamzdeliø galai uþkemðami. Azoto dvideginiui sugerti naudojamas trietanolaminas.<br />

Absorbuojamo NO 2<br />

kiekis nustatomas spektrofotometriðkai. Analizë atlikta LÞÛU<br />

„Tempus“ laboratorijoje Ashenden <strong>ir</strong> Bell metodu (1989). Sieros dvideginio analizë<br />

atlikta Didþiosios Britanijos Gradko International Ltd. laboratorijoje joninës chromatografijos<br />

bûdu (Atkins <strong>ir</strong> kt., 1978). T<strong>ir</strong>ti ekologiðkai auginamo ‘Paprastojo antaninio’<br />

su sëkliniu poskiepiu obelø lapai. Tyrimo objektø atstumas nuo AB „Maþeikiø<br />

nafta“ buvo vienas kilometras rytø kryptimi, nuo AB „Akmenës cementas“ <strong>ir</strong> AB<br />

„Achema“ – du kilometrai ðiaurës vakarø kryptimi. Kiekvienoje vietoje tyrimams pas<strong>ir</strong>inkta<br />

po 2–3 medþius, iðanalizuota po 100 lapø <strong>ir</strong> jungtinis vaisiø bandinys. Ligø <strong>ir</strong><br />

kenkëjø padarytø paþeidimø intensyvumas apskaièiuotas pagal formulæ:<br />

115


R = Σ(n·b)/N, èia:<br />

Σ(n·b) – vienodai paþeistø lapø skaièius <strong>ir</strong> paþeidimo reikðmës sandaugø suma;<br />

N – tikrintø lapø skaièius.<br />

Mikromicetø gentinei sudëèiai nustatyti buvo imti filostiktozës paþeistø lapø fragmentai<br />

<strong>ir</strong> padëti ant PDA mitybinës terpës. Pagal morfologinius kolonijø augimo poþymius<br />

<strong>ir</strong> mikroskopu nustatytos grybø gentys <strong>ir</strong> rûðys. Mikromicetø rûðies aptikimo<br />

daþnis (proc.) apskaièiuotas pagal formulæ: A = B/C·100 (Mèð÷èíê, 1988) (èia: A –<br />

mikromicetø aptikimo daþnis; B – mëginiø skaièius, kuriuose aptikta rûðis; C – bendras<br />

mëginiø skaièius). Rûðys, kuriø aptikimo daþnis yra maþesnis kaip 30 proc.,<br />

prisk<strong>ir</strong>iamos prie atsitiktiniø, didesnis kaip 30 proc. – prie tipiniø, didesnis kaip<br />

50 proc. – prie dominuojanèiø.<br />

Duomenø statistinë analizë atlikta pagal Dunkano kriterijø.<br />

Rezultatai. Prie AB „Akmenës cementas“ bei AB „Achema“ oro terðalø koncentracijos<br />

buvo maþos <strong>ir</strong> prilygo koncentracijoms neuþterðtose Lietuvos vietose<br />

(Ðopauskienë, 1999; Perkauskas, Mikelinskiene, 1998) bei foninëms Europos koncentracijoms<br />

– 2–5 µg m -3 SO 2<br />

<strong>ir</strong> 5–10 µg m -3 NO 2<br />

(Mylona, 1996), tik prie AB<br />

„Maþeikiø nafta“ SO 2<br />

koncentracija buvo didesnë (9,4 µg m -3 ) (1 lentelë).<br />

1 lentelë. Vidutinës mënesio SO 2<br />

(µg m -3 , vidurkiai) <strong>ir</strong> NO 2<br />

(µg m -3 ) koncentracijos ore<br />

Table 1. Mean of monthly a<strong>ir</strong> SO 2<br />

(µg m -3 , averages) and NO 2<br />

(µg m -3 ) concentrations<br />

Oro<br />

priemaišos<br />

Impurity of a<strong>ir</strong><br />

SO 2<br />

NO 2<br />

Tyrimo<br />

metai<br />

Year of<br />

investigation<br />

2005<br />

2005<br />

AB „Maþeikiø<br />

nafta“ – 2 km<br />

9,4<br />

6,0<br />

Atstumas nuo / Distance from<br />

„Akmenës<br />

cementas“ –<br />

3,5 km<br />

2,0<br />

2,6<br />

„Achema“ –<br />

2,5 km<br />

1,0<br />

5,0<br />

2005 m. daugiausia filostiktozës (Phylosticta mali Prill et Del.) paþeistø lapø<br />

buvo Jonavos (100 proc.) rajone <strong>ir</strong> N. Akmenës apylinkëse. Lapø chlorozë labiausiai<br />

pas<strong>ir</strong>eiðkë Maþeikiø <strong>ir</strong> Babtø apylinkëse. Maþiausiai chlorozës aptikta Jonavos azoto<br />

tràðø gamyklos apylinkëse. Obelø raupliø aptikta tik Maþeikiø rajone <strong>ir</strong> prie N. Akmenës<br />

(2 lentelë). Panaðios tendencijos iðliko <strong>ir</strong> 2006 m. Filostiktozë labiausiai pas<strong>ir</strong>eiðkë<br />

<strong>ir</strong> jos intensyvumas buvo didþiausias Jonavos (39 proc.) rajone <strong>ir</strong> N. Akmenës<br />

(32 proc.) apylinkëse (2 lentelë). Chlorozës paþeistø lapø daugiausia aptikta Maþeikiø,<br />

N. Akmenës apylinkëse, Babtø apylinkëse chlorozë visai nepas<strong>ir</strong>eiðkë, sk<strong>ir</strong>tingai<br />

nei 2005 m. Rauplëmis serganèiø lapø daugiausia aptikta netoli Maþeikiø naftos perd<strong>ir</strong>bimo<br />

ámonës. Ligø gausumas <strong>ir</strong> intensyvumas buvo kur kas maþesnis nei 2005<br />

metais, nes liepos mënuo buvo labai karðtas <strong>ir</strong> sausas, dël to ligos maþiau plito.<br />

116


2 lentelë. Obelø ligø paplitimas <strong>ir</strong> intensyvumas Lietuvos pramonës rajonuose<br />

2005–2006 m.<br />

Table 2. Distribution and intensity of apple diseases at industry districts in Lithuania in<br />

2005 and 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Paþeista lapø<br />

Damaged leaves, %<br />

filostiktozë chlorozë<br />

leaf spot chlorosis<br />

40 b<br />

95 a<br />

100 a<br />

50 b<br />

21 c<br />

32 b<br />

39 a<br />

<strong>25</strong> c<br />

36 a<br />

28 a<br />

19 b<br />

36 a<br />

19 a<br />

21 a<br />

9 b<br />

0 c<br />

Paþeista vaisiø<br />

Damaged fruits, %<br />

obelø rauplës<br />

apple scab<br />

2005 m.<br />

20 a<br />

10 b<br />

0<br />

0<br />

2006 m.<br />

2 a<br />

1 b<br />

0 c<br />

0 c<br />

filostiktozë<br />

leaf spot<br />

0,8 b<br />

1,91 a<br />

2,23 a<br />

0,69 b<br />

0,22 b<br />

0,68 a<br />

0,64 a<br />

0,26 b<br />

Ligø intensyvumas balais<br />

Disease intensity, points<br />

chlorozë<br />

chlorosis<br />

0,56 a<br />

0,46 b<br />

0,29 c<br />

0,45 b<br />

0,39 a<br />

0,36 a<br />

0,19 b<br />

0 c<br />

obelø rauplës<br />

apple scab<br />

0,2 a<br />

0,1 a<br />

0<br />

0<br />

0,02 a<br />

0,01 ab<br />

0 b<br />

0 b<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different<br />

according to Duncan’s multiple range test (P = 0.05)<br />

Tyrimai in vitro parodë, kad daugumà aptiktø mikromicetø galima prisk<strong>ir</strong>ti prie<br />

atsitiktiniø rûðiø, nes jø aptikimo daþnis ne didesnis kaip 30 proc. (3 lentelë). Iðsiskyrë<br />

tik Jonavos r., kur ið paþeistø obelø lapø buvo iðsk<strong>ir</strong>ti mikromicetai, priklausantys<br />

Alternaria genèiai, <strong>ir</strong> pagal aptikimo daþná (50 proc.) juos galima prisk<strong>ir</strong>ti prie tipiniø<br />

rûðiø.<br />

3 lentelë. Filostiktozæ lydinèiøjø mikromicetø aptikimo daþnis (%) in vitro<br />

Table 3. Occurrence frequency of leaf spot attendant micropipetes (%) in vitro<br />

Mikromicetai<br />

Micropipetes<br />

Mikromicetø aptikimo daþnis<br />

Occurrence frequency of micropipetes<br />

Maþeikiø r. N. Akmenës r. Jonavos r. Kauno r.<br />

Alternaria spp. 0 20 50 0<br />

Cladosporium spp. 30 30 30 20<br />

Penicillium spp. 10 0 0 0<br />

Trichothecium spp. 0 0 10 0<br />

Mycelia sterilia 0 0 20 0<br />

2005 m. lapsukiø paþeistø lapø daugiausia aptikta netoli AB „Maþeikiø nafta“.<br />

Lapus grauþianèiø kenkëjø padarytø paþeidimø daug rasta visuose uþterðtuose rajonuose<br />

(4 lentelë). 2006 m. gauti panaðûs lapsukiø <strong>ir</strong> lapgrauþiø padarytø paþeidimø<br />

117


apskaitos rezultatai (5 lentelë). 2006 m. rasta fitofaginiø (Panonychus ulmi Koch.,<br />

Aculus schlechtendali Nal.) <strong>ir</strong> entomofaginiø erkiø bei tripsø, bet jø buvo negausu<br />

(6 lentelë). 2005 m. susumavus ligø <strong>ir</strong> kenkëjø paþeistus lapus, paaiðkëjo, kad netoli<br />

pramoninës tarðos centrø sveikø lapø neaptikta. 2006 m. tarðos zonose sveikø lapø<br />

buvo nuo 37 iki 43 proc. (7 lentelë).<br />

4 lentelë. Obelø kenkëjø paplitimas <strong>ir</strong> jø daromø paþeidimø intensyvumas Lietuvos<br />

pramonës rajonuose 2005 m.<br />

Table 4. Distribution and intensity of damage of apple pests at industry districts in<br />

Lithuania in 2005<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

lapsukiai<br />

leaf rulers<br />

38 a<br />

6 b<br />

7 b<br />

4 b<br />

Pažeista lapø<br />

Damaged leaves, %<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

41 b<br />

50 a<br />

41 b<br />

13 c<br />

Pažeidimo intensyvumas (R)<br />

Intensity of pest damage (R)<br />

1,78 a<br />

1,3 b<br />

1,11 b<br />

0,32 c<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

5 lentelë. Obelø kenkëjø paplitimas <strong>ir</strong> jø daromø paþeidimø intensyvumas<br />

Lietuvos pramonës rajonuose 2006 m.<br />

Table 5. Distribution and intensity of damage of apple pests at industry districts in<br />

Lithuania in 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

lapsukiai<br />

leaf rulers<br />

29 a<br />

16 b<br />

8 c<br />

2 d<br />

Paþeista lapø<br />

Damaged leaves, %<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

18 a<br />

17 a<br />

16 a<br />

3 b<br />

Pažeidimo intensyvumas (R)<br />

Intensity of pest damage (R)<br />

lapsukiai<br />

leaf rulers<br />

0,36 a<br />

0,28 ab<br />

0,19 b<br />

0,02 c<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

0,45 a<br />

0,31 b<br />

0,26 b<br />

0,03 c<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

118


6 lentelë. Erkiø <strong>ir</strong> tripsø paplitimas ant obelø lapø sk<strong>ir</strong>tinguose<br />

Lietuvos pramonës rajonuose 2006 m.<br />

Table 6. Distribution of mites and thrips on apple leaves at different industry districts in<br />

Lithuania in 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Kenkëjø ant lapo, vnt.<br />

fitofaginiø erkiø<br />

phytophagic mites<br />

0,24 b<br />

0,12 b<br />

0 c<br />

0,6 a<br />

tripsø<br />

by thrips<br />

0 b<br />

0 b<br />

0,16 a<br />

0 b<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

7 lentelë. Sveikø <strong>ir</strong> paþeistø lapø santykis Lietuvos pramonës rajonuose<br />

2005–2006 m.<br />

Table 7. Proportion between healthy and harmful organisms damaged leaves at industry<br />

districts in Lithuania in 2005–2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

sveikø lapø<br />

healthy leaves, %<br />

0 b<br />

0 b<br />

0 b<br />

20 a<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

Aptarimas. Mûsø tyrimo duomenimis, daugiausia filostiktozës (Phylosticta mali<br />

Prill et Del.) paþeistø lapø buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse. Kupèinskienës<br />

duomenimis (2003), prie visø mûsø t<strong>ir</strong>tø gamyklø ið esmës padidëja spygliø pav<strong>ir</strong>ðiaus<br />

erozija. Ant paþeistø asimiliaciniø organø labiau vystosi ligos <strong>ir</strong> plinta kenkëjai<br />

(Turunen, Huttunen, 1990; Jenks, Ashworth, 1999). Filostiktozës (Phyllosticta mali<br />

E. et E.) epifitotijos Lietuvoje pasikartoja kas keleri metai (Gelvonauskis, Gelvonauskienë,<br />

2003). Todël galima teigti, kad 2005 m. N. Akmenës <strong>ir</strong> Jonavos apylinkëse<br />

filostiktozë pas<strong>ir</strong>eiðkë kaip epifitotijos metais, nes paþeistø lapø buvo 95–100 proc.<br />

Filostiktozë galëjo sparèiau plisti dël azoto junginiø (NO 2<br />

) gausos Jonavos apylinkëse.<br />

Obelø rauplës (Venturia inaequalis (Cooke) Aderh.) – labiausiai paplitusi obelø<br />

liga Lietuvoje (Raudonis, Valiuðkaitë, 2003), bet ‘Paprastasis antaninis’ yra poligenið-<br />

119<br />

Rasta entomofaginiø erkiø<br />

ant lapø<br />

Entomophagic mites on leaves, %<br />

0 b<br />

0 b<br />

0,36 a<br />

0 b<br />

2005 m. 2006 m.<br />

paþeistø lapø<br />

damaged leaves, %<br />

100 a<br />

100 a<br />

100 a<br />

80 b<br />

sveikø lapø<br />

healhty leaves, %<br />

36 c<br />

39 bc<br />

43 b<br />

74 a<br />

paþeistø lapø<br />

damaged leaves,<br />

%<br />

64 a<br />

61 ab<br />

57 b<br />

26 c


kai atsparus rauplëms (Gelvonauskienë, Stanys, 2002). Fiss <strong>ir</strong> kiti (2000) nustatë,<br />

kad izoliatai: Aureobasidium, Botrytis, Cladosporium, Epicoccum <strong>ir</strong> Fusarium, daugiau<br />

nei 80 proc. slopina V. inaequalis micelio augimà. T<strong>ir</strong>iant mikromicetø ant obelø<br />

lapø sudëtá tuose rajonuose, kur didelë pramonës objektø tarða, raupliø sukëlëjo nebuvo<br />

aptikta, nes daugelyje mëginiø buvo rasta Cladosporium. Sutton <strong>ir</strong> kt. (2000)<br />

nustatë, kad didelis azoto kiekis d<strong>ir</strong>voþemyje raupliø askosporø kieká sumaþina nuo<br />

50 iki 60 proc. Todël galima daryti prielaidà, kad azoto junginiai ant lapø taip pat<br />

sudaro nepalankias sàlygas raupliø askosporoms plisti. Jonavos azoto tràðø gamyklos<br />

apylinkëse obelys nes<strong>ir</strong>go rauplëmis. Tai rodo, kad amoniakas neskatino obelø<br />

raupliø vystymosi, o dulkës – skatino. Brandt <strong>ir</strong> Rhoades (1972) nustatë, kad poskiepiø,<br />

krûmø, sodinukø, medþiø, auganèiø tokioje aplinkoje, kurioje yra daug cemento<br />

dulkiø, struktûra labai keièiasi. Cemento dulkës gali sukelti augalø chlorozæ <strong>ir</strong> augalo<br />

audiniø m<strong>ir</strong>tá. Taèiau maisto elementø trûkumas, perteklius ar nesugebëjimas jø pasiimti<br />

ið d<strong>ir</strong>voþemio taip pat gali sukelti chlorozæ (Pestana <strong>ir</strong> kt., 2003). Mûsø tyrimø<br />

duomenimis, 2005 m. chlorozë ant obelø lapø gausiausiai pas<strong>ir</strong>eiðkë prie AB „Maþeikiø<br />

nafta“, o 2006 m. – prie N. Akmenës cemento gamyklos AB „Akmenës cementas“<br />

<strong>ir</strong> AB „Maþeikiø nafta“. Galima daryti prielaidà, kad prie AB „Akmenës cementas“<br />

lapø chlorozës plitimui didesnës átakos galëjo turëti cemento dulkiø tarða (Kupèinskienë,<br />

2000), o prie AB „Maþeikiø nafta“ – <strong>ir</strong> d<strong>ir</strong>voþemis, <strong>ir</strong> tarða.<br />

Intensyviuose soduose lapsukiø <strong>ir</strong> kitø lapø kenkëjø padaryti paþeidimai retai<br />

v<strong>ir</strong>ðija þalingumo ribà (Raudonis, 2001, 2003), taèiau jei sodai auginami ekstensyviai<br />

<strong>ir</strong> didelë tarða, þala gali bûti didesnë. Mûsø tyrimai parodë, kad tik naftos perd<strong>ir</strong>bimo<br />

pramonës sukeliama tarða ypaè skatina plisti lapsukius. Prie AB „Maþeikiø nafta“<br />

buvo rasta spygliuoèiø, kuriø spygliai buvo labiau paveikti erozijos (Kupèinskienë,<br />

Huttunen, 2005). Galbût paþeisti asimiliaciniai organai <strong>ir</strong> sudarë palankias sàlygas<br />

lapsukiams plisti. Mûsø tyrimu nustatyta, kad visø rûðiø pramonës ámoniø tarða ið<br />

esmës skatina plisti lapus grauþianèius kenkëjus. Fitofaginiø erkiø Lietuvos obelø<br />

soduose negausu (Raudonis, 2001), todël galima daryti prielaidà, kad pramonës ámoniø<br />

tarða fitofaginëms erkëms átakos neturëjo. Svarbu <strong>ir</strong> tai, kad tarða nesutrukdë<br />

ats<strong>ir</strong>asti <strong>ir</strong> natûraliems erkiø prieðams – entomofaginëms erkëms. Susumavus ligø ar<br />

kenkëjø paþeistus <strong>ir</strong> sveikus lapus, paaiðkëjo, kad visuose regionuose, kur didelë<br />

tarða, paþeistø obelø lapø yra þymiai daugiau nei Kauno apylinkëse.<br />

Iðvados. 1. Daugiausia filostiktozës (Phylosticta mali Prill et Del.) paþeistø lapø<br />

buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse.<br />

2. Lapø chlorozë gausiausiai pas<strong>ir</strong>eiðkë netoli AB „Maþeikiø nafta“.<br />

3. Obelø raupliø (Venturia inaequalis (Cooke) Aderh.) aptikta tik Maþeikiø <strong>ir</strong><br />

N. Akmenës apylinkëse.<br />

4. Lapus grauþianèiø kenkëjø padarytø paþeidimø daug rasta visuose t<strong>ir</strong>tuose<br />

rajonuose, o lapsukiø paþeistø lapø daugiausia aptikta netoli AB „Maþeikiø nafta“.<br />

Pastaba. Ðis darbas yra FIBISTRESS projekto, kurá remia Lietuvos mokslo <strong>ir</strong><br />

studijø fondas, sudedamoji dalis.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

120


Literatûra<br />

1. Ashenden T. W., Bell S. A. Rural concentrations of Nitrogen Dioxide pollution<br />

throughout Wales // Env<strong>ir</strong>onmental Pollution. 1989. 58. P. 179–193.<br />

2. Atkins D. H. F., Healy C., Tarrant J. B. The use of simple diffusion tubes for the<br />

measurement of nitrogen dioxide levels in homes using gas and electricity for cooking.<br />

1978. AERE-R9184. HMSO, London.<br />

3. Barnes J. D., Brown K. A. The influence of ozone acid mist on the amount and<br />

wettability of the surface waxes in Norway spruce (Picea abies (L.) Karst.) // New Phytologist.<br />

1990. 114. P. 531–535.<br />

4. Brandt C. J., Rhoades R. W. Effects of limestone dust accumulation on composition<br />

of a forest community // Env<strong>ir</strong>onmental Pollution. 1972. 3. P. 217–2<strong>25</strong>.<br />

5. Bruch P. J. Boreal mountain ecosystem decline in the southern Appalachain Mountains:<br />

potential role of anthropogenic pollution. A<strong>ir</strong> pollution effects on forest ecosystems.<br />

St. Paul, Minesota, 1985. P. 78–85.<br />

6. Duchovskis P. Problems of resistance to abiotic factors of horticultural plants in<br />

Lithuania and the<strong>ir</strong> solution // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1998. 17(3). P. 3–12.<br />

7. Fiss M., Kucheryava n., Schoenherr J., Kollar A., Arnold G., Auling G. Isolation<br />

and characterization of epiphytic fungi from the phyllosphere of apple as potential biocontrol<br />

agents against apple scab (Venturia inaequalis) // Zeitschrift Fuer Pflanzenkrankheiten<br />

und Pflanzenschutz. 2000. 107(1). P. 1–11.<br />

8. Gelvanauskienë D., Stanys V. Rauplëms atspariø obelø sëjinukø atrankos metodø<br />

palyginimas // Þemës ûkio mokslai. 2002. 4. P. 23–27.<br />

9. Gelvonauskis B., Gelvanauskienë D. Inheritance of resistance to powder mildew<br />

and apple blotch in progenies of scab-resistant apple cultivars // Biologija. 2003. 1.<br />

P. 73–76.<br />

10. Jenks M. A., Ashworth E. N. Plant epicuticular waxes: function, production, and<br />

genetics // Horticultural Reviews. 1999. 23. P. 1–68.<br />

11. Krebs Ch. J. Ekologia. Warszava, 2001. 735 p.<br />

12. Krupa S. V. Effects of atmospheric ammonia (NH 3<br />

) on terrestrial vegetation: a<br />

review // Env<strong>ir</strong>onmental Pollution. 2003. 124(2). P. 179–221.<br />

13. Kupcinskienë E., Huttunen S. Long-term evaluation of the needle surface wax<br />

condition of Pinus sylvestris around different industries in Lithuania // Env<strong>ir</strong>onmental<br />

Pollution. 2005. 137(3). P. 610–618.<br />

14. Kupèinskienë E. Latentiniai paprastosios puðies (Pinus sylvestris L.) <strong>ir</strong> kitø augalø<br />

pakitimai lokalios tarðos aplinkoje: hab. darbas. Kaunas, 2003. 102 p.<br />

15. Kupèinskienë E. Needle chemistry of Pinus sylvestris growing in the vicinity of a<br />

cement factory // Biologija. 2000. 2 (Suppl.). P. 299–302.<br />

16. Manion P. D., Lachance D. Forest decline concepts: an overview // Forest decline<br />

concepts, St. Paul, Minesota, USA, 1992. P. 89–102.<br />

17. Mylona S. Sulphur dioxide emissions in Europe in 1880-1991 and the<strong>ir</strong> effect on<br />

sulphur concentrations and depositions // 1996. Tellus, Ser. B. Chemical and Physical<br />

Meteorology. 48. P. 662–689.<br />

18. Perkauskas D., Mikelinskiene A. Evaluation of SO 2<br />

and NO 2<br />

concentration levels<br />

in Vilnius (Lithuania) using passive diffusion samplers // Env<strong>ir</strong>onmental Pollution. 1998.<br />

102 S1 P. 249–<strong>25</strong>2.<br />

19. Pestana M., Varennes de A., Faria E. A. Diagnosis and correction of <strong>ir</strong>on chlorosis<br />

in fruit trees a review // Food, Agriculture and Env<strong>ir</strong>onment. 2003. 1. P. 46–51.<br />

121


20. Raudonis L. Harmful insect fauna in apple orchards and systems of control<br />

means to reduce its harm // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1). P. 55–68.<br />

21. Raudonis L. Integrated pest management in fruit orchards in Lithuania // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtat, 2003. 22(3). P. 145–154.<br />

22. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

22(3). P. 3–15.<br />

23. Sutton D. K., MacHardy W. E., Lord W. G. Effects of shredding or treating apple<br />

leaf litter with urea on ascospores does of Venturia inaequalis and disease buildup //<br />

Plant disease. 2000. 84 (12). P. 1319–1326.<br />

24. Ðopauskienë D. A<strong>ir</strong> pollution and deposition // Ozolinèius R (ed.). Monitoring of<br />

forest ecosystems in Lithuania. Kaunas: Lututë, 1999. P. 181–182.<br />

<strong>25</strong>. Titus J. S., Kang S. Nitrogen metabolism, translocation and recycling in apple<br />

trees // Horticultural Reviews. 1982. 4. P. 204–246.<br />

26. Turunen M., Huttunen S. A review of the response of epicuticular wax of conifer<br />

needles to a<strong>ir</strong> pollution // Env<strong>ir</strong>onmental Quality. 1990. 19. P. 35–45.<br />

27. Uselis N., Kviklys D. Lietuvos sodininkystë ðiandien <strong>ir</strong> jos perspektyvos // Ðiuolaikinës<br />

sodininkystës pasiekimai <strong>ir</strong> plëtros kryptys. Babtai, 1999. P. 7–10.<br />

28. Welburn A. R. A<strong>ir</strong> pollution and Acid Rain: the Biological Impact // Longman<br />

Scientific and Technical, London. 1988.<br />

29. Mèð÷èíê Ò. Ã. Ïî÷âåííàÿ ìèêîëîãèÿ. Ìîñêâà, 1988. 279 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EVALUATION OF APPLE DISEASES AND PEST SPREAD<br />

IN DIFFERENT REGIONS OF INDUSTRIAL EMISSION<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys, J. B. Ðikðnianienë, E. Kupèinskienë<br />

Summary<br />

Leaves of apple tree cv. ‘Antonowka’ (Malus domestica L.) growing near the<br />

different industrial centers – oil refinery “Maþeikiø nafta”, cement factory “Akmenës<br />

cementas” and nitrogen fertilizer factory “Achema” – were examined for diseases<br />

and pests damage. Near AB “Akmenës cementas” and AB “Achema” SO 2<br />

<strong>ir</strong> NO 2<br />

concentrations were small and similar to these in unpolluted places of Lithuania, only<br />

near AB “Maþeikiø nafta” SO 2<br />

concentration was higher. The greatest number of<br />

damaged leaves by leaf spot (Phylosticta mali Prill et Del.) was found in Jonava and<br />

Naujoji Akmenë districts in 2005–2006. Apple scab (Venturia inaequalis (Cooke)<br />

Aderh.) was found in Maþeikiai and N. Akmenë districts only. Leaf chlorosis was<br />

more abundant in Maþeikiai and Kaunas surroundings in 2005, but in the next year<br />

the most damaged leaves of this disease was found in Maþeikiai and Naujoji Akmene<br />

districts. The abundance and intensity of diseases was less in 2006, as compared<br />

with 2005. From leaves damaged by leaf spot 4 species of attendant fungus were<br />

distinguished. The damage of leaf chewing pests was found near the all sources of<br />

122


industrial emissions centers, while the most leaf rulers damaged leaves were near<br />

“Maþeikiø nafta” in 2005–2006. Phytophagic and entomophagic mites and thrips<br />

were found in 2006, but the<strong>ir</strong> populations were not abundant. To summarize the data<br />

of two years, we can assume, that apple-tree leaves under elevated industrial emission<br />

are more damaged by pest and diseases as compared to Kaunas surroundings<br />

(control site).<br />

Key words: apple scab, chlorosis, leaf spot, leaf chewing pests, leaf rulers.<br />

123


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

DRËKINIMO ÁTAKA ‘SENGA SENGANA’ BRAÐKËMS<br />

Laima TAPARAUSKIENË<br />

Lietuvos þemës ûkio universitetas, Universiteto g. 10, LT-53361, Akademija,<br />

Kauno r., el. paðtas ltlaima@hotmail.com<br />

2001–2004 m. Kauno rajone buvo atlikti eksperimentiniai drëkinimo reþimo tyrimai.<br />

T<strong>ir</strong>ta drëkinimo átaka ‘Senga Sengana’ veislës braðkiø ûkiniams <strong>ir</strong> biologiniams<br />

rodikliams. Nustatyta, kad drëkinimas turëjo didelës átakos suminio derliaus priedui,<br />

vidutinei uogos masei, dauginimosi rodikliams bei lapo asimiliacinio pav<strong>ir</strong>ðiaus plotui,<br />

todël Lietuvos klimato sàlygomis braðkes drëkinti yra tikslinga. 2001–2004 m. vidutinis<br />

derlius nedrëkinant buvo 7,8 t/ha, o drëkinant – 8 t/ha (70–100 proc. LDI) <strong>ir</strong><br />

10,8 t/ha (80–100 proc. LDI). Vidutinë vienos uogos masë nedrëkinant buvo 7,3 g,<br />

palaikant d<strong>ir</strong>voþemio drëgmæ nuo 70 iki 100 proc. LDI– 7,9 g, o nuo 80 iki 100 proc.<br />

LDI – 8,2 g. Optimalios d<strong>ir</strong>voþemio drëgmës sàlygomis (80–100 proc. LDI) vieno<br />

braðkiø kero uþaugintø skroteliø skaièius buvo 2,5 karto didesnis nei nedrëkinant.<br />

Reikðminiai þodþiai: d<strong>ir</strong>voþemio drëgmë, derlius, uogø dydis.<br />

Ávadas. Braðkës yra vienos sausrai jautriausiø sodo augalø <strong>ir</strong> iðsisk<strong>ir</strong>ia padidintu<br />

drëkinimo poreikiu, nes turi negilià ðaknø sistemà <strong>ir</strong> didelë dalis vandens sunaudojama<br />

suminiam iðgaravimui (Àôàíàñèê <strong>ir</strong> kt., 2000). Braðkiø veislës savybës, sodinamosios<br />

medþiagos kokybë, d<strong>ir</strong>voþemis, augimo vieta, tinkama agrotechnika, áskaitant<br />

drëkinimà, ûkiø specializacija <strong>ir</strong> koncentracija braðkynø derlingumui padidinti<br />

turi labai svarbià reikðmæ (Strabioli, 1988; Àôàíàñèê <strong>ir</strong> kt., 2000).<br />

Teigiamà drëkinimo poveiká braðkiø augimui, jø ûsø vystymuisi <strong>ir</strong> derliaus dydþiui<br />

Naumanno apraðë jau 1961 m. Tai patv<strong>ir</strong>tinta <strong>ir</strong> vëliau uþsienio ðalyse atliktais<br />

moksliniais tyrimais. Braðkiø drëkinimo reþimo tyrimai buvo atliekami <strong>ir</strong> kaimyninëse<br />

ðalyse. Rusijoje nustatyta, kad dël drëgmës trûkumo þydëjimo <strong>ir</strong> uogø mezgimo laikotarpiu<br />

labai sumaþëja uogø dydis <strong>ir</strong> bendras derlius (Ðû÷êîâ è Îëåôèð, 1972).<br />

Lacgalvis (2003) teigia, kad, norint gauti didþiausià <strong>ir</strong> geros kokybës derliø, ðiauriau<br />

esanèioje kaimyninëje Latvijoje laistyti braðkes bûtina. Lenkijoje, esant vidutinëms<br />

(pagal daugiametes normas) oro sàlygoms, drëkinimas gali padidinti braðkiø derliø<br />

30–50 proc. (Rebandel, 1974). 1992–1995 m. atlikæ tyrimus, Rolbiecki <strong>ir</strong> Rzekanowski<br />

(1997) teigë, kad braðkiø auginimas bus naðus tik árengus drëkinimo sistemà.<br />

Ðiaurinëse ðalyse – Norvegijoje, Ðvedijoje <strong>ir</strong> Suomijoje braðkës taip pat drëkinamos.<br />

Norvegijoje, Kondsrud (1978) duomenimis, lietinamø braðkiø derlius buvo didesnis<br />

32 proc., o taikant laðeliná drëkinimà – 23 proc. nei nedrëkinamø. Suomijoje, kaip <strong>ir</strong><br />

124


Lietuvoje, krituliø kiekis v<strong>ir</strong>ðija suminio iðgaravimo dydá, bet vegetacijos laikotarpiai<br />

taip pat bûna sausringi, tuomet braðkes rekomenduojama drëkinti. Kinnanen <strong>ir</strong><br />

Säkö (1979) tyrimais Suomijoje nustatë, kad lietinamø braðkiø uogos bûna daug<br />

stambesnës.<br />

Lietuvoje plaèiausiai buvo t<strong>ir</strong>iama áva<strong>ir</strong>iø veisliø bei agrotechniniø priemoniø átaka<br />

braðkiø augimui, vystymuisi, derliaus dydþiui, atsparumas ligoms bei kenkëjams,<br />

taèiau braðkiø drëkinimas Lietuvoje iki ðiol t<strong>ir</strong>tas nebuvo. Nors Lietuvos spaudoje<br />

galima rasti informacijos apie braðkëms optimalø d<strong>ir</strong>voþemio drëgmës reþimà, taèiau<br />

tai tik rekomendacijos, pagrástos uþsienio ðalyse atliktais tyrimais.<br />

Lietuva yra periodinës drëgmës pertekliaus zonoje, todël p<strong>ir</strong>miausia yra aktualus<br />

þemiø sausinimas, taèiau moksliniais tyrimais nustatyta, kad vasaros laikotarpiais<br />

drëkinimas yra bûtinas, nes vidutiniðkai kas ketveri metai Lietuvoje bûna sausra, be<br />

to, augalams drëgmës trûksta ne tik sausringais <strong>ir</strong> vidutinio drëgnumo metais, bet <strong>ir</strong><br />

labiau drëgnais metais (D<strong>ir</strong>së <strong>ir</strong> kt. 1984; D<strong>ir</strong>së, 2001).<br />

Darbo tikslas – ávertinti drëkinimo tikslingumà Lietuvos klimato sàlygomis <strong>ir</strong><br />

nustatyti drëkinimo átakà braðkiø ûkiniams <strong>ir</strong> biologiniams rodikliams.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø objektas. 2001–2004 m. lauko eksperimentiniais<br />

tyrimais buvo t<strong>ir</strong>ta drëkinimo átaka ‘Senga Sengana’ veislës braðkiø derlingumui,<br />

vienos uogos masei, dauginimosi savybëms bei lapo asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotui.<br />

Tyrimø schema. Apskaitinio (derliui apskaièiuoti) bandymø laukelio plotas – 20 m 2<br />

(Ìàðêîâ, 1985). Sodinimo schema – eilëmis, 0,8 × 0,3 m (daigø skaièius 1 ha –<br />

41 666 vnt.). Visi bandymø laukeliai iðdëstyti vienas greta kito viena eile, tarp laukeliø<br />

paliekat sk<strong>ir</strong>iamàsias juostas, kad bûtø iðvengta átakos. P<strong>ir</strong>maisiais <strong>ir</strong> treèiaisiais drëkinimo<br />

reþimo tyrimø metais bandymø laukeliuose augo <strong>ir</strong> derëjo antrøjø <strong>ir</strong> treèiøjø<br />

augimo metø braðkës, o ketv<strong>ir</strong>taisiais tyrimø metais (2004 m.) – p<strong>ir</strong>møjø augimo<br />

metø braðkës (sodinta 2003 m. rugpjûèio 6 d.). Visos agrotechninës priemonës pas<strong>ir</strong>inktos<br />

atsiþvelgiant á braðkiø auginimo technologijas (Uselis <strong>ir</strong> Raðinskienë, 2000;<br />

Intensyvios..., 2002; Darrow, 1966). D<strong>ir</strong>vos cheminiø savybiø analizë atlikta Lietuvos<br />

þemd<strong>ir</strong>bystës instituto Agrocheminiø tyrimø centre. D<strong>ir</strong>voþemis vidutinio humusingumo<br />

– 2,34–2,89 proc. (t<strong>ir</strong>ta Hereus aparatu), pH kinta nuo 6,9 iki 7,1, bendras<br />

azoto kiekis – 0,18–0,22 proc. (nustatytas Kjeldalio metodu), P 2<br />

O 5<br />

– 194–280 mg kg -1 ,<br />

K 2<br />

O – 267–272 mg kg -1 . Prieð áveisiant braðkynà, buvo áterpta 60 t ha -1 mëðlo. Kitais<br />

augimo metais braðkës træðtos bechlorëmis kompleksinëmis tràðomis Kem<strong>ir</strong>a Cropcare<br />

10-10-20 (NPK): pavasará <strong>ir</strong> po derliaus nuëmimo po 30 g m -2 . Piktþolës naikintos<br />

ravint bei purenant tarpueilius. Nuo kekerinio puvinio (Botrytis cinerea) augalai<br />

purkðti 0,2% eupareno skiediniu, p<strong>ir</strong>mà kartà þydint 10 proc. þiedø, antrà<br />

kartà – 50 proc. þiedø.<br />

Tyrimø metodika. Drëkinimo reþimo tyrimø lauko bandymams buvo pas<strong>ir</strong>inkta<br />

literatûroje (D<strong>ir</strong>së <strong>ir</strong> kt., 1984) rekomenduota schema: liejimo norma vegetacijos laikotarpiu<br />

kintanti (atsiþvelgiant á ðaknø vystymosi dinamikà) <strong>ir</strong> visiems bandymo variantams<br />

vienoda. Sodinant braðkes, liejimo norma lygi 10 mm, po vieno mënesio –<br />

15 mm, dar po mënesio – 20 mm. Tokio dydþio (20 mm) liejimo norma taikyta visà<br />

tolesná braðkiø auginimo laikotarpá. Pagal d<strong>ir</strong>voþemio augalinio sluoksnio drëgmæ nustatyti<br />

du liejimo variantai. P<strong>ir</strong>mojo varianto laukeliai buvo liejami pagal teorines for-<br />

1<strong>25</strong>


mules (Êîñòåêîâ, 1960) apskaièiuotu reþimu, kad prieð laistant drëgmë aktyviajame<br />

d<strong>ir</strong>voþemio sluoksnyje (0–30 cm) bûtø artima 70 proc. LDI, antrojo – 80 proc. LDI.<br />

Drëkinimo veiksmingumui nustatyti buvo atlikti kontrolinio varianto – be papildomo<br />

drëkinimo, natûraliomis sàlygomis – tyrimai. Atlikdami drëkinimo reþimo tyrimus,<br />

kiti tyrëjai pas<strong>ir</strong>enka variantà, kai liejama d<strong>ir</strong>voþemio drëgmei sumaþëjus iki 60 proc.<br />

LDI. Atliekant ðiuos bandymus, buvo atsiþvelgta á rekomendacijas (Ìàðêîâ, 1985;<br />

Ãîë÷åíêî <strong>ir</strong> kt., 1985) <strong>ir</strong> prieð liejant braðkes pas<strong>ir</strong>inkta optimali 70 proc. LDI drëgmë.<br />

Maksimali leidþiama d<strong>ir</strong>voþemio drëgmës riba prilyginta v<strong>ir</strong>ðutinei optimalios drëgmës<br />

ribai – LDI. D<strong>ir</strong>voþemio drëgmës atsargos buvo nustatytos termostatiniu metodu.<br />

D<strong>ir</strong>voþemio ëminiai imti Izmailovskio tipo gràþtu kas 10 cm iki 60 cm gylio. Visi<br />

lauko bandymai atlikti trimis pakartojimais. Tyrimø laikotarpiu braðkës buvo drëkinamos<br />

lietinant.<br />

Braðkiø ûsø skaièius nustatytas pagal bendrà kieká kere <strong>ir</strong> skroteliø skaièiø. Lapø<br />

pav<strong>ir</strong>ðiaus plotas yra vienas ið augimo <strong>ir</strong> produktyvumo rodikliø. Atliekant tyrimus<br />

naudota lapø ploto matavimo kompiuterine programa Rootedge (Pranckietis <strong>ir</strong> Lanauskas,<br />

2001).<br />

Braðkiø derlius nustatytas tiesioginiu svorio metodu, sverta elektroninëmis svarstyklëmis<br />

1g tikslumu. Uogos skintos kas 2–3 dienas, tà paèià dienà visø bandymo<br />

variantø laukeliuose. Vienos uogos masë nustatyta kiekvieno skynimo metu sveriant<br />

100 atsitiktinai paimtø uogø. Duomenø patikimumas ávertintas statistiniais metodais.<br />

Variantø sk<strong>ir</strong>tumams ávertinti naudotas 5 proc. LSD (R 05<br />

) kriterijus.<br />

Darbo rezultatai <strong>ir</strong> jø aptarimas. T<strong>ir</strong>iamojo laikotarpio meteorologinës sàlygos.<br />

Augalø aprûpinimas drëgme daþniausiai vertinamas netiesioginiu metodu pagal<br />

G. Seleninovo hidroterminá koeficientà HTK (D<strong>ir</strong>së <strong>ir</strong> kt., 1984). Vertintas geguþës–<br />

rugsëjo mën. laikotarpis. 2001 m. buvo ðilti (vidutinë oro temperatûra T – 15,3°C),<br />

bet lietingi: HTK – 1,67, krituliø kiekis (H) – 378 mm (30 proc. tikimybë), oro drëgmës<br />

deficitas maþas – 4,6 mb. 2002 m. buvo ypaè ðilta (17,3° C) <strong>ir</strong> nepakankamai<br />

drëgna: HTK – 0,91, H – 234 mm (90 proc. tikimybë), oro drëgmës deficitas didelis –<br />

8,3 mb, net 3,4 mb didesnis uþ daugiametæ normà. Ðilta (15,8°C) <strong>ir</strong> pakankamai<br />

drëgna buvo 2003 m.: HTK – 1,3, H – 302 mm (64 proc. tikimybë), oro drëgmës<br />

deficitas vidutinis – 5,4 mb. Pagal daugiametæ vidutinæ oro temperatûrà 2004 m.<br />

metais buvo vësu (14,5°C) <strong>ir</strong> ðlapia: HTK – 1,62, H – 313 mm (60 proc. tikimybë),<br />

oro drëgmës deficitas maþas – 4,4 mb. Apþvelgus meteorologiniø sàlygø kaità t<strong>ir</strong>iamuoju<br />

laikotarpiu galima teigti, kad tyrimø laikotarpiu meteorologiniø sàlygø kaita<br />

atitiko bendràsias Lietuvos teritorijai bûdingas klimato sàlygas bei pasisk<strong>ir</strong>stymo tendencijas<br />

pagal vegetacijos laikotarpio drëgnumà (D<strong>ir</strong>së, 2001), tai leido áva<strong>ir</strong>iapusiðkiau<br />

ávertinti drëkinimo átakà braðkiø vystymuisi.<br />

Drëkinimo átaka braðkiø derliui. Ðlapiais 2001 m. uogos skintos nuo b<strong>ir</strong>þelio<br />

mën. 13 d. iki liepos mën. 13 d. 2000 m. braðkiø þiedø diferenciacijos metu drëkinimo<br />

reþimo tyrimai atlikti nebuvo, tad ðio laikotarpio d<strong>ir</strong>voþemio drëgmës reþimo átaka<br />

2001 m. derliui buvo vienoda visuose bandymø laukuose. Taip pat, atsiþvelgiant á tai,<br />

kad 2001 m. lieti nereikëjo (natûralios d<strong>ir</strong>voþemio drëgmës atsargos buvo optimalios<br />

braðkëms augti), visø variantø vidutinis braðkiø derlius buvo vienodas, bandymø laukeliuose<br />

kito nuo 9,9 iki 10,1 t ha -1 (1 lentelë).<br />

126


Tyrimø metai<br />

Year of<br />

investigation<br />

1 lentelë. Vidutinis braðkiø derlius, t ha -1<br />

Table 1. The average yield of strawberry (t·ha -1 )<br />

nedrëkinta<br />

(kontrolë)<br />

Non <strong>ir</strong>rigated<br />

(control)<br />

derlius<br />

yield<br />

2001 9,9–10,1<br />

derlius<br />

yield<br />

*<br />

p<strong>ir</strong>møjø augimo metø / the f<strong>ir</strong>th growth year; 1 – stebëjimø vidurkis, iðskyrus 2004 <strong>ir</strong> 2003 * m. /<br />

the average without 2004 and 2003 * years; LDI / FC – lauko drëgmës imlumas/ field capacity<br />

127<br />

Variantai<br />

Treatments<br />

drëkinta<br />

<strong>ir</strong>rigated<br />

80–100% LDI / FC 70–100% LDI / FC<br />

± %<br />

derlius<br />

yield<br />

± %<br />

2002 9,9 12,2 2,3 123,2 10,6 0,7 107,1<br />

2003 6,3 12,9 6,6 204,8 7,9 1,6 1<strong>25</strong>,4<br />

Liejimo átaka iðryðkëjo tik 2002 <strong>ir</strong> 2003 m. Sausais <strong>ir</strong> ðiltais 2002 m. dël ankstyvos<br />

vegetacijos pradþios p<strong>ir</strong>mosios uogos sunoko jau geguþës mën. paskutinëmis dienomis.<br />

Derëjimas truko iki b<strong>ir</strong>þelio mën. treèiojo deðimtadienio. Vidutinis kontrolinio varianto<br />

braðkiø derlius buvo 9,9 t ha -1 . Antrojo varianto braðkiø derlius (80–100 proc.<br />

LDI) buvo didesnis 23,2 proc. (2,3 t ha -1 ) uþ kontrolinio (nedrëkinta) varianto derliø,<br />

o p<strong>ir</strong>mojo (70–100 proc. LDI) – 7,1 proc. (0,7 t ha -1 ). Ávertinus 2001 m. d<strong>ir</strong>voþemio<br />

drëgmës sàlygas þiediniø pumpurø diferenciacijos laikotarpiu <strong>ir</strong> þinant, kad palankus<br />

d<strong>ir</strong>voþemio drëgmës reþimas antrojoje vegetacijos pusëje turi didelës átakos kitø metø<br />

derliui (Smith <strong>ir</strong> kt., 1999), galima teigti, kad tai <strong>ir</strong> lëmë nedidelá derliaus priedà 2002 m.<br />

(nes 2001 m. braðkiø laistyti nereikëjo). Vidutinio drëgnumo 2003 metais treèiøjø<br />

derëjimo metø braðkyne uogos skintos nuo b<strong>ir</strong>þelio mën. 13 iki liepos 12 d. Ðiais<br />

metais derliaus sk<strong>ir</strong>tumas tarp variantø buvo didþiausias (nuo 1,6 iki 6,6 t ha -1 ).<br />

Antrojo varianto (80–100 proc. LDI) derlius buvo 12,9 t ha -1 didesnis (5 t ha -1 ) uþ<br />

p<strong>ir</strong>mojo varianto (70–100 proc. LDI) derliø – 7,9 t ha -1 <strong>ir</strong> dvigubai didesnis uþ kon-<br />

2004 16,7 23,3 6,6 139,5 - - -<br />

2003 * 1,0 1,5 0,5 150,0 - - -<br />

2004 * 3,1 4,8 1,7 154,8 3,3 0,2 106,5<br />

Vidutinis visø 7,8 10,8 3,0 137,7 8,0 1 0,2 1 113,0 1<br />

metø<br />

The average of all<br />

(R 05 – 3,04)<br />

(R 05 – 1,05)<br />

years<br />

Vidutinis,<br />

išskyrus 1- p<strong>ir</strong>muosius<br />

augimo 10,7 14,6 3,9 136,1 9,52 1 1,2 1 116,2 1<br />

metus<br />

The average<br />

without the f<strong>ir</strong>st<br />

growth year<br />

(R 05 – 5,1)<br />

(R 05 – 1,76)<br />

Vidutinis 1- p<strong>ir</strong>maisiais<br />

augimo 2,1 3,2 1,1 153,7 - - -<br />

metais<br />

(R 05 – 7,6)<br />

The average of the<br />

f<strong>ir</strong>st growth year


trolinio (nedrëkinta) varianto – 6,3 t ha -1 . P<strong>ir</strong>mojo varianto derlius buvo <strong>25</strong>,4 proc.<br />

(1,6 t ha -1 ) didesnis uþ kontrolinio, bet 39 proc. (5 t ha -1 ) maþesnis uþ antrojo varianto<br />

derliø. Toká derliaus priedà lëmë palankus d<strong>ir</strong>voþemio drëgmës reþimas 2002 m.<br />

rugpjûèio–rugsëjo mën., nes visos kitos agrotechninës sàlygos buvo vienodos visuose<br />

laukeliuose.<br />

2003 m. buvo atliekami p<strong>ir</strong>møjø augimo metø braðkiø fiziologiniai tyrimai, taip pat<br />

palygintas derlius <strong>ir</strong> vidutinë vienos uogos masë. Rekomenduojama braðkes auginti<br />

trejus metus, taèiau gausiausiai jos dera antraisiais <strong>ir</strong> treèiaisiais augimo metais. Bandymø<br />

lauke nedrëkinamø braðkiø derlius buvo 1,0 t ha -1 , o drëkinamø (80–100 proc.<br />

LDI) – 1,5 t ha -1 (didesnis 14,6 proc.). P<strong>ir</strong>møjø metø derlius nustatytas <strong>ir</strong> 2004<br />

metais p<strong>ir</strong>møjø augimo metø braðkyne. P<strong>ir</strong>mosios uogos sunoko b<strong>ir</strong>þelio mën. 11 d.,<br />

o paskutinës uogos nuskintos liepos mën. 16 d. Gautas negausus derlius (1 lentelë):<br />

p<strong>ir</strong>møjø augimo metø braðkiø derlius nedrëkinant (kontrolë) buvo 3,1 t ha -1 , p<strong>ir</strong>mojo<br />

varianto – 3,3 t ha -1 , o antrojo – 4,8 t ha -1 , arba atitinkamai 6,5 <strong>ir</strong> 54,8 proc. didesnis<br />

uþ kontrolinio (nedrëkinta) varianto derliø.<br />

2004 metais antrøjø augimo metø derlius gautas tik fiziologiniø tyrimø laukeliuose,<br />

kuriuose drëkinimo reþimas palaikytas nuo 80 iki 100 proc. LDI. Antraisiais braðkiø<br />

augimo metais nedrëkinant gautas 16,7 t ha -1 derlius, o laistant – 23,3 t ha -1 . Braðkiø<br />

derliaus priedas optimaliomis d<strong>ir</strong>voþemio drëgmës sàlygomis buvo 139,5 proc., palyginti<br />

su nedrëkinamu bandymø variantu.<br />

Apibendrinus visø tyrimø metø (2001–2004 m.) rezultatus, vidutinis kontrolinio<br />

(nedrëkinta) varianto derlius buvo 7,8 t ha -1 , p<strong>ir</strong>mojo (70–100 proc. LDI) varianto<br />

– 8 t ha -1 , o antrojo (80–100 proc. LDI) varianto – 10,8 t ha -1 . Palaikant<br />

d<strong>ir</strong>voþemio drëgmæ 80–100 proc. LDI, braðkiø derliaus priedas, palyginti su kontrole,<br />

gautas didþiausias – 3 t ha -1 (137,7 proc., palyginti su nedrëkinamu bandymø<br />

variantu), antraisiais <strong>ir</strong> treèiaisiais braðkiø derëjimo metais derliaus priedas buvo<br />

3,9 t ha -1 (136,1 proc., palyginti su nedrëkinamu bandymø variantu), o p<strong>ir</strong>maisiais –<br />

1,1 t ha -1 (153,7 proc., palyginti su nedrëkinamu bandymø variantu).<br />

Drëkinimo átaka vienos uogos masei. Auginant braðkes, svarbu ne tik gausus<br />

uogø derlius, bet <strong>ir</strong> jø kokybë. Vienas ið kokybës rodikliø – vidutinë uogos masë,<br />

kurià nulemia agrotechnika, aplinkos sàlygos <strong>ir</strong> veislës savybës (Uselis, 1996). Drëkinimo<br />

átaka vienos uogos masei t<strong>ir</strong>ta visais tyrimø metais. 2001 m. braðkiø þydëjimo<br />

<strong>ir</strong> uogø mezgimo bei derëjimo laikotarpiu braðkës nelaistytos (pakako atmosferos<br />

krituliø). Vidutinë vienos uogos masë 2001 m. buvo 10,9–11,0 g. Gauti variantø<br />

vidurkiø sk<strong>ir</strong>tumai neesminiai (2 lentelë).<br />

2002 m. braðkës lietos þydëjimo <strong>ir</strong> uogø nokimo laikotarpiu, tai turëjo átakos<br />

uogø dydþiui visà derëjimo laikotarpá (1 pav.).<br />

Uogos pagal vidutinæ vienos uogos masæ sk<strong>ir</strong>stomos á smulkias (iki 5 g), vidutinio<br />

stambumo (5–10 g) <strong>ir</strong> stambias (10 g <strong>ir</strong> daugiau) (Intensyvios..., 2002). Kontrolinio<br />

varianto vidutinë vienos uogos masë buvo 7,7 g, p<strong>ir</strong>mojo varianto (70–100 proc.<br />

LDI) – 8,4 g, o antrojo (80–100 proc. LDI) – 9,4 g. Antrojo varianto viena uoga<br />

svërë vidutiniðkai 1,0 g daugiau (2 lentelë) nei p<strong>ir</strong>mojo varianto (palyginti su kontroliniu<br />

– 1,7 g). Nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

tarp kontrolinio <strong>ir</strong> antrojo<br />

(80–100 proc. LDI) variantø buvo 0,73; lyginant kontroliná variantà su p<strong>ir</strong>muoju<br />

(70–100 proc. LDI) variantu R 05<br />

– 0,6, lyginant drëkinamus variantus – 0,58. Drëkinimas<br />

vienos uogos masës dydþiui átakos turëjo, sk<strong>ir</strong>tumai tarp variantø esminiai.<br />

128


1 pav. Vidutinë vienos uogos masë 2002 m.<br />

Fig. 1. The average weight of single berry in 2002 harvesting period of strawberry<br />

Tyrimø<br />

metai<br />

Year of<br />

investigation<br />

Vidurkis<br />

Average<br />

Nedrëkinta<br />

Non <strong>ir</strong>rigated<br />

2 lentelë. Vidutinë uogos masë, g<br />

Table 2. Average berry weight (g)<br />

Sk<strong>ir</strong>tumas tarp<br />

variantø<br />

Difference between<br />

treatments<br />

Drëkinta<br />

Irrigated<br />

70–100%<br />

129<br />

Patikimumas<br />

Signification<br />

± % F fakt . F 05 R 05<br />

LDI / FC<br />

1 2 3 4 5 6 7 8<br />

2001 10,9 11,0 0,1 100,9 0,1 5,12 0,69<br />

2002 7,7 8,4 0,7 109,5 8,22 * 5,59 0,60<br />

2003 4,7 6,2 1,5 131,3 20,55 ** 4,96 0,72<br />

2004* 6,8 7,0 0,1 102,0 0,24 4,6 0,59<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

7,3 7,9 0,60 110,9 11,46 ** 4,07 0,34<br />

Nedrëkinta<br />

Non <strong>ir</strong>rigated<br />

Drëkinta<br />

Irrigated<br />

80–100%<br />

LDI / FC<br />

± % F fakt . F 05 R 05<br />

1 2 3 4 5 6 7 8<br />

2001 10,9 11,0 0,1 100,9 0,1 5,12 0,69<br />

2002 7,7 9,4 1,7 121,9 29,67 ** 5,59 0,73<br />

2003 4,7 6,6 1,9 140,9 21,98 ** 4,96 0,92<br />

2004 8,2 8,7 0,6 106,7 5,38 * 4,6 0,51<br />

2003* 5,2 6,9 1,7 133,3 10,32 ** 5,12 1,22<br />

2004* 6,8 7,5 0,7 109,0 3,49 4,6 0,71<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

7,1 8,2 1,1 118,8 39,1 ** 3,98 0,33


Drëkinta<br />

Irrigated<br />

± % F<br />

70–100% 80–100%<br />

fakt . F 05<br />

R 05<br />

LDI / FC LDI / FC<br />

1 2 3 4 5 6 7 8<br />

2002 8,4 9,4 1,0 111,3 14.81 ** 2,36 0,58<br />

2003 6,2 6,6 0,5 107,3 3,52 4,96 0,54<br />

2004* 7,0 7,5 0,5 106,9 2,49 4,60 0,657<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

2 lentelës tæsinys<br />

7,19 7,81 0,6 108,5 12,33 ** 4,14 0,34<br />

*<br />

p<strong>ir</strong>møjø augimo metø / the f<strong>ir</strong>st growth year; LDI / FC – lauko drëgmës imlumas / field capacity<br />

2003 m. braðkës lietos þydëjimo pabaigoje (antrasis variantas 80–100 proc.<br />

LDI) – uogø nokimo (p<strong>ir</strong>masis variantas 70–100 proc. LDI) laikotarpiu. Vidutinis<br />

vienos uogos masës sk<strong>ir</strong>tumas tarp kontrolinio (nedrëkinta) <strong>ir</strong> p<strong>ir</strong>mojo varianto<br />

(70–100 proc. LDI) laukeliø buvo 1,5 g, o tarp kontrolinio <strong>ir</strong> antrojo – 1,9 g<br />

(2 lentelë). Nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

tarp kontrolinio <strong>ir</strong> p<strong>ir</strong>mojo varianto<br />

– 0,72, o tarp kontrolinio <strong>ir</strong> antrojo – 0,92. Drëkinimas turëjo átakos abiem<br />

variantams. Palyginti su ankstesniais metais (2001 <strong>ir</strong> 2002 m.), uogos buvo smulkesnës,<br />

tam átakos turëjo augalø fiziologinis amþius (tretieji augimo metai). Kontrolinio <strong>ir</strong><br />

drëkinamø variantø buvo stambios tik p<strong>ir</strong>mojo skynimo uogos (> 10 g) (2 pav.).<br />

2 pav. Vidutinë vienos uogos masë 2003 m. – treèiaisiais braðkiø augimo metais<br />

Fig. 2. The average weight of single berry in 2003 harvesting period of strawberry<br />

Antrojo rinkimo metu kontrolinio varianto uogos buvo vidutinio stambumo (5–<br />

10 g), o vëliau vidutinë vienos uogos masë buvo maþesnë nei 5 g (smulkios uogos).<br />

Drëkinant vidutinio stambumo uogos skintos iki b<strong>ir</strong>þelio mën. pabaigos. 2003 m. –<br />

p<strong>ir</strong>møjø augimo metø vidutinë vienos uogos masë drëkinant buvo 6,9 g, o nedrëki-<br />

130


nant – 5,2 g. Drëkinamø braðkiø uogos buvo didesnës vidutiniðkai 1,7 g. Drëkinimo<br />

átaka buvo didelë – nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

– 1,22.<br />

2004 m. antrojo varianto braðkiø laukeliai lieti uogoms nokstant (80–100 proc.<br />

LDI), p<strong>ir</strong>mojo varianto laukeliai lieti tik po derliaus nuëmimo. P<strong>ir</strong>møjø augimo metø<br />

kontrolinio varianto vidutinë vienos uogos masë buvo 6,8 g, p<strong>ir</strong>mojo varianto –<br />

7,0 g, o antrojo – 7,5 g. Nors antrojo varianto (80–100 proc. LDI) vidutinë vienos<br />

uogos masë buvo didesnë 0,7 g, taèiau ðis sk<strong>ir</strong>tumas, esant 95 proc. tikimybës lygiui,<br />

neesminis. Variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

– 0,71. 2004 m. – antrøjø augimo<br />

metø vidutinë vienos uogos masë nedrëkinant buvo 8,2 g, o drëkinant (80–100 proc.<br />

LDI) – 8,7 g, arba 0,5 g didesnë, taèiau pagal statistiná Fiðerio patikimumo kriterijø<br />

ðis sk<strong>ir</strong>tumas esminis esant 95 proc. tikimybei, R 05<br />

– 0,61.<br />

Apibendrinus visø tyrimø metø duomenis, vidutinë vienos uogos masë nedrëkinant<br />

buvo 7,3 g, p<strong>ir</strong>mojo varianto (70–100 proc. LDI) – 7,9 g, o antrojo (80–100 proc.<br />

LDI) – 8,2 g. Sk<strong>ir</strong>tumas tarp kontrolinio <strong>ir</strong> p<strong>ir</strong>mojo variantø vidutinës vienos uogos<br />

masës buvo 0,6 g (R 05<br />

– 0,34), o tarp kontrolinio <strong>ir</strong> antrojo variantø – 1,1 g (R 05<br />

–<br />

0,33). Palyginus drëkinamø variantø vidutinës vienos uogos masës sk<strong>ir</strong>tumus nustatyta,<br />

kad sk<strong>ir</strong>tumas esminis buvo tik 2002 m. (sk<strong>ir</strong>tumas – 1 g, R 05<br />

– 0,58).<br />

Drëkinimo átaka braðkiø dauginimosi savybëms. Ûsø augimo intensyvumo kitimas<br />

priklauso nuo braðkiø veislës, sodinimo laiko, kerelio amþiaus bei augimo sàlygø.<br />

P<strong>ir</strong>møjø metø derliø lemia sodinimo terminai <strong>ir</strong> daigø kokybë. Pagal privalomuosius<br />

I rûðies reikalavimus versliniams braðkynams veisti liepos–rugpjûèio mën. sodinamoji<br />

medþiaga turi turëti ne maþiau kaip 3 lapus, ðaknys turi bûti ne trumpesnës<br />

kaip 4 cm; rugsëjo-spalio mën. – 4 lapus <strong>ir</strong> 6 cm ilgio ðaknis (Intensyvios..., 2002).<br />

Drëkinimo átaka braðkiø ûsø <strong>ir</strong> skroteliø vystymuisi buvo t<strong>ir</strong>ta 2003 m. natûraliomis<br />

sàlygomis (kontrolë) <strong>ir</strong> palaikant optimalias d<strong>ir</strong>voþemio drëgmës atsargas<br />

(80–100 proc. LDI). Duomenys pateikti 3 lentelëje, vardiklyje pateiktas vidutinis,<br />

skaitiklyje – maþiausias <strong>ir</strong> didþiausias braðkiø ûsø <strong>ir</strong> skroteliø kiekis.<br />

Drëkinto tyrimø varianto visi t<strong>ir</strong>ti rodikliai buvo aukðtesni, palyginti su nedrëkintu.<br />

Rugpjûèio mën. pradþioje abiejuose variantuose nebuvo skroteliø, kurios atitiktø I<br />

rûðies reikalavimus. Po mënesio vidutiniðkai vienas nedrëkinamo varianto braðkiø<br />

keras uþaugino po 1-à I rûðies skrotelæ, o drëkinamo – po 7 skroteles. II rûðies<br />

vidutinis skroteliø skaièius rugpjûèio pradþioje nedrëkinat buvo 3,2, o drëkinant –<br />

7,2. Rugsëjo mën. pradþioje vidutinis vieno kero skroteliø kiekis nedrëkinant buvo<br />

8,5 <strong>ir</strong> 15 drëkinant. Vieno drëkinamo varianto braðkiø kero uþaugintø skroteliø skaièius<br />

buvo 2,5 karto didesnis nei nedrëkinamo varianto. Sk<strong>ir</strong>tumas pagal Stjudento<br />

kriterijø esminis esant 95 proc. tikimybës lygmeniui.<br />

Drëkinimo átaka braðkiø lapø asimiliaciniam pav<strong>ir</strong>ðiui. Lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas – vienas ið braðkiø vystymosi rodikliø. Braðkiø lapai pradeda intensyviai<br />

formuotis <strong>ir</strong> augti, kai oro temperatûra aukðtesnë kaip + 5°C. Kai braðkës þydi, lapai<br />

auga lëèiau, o uogø nokimo laikotarpiu jie beveik neauga. Antroji lapø augimo banga<br />

prasideda po derliaus nuëmimo. Pagal Darrow (1966) lapø plotas tiesiogiai susijæs su<br />

ateinanèiø metø uogø skaièiumi. Átakos turi <strong>ir</strong> lapø skaièius, nes kuo daugiau lapø,<br />

tuo daugiau suformuojama þiedynø. Taigi, kuo didesnis lapø plotas bei jø asimiliacinis<br />

pav<strong>ir</strong>ðius, tuo didesnis uogø kiekis. Braðkiø ragelis, spalio mën. turintis iki dviejø<br />

lapø, pajëgus uþauginti vienà þiedynà su 3–5 uogomis, o 15 lapø turintis augalas gali<br />

131


08 06<br />

09 06<br />

08 06<br />

09 06<br />

3 lentelë. Vidutinis sodinamosios medþiagos kiekis ið braðkiø kero 2003 m.<br />

Table 3. The average of runner production from single strawberry plant 2003<br />

Data<br />

Date<br />

kiekis, vnt.<br />

number, units<br />

9,5<br />

7–12<br />

9,8<br />

6–13<br />

13,2<br />

9–17<br />

17,3<br />

12–24<br />

Braðkiø ûsai<br />

Runner<br />

ilgis, cm<br />

length (cm)<br />

I rûðis<br />

the f<strong>ir</strong>st class<br />

Nedrëkinami<br />

Non <strong>ir</strong>rigated<br />

36,1 0<br />

28,2–49,4 0<br />

36,5 1<br />

26,8–40,9 0–2<br />

Drëkinami (80–100 % LDI)<br />

Irrigated 80–100% FC<br />

40,7 0<br />

34,4–43,2 0<br />

42,5 7<br />

30,1–47,7 5–8<br />

Skrotelës, vnt.<br />

Rosettes<br />

II rûšis<br />

the second class<br />

3,2<br />

1–7<br />

8,5<br />

6–10<br />

7,2<br />

5–9<br />

15<br />

11–24<br />

be ðaknø<br />

no roots<br />

3,2<br />

0–5<br />

4,6<br />

1–6<br />

5,5<br />

3–8<br />

6,7<br />

5–11<br />

Vidutinis sk<strong>ir</strong>tumas tarp variantø<br />

Difference between treatments<br />

08 06 + 3,4 + 4,2 0 + 4 + 2,3<br />

09 06 + 7,8 + 7,1 + 6 + 6,5 + 2,1<br />

Vidurkiø sk<strong>ir</strong>tumo patikimumas R 05<br />

Reliability of difference according LSD 05<br />

08 06 4,13 7,82 - 3,45 3,55<br />

09 06 6,48 9,76 0,94 5,09 2,67<br />

– vardiklyje pateiktas vidutinis, skaitiklyje – maþiausias <strong>ir</strong> didþiausias ûsø <strong>ir</strong> skroteliø skaièius /<br />

in the denominator is given the average, in the numerator – the minimum and the maximum<br />

number of runners and rosettes; LDI / FC – lauko drëgmës imlumas / field capacity<br />

subrandinti iki <strong>25</strong> uogø (Darrow, 1966). Þinoma, tai labai priklauso nuo braðkiø veislës<br />

savybiø. Nepaisant to, vyravo nuomonë, kad drëkinimas lemia spartø lapø augimà,<br />

o intensyviai augantys lapai sumaþina derliø. 1999–2000 m. Pranckietienës <strong>ir</strong><br />

Pranckieèio (2003) LÞÛU atlikti tyrimai nepatv<strong>ir</strong>tino ðio teiginio. Uselis (Intensyvios...,<br />

2002) taip pat teigia, kad vasarà uþaugusiø lapø skaièius <strong>ir</strong> bûklë lemia ateinanèiø<br />

metø derliø.<br />

2003 m. atlikti tyrimai parodë, kad drëkinant asimiliacinis lapø pav<strong>ir</strong>ðius ið esmës<br />

padidëjo (F fak<br />

– 24,04; F 05<br />

– 4,96) nei nedrëkinant (3 pav.): R 05<br />

– 217,752, R 01<br />

–<br />

309,728. Treèiøjø augimo metø braðkiø lapø asimiliacinis pav<strong>ir</strong>ðius nuo pat vegetacijos<br />

pradþios buvo didesnis, palyginti su nedrëkinamu variantu (geguþës 16 d. nedrëkinant<br />

vidutinis lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo 670 cm 2 , o drëkinant – 880 cm 2 ).<br />

Tam átakos turëjo 2002 m. sausringa vasaros pabaiga <strong>ir</strong> rugsëjis. Liejimas 2003 m.<br />

132


geguþës paskutiná <strong>ir</strong> b<strong>ir</strong>þelio p<strong>ir</strong>màjá deðimtadiená bei vëlesniu laikotarpiu taip pat turëjo<br />

átakos lapø skaièiui <strong>ir</strong> jø plotui. Geguþës mën. 26 d. lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas nedrëkinant buvo 1 260 cm 2 , o drëkinant – 1 720 cm 2 (1,37 karto didesnis nei<br />

nedrëkinamø). B<strong>ir</strong>þelio mën. 10 d. lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas nedrëkinant<br />

buvo 2 390 cm 2 , o drëkinant – 2 883 cm 2 (1,21 karto didesnis nei nedrëkinamø).<br />

Uogø derëjimo laikotarpiu (nuo b<strong>ir</strong>þelio mën. 17 d. iki liepos mën. 12 d.) lapai augo<br />

lëèiau. Vëliau intensyviai vystësi <strong>ir</strong> augo nauji vasariniai lapai. Liepos mën. 20 d.<br />

nedrëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo 3 379 cm 2 , o drëkinamø<br />

– 4 001 cm 2 (1,18 karto didesnis nei nedrëkinamø).<br />

3 pav. Vidutinis braðkiø kero lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas 2003 m.: a –<br />

treèiaisiais augimo metais; b – p<strong>ir</strong>maisiais augimo metais<br />

Fig. 3. The average leaf assimilation area of single strawberry plant in 2003: a – the th<strong>ir</strong>d<br />

growth year, b- the f<strong>ir</strong>st growth year<br />

Balandþio 22 d. sodintø daigø asimiliacinio pav<strong>ir</strong>ðius plotas kito sk<strong>ir</strong>tingai, tai<br />

priklausë nuo drëkinimo. Jau paliejus p<strong>ir</strong>muosius kartus (geguþës mën. treèiàjá <strong>ir</strong><br />

b<strong>ir</strong>þelio mën. p<strong>ir</strong>màjá deðimtadiená), drëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas buvo iki 1,4 karto didesnis nei nedrëkinamø. B<strong>ir</strong>þelio mën. 16 d. vidutinis<br />

abiejø variantø vieno kero lapø skaièius buvo 11,5, asimiliacinio lapø pav<strong>ir</strong>ðius plotas<br />

nedrëkinant buvo 5<strong>25</strong>, drëkinant – 670 cm 2 . Kadangi p<strong>ir</strong>maisiais augimo metais braðkës<br />

dera negausiai, derëjimo laikotarpiu lapø augimas sulëtëjo nedaug. Liepos 1 d.<br />

vidutinis vieno kero lapø skaièius nedrëkinant buvo 15, o drëkinant – 17. Lapø asimiliacinio<br />

pav<strong>ir</strong>ðiaus plotas nedrëkinant buvo 757 cm 2 , o drëkinant – 1 190 cm 2 (1,57<br />

karto didesnis nei nedrëkinant). Paliejus liepos <strong>ir</strong> rugpjûèio mën. ðis sk<strong>ir</strong>tumas dar<br />

labiau iðryðkëjo <strong>ir</strong> rugpjûèio mën. 20 d. buvo beveik dvigubai (1,94 karto) didesnis<br />

133


drëkinant (2 805 cm 2 ) nei auganèiø natûraliomis sàlygomis (1 448 cm 2 ). Drëkinamø<br />

braðkiø lapo asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo ið esmës didesnis uþ nedrëkintø:<br />

F fakt<br />

– 10,55, F 05<br />

– 4,67, R 05<br />

– 292,872, o R 01<br />

– 408,361. Vidutinis vieno kero lapø<br />

skaièius drëkinant buvo 41, o nedrëkinant – tik 20. Sk<strong>ir</strong>tumas esminis: F fakt<br />

– 10,95,<br />

F 05<br />

– 5,99, R 05<br />

– 8,133, o R 01<br />

– 12,32. Nedrëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas padidëjo tik rugsëjo mën. (2 772 cm 2 ), kai atmosferos krituliai papildë<br />

d<strong>ir</strong>voþemio drëgmës atsargas, taèiau toks vëlyvas lapø augimas nëra teigiamas reiðkinys,<br />

nes sutrumpëjus dienos ilgumui <strong>ir</strong> nukritus oro temperatûrai, prasideda þiediniø<br />

pumpurø diferenciacija. Intensyviai auganti lapija lëtina <strong>ir</strong> atitolina þiedø diferenciacijos<br />

procesà tuo paèiu já sutrumpindama (Intensyvios..., 2002).<br />

Iðvados. Norint gauti gausø geros kokybës konkurencingà braðkiø derliø Lietuvos<br />

klimato sàlygomis, braðkes tikslinga drëkinti <strong>ir</strong> sausais, <strong>ir</strong> vidutinio drëgnumo<br />

metais. Drëkinimas turëjo esminës átakos braðkiø derliaus priedui <strong>ir</strong> fiziologiniams<br />

rodikliams. 2001–2004 m. tyrimø laikotarpiu vidutinis braðkiø derlius nedrëkinant<br />

buvo 7,8 t ha -1 , o drëkinant (80–100 proc. LDI) – 10,8 t ha -1 . Vidutinë vienos uogos<br />

masë nedrëkinant buvo 7,1 g, drëkinant (80–100 proc. LDI) – 8,2 g. Drëkinant<br />

braðkës uþaugino skroteliø 2,5 karto daugiau nei natûraliomis sàlygomis.<br />

Gauta 2006-06-01<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Darrow G. M. The strawberry: History, Breeding and Physiology. San Francisko,<br />

1966. http://www.nal.usda.gov/pgdic/Strawberry/book/bok9teen.htm<br />

2. D<strong>ir</strong>së A., Kusta A., Stanislovaitytë A. Þemës ûkio kultûrø drëkinimo reþimas.<br />

V.: Mokslas, 1984.<br />

3. D<strong>ir</strong>së A. Þemës ûkio augalø vegetacijos laikotarpiø drëgmingumas // Þemës ûkio<br />

mokslai. 2001. Nr. 3. P. 51–56.<br />

4. Intensyvios uoginiø augalø auginimo technologijos (sud. N. Uselis). Babtai, 2002.<br />

5. Kinnanen H. and Säkö J. Irrigation requ<strong>ir</strong>ements for strawberry // Annales Agriculturae<br />

Fenniae. 1979. 18. P. 160–167.<br />

6. Kondsrud K. Vatningsforkk med jordbaer // Forskn. Forsk. Landbr. 1978. 29, 3.<br />

P. 301–312.<br />

7. Lacgalvis E. Evaluation of strawberry growing trends // Agricultural Technique<br />

and Technologies on the light Agenda – 21: Material of the international conference of<br />

science. Akademija, 2003. P. 38–41<br />

8. Naumann W. D. Die W<strong>ir</strong>kung zeitlich begrenzter Wassergaben auf Wuchs und<br />

Ertragsleistung von Erdbeeren // Gartenbauwissenschaft. 1961. 26. P. 441–458.<br />

9. Pranckietis V., Lanauskas M. „Rootedge“ kompiuterinës programos naudojimo<br />

metodiniai patarimai. Akademija, 2001.<br />

10. Pranckietienë I., Pranckietis V. Braðkiø augimo <strong>ir</strong> derëjimo ypatumai taikant ekologinæ<br />

auginimo technologijà // Mokslo darbai. 2003. Nr. 59(12). P. 86–92.<br />

11. Rebandel Z. Truskawki i poziomki. Warszawa, PWRiL.<br />

12. Rolbiecki S., Rzekanowski C. Influence of sprinkler and drip <strong>ir</strong>rigation on the<br />

growth and yield of strawberries grown on sandy soils // Acta Horticulturae. 1997. 439.<br />

P. 669–672.<br />

134


13. Smith B. R., Mahr D. L., McManus P. S. Growing strawberries in Wisconsin.<br />

Madison, 1996.<br />

14. Strabbioli G. A study on strawberry water requ<strong>ir</strong>ements // Acta Horticulturae.<br />

1988. 228. P. 179–186.<br />

15. Uselis N. Braðkiø veisliø ávertinimas // Þemës ûkio mokslai. 1996. Nr. 1. P. 73–78.<br />

16. Uselis N., Raðinskienë A. Braðkës // Ûkininko patarëjas. 2000. Nr. 46.<br />

17. Àôàíàñèê Ã. È., Ãîë÷åíêî Ì. Ã., Ëèõà÷åâè÷ À. Ï., Ìèõàéëîâ Ã. È.<br />

Ñåëüñêîõîçÿéñòâåííûå ãèäðîòåõíè÷åñêèå ìåëèîðàöèé. Ìèíñê: Tåõíîëîãèÿ, 2000.<br />

18. Ãîë÷åíêî Ì. Ã., Äåâÿòîâ À. Ñ., Ëàãóí Ò. Ä. Îðîøåíèå ñàäîâ è ÿãîäíèêîâ.<br />

Mocêâa: Óðàäæàé, 1985.<br />

19. Êîñòåêîâ Í. À. Îñíîâû ìåëèîðàöèé. Ìîñêâà: Ñåëüõîçèçäàò, 1960.<br />

20. Ìàðêîâ Þ. À. Ïðîãðàììà è ìåòîäèêà èññëåäîâàíèé ïî îðîøåíèþ<br />

ïëîäîâûõ è ÿãîäíûõ êóëüòóð: Ìåòîäè÷åñêèå ðåêîìåíäàöèé. Ìè÷óðèíñê, 1985.<br />

21. Ðû÷êîâ Í. È, Îëåôèð Å. Ï. Òåõíèêà îðîøåíèå ñàäîâ è ÿãîäíèêîâ.<br />

Ìîñêâà: Ðîññåëüõîçèçäàò, 1972.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF IRRIGATION ON<br />

STRAWBERRIES ‘SENGA SENGANA’<br />

L. Taparauskienë<br />

Summary<br />

The investigations were carried out in the Middle Lithuania (Kaunas region)<br />

during 2001–2004. In the territory of investigations the soil was calcareus deeper<br />

gleyic leached soil, IDg4-k, (sod podzolic JP lv<br />

), mechanical composition – light loam<br />

on clay loam. Experimental investigations were focused on ‘Senga Sengana’ strawberry<br />

cultivar. The aim of the work was to determine the influence of <strong>ir</strong>rigation on<br />

strawberry yield and others indicators.<br />

Irrigation effect on yield and other strawberry indicators have been analyzed<br />

and it was determined, that <strong>ir</strong>rigation has a significant influence on the increase of<br />

total yield, fruit size, runner production and leaf assimilation area. The differences<br />

between <strong>ir</strong>rigated and non-<strong>ir</strong>rigated versions are essential and statistically significant<br />

(p – 0.05).<br />

In 2001–2004 average yield of non-<strong>ir</strong>rigated strawberry was 7.8 t/ha and this<br />

one of <strong>ir</strong>rigated – 8 t/ha (the f<strong>ir</strong>st treatment 70–100% field capacity (FC)) and 10.8<br />

t/ha (the second treatment 80–100% FC). Maintaining soil moisture conditions within<br />

the limits of 80–100% FC the increase of strawberry yield in comparison with<br />

non<strong>ir</strong>rigated was biggest – 3 t/ha (or 137.7% of non <strong>ir</strong>rigated treatment). Under<br />

natural soil moisture conditions average weight of single berry in the treatment without<br />

<strong>ir</strong>rigation was 7.1 g, and with <strong>ir</strong>rigation (80–100% FC) – 8.2 g. The difference<br />

135


etween the average weight of single berry in control and in the f<strong>ir</strong>st treatment was<br />

0.6 g and between control and the second treatment was 1.1 g. In treatment with<br />

<strong>ir</strong>rigation runner production from one strawberry plant was higher in comparison to<br />

that in non <strong>ir</strong>rigated treatment. The amount of runner production in the treatment<br />

with <strong>ir</strong>rigation was 2.5 times bigger comparing to that in the treatment without <strong>ir</strong>rigation.<br />

Irrigation had a significant influence on the number of strawberry leaves and<br />

assimilation area.<br />

Key words: soil humidity, yield, berry size.<br />

136


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

GELEÞIES TRÀÐØ ÁTAKA ‘BOGOTA’ VEISLËS<br />

BRAÐKIØ MITYBAI, IÐSIVYSTYMUI IR DERLIUI<br />

Loreta BUSKIENË, Nobertas USELIS, Juozas LANAUSKAS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas l.buskiene@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute iðt<strong>ir</strong>ta geleþies<br />

chelato (Fe-EDTA) <strong>ir</strong> sulfato (FeSO 4<br />

) tràðø átaka ‘Bogota’ veislës braðkëms, auginamoms<br />

ðarminëse d<strong>ir</strong>vose. Ávertintas geleþies tràðø poveikis braðkiø lapø cheminei<br />

sudëèiai, kereliø iðsivystymui <strong>ir</strong> derliui. Nustatyta, kad aðtuonis kartus per vegetacijà<br />

braðkes nupurðkus 0,5, 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies chelato t<strong>ir</strong>palais, geleþies<br />

kiekis jø lapuose padidëjo 1,6–1,8 karto, o geleþies sulfato t<strong>ir</strong>palais – 2,3–3,2 karto.<br />

Nupurðkus braðkes 1,5% koncentracijos abiejø formø geleþies tràðomis, augalø lapuose<br />

ið esmës padaugëjo azoto (7,6–11,4 proc.), sumaþëjo kalcio (12,1 proc.) <strong>ir</strong><br />

mangano (23,2–31,3 proc.). Geleþies chelatai pagerino kereliø iðorinæ bûklæ. Geleþies<br />

chelato <strong>ir</strong> sulfato tràðø t<strong>ir</strong>palai neturëjo esminës átakos braðkiø kereliø augimui<br />

<strong>ir</strong> derëjimui.<br />

Reikðminiai þodþiai: augumas, braðkës, derlius, geleþies chelatas, geleþies sulfatas,<br />

uogos masë.<br />

Ávadas. Pagrindinis augalø mitybos elementø ðaltinis yra d<strong>ir</strong>voþemis. Nustatyta,<br />

kad jame geleþies yra gana daug. Geleþis gali bûti nepakankamai pasisavinama dël<br />

net<strong>ir</strong>piø ar sunkiai augalams prieinamø jos formø ðarminës reakcijos d<strong>ir</strong>vose (braðkëms<br />

optimalus pH – 6,0–6,5), dël netinkamo áva<strong>ir</strong>iø elementø santykio d<strong>ir</strong>voþemyje,<br />

dël þemos d<strong>ir</strong>voþemio temperatûros <strong>ir</strong> kitø veiksniø (Íîðìàí, 1960).<br />

Braðkës yra vienos jautriausiø augalø geleþies trûkumui (Íîðìàí, 1960; Öåðëèíã,<br />

1978; Êurawicz, 1997). Trûkstant geleþies, jauni braðkiø lapai suserga tarpgysline<br />

chloroze. Nors geleþis <strong>ir</strong> nëra sudedamoji chlorofilo dalis, ji glaudþiai susijusi su jo<br />

susidarymu <strong>ir</strong> veikia kaip katalizatorius. Chlorofilo kiekis audiniuose priklauso nuo<br />

augalø ið d<strong>ir</strong>vos paimamo geleþies kiekio (Íîðìàí, 1960). Geleþies kiekis augaluose<br />

gana pastovus (Öåðëèíã, 1978). Ðarminës reakcijos d<strong>ir</strong>vose þymiai sumaþëja augalø<br />

sugebëjimas ásiurbti geleþá per ðaknis, todël tikslinga braðkes purkðti tràðø t<strong>ir</strong>palais per<br />

lapus. Lenkijos mokslininkø nuomone, nuo braðkiø chlorozës efektyviau naudoti chelatines<br />

tràðas, nes ið chelatø braðkës pasisavina <strong>ir</strong> perneða geleþá tris kartus greièiau<br />

nei ið sulfatø (Êurawicz, 1997). Kad chelatiniø formø geleþies tràðos daug efektyvesnës<br />

nei sulfatai, paþymi <strong>ir</strong> kiti mokslininkai (Kannan, Wittwer, 1965; Neumann, Prinz,<br />

137


1975). Turkijoje atliktø tyrimø duomenimis, geleþies kieká braðkiø lapuose po trijø<br />

purðkimø labiausiai padidino geleþies sulfatas, nors ið chelatø geleþis buvo paimta<br />

daug greièiau (Erdal <strong>ir</strong> kt., 2004).<br />

Tyrimo tikslas – optimizuoti braðkiø mitybà geleþimi neutralios arba ðarminës<br />

reakcijos d<strong>ir</strong>voþemiuose, ávertinti sk<strong>ir</strong>tingø formø <strong>ir</strong> koncentracijø geleþies tràðø poveiká<br />

geleþies kaupimuisi braðkiø lapuose, jø bûklei, augumui <strong>ir</strong> derëjimui.<br />

Tyrimo metodai <strong>ir</strong> sàlygos. Bandymas darytas 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute su geleþies trûkumui jautria braðkiø veisle ‘Bogota’.<br />

T<strong>ir</strong>tos dvi geleþies tràðos: geleþies chelatas (Fe-EDTA) <strong>ir</strong> geleþies sulfatas<br />

(FeSO 4<br />

). 2003–2004 m. braðkës per lapus purkðtos kas 7 dienos, 8 kartus per vegetacijà<br />

(nuo p<strong>ir</strong>møjø lapeliø iðsiskleidimo iki uogø sunokimo), 0,5; 1,0 <strong>ir</strong> 1,5% vandeniniais<br />

minëtø tràðø t<strong>ir</strong>palais.<br />

Braðkës pasodintos 2003 m. pavasará 0,8 m x 0,3 m atstumais. Apskaitinio<br />

bandymø laukelio ilgis – 2 m, plotis – 1,6 m (dvi augalø eilës), plotas – 3,2 m 2 .<br />

Bandymas darytas keturiais pakartojimais.<br />

D<strong>ir</strong>voþemis – sekliai karbonatingas giliau glëjiðkas rudþemis (RDg4-k1), priemolis.<br />

Pagrindiniai agrocheminiai d<strong>ir</strong>voþemio rodikliai (0–40 cm gylyje): pH – 7,1<br />

(KCL iðtraukoje), humuso – 2,3 proc., P 2<br />

O 5<br />

– 290 mg/kg, K 2<br />

O – 180 mg/kg, Ca –<br />

5 600 mg/kg, Mg – 1 500 mg/kg, Fe – 1 140 mg/kg.<br />

Atliekant tyrimà nustatyta: braðkiø kereliø augumà <strong>ir</strong> iðsivystymà apibûdinantys<br />

rodikliai – lapø, rageliø <strong>ir</strong> þiedynø skaièius (1 m 2 plote); uogø derlius (t/ha); vidutinë<br />

uogos masë (g); braðkiø kereliø bûklë nuskynus uogas (pagal 0–5 balø skalæ: 5 –<br />

labai gera, 0 – kereliai iðnykæ). Nupurðkus geleþies tràðø t<strong>ir</strong>palais, 2003 m. atlikta<br />

braðkiø lapø cheminë analizë <strong>ir</strong> nustatytas azoto, fosforo, kalio, kalcio, magnio, geleþies,<br />

vario, mangano, cinko <strong>ir</strong> boro kiekis sausojoje medþiagoje. Geleþies kiekis nustatytas<br />

visuose bandymo variantuose, kiti elementai – nepurkðtuose laukeliuose <strong>ir</strong><br />

nupurðkus braðkes 1,5% koncentracijos geleþies chelato <strong>ir</strong> sulfato tràðø t<strong>ir</strong>palais.<br />

Tyrimø duomenys statistiðkai ávertinti rendomizuotø blokø dispersinës analizës<br />

metodu. Meteorologinës sàlygos tyrimø metais braðkëms augti buvo gana palankios,<br />

nors vegetacijos metu buvo tarpsniø, kai smarkus lietus suplakdavo d<strong>ir</strong>và <strong>ir</strong> dël to<br />

pablogëdavo jos aeracija. 2004 m. drëgna buvo b<strong>ir</strong>þelio mën. (uogø brendimo <strong>ir</strong><br />

skynimo metu) <strong>ir</strong> ypaè – rugpjûtá, kai krituliø iðkrito 1,6 karto daugiau negu norma.<br />

Braðkës derëjo labai gausiai. 2005 m. b<strong>ir</strong>þelio mën. augalams taip pat pakako ðilumos<br />

<strong>ir</strong> drëgmës, labai sausa buvo tik liepos mën.<br />

Tyrimø rezultatai. Mitybos elementø kiekis braðkiø lapuose <strong>ir</strong> kereliø bûklë.<br />

Nupurðkus braðkes visø t<strong>ir</strong>tø koncentracijø abiejø formø geleþies tràðomis, geleþies<br />

kiekis augalø lapuose ið esmës padidëjo (1 pav.). Daugiau geleþies braðkiø lapuose<br />

susikaupë, purðkiant geleþies sulfatu <strong>ir</strong> ypaè 1,0% koncentracijos t<strong>ir</strong>palu – trigubai<br />

daugiau negu nepurkðtose.<br />

Nupurðkus 0,5–1,5% geleþies sulfato t<strong>ir</strong>palais, geleþies kiekis braðkiø lapuose<br />

padidëjo 2,3–3,2 karto. Panaudojus geleþies chelatà, braðkës sukaupë 1,6–1,8 karto<br />

daugiau geleþies, palyginti su nepurkðtomis. Mûsø tyrimai rodo, kad netikslinga didinti<br />

geleþies chelato arba sulfato t<strong>ir</strong>palo koncentracijà iki 1,5%, nes lapuose sukauptos<br />

geleþies kiekis nebedidëja (pradeda maþëti). Daugiausia geleþies susikaupë 1,0%<br />

koncentracijos geleþies tràðø t<strong>ir</strong>palais nupurkðtø braðkiø lapuose.<br />

138


1 pav. Geleþies kiekis ‘Bogota’ braðkiø lapuose. Babtai, 2003 m.<br />

Fig. 1. Iron content in leaves of strawberry cv. ‘Bogota’. Babtai, 2003<br />

Nupurðkus braðkes didþiausios koncentracijos abiejø formø geleþies tràðomis,<br />

augalø lapuose ið esmës padidëjo azoto, o sumaþëjo kalcio <strong>ir</strong> mangano (1 lentelë).<br />

1 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø lapø agrocheminiams rodikliams.<br />

Babtai, 2003 m.<br />

Table 1. Effect of <strong>ir</strong>on fertilizers on mineral content in the leaves of strawberry cv.<br />

‘Bogota’. Babtai, 2003<br />

Variantai<br />

Treatments<br />

Makroelementø kiekis, % sausojoje<br />

medžiagoje<br />

Macronutrient content (% in dry weight)<br />

Mikroelementø kiekis,<br />

mg/kg sausojoje medžiagoje<br />

Micronutrient content (mg/kg in<br />

dry weight)<br />

N P K Ca Mg Cu Mn Zn B<br />

Nepurkšta<br />

Not fertilized<br />

2,10 0,19 0,64 1,32 0,42 4,50 39,3 13,2 31,3<br />

Fe-EDTA<br />

1,5%<br />

2,34 0,19 0,67 1,16 0,38 4,83 27,0 14,2 32,7<br />

FeSO 4 1,5% 2,26 0,19 0,68 1,16 0,38 5,12 30,2 14,0 32,4<br />

R 05 / LSD 05 0,118 0,026 0,056 0,142 0,067 1,668 11,85 4,08 3,80<br />

Naudojant 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palà, braðkiø lapuose azoto<br />

padaugëjo 7,6 proc., o nupurðkus geleþies chelatu – 11,4 proc. Kalcio kiekis purkðtø<br />

augalø lapuose sumaþëjo 12,1 proc., kad <strong>ir</strong> kokia geleþies tràðø forma buvo purkðta.<br />

Pastebëta tendencija, kad magnio pasisavinimas, naudojant geleþies tràðas, taip pat<br />

pablogëjo. Geleþies tràðos, nelygu jø forma, mangano patekimà á augalà sumaþino<br />

23,2–31,3 proc. Pastebima tendencija, kad geleþies tràðos didino kalio, vario, cinko<br />

<strong>ir</strong> boro kieká braðkiø lapuose.<br />

139


2004 m. ‘Bogota’ braðkiø kereliai buvo geriausios bûklës (4,7–4,8 balo), panaudojus<br />

visø t<strong>ir</strong>tø koncentracijø geleþies chelato t<strong>ir</strong>palus (2 pav.). Braðkiø kereliai buvo<br />

prasèiausios bûklës, panaudojus geleþies sulfato 1,0% <strong>ir</strong> ypaè 1,5% koncentracijos<br />

t<strong>ir</strong>palus. Ðiuose bandymo variantuose lapai buvo apdeginti.<br />

2 pav. Geleþies tràðø átaka ‘Bogota’ braðkiø kereliø bûklei. Babtai, 2004–2005 m.<br />

Fig 2. Effect of <strong>ir</strong>on fertilizers on plant state of strawberry cv. ‘Bogota’. Babtai, 2004-2005<br />

Kereliø bûklës analizë rodo, kad 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato<br />

t<strong>ir</strong>palai braðkëms yra kenksmingi. 2005 m., nenaudojant geleþies tràðø, neigiamas<br />

didesniø koncentracijø geleþies sulfato poveikis braðkiø kereliø bûklei nepas<strong>ir</strong>eiðkë.<br />

Blogiausia kereliø bûklë nustatyta nepurkðtame variante, o geriausia – prieð metus<br />

panaudojus didþiausios koncentracijos geleþies chelato <strong>ir</strong> sulfato t<strong>ir</strong>palus.<br />

Braðkiø kereliø augumà <strong>ir</strong> iðsivystymà apibûdina lapø, rageliø <strong>ir</strong> þiedynø skaièius<br />

ploto vienete (2 lentelë). 2004 m. iðryðkëjo tendencija, kad purðkiant braðkes<br />

0,5 <strong>ir</strong> 1,5% geleþies sulfato t<strong>ir</strong>palais, jos suformavo apie 29 proc. daugiau lapø<br />

negu nepurkðtos.<br />

Pastebëta tendencija, kad 2003–2004 m. ‘Bogota’ braðkës, purðkiamos 0,5<br />

<strong>ir</strong> 1,5% koncentracijø geleþies sulfato tràðomis, suformavo vidutiniðkai apie 13–<br />

14 proc., o purðkiamos 0,5% geleþies chelato t<strong>ir</strong>palu – apie 6 proc. daugiau lapø<br />

negu nenaudojant tràðø (nors esminiø sk<strong>ir</strong>tumø nebuvo). Per dvejus tyrimø metus<br />

augalø purðkimas 1,0% koncentracijos geleþies sulfato t<strong>ir</strong>palu braðkiø rageliø<br />

skaièiø padidino 7,7 proc. Geleþies tràðos esminio poveikio braðkiø þiedynø skaièiui<br />

neturëjo.<br />

Uogø derlius <strong>ir</strong> vidutinë uogos masë. 2004 m. ‘Bogota’ braðkës derëjo gausiai.<br />

Nupurðkus augalus geleþies chelatais, derlius nepadidëjo (3 lentelë).<br />

140


2 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø kereliø augumui <strong>ir</strong> iðsivystymui.<br />

Babtai, 2003–2004 m.<br />

Table 2. Effect of <strong>ir</strong>on fertilizers on the plant growth and development of strawberry cv.<br />

‘Bogota’. Babtai, 2003-2004<br />

Variantai<br />

Treatments<br />

Nepurkšta<br />

Not fertilized<br />

Lapai, vnt./m 2 ,<br />

2003–2004 m.<br />

Leaves, units/m 2 2003–<br />

2004<br />

Rageliai, vnt./m 2 ,<br />

2003–2004 m.<br />

Crowns, units/m 2 2003–<br />

2004<br />

Žiedynai, vnt./m 2 ,<br />

2004 m.<br />

Inflorescences, units/m 2<br />

2004<br />

192,6 36,4 71,0<br />

Fe-EDTA<br />

0,5%<br />

204,6 33,0 70,0<br />

Fe-EDTA<br />

1,0%<br />

183,0 37,0 60,4<br />

Fe-EDTA<br />

1,5%<br />

191,6 35,2 66,4<br />

FeSO 4 0,5% 217,0 34,4 84,0<br />

FeSO 4 1,0% 185,8 39,2 57,0<br />

FeSO 4 1,5% 220,0 33,4 68,0<br />

R 05 / LSD 05 51,38 10,62 31,52<br />

3 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø uogø derliui. Babtai, 2004–2005 m.<br />

Table 3. Effect of <strong>ir</strong>on fertilizers on the yield of strawberry cv. ‘Bogota’. Babtai, 2004-2005<br />

Variantai<br />

Treatments<br />

Derlius<br />

Yield, t/ha<br />

2004 m. 2005 m. vidutinis / average<br />

Nepurkšta / Not<br />

fertilized<br />

28,5 7,7 18,1<br />

Fe-EDTA 0,5% 27,8 9,5 18,6<br />

Fe-EDTA 1,0% 28,0 7,8 17,9<br />

Fe-EDTA 1,5% 27,9 7,7 17,8<br />

FeSO 4 0,5% 26,0 7,9 17,0<br />

FeSO 4 1,0% 20,9 8,7 14,8<br />

FeSO 4 1,5% 18,5 8,9 13,7<br />

R 05 / LSD 05 5,66 3,03 3,17<br />

141


Braðkes nupurðkus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palais, dël<br />

lapø apdeginimo derlius sumaþëjo ið esmës. Ðiuose bandymo variantuose ið esmës<br />

(<strong>25</strong>–30 proc.) sumaþëjo <strong>ir</strong> vidutinë uogos masë (4 lentelë).<br />

4 lentelë. Geleþies tràðø átaka vidutinei ‘Bogota’ braðkiø uogos masei 2004–2005 m.<br />

Table 4. Effect of <strong>ir</strong>on fertilizers on berry weight. Babtai, 2004–2005<br />

Variantai<br />

Treatments<br />

Nepurkšta / Not<br />

fertilized<br />

Vidutinë uogos masë<br />

Average berry weight, g<br />

2004 m. 2005 m. vidurkis / average<br />

13,8 15,4 14,6<br />

Fe-EDTA 0,5% 13,4 14,9 14,1<br />

Fe-EDTA 1,0% 12,8 11,8 12,3<br />

Fe-EDTA 1,5% 12,3 16,9 14,6<br />

FeSO 4 0,5% 11,7 15,0 13,4<br />

FeSO 4 1,0% 10,4 13,9 12,2<br />

FeSO 4 1,5% 10,5 15,3 12,9<br />

R 05 / LSD 05 2,39 3,74 2,64<br />

2005 m. didþiausias ‘Bogota’ braðkiø derlius gautas variante, kuriame panaudotas<br />

0,5% koncentracijos geleþies chelato t<strong>ir</strong>palas. Derliaus didëjimo tendencija nustatyta,<br />

panaudojus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palus. Vidutinis dvejø<br />

metø braðkiø derlius, panaudojus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palus,<br />

buvo apie 20 proc. maþesnis negu netræðtame variante. Braðkiø purðkimas per lapus<br />

geleþies tràðomis neturëjo esminës átakos vidutinei uogos masei.<br />

Aptarimas. Augalø chlorozë, ats<strong>ir</strong>adusi dël geleþies trûkumo, paprastai nëra tiesioginë<br />

ðio elemento trûkumo pasekmë, kaip kitø mikroelementø atveju. Daþnai tai yra<br />

antrinis efektas, ats<strong>ir</strong>andantis dël geleþies kompleksinës sàveikos su kitais elementais <strong>ir</strong><br />

áva<strong>ir</strong>iais d<strong>ir</strong>voþemio bei aplinkos veiksniais. Turkijos mokslininkø atliktuose tyrimuose<br />

‘Camarosa’ braðkës, kurios pagal iðorinius poþymius prisk<strong>ir</strong>iamos jautrioms geleþies<br />

trûkumui, maþai reagavo á panaudotas geleþies tràðas (Erdal <strong>ir</strong> kt., 2004). Tai galima<br />

paaiðkinti tuo, kad net <strong>ir</strong> esant gausiam geleþies kiekiui augalø lapuose, ji gali bûti fiziologiðkai<br />

neaktyvi <strong>ir</strong> nedalyvauti metabolizmo procesuose (Märschner, 1995; Erdal <strong>ir</strong><br />

kt., 1998). Pavyzdþiui, ðarminiame d<strong>ir</strong>voþemyje atliktais tyrimais nustatyta, kad geleþies<br />

koncentracija chloruotuose augalo lapuose gali bûtu panaði ar net didesnë negu<br />

þaliuose. Tai ið dalies siejama su geleþies lokalizacija augalo audiniuose. Geleþies katijonai<br />

gali bûti fiziologiðkai neaktyvûs net<strong>ir</strong>piose nuosëdose lapø apoplazmoje (Mengel <strong>ir</strong><br />

kt., 1988). Atlikdami ðá tyrimà, tikëjomës, kad geleþies tràðø t<strong>ir</strong>palo purðkimas per lapus<br />

þenkliai sumaþins ar paðalins iðorinius ðio mikroelemento trûkumo poþymius. Purðkiant<br />

braðkes geleþies tràðomis, geleþies kiekis jø lapuose padidëjo 1,6–3,2 karto, taèiau aiðkiø<br />

iðoriniø chlorozës sumaþëjimo poþymiø nenustatyta.<br />

142


Beyers <strong>ir</strong> Terblanche (1971) nuomone, geriausias bûdas áveikti geleþies trûkumo<br />

sukeltà lapø chlorozæ yra d<strong>ir</strong>vos laistymas geleþies chelato t<strong>ir</strong>palais. Taèiau ðarminës<br />

d<strong>ir</strong>vos træðimas geleþies tràðomis ar jos laistymas ðiø tràðø t<strong>ir</strong>palais augalø<br />

chlorozës paprastai neiðgydo (Íîðìàí, 1960). Rekomenduojama ðarminëse d<strong>ir</strong>vose<br />

auganèius augalus purkðti per lapus. Kõksal <strong>ir</strong> kiti mokslininkai (1999) nustatë, kad<br />

kriauðiø purðkimas per lapus geleþies amino rûgðèiø druskø t<strong>ir</strong>palais sumaþino geleþies<br />

trûkumo poþymius <strong>ir</strong> padidino jos kieká lapuose iki 120 proc. Turkijos tyrëjø<br />

nuomone, augalø træðimas geleþies tràðomis per lapus ðarminëje d<strong>ir</strong>voje yra efektyvus<br />

bûdas padidinti geleþies kieká braðkiø lapuose, nes atliktø bandymø duomenys<br />

rodo, kad didinant purðkimø skaièiø, geleþies koncentracija laipsniðkai didëjo. Norint<br />

palaikyti optimalià geleþies koncentracijà braðkiø lapuose, reikia purkðti jas per lapus<br />

geleþies tràðomis sk<strong>ir</strong>tingais augimo tarpsniais (Erdal <strong>ir</strong> kt., 2004).<br />

Natûraliomis sàlygomis d<strong>ir</strong>voþemyje <strong>ir</strong> augale yra tam tikras mitybos elementø balansas.<br />

Iðt<strong>ir</strong>ta, kad egzistuoja konkurencija tarp atsk<strong>ir</strong>ø elementø <strong>ir</strong> vieno perteklius gali<br />

apsunkinti kitø elementø patekimà á augalà (Íîðìàí, 1960; Öåðëèíã, 1978; Erdal <strong>ir</strong> kt.,<br />

2004). Pavyzdþiui, Karaman (1997) atliktais tyrimais nustatyta, kad geleþies tràðos padidino<br />

geleþies koncentracijà pupelëse, bet sumaþino jose fosforo <strong>ir</strong> mikroelementø – cinko,<br />

vario <strong>ir</strong> mangano – kiekius. Geleþies trûkumas gali pas<strong>ir</strong>eikðti dël didelës cinko, mangano,<br />

vario, nikelio, kobalto, chromo, fosforo <strong>ir</strong> karbonatø jonø koncentracijos, taip pat<br />

dël kalio trûkumo maitinamajame t<strong>ir</strong>pale (Íîðìàí, 1960; Erdal <strong>ir</strong> kt., 2004).<br />

Mûsø gauti rezultatai patv<strong>ir</strong>tino Baltarusijos bei kitø ðaliø mokslininkø teiginá,<br />

kad mikroelementai pagerina pagrindiniø mitybos elementø – azoto <strong>ir</strong> kalio – patekimà<br />

á augalà (Òîìà <strong>ir</strong> kt., 1980; Áðóéëî, 2005). Pagerëjus mitybai geleþimi, braðkës<br />

pasisavino iki 11,4 proc. daugiau azoto <strong>ir</strong> iki 6,2 proc. daugiau kalio.<br />

Geleþies tràðø átaka augalø derliui nevienareikðmë. Almaliotis <strong>ir</strong> kt. (2002) nustatë<br />

patikimà tiesioginæ koreliacijà tarp geleþies koncentracijos <strong>ir</strong> derliaus. Taèiau Turkijos<br />

mokslininkø tyrimø duomenimis, kai kuriø veisliø braðkës neigiamai reagavo á<br />

træðimà geleþies tràðomis, <strong>ir</strong> jø derlius sumaþëjo (Türemis <strong>ir</strong> kt., 1997). Belgijos <strong>ir</strong><br />

Norvegijos mokslininkai iðtyrë, kad trûkstant geleþies, braðkës maþiau uþmezgë uogø,<br />

sumaþëjo derlius <strong>ir</strong> uogos masë (Lieten, 2000; Nestby, 2003). Mûsø atliktuose<br />

tyrimuose purðkimas per lapus geleþies tràðomis neturëjo esminës átakos braðkiø derlingumui<br />

<strong>ir</strong> vidutinei uogos masei.<br />

Iðvados. 1. Jautrias geleþies trûkumui ‘Bogota’ veislës braðkes aðtuonis kartus per<br />

vegetacijà nupurðkus 0,5–1,5% koncentracijos geleþies chelato t<strong>ir</strong>palais, geleþies kiekis jø<br />

lapuose padidëja 1,6–1,8 karto, o nupurðkus geleþies sulfato t<strong>ir</strong>palais – 2,3–3,2 karto.<br />

2. Nupurðkus braðkes 1,5% koncentracijos abiejø formø geleþies tràðomis,<br />

augalø lapuose ið esmës padaugëja azoto (7,6–11,4 proc.), o sumaþëja kalcio<br />

(12,1 proc.) <strong>ir</strong> mangano (23,2–31,3 proc.).<br />

3. Nors geleþies kiekis braðkiø lapuose padidëja, purðkimas geleþies chelato <strong>ir</strong><br />

geleþies sulfato tràðø t<strong>ir</strong>palais neturi esminës átakos kereliø augumui <strong>ir</strong> iðsivystymui.<br />

4. Geleþies chelatai pagerina ‘Bogota’ braðkiø kereliø iðorinæ bûklæ, taèiau nepadidina<br />

derliaus <strong>ir</strong> vidutinës uogos masës. 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato<br />

t<strong>ir</strong>palai kartais apdegina braðkiø lapus <strong>ir</strong> pablogina kereliø bûklæ bei sumaþina derliø.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

143


Literatûra<br />

1. Almaliotis D., Velemis D., Bladenopoulou S., Karapetsas N. Leaf nutrient levels of<br />

strawberries (cv. Tudla) in relation to crop yield // ISHS. Acta Horticulture 567. IV International<br />

Strawberry Sympozium. Tempare, Finland, 2002. Vol. 2.<br />

2. Beyers E., Terblanche J. H. Identification and control of trace element deficiencies.<br />

V. Iron deficiency. Decid // Fruit Grower. 1971. 21. P. 265–282.<br />

3. Erdal I., Gürbüz M., Tarakcioðlu C. Effect of foliar acid application on the total and<br />

available Fe concentrations and chlorophyll concentration in tomato plant (Lycopersicum<br />

esculentum L.) grown with nutrient solution. Pamukkale. University Engineering<br />

Faculty. J. of Engineering Sciences. 1998. 4/1–2. P. 481–485.<br />

4. Erdal I., Kepenek K., Kizilgõz I. Effect of foliar <strong>ir</strong>on applications at different growth<br />

stages on <strong>ir</strong>on and some nutrient concentrations in strawberry cultivars // Turk. J. of<br />

Agriculture and Forestry. 2004. 28. P. 421–427.<br />

5. Kannan S., Wittwer S. H. Effects of chelation and urea on <strong>ir</strong>on absorption by intact<br />

leaves and enzymically isolated leaf cells // Plant Physiol. Suppl. 1965. 40. P. 12.<br />

6. Karaman M. R., Brohi A. R., Inal A., Taban S. Effect of <strong>ir</strong>on and zinc applications on<br />

growth and on concentration of mineral nutrients of bean (Phaseolus vulgaris L.) grown<br />

in artificial siltation soils // Tr. J. of Agriculture and Forestry. 1997. 23. P. 341–348.<br />

7. Kõksal I., Dumanoðlu H., Günes N. T., Aktas M. The effects of different amino acid<br />

chalate foliar fertilizers on yield, fruit quality, shoot growth and Fe, Zn, Cu, Mn concentration<br />

of leaves in williams pear cultivar (Pyrunus communis L.). Tr. J. of Agriculture and<br />

Forestry. 1999. 23. P. 651–658.<br />

8. Lieten F. Iron nutrition of strawberries grown in peat bags // Small Fruits Review.<br />

2000. 1(2). P. 103–112.<br />

9. Märschner H. Mineral nutrition of higher plants. 2nd Addition Academic Press<br />

Inc. 1995.<br />

10. Mengel K., Geurtzen G. Relationship between <strong>ir</strong>on chlorosis and alkalinity in zea<br />

mays // Physiol. Plantarum. 1988. 72. P. 460–465.<br />

11. Nestby R., Lieten F., Pivot D., Raynal Lacroix C., Tagliavini M., Evenhuis B.<br />

Influence of mineral nutrient on strawberry fruit quality and the<strong>ir</strong> accumulation in plant<br />

organs. A Review // Proceedings of the Euro Berry Symposium COST 836 Final workshop.<br />

Ancona, Italy, 2003. P. 201–206.<br />

12. Neumann P. M., Prinz R. Foliar <strong>ir</strong>on spray potentiates growth of seedlings on<br />

<strong>ir</strong>on-free media // Plant Physiol. 1975. 55. P. 988–990.<br />

13. Türemis N., Ozguven A. L., Paydas S., Idem G. Effects of sequestrene Fe-138 as<br />

foliar and soil application on yield and earliness of some strawberry cultivars in the<br />

subtropics // ISHS. Acta Horticulture 441, V Temperate Zone Fruit in the Tropics and<br />

Subtropics Adana, Turkey, 1997.<br />

14. Ýurawicz E. Truskawka i poziomka. Warszawa: Pañstwowe wydawnictwo rolnicze<br />

i leúne, 1997. P. 109.<br />

15. Áðóéëî À. Ñ., Ñàìóñü Â. À., Êàìçîëîâà Î. È., Ñîáîëåâ Ñ. Þ. Âëèÿíèå<br />

ìèêðîýëåìåíòîâ (Ìn, Zn, B), èõ êîìáèíàöèé è ñïîñîáîâ âíåñåíèÿ íà<br />

ïðîäóêòèâíîñòü ÿáëîíè â óñëîâèÿõ çàïàäíîé ÷àñòè ðåñïóáëèêè Áåëàðóñü //<br />

Ïëîäîâîäñòâî. Ñàìîõâàëîâè÷è, 2005. Ò. 17(1). Ñ. 159–165.<br />

16. Ìèíåðàëüíîå ïèòàíèå ïëîäîâûõ è ÿãîäíûõ êóëüòóð. Ïîä ðåä. Íîðìàíà<br />

Ô. ×. Ìîñêâà: Ãîñ. èçä–âî ñåëüõîç. ëèòåðàòóðû, 1960. Ñ. 351–375.<br />

17. Òîìà Ñ. È., Ðàáèíîâè÷ È. Ç., Âåëèêñàð Ñ. Ã. Ìèêðîýëåìåíòû è óðîæàé.<br />

Êèøèí¸â: Øòèèíöà, 1980. Ñ. 159–171.<br />

144


18. Öåðëèíã Â. Â. Àãðîõèìè÷åñêèå îñíîâû äèàãíîñòèêè ìèíåðàëüíîãî<br />

ïèòàíèÿ ñåëüñêîõîçÿéñòâåííûõ êóëüòóð. Ìîñêâà: Íàóêà, 1978. 216 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EFFECT OF FOLIAR APPLIED IRON FERTILIZERS ON<br />

NUTRITION, DEVELOPMENT AND YIELD OF<br />

STRAWBERRY CV. ‘BOGOTA’<br />

L. Buskienë, N. Uselis, J. Lanauskas<br />

Summary<br />

Effect of <strong>ir</strong>on chelate and <strong>ir</strong>on sulphate on strawberries of cv. ‘Bogota’ was<br />

investigated at the Lithuanian Institute of Horticulture in 2003-2005. Strawberries<br />

grown on alkaline soil were sprayed 8 times during growth season either with <strong>ir</strong>on<br />

chelate (Fe-EDTA) or <strong>ir</strong>on sulphate (Fe 2<br />

SO 4<br />

) solutions at the concentration 0.5,<br />

1.0 and 1.5 proc. Chemical leaf composition, plant development and yield were<br />

evaluated. Iron chelate increased leaf <strong>ir</strong>on content by 1.6–1.8 times, <strong>ir</strong>on sulphate –<br />

by 2.3–3.2 times in comparison with the control treatment where <strong>ir</strong>on fertilizers<br />

were not applied. After application of both fertilizers at 1.5 proc. concentration<br />

solution nitrogen content in strawberry leaves was increased by 7.6–11.4 proc.,<br />

whereas content of leaf calcium and manganese decreased respectively by 12.1<br />

and 23.2–31.3 proc. Iron chelate improved plant state but neither <strong>ir</strong>on chelate nor<br />

sulphate had positive effect on strawberry plant growth and yield.<br />

Key words: growth, strawberries, <strong>ir</strong>on chelate, <strong>ir</strong>on sulphate, berry weight,<br />

yield.<br />

145


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

KOMPLEKSINIS UV-B SPINDULIUOTËS IR<br />

TEMPERATÛROS POVEIKIS BRAÐKIØ<br />

FIZIOLOGINIAMS RODIKLIAMS<br />

Akvilë URBONAVIÈIÛTË 1,2 , Giedrë SAMUOLIENË 1,2 ,<br />

Jurga SAKALAUSKAITË 1 , Pavelas DUCHOVSKIS 1,2 ,<br />

Auðra BRAZAITYTË 1 , Jûratë Bronë ÐIKÐNIANIENË 1 ,<br />

Gintarë ÐABAJEVIENË 1 , Kæstutis BARANAUSKIS 1 ,<br />

Sandra SAKALAUSKIENË 1 , Nobertas USELIS 1 ,<br />

Bronislovas GELVONAUSKIS 1<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas P. Duchovskis@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio universitetas, LT-53067, Noreikiðkës, Kauno r.<br />

2005–2006 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute fitotrono<br />

komplekse atliktø tyrimø tikslas – ávertinti kompleksiná UV-B spinduliuotës <strong>ir</strong> temperatûros<br />

poveiká braðkiø fiziologiniams rodikliams. T<strong>ir</strong>ta, kaip 9 dienø trukmës ðvitinimas<br />

0, 2 <strong>ir</strong> 4 kJ UV-B spinduliuotës dozëmis veikia braðkiø augimà, pigmentø <strong>ir</strong><br />

cukrø biosintezæ esant 21/14°C <strong>ir</strong> <strong>25</strong>/16°C aplinkos temperatûrai. Chlorofilø <strong>ir</strong> karotinoidø<br />

koncentracija nustatyta spektrofotometriniu, cukrø – chromatografiniu metodu.<br />

Trumpalaikis ðvitinimas UV-B spinduliuote didelio poveikio braðkiø – ilgos vegetacijos<br />

augalo – biometriniams rodikliams nedaro. 2 kJ spinduliuotë skatina fotosintezës<br />

pigmentø <strong>ir</strong> cukrø sintezæ tiek esant optimaliai, tiek aukðtesnei temperatûrai.<br />

T<strong>ir</strong>ta aukðtesnë temperatûra savaime sukelia stresiná poveiká, taèiau padidintos temperatûros<br />

sàlygomis braðkiø cukrø metabolizmo sistema maþiau jautriai reaguoja á<br />

sk<strong>ir</strong>tingas UV-B spinduliuotës dozes.<br />

Raktaþodþiai: braðkës, cukrûs, fotosintezës pigmentai, lapø plotas, temperatûra,<br />

UV-B spinduliuotë, þalia masë.<br />

Ávadas. Dël stratosferos ozono sluoksnio plonëjimo didëja UV-B spinduliuotës<br />

srautas, pasiekiantis þemës pav<strong>ir</strong>ðiø <strong>ir</strong> turintis áva<strong>ir</strong>ø esminá fotobiologiná poveiká augalams<br />

(Yang <strong>ir</strong> kt., 2004). Augalai gali toleruoti ar prisitaikyti prie maþo UV-B spinduliuotës<br />

kiekio, taèiau intensyvi radiacija jiems kenkia. Didesnis nei áprasta UV-B<br />

spinduliuotës srautas sukelia DNR, fermentø, membranø, fitohormonø, fotosintezës<br />

sistemø paþeidimus làstelëse (Strid <strong>ir</strong> kt., 1994; Tevini, 1994; Rozema <strong>ir</strong> kt., 1997;<br />

Jansen <strong>ir</strong> kt., 1998; Mackerness, 2000; Hollosy, 2002; Baier <strong>ir</strong> kt., 2005). Pakitimai<br />

<strong>ir</strong> paþeidimai molekuliniame lygmenyje neiðvengiamai veikia daugelá morfologiniø,<br />

146


fiziologiniø <strong>ir</strong> metaboliniø atsakø augaluose: sumaþëjæs lapø plotas <strong>ir</strong> þalios bei sausos<br />

masës kaupimas, padidëjusi UV-B absorbuojanèiø fermentø sintezë, fotosistemos II<br />

efektyvumo sumaþëjimas, padidëjæs cukrø kiekis audiniuose (Heijari <strong>ir</strong> kt., 2006, Mackerness,<br />

1997). Vis dëlto UV-B spinduliuotë savitai veikia rûðá <strong>ir</strong> priklauso nuo genetiniø<br />

augalo savybiø, bendros bûklës bei kitø aplinkos sàlygø poveikio. (Allen <strong>ir</strong> kt., 1999,<br />

Mackerness, 2000). Tai daro átakà svarbiems ekosistemos lygmens veiksniams, pavyzdþiui,<br />

konkurencijai tarp rûðiø, atsparumui ligoms, kenkëjams (Allen <strong>ir</strong> kt., 1999).<br />

Natûralioje aplinkoje abiotiniai stresoriai veikia ne atsk<strong>ir</strong>ai, o kaip kompleksas sàveikaujanèiø<br />

streso veiksniø. Veikiant keletui iðoriniø stresà sukelianèiø veiksniø, susiaurëja<br />

augalø tolerancijos intervalai, nes augalai, iðeikvojæ savo vidinius iðteklius prisitaikyti<br />

prie vieno iðorinio veiksnio, turi maþesnes galimybes prisitaikyti prie kitø nepalankiø<br />

faktoriø poveikio (Rhodes, Nadolska-Orczyk, 2001; Pastori, Foyer, 2002; Mozafar,<br />

Oertli, 1990). UV-B spinduliuotës srauto padidëjimas aplinkoje paprastai sutampa su<br />

pakilusia aplinkos temperatûra. Net keliais laipsniais didesnë nei áprasta temperatûra<br />

veikia daugelio fermentø funkcijà <strong>ir</strong> sukelia ðilumos streso baltymø ekspresijà (Jenkins<br />

<strong>ir</strong> kt., 1997). Taèiau, kaip augalai reaguoja á kompleksiná UV-B spinduliuotës <strong>ir</strong> padidëjusios<br />

aplinkos temperatûros kompleksiná poveiká, nëra iðt<strong>ir</strong>ta.<br />

Darbo tikslas – ávertinti kompleksiná UV-B spinduliuotës <strong>ir</strong> temperatûros poveiká<br />

braðkiø fiziologiniams <strong>ir</strong> biometriniams rodikliams.<br />

Tyrimø objektas <strong>ir</strong> metodai. Tyrimai atlikti Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute fitotrono komplekse 2005–2006 metais. Desertiniø braðkiø (Fragaria<br />

x ananassa Duch. var. ‘Senga Sengana’) daigai buvo auginami po 3 augalus 5<br />

litrø vegetaciniuose induose (trimis pakartojimais), neutralaus rûgðtumo substrate<br />

(6–6,5 pH). Braðkës balandþio–b<strong>ir</strong>þelio mënesiais augintos ðiltnamyje, o likus savaitei<br />

iki veikimo UV-B spinduliais <strong>ir</strong> temperatûra, perkeltos á fitokameras.<br />

Kontrolinëse fitokamerose buvo palaikoma 21°C temperatûra dienà <strong>ir</strong> 14°C temperatûra<br />

naktá. Vadovaujantis klimato kaitos prognostiniais modeliais (IPCC, 2001),<br />

atðilusiam klimatui imituoti fitokamerose buvo palaikoma keturiais laipsniais aukðtesnë<br />

temperatûra dienà (<strong>25</strong>°C) <strong>ir</strong> dviem laipsniais aukðtesnë temperatûra naktá (16°C).<br />

Fotoperiodo trukmë 14 val. UV-B spinduliuotæ skleidë UV-B lempos (TL 40W/12 RS<br />

UV-B Medical, Philips, JAV). Augalai buvo veikiami tokiomis UV-B dozëmis – 0 kJ,<br />

2 kJ <strong>ir</strong> 4 kJ per parà. Ekspozicijos fitokamerose trukmë – 9 dienos. Remiantis ankstesniais<br />

tyrimais, tai trumpiausia veikimo trukmë, kurios efektas augalø fiziologiniams<br />

rodikliams yra esminis.<br />

Tyrimo pabaigoje buvo nustatytas penkiø kiekvieno paveikto derinio augalø lapø<br />

plotas <strong>ir</strong> þalia augalø masë, taip pat fotosintezës pigmentø <strong>ir</strong> cukrø kiekis.<br />

Fotosintezës pigmentø kiekis þalioje masëje buvo nustatytas paruoðus 100% acetono<br />

ekstraktus <strong>ir</strong> atlikus analizæ – iðanalizavus juos spektrofotometriniu Wetshtein metodu<br />

(Ãàâðèëåíêî <strong>ir</strong> kt., 2003). Spektrofotometras – „Genesys 6“ (ThermoSpectronic, JAV).<br />

Cukrø bandiniams paruoðti apie 1 g þaliavos sutrinta keramikinëje grûstuvëlëje <strong>ir</strong><br />

uþpilta 4 ml 60–70°C bidistiliuoto vandens. Po paros ekstraktas nufiltruotas naudojant<br />

celiulioziná filtrà, o prieð analizæ – per 0,2 µm porø skersmens membraniná filtrà.<br />

Chromatografinë analizë atlikta naudojant Shimadzu 10A HPLC sistemà su refrakcijos<br />

indekso detektoriumi (Shimadzu, Japonija) <strong>ir</strong> Adsorbosil NH2- kolonà (150 mm x<br />

4,6 mm). Judrioji fazë – 75% acetonitrilas. Tëkmës greitis – 1 ml/min.<br />

147


Rezultatai apdoroti <strong>ir</strong> statistiniai skaièiavimai atlikti naudojant „MS Excel“ programiná<br />

paketà.<br />

Rezultatai. Kompleksiðkai paveikus UV-B spinduliuote <strong>ir</strong> sk<strong>ir</strong>tinga temperatûra,<br />

cukrø kiekybiniai sk<strong>ir</strong>tumai buvo esminiai (1 pav.). Esant optimaliai temperatûrai,<br />

bendras cukrø kiekis lapuose didesnis, negu esant aukðtai temperatûrai. Paveikus 21/<br />

14°C temperatûra, gliukozës sukaupta apie 1,5 karto daugiau, o maltozës – 2–5 kartus<br />

daugiau negu paveikus <strong>25</strong>/16°C temperatûra. Abiem atvejais daugiausia monocukrø,<br />

kaip <strong>ir</strong> maltozës, sukaupta paveikus 2 kJ spinduliuote (esant optimaliai aplinkos<br />

temperatûrai cukrø lapuose sukaupta beveik dvigubai daugiau negu esant aukðtesnei<br />

temperatûrai). Taèiau optimalios temperatûros sàlygomis cukrø biosintezë buvo<br />

labiausiai slopinama ðvitinant 4 kJ UV-B, o padidintos temperatûros sàlygomis –<br />

kontroliniuose augaluose. Veikiant 4 kJ spinduliuote <strong>ir</strong> <strong>25</strong>/16°C temperatûra buvo<br />

sintetinama <strong>ir</strong> nedaug sacharozës. Labiausiai UV-B spinduliuotë <strong>ir</strong> temperatûra veikia<br />

fruktozës metabolizmà.<br />

1 pav. Angliavandeniø pasisk<strong>ir</strong>stymas braðkiø lapuose augalus paveikus UV-B<br />

spinduliuote esant sk<strong>ir</strong>tingoms aplinkos temperatûros sàlygoms<br />

Fig. 1. Carbohydrate distribution in leaves of strawberry after UV-B <strong>ir</strong>radiation exposure<br />

under different temperature conditions<br />

2 pav. Fotosintezës pigmentø kiekis braðkiø lapuose kompleksiðkai paveikus UV-B<br />

spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 2. Photosynthetic pigment content in strawberry leaves after UV-B and temperature<br />

exposure<br />

148


Fotosintezës pigmentø kaupimàsi braðkiø lapuose temperatûra veikia maþiau. Ið<br />

esmës daugiau chlorofilø a, b <strong>ir</strong> karotinoidø sukaupta ðvitinant 2 kJ tiek esant 21/<br />

14°C, tiek <strong>25</strong>/16°C dienos/nakties aplinkos temperatûrai (2 pav.).<br />

3 pav. Þalia braðkiø lapø <strong>ir</strong> ðaknø masë paveikus UV-B spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 3. Fresh weight of strawberry leaves and roots after UV-B and temperature exposure<br />

Esminiø pokyèiø vertinant devyniø dienø trukmës UV-B <strong>ir</strong> temperatûros poveiká<br />

þalios masës kaupimui lapuose <strong>ir</strong> ðaknyse bei lapø ploto augimui nenustatyta<br />

(3 <strong>ir</strong> 4 pav.)<br />

4 pav. Braðkiø lapø plotas kompleksiðkai paveikus UV-B spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 4. Area of strawberry leaves after UV-B and temperature complex exposure<br />

Aptarimas. Augalai yra iðvystæ unikalius mechanizmus reaguoti á nuolatos kintanèias<br />

aplinkos sàlygas: jauèia supanèià aplinkà <strong>ir</strong> pritaiko savo fiziologinius bei<br />

metabolitinius procesus homeostazei palaikyti. Reakcija á stresà sukelianèius veiksnius<br />

yra nulemta augalo genomo <strong>ir</strong> pakitusiø aplinkos sàlygø sàveikos (Pastori, Foyer,<br />

2002). Augalø morfologiniai <strong>ir</strong> fotomorfogenetiniai poþymiai yra jautresni UV-B<br />

radiacijai negu fotosintezës intensyvumas ar bendra sausos masës produkcija. Taèiau<br />

sumaþëjæs biomasës kaupimas ar fotosintezës pigmentø kiekis gali bûti patikimi<br />

augalo jautrumo UV-B radiacijai rodikliai (Smith <strong>ir</strong> kt, 2000; Liu <strong>ir</strong> kt, 2005). Mûsø<br />

atliktuose bandymuose 9 dienas sk<strong>ir</strong>tingos UV-B spinduliuotës aplinkoje augusiø braðkiø<br />

149


iometriniai rodikliai skyrësi tik paklaidos ribose <strong>ir</strong> nepriklausë nuo aplinkos temperatûros.<br />

Braðkiø vegetacijos laikotarpis ilgas, todël trumpalaikis poveikis augalø augimui<br />

didelës átakos neturi. Bendras chlorofilø kiekis taip pat gali bûti panaudojamas<br />

augalo tolerancijai UV-B spinduliuotei ávertinti: augalai, kuriuose yra daugiau chlorofilo<br />

<strong>ir</strong> jo kiekis iðlieka nesumaþëjæs veikimo metu, yra tolerantiðkesni UV-B spinduliuotei<br />

(Smith <strong>ir</strong> kt., 2000). Vertinant mûsø gautus duomenis, fotosintezës pigmentø<br />

(<strong>ir</strong> chlorofilø, <strong>ir</strong> karotinoidø) sintezë, neatsiþvelgiant á temperatûrà, labiau skatinama<br />

veikiant 2 kJ spinduliuotës doze. Didesnëmis UV-B dozëmis paþeidus fotosistemà II<br />

<strong>ir</strong> Kalvino ciklo fermentø veiklà, pas<strong>ir</strong>eiðkia fotosintezës inhibicija (Mackerness, 1997;<br />

Smith <strong>ir</strong> kt., 2000). Vis dëlto augalai gali prisitaikyti prie ðios pakitusios aplinkos<br />

indukuodami UV-B absorbuojanèiø pigmentø biosintezæ <strong>ir</strong> taip apsaugoti savo fotosintezës<br />

sistemà (Allen <strong>ir</strong> kt., 1999).<br />

Fotosintezës inhibicijos efektas siejamas su padidëjusiu t<strong>ir</strong>piø cukrø kaupimusi<br />

audiniuose (Mackerness, 1997). Keletas reakcijos á stresà mechanizmuose dalyvaujanèiø<br />

genø yra indukuojami gliukozës (Gupta, Kaur, 2005), cukrûs taip pat yra susijæ<br />

su reaktyviø deguonies formø metabolizmu (Couee <strong>ir</strong> kt., 2006), jiems prisk<strong>ir</strong>iamas<br />

svarbus angliavandeniø metabolizmo reguliavimo kintanèiomis aplinkos sàlygomis<br />

vaidmuo veikiant fermentui heksokinazei (Gibson, 2000; Shenn <strong>ir</strong> kt., 1999).<br />

Padidëjusi bendra cukrø koncentracija ðvitinant braðkes 2 kJ UV-B doze abiem temperatûros<br />

reþimais, kaip <strong>ir</strong> intensyvesnë chlorofilø sintezë, indukuoja optimalias augalo<br />

augimo <strong>ir</strong> fotosintezës sistemos veiklos sàlygas. Paveikus didesne spinduliuotës<br />

doze, cukrø, o ypaè fruktozës, kiekis reikðmingai sumaþëja. Atliekant mûsø trumpalaikio<br />

veikimo UV-B <strong>ir</strong> temperatûra tyrimà, esminio fotosintezës sistemos inhibicijos<br />

efekto nepastebëta. Literatûros duomenimis, iki 30 proc. padidëjusi UV-B spinduliuotë<br />

dar nedaro esminio poveikio fotosintezës produktyvumui <strong>ir</strong> pigmentø sintezei<br />

(Allen <strong>ir</strong> kt., 1999).<br />

Aukðtesnë temperatûra savaime pasiþymi stresiniu poveikiu <strong>ir</strong> sukelia cukrø bei<br />

fotosintezës sistemos atsakà. Taèiau, esant aukðtesnei (<strong>25</strong>/16°C) temperatûrai, ðios<br />

augalø reguliavimo sistemos ne taip jautriai reaguoja á sk<strong>ir</strong>tingas UV-B spinduliuotës<br />

dozes, kaip kontrolinës temperatûros variantas (21/14°C). Temperatûra katalizuojanèiai<br />

veikia angliavandeniø apykaitos fermentø aktyvumà (Lafta, Lorenzen, 1995),<br />

todël, esant aukðtesnei nei optimali temperatûrai, tiek monocukrø, tiek dicukrø sukaupta<br />

ið esmës maþiau.<br />

Iðvados. 1. Trumpalaikis UV-B spinduliuotës poveikis esminës átakos braðkiø<br />

augimo biometriniams rodikliams nedaro.<br />

2. 2 kJ UV-B spinduliuotë labiausiai skatino fotosintezës pigmentø <strong>ir</strong> cukrø sintezæ<br />

tiek esant optimaliai, tiek aukðtai temperatûrai.<br />

3. Aukðtesnë aplinkos temperatûra savaime sukelia stresiná poveiká braðkëms,<br />

taèiau, esant aukðtesnei temperatûrai, fotosintezës pigmentø <strong>ir</strong> angliavandeniø sintezë<br />

maþiau jautriai reaguoja á UV-B spinduliuotës poveiká.<br />

Padëka. Autoriai dëkingi Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui uþ finansinæ<br />

paramà.<br />

Gauta 2006-11-10<br />

Parengta spausdinti 2006-12-11<br />

150


Literatûra<br />

1. Allen D. J., Nogues S., Morison J. I. L., Greenslade P. D., Mcleod A. R., Baler N. R.<br />

A th<strong>ir</strong>ty percent increase in UV-B has no impact on photosynthesis in well-watered and<br />

droughted pea plants in the field // Global Change Biology. 1999. Vol. 5. P. 235–244.<br />

2. Baier M., Kandlbinder A., Golldack D., Dietz K.-J. Oxidative stress and ozone: perception,<br />

signaling and response // Plant, Cell and Env<strong>ir</strong>onment. 2005. Vol. 28. P. 1012–1020.<br />

3. Couee I., Sulmon C., Gousabet G., Amrani A. Involvement of soluble sugars in<br />

reactive oxygen species balance and responses to oxidative stress in plants // Journal of<br />

Experimental Botany. 2006. Vol. 57. P. 449–459.<br />

4. Gibson S. I. Plant Sugar-Response pathways. Part of a Complex regulatory web //<br />

Plant Physiology. 2000. Vol. 124. P. 1532–1539.<br />

5. Gupta A. K., Kaur N. Sugar signaling and gene expression in relation to carbohydrate<br />

metabolism under abiotic stresses in plants // J.Biosci. 2005. Vol. 30. P. 761–776.<br />

6. Heijari J., Kivima M., Hartikainen H., Julkunen-Tiitto R., Wulff A. Responses of<br />

strawberry (Fragariaxananassa) to supplemental UV-B radiation and selenium under<br />

field conditions // Plant and Soil. 2006. Vol. 282. P. 27–39.<br />

7. Hollosy F. Effects of ultraviolet radiation on plant cell // Micron. 2002. Vol. 33.<br />

P. 179–197.<br />

8. Jenkins M. E., Suzuki T. C., Mount D. W. Evidence that heat and ultraviolet radiation<br />

activate a common stress-response program in plants that is altered in the uvh6<br />

Mutant of Arabidopsis thaliana // Plant Physiology. 1997. Vol. 115. P. 1351–1358.<br />

9. IPCC. An assessment of the intergovernmental Panel on Climate Change: Synthesis<br />

report. 2001. Wembley. 34 p.<br />

10. Jansen M. A. K., Gaba V., Grreeberg B. M. Higher plants and UV-B radiation:<br />

balancing damage, repa<strong>ir</strong> and acclimation // Trends in plant science. 1998. Vol. 3. P. 131–135.<br />

11. Lafta A. M., Lorenzen J. H. Effect of high temperature on plant growth and<br />

carbohydrate metabolism in potato // Plant Physiology. 1995. Vol. 109. P. 637–643.<br />

12. Liu L.-X., Xu S.-M., Woo K. C. Solar UV-B radiation on growth, photosynthesis<br />

and the xanthophyll cycle in tropical acacias and eucalyptus // Env<strong>ir</strong>onmental and Experimental<br />

Botany. 2005. Vol. 54. P. 121–130.<br />

13. Mackerness S.-H. Plant responses to ultraviolet B (UV-B: 280–320 nm) stress:<br />

What are the key regulators // Plant Growth Regulation. 2000. Vol. 32. P. 27–39.<br />

14. Mackerness S. A.-H., Surplus S. L., Jordan B. R., Thomas B. Ultraviolet-B effects<br />

on transcript levels of photosynthetic genes are not mediated through carbohydrate<br />

metabolism // Plant, Cell and Env<strong>ir</strong>onment. 1997. Vol. 20. P. 1431–1437.<br />

15. Mozafar A., Oertli J. J. Multiple stress and growth of barley: effect of salinity and<br />

temperature shock // Plant and Soil. 1990. Vol. 128. P. 153–160.<br />

16. Pastori G. M., Foyer C. H. Common components, networks, and pathways of<br />

cross-tolerance to stress. The central role of “Redox” and Abscisic acid-mediated controls<br />

// Plant Physiology. 2002. Vol. 129. P. 460–468.<br />

17. Rhodes D., Nadolska-Orczyk A. Plant stress physiology. Encyclopedia of life<br />

sciences. 2001. Nature publishing group.<br />

18. Rozema J., Jos van de Staaij, Bjorn L. O., Caldwell M. UV-B as an env<strong>ir</strong>onmental<br />

factor in plant life: stress and regulation // Tree. 1997. Vol.12. P. 22–28.<br />

19. Sheen J., Zhou L., Jang J.-C. Sugars as signaling molecules // Current Opinion in<br />

Plant Biology. 1999. Vol. 2. P. 410–418.<br />

20. Smith J. L., Burritt D. J., Bannister P. Shoot dry weight, chlorophyll and UV-Babsorbing<br />

compounds as indicators of plant’s sensitivity to UV-B radiation // Annals of<br />

Botany. 2000. Vol. 86. P. 1057–1063.<br />

151


21. Strid A., Chow W. S., Anderson J. M. UV-B damage and protection at the molecular<br />

level in plants // Photosynthesis Research. 1994. Vol. 39. P. 475–489.<br />

22. Tevini M. Physiological changes plants related to UVB-radiation: an overview //<br />

Stratospheric Ozone Depletion and UV-B Radiation in the Biosphere. Springer-Verlag,<br />

Berlin, Heidelberg, 1994. P. 37–55.<br />

23. Yang H., Zhao Z., Qiang W., An L., Xu S., Wang X. Effects of enhanced UV-B<br />

radiation on the hormonal content of vegetative and reproductive tissues of two tomato<br />

cultivars and the<strong>ir</strong> relationships with reproductive characteristics // Plant Growth Regulation.<br />

2004. Vol. 42. P. <strong>25</strong>1–<strong>25</strong>8.<br />

24. Ãàâðèëåíêî Â. Ô., Æûãàëîâà Ò. Â., Áîëüøîé ïðàêòèêóì ïî ôîòîñèíòåçó.<br />

Ìîñêâà: Aêaäåìèÿ, 2003. <strong>25</strong>6 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE COMPLEX EXPOSURE OF TEMPERATURE AND<br />

UV-B IRRADIATION ON PHYSIOLOGICAL INDICES IN<br />

STRAWBERRY<br />

A. Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë, P. Duchovskis, A. Brazaitytë,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë<br />

Summary<br />

Experiments were performed at the Lithuanian Institute of Horticulture, phytotron<br />

complex in 2005–2006. The object of this study was to evaluate the complex<br />

exposure of temperature and UV-B <strong>ir</strong>radiation on physiological indices in strawberry.<br />

The effect of 0, 2 and 4 kJ <strong>ir</strong>radiation doses on growth parameters, photosynthetic<br />

pigment and carbohydrates contents was investigated when env<strong>ir</strong>onmental temperature<br />

was 21/14°C and <strong>25</strong>/16°C. Chlorophyll and carotenoid content was evaluated<br />

using spectrophotometric method, while carbohydrates – using high performance<br />

liquid chromatography. Short-term UV-B exposure has no significant effect<br />

on strawberry biometric parameters. Though the increase in photosynthetic pigment<br />

and carbohydrate contents, when plants were exposed to 2 kJ <strong>ir</strong>radiation indicate<br />

that these conditions are optimal for growth at optimal and high temperature. Higher<br />

temperature itself is a stress factor, although at higher temperatures, strawberry<br />

carbohydrate system is less sensitive to different UV-B <strong>ir</strong>radiation doses.<br />

Key words: strawberry, carbohydrates, photosynthetic pigments, leaf area, UV-B<br />

<strong>ir</strong>radiation, fresh weight.<br />

152


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

THE EFFECT OF ABAMECTIN ON STRAWBERRY<br />

MITE TARSONEMUS PALLIDUS<br />

(ACARI: TARSONEMIDAE) IN STRAWBERRIES<br />

Laimutis RAUDONIS<br />

Lithuanian Institute of Horticulture, Laboratory of Plant Protection.<br />

LT-54333 Babtai, Kaunas distr., Lithuania.<br />

E-mail l.raudonis@lsdi.lt<br />

The effect on the seasonal abundance of strawberry mite (Tarsonemus pallidus<br />

Banks.) and toxicity of Abamectin 18 g l -1 was studied in strawberries under field<br />

conditions in 2005–2006. Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to<br />

very toxic 3 and 7 days after treatment and slightly toxic 21 days after treatment.<br />

The mortality of strawberry mite ranged from 58.9 to 77.8 proc. 3 and 7 days and<br />

41.9–48.4 proc. 21 days after treatment, respectively. Abamectin 18 g l -1 , 18.0 g<br />

AI ha -1 was only moderately toxic (mortality – 50.5–56.9 proc.) 3 and 7 and slightly<br />

toxic (mortality – 40.9 and 41.6 proc.) 21 days after treatment. The field rate (9.0 g<br />

AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic (mortality – 43.7–45.6 proc.) 3 and<br />

7 and from non to slightly toxic (mortality – 16.3–30.6%) 21 days after treatment.<br />

The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin<br />

18 g l -1 , 9.0 g AI ha -1 , meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1<br />

was similar to the toxicity of Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite.<br />

Key words: Abamectin, rates, strawberry, Tarsonemus pallidus, toxicity.<br />

Introduction. Outbreaks of phytophagous mites have been induced mostly<br />

due to applications of broad-spectrum pesticides that kill predators, which would<br />

control these mites. The widely used synthetic pyrethroids are very effective against<br />

pest insects, but it has not any effect on mites and it causes increasing phytophagous<br />

mite populations that induce severe damage of plants (Edland, 1994; Raudonis<br />

2004). On the other hand, frequent acaricide applications against the increased phytophagous<br />

mite population result in greater resistance (Elzen, Hardee, 2003; Van<br />

Leeuwen et al., 2005). Integrated pest management (IPM), which is based on selective<br />

toxicity to the phytophagous mites and harmless to predatory mite, became the<br />

most relevant strategy of plant protection (Edland, 1994; Leake, 2000; Linquist,<br />

2000; Klassen, 2000).<br />

Strawberry mite is one of the key pests of horticultural plants, causing serious<br />

ind<strong>ir</strong>ect damage to the crop in Lithuania (Raudonis, 2002, 2005). There have not<br />

153


een reported enough data on toxicity of acaricides against phytophagous mites in<br />

strawberries. Variety resistance to two spotted spider mite and diseases was tested<br />

in strawberries in Lithuania (Raðinskienë, 1995, 1997; Uselis, Raðinskienë, 1995,<br />

2001). Some pesticides were tested against spider mites in other crops (Nauen et al.,<br />

2001; Choi et al., 2003; Hardman et al., 2003; Bostanian et al., 2004; Raudonis et al.,<br />

2004; Martínez-Villar et al., 2005).<br />

Experiments performed in 2005–2006 were designed to clarify how Abamectin<br />

affects strawberry mite in strawberries.<br />

Materials and methods. The field trials were carried out in the open field of<br />

strawberries of Lithuanian Institute of Horticulture in 2005–2006. The strawberries (variety<br />

‘Senga Sengana’) were planted in 2004. 62 500 seedlings per hectare were planted.<br />

The soil was fertilized with N – 40 kg ha -1 before flowering. Euparen M 500WG 3.0 kg<br />

ha -1 at 61 growth stage was treated for disease control during flowering.<br />

The trial was carried out according trial plan as presented in Table 1.<br />

Treatment<br />

Variantas<br />

Untreated / nepurkšta<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Lambdacihalotrin 50 g l -1<br />

Table 1. Trial plan<br />

1 lentelë. Bandymo planas<br />

Trade name<br />

Preparato registracijos pavadinimas<br />

A Rate (g AI ha -1 )<br />

Norma, g v.m. ha -1<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 Envidor SC 240 g l -1 96.0<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Karate EC 50 g l -1<br />

-<br />

21.6<br />

18.0<br />

9.0<br />

<strong>25</strong>.0<br />

A<br />

AI – active ingredient / veiklioji medþiaga<br />

Table 2. Weather c<strong>ir</strong>cumstances at application in 2005–2006<br />

2 lentelë. Oro sàlygos purðkimo metu 2005–2006 m.<br />

Date of application / Purškimo data 2005-06-29 2006-07-20<br />

Temperature on the date of application<br />

Temperatûra, °C<br />

154<br />

15.0 19.0<br />

Wind speed on the date of application<br />

Vëjo greitis, m s -1 2.0 2.0<br />

Relative a<strong>ir</strong> humidity on the date of application<br />

Santykinë oro drëgmë, %<br />

74 60<br />

Rain after treatment, hours<br />

Laikotarpis po purškimo iki lietaus, val.<br />

17 70


Plot size at least 12m 2 , the trial was repeated 4 times at random plot distribution.<br />

Sprayer Hardi 4110-12 was used for spraying, water volume – 1 000 l ha -1 . Weather<br />

conditions at 91 growth stage according BBCH scale (Meier, 1997) during application<br />

presented in Table 2.<br />

Assessments in 2005 and 2006 were made as follows: before application (VI.27<br />

and VII.20), 3–4 (VII.02 and VII.24), 7 (VII.06 and VII.27) and 21 days (VII.20<br />

and VIII.10) after application. Assessments were made on 20 leaflets for assessment<br />

the number of strawberry mites per leaf in each plot. Meteorological data (a<strong>ir</strong><br />

temperature and amount of precipitation) were recorded using scab warning equipment<br />

Metos D (Table 3).<br />

Mortality of mites was calculated: x = 100 (1–Ab/Ba) (x – mortality, %, A –<br />

number of mites, before spraying in untreated plot, B – number of mites, before<br />

spraying in treated plot, a – number of mites, after spraying in untreated plot, b –<br />

number of mites, after spraying in treated plot).<br />

We applied quantitative toxicity categories those employed by the International<br />

Organization for Biological Control for assessment of pesticide toxicity to predatory<br />

and phytophagous mites in field trials: non-toxic (< <strong>25</strong>% mortality), slightly toxic<br />

(<strong>25</strong>–50%), moderately toxic (51–75%), very toxic (> 75%) (Hassan et al., 1985).<br />

The number of strawberry mites was compared among treatments in this study<br />

with a single factor analysis of variance (ANOVA). Differences were identified with<br />

Duncan’s multiple range test.<br />

Month<br />

Mënuo<br />

Table 3. Meteorological conditions in 2005–2006<br />

3 lentelë. Meteorologinës sàlygos 2005–2006 m.<br />

A<strong>ir</strong> temperature<br />

Precipitation<br />

Oro temperatûra, °C<br />

2005 m. 2006 m.<br />

average of<br />

1924–2000<br />

1924–2000 m.<br />

vidurkis<br />

Results. There were found on average 9.<strong>25</strong>, 10.5 and 5.75 strawberry mites<br />

per leaflet in unsprayed plots 3, 7 and 21 days after treatment in 2005 (Table 4).<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 reduced to 2.<strong>25</strong>, 2.75 and 3.<strong>25</strong> the number of mites<br />

per leaf 3, 7 and 21 days after treatment, respectively. Abamectin 18 g l -1 , 21.6 g AI<br />

ha -1 was very toxic (mortality - 77.8 and 76.1%) to strawberry mite 3 and 7 days and<br />

slightly toxic (mortality – 48.4%) 21 days after treatment, respectively (Table 5).<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 was moderately toxic (mortality – 56.9 and 52.0%)<br />

3 and 7 days and slightly toxic (mortality – 41.6%) 21 days after treatment. The<br />

lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 was slightly toxic 3 and 7 days and<br />

non-toxic 21 after treatment. The mortality ranged from 16.3 to 45.6%. The toxicity<br />

of Abamectin was compared with the toxicity of Lambdacihalotrin and Sp<strong>ir</strong>odiclofen<br />

to strawberry mite. There were found any statistical differences of number of<br />

155<br />

Krituliai, mm<br />

2005 m. 2006 m.<br />

average of<br />

1924–2000<br />

1924–2000 m.<br />

vidurkis<br />

June / B<strong>ir</strong>želis 14.8 16.3 16.6 66,6 13.8 50.4<br />

July / Liepa 19.4 19.3 17.6 3,8 30.2 71.8<br />

August / Rugpjûtis 14.7 17.5 16.3 109.4 173.4 75.8


strawberry mites after treatments with Abamectin 18 g l -1 , 21.6 g AI ha -1 and Sp<strong>ir</strong>odiclofen<br />

240 g l -1 , 96.0 g AI ha -1 . Abamectin 18 g l -1 , 18.0 g AI ha -1 and Abamectin 18<br />

g l -1 , 9.0 g AI ha -1 gave statistically lower toxicity to strawberry mite in comparison<br />

with Abamectin 18 g l -1 , 21.6 g AI ha -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 in<br />

2005 (Table 4). The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar<br />

to the lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 in 2005 (Table 5).<br />

Table 4. Effects of Abamectin against strawberry mite (Tarsonemus pallidus) in<br />

strawberry. Babtai, 2005<br />

4 lentelë. Abamectino poveikis þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2005 m.<br />

Number of mites per leaflet<br />

Erkiø ant lapelio, vnt.<br />

3 days 7 days 21 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

3 d. po 7 d. po 21 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 5.<strong>25</strong> ab 9.<strong>25</strong> d 10.5 e 5.75 b<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 5.75 ab 2.<strong>25</strong> a 2.75 a 3.<strong>25</strong> a<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. ha -1 6.<strong>25</strong> ab 4.75 b 6.0 b 4.0 ab<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 6.0 ab 5.75 b 6.75 bc 5.50 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 7.0 b 7.<strong>25</strong> cd 8.75 cde 11.2 c<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 5.50 ab 2.00 a 2.50 a 2.0 a<br />

Table 5. Toxicity of Abamectin to strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2005<br />

5 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2005 m.<br />

Treatment<br />

Variantas<br />

3 days after<br />

treatment<br />

3 d. po<br />

purškimo<br />

Toxicty<br />

Toksiškumas, %<br />

7 days after<br />

treatment<br />

7 d. po<br />

purškimo<br />

21 days<br />

after<br />

treatment<br />

21 d. po<br />

purškimo<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 77.8 76.1 48.4<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 56.9 52.0 41.6<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 45.6 43.7 16.3<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 41.2 37.5 0.00<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 79.4 77.3 66.8<br />

In 2006 Abamectin 18 g l -1 , 21.6 g AI ha -1 and Abamectin 18 g l -1 , 18.0 g AI ha -1<br />

were moderately toxic to strawberry mite (mortality ranged from 50.5 till 63.5%) 3<br />

and 7 days and slightly toxic (mortality – 40.9 - 41.9%) 21 days after treatment<br />

(Table 7). The lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 was only slightly toxic<br />

156


to strawberry mite 3, 7 and 21 days after treatment. Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0<br />

g AI ha -1 was non-toxic, meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI<br />

ha -1 was moderately toxic and gave statistically highest effect 21 days after treatment,<br />

comparing with the highest rate 21.6 g AI ha -1 of Abamectin 18 g l -1 .<br />

Table 6. Effects of Abamectin against strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2006<br />

6 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2006 m.<br />

Number of mites per leaflet<br />

Erkiø ant lapelio, vnt.<br />

3 days 7 days 21 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

3 d. po 7 d. po 21 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 4.52 ab 4.65 c 4.80 c 2.32 d<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 5.20 ab 1.95 ab 2.27 b 1.55 b<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 4.95 ab 2.50 b 2.60 b 1.50 b<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 4.55 ab 2.60 b 2.65 b 1.62 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 5.40 b 5.85 d 5.97 d 2.80 d<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 4.75 ab 1.35 a 1.30 a 0.75 a<br />

Note: means within columns followed by the same letter are not different significantly (P = 0.05)<br />

according to Duncan’s multiple range test<br />

Pastaba: tarp reikðmiø, lentelës skiltyse paþymëtø tomis paèiomis raidëmis, pagal Dunkano kriterijø<br />

(P = 0,05) esminiø sk<strong>ir</strong>tumø nëra<br />

Table 7. Toxicity of Abamectin to strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2006<br />

7 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2006 m.<br />

Treatment<br />

Variantas<br />

3 days after<br />

treatment<br />

3 d. po<br />

purškimo<br />

Toxicity<br />

Toksiškumas, %<br />

7 days after<br />

treatment<br />

7 d. po<br />

purškimo<br />

21 days<br />

after<br />

treatment<br />

21 d. po<br />

purškimo<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 63.5 58.9 41.9<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 50.9 50.5 40.9<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 44.4 45.2 30.6<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 0 0 0<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 72.4 74.2 69.2<br />

157


Discussion. Meteorological conditions for strawberry mite development were<br />

favorable in 2005 and averagely favorable in 2006. High a<strong>ir</strong> temperature and dry<br />

weather resulted higher infestation of strawberries by mites in 2005.<br />

The effect of the lower rate of Abamectin on strawberry mites was weaker.<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to very toxic 3 and 7 and<br />

slightly toxic 21 days after treatment, meanwhile Abamectin 18 g l -1 , 18.0 g AI ha -1<br />

was only moderately toxic 3 and 7 and slightly toxic 21 days after treatment. The<br />

field rate (9.0 g AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic 3, 7 and from nontoxic<br />

to slightly toxic 21 days after treatment. The toxic effects of pesticides to<br />

mites depends on the chemistry of pesticides, the<strong>ir</strong> rates, microclimatic conditions<br />

and the development stages of the mites (Edland, 1994; Auger et al, 2003; Hardman<br />

et al., 2003; Bostanian et al., 2004; Martînez-Villar et al., 2005). Similar toxicity<br />

patterns of different rates of Sp<strong>ir</strong>odiclofen to strawberry and two spotted spider<br />

mites were recorded in strawberries (Raudonis, 2005, 2006). This study shows that<br />

the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was similar to the toxicity of<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite, except that Sp<strong>ir</strong>odiclofen had<br />

longer term of action.<br />

The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin<br />

18 g l -1 , 9.0 g AI ha -1 . Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was slightly toxic<br />

to strawberry mites after 3 and 7 days, meanwhile it was non-toxic 21 days after<br />

treatment in 2005. Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 did not affected strawberry<br />

mite in 2006, on the contrary, it was observed that the number of mites was<br />

statistically higher after Lambdacihalotrin treatment in comparison with unsprayed<br />

plots. The toxic effect of Lambdacihalotrin on the predatory mites Amblyseius andersoni<br />

Chant, which is a natural predator of strawberry mite, was recorded (Raudonis,<br />

2006). Similar results have been recorded in apple-trees (Raudonis et. al.,<br />

2004). The control of Phytophagous mites using Phytoseiid mites, has been demonstrated<br />

in different crops (Roy et al., 1999; Prischmann et al., 2001; Osakabe,<br />

2002; Pratt et al., 2002; Badii et al., 2004; Harmon, Andow, 2004).<br />

Conclusions. Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to very<br />

toxic 3 and 7 days and slightly toxic 21 days after treatment. Abamectin 18 g l -1 , 18.0<br />

g AI ha -1 was only moderately toxic 3 and 7 days and slightly toxic 21 days after<br />

treatment. The field rate (9.0 g AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic 3 and<br />

7 days and from non-toxic to slightly toxic 21 days after treatment. The toxicity of<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin 18 g l -1 , 9.0 g AI<br />

ha -1 , meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was similar to<br />

the toxicity of Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Auger P., Guichou S., Kreiter S. Variations in acaricidal effect of wettable sulfur on<br />

Tetranychus urticae (Acari: Tetranychidae): effect of temperature, humidity and life stage //<br />

Pest Management Science. 2003. 59(5). P. 559–565.<br />

158


2. Badii M. H., Hernández–Ortiz E., Floros A. E., Landeros J. Prey stage preference and<br />

functional response of Euseius hibisci to Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)<br />

// Experimental and Applied Acarology. 2004. 34(3–4). P. 263–273.<br />

3. Bostanian N. J., Vincent C., Hareman J. M., Larocque N. Toxicity of indoxacarb to<br />

two species of predacious mites and a predacious M<strong>ir</strong>id // Pest Management Science.<br />

2004. 60(5). P. 483–486.<br />

4. Choi W., Lee S. G., Park H. M., Ahn Y. J. Toxicity of plant essential oils to Tetranychus<br />

urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) // Journal<br />

of Economic Entomology. 2003. 97(2). P. 553–558.<br />

5. Edland T. Integrated pest management (IPM) in orchards, with reference to benefits<br />

and risk of introducing biocontrol agents. Norway, 1994. P. 44.<br />

6. Elzen G. W., Hardee D. D. United States Department of Agriculture – agricultural<br />

research service research on managing insect resistance to insecticides // Pest Management<br />

Science. 2003. 59(6–7). P. 770–776.<br />

7. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian N. J. An index for selective<br />

toxicity of miticides to phytophagous mites and the<strong>ir</strong> predators based on orchard trials //<br />

Pest Management Science. 2003. 59. P. 1324–1332.<br />

8. Harmon J., Andow D. A. Ind<strong>ir</strong>ect effects between shared prey: Predictions for //<br />

BioControl. 2004. 49(6). P. 605–626.<br />

9. Hassan S. A., Albert R., Bigler F., Blaisinger P., Bogenschutz H., Boller E., Brun F.,<br />

Chiverton P., Edwards P., Englert W. D., Huang P., Inglesfield C., Naton E., Oomen P. A.,<br />

Overmeer W. P. J., Rieckmann W., Samsoe–Petersen L., Staubli A., Tuset J. J., Viggiani G.,<br />

Vanwetswinkel G. Results of the th<strong>ir</strong>d joint pesticide testing programme by the IOBC/<br />

WPRS working group ‘Pesticides and beneficial organisms’ // Z Angew Entomol. 1987.<br />

103. P. 92–107.<br />

10. Klassen W. Area–wide approaches to insect pest interventions: history and<br />

lessons. In: Tan K. H. (ed.) Area–Wide Control of Fruit Flies and Other Insect Pests.<br />

Penerbit University Sains Malaysia, Penang, Malaysia, 2000. P. 21–38.<br />

11. Leake A. The development of integrated crop management in agricultural crops:<br />

comparisons with conventional methods // Pest Management Science. 2000. 56(11).<br />

P. 950–953.<br />

12. Linquist D. A. Pest management strategies: area-wide and conventional. In: Tan<br />

K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit University Sains<br />

Malaysia, Penang, Malaysia, 2000. P. 13–20.<br />

13. Martînez–Villar E., Sáenz–De–Cabezón F. J., Moreno–Grijalba F., Marco V., Pérez–<br />

Moreno I. Effects of azad<strong>ir</strong>achtin on the two-spotted spider mite, Tetranychus urticae<br />

(Acari: Tetranychidae) // Experimental and Applied Acarology. 2005. 35(3). P. 215–222.<br />

14. Meier U. Growth stages of mono- and dicotyledonous plants. BBCH Monograph.<br />

Berlin: Blackwell Wissenschafts–Verlag, 1997. 622 p.<br />

15. Nauen R., Stumpf N., Elbert A., Zebitz C. P. W., Kraus W. Acaricide toxicity and<br />

resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(3). P. <strong>25</strong>3–261.<br />

16. Osakabe Mh. Which predatory mite can control both a dominant mite pest, Tetranychus<br />

urticae, and a latent mite pest, Eotetranychus asiaticus, on strawberry // Experimental<br />

and Applied Acarology. 2002. 26(3–4). P. 219–230.<br />

17. Pratt P. D., Rosetta R., Croft B. A. Plant-related factors influence the effectiveness<br />

of Neoseiulus fallacis (Acari: Phytoseiidae), a biological control agent of spider mites on<br />

landscape ornamental plants // Journal of Economic Entomology. 2002. 95(6). P. 1135–<br />

1141.<br />

159


18. Prischmann D. A., Croft B. A., Luh H.–K. Biological control of spider mites on<br />

grape by Phytoseiid mites (Acari: Tetranychidae, Phytoseiidae): Emphasis on Regional<br />

Aspects // Journal of Economic Entomology. 2001. 95(2). P. 340–347.<br />

19. Raðinskienë A. Braðkiø ligø sukëlëjai <strong>ir</strong> kai kurios apsaugos priemonës // Þemës<br />

ûkio mokslai. 1997. 4. P. 53–56.<br />

20. Raðinskienë A. Braðkiø paðaknio ligos <strong>ir</strong> apsaugos priemonës nuo jø // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1995. 14. P. 54–62.<br />

21. Raudonis L. Comparative toxicity of sp<strong>ir</strong>odiclofen and lambdacihalotrin to Tetranychus<br />

urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry<br />

site under field conditions // Agronomy Research. 2006. 4. P. 317–322.<br />

22. Raudonis L. Effects of sp<strong>ir</strong>odiclofen on the strawberry mite, Tarsonemus pallidus<br />

(Acari: Tarsonemidae) in strawberries // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2005. 24(2).<br />

P. 64–72.<br />

23. Raudonis L., Survilienë E., Valiuðkaitë A. Toxicity of pesticides to predatory mites<br />

and insects in apple-tree site under field conditions // Env<strong>ir</strong>onmental Toxicology. 2004.<br />

19(4). P. 291–295.<br />

24. Raudonis L. Þalingø vabzdþiø <strong>ir</strong> erkiø stebësena <strong>ir</strong> tyrimas braðkyne // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2002. 21(4). P. 102–110.<br />

<strong>25</strong>. Roy M., Broduer J., Cloutier C. Seasonal abundance of spider mites and the<strong>ir</strong><br />

predators on red raspberry in Quebec, Canada // Env<strong>ir</strong>onmental Entomology. 1999. 28(4).<br />

P. 735–747.<br />

26. Uselis N., Raðinskienë A. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. 20(2). P. 18–31.<br />

26. Uselis N., Raðinskienë A. Braðkiø veisliø gamybinis ávertinimas // Sodininkystë <strong>ir</strong><br />

darþininkystë. Babtai, 1995. 14. P. 44–53.<br />

28. Van Leeuwen T., Van Pottelberge S., T<strong>ir</strong>ry L. Comparative acaricide susceptibility<br />

and detoxifying enzyme activities in field-collected resistant and susceptible strains of<br />

Tetranychus urticae // Pest Management Science. 2005. 61(5). P. 499–507.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ABAMECTINO POVEIKIS ÞEMUOGINËMS ERKËMS<br />

TARSONEMUS PALLIDUS (ACARI: TARSONEMIDAE)<br />

BRAÐKËSE<br />

L. Raudonis<br />

Santrauka<br />

2005–2006 m. t<strong>ir</strong>tas abamectino 18 g l -1 poveikis þemuoginiø erkiø (Tarsonemus<br />

pallidus Banks.) gausumui lauko sàlygomis braðkëse. Abamectino 18 g l -1<br />

21,6 g v.m. ha -1 norma buvo vidutiniðkai toksiðka <strong>ir</strong> labai toksiðka þemuoginëms<br />

erkëms, praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong> maþai toksiðka, praëjus 21 d. po purðkimo. Toksiðkumas<br />

þemuoginëms erkëms buvo atitinkamai nuo 58,9 iki 77,8 proc., praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong><br />

41,9–48,4 proc., praëjus 21 d. po purðkimo. Abamectino 18 g l -1 18,0 g v.m. ha -1<br />

norma buvo tiktai vidutiniðkai toksiðka (50,5–56,9 proc.), praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong> maþai<br />

160


toksiðka (40,9–41,6 proc.), praëjus 21 d. po purðkimo. Maþiausia (9,0 g v.m. ha -1 )<br />

abamectino 18 g l -1 norma buvo maþai toksiðka (43,7–45,6 proc.), praëjus 3 <strong>ir</strong> 7 d.,<br />

<strong>ir</strong> netoksiðka ar maþai toksiðka (16,3–30,6 proc.), praëjus 21 d. po purðkimo. Akaricido<br />

lambdacihalotrino 50 g l -1 <strong>25</strong>,0 g v.m. ha -1 normos toksiðkumas þemuoginëms<br />

erkëms buvo panaðus á abamectino 18 g l -1 9,0 g v.m. ha -1 normos toksiðkumà.<br />

Taèiau sp<strong>ir</strong>odiclofeno 240 g l -1 96,0 g AI ha -1 normos tokiðkumas þemuoginëms<br />

erkëms buvo artimas abamectino 18 g l -1 21,6 g v.m. ha -1 normos toksiðkumui.<br />

Reikðminiai þodþiai: abamectinas, braðkës, normos, Tarsonemus pallidus, toksiðkumas.<br />

161


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

TOXICITY OF ABAMECTIN TO FRUIT TREE<br />

RED SPIDER MITE, PANONYCHUS ULMI<br />

(ACARI: TETRANYCHIDAE) IN APPLE TREE SITE<br />

Laimutis RAUDONIS<br />

Lithuanian Institute of Horticulture, Laboratory of Plant Protection,<br />

LT-54333 Babtai, Kaunas distr., Lithuania.<br />

E-mail l.raudonis@lsdi.lt<br />

The effect and toxicity of Abamectin 18 g l -1 to the fruit tree red spider mite (Panonychus<br />

ulmi Koch) was studied in apple tree under field conditions in 2005–2006. Abamectin<br />

18 g l -1 at the rates 27 g AI ha -1 and 18 g AI ha -1 was very toxic (mortality ranged<br />

from 92.9 to 99.0%) to the mites 2–5 and 7 days after treatment and from moderately<br />

to very toxic (mortality – 54.4–89.7%) 31 days after treatment. Abamectin 18 g l -1 ,<br />

13.5 g AI ha -1 was rated as very toxic (mortality – 89.0–91.4%) 2–5 and 7 days after<br />

treatment and only moderately toxic (mortality – 51.1–62.4%) 31 days after treatment.<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 days and 31 days<br />

after treatment and showed long term of action, meanwhile Lambdacihalotrin 50 g l -1 ,<br />

<strong>25</strong>.0 g AI ha -1 was very toxic to the mites 2–5 and 7 days after treatment, but from<br />

non-toxic to moderately toxic 31 days after treatment.<br />

Key words: Abamectin, apple tree, rates, Panonychus ulmi, toxicity.<br />

Introduction. Fruit tree red spider mite is the key pest of apple tree in many<br />

countries (Edland, 1994; Raudonis, 2001; Hardman et al., 2003). Though tree red<br />

spider mites are sensitive to the low temperature during hibernation, warm and dry<br />

climate stimulates mite development in high numbers (Raudonis, 2001). The toxicity<br />

of pesticides on mites and insects has been widely studied in many countries, using<br />

a range of different pesticides at different rates on various developmental stages<br />

(Zon, Geest, 1980; Tuovinen, 1992; Sterk et al., 1999; Nauen et al., 2001; Kim, Yoo,<br />

2002; Choi et al., 2003; Hardman et al., 2003; Cuthbertson, Murchie, 2003, Marcic,<br />

2003; Bostanian et al., 2004; Raudonis et al., 2004; Martînez-Villar et al., 2005).<br />

There is data that most organophosphates are very detrimental to predatory mites,<br />

except strains, which have developed resistance to organophosphates (Cranham,<br />

1979). The widely used synthetic pyrethroids are very effective against pest insects,<br />

but it has not any effect on mites and it causes increasing phytophagous mite populations<br />

that induce severe damage of plants (Edland, 1994; Raudonis 2004). On the<br />

other hand, frequent acaricide applications against the increased phytophagous mite<br />

162


population result in greater resistance (Devine et al., 2001; Elzen, Hardee, 2003; Van<br />

Leeuwen et al., 2005). Therefore, the European guidelines for integrated fruit production<br />

requ<strong>ir</strong>e restrictions in pesticide use (Dickler, Schaefermeyer, 1991). The<br />

reduction of the use of pesticides stimulates to look for the development of new plan<br />

protection products. The Integrated pest management (IPM), which is based on<br />

selective toxicity to the phytophagous mites and harmless to predatory mite, became<br />

the most relevant strategy of plant protection (Edland, 1994; Leake, 2000; Linquist,<br />

2000; Klassen, 2000).<br />

The aim of the work was to clarify how Abamectin, which is based on selective<br />

toxicity, affects fruit tree red spider mite in apple trees.<br />

Materials and methods. The field trials were carried out in the apple tree orchard<br />

of the Lithuanian Institute of Horticulture in 2005–2006. The apple trees (variety<br />

‘Lobo’) were planted in 1995. 1 <strong>25</strong>0 seedlings per hectare were planted. The soil was<br />

fertilized with N – 70 kg ha -1 before flowering. Efector 700 WG 1.0 kg ha -1 at 09, 57<br />

and 73 growth stages was treated for control of apple scab.<br />

The trial was carried out according to trial plan as presented in Table 1.<br />

Treatment<br />

Variantas<br />

Table 1. Trial plan<br />

1 lentelë. Bandymo planas<br />

Trade name<br />

Preparato registracijos<br />

pavadinimas<br />

A Rate (g AI ha -1 )<br />

Norma, g v.m. ha -1<br />

-<br />

Untreated / kontrolë (nepurkšta)<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Lambdacihalotrin 50 g l -1<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Karate EC 50 g l -1<br />

Envidor SC 240 g l -1 27<br />

18<br />

13.5<br />

<strong>25</strong><br />

96<br />

A<br />

AI – active ingredient / veiklioji medþiaga.<br />

Plot size at least 5 trees, 4 replications at random plot distribution. Motor sprayer<br />

STIHL SR400 was used for spraying, water volume – 500 l ha -1 . Weather conditions<br />

at 73 growth stage according BBCH scale (Meier, 1997) during application<br />

presented in Table 2.<br />

Assessments in 2005 and 2006 were made as follows: before application (VII.13<br />

and VII.12), 2–5 (VII.18 and VII.14), 7 (VII.23 and VII.21) and 31 day (VIII.15<br />

and VIII.14) after application. Assessments were made on <strong>25</strong> leaves for assessment<br />

the number of fruit tree red spider mites per leaf in each plot.<br />

Meteorological data (a<strong>ir</strong> temperature and amount of precipitation) were recorded<br />

using scab warning equipment Metos D (Table 3).<br />

163


Table 2. Weather conditions at application in 2005-2006<br />

2 lentelë. Oro sàlygos purðkimo metu 2005–2006 m.<br />

Date of application<br />

Purškimo data<br />

2005-07-13 2006-07-12<br />

Temperature on the date of application<br />

23.0 19.0<br />

Temperatûra, °C<br />

Wind speed on the date of application<br />

2.0 1.5<br />

Vëjo greitis, m/s<br />

Relative a<strong>ir</strong> humidity on the date of application 65 70<br />

Santykinë oro drëgmë, %<br />

Rainless period, hours<br />

Laikotarpis po purškimo iki lietaus, val.<br />

66 136<br />

Table 3. Meteorological conditions in 2005–2006<br />

3 lentelë. Meteorologinës sàlygos 2005–2006 m.<br />

A<strong>ir</strong> temperature<br />

Oro temperatûra, °C<br />

Precipitation<br />

Krituliai, mm<br />

Month<br />

average of<br />

average of<br />

Mënuo<br />

2005 m. 2006 m. 1924-2000 2005 m. 2006 m. 1924-2000<br />

1924–2000 m.<br />

1924–2000 m.<br />

vidurkis<br />

vidurkis<br />

June / B<strong>ir</strong>želis 14.8 16.3 16.6 66.6 13.8 50.4<br />

July / Liepa 19.4 19.3 17.6 3.8 30.2 71.8<br />

August / Rugpjûtis 14.7 17.5 16.3 109.4 173.4 75.8<br />

Mortality of mites was calculated: x = 100 (1 – Ab/Ba) (x – mortality, %, A –<br />

number of mites, before spraying in untreated plot, B – number of mites, before<br />

spraying in treated plot, a – number of mites, after spraying in untreated plot, b –<br />

number of mites, after spraying in treated plot).<br />

We applied quantitative toxicity categories those employed by the International<br />

Organization for Biological Control for assessment of pesticide toxicity to predatory<br />

and phytophagous mites in field trials: non-toxic (< <strong>25</strong>% mortality), slightly toxic<br />

(<strong>25</strong>–50%), moderately toxic (51–75%), very toxic (> 75%) (Hassan et al., 1985).<br />

The number of fruit tree red spider mites was compared among treatments in<br />

this study with a single factor analysis of variance (ANOVA). Specific differences<br />

were identified with Duncan’s multiple range test.<br />

Results. Tables 4 to 7 describe the effect and toxicity of Abamectin 18 g l -1 to<br />

fruit tree red spider mite in apple trees. Abamectin 18 g l -1 , 27 g AI ha -1 reduced to<br />

0.12, 0.22 and 0.3 the mean number of mites per leaf 5, 7 and 31 days after treatment,<br />

respectively. Meanwhile the number of mites reached on the average 12.0,<br />

11.7 and 2.5 per leaf in unsprayed plots 5, 7 and 31 days after treatment in 2005<br />

(Table 4). Mite mortality in 5 and 7 and 31 days after treatment with Abamectin 18<br />

g l -1 , 27 g AI ha -1 was 99.1, 98.4 and 89.7%, respectively, what indicates it to be very<br />

toxic to fruit tree red spider mite (Table 5). Similar results showed lower rate (18 g<br />

AI ha - 1) of Abamectin 18 g l -1 . There were not found any statistical differences of<br />

164


the number of fruit tree red spider mites after Abamectin 18 g l -1 , 27 g AI ha -1 and<br />

Abamectin 18 g l -1 , 18 g AI ha -1 treatments. Abamectin 18 g l -1 , 13.5 g AI ha -1 was<br />

very toxic (mortality – 98.7 and 97.1%) 5 and 7 days and moderately toxic (mortality<br />

– 62.4%) after 31 days after treatment.<br />

Table 4. Effects of Abamectin against fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2005<br />

4 lentelë. Abamectino poveikis raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2005 m.<br />

Mean number of mites per leaf<br />

Erkës ant lapo, vnt.<br />

5 days 7 days 31 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

5 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 6.20 abc 12.0 b 11.7 b 2.50 c<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 7.30 c 0.12 a 0.22 a 0.30 a<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 5.0 abc 0.12 a 0.27 a 0.47 a<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 4.32 a 0.15 a 0.32 a 0.65 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI g ha -1 / v.m. ha -1 3.95 a 0.65 a 0.97 a 1.75 c<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 4.02 a 0.15 a 0.15 a 0.12 a<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1<br />

Note: means within columns followed by the same letter are not different significantly (P=0.05)<br />

according to Duncan’s multiple range test<br />

Pastaba: tarp reikðmiø, skiltyse paþymëtø tomis paèiomis raidëmis, pagal Dunkano kriterijø<br />

(P = 0,05) esminiø sk<strong>ir</strong>tumø nëra.<br />

Table 5. Toxicity of Abamectin to fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2005<br />

5 lentelë. Abamectino toksiðkumas raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2005 m.<br />

Mortality<br />

Toksiškumas, %<br />

Treatment<br />

5 days after 7 days after 31 days after<br />

Variantas<br />

treatment treatment treatment<br />

5 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 99.1 98.4 89.7<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 98.7 97.1 76.2<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 98.2 96.1 62.4<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 91.4 86.9 0.0<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 98.1 98.0 92.2<br />

There were found any statistical differences of the number of fruit tree red<br />

spider mites after treatments with Abamectin 18 g l -1 , 27 g AI ha -1 , Abamectin 18 g l -1 ,<br />

18 g AI ha -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 . Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g<br />

165


AI ha -1 was rated as very toxic to the mites 5 and 7 days after treatment, but nontoxic<br />

31 days after treatment.<br />

Table 6. Effects of Abamectin against fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2006<br />

6 lentelë. Abamectino poveikis raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2006 m.<br />

Mean number of mites per leaf<br />

Erkës ant lapo, vnt.<br />

2 days 7 days 31 days<br />

Treatments<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

2 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 5.60 c 5.78 b 5.63 b 5.78 c<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 4.90 abc 0.21 a 0.22 a 2.10 b<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 4.95 abc 0.30 a 0.35 a 2.33 b<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 5.35 bc 0.54 a 0.59 a 2.70 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 5.50 bc 0.46 a 0.54 a 2.90 b<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 3.70 a 0.23 a 0.20 a 0.50 a<br />

Table 7. Toxicity of Abamectin to fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2006<br />

7 lentelë. Abamectino toksiðkumas raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2006 m.<br />

Mortality<br />

Toksiškumas, %<br />

Treatment<br />

2 days after 7 days after 31 days after<br />

Variantas<br />

treatment treatment treatment<br />

2 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 95.8 95.5 58.5<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 94.1 92.9 54.4<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 90.2 89.0 51.1<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 91.9 90.2 48.9<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 94.0 94.6 86.9<br />

There were found any statistical differences of the number of strawberry mites<br />

after treatments with different rates of Abamectin 18 g l -1 (Table 6). In contrast to<br />

2005, Abamectin 18 g l -1 , 27 g AI ha -1 and Abamectin 18 g l -1 , 27 g AI ha -1 had lower<br />

affect to the mites 31 days after treatment in 2006. The results show that Abamectin<br />

18 g l -1 , 27 g AI ha -1 was very toxic (mortality – 95.5 and 95.8%) to fruit tree red<br />

spider mite 2 and 7 days after treatment, but only moderately toxic (mortality –<br />

58.5%) 31 days after treatment in 2006 (Table 7). The same toxicity showed Abamectin<br />

18 g l -1 , 18 g AI ha -1 and Abamectin 18 g l -1 , 13.5 g AI ha -1 . Lambdacihalotrin<br />

50 g l -1 , <strong>25</strong>.0 g AI ha -1 was very toxic to the mites 2 and 7 days after treatment, but<br />

166


it showed lower toxicity (mortality – 48.9%) 31 days after treatment in 2006. Sp<strong>ir</strong>odiclofen<br />

240 g l -1 , 96.0 g AI ha -1 was rated as very toxic to fruit tree red spider mite<br />

2, 7 and 31 days after treatment.<br />

Discussion. Meteorological conditions for fruit tree red spider mite were favorable<br />

in 2005 and medium favorable in 2006. High a<strong>ir</strong> temperature and dry weather<br />

resulted higher infestation of apple trees by mites in 2005. Leaf samples collected<br />

from untreated plots showed an abundance of fruit tree red spider mites and its<br />

distribution during the season. All rates of Abamectin 18 g l -1 were rated as very<br />

toxic to fruit tree red spider mite 2–5 and 7 days after treatment. Similar results were<br />

demonstrated in Canada (Hardman et al., 2003). Meanwhile Abamectin 18 g l -1 showed<br />

lower toxicity in 2006. It have been reported, that the toxic effects of pesticides<br />

to mites depend on the chemistry of pesticides, the<strong>ir</strong> rates, microclimatic conditions<br />

and the development stages of the mites (Edland, 1994; Auger et al, 2003; Bostanian<br />

et al., 2004; Martînez-Villar et al., 2005). The toxicity of Abamectin was compared<br />

with the toxicity of Lambdacihalotrin and Sp<strong>ir</strong>odiclofen to fruit tree red spider mite.<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 and 31 days<br />

after treatment and showed long term of action. Similar toxicity patterns of different<br />

rates of Sp<strong>ir</strong>odiclofen to strawberry and two spotted spider mites were recorded in<br />

strawberries (Raudonis et al., 2005; Raudonis, 2006). Lambdacihalotrin 50 g l -1 ,<br />

<strong>25</strong>.0 g AI ha -1 was very toxic 2–5 and 7 days, but from non-toxic to moderately<br />

toxic 31 days after treatment. The lower term of action of Lambdacihalotrin was<br />

reported in other crops and mites (Raudonis 2005 et al., Raudonis, 2006).<br />

Conclusions. 1. Abamectin 18 g l -1 , 27 g AI ha -1 and Abamectin 18 g l -1 , 18 g AI<br />

ha -1 were rated as very toxic (mortality ranged from 92.9 to 99.0%) to fruit tree red<br />

spider mite (Panonychus ulmi Koch) 2-5 and 7 days and from moderately to very<br />

toxic (mortality – 54.4–89.7%) 31 days after treatment.<br />

2. Abamectin 18 g l -1 , 13.5 g AI ha -1 was very toxic (mortality – 89.0–91.4%) 2–<br />

5 and 7 and only moderately toxic (mortality – 51.1–62.4%) 31 days after treatment.<br />

3. Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 and 31<br />

days after treatment and showed long term of action, meanwhile Lambdacihalotrin<br />

50 g l -1 , <strong>25</strong>.0 g AI ha -1 was very toxic 2–5 and 7 days after treatment, but from nontoxic<br />

to moderately toxic 31 days after treatment.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Auger P., Guichou S., Kreiter S. Variations in acaricidal effect of wettable sulfur on<br />

Tetranychus urticae (Acari: Tetranychidae): effect of temperature, humidity and life stage //<br />

Pest Management Science. 2003. 59(5). P. 559–565.<br />

2. Bostanian N. J., Vincent C., Hareman J. M., Larocque N. Toxicity of indoxacarb to<br />

two species of predacious mites and a predacious M<strong>ir</strong>id // Pest Management Science.<br />

2004. 60(5). P. 483–486.<br />

3. Choi W., Lee S. G., Park H. M., Ahn Y. J. Toxicity of Plant Essential Oils to Tetranychus<br />

urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) //<br />

Journal of Economic Entomology. 2003. 97(2). P. 553–558.<br />

167


4. Cuthbertson A. G. S., Murchie A. K. The impact of fungicides to control apple<br />

scab (Venturia inaequalis) on the predatory mite Anystis baccarum and its prey Aculus<br />

schlechtendali (apple rust mite) in Northern Ireland Bramley orchards // Crop protection.<br />

2003. 22. P. 11<strong>25</strong>–1130.<br />

5. Cranham J. E. Managing spider mites on fruit trees // Span, 1979. 22. P. 28–30.<br />

6. Devine G. J., Barber M., Denholm J. Incidence and inheritance of resistance to<br />

METI–acaricides in European strains of the two–spotted spider mite (Tetranychus urticae)<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(5). P. 443–448.<br />

7. Dickler E, Schafermeyer S. General principles, guidelines and standards for integrated<br />

production of pome fruits in Europe, and procedures for endorsement of national or<br />

regional guidelines and standards // IOBC/WPRS Bulletin. 1991. 14(3). P. 1–67.<br />

8. Edland T. Integrated pest management (IPM) in orchards, with reference to benefits<br />

and risk of introducing biocontrol agents. Norway, 1994. 44 p.<br />

9. Elzen G. W., Hardee D. D. United States Department of Agriculture–Agricultural<br />

Research Service research on managing insect resistance to insecticides // Pest Management<br />

Science. 2003. 59(6–7). P. 770–776.<br />

10. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian NJ. An index for selective<br />

toxicity of miticides to phytophagous mites and the<strong>ir</strong> predators based on orchard trials //<br />

Pest Management Science. 2003. 59. P. 1324–1332.<br />

11. Hassan S. A., Albert R., Bigler F., Blaisinger P., Bogenschutz H., Boller E., Brun F.,<br />

Chiverton P., Edwards P., Englert W. D., Huang P., Inglesfield C., Naton E., Oomen P. A.,<br />

Overmeer W. P. J., Rieckmann W., Samsoe–Petersen L., Staubli A., Tuset J. J., Viggiani G.,<br />

Vanwetswinkel G. Results of the th<strong>ir</strong>d joint pesticide testing programme by the IOBC/<br />

WPRS working group ‘Pesticides and beneficial organisms’ // Z Angew Entomol 1987.<br />

103. P. 92–107.<br />

12. Kim S. S., Yoo S. S. Comparative toxicity of some acaricides to the predatory mite,<br />

Phytoseiulus persimilis and the two spotted spider mite, Tetranychus urticae // BioControl.<br />

2002. 47(5). P. 563–573.<br />

13. Klassen W. Area-wide approaches to insect pest interventions: history and lessons.<br />

In: Tan, K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit<br />

University Sains Malaysia, Penang, Malaysia. 2000. P. 21–38.<br />

14. Leake A. The development of integrated crop management in agricultural crops:<br />

comparisons with conventional methods // Pest Management Science. 2000. 56(11).<br />

P. 950–953.<br />

15. Linquist D. A. Pest Management Strategies: Area-wide and Conventional. In:<br />

Tan, K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit University<br />

Sains Malaysia, Penang, Malaysia, 2000. P. 13–20.<br />

16. Marcic D. The effects of clofentezine on life-table parameters in two-spotted<br />

spider mite Tetranychus urticae // Experimental and Applied Acarology. 2003. 30(4).<br />

P. 249–263.<br />

17. Martînez-Villar E., Sáenz-De-Cabezón F. J., Moreno-Grijalba F., Marco V., Pérez-<br />

Moreno I. Effects of azad<strong>ir</strong>achtin on the two-spotted spider mite, Tetranychus urticae<br />

(Acari: Tetranychidae) // Experimental and Applied Acarology. 2005. 35(3). P. 215–222.<br />

18. Meier U. Growth stages of mono- and dicotyledonous plants. BBCH Monograph.<br />

Berlin: Blackwell Wissenschafts–Verlag. 1997. 622 p.<br />

19. Nauen R., Stumpf N., Elbert A., Zebitz C. P. W., Kraus W. Acaricide toxicity and<br />

resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(3). P. <strong>25</strong>3–261.<br />

20. Raudonis L. Comparative toxicity of sp<strong>ir</strong>odiclofen and lambdacihalotrin to Tetranychus<br />

urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry<br />

site under field conditions // Agronomy Research. 2006. 4. P. 317–322.<br />

168


21. Raudonis L. Harmful insect fauna in apple orchards and systems of control<br />

means to reduce its harm // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20. P. 55–68.<br />

22. Raudonis L., Survilienë E., Valiuðkaitë A. Toxicity of pesticides to predatory mites<br />

and insects in apple tree site under field conditions // Env<strong>ir</strong>onmental Toxicology. 2004.<br />

19(4). P. 291–295.<br />

23. Raudonis L., Valiuðkaitë A., Survilienë E. Effects of sp<strong>ir</strong>odiclofen on the twospotted<br />

spider mite, Tetranychus urticae (Acari: Tetranychidae) in strawberries // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. 24(2). P. 43–53.<br />

24. Sterk G., Hassan S. A., Baillod M., Bakker F., Bigler F., Blumel S., Bogenschutz H.,<br />

Boller E., Bromand B., Brun J., Calis J. N. M., Coremans-Pelseneer J., Duso C., Garrido A.,<br />

Grove A., Heimbach U., Hokkanen H., Jacas J., Lewis G., Moreth L., Polgar L., Roversti L.,<br />

Samsoe Petersen L. Sauphanor B., Schaub L., Staubli A., Tuset J. J., Vainio A., Van de Ve<strong>ir</strong>e<br />

M., Viggiani G., Vinuela E., Vogt H. Results of the seventh joint testing programme carried<br />

out by the IOBC/WPRS – working group “Pesticides and Beneficial Organisms” // Bio-<br />

Control 1999. 44. P. 99–117.<br />

<strong>25</strong>. Tuovinen T. Predatory mites in finish apple orchards // Acta Phyt. Ent. Hungarica<br />

1992. 27(2). P. 609–613.<br />

26. Van Leeuwen T., Van Pottelberge S., T<strong>ir</strong>ry L. Comparative acaricide susceptibility<br />

and detoxifying enzyme activities in field-collected resistant and susceptible strains of<br />

Tetranychus urticae // Pest Management Science. 2005. 61(5). P. 499–507.<br />

27. Zon A. Q., Geest L. P. S. Effects of pesticides on predacious mites. In: Minks AK,<br />

Gruys P. editors. Integrated control of insect pests in the Netherlands. Wageningen:<br />

Pudoc. 1980. P. 227–23.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ABAMECTINO TOKSIÐKUMAS RAUDONOSIOMS<br />

SODINËMS ERKËMS PANONYCHUS ULMI<br />

(ACARI: TETRANYCHIDAE) OBELYSE<br />

L. Raudonis<br />

Santrauka<br />

2005–2006 m. t<strong>ir</strong>tas abamectino 18 g l -1 poveikis <strong>ir</strong> toksiðkumas raudonosioms sodinëms<br />

erkëms (Panonychus ulmi Koch) obelyse. Abamectino 18 g l -1 27 g v.m. ha -1 <strong>ir</strong><br />

18 g v.m. ha -1 normos buvo labai toksiðkos (toksiðkumas – nuo 92,9 iki 99,0 proc.)<br />

þemuoginëms erkëms, praëjus 2–5 <strong>ir</strong> 7 d., bei vidutiniðkai <strong>ir</strong> labai toksiðkos (toksiðkumas<br />

– nuo 54,4 iki 89,7 proc.), praëjus 31 d. po purðkimo. Abamectino 18 g l -1<br />

13,5 g v.m. ha -1 norma buvo labai toksiðka (toksiðkumas – 89,0–91,4 proc.) erkëms,<br />

praëjus 2–5 <strong>ir</strong> 7 d., <strong>ir</strong> tik vidutiniðkai toksiðka (toksiðkumas – 51,1–62,4 proc.), praëjus<br />

31 d. po purðkimo. Sp<strong>ir</strong>odiclofeno 240 g l -1 96,0 g v.m. ha -1 norma buvo labai toksiðka,<br />

praëjus 2–5, 7 <strong>ir</strong> 31 d. po purðkimo, <strong>ir</strong> ilgai apsaugojo obelis nuo erkiø. Lambdacihalotrino<br />

50 g l -1 <strong>25</strong>,0 g v.m. ha -1 norma buvo labai toksiðka erkëms, praëjus 2–5 <strong>ir</strong><br />

7 d., taèiau netoksiðka ar tik vidutiniðkai toksiðka, praëjus 31 d. po purðkimo.<br />

Reikðminiai þodþiai: abamectinas, normos, obelys, Panonychus ulmi, toksiðkumas.<br />

169


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

STONE FRUIT ROOTSTOK RESEARCH IN LITHUANIA<br />

Juozas LANAUSKAS, Darius KVIKLYS<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas<br />

distr., Lithuania.<br />

E-mail j.lanauskas@lsdi.lt<br />

Sour cherries and plums are the most important stone fruit crops in Lithuania.<br />

This paper presents information about rootstock researches for mentioned crops.<br />

The experiments were carried out in the central part of Lithuania, where prevail<br />

Epicalcari-Endohypogleic clay loam soils medium rich or rich with phosphorus and<br />

potassium, containing 1.5-3% of humus, pH – 7.0-7.2.<br />

Seedlings derived from accidental Prunus mahaleb, P. avium, P. cerasus and<br />

P. cerasifera seeds were used for tree propagation for many years. Rootstock investigations<br />

were started from the search of seedling forms with better adaptability to<br />

local soils and climate, positive effect on productivity and fruit quality. As a result of<br />

f<strong>ir</strong>st trials seedlings of sweet cherry cv. ‘Zolotaja Losickaja’ and selection form No.<br />

2 and two forms of P. mahaleb (No. 817 and No. 805) were recommended as<br />

rootstocks for sour cherries. Cherry trees on mentioned seedlings were of uniform<br />

growth in the orchard, bore higher yields of good quality fruits.<br />

In later experiments clonal rootstocks PN (P. cerasus), P3, P7 (both P. padus x<br />

(P. cerasus x P. avium)) and Þ1 (P. cerasus) were tested for both sour and sweet<br />

cherries. None of tested rootstocks showed better than P. mahaleb seedlings with<br />

sour cherries, whereas sweet cherry yield per tree and yield efficiency on this rootstock<br />

was the lowest. The highest yield efficiency of sweet cherry trees was on<br />

rootstock P3, but it suckered profusely. PN was established as the most promising<br />

rootstock for sweet cherries. Trees on this rootstock were of medium yield efficiency,<br />

fruits were of good size, rootstock practically did not sucker.<br />

Seedlings of P. tomentosa and clonal rootstocks St. Julien A, St. Julien GF655-<br />

2 and Marianna GF8-1 were tested as possible rootstocks for plums. None of the<br />

tested rootstocks was better than the standard one (P. cerasifera seedlings). Scionrootstock<br />

incompatibility was frequent with P. tomentosa seedlings.<br />

In recent field experiments 24 clonal rootstocks are under investigations with<br />

sweet cherry cv. ‘Lapins’. The most promising of them seem to be Gisela 4, Gi–<br />

497/8 and Gi–154/7.<br />

The further investigations should be d<strong>ir</strong>ected towards search of more dwarf<br />

and yield efficient rootstocks for sweet cherries and plums.<br />

170


Key words: cherries, clonal rootstocks, plums, seedlings.<br />

Introduction. Importance of rootstock for fruit tree has been changing with<br />

development of fruit growing. Good rootstock compatibility with scion cultivars<br />

and adaptation to local soil and climate conditions was satisfactory for a long time.<br />

Common rootstocks for cherries were seedlings of Prunus avium, P. mahaleb or P.<br />

cerasus, for plums – these of P. cerasifera or P. domestica. Trees on accidental<br />

seedling rootstocks usually grow vigorously, often are of unequal size, late come<br />

into bearing. When fruit growing become commercially important and competition<br />

among growers increased requ<strong>ir</strong>ements for rootstocks had risen. Numerous attempts<br />

appeared to improve existing rootstocks by selection of valuable seedling forms or<br />

creating clonal ones. Perfect rootstock should provide adequate tree growth control,<br />

increase precocity and yield efficiency, should be cold and disease resistant, well<br />

adapted to certain soil conditions, easy propagated, not suckering. Good compatibility<br />

with wide range of scion cultivars and long life of grafted trees is of great<br />

importance as well (Wertheim, 1998).<br />

Many promising rootstocks recently were released as a result of different breeding<br />

programs. Gisela, MaxMa, P-HL, Pi-Ku, Gm, We<strong>ir</strong>oot series rootstocks for<br />

sweet cherries should be mentioned (Callesen, 1998). Seedlings of selected P. avium<br />

and especially P. mahaleb forms are still important for sour cherries (Mika, 2000;<br />

Ercisli et al., 2006). Both seedling and clonal rootstocks are important for plums.<br />

Seedlings of selected of myrobalan (P. cerasifera) and P. domestica forms are usually<br />

used. Clonal rootstocks available in Europe include St. Julien and Marianna series,<br />

‘Ackerman’, ‘Brompton’, ‘Pixy’, Myrobalan B, etc. (Okie, 1987). Promising<br />

and relatively new clonal rootstocks are ‘Ferlenain’, ‘Ferciana’, ‘Fereley’ (Wertheim,<br />

1998).<br />

In different countries different rootstocks are used. The main stone fruit crops<br />

in Lithuania are sour cherries and plums. Seedlings of P. mahaleb, P. avium, or P.<br />

cerasus for cherries and these of P. cerasifera for plums were important rootstocks<br />

for a long time, but changing situation in modern fruit growing promoted search of<br />

better ones. Lithuania had close contact with Russia where some perspective clonal<br />

rootstocks for cherries were bread. P. padus and P. cerasus were used in this breeding<br />

program (Kolesnikova et al., 1985). Rootstocks P3, P7 and PN were tested in<br />

the Ukraine (Øàðêî et al., 2000). P3 and P7 are characterized as vigorous, PN – as<br />

dwarf one (Áàðàáàø, 1995). Very poor information is available about mentioned<br />

rootstocks.<br />

In this paper the main stone fruit rootstock investigations carried out in Lithuania<br />

are overviewed. Rootstocks bread in former Soviet Union and in some countries<br />

of Western Europe were included into our research program.<br />

Materials and methods. Experiments were carried out at the Lithuanian Institute<br />

of Horticulture (LIH) in the central part of Lithuania in the latitude of 55° North<br />

and longitude 23° East. Average annual temperature of the terrene is 6.4°C, total<br />

amount of the precipitation – 630 mm (in April–September – 380 mm). Prevailing<br />

soils – Epicalcari-Endohypogleic clay loams medium rich or rich with phosphorus<br />

and potassium, containing 1.5–3% of humus, pH – 7.0–7.2.<br />

171


Rootstock field trials were established in three-four replications with 4 trees in<br />

each experimental plot. Tree planting distances were 5 x 2.5–3 m. Orchard floor<br />

management combined herbicide strips in the rows and frequent mown sward between<br />

the rows. In the f<strong>ir</strong>st experiments tree canopies were trained close to the<br />

natural, in recent ones – as spindles.<br />

Tree growth vigour in the f<strong>ir</strong>st year of growth was assessed by total shoot<br />

length or tree height, latter – by trunk diameter. Yield was recorded for the whole<br />

experimental plot and recalculated to the yield per tree or per hectare. Annual yield<br />

efficiency was calculated as a ratio of tree yield with trunk cross-section area (TCSA).<br />

Final yield efficiency is a sum of annual efficiencies. Average fruit weight was determined<br />

on a representative sample of 100 fruits per each experimental plot. Rootstock<br />

suckering was evaluated in scores (0–5 scale, where 0 – no suckers; 5 –<br />

abundant suckering) or number of suckers per tree was calculated. Tree mortality<br />

was expressed as a percent of dead trees at the end of experiment.<br />

For data statistical evaluation LSD 05<br />

or Duncan test was used.<br />

Results. Cherry rootstocks. Seedlings derived from accidental P. mahaleb, P.<br />

avium or P. cerasus seeds were used as rootstocks for sour and sweet cherries.<br />

After the experiments carried out by A. ðumskis in 1984–1998 seedlings of sweet<br />

cherry cv. ‘Zolotaja Losickaja’, selection form No. 2 and two forms of P. mahaleb<br />

(No. 817 and No. 805) were recommended as rootstocks for sour cherries (Ðumskis,<br />

2001). Cherry trees on seedlings of mentioned forms ensured more uniform tree<br />

growth and higher yields of good quality fruits. Tree survival on these rootstocks<br />

was better. They withstand well cold winter of 1986–1987 and other unfavorable<br />

conditions during the years of the experiment.<br />

Parallel search of clonal rootstocks was started in the nursery. There were<br />

selected some winter hardy, disease resistant and easy propagating by green cuttings<br />

clonal rootstocks: PN (P. cerasus), P3, P7 (both P. padus x (P. cerasus x P. avium)<br />

all bread at the Nonchernoziom Institute of Horticulture in Russia (Åâñòðàòîâ, 1986)<br />

and Þ1 (P. cerasus) selected at the LIH (Ðumskis, 1997). The<strong>ir</strong> testing in the orchard<br />

was started in 1999. Mentioned rootstocks were tested with both sour and sweet<br />

cherries. P. mahaleb seedlings served as a control.<br />

The most vigorous sour cherry trees in the young age were on rootstock P7<br />

(Table 1). With the rest of rootstocks tree growth was similar. Yield per tree, yield<br />

efficiency and average fruit weight was not significantly affected by the rootstock<br />

(Lanauskas, 2005 a). The most suckering rootstocks were P3 and P7. The highest<br />

tree mortality was on rootstocks P7 and PN. None of tested rootstocks showed<br />

better than standard one – P. mahaleb seedlings.<br />

The least growth of sweet cherries was on rootstocks Þ1 and P7 (Table 2).<br />

Tree mortality on these rootstocks was the highest (Lanauskas, 2005 b). The most<br />

vigorous trees were on rootstock PN, but the<strong>ir</strong> trunk diameter was close to the one<br />

of trees on P3 and P. mahaleb seedlings. The highest yield and yield efficiency was<br />

of trees on rootstock P3, but this rootstock suckered profusely. The lowest yield<br />

and yield efficiency was recorded for trees on P. mahaleb seedlings.<br />

172


Table 1. Rootstock effect on the performance in the orchard of six-year-old sour<br />

cherry trees of cv. ‘Vytënø þvaigþdë’ (Lanauskas, 2005 a)<br />

1 lentelë. Poskiepiø átaka ‘Vytënø þvaigþdës’ veislës vyðnioms p<strong>ir</strong>maisiais–ðeðtaisiais<br />

augimo sode metais (Lanauskas, 2005 a)<br />

Rootstock<br />

Poskiepis<br />

Trunk diameter<br />

Kamieno skersmuo,<br />

cm<br />

Suckering<br />

(0-5 scores)<br />

Atþalø kiekis<br />

(0–5 balai)<br />

Cumulative yield<br />

(kg tree -1 )<br />

Suminis derlius,<br />

kg vaism. -1<br />

Yield efficiency<br />

(kg cm -2 of<br />

TCSA*)<br />

Produktyvumas,<br />

kg cm -2 KSP*<br />

P. mahaleb 8.2 a** 0.3 a 12.4 a 0.32 a<br />

PN 8.1 a 0.4 a 12.7 a 0.34 a<br />

P3 8.2 a 3.3 b 11.6 a 0.32 a<br />

P7 8.7 b 2.8 b 10.2 a 0.23 a<br />

Ž1 8.2 a 0.8 a 11.1 a 0.28 a<br />

* Trunk cross section area / Kamieno skerspjûvio plotas<br />

** In this and further tables means within the columns marked with the same letter do not differ<br />

statistically at the probability level p = 0.05 / Ðioje <strong>ir</strong> kitose lentelëse tarp skiltyse ta paèia raide<br />

paþymëtø skaièiø esminiø sk<strong>ir</strong>tumø nëra (tikimybës lygis p = 0,05).<br />

Table 2. Rootstock effect on the performance in the orchard of six-year-old sweet<br />

cherry trees of cv. ‘Vytënø roþinë’ (Lanauskas, 2005 b)<br />

2 lentelë. Poskiepiø átaka ‘Vytënø roþinës’ veislës treðnëms p<strong>ir</strong>maisiais–ðeðtaisiais<br />

augimo sode metais (Lanauskas, 2005 b)<br />

Trunk diameter Suckering Cumulative yield Yield efficiency<br />

Rootstock<br />

Kamieno skersmuo, (0-5 scores) (kg tree -1 ) (kg cm -2 of TCSA)<br />

Poskiepis<br />

Atþalø kiekis Suminis derlius, Produktyvumas,<br />

cm<br />

(0–5 balai)<br />

kg vaism. -1<br />

kg cm -2 KSP<br />

P. mahaleb 11.4 ab 0.1 a 3.5 a 0.040 a<br />

PN 12.0 b 0.3 a 5.7 ab 0.064 a<br />

P3 11.6 ab 3.1 c 12.0 c 0.134 b<br />

P7 10.6 a 1.9 b 5.0 a 0.064 a<br />

Ž1 10.3 a 0.3 a 9.0 bc 0.130 b<br />

Since 1999 the following rootstocks are under investigation with sweet cherry<br />

cv. ‘Lapins’: Edabriz, PHL-A, Damil, Gisela 4, Gi-497/8, Gisela 5, Gi-209/1, Gi-148/8,<br />

Gi-195/20, Gi-154/7, Gi-523/02, We<strong>ir</strong>oot 53, We<strong>ir</strong>oot 158, Colt, MaxMa 14, MaxMa<br />

97, MaxMa 60, Hexaploid Colt, Gi-318/17, Gi-195/1, Gi-107/1, Gi-148/13, Gi-148/1,<br />

We<strong>ir</strong>oot 10. According to our investigations the most promising of them are Gisela<br />

4, Gi-497/8 and Gi-154/7.<br />

Interstocks for sweet cherries. In order to decrease tree growth the following<br />

interstocks were investigated: ‘Vladim<strong>ir</strong>skaye’, ‘Poliovka’, ‘Þagarvyðnë’ (all P. cerasus),<br />

‘Severianka’ (P. avium), Colt (P. avium x P. pseudocerasus) and P. fruticosa<br />

(Ðumskis, 1998). The most of interstocks decreased tree TCSA and canopy projection<br />

area. The highest decrease of TCSA was with P. fruticosa interstock. Trees<br />

with interstocks requ<strong>ir</strong>ed less pruning. Interstocks decreased fruit yield per tree.<br />

173


Plum rootstocks. P. cerasifera seedlings still are the main rootstocks for plum<br />

cultivars grown in Lithuania. Searching for more yield efficient and dwarf rootstocks<br />

seedlings of P. tomentosa were evaluated with 11 plum cultivars (Kviklys,<br />

1999). Control trees were on P. cerasifera seedlings. Seedlings of P. tomentosa<br />

decreased tree height, canopy diameter and TCSA of all tested cultivars. Average<br />

yield on P. tomentosa seedlings was about twice less than on P. cerasifera ones<br />

(Table 3). Yield efficiency was similar on both rootstocks. Scion-rootstock incompatibility<br />

and silver leaf infections were more frequent with P. tomentosa seedlings.<br />

It was established that P. tomentosa seedlings could be used only with cvs. ‘Rausvë’<br />

and ‘Niagara’ if planted more densely (1666 trees per hectare).<br />

Table 3. Rootstock effect on the performance in the orchard of nine-year-old plum<br />

trees (average data of 11 cultivars) (Kviklys, 1999)<br />

3 lentelë. Poskiepiø átaka slyvoms p<strong>ir</strong>maisiais–devintaisiais augimo sode metais<br />

(11 veisliø vidutiniai duomenys) (Kviklys, 1999)<br />

Rootstock TCSA Cumulative yield (kg tree -1 ) Yield efficiency (kg cm -2 of TCSA)<br />

Poskiepis KSP, cm -2 Suminis derlius, kg vaism. -1<br />

Produktyvumas, kg cm -2 KSP<br />

P. cerasifera 132 b 68.5 b 0.5 a<br />

P. tomentosa 54 a 32.4 a 0.6 a<br />

Since 1999 clonal rootstocks St. Julien A, St. Julien GF655-2 and Marianna<br />

GF8-1 are under investigation with plum cvs. ‘Stanley’ and ‘Kauno vengrinë’. After<br />

7 years the least tree growth was on rootstock GF655-2 (Table 4). Trees on rootstock<br />

GF8-1 were of the same growth vigour as on standard rootstock – P. cerasifera<br />

seedlings. The highest cumulative yield and yield efficiency was on P. cerasifera<br />

seedlings. The most suckering rootstock was GF655-2.<br />

Table 4. Rootstock effect on the performance in the orchard of seven-year-old plum<br />

trees (average data of cvs. ‘Stanley’ and ‘Kauno vengrinë’) (Lanauskas, 2006)<br />

4 lentelë. Poskiepiø átaka slyvoms p<strong>ir</strong>maisiais–septintaisiais augimo sode metais (‘Stanley’<br />

<strong>ir</strong> ‘Kauno vengrinës’ veisliø vidutiniai duomenys) (Lanauskas, 2006)<br />

Suckering Cumulative yield Yield efficiency<br />

Rootstock Trunk diameter<br />

(0-5 scores) (kg tree -1 ) (kg cm -2 of TCSA)<br />

Kamieno<br />

Poskiepis<br />

skersmuo, cm<br />

Atþalø kiekis Suminis derlius, Produktyvumas,<br />

(0-5 balai)<br />

kg vaism. -1<br />

kg cm -2 KSP<br />

P.cerasifera 9.8 c 1.2 b 14.4 b 0.32 b<br />

St. Julien A 9.2 b 0.5 a 9.2 a 0.23 a<br />

GF655-2 8.8 a 2.4 c 10.2 a 0.28 ab<br />

GF8-1 9.9 c 0.4 a 12.4 ab 0.27 ab<br />

Discussion. Investigations carried out at the Lithuanian Institute of Horticulture<br />

showed that P. mahaleb seedlings were enough good rootstocks for sour cherries<br />

if grown on neutral and not too wet soils. Sour cherry trees on P. mahaleb seedlings<br />

were yield efficient and not too vigorous. P. mahaleb seedlings or clonal rootstocks<br />

are important for sour cherry propagation in Poland (Mika, 2000), Hungary (Hrotkó,<br />

174


Magyar, 2004), Turkey (Ercisli et al., 2006) and some other countries too (Perry,<br />

1987).<br />

More complicated situation is with sweet cherry rootstocks. P. mahaleb, P.<br />

avium or P. cerasus seedlings tested in Lithuania did not provide adequate tree growth<br />

control, yield efficiency on those rootstocks was not satisfactory. Our attempts to<br />

decrease tree size with interstocks gave certain results. Tree growth was reduced<br />

by most used interstocks but positive effect on the yield was not achieved. The most<br />

dwarfing was interstock of P. fruiticosa. This is in coincidence with the results<br />

obtained in the other countries (Rozpara et al., 1998; Hrotkó et al., 1998). As interstock<br />

positive effect was slight and tree production with interstocks is more expensive<br />

researches in this d<strong>ir</strong>ection were stopped.<br />

Search for dwarfing sweet cherry rootstocks was started by testing Russian<br />

clones PN, P3, P7 and local Þ1. There were not found dwarfing among them. Existing<br />

information about dwarfing effect of PN (Áàðàáàø, 1995) was not conf<strong>ir</strong>med<br />

by our experiments. Trees on this rootstock in the young age were of the same<br />

growth vigour like on P. mahaleb seedlings. Sometimes tree growth reduces when it<br />

comes into full bearing (Ystaas, Fr∅ynes, 1991). Further results of this rootstock<br />

effect will be available in some years. Tree yield efficiency on PN was slightly higher<br />

than on P. mahaleb. By our observations made in 2006 (data not presented in this<br />

paper) this tendency became more evident. PN probably is the most interesting rootstock<br />

for sweet cherries in this experiment. The most yield efficient rootstock was<br />

P3, but it suckered profusely complicating orchard floor management. It is reported<br />

that suckering is strongly related to the rootstocks belonging to the species P. cerasus<br />

(Toribio et al., 1998). Franken-Bembenek and Gruppe (1985) reported that the<br />

most severe suckering is observed in progenies with P. cerasus and P. fruticosa. In<br />

our experiment PN and Þ1 rootstocks from P. cerasus almost did not sucker. The<br />

most suckering rootstocks were P3 and P7 originated using P. padus.<br />

Sweet cherry rootstocks from Western Europe and USA being under tests at<br />

the LIH now provide better growth control. More exhaustive investigations of the<br />

best of them are necessary with the most important cultivars in future. Until now<br />

Gisela 4, Gi-497/8 and Gi-154/7 performed well, whereas the most popular in many<br />

countries Gisela 5 showed worse. Gisela 4 and Gisela 5 as promising sweet cherry<br />

rootstocks were mentioned in neighbouring Latvia (Ruisa, Rubauskis, 2004). Cmelik<br />

et al. (2004) recognized Gisela 4 as dwarfing, precocious and productive rootstock<br />

as well.<br />

In our experiments the most dwarfing rootstocks for plums were seedlings of<br />

P. tomentosa but they were discarded for frequent incompatibility with scion cultivars<br />

and negative effect on yield. P. tomentosa got similar evaluation in the experiments<br />

carried out by Oosten (1997).<br />

The rest of tested plum rootstocks had a slight influence on tree growth. From<br />

the f<strong>ir</strong>st year plum trees on rootstock St. Julien A grew somewhat less vigorously<br />

and at the end of the experiment the<strong>ir</strong> trunk diameter was by 6% less in comparison<br />

with the one on P. cerasifera seedlings. The young plum trees on rootstock GF655/<br />

2 grew more vigorously but in the bearing age growth slightly decreased and finally<br />

the<strong>ir</strong> trunk diameter was by 10% thinner in comparison with the one on P. cerasife-<br />

175


a. Fruit trees on rootstock GF8/1 were of the same growth vigour as control ones.<br />

Our observations in most cases are in consistence with the results obtained in other<br />

countries (Hrotkó et al., 1998; Sosna, 2002).<br />

The highest yield and yield efficiency of plum trees in our experiments was on<br />

P. cerasifera seedlings. In most foreign experiments clonal rootstocks improve plum<br />

tree productivity (Grzyb et al., 1998a; Hrotkó et al., 2002), but there are cases when<br />

trees on P. cerasifera seedlings were the most prolific (Grzyb et al., 1998b). Growth<br />

and yield of different scion-rootstock combinations depends on soil and climate<br />

conditions and the results may vary (Sitarek et al., 2004).<br />

The most suckering rootstock was GF655/2. Similar information on it is presented<br />

by the other researches (Kosina et al., 2000; Sosna, 2002). St. Julien A and<br />

GF8/1 practically did not sucker. Trees on P. cerasifera seedlings produced few<br />

suckers, mostly from rootstock stem part, when trees planted to shallow.<br />

According to the data of our experiment none of the tested plum rootstocks<br />

was better than standard P. cerasifera. In recent years scientists from neighbouring<br />

Poland revealed advantages of ‘Wangenheim Prune’ seedling rootstocks. Scion cultivars<br />

on this rootstock often are of superior characteristics in comparison with P.<br />

cerasifera seedlings or clonal rootstocks (Grzyb et al., 1998a; Rozpara, Grzyb, 1998;<br />

Sitarek et al., 2004). In the nearest future ‘Wangenheim Prune’ seedlings should be<br />

introduced into rootstock tests in Lithuania.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Callesen O. Recent developments in cherry rootstock research // Acta Hort. 1998.<br />

Vol. 468. P. 219–228.<br />

2. Cmelik Z., Druzic J., Duralija B., Bencic D. Influence of clonal rootstocks on growth<br />

and cropping of ‘Lapins’ sweet cherry // Acta Hort. 2004. Vol. 658. P. 1<strong>25</strong>–128.<br />

3. Ercisli S., Esitken A., Orhan E., Ozdem<strong>ir</strong> O. Rootstocks used for temperate fruit trees<br />

in Turkey: an overview // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. 27–33.<br />

4. Franken-Bembenek S., Gruppe W. Genetic differences in suckering of cherry hybrids<br />

(Prunus x spp.) // Acta Hort. 1985. Vol. 169. P. 263–268.<br />

5. Grzyb Z. S., Sitarek M., Kolodziejczak P. Growth and yield of three plum cultivars<br />

grafted on four rootstocks in piedmont area // Acta Hort. 1998 a. Vol. 478. P. 87–90.<br />

6. Grzyb Z. S., Sitarek M., Kozinski B. Effect of different rootstocks on growth, yield<br />

and fruit quality of four plum cultivars (in centre of Poland) // Acta Hort. 1998b. Vol. 478.<br />

P. 239–242.<br />

7. Hrotkó K., Magyar L., Klenyãn T., Simon G. Effect of rootstocks on growth and<br />

yield efficiency of plum cultivars // Acta Hort. 2002. Vol. 577. P. 105–110.<br />

8. Hrotkó K., Magyar L. Mahaleb rootstocks from the department of fruit science,<br />

Budapest // Acta Hort. 2004. Vol. 658. P. 497–499.<br />

9. Hrotkó K., Magyar L., Simon G. Growth and productivity of sweet cherry interstem<br />

trees // Acta Hort. 1998. Vol. 468. P. 353–362.<br />

10. Kolesnikova A. F., Ossipov Y. V., Kolesnikov A I. New hybrid rootstock for<br />

cherries. Acta Hort. 1985. Vol. 169. P. 159–162.<br />

176


11. Kosina J. Evaluation of some new plum rootstocks in the orchard // Acta Hort.<br />

2000. Vol. 538. P. 757–760.<br />

12. Kviklys D. Slyvø veisliø <strong>ir</strong> poskiepiø tyrimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1999. T. 18(4). P. 38–45.<br />

13. Lanauskas J. Effect of rootstock on growth and yield of plum tree cvs. ‘Stanley’<br />

and ‘Kauno Vengrinë’ // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. 243–249.<br />

14. Lanauskas J. Evaluation of rootstocks for sour cherry cv. ‘Vytenø Þvaigþdë’ //<br />

Fruit growing. Samochvalovici, 2005a. Vol. 17(2). P. 217–220.<br />

15. Lanauskas J. Vyðniø <strong>ir</strong> treðniø poskiepiø tyrimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Ataskaitinës mokslinës konferencijos medþiaga. Babtai, 2005b. Nr.18. P. 3–8.<br />

16. Mika A. Nowy sposób uprawy wiúni. Warszawa, 2000. 124 p.<br />

17. Okie W. R. Plum rootstocks. In: Rootstocks for fruit crops. Edited by Rom R.C.<br />

and Carlson R.F. USA, 1987. P. 321–360.<br />

18.Oosten H. I. Research on culture in fruit nurseries // Annual reports. Wilhelminadorp,<br />

1979. P. 21.<br />

19. Perry R. L. Cherry rootstocks. In: Rootstocks for fruit crops. Edited by Rom R.C.<br />

and Carlson R. F. USA, 1987. P. 217–264.<br />

20. Rozpara E., Grzyb Z. S. Growth and yielding of some plum cultivars grafted on<br />

‘Wangenheim Prune’ seedlings // Acta Hort. 1998. Vol. 478. P. 87–90.<br />

21. Rozpara E., Grzyb Z. S., Zdyb H. Growth and fruiting of two sweet cherry cultivars<br />

with different interstems // Acta Hort. 1998. Vol. 468. P. 345–352.<br />

22. Ruisa S., Rubauskis E. Preliminary results of testing new sweet cherry rootstocks //<br />

Acta Hort. 2004. Vol. 658 P. 541–546.<br />

23. Sitarek M., Grzyb Z. S., Guzowska-Spaleniak B., Lis J. Performance of three rootstocks<br />

for plums in two different soils and climatic conditions // Acta Hort. 2004. Vol. 658.<br />

P. 273–277.<br />

24. Sosna I. Growth and cropping of four plum cultivars on different rootstocks in<br />

South Western Poland // Journal of fruit and ornamental plant research. 2002. Vol. 10.<br />

P. 95–103.<br />

<strong>25</strong>. Ðumskis A. Poskiepiø vyðnioms parinkimas // Sodininkystës <strong>ir</strong> darþininkystës<br />

rekomendacijos. Babtai, 2001. P. 23–24.<br />

26. Ðumskis A. Vegetatyviniai poskiepiai vyðnioms <strong>ir</strong> treðnëms skiepyti // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1997. T. 16. P. 22–28.<br />

27. Ðumskis A. Þemaûgiø intarpø treðnëms ávertinimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1998. 17(1). P. 47–52.<br />

28. Toribio F., Moreno J., Manzano M. A. Evaluation of rootstocks for cherry trees //<br />

Acta Hort. 1998. Vol. 468. P. 339–344.<br />

29. Wertheim S. J. Rootstock guide. Wilhelminadorp. 1998. 144 p.<br />

30. Ystaas J. and Fr∅ynes O. Effects of Colt and F12/1 rootstocks on growth, cropping<br />

and fruit quality of ‘Ulster’, ‘Van’ and ‘Sam’ sweet cherries // Norwegian Journal of<br />

Agricultural Science. 1991. Vol. 5. P. 269–276.<br />

31. Áàðàáàø Ò. Í. Êëîíîâûå ïîäâîè âèøíè è ÷åðåøíè // Ñîâðåìåííûå<br />

ïðîáëåìû ïëîäîâîäñòâà. Òåçèñû äîêëàäîâ íàó÷íîé êîíôåðåíöèè, Ñàìîõâàëîâè÷è,<br />

9–13 îêòÿáðÿ 1995 ãîäà. Ñàìîõâàëîâè÷è, 1995. Ñ. 163.<br />

32. Åâñòðàòîâ À. È. Âèøíÿ è ñëèâà. Ìîñêâà. 1986. 40 ñ.<br />

33. Øàðêî Ë. Â., Áàðàáàø Ò. Í., Êèíàø Ã. À. Ïðîäóêòèâíîñòü ìàòî÷íûõ<br />

íàñàæäåíèé êëîíîâûõ ïîäâîåâ ïëîäîâûõ ïîðîä íà þãå ñòåïè Óêðàèíû //<br />

Ïëîäîâîäñòâî íà ðóáåæå ÕÕI âåêà. Ìàòåðèàëû ìåæäóíàðîäíîé íàó÷íîé<br />

êîíôåðåíöèè, Áåëàðóñü, ïîñ. Ñàìîõâàëîâè÷è, 9–13 îêòÿáðÿ 2000 ãîäà.<br />

Ìèíñê, 2000. Ñ. 112–113.<br />

177


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

KAULAVAISIØ POSKIEPIØ TYRIMAI LIETUVOJE<br />

J. Lanauskas, D. Kviklys<br />

Santrauka<br />

Vyðnios <strong>ir</strong> slyvos yra daþniausiai Lietuvoje auginami kaulavaisiai. Ðiame straipsnyje<br />

supaþindinama su svarbiausiais vyðniø, treðniø <strong>ir</strong> slyvø poskiepiø tyrimø rezultatais.<br />

Tyrimai buvo atlikti centrinëje Lietuvos dalyje, kur vyrauja sekliai karbonatingi<br />

giliau glëjiðki rudþemiai, granuliometrinë sudëtis – vidutinio sunkumo arba<br />

sunkûs priemoliai. Juose vidutiniðkai gausu arba gausu fosforo <strong>ir</strong> kalio, humuso –<br />

1,5–3 proc., pH KCl<br />

– 7,0–7,2.<br />

Daugelá metø vyðnios <strong>ir</strong> treðnës buvo skiepijamos á atsitiktinius treðnës (Prunus<br />

avium), kvapiosios (P. mahaleb) arba paprastosios (P. cerasus) vyðnios sëjinukus, o<br />

slyvos – á skëstaðakës slyvos (P. cerasifera) sëjinukus. P<strong>ir</strong>maisiais tyrimais buvo<br />

stengiamasi atrinkti vaismedþiø, kuriø sëjinukai gerai prisitaikæ prie mûsø agroklimato<br />

sàlygø, teigiamai veikia áskiepiø derëjimà <strong>ir</strong> vaisiø kokybæ, formas. Vyðnioms skiepyti<br />

tinkamais buvo pripaþinti treðniø veislës ‘Zolotaja Losickaja’ <strong>ir</strong> selekcinio Nr. 2<br />

bei dviejø kvapiosios vyðnios formø – Nr. 817 <strong>ir</strong> Nr. 805 – sëjinukai. Vaismedþiai su<br />

ðiais poskiepiais sode augo vienodi, gausiai derëjo, vaisiai buvo geros kokybës.<br />

Vëlesniais tyrimais ávertintas kloniniø poskiepiø PN (P. cerasus), P3, P7 (abu<br />

P.padus x (P. cerasus x P. avium)) <strong>ir</strong> Þ1 (P. cerasus) tinkamumas vyðnioms <strong>ir</strong> treðnëms.<br />

Në vienas ið minëtø poskiepiø vyðnioms nebuvo geresnis uþ standartinius –<br />

kvapiosios vyðnios sëjinukus, o treðnës, skiepytos á kvapiosios vyðnios sëjinukus,<br />

derëjo prasèiausiai. Produktyviausios treðnës buvo su P3 poskiepiu, taèiau jis augino<br />

daug ðaknø atþalø. Perspektyviausias ið t<strong>ir</strong>tø poskiepiø treðnëms gali bûti PN. Vaismedþiai<br />

su ðiuo poskiepiu yra ðiek tiek produktyvesni negu skiepyti á kvapiosios vyðnios<br />

sëjinukus, poskiepis neformuoja atþalø, vaisiai yra tinkamo dydþio.<br />

Slyvoms buvo t<strong>ir</strong>iami ðie poskiepiai: veltininës vyðnios (P. tomentosa) sëjinukai<br />

<strong>ir</strong> kloniniai – St. Julien A, St. Julien GF655-2 bei Marianna GF8-1. Në vienas ið t<strong>ir</strong>tø<br />

poskiepiø nepas<strong>ir</strong>odë esàs geresnis uþ standartinius – skëstaðakës slyvos sëjinukus.<br />

Nustatyti daþni fiziologinio neatitikimo atvejai tarp veltininës vyðnios sëjinukø <strong>ir</strong> á juos<br />

áskiepytø slyvø veisliø.<br />

Ðiuo metu t<strong>ir</strong>iami 24 kloniniai treðniø poskiepiai su ‘Lapins’ veisle. Iki ðiol ið jø<br />

perspektyviausi atrodo Gisela 4, Gi–497/8 <strong>ir</strong> Gi–154/7.<br />

Ateityje turëtø bûti t<strong>ir</strong>iami nauji slyvø <strong>ir</strong> treðniø þemaûgiai poskiepiai su perspektyviausiomis<br />

ðiø augalø veislëmis.<br />

Reikðminiai þodþiai: kloniniai poskiepiai, sëjinukai, slyvos, treðnës, vyðnios.<br />

178


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

PERFORMANCE OF FIVE PLUM ROOTSTOCKS TO<br />

THE PLUM CULTIVARS ‘OPAL’ AND<br />

‘REINE CLAUDE GF 1119’ GROWING IN NORWAY<br />

Mekjell MELAND, Oddmund FR∅YNES<br />

Bioforsk Ullensvang, N-5781 Lofthus, Norway.<br />

E-mail mekjell.meland@bioforsk.no<br />

The performances of the plum rootstocks Plumina® Ferlenain, Ishtara® Ferciana,<br />

Jaspi® Fereley and the pentaploid open pollinated seedling of Mariana P 8-13<br />

was compared with St. Julien. A as a standard, the cultivars ‘Opal’ and ‘Reine<br />

Claude GF 1119’ were assessed in a field trial in western Norway at 60° North. This<br />

trial was one part of an international plum rootstock trial located in seven European<br />

countries and organized from INRA Bordeaux. Trees were planted in the spring of<br />

1994; spaced 2.0 x 4.0 m and formed with a central leader as free spindles. Soil<br />

management was grass in the alleyways and herbicide strips 1 m wide along the tree<br />

rows. Tree vigour, yield, fruit size and yield efficiency were evaluated for seven<br />

subsequent years. Tree size was significantly affected by the rootstocks. P 8–13<br />

produced the largest trees for both cultivars as measured by trunk cross-sectional<br />

area. The smallest trees were produced on Plumina® Ferlenain for the cultivar ‘Opal’<br />

and on Jaspi® Fereley for ‘Reine Claude’. The cultivar ‘Opal’ was the most productive<br />

and gave three times larger crop than ‘Reine Claude’ on the average for the six<br />

cropping years. The ‘Reine Claude’ trees came two years later into production than<br />

‘Opal’. There were small differences between the different rootstocks in productivity.<br />

However, the rootstock Plumina® Ferlenain produced significant lower crop<br />

than the other rootstocks for ‘Opal’. Trees on Jaspi® Fereley were the most yield<br />

efficient for ‘Opal’ and Plumina® Ferlenain for ‘Reine Claude’. The fruit sizes were<br />

in general medium to small for both cultivars and became little affected by the different<br />

rootstocks. The average fruit size was about 29 g for ‘Opal’ and 22 g for ‘Reine<br />

Claude’. Fruit quality characterized by the content of soluble solids was high for<br />

‘Reine Claude’ with average 20 proc. and 15 proc. for ‘Opal’ and did not differ<br />

much between trees on the various rootstocks.<br />

Key words: Prunus domestica L., rootstock, cultivar, high density, tree size,<br />

yield, fruit quality, yield efficiency.<br />

Introduction: With European plum (P. domestica. L.) most of the currently<br />

available rootstocks belong to one of the three Prunus species; P. domestica, P.<br />

179


insititia (St. Julien) and P. cerasifera (Myrobalan). These species are all rather vigorous.<br />

During the last decades the rootstock St. Julien A has been recommended as a<br />

reliable semi-dwarf rootstock with favourable influences on fruit size and fruit quality<br />

(Ystaas and Frøynes, 1993) for European plums in Norway. However, trees on<br />

St. Julien A are considered to be too vigorous to meet the demand for high density<br />

plantings together with early and high crops and a more dwarfing and precocious<br />

rootstock is wanted.<br />

In the 1980s and 1990s increasing research activities have been conducted on<br />

plums (Grzyb et al., 1998; Hartman, 1994). Several new plum rootstocks were<br />

introduced (Grzyb et al., 1984; Renaud & Salesses, 1991; Webster, 1980) and some<br />

of these claim to be dwarfing.<br />

A rootstock-breeding programme at INRA Bordeaux in France has produced<br />

many hybrid rootstocks for stone fruits and several of the vegetatively propagated<br />

clones from this programme have shown potential as rootstocks for prunes and<br />

plums (Renaud et al., 1991).<br />

Ishtara® Ferciana is an interspecific hybrid, P. salicina ‘Belsiana’ x (P. cerasifera<br />

x P. persica) released in 1986 under the trade name Ishtara®. It is moderately<br />

vigorous with good effect on fruit size and with no suckers (Wertheim, 1998).<br />

Jaspi® Fereley is a hybrid from a cross between P. salicina ‘Methley’ x P. spinosa<br />

and was released in 1989. The vigour of Fereley is rather similar to Ferciana, good<br />

root anchorage and suitable for wet soil. Plumina® Ferlenain is a cross of P. bessey<br />

and diploid Prunus species, probably ‘Myrobalan’.<br />

P 8–13 is a pentaploid open pollinated seedling of the rootstock Mariana and<br />

was selected in France. It is a semi vigorous rootstock similar to St. Julien A (Wertheim,<br />

1998).<br />

At the international ISHS congress in F<strong>ir</strong>enze, Italy in 1990 it was organized<br />

two joint trials with several European countries as participants organized from INRA<br />

Bordeaux, France. There was one trial with table fruit cultivars included a common<br />

cultivar, Greengage GF 1119 and one other cultivar and one trial with prune cultivars<br />

(Renaud, 1998).<br />

The main objective of this trial was to seek ways to improve the early and large<br />

yields with high quality fruits of two plum cultivars by testing five rootstocks of<br />

different vigour levels.<br />

Materials and methods. Trees of the European plum cultivars ‘Opal’ and<br />

‘Reine Claude GF 1119’ (Prunus domestica L.) growing on five different rootstocks<br />

were assessed in a field trial at Bioforsk Ullensvang (60° North). The trees<br />

were planted in the spring of 1994 and evaluated for seven subsequent years. The<br />

five rootstocks included 4 rootstocks from INRA Bordeaux (Ishtara® Ferciana,<br />

Jaspi® Fereley, Plumina® Ferlenain and the pentaploid P. Marianna (8–13)) compared<br />

to St. Julien A as the standard. The trees were spaced 2.0 x 4.0 m and<br />

formed with a central leader as free spindles. The leader was cut back at planting<br />

and annually until the final tree height was about 2.5 m and the branches were tied<br />

down to the horizontal. The experimental design was a randomised complete block<br />

with six replications. Each plot had two trees of similar cultivar/rootstock combination.<br />

180


Soil management consisted of frequently mowed grass in the alleyways and<br />

herbicide strips 1-m wide along the tree rows. The experiment was carried out on a<br />

loamy sand soil high in organic matter and with good fertility. The trees were <strong>ir</strong>rigated<br />

with trickle <strong>ir</strong>rigation when water deficits, based on evapotransp<strong>ir</strong>ation measurements,<br />

were recorded. The trees each received the same amounts of fertilizer, based<br />

on soil and leaf analysis.<br />

Fruit thinning was done by hand whenever necessary with the aim of spacing<br />

the fruitlets to about 5 cm apart. Trunk c<strong>ir</strong>cumference, <strong>25</strong> cm above the graft union,<br />

was recorded each fall. Total yield was measured yearly. Individual fruit weights<br />

were determined on random samples of 50 fruits per plot. Samples of 10 fruits were<br />

taken to the laboratory for determination of soluble solids by an Atago digital refractometer<br />

at 20°C.<br />

The statistical analyses were carried out using the software Minitab.<br />

Results. Growth and Flowering. In the f<strong>ir</strong>st growing season the trees had<br />

minor shoot growth due to some root drying during the transport. However, in the<br />

second growing season (1995) the trees grew normally. The amounts of flower<br />

clusters were registered by giving scores to each cultivar/rootstock combination in<br />

the th<strong>ir</strong>d leaf and the following three years (Tables 1 and 2).<br />

Table 1. Effect of five rootstocks on the amount of flower clusters during the f<strong>ir</strong>st four<br />

cropping years of ‘Opal’. Scores 1–9, where 1 – zero flower clusters and 9 – many<br />

1 lentelë. Slyvø veislës ‘Opal’ þiedynø skaièiaus priklausomumas nuo penkiø poskiepiø<br />

per p<strong>ir</strong>muosius ketverius derëjimo metus (1–9 balai, kur 1 – nëra þiedynø,<br />

9 – daug þiedynø)<br />

Rootstock<br />

Poskiepis<br />

Flower index, scores<br />

Þiedø rodiklis balais<br />

1996 1997 1998 1999<br />

Ferlenain 2.8 3.5 7.0 4.5<br />

Ferciana 3.9 1.9 6.1 3.3<br />

Fereley 5.5 1.8 6.8 1.9<br />

P 8–13 4.6 1.8 7.1 3.0<br />

St. Julien A 2.3 1.4 5.7 2.8<br />

LSD / P = 0.05% NS NS NS NS<br />

181


Table 2. Effect of five rootstocks on the amount of flower clusters during<br />

the f<strong>ir</strong>st four cropping years of ‘Reine Claude’. Scores 1–9, where 1 – zero<br />

flower clusters and 9 – many<br />

2 lentelë. Slyvø veislës ‘Reine Claude’ þiedynø skaièiaus priklausomumas nuo penkiø<br />

poskiepiø per p<strong>ir</strong>muosius ketverius derëjimo metus (1–9 balai, kur 1 – nëra þiedynø,<br />

9 – daug þiedynø)<br />

Flower index, scores<br />

Rootstock<br />

Þiedø rodiklis balais<br />

Poskiepis 1996 1997 1998 1999<br />

Ferlenain 1.0 1.0 7.8 7.5<br />

Ferciana 1.8 1.0 3.7 6.8<br />

Fereley 2.8 1.0 4.2 6.2<br />

P 8–13 2.0 1.0 3.8 6.9<br />

St. Julien A 2.9 1.0 3.3 6.6<br />

LSD. P = 0.05% NS NS 1.4 0.8<br />

For ‘Opal’ no significant differences were found between the different rootstocks.<br />

The amount of flower clusters per tree varied between years, which are<br />

common for the ‘Opal’ cultivar. However, for the rootstock Ferlenain higher amounts<br />

were registered in the fifth and sixth leaf. No clear differences were found between<br />

the dates for flowering between the different rootstocks.<br />

Table 3. Effect of rootstocks on trunk cross sectional area, cumulative yield, cumulative<br />

yield efficiency, average fruit weight, soluble solids and tree survival for the cultivar<br />

‘Opal’ at the end of the eight growing season<br />

3 lentelë. Poskiepiø átaka slyvø veislës ‘Opal’ kamieno skerspjûvio plotui, suminiam<br />

derliui, suminiam produktyvumui, vidutinei vaisiaus masei, t<strong>ir</strong>pioms sausosioms<br />

medþiagoms <strong>ir</strong> vaismedþio iðlikimui aðtuntojo augimo sezono pabaigoje<br />

Rootstock<br />

Poskiepis<br />

Trunk<br />

crosssectional<br />

area<br />

Kamieno<br />

skerspjûvio<br />

plotas, cm 2<br />

Cumulative<br />

yield (kg<br />

per tree)<br />

Suminis<br />

derlius,<br />

kg medis -1<br />

Cumulative<br />

yield<br />

efficiency<br />

Suminis<br />

produktyvumas,<br />

kg cm -2<br />

Mean<br />

fruit<br />

weight<br />

Vidutinë<br />

vaisiaus<br />

masë, g<br />

Soluble<br />

solids<br />

T<strong>ir</strong>pios<br />

sausosios<br />

medžiagos,<br />

%<br />

Tree<br />

survival<br />

Vaismedžio<br />

išlikimas, %<br />

Ferlenain 39.8 16.2 0.521 28.7 17.5 50<br />

Ferciana 58.4 30.9 0.762 29.1 15.3 91<br />

Fereley 64.3 36.6 0.829 29.5 15.5 100<br />

P 8–13 71.9 34.0 0.695 29.9 15.1 87<br />

St. Julien A 57.5 29.9 0.657 29.4 15.4 100<br />

LSD. P = 0.05% 12.6 5.8 NS NS 2.1 -<br />

182


Tree vigour. Tree vigour as measured by trunk cross-sectional area at the end<br />

of the eight growing season was significantly affected by rootstocks. P 8–13 produced<br />

the largest trees for both cultivars and was <strong>25</strong>% larger than St. Julien A on<br />

‘Opal’ and 7% larger on ‘Reine Claude’. The smallest trees were produced on Ferlenain<br />

for the cultivar ‘Opal’ and on Fereley for ‘Reine Claude’ (Tables 3 and 4).<br />

These rootstocks gave significant smaller trees on both cultivars compared with the<br />

standard St. Julien A.<br />

Table 4. Effect of rootstocks on trunk cross sectional area, cumulative yield, cumulative<br />

yield efficiency, average fruit weight, soluble solids and tree survival for the cultivar<br />

‘Reine Claude GF 1119’ at the end of the eight growing season<br />

4 lentelë. Poskiepiø átaka slyvø veislës ‘Reine Claude GF 1119’ kamieno skerspjûvio<br />

plotui, suminiam derliui, suminiam produktyvumui, vidutinei vaisiaus masei, t<strong>ir</strong>pioms<br />

sausosioms medþiagoms <strong>ir</strong> vaismedþio iðlikimui aðtuntojo augimo sezono pabaigoje<br />

Rootstock<br />

Poskiepis<br />

Trunk<br />

crosssectional<br />

area<br />

Kamieno<br />

skerspjûvio<br />

plotas,<br />

cm 2<br />

Cumulative<br />

yield (kg<br />

per tree)<br />

Suminis<br />

derlius,<br />

kg medis -1<br />

Cumulative<br />

yield<br />

efficiency<br />

Suminis<br />

produktyvumas<br />

, kg cm -2<br />

Mean<br />

fruit<br />

weight<br />

Vidutinë<br />

vaisiaus<br />

masë, g<br />

Soluble<br />

solids<br />

T<strong>ir</strong>pios<br />

sausosios<br />

medžiagos,<br />

%<br />

Tree<br />

survival<br />

Vaismedžio<br />

išlikimas, %<br />

Ferlenain 63.7 14.2 0.276 23.1 22.3 80<br />

Ferciana 84.6 10.1 0.155 22.8 20.1 100<br />

Fereley 60.5 10.1 0.211 20.3 19.3 100<br />

P 8-13 85.8 9.8 0.156 21.5 18.7 83<br />

St. Julien A 80.3 9.1 0.143 20.8 20.5 100<br />

LSD. P = 0.05% 14.5 2.0 0.037 NS 2.9 -<br />

Yield. The f<strong>ir</strong>st minor crop was harvested in the th<strong>ir</strong>d leaf for the cultivar ‘Opal’,<br />

which was the most productive cultivar. It gave three times larger crop than ‘Reine<br />

Claude’ on the average for the six cropping years. The ‘Reine Claude’ trees came<br />

two years later into production than ‘Opal’. The harvest time for ‘Opal’ was the<br />

second half of August depending on the years and ‘Reine Claude’ one month later.<br />

For ‘Opal’ the rootstock St. Julien A came slower into production than the other<br />

rootstocks. There were rather small differences between the different rootstocks in<br />

productivity: However, the rootstock Ferlenain produced significant larger crop than<br />

the other rootstocks for ‘Reine Claude’ and lower for ‘Opal’.<br />

Yield efficiency. Yield efficiency was calculated for each rootstock on the basis<br />

of yield and trunk cross sectional area. Trees on Fereley were the most yield efficient<br />

for ‘Opal’ and Ferlenain for ‘Reine Claude’. The Ferlenain rootstock was the<br />

least efficient for ‘Opal’ and St. Julien A for ‘Reine Claude’. In general the efficiency<br />

reflected the yields obtained.<br />

Fruit quality. Important quality components like fruit weight and soluble solids<br />

were not much influenced by the different rootstocks. The rootstocks did not have<br />

183


any significant effect on fruit sizes and were in general medium to small for both<br />

cultivars. Smallest fruit size was recorded on the ‘Reine Claude’ (Tables 3 and 4).<br />

For all cultivars the fruit weight decreased with increasing crop (data not shown).<br />

Similar pattern was found for the content of soluble solids (Table 4). Fruit quality<br />

characterized by the content of soluble solids was high for ‘Reine Claude’ with<br />

average 20% and 15% for ‘Opal’ However, plums from trees on Ferlenain had significant<br />

higher content of soluble solids for both cultivars.<br />

Tree survival. The winter of 1995/96 was special in the way that it came frost<br />

from the end of November until the end of March without any snow cover. Under<br />

these climatic conditions the root systems became partly damaged on some of the<br />

rootstock and cultivar combinations. The rootstocks Ferlenain was the least frost<br />

tolerance with 50% and 20% of the trees lost on the two cultivars ‘Opal’ and ‘Reine<br />

Claude’, respectively. The rootstocks Fereley and St. Julien A were the most winter<br />

tolerant with all trees surviving the test period of 8 years.<br />

Discussion: The objectives of the breeding programme at INRA Bordeaux<br />

was reducing the vigour of the rootstocks, early bearing, heavy and regular production<br />

and type of branching and fructification leading to faster pruning and<br />

lower production costs (Renaud and Salesses, 1994). The f<strong>ir</strong>st minor yield was<br />

not achieved until the th<strong>ir</strong>d leaf for ‘Opal and fifth leaf for ‘Reine Claude’. The<br />

trees suffered some the f<strong>ir</strong>st growing season likely due to root drying under transport.<br />

However, from the second leaf and the rest of the test period, normal annual<br />

growth was achieved.<br />

Plum trees are generally slow to come into bearing. However, the ‘Opal’ trees<br />

started to crop earlier than ‘Reine Claude’ independent of rootstock choice. The<br />

dwarfing rootstock showing most promise in this trial was Ferlenain for ‘Reine<br />

Claude’. Mature trees on this rootstock were significant smaller than the other rootstocks<br />

except Fereley. Total cumulative yield and yield efficiency from these trees<br />

on Ferlenain was significant better than on the other rootstocks. Similar effect by<br />

this rootstock on the cultivars ‘Victoria’ and ‘Czar’ is reported by Webster and<br />

Wertheim (1993). Trials in France have shown similar results as well with prune and<br />

gage trees on Ferlenain dwarfing the trees and to yield good size fruits with no<br />

incompatibility problems for ‘Green Gage’ (Bernard and Renaud, 1990). At bloom<br />

time in the th<strong>ir</strong>d – sixth leaf the amount of flowering were judged. Across all cultivar<br />

and rootstock combinations the Ferlenain rootstock got the highest scores and this<br />

effect was clearly demonstrated for the cultivar ‘Reine Claude’.<br />

However, half of the Ferlenain trees did not survive in the ‘Opal’ trial and they<br />

yielded less than the other rootstocks.<br />

The rootstocks Ferciana, P 8–13 and the standard St. Julien A did not dwarf the<br />

two cultivars significantly and the cumulative yields during the experiment per tree<br />

were in the same area. No significant differences in the average fruit size where<br />

found for the different cultivar/rootstock combinations. Fruit size is linked to the<br />

cultivar and the crop load on the trees. These trees had moderate large yields and<br />

likely got no fruit size reductions.<br />

The content of soluble solids are important components of plum quality. This<br />

component was not strongly influenced by the rootstocks and only minor differen-<br />

184


ces were found. The ‘Reine Claude’ is considered to be a premium quality plum and<br />

had the highest content of soluble solids of these two plum cultivars independent of<br />

rootstock choice.<br />

Conclusions. The rootstocks tested produced tree vigour from semi-dwarf to<br />

semi-vigorous. Ferlenain was the most reliable semi-dwarf rootstock to the cultivar<br />

‘Reine Claude’ with high yield efficiency and with favourable influence on fruit<br />

quality. Ferciana, P 8–13 and St. Julien A were all semi vigorous with similar crops<br />

and fruit quality for both cultivars. The ‘Opal’ cultivar yielded three times more than<br />

the ‘Reine Claude’ cultivar.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Bernard. R., Renaud. R. Le pont sur les porte greffes du prunier. L’Arboriculture<br />

Fruitere. 1990. 432. P. 28–36.<br />

2. Grzyb Z. S., Jackiewicz A., Czynczyk A. Results of 18-year evaluation of rootstocks<br />

for Italian Prune cultivar. Fruit Sci. Rep. 1984. 11(3). P. 99–104.<br />

3. Grzyb Z.S., Zmarlicki K., Sitarek, M. (eds) Proceedings of the VI th international<br />

symposium on plum and prune genetics, breeding and pomology. Acta Hort. 1998. 478,<br />

350 pp.<br />

4. Hartman W. (ed.) Fifth international symposium on plum and prune genetic, breeding<br />

and pomology. Acta Hort. 1994. 359, 296 pp.<br />

5. Renaud R. Report on ”International trials on plum rootstocks”.- Acta Hort. 1998.<br />

478. P. 99–100.<br />

6. Renaud R., Salesses G. Interspecific hybridization and rootstocks breeding for<br />

European plums. Acta Hort. 1994. 359. P. 97–100.<br />

7. Renaud R., Salesses G., Roy M., Bonnet A. Development and selection of new<br />

rootstocks of Prunus domestica. Acta Hort. 1991. 283. P. <strong>25</strong>3–<strong>25</strong>9.<br />

8. Webster A. D. Pixy, a new dwarfing rootstock for plums, Prunus domestica L. J.<br />

Hort. Sci. 1980. 55(4). P. 4<strong>25</strong>–431.<br />

9. Webster A. D., Wertheim S. J. Comparisons of species and hybrid rootstocks for<br />

European plum cultivars. J. Hort. Sci. 1993. 68(6). P. 861–869.<br />

10. Wertheim S. J. Rootstock Guide. Apple, pear, cherry, European plum. Publication<br />

nr. <strong>25</strong>. Fruit Research Station Wilhelminadorp. The Netherlands. 1998. 144 pp.<br />

11. Ystaas J., Fr∅ynes O. Performance of five rootstock over 17 years to five commercial<br />

important plum cultivars in Norway. Norwegian J. Ag. Sci. 1993. 7. P. 267–274.<br />

185


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

SLYVØ VEISLIØ ‘OPAL’ IR ‘REINE CLAUDE GF 1119’,<br />

AUGINAMØ NORVEGIJOJE, PENKIØ POSKIEPIØ<br />

CHARAKTERISTIKA<br />

M. Meland, O. Fr∅ynes<br />

Santrauka<br />

Slyvø poskiepiø Plumina® Ferlenain, Ishtara® Ferciana, Jaspi® Fereley <strong>ir</strong> pentaploidinio<br />

atv<strong>ir</strong>ai apdulkinamo Mariana P 8-13 sodinuko charakteristikos palygintos<br />

su St. Julien A kaip standartu. Veislës ‘Opal’ <strong>ir</strong> ‘Reine Claude GF 1119’ ávertintos<br />

lauko bandymais Vakarø Norvegijoje (60° á ðiauræ). Ðis bandymas buvo tarptautiniø<br />

poskiepiø tyrimø, atliktø septyniose Europos ðalyse <strong>ir</strong> suorganizuoto INRA Bordeaux,<br />

dalis. Vaismedþiai buvo pasodinti 1994 metø pavasará 2,0 x 4,0 m atstumais <strong>ir</strong><br />

suformuoti kaip laisvai auganèios verpstës su centrine pagrindine ðaka. D<strong>ir</strong>va alëjose<br />

apþeldinta þole, o vaismedþiø eilëse 1 m ploèio juostos buvo purðkiamos herbicidais.<br />

Septynerius metus vertintas vaismedþiø augumas, vaisiø dydis <strong>ir</strong> produktyvumas.<br />

Poskiepiai darë reikðmingà átakà vaismedþiø dydþiui. Lyginant kamienø skerspjûvio<br />

plotus, nustatyta, kad aukðèiausi abiejø veisliø vaismedþiai iðaugo ið sodinukø Mariana<br />

P 8–13. Maþiausi veislës ‘Opal’ vaismedþiai iðaugo su poskiepiu Plumina® Ferlenain,<br />

o veislës ‘Reine Claude’ – su poskiepiu Jaspi® Fereley. Veislë ‘Opal’ buvo<br />

produktyviausia <strong>ir</strong> per ðeðerius metus davë vidutiniðkai trigubai didesná derliø negu<br />

‘Reine Claude’. ‘Reine Claude’ vaismedþiai pradëjo vesti vaisius dvejais metais vëliau<br />

negu ‘Opal’. Produktyvumo atþvilgiu sk<strong>ir</strong>tingi poskiepiai skyrësi maþai, iðskyrus veislës‘Opal’poskiepá<br />

Plumina® Ferlenain, kurio derlius buvo daug maþesnis negu kitø<br />

poskiepiø. Didþiausias veislës ‘Opal’ slyvø derlius gautas vaismedþiams augant su<br />

poskiepiu Jaspi® Fereley, o veislës ‘Reine Claude’ – su poskiepiu Plumina® Ferlenain.<br />

Abiejø veisliø vaisiai ið esmës buvo vidutinio dydþio arba maþi – nuo sk<strong>ir</strong>tingø<br />

poskiepiø dydis beveik nepriklausë. Veislës ‘Opal’ vaisiai vidutiniðkai svërë 29 g, o<br />

‘Reine Claude’ – 22 g. Veislës ‘Reine Claude’ t<strong>ir</strong>piø sausøjø medþiagø kiekis, apibûdinantis<br />

vaisiø kokybæ, siekë vidutiniðkai 20 proc., o ‘Opal’ – 15 proc. <strong>ir</strong> sk<strong>ir</strong>tingi<br />

poskiepiai jam didelës átakos nedarë.<br />

Reikðminiai þodþiai: Prunus domestica L., poskiepis, veislë, tankumas, vaismedþio<br />

dydis, derlius, vaisiø kokybë, produktyvumas.<br />

186


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

VARIABILITY OF UV-ABSORBING COMPOUNDS IN<br />

PLANT LEAVES UNDER UV-B EXPOSURE<br />

Kæstutis BARANAUSKIS, Jurga SAKALAUSKAITË,<br />

Auðra BRAZAITYTË, Akvilë URBONAVIÈIÛTË,<br />

Giedrë SAMUOLIENË, Gintarë ÐABAJEVIENË,<br />

Sandra SAKALAUSKIENË, Jûratë Bronë ÐIKÐNIANIENË,<br />

Pavelas DUCHOVSKIS<br />

Lithuanian Institute of Horticulture, LT–54333 Babtai, Kauno 30,<br />

Kaunas distr., Lithuania.<br />

E-mail k.baranauskis@lsdi.lt<br />

Variability of UV-absorbing compounds in leaves of Daucus sativus Röhl., Fragaria<br />

ananassa Duch. Malus domestica and Raphanus sativus L. under different UV-<br />

B exposure was examined. Effect of an additional stress including increased temperature<br />

(<strong>25</strong>°C-day/16°C-night) and CO 2<br />

level (700 ppm) on UV-screening compound in<br />

Malus domestica and Raphanus sativus L. leaves was identified as well. In general,<br />

this study revealed that plant response to UV-B exposure intensity is very speciesspecific<br />

only under non-stressful conditions; i. e. favorable temperature and ambient<br />

CO 2<br />

level, though a linear relationship between concentration of UV-absorbing compounds<br />

and UV-B daily doses has not been determined. Content of UV-screening<br />

compounds appeared to be more determined by stressors including an increased<br />

temperature and CO 2<br />

level rather than an intensity of exposure to UV-B radiation.<br />

Key words: Daucus sativus Röhl., Fragaria ananassa Duch. Malus domestica,<br />

Raphanus sativus L., UV-absorbing compounds, UV-B radiation.<br />

Introduction. Plants use sunlight for photosynthesis and, as a consequence,<br />

are exposed to the ultraviolet (UV) radiation that is present in d<strong>ir</strong>ect sunlight. All<br />

types of UV radiation, especially the higher energy wavelengths are known to disorder<br />

various plant processes. Such disturbances include DNA damage (Harm, 1980),<br />

inhibition of photosynthetic primary productivity (Tevini and Teramura, 1989), inhibition<br />

of nitrogenase activity (Sinha et al., 1996), and a diversity of other responses<br />

that have been reviewed elsewhere (Tevini, 1993; Vincent and Roy, 1993). However,<br />

it is wrong to consider UV radiation as only damaging factor. It has certain beneficial<br />

roles in the biosphere. As an example, various growth and photomorphogenetic effects<br />

in plants, mediated through blue/UV-A receptors, involve UV-A radiation (Salisbury<br />

and Ross, 1992). Even UV-A reflected from petal anthocyanins is essential<br />

for flower recognition by pollinating insects (Flint and Caldwell, 1983).<br />

187


Phenylpropanoids including flavones, flavonols, cinnamoyl esters and anthocyanins<br />

provide a UV-A and UV-B screen. The flavonoids are today the most widely<br />

occurred phenolic derivatives in the biosphere (Harborne, 1964). Flavonoids provide<br />

an effective UV screen that reduces UV radiation transmittance through epidermis,<br />

but allow through visible radiation for photosynthesis (Tevini et al., 1991), prevents<br />

DNA damage and UV-B-induced damage of the photosynthetic apparatus (Regner et<br />

al., 1989). A number of authors proposed, that flavonoids are UV-B-inducible (Mohle<br />

and Wellman, 1982; Barnes et al., 1988; Tevini et al., 1991) and in some cases a<br />

linear relationship between flavonoid concentration and UV-B flux has been observed<br />

(Wellman, 1975). The flavonoids response for UV screening may vary from<br />

species to species and could be developmental stage and tissue-dependent (Cockell<br />

and Knowland, 1999).<br />

As well as flavonoids, other aromatic-containing pigments in higher plants such<br />

as alkaloids absorb in the UV range and may provide additional UV protection in<br />

some species (Cockell and Knowland, 1999).<br />

However, the UV-B-dependent variability of total amount of UV-screening compounds<br />

in higher plants is not yet established. Therefore, this study aims to survey a<br />

relationship between UV-B radiation and total amount of UV absorbing compounds<br />

in few plant species including Raphanus sativus L., Malus domestica, Daucus sativus<br />

Röhl., Fragaria ananassa Duch.<br />

Materials and methods. Research was carried out in the phytotron complex<br />

at the Lithuanian Institute of Horticulture in 2006. Raphanus sativus L., Malus domestica,<br />

Daucus sativus Röhl. and Fragaria ananassa Duch. were grown in 5 L<br />

pots of peat substrate (pH 5.85–6) during the experiment. A photoperiod of 16 h<br />

was maintained. All plants were exposed to 0 (reference), 2 and 4 kJ daily UV-B<br />

doses for 5 days under two climatic modes:<br />

(a) non-stressful conditions, where temperature of 21/14°C (day/night) and<br />

ambient CO 2<br />

level was maintained throughout the experiment (all plant species were<br />

examined);<br />

(b) stressful conditions, where temperature of <strong>25</strong>/16°C (day/night) and CO 2<br />

level at 700 ppm was maintained throughout the experiment (only Raphanus sativus<br />

L. and Malus domestica were examined).<br />

Samples from fully developed plant leaves were at random taken immediately<br />

after the end of UV-B exposure.<br />

UV-absorbing compounds were analyzed in acidified methanol extracts according<br />

modified method of M<strong>ir</strong>ecki and Teramura (1984), recording and integrating<br />

absorption spectra in the range of 280–400 nm. Relative amount of UV-absorbing<br />

pigments was calculated according the formula as follows:<br />

RA UVpigm<br />

=<br />

∫<br />

Abs<br />

m<br />

where ∫ A – area of absorption spectra, defined as an integral of the absorption<br />

spectra in the range of 280–400 nm i = 1 → 121 ;m – weight of the sample<br />

(g).<br />

188


Statistical calculations were performed by ANOVA for MS Excel vers. 3.43<br />

(Duncan’s Multiple Range t-test procedure (P ≤ 0.05 and P ≤ 0.01)).<br />

Results. Plant response to UV-B radiation doses under non-stressful conditions<br />

(21/14°C, ambient CO 2<br />

) was very plant species-specific. Significantly lower<br />

amount of UV-absorbing compounds was determined in reference Raphanus sativus<br />

plants, than in those exposed to 2 kJ UV-B doses, but no significant differences<br />

were observed under 4 kJ UV-B doses (Fig. 1 A).<br />

Exposure of Daucus carota plants to 4 kJ UV-B doses resulted in greatest amounts<br />

of UV-screening compound, while 2 kJ doses – in lowest amounts. Hence, the<br />

amount of UV pigments in reference plants remained greater than in plants exposed<br />

to 2 kJ UV-B doses (Fig. 1 B).<br />

Fig. 1. Amount of UV pigments in (A) Raphanus sativus L., (B) Daucus sativus<br />

Röhl., (C) Fragaria ananassa Duch. and (D) Malus domestica leaves under different<br />

UV-B exposure. Means indicated by the different letters are significantly<br />

different (n = 3; P ≥ 0.05)<br />

1 pav. Santykiniai UV sugerianèiø pigmentø kiekiai (A) Raphanus sativus L., (B)<br />

Daucus sativus Röhl., (C) Fragaria ananassa Duch. and (D) Malus domestica<br />

lapuose paveikus sk<strong>ir</strong>tingomis UV-B dozëmis. Sk<strong>ir</strong>tingos raidës rodo<br />

esminá sk<strong>ir</strong>tumà tarp vidurkiø (n = 3; P ≥ 0,05)<br />

In general, UV-B radiation reduced the amount of UV-absorbing pigments in<br />

Fragaria ananassa Duch. leaves, as the amount of those pigments was significantly<br />

greater in the leaves of reference plants than in those treated by 2 or 4 kJ UV-B<br />

doses. The most reduced amount of UV-screening compound was observed under 2<br />

kJ UV-B doses (Fig. 1 C).<br />

189


Amount of UV-screening compounds in the leaves of Malus domestica decreased<br />

as UV-B doses increased. 4 kJ daily UV-B doses resulted in lowest amount of<br />

those pigments, while the greatest amounts of UV pigments were determined in<br />

leaves of reference Malus domestica plants (Fig. 1 D).<br />

Table 1. Relative amounts of UV-absorbing compounds under various stress conditions.<br />

Means indicated by the different letters are significantly different within the<br />

column of each UV treatment (n = 3; P ≥ 0.01)<br />

1 lentelë. Santykiniai UV sugerinèiø pigmentø kiekiai augalø lapuose sk<strong>ir</strong>tingomis<br />

streso sàlygomis. Sk<strong>ir</strong>tingos raidës rodo esminá sk<strong>ir</strong>tumà tarp vidurkiø reikðmiø<br />

stulpeliuose kiekvienam UV poveikiui atsk<strong>ir</strong>ai (n = 3; P ≥ 0,01)<br />

UV treatment<br />

UV poveikis<br />

Increased t° and CO 2<br />

Padidinta t° <strong>ir</strong> CO 2 kiekis<br />

Object<br />

Objektas<br />

Raphanus sativus Röhl.<br />

Malus domestica<br />

Control<br />

– 48.6 a 569.3 a<br />

Kontrolë + 104.8 b 723.3 b<br />

2 kJ<br />

– 68.7 a 530.8 a<br />

+ 121.85 b 775.4 b<br />

4 kJ<br />

– 59.2 a 478.7 a<br />

+ 97.7 b 710.8 b<br />

An additional stress including increased temperature (<strong>25</strong>/16°C) and CO 2<br />

level<br />

(700 ppm) together with UV-B radiation resulted in significantly increased amount<br />

of UV-screening compounds in all inspected plant species in comparison to plants<br />

exposure solely to UV-B radiation or reference plants (Table 1). Though no significant<br />

variation of UV pigments were determined in Raphanus sativus L. and Malus<br />

domestica under different UV-B treatment whenever additional stress (temperature,<br />

CO 2<br />

) was applied (Figs. 2 A, B).<br />

Fig. 2. Amount of UV pigments in (A) Raphanus sativus L. and (B) Malus domestica<br />

leaves under different UV-B exposure, increased temperature and increased CO 2<br />

level.<br />

Means indicated by the different letters are significantly different (n = 3; P ≥ 0.05)<br />

2 pav. Santykiniai UV sugerianèiø pigmentø kiekiai (A) ridikëliø <strong>ir</strong> (B) obelø lapuose<br />

veikiant sk<strong>ir</strong>tingomis UV-B dozëmis, esant aukðtai temperatûrai <strong>ir</strong> padidintam CO 2<br />

kiekiui. Sk<strong>ir</strong>tingos raidës rodo esminá sk<strong>ir</strong>tumà tarp vidurkiø (n = 3; P ≥ 0,05)<br />

190


Discussion. Plants in equatorial and high-altitude regions of the earth, where<br />

UV-B flux is generally higher, demonstrate the capacity of increased UV-B tolerance<br />

by inducible flavonoid production. The species found at low latitudes also include<br />

temperate latitude species that have been introduced into these regions such as Pisum<br />

sativum further demonstrating the capacity for photobiological adaptation (Cockell<br />

and Knowland, 1999). As the UV-B doses in low-latitude are greater by an order of<br />

magnitude than those existing in high-latitude areas, these ranges provide certain<br />

evidence of the plant acclimation capacity due to change of UV screening compounds<br />

composition. However, a linear relationship between concentration of UV<br />

absorbing compounds and UV-B daily doses has not been observed in this study.<br />

Moreover, content of UV screening compounds appeared to be more determined by<br />

stressors such as an increased temperature and CO 2<br />

level rather than an intensity of<br />

exposure to UV-B radiation. Therefore, it is most likely that certain plant systems<br />

identify increased temperature and CO 2<br />

level as the fact of a latitude lowering. According<br />

to Urbonavièiûtë et al. (2006) content of certain flavonoids is determined<br />

even by a spatial plant leaf orientation. Such data proposes an idea of interaction<br />

between photomorphological and photosynthetic system in order to foresee and prevent<br />

probable UV-B damage.<br />

Conclusions. In general, plant’s response to UV-B exposure intensity is very<br />

species-specific under UV-B stress. However, content of UV screening compounds<br />

appeared to be more determined by the stressors such as an increased temperature<br />

and CO 2<br />

level rather than an intensity of exposure to UV-B radiation.<br />

Acknowledgement. Authors are grateful to Lithuanian State Science and Studies<br />

Foundation for research support.<br />

Gauta 2006-11-10<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Barnes P. W., Jordan P. W., Gold W. G., Flint S. D., Caldwell M. M. Competition,<br />

morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena<br />

fatua L.) exposed to enhanced ultraviolet-B radiation // Functional Ecology. 1988. Vol. 2.<br />

P. 319–330.<br />

2. Cockell C. S., Knowland J. Ultraviolet radiation screening compounds // Biology<br />

Reviews. 1999. Vol. 74. P. 311–345.<br />

3. Flint S. D., Caldwell M. M. Influence of floral properties on the ultraviolet radiation<br />

env<strong>ir</strong>onment of pollen // American Journal of Botany. 1983. Vol. 70. P. 1416–1419.<br />

4. Harborne J. B. Biochemistry of phenolic compounds. Academic Press,<br />

London, 1964.<br />

5. Harm W. Biological effect of ultraviolet radiation. IUPAB biophysics series I.<br />

Cambridge University Press, Cambridge, 1980.<br />

6. M<strong>ir</strong>ecki R. M., Teramura A. H. Effects of ultraviolet-B <strong>ir</strong>radiance on soybean. V.<br />

The dependence of plant sensitivity on the photosynthetic photon flux density during<br />

and after leaf expansion // Plant Physiology. Vol. 74. 1984. P. 475–480.<br />

7. Mohle B., Wellman E. Introduction of phenylpropanoid compounds by UV-B<br />

<strong>ir</strong>radiation in roots of seedlings and cell cultures from Dill (Anethum gaveolens L.) // Plant<br />

Cell Reports. 1982. Vol. 1. P. 183–185.<br />

191


8. Regner G., Volker M., Eckerts H. J., Fromme R., Hohmveit S., Graber P. On the<br />

mechanism of photosystem II deterioration by UV-B radiation // Photochemistry and<br />

Photobiology. Vol. 49. P. 97–105.<br />

9. Salisbury F. B., Ross C. W. Plant physiology. Wadsworth, Belmont, 1992.<br />

10. Sinha R. P., Singh N., Kumar A., Kumar H. D., Häder M., Häder D. P. Effects of UV<br />

<strong>ir</strong>radiation on certain physiological and biochemical processes in cyanobacteria // Journal<br />

of Photochemistry and Photobiology. 1996. Vol. 32. P. 107–113.<br />

11. Tevini M. UV-B radiation and ozone depletion. Effects on humans, animals, plants,<br />

micro-organisms and materials. Lewis Publishers, Boca Raton, Florida, 1993.<br />

12. Tevini M., Braun J., Fieser G. The protective function of the epidermal layer of rye<br />

seedlings against ultraviolet-B radiation // Photochemistry and Photobiology. 1991.<br />

Vol. 53. P. 329–333.<br />

13. Tevini M., Teramura A. H. UV-B effects on terrestrial plants // Photochemistry<br />

and Photobiology. 1989. Vol. 50. P. 479–487.<br />

14. Urbonavièiûtë A., Jakðtas V., Kornyðova O., Janulis V., Maruðka A. Capillary<br />

electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna<br />

Jacq.) ethanolic extracts // Journal of Chromatography A. 2006. Vol. 1112. P. 339–344.<br />

15. Vincent W. F., Roy S. Solar ultraviolet-B radiation and aquatic primary production:<br />

damage, protection and recovery // Env<strong>ir</strong>onmental Reviews. 1993. Vol. 1. P. 1–12.<br />

16. Wellman E. UV dose-dependent induction of enzymes related to flavonoid biosynthesis<br />

in cell suspension cultures of parsley // FEBS Letters. 1975. Vol. 51. P. 105–107.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

UV SUGERIANÈIØ PIGMENTØ POKYÈIAI AUGALØ<br />

LAPUOSE VEIKIANT UV-B SPINDULIUOTEI<br />

K. Baranauskis, J. Sakalauskaitë, A. Brazaitytë, A. Urbonavièiûtë, G. Samuolienë,<br />

G. Ðabajevienë, J. B. Ðikðnianienë, P. Duchovskis<br />

Santrauka<br />

Tyrimo metu buvo stebimi UV sugerianèiø pigmentø pokyèiai Daucus sativus<br />

Röhl., Fragaria ananassa Duch. Malus domestica <strong>ir</strong> Raphanus sativus L. augalø<br />

lapuose, veikiant 2 <strong>ir</strong> 4 kJ UV-B dienos dozëmis. Taip pat nustatyta UV sugerianèiø<br />

pigmentø kaita Malus domestica <strong>ir</strong> Raphanus sativus L. augalø lapuose, veikiant<br />

UV-B, aukðtai temperatûrai (+ <strong>25</strong>°C dienà <strong>ir</strong> + 16°C naktá) <strong>ir</strong> padidintai CO 2<br />

koncentracijai<br />

(700 ppm). Nustatyta, kad augalo atsakas á UV-B spinduliuotæ itin priklauso<br />

nuo augalo rûðies tik tada, kai nëra papildomo streso poveikio, t. y. kai yra palanki<br />

augalams augti temperatûra (+ 21°C dienà <strong>ir</strong> + 14°C naktá) bei natûrali CO 2<br />

koncentracija.<br />

Taèiau tokiomis sàlygomis nepavyko nustatyti tiesioginio priklausomumo tarp<br />

UV sugerianèiø pigmentø kiekio <strong>ir</strong> UV-B spinduliuotës poveikio intensyvumo. Ávertinus<br />

tyrimø rezultatus, galima teigti, jog UV sugerianèiø pigmentø kiekis augalø lapuose<br />

labiau priklauso nuo tokiø veiksniø kaip aukðta temperatûra ar padidëjusi CO 2<br />

koncentracija nei tiesioginis UV-B spinduliuotës poveikis.<br />

Reikðminiai þodþiai: Daucus sativus Röhl., Fragaria ananassa Duch. Malus<br />

domestica, Raphanus sativus L., UV sugeriantys pigmentai, UV-B spinduliuotë.<br />

192


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

MORKØ IR BUROKËLIØ LIETUVIÐKØ VEISLIØ BEI<br />

HIBRIDØ YPATUMAI EKOLOGINËJE IR<br />

INTENSYVIOJE DARÞININKYSTËJE<br />

Rasa KARKLELIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas R.Karkleliene@lsdi.lt<br />

2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>ta <strong>ir</strong> ávertinta<br />

valgomosios morkos (Daucus sativus Röhl.) <strong>ir</strong> raudonojo burokëlio (Beta<br />

vulgaris L. subsp. vulgaris convar. vulgaris var. vulgaris) lietuviðkos veislës bei<br />

hibridai. T<strong>ir</strong>tos ðios morkø veislës: ‘Garduolës’, ‘Ðatrija’, ‘Vytënø nanto’, ‘Vaiguva’,<br />

bei hibridai – ‘Svalia’ <strong>ir</strong> ‘Skalsa’. Burokëliø tyrimams pas<strong>ir</strong>inktos labiausiai<br />

Lietuvoje paplitusios apvaliø formø ðakniavaisius iðauginanèios veislës – ‘Kamuoliai<br />

2’<strong>ir</strong> ‘Joniai’ bei pailgø formø ðakniavaisius – ‘Ilgiai’. T<strong>ir</strong>ta morkø <strong>ir</strong> burokëliø<br />

suminis <strong>ir</strong> prekinis derlius <strong>ir</strong> morfologiniai poþymiai (ðakniavaisio ilgis, skersmuo <strong>ir</strong><br />

masë). Morkos <strong>ir</strong> burokëliai auginti intensyvaus auginimo (træðta sintetinëmis tràðomis,<br />

augalø apsaugai naudotos cheminës augalø apsaugos priemonës) <strong>ir</strong> ekologinëmis<br />

auginimo sàlygomis (træðta natûraliomis tràðomis, augalø apsaugai naudoti<br />

biologiniai preparatai). Tyrimais nustatyta, kad ekologiðkai auginant morkas <strong>ir</strong> burokëlius,<br />

reikëtø parinkti derlingesnes, maþiau á aplinkos sàlygas reaguojanèias veisles.<br />

Intensyvaus auginimo sàlygomis labiau tiktø auginti morkø hibridus, o ekologiðkai –<br />

veisles. Ekologiðkai auginant burokëlius, reikëtø parinkti burokëlius apvalios formos<br />

ðakniavaisiais, o pailgos formos burokëlius labiau tiktø auginti pagal intensyvià<br />

auginimo technologijà.<br />

Reikðminiai þodþiai: burokëliai, hibridai, derlius, morfologiniai poþymiai, morkos,<br />

veislës.<br />

Ávadas. Lietuvoje morkos <strong>ir</strong> burokëliai yra vienos pagrindiniø darþoviø. Lietuvos<br />

klimato sàlygomis sukurtos burokëliø <strong>ir</strong> morkø veislës bei hibridai yra derlingi<br />

(Armolaitienë, 1998; Gauèienë, 1997; Gauèienë, Viðkelis, 2001; Petronienë, 2000;<br />

Petronienë, 2001). Lietuvoje <strong>ir</strong> pasaulyje atliktais tyrimais nustatyta, kad morkø <strong>ir</strong><br />

burokëliø ðakniavaisiø kokybë labai priklauso nuo augalo genotipo (Gauèienë, 2001;<br />

Petronienë, 2000, 2001; Rosenfeld <strong>ir</strong> kt., 1997, Wiebe, 1987). Morkø <strong>ir</strong> burokëliø<br />

derliui ypatingos reikðmës turi d<strong>ir</strong>vos fizinë sudëtis, todël jø derlius sk<strong>ir</strong>tingomis d<strong>ir</strong>vos<br />

<strong>ir</strong> klimato sàlygomis labai kinta (Äüÿ÷åíêî, 1979; Ïðèìàê, Ëèòâèíåíêî, 1981;<br />

Ìåòîäû ñåëåêöèè ñåìåíîâîäñòâà îâîùíûõ êîðíåïëîäíûõ êóëüòóð, 2003).<br />

193


Darbo tikslas – iðt<strong>ir</strong>ti <strong>ir</strong> palyginti pagal sk<strong>ir</strong>tingas technologijas auginamø morkø<br />

<strong>ir</strong> burokëliø lietuviðkø veisliø bei hibridø derliø <strong>ir</strong> ávertinti ðakniavaisiø morfologinius<br />

poþymius.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. 2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute t<strong>ir</strong>ta lietuviðkos morkø <strong>ir</strong> burokëliø veislës <strong>ir</strong> hibridai. Kontroliniu<br />

variantu pas<strong>ir</strong>inktas morkø hibridas ‘Svalia’ <strong>ir</strong> burokëliø veislë ‘Kamuoliai 2’.<br />

Tyrimai atlikti bandymø lauko sëjomainoje velëniniame glëjiðkame pajaurëjusiame<br />

d<strong>ir</strong>voþemyje, kurio granuliometrinë sudëtis – lengvas priemolis ant priemolio,<br />

reakcija artima neutraliai (ekologinë auginimo technologija) <strong>ir</strong> vidutinio<br />

sunkumo priemolis ant priemolio, reakcija artima neutraliai (intensyvi auginimo<br />

technologija). Morkos <strong>ir</strong> burokëliai kasmet sëti geguþës antràjà dekadà rankine<br />

sëjamàja 70 cm tarpueiliais dviem eilutëmis. Morkos sëtos profiliuotame, o burokëliai<br />

– lygiame pav<strong>ir</strong>ðiuje. Morkø <strong>ir</strong> burokëliø derlius tyrimo metais nuimtas spalio<br />

mën. p<strong>ir</strong>màjá–antràjá deðimtadiená. Suminis <strong>ir</strong> prekinis derlius bei morkø <strong>ir</strong> burokëliø<br />

ðakniavaisiø masë buvo vertinta dvejus metus (kiekvienø metø rodikliai<br />

pateikti atsk<strong>ir</strong>ai). Tos paèios morkø <strong>ir</strong> burokëliø veislës buvo augintos pagal sk<strong>ir</strong>tingas<br />

auginimo technologijas:<br />

1) Ekologiðkai auginant darþoves, naudotos natûralios tràðos: „Biokal 01“ <strong>ir</strong> kalio<br />

magnezija (træðta vienà kartà) bei biojodis (træðta tris kartus). Burokëliai purkðti<br />

nuo amarø biologiniu preparatu nimezaliu du kartus.<br />

2) Auginant darþoves pagal intensyvià technologijà, naudotos sintetinës tràðos:<br />

„Skalsa“, amonio salietra, „Kem<strong>ir</strong>a Fertikare“ <strong>ir</strong> t<strong>ir</strong>piø tràðø miðinys laistant per lapus.<br />

Piktþolës morkø <strong>ir</strong> burokëliø pasëliuose naikintos stompu. Burokëliø <strong>ir</strong> morkø apsaugai<br />

nuo kenkëjø naudotas decis <strong>ir</strong> aktara (tik burokëliams).<br />

Apskaitinio laukelio plotas – 5,6 m 2 . Bandymas atliktas trimis pakartojimais.<br />

Morkø <strong>ir</strong> burokëliø ðakniavaisiø morfologiniai poþymiai (ðakniavaisio ilgis, skersmuo)<br />

<strong>ir</strong> derliaus duomenys apdoroti dispersinës analizës metodu (Tarakanovas, Raudonis,<br />

2003).<br />

Meteorologinës sàlygos tyrimo metais buvo nevienodos. 2005 m. pavasará vyravo<br />

sausesnis <strong>ir</strong> ðaltesnis oras. Morkos <strong>ir</strong> burokëliai dygo nevienodai, taèiau vegetacijos<br />

viduryje <strong>ir</strong> iki derliaus nuëmimo augo gana gerai. Gausesni krituliai iðkrito rugpjûèio<br />

mënesá – 109,4 mm, taèiau oras buvo vësesnis, <strong>ir</strong> tai turëjo átakos morkø <strong>ir</strong><br />

burokëliø ðakniavaisiø kokybei bei derliui.<br />

2006 m. geguþës mën. pradþioje iðkritæ krituliai <strong>ir</strong> ðiltas oras turëjo átakos darþoviø<br />

dygimui, jos sudygo gana tolygiai. Vëliau morkoms <strong>ir</strong> burokëliams augti trûko<br />

drëgmës, ypaè b<strong>ir</strong>þelio mënesá, kai krituliø iðkrito vos 13,8 mm. Darþovës sparèiau<br />

pradëjo augti rugpjûèio mën. Meteorologinës sàlygos tais metais didesnës átakos turëjo<br />

sunkesnëje d<strong>ir</strong>voje augintoms darþovëms (darþovës augintos áprastinëmis sàlygomis).<br />

Rezultatai. Visos t<strong>ir</strong>tos morkø bei burokëliø veislës <strong>ir</strong> hibridai yra derlingi <strong>ir</strong><br />

geros iðorinës kokybës. Derliaus sk<strong>ir</strong>tumas <strong>ir</strong> iðorinë ðakniavaisiø kokybë priklauso<br />

nuo veislës ar hibrido genetinës prigimties, d<strong>ir</strong>vos, darþoviø auginimo bûdø bei meteorologiniø<br />

sàlygø. 2005 m., auginant morkas ekologiðkai <strong>ir</strong> intensyviai, buvo nustatyta,<br />

kad maþiausiai á auginimo sàlygas (sk<strong>ir</strong>tingø tràðø <strong>ir</strong> augalø apsaugos priemoniø<br />

naudojimà) reagavo ‘Garduolës’ <strong>ir</strong> ‘Ðatrija’ veisliø morkos (1 lentelë). Ðiais tyrimo<br />

194


metais ðiø veisliø morkø suminis derlius buvo 62,1–66,8 t/ha. Didesnæ átakà auginimo<br />

sàlygos <strong>ir</strong> d<strong>ir</strong>va turëjo morkø hibridams. Auginant ‘Svalia’ F 1<br />

<strong>ir</strong> ‘Skalsa’ F 1<br />

morkas<br />

intensyvaus auginimo sàlygomis, suminis derlius buvo didesnis atitinkamai 19–<br />

6,3 t negu ekologiðkai augintø morkø. ‘Ðatrija’ veislës morkø suminis derlius buvo<br />

stabilus tiek jas auginant ekologiðkai, tiek intensyviai.<br />

Ávertinus burokëliø suminá <strong>ir</strong> prekiná derliø matyti, kad veislës ‘Ilgiai’ pailgos<br />

formos burokëliø derlius buvo daug didesnis auginant juos pagal intensyvias auginimo<br />

technologijas (1 lentelë). 2005 metais ekologiðkø burokëliø suminis derlius siekë<br />

tik 26,5 t/ha.<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

1 lentelë. Morkø <strong>ir</strong> burokëliø derliaus ávertinimas. Babtai, 2005 m.<br />

Table 1. Estimation of carrot and red beet yield. Babtai, 2005<br />

Ekologinis auginimas<br />

Ecological growing<br />

suminis derlius prekinis derlius<br />

total yield, t/ha marketable yield, t/ha<br />

Morkos / Carrot<br />

suminis derlius<br />

total yield, t/ha<br />

Intensyvus auginimas<br />

Convenient growing<br />

prekinis derlius<br />

marketable yield, t/ha<br />

‘Svalia’ F 1 41,8 33,6 60,8 48,3<br />

‘Skalsa’ F 1 50,5 33,8 56,8 45,1<br />

‘Garduolës’ 62,1 48,9 63,6 39,0<br />

‘Šatrija’ 66,8 55,5 66,4 42,3<br />

‘Vytënø nanto’ 66,6 52,5 56,0 37,0<br />

‘Vaiguva’ 65,0 56,0 53,1 40,2<br />

R 05 / LSD 05 10,15 8,98 7,62 4,20<br />

Burokëliai / Red beet<br />

‘Kamuoliai 2’ 40,4 35,4 48,4 37,7<br />

‘Joniai’ 47,3 34,2 48,7 40,7<br />

‘Ilgiai’ 26,5 23,1 52,4 40,1<br />

R 05 / LSD 05 8,14 9,15 8,46 5,42<br />

2006 m. atlikti tyrimai parodë, kad morkø derliui átakos turëjo meteorologinës<br />

sàlygos. Ðie metai buvo sausingi, ypaè drëgmës trûko b<strong>ir</strong>þelio–liepos mënesiais,<br />

todël sumaþëjo darþoviø derlingumas. Remdamiesi atliktais tyrimais galime daryti<br />

prielaidà, kad sausringesniais metais lengvesnëje d<strong>ir</strong>voje (ekologinis auginimas) augintos<br />

darþovës geriau naudoja maisto medþiagas nei auginamos sunkesnëje, tai<br />

rodo 2 lentelëje pateikti duomenys. Didþiausiu derliumi iðsiskyrë ekologiðkai augintas<br />

morkø hibridas ‘Svalia’. Ðio hibrido suminis derlius buvo ið esmës didesnis<br />

negu beveik visø augintø morkø. Iðtyrus lietuviðkø veisliø burokëlius, nustatyta,<br />

kad apvalios formos burokëliai á auginimo sàlygas reaguoja maþiau negu pailgos<br />

formos.<br />

195


Veislës <strong>ir</strong><br />

hibridai<br />

Variety and hybrid<br />

2 lentelë. Morkø <strong>ir</strong> burokëliø derliaus ávertinimas. Babtai, 2006 m.<br />

Table 2. Estimation of carrot and red beet yield. Babtai, 2006<br />

Ekologinis auginimas<br />

Ecological growing<br />

suminis derlius prekinis derlius<br />

total yield, t/ha marketable yield, t/ha<br />

Morkos / Carrot<br />

Intensyvus auginimas<br />

Convenient growing<br />

suminis derlius<br />

total yield, t/ha<br />

prekinis derlius<br />

marketable yield, t/ha<br />

‘Svalia’ F 1 60,4 52,1 45,0 34,4<br />

‘Skalsa’ F 1 41,9 36,2 35,1 27,1<br />

‘Garduolës’ 53,9 46,8 43,2 33,1<br />

‘Šatrija’ 43,4 36,3 32,4 22,0<br />

‘Vytënø nanto’ 58,0 50,1 41,8 31,8<br />

‘Vaiguva’ 46,2 38,0 38,3 28,5<br />

R 05 / LSD 05 6,42 9,75 9,52 7,58<br />

Burokëliai / Red beet<br />

‘Kamuoliai 2’ 50,4 41,8 43,3 31,5<br />

‘Joniai’ 48,4 38,6 47,0 36,4<br />

‘Ilgiai’ 35,3 29,8 51,0 43,4<br />

R 05 / LSD 05 6,02 6,62 6,18 2,89<br />

3 lentelë. Morkø morfologiniø poþymiø rodikliai. Babtai, 2005–2006 m.<br />

Table 3. Evaluation of carrot morphological parameters. Babtai, 2005-2006<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

Šakniavaisio<br />

Root<br />

skersmuo<br />

ilgis<br />

length, cm<br />

diameter, cm<br />

1 2 3 4<br />

Ekologinis auginimas<br />

Ecological growing<br />

masë<br />

weight, g<br />

‘Svalia’ F 1 18,2 3,6 121,3<br />

‘Skalsa’ F 1 15,5 4,2 171,3<br />

‘Garduolës’ 18,6 3,5 160,3<br />

‘Šatrija’ 19,7 3,6 170,7<br />

‘Vytënø nanto’ 18,8 3,5 160,3<br />

‘Vaiguva’ 16,2 4,5 176,7<br />

R 05 / LSD 05 1,82 0,34 18,87<br />

1 2 3 4<br />

196


1 2 3 4<br />

Intensyvus auginimas<br />

Lietuvoje labiausiai paplitæ Nantes tipo morkø veislës <strong>ir</strong> hibridai, kuriø ðakniavaisiai<br />

yra cilindriniai, vienodos formos, apie 18–20 cm ilgio <strong>ir</strong> 3,6–4,0 cm skersmens.<br />

Ávertinus lietuviðkos selekcijos morkas matyti, kad jø ðakniavaisio ilgis áva<strong>ir</strong>uoja nuo<br />

15,5 iki 20,8 cm (3 lentelë). Ilgiausius ðakniavaisius iðaugino ‘Ðatrija’ veislës morkos<br />

(19,7–20,8 cm). Didþiausia buvo ‘Vaiguva’ veislës morkø ðakniavaisio masë: ekologiðkai<br />

augintø – 176,7 g, augintø intensyviu auginimo bûdu – 179,4 g. Smulkiausi<br />

ðakniavaisiai buvo ‘Svalia’ F 1<br />

morkø.<br />

Ekologiðkai auginti ‘Ilgiai’ veislës burokëliai iðaugino trumpesná ðakniavaisá negu<br />

auginant juos intensyviai (4 lentelë). Auginant burokëliø veisles <strong>ir</strong> ekologinëmis, <strong>ir</strong> áprastinëmis<br />

auginimo sàlygomis, esminiø ðakniavaisio masës sk<strong>ir</strong>tumø tarp veisliø nebuvo.<br />

4 lentelë. Burokëliø morfologiniø poþymiø rodikliai. Babtai, 2005–2006 m.<br />

Table 1. Evaluation of red beet morphological parameters. Babtai, 2005-2006<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

Convenient growing<br />

‘Svalia’ F 1 19,2 3,6 122,9<br />

‘Skalsa’ F 1 16,0 4,1 170,7<br />

‘Garduolës’ 19,4 3,6 168,8<br />

‘Šatrija’ 20,8 3,6 169,8<br />

‘Vytënø nanto’ 19,3 3,8 163,6<br />

‘Vaiguva’ 16,5 4,6 179,4<br />

R 05 / LSD 05 2,43 0,36 24,40<br />

Šakniavaisio<br />

Root<br />

ilgis<br />

skersmuo<br />

length, cm<br />

diameter, cm<br />

Ekologinis auginimas / Ecological growing<br />

3 lentelës tæsinys<br />

masë<br />

weight, g<br />

‘Kamuoliai 2’ 8,0 7,7 312,5<br />

‘Joniai’ 7,2 7,0 302,6<br />

‘Ilgiai’ 12,4 5,7 301,3<br />

R 05 / LSD 05 - 1,35 58,18<br />

Intensyvus auginimas / Convenient growing<br />

‘Kamuoliai 2’ 6,8 7,2 302,3<br />

‘Joniai’ 6,6 7,0 300,0<br />

‘Ilgiai’ 13,2 4,8 310,2<br />

R 05 / LSD 05 - 0,76 54,54<br />

197


Aptarimas. Morkø <strong>ir</strong> burokëliø iðorinë kokybë priklauso ne tik nuo atsk<strong>ir</strong>o genotipo,<br />

bet <strong>ir</strong> nuo d<strong>ir</strong>voþemio (Áóðåíèí <strong>ir</strong> kt., 1989; Áîîñ <strong>ir</strong> kt.,1990; Óãàðîâà,<br />

2003). Lietuvoje buvo atlikti intensyviomis auginimo sàlygomis tinkamiausiø auginti<br />

morkø <strong>ir</strong> burokëliø derliaus <strong>ir</strong> ðakniavaisiø morfologiniø poþymiø tyrimai, kurie parodë,<br />

kad sk<strong>ir</strong>tingo genotipo augalai á aplinkos sàlygas reaguoja nevienodai (Gauèienë,<br />

Viðkelis, 2001; Áóðåíèí <strong>ir</strong> kt., 1989; Áóðûé, 2005). Mûsø atlikti tyrimai ekologinëmis<br />

auginimo sàlygomis taip pat parodë, kad aplinkos sàlygos turi didelæ reikðmæ<br />

darþoviø auginimui. Ekologiðkai auginant darþoves, labai svarbus jø træðimas. Jei trûksta<br />

kalio tràðø, morkø derlius maþëja (Salo <strong>ir</strong> kt., 2001). Kacko (2001) nustatë, kad<br />

auginant morkas ekologiðkai, biocheminei sudëèiai <strong>ir</strong> derliui didelæ átakà turi prieðsëliai.<br />

Lenkijoje <strong>ir</strong> Rusijoje atlikti tyrimai rodo, kad morkø <strong>ir</strong> burokëliø derliui átaka daro<br />

d<strong>ir</strong>va <strong>ir</strong> meteorologinës sàlygos (Michalik <strong>ir</strong> kt., 1997; Ïðèìàê, Ëèòâèíåíêî, 1981).<br />

Tai patv<strong>ir</strong>tina <strong>ir</strong> mûsø tyrimai.<br />

Iðvados. 1. Didþiausias <strong>ir</strong> stabiliausias yra ekologiðkai augintø ‘Vytënø nanto’ <strong>ir</strong><br />

‘Garduolës’ veisliø morkø derlius (vid. atitinkamai 62,3 <strong>ir</strong> 58,0 t/ha).<br />

2. Burokëliø veislë ‘Ilgiai’ tinkamesnë auginti pagal intensyvias auginimo technologijas.<br />

3. Ilgiausi ðakniavaisiai (vid. 20,3 cm) yra ‘Ðatrija’ veislës morkø, o trumpiausi<br />

(vid. 15,8 cm) – ‘Skalsa’ F 1<br />

morkø.<br />

4. Ekologiðkai auginti tinkamesni apvalios formos burokëliai, jø derlius yra stabilesnis.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Armolaitienë J. Burokëliø <strong>ir</strong> morkø selekcija Lietuvoje // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1998. T. 17(2). P. 28–32.<br />

2. Gauèienë O. Morkos. Babtai, 2001. 67 p.<br />

3. Gauèienë O. Morkø hibridas ‘Svalia’ F 1<br />

// Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1997. T. 16. P. 57–62.<br />

4. Gauèienë O., Viðkelis P. Morkø (Daucus carota L.) hibridas ‘Skalsa’ // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(1). P. 69–75.<br />

5. Gauèienë O., Viðkelis P. Tinkamiausiø Lietuvoje auginti morkø (Daucus carota L.)<br />

derlius <strong>ir</strong> kokybë // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(4)–1. P. 17–24.<br />

6. Kack K., V. Nielsen, L. P. et al. Nutritionally important chemical constituents and<br />

yield of carrot (Daucus carota L.) roots grown organically using ten levels of green<br />

manure // Acta Agriculturae Scandinavica. 2001. Vol. 51. No. 3. P. 1<strong>25</strong>–136.<br />

7. Michalik B. et al. Effect of harvest data on carrot yield and root splitting // Journal<br />

of applied genetic. 1997. Vol. 38 A. P. 163–171.<br />

8. Petronienë D. ‘Ilgiai’ – nauja raudonøjø burokëliø veislë // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. T. 20(2). P. 42–47.<br />

9. Petronienë O. D. ‘Joniai’ – nauja burokëliø veislë // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2000. T. 19(1). P. 81–86.<br />

10. Rosenfeld H. et al. Sensory profiling of carrot from northern latitudes // Food<br />

research international. 1997. Vol. 30. No. 8. P. 593–601.<br />

198


11. Salo T., Suojala T., Kallela M. The effect of fertigation on yield nutrient uptake<br />

of cabbage, carrot and onion // Acta Agriculturae Scandinavica. 2001. Vol. 51. No. 3.<br />

P. 137–142.<br />

12. Tarakanovas P., Raudonis S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT–PLOT ið paketo SELEKCIJA IR<br />

IRRISTAT. Akademija, 2003. 56 p.<br />

13. Wiebe H. J. Effects of plant densities and nitrogen supply on yield harvest date<br />

and quality of carrots. Acta horticulturae. 1987. No. 198. P. 191–198.<br />

14. Áîîñ Ã. Â., Áàäèíà Ã. Á., Áóðåíèí Â. È. Ãåòåðîçèñ îâîùíûõ êóëüòóð.<br />

Ëåíèíãðàä, 1990. 218 c<br />

15. Áóðåíèí Â. È., Þäàåâà Â.Å. Îöåíêà êîë–õ îáðàçöîâ ñòîëîâîé ñâåêëû â<br />

óñëîâèÿõ Ìîñêîâñêîé îáëàñòè // Íàó÷íî–òåõ. Áþë. 1989. Âûï. 192.<br />

16. Áóðûé Ñ. Â. Îöåíêà êîëëåêöèîííûõ ñîðòîîáðàçöîâ ìîðêîâè ïî<br />

ìîðôîëîãè÷åñêèì õîçÿéñòâåíî–öåííûì ïðèçíàêàì. Ýôôåêòèâíîå îâîùåâîäñòâî<br />

â ñîâðåìåííûõ óñëîâèÿõ. Ìèíñê, 2005. Ñ. 33–35.<br />

17. Äüÿ÷åíêî Â. Ñ. Ïèùåâàÿ öåííîñòü ñâåêëû // Îâîùè è ïèùåâàÿ öåííîñòü.<br />

Ìîñêâà, 1979. Ñ. 50–54.<br />

18. Ìåòîäû ñåëåêöèè è ñåìåíîâîäñòâà îâîùíûõ êîðíåïëîäíûõ ðàñòåíèé /<br />

Ïîä. ðåä. Ïèâîâàðîâà Â.Ô. è Áóíèíà Ì.Ñ. Ìîñêâà, 2003. 284 ñ.<br />

19. Óãàðîâà Ñ. Â. Ãåíåòè÷åñêàÿ îáóñëîâëåííîñòü ïðèçíàêîâ ìîðêîâè ïðè<br />

ñåëåêöèè íà ãåòåðîçèñ â óñëîâèÿõ Çàïàäíîé Ñèáèðè. Áàðíàóë, 2003. 156 ñ.<br />

20. Ïðèìàê À. Ï., Ëèòâèíåíêî Ì. Â. Âëèÿíèå óñëîâèé ïðîèçðàñòàíèÿ íà<br />

êà÷åñòâåííûé ñîñòàâ íåêîòîðûõ îâîùåé // Êà÷åñòâî îâîùíûõ è áàõ÷èåâûõ<br />

êóëüòóð. Ìîñêâà, 1981. Ñ. 132–138.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

FEATURES OF LITHUANIAN CARROT AND RED BEET<br />

VARIETIES AND HYBRIDS IN ECOLOGICAL AND<br />

INTENSIVE VEGETABLE GROWING<br />

R. Karklelienë<br />

Summary<br />

Lithuanian varieties and hybrids of edible carrot (Daucus sativus Röhl.) and red<br />

beet (Beta vulgaris L. subsp. vulgaris convar. vulgaris var. vulgaris) were investigated<br />

and evaluated at the Lithuanian Institute of Horticulture in 2005-2006. There<br />

were investigated these carrot varieties: ‘Garduolës’, ‘Ðatrija’, ‘Vytënø nanto’, ‘Vaiguva’<br />

and hybrids – ‘Svalia’ and ‘Skalsa’. The most prevalent in Lithuania varieties<br />

‘Kamuoliai 2’ and ‘Joniai’, which produce round root crops, and ‘Ilgiai’, which<br />

produce oblong root crops, were chosen for red beet investigations. There was<br />

investigated carrot and red beet total and marketable yield and morphological features<br />

(root length, diameter and weight). Carrot and red beet were grown under the<br />

intensive growing conditions (they were fertilized with synthetic fertilizers, chemical<br />

plant protection means were applied for plant protection) and under ecological<br />

199


growing conditions (they were fertilized with natural fertilizers, biological preparations<br />

were applied for plant protection). Investigations showed that when growing<br />

carrot and red beet ecologically it would be necessary to choose more productive<br />

varieties, which less react to env<strong>ir</strong>onmental conditions. Under the conditions of intensive<br />

growing, carrot hybrids would be more suitable for growing, and ecologically<br />

– varieties. When growing red beet ecologically it would be necessary to choose<br />

the beets of round form roots, and oblong beets would be more suitable to grow<br />

according to the intensive growing technology.<br />

Key words:yield, hybrids, carrots, cultivars, morphological characteristics, red<br />

beet.<br />

200


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OPTIMALAUS SËJOS IR NUËMIMO LAIKO ÁTAKA<br />

MORKØ ‘SVALIA’ F 1<br />

DERLIUI IR KOKYBEI<br />

Vytautas ZALATORIUS, Auksë ZALATORIÛTË, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas v.zalatorius@lsdi.lt<br />

2000–2002 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto bandymø<br />

laukuose t<strong>ir</strong>tas morkø ‘Svalia’ F 1<br />

optimalus sëjos <strong>ir</strong> derliaus nuëmimo laikas. Morkos<br />

sëtos vagotame pav<strong>ir</strong>ðiuje keturiais sëjos laikais. Kiekvieno sëjos laiko varianto derlius<br />

nuimtas septyniais sk<strong>ir</strong>tingais terminais. Nustatyta, kad standartiniam morkø derliui<br />

sëjos laikas turi esminës átakos. Balandþio mënesio paskutinio deðimtadienio sëjos<br />

morkø derlius yra vidutiniðkai 39 t ha -1 , o vëlyvesnës – b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio<br />

sëjos – tolygiai maþëja iki 26 t ha -1 . Nuëmimo laikas standartiniam derliui átakos neturi.<br />

Geriausia biocheminë sudëtis nustatyta ðakniavaisiø, sëtø balandþio 20–30 dienomis<br />

<strong>ir</strong> nuimtø spalio 9 dienà. Vëlinant sëjos laikà nuo balandþio treèio iki b<strong>ir</strong>þelio<br />

p<strong>ir</strong>mo deðimtadienio, morkø savikaina didëja 1,7 karto, o pelnas sumaþëja 4,7 karto.<br />

Reikðminiai þodþiai: derlius, kokybë, nuëmimo laikas, sëjos laikas.<br />

Ávadas. Lietuvoje ûkininkø, bendroviø <strong>ir</strong> darþininkø mëgëjø uþaugintas morkø<br />

derlius kasmet labai sk<strong>ir</strong>iasi. Tam turi átakos daug veiksniø, kuriø pagrindinis – agroklimato<br />

sàlygos (Gauèienë, Viðkelis, 1996). Taèiau yra labai daug áva<strong>ir</strong>iø nuomoniø<br />

dël sëjos <strong>ir</strong> nuëmimo laiko átakos morkø derliui <strong>ir</strong> kokybei. Ávertinus turimà informacijà,<br />

pat<strong>ir</strong>tá, preliminariniø bandymø duomenis, galima daryti prielaidà, kad agroklimatas,<br />

sëjos bei nuëmimo laikas, augimo sàlygos bei kiti technologiniai elementai yra<br />

labai glaudþiai susijæ.<br />

Siekiant sukurti morkø auginimo profiliuotame pav<strong>ir</strong>ðiuje mechanizuotas technologijas,<br />

uþtikrinanèias maþesnes energijos <strong>ir</strong> rankø darbo sànaudas bei leidþianèias<br />

gauti gausø geros kokybës <strong>ir</strong> konkurencingà derliø, vienas svarbesniø technologijos<br />

elementø yra optimalaus sëjos <strong>ir</strong> nuëmimo laikas (Zalatorius, 1998–1999; Gauèienë;<br />

2000; Fritz, 1949).<br />

Patys svarbiausi morkø kokybës rodikliai yra forma, vienodumas, spalva, sandara<br />

<strong>ir</strong> vidinë kokybë (maisto medþiagos, karotino kiekis <strong>ir</strong> t. t.) (Suojala, 2000).<br />

Darbo tikslas – nustatyti tinkamiausià ‘Svalia’ F 1<br />

morkø sëjos <strong>ir</strong> derliaus nuëmimo<br />

laikà.<br />

Tyrimo objektas, sàlygos <strong>ir</strong> metodai. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

instituto bandymø laukuose atlikti tyrimai pagal schemà:<br />

201


Bandymo faktoriai: a – sëjos laikas, b – nuëmimo laikas.<br />

Variantai:<br />

a – sëjos laikas: 1 – balandþio 20–30 d.; 2 – geguþës 5–15 d.;<br />

3 – geguþës 20–30 d.; 4 – b<strong>ir</strong>þelio 5 – 15 d.;<br />

b – nuëmimo laikas: 1 – rugsëjo 18 d.; 2 – rugsëjo <strong>25</strong> d.; 3 – spalio 2 d.;<br />

4 – spalio 9 d.; 5 – spalio 16 d.; 6 – spalio 23 d.; 7 – spalio 30 d.<br />

Tyrimo variantai pakartoti keturis kartus. Apskaitinio laukelio plotas – 8,4 m 2 .<br />

Bandymas atliktas pagal Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtà<br />

morkø auginimo profiliuotame pav<strong>ir</strong>ðiuje mechanizuotà technologijà (Zalatorius<br />

<strong>ir</strong> kt., 1998; Zinkevièiûtë <strong>ir</strong> kt., 1997; Sakalauskas, Zalatorius, 1998; Zalatorius<br />

<strong>ir</strong> kt., 1998).<br />

D<strong>ir</strong>voþemis. Bandymas darytas velëniniame glëjiðkame pajaurëjusiame (VG 1j<br />

)<br />

pagal granuliometrinæ sudëtá priesmëlio ant lengvo priemolio d<strong>ir</strong>voþemyje (pagal naujàjà<br />

Lietuvos d<strong>ir</strong>voþemiø klasifikacijà – karbonatingieji sekliai glëjiðki iðplauþemiai –<br />

IDg8 – k / Calc(ar)i – Epihypogleyc Luvisols – LVg – p – w – cc).<br />

D<strong>ir</strong>voþemio armuo – 22–<strong>25</strong> cm storio. Prieðsëlis – kopûstai. D<strong>ir</strong>vos d<strong>ir</strong>bimo<br />

darbai atlikti pagal Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute priimtus agrotechnikos<br />

reikalavimus (Gauèienë, 2001).<br />

Vidutinis mitybos elementø kiekis d<strong>ir</strong>voþemyje: judriøjø P 2<br />

O 5<br />

– 223 mg kg -1 ,<br />

kalio K 2<br />

O – 156 mg kg -1 , mineralinio azoto 0–60 cm gylio sluoksnyje – 40,5 kg ha -1 .<br />

Træðta N 60<br />

P 60<br />

K 120<br />

(Staugaitis, 1998).<br />

Piktþolës naikintos po sëjos herbicidu stompu 3,5 l ha -1 (Zinkevièiûtë <strong>ir</strong> kt.,<br />

1997). Preparatai nuo ligø <strong>ir</strong> kenkëjø naudoti esant reikalui (Sady <strong>ir</strong> kt., 2000).<br />

Duomenys statistiðkai ávertinti dispersinës analizës metodu (Tarakanovas, 1999).<br />

Meteorologinës sàlygos. 2000 m. <strong>ir</strong> ypaè 2002 m. krituliø kiekis buvo gerokai<br />

maþesnis uþ daugiametá vidurká. Tai neigiamai paveikë pagrindinio træðimo maisto<br />

medþiagø pasisavinimà. 2001 m. nuo b<strong>ir</strong>þelio iki rugpjûèio vyravo labai lietingi orai,<br />

netgi liûtys (iðkrito 2–3 kartus daugiau krituliø negu vidutinë daugiametë norma)<br />

(Gauèienë, Viðkelis, 1996) (1 pav.).<br />

1 pav. Krituliø kiekis (mm) morkø vegetacijos metu 2000–2002 m.<br />

Fig. 1. Amount of precipitation (mm) during carrot vegetation in 2000–2002<br />

202


Vidutinë 2001 <strong>ir</strong> 2002 m. temperatûra buvo aukðtesnë uþ daugiametæ atitinkamai<br />

1,4 <strong>ir</strong> 2,6°C (2 pav.).<br />

2 pav. Temperatûros °C svyravimai morkø vegetacijos metu 2000–2002m.<br />

Fig. 2. Fluctuations of temperature (°C) during carrot vegetation in 2000–2002<br />

Tyrimø metodika pagrásta statistiniais matematiniais tyrimo metodais <strong>ir</strong> matavimais.<br />

Remtasi matavimø metodika, kuri patv<strong>ir</strong>tinta Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute. Skaièiavimai atlikti STAT ENG, ANOVA for EXEL kompiuterinëmis<br />

programomis. Morkø biocheminës analizës atliktos Lietuvos sodininkystës <strong>ir</strong><br />

darþininkystës instituto Biochemijos <strong>ir</strong> technologijos laboratorijoje.<br />

Tyrimø rezultatai. Morkø fenologiniai stebëjimai. Morkø pasëliui sudygti <strong>ir</strong><br />

augti daugiausia átakos turi d<strong>ir</strong>vos temperatûra <strong>ir</strong> drëgmë (Gauèienë, 2001). Todël<br />

neatsitiktinai anksèiau pasëtos morkos dygsta ilgiau, o vëliau, ðylant d<strong>ir</strong>vai, dygimo<br />

laikas trumpëja.<br />

Normaliai drëgnais 2001 m. balandþio mënesá pasëtos morkos (1 variantas)<br />

sudygo praëjus 20 dienø nuo sëjos, kituose variantuose dygimo laikas tolygiai trumpëjo<br />

iki 12 dienø. Taèiau p<strong>ir</strong>mojo varianto morkos dviejø lapeliø tarpsná pasiekë apie<br />

b<strong>ir</strong>þelio 6 dienà, o paskutiniame variante jos buvo dar tik pradëtos sëti. Analogiðkas<br />

mënesio sk<strong>ir</strong>tumas buvo <strong>ir</strong> kitø vegetacijos tarpsniø iki pat techninës brandos pradþios.<br />

Sausringais 2000 <strong>ir</strong> 2002 metais dygimo periodas 1,5–1,7 karto pailgëjo <strong>ir</strong> 1<br />

varianto laukeliuose buvo net 35 dienos, o vëlyvesnës sëjos – sutrumpëjo iki dviejø<br />

kartø. Prasidëjus b<strong>ir</strong>þelio <strong>ir</strong> liepos mën. sausroms, 1 <strong>ir</strong> 2 variantø laukeliuose morkos<br />

jau buvo su dviem lapeliais, o 3 <strong>ir</strong> 4 variantø – tik pradëjo dygti <strong>ir</strong> nemaþai jø sunyko.<br />

Sausringais metais morkø vegetacija pailgëjo dviem savaitëmis. Tada ypatingà reikðmæ<br />

turëjo drëgmës kiekis rugpjûèio <strong>ir</strong> rugsëjo mënesiais.<br />

Morkø biometriniai rodikliai. Morkø ðakniavaisiø biometriniai matavimai buvo<br />

atlikti derliaus nuëmimo metu, tai yra spalio 9 dienà. Toks ëminiø ëmimo laikas pas<strong>ir</strong>inktas<br />

todël, kad vëliausio sëjos termino morkos jau buvo pasiekusios techninæ brandà<br />

203


(120 dienø). Matuotas ðakniavaisiø ilgis, skersmuo, nustatyta masë. Ðakniavaisio<br />

skersmuo matuotas 2 cm atstumu nuo morkos v<strong>ir</strong>ðutinës dalies (skrotelës). Matuota<br />

0,1 mm paklaidos antros tikslumo klasës techniniu slankmaèiu. Vidutinis morkø ðakniavaisio<br />

skersmuo tolygiai maþëjo vëlinant sëjos terminus – nuo 4,3 cm (sëta balandþio<br />

mën. paskutiná deðimtadiená) iki 3,07 cm (sëta b<strong>ir</strong>þelio mënesio p<strong>ir</strong>mà deðimtadiená).<br />

Ilgis matuotas technine liniuote GOST 427–75, kurios tikslumo paklaida – 0,1 mm.<br />

Morkø ðakniavaisiai tolygiai, bet neþymiai trumpëjo vëlesniais terminais sëtame pasëlyje<br />

(nuo 19,5 cm balandþio mën. iki 18,4 cm b<strong>ir</strong>þelio mën.). Ðakniavaisio masë<br />

tiesiogiai priklauso nuo skersmens <strong>ir</strong> ilgio. Morkø masei nustatyti naudotos elektroninës<br />

svarstyklës. Svërimo paklaida – 0,02 g. Morkø, sëtø balandþio mënesá, vidutinë<br />

ðakniavaisio masë buvo 188,1 g, o vëliau sëtø tolygiai maþëjo – iki 135,0 g (1 lentelë).<br />

1 lentelë. Sëjos laiko átaka morkø ‘Svalia’ F 1<br />

biometriniams rodikliams.<br />

Babtai, 2000–2002 m.<br />

Table 1. Influence of sowing time on biometrical indices of carrot ‘Svalia’ F 1<br />

.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Ðakniavaisio vidutinë<br />

masë<br />

Average root-crop weight,<br />

g<br />

Šakniavaisio vidutinis<br />

ilgis<br />

Average root-crop length,<br />

cm<br />

Šakniavaisio vidutinis<br />

skersmuo<br />

Average root-crop<br />

diameter, cm<br />

188,1 19,5 4,3<br />

178,3 19,2 4,1<br />

145,5 18,7 3,8<br />

135,0 18,7 3,7<br />

R 05 / LSD 05 2,36 1,45 0,95<br />

Morkø ðakniavaisiai tyrimø metais atitiko privalomuosius kokybës reikalavimus<br />

(Aðmontas <strong>ir</strong> kt., 2001).<br />

Nitratø kiekio <strong>ir</strong> biocheminës morkø sudëties nustatymas. Derliaus nuëmimo<br />

metu (spalio 9 d) visuose variantuose imti produkcijos mëginiai. Nustatytas karotino,<br />

cukraus, sausøjø, sausøjø t<strong>ir</strong>piø medþiagø <strong>ir</strong> nitratø kiekis ðakniavaisiuose.<br />

Karotino kiekis (mg proc.) kito nuosekliai: balandþio pabaigoje sëtose morkose<br />

buvo vidutiniðkai 13,71 mg proc., o 2–4 sëjos variantuose sumaþëjo iki 11–13 mg<br />

proc., arba vidutiniðkai 17 proc. maþiau (2 lentelë).<br />

Morkos yra vertinamos kaip provitamino A ðaltinis. Jo kieká lemia karotinas<br />

(Simon, 1987). Koks yra karotino kiekio priklausomumas nuo sëjos laiko, matyti<br />

2 lentelëje. Daugiausia karotino ðakniavaisiai sukaupë, pasëjus morkas balandþio treèià<br />

deðimtadiená (1 variantas). Sukaupto karotino kiekis tolygiai maþëjo vëlinant sëjos<br />

laikà. Pasëtø balandþio mënesá morkø ðakniavaisiai karotino sukaupë 13,71 mg proc.,<br />

o pasëtø b<strong>ir</strong>þelio mënesá – tik 11,33 mg proc.<br />

204


2 lentelë. Sëjos laiko átaka morkø ‘Svalia’ F 1<br />

biocheminei sudëèiai.<br />

Babtai, 2000–2002 m.<br />

Table 2. Influence of sowing time on biochemical composition of carrot ‘Svalia’ F 1<br />

.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Cukrus<br />

Sugars, %<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Karotinas<br />

Carotene,<br />

mg %<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

7,19 9,83 13,71 12,26<br />

6,89 9,59 12,91 11,83<br />

6,72 9,57 11,17 11,85<br />

6,57 9,45 11,83 11,33<br />

R 05 / LSD 05 0,91 0,37 1,18 0,654<br />

3 lentelë. Derliaus nuëmimo laiko átaka morkø biocheminei sudëèiai.<br />

Babtai, 2000–2002 m.<br />

Table 3. Influence of harvesting time on biochemical composition of carrot.<br />

Babtai, 2000–2002<br />

Derliaus nuëmimo<br />

laikas<br />

Harvesting time<br />

1. Rugsëjo 18 d.<br />

September 18<br />

2. Rugsëjo <strong>25</strong> d.<br />

September <strong>25</strong><br />

3. Spalio 2 d.<br />

October 2<br />

4. Spalio 9 d.<br />

October 9<br />

5. Spalio 16 d.<br />

October 16<br />

6. Spalio 23 d.<br />

October 23<br />

7. Spalio 30 d.<br />

October 30<br />

Cukrus<br />

Sugars,<br />

%<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Karotinas<br />

Carotene,<br />

mg%<br />

Nitratai<br />

Nitrates,<br />

mg kg -1<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

5,93 9,52 10,01 236,70 11,93<br />

8,00 9,60 12,73 315,40 11,98<br />

6,35 9,63 13,24 240,30 12,00<br />

7,91 9,76 14,37 246,80 12,13<br />

6,21 10,12 12,90 285,10 12,10<br />

7,03 9,33 11,23 398,30 11,23<br />

6,41 9,30 11,75 226,50 11,73<br />

R 05 / LSD 05 0,68 0,28 0,88 0,58 0,48<br />

205


Sausøjø medþiagø kiekis priklausë nuo sëjos laiko: balandþio mën. (12,26 proc.) –<br />

b<strong>ir</strong>þelio mën. (11,33 proc.) jø ðakniavaisiuose tolygiai sumaþëjo vidutiniðkai 7,2 proc.<br />

(2 lentelë). Atsk<strong>ir</strong>uose nuëmimo terminø variantuose sausøjø medþiagø kiekis buvo<br />

panaðus <strong>ir</strong> tik neþymiai svyravo (apie 5 proc.).<br />

T<strong>ir</strong>piø sausøjø medþiagø kiekiui nei sëjos laikas, nei derliaus nuëmimo laikas<br />

átakos neturi. Rudená ðakniavaisiuose jø buvo vidutiniðkai 9,7 proc.<br />

Cukraus kiekis áva<strong>ir</strong>iuose sëjos laiko variantuose yra panaðus <strong>ir</strong> kinta nuo 7,19 iki<br />

6,57 proc. – kuo vëliau sëta, tuo cukraus kiekis maþesnis (2 lentelë). Nuëmimo terminai<br />

cukraus kiekiui átakos turëjo (8,0–5,93 proc.), taèiau dësningumo nepastebëta (3 lentelë).<br />

Nitratø kiekis morkose neturi aiðkaus priklausomumo nuo nuëmimo laiko, taèiau<br />

atsk<strong>ir</strong>uose variantuose jis áva<strong>ir</strong>uoja nuo 398,30 mg kg -1 iki 236,7 mg kg -1 .<br />

Derlius <strong>ir</strong> jo kokybë. Atlikta standartinio derliaus apskaita. Sausringais 2000 <strong>ir</strong><br />

2002 m. labai didelës átakos prekiniam derliui turëjo sëjos laikas – juo anksèiau pasëta,<br />

tuo didesnis derlius. 2000 m. nustatyti labai dideli sk<strong>ir</strong>tumai – nuo 39,9 t ha -1<br />

balandþio mën. sëtø iki 10,4 t ha -1 , arba 3,8 karto daugiau nei b<strong>ir</strong>þelio mën. sëtø<br />

morkø. 2002 m. balandþio mën. sëtø morkø derlius buvo 52,2 t ha -1 , b<strong>ir</strong>þelio mën. –<br />

19,0 t ha -1 , arba 2,7 karto maþesnis.<br />

Analizuojant vidutiná standartiná derliø, nustatytas jo priklausomumas nuo sëjos<br />

laiko. Juo anksèiau pasëtos morkos, tuo didesnis jø derlius.<br />

T<strong>ir</strong>iant derliaus nuëmimo laiko átakà standartinio derliaus iðeigos, esminio sk<strong>ir</strong>tumo<br />

tarp variantø nepastebëta. Sëjos laikas darë kur kas didesnæ átakà standartiniam<br />

derliui nei derliaus nuëmimo laikas. Analizuota ne tik sëjos laiko átaka standartiniam<br />

derliui, bet <strong>ir</strong> kokià bendro derliaus dalá jis sudaro. Tyrimams naudotas septintojo<br />

varianto morkø ðakniavaisiø derlius. Tuo metu morkø ðakniavaisiai pasiekë fiziologinæ<br />

brandà. 4 lentelëje pateikta, kad sëjant morkas balandþio 20–30 d., standartiniai<br />

morkø ðakniavaisiai sudarë apie 70 procentø bendro derliaus, o tai yra daugiau nei<br />

pasëjus vëlesniais sëjos terminais.<br />

4 lentelë. Sk<strong>ir</strong>tingais terminais pasëtø morkø ðakniavaisiø derlius.<br />

Babtai, 2000–2002 m.<br />

Table 4. Root-crop yield of carrot sown at different terms. Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–15 d.<br />

June 5–15<br />

Vidutinis bendras<br />

derlius<br />

Average total yield,<br />

t ha -1<br />

206<br />

Vidutinis standartinis<br />

derlius<br />

Average standard yield,<br />

t ha -1<br />

Vidutinis<br />

standartinis derlius<br />

Average standard yield,<br />

%<br />

55,8 39,0 69,9<br />

53,1 34,2 64,4<br />

43,4 26,80 61,8<br />

35,7 23,0 64,4<br />

R 05 / LSD 05 1,494 1,767


Vëlinant sëjà, standartinis derlius maþëja. Ði koreliacija pavaizduota 3 paveiksle.<br />

3 pav. Standartinio derliaus priklausomumas nuo sëjos laiko<br />

Fig. 3. Sowing time influence on standard yield<br />

Derliaus savikaina. Ir bendro, <strong>ir</strong> standartinio derliaus savikaina yra maþiausia<br />

morkas sëjant balandþio 20–30 dienomis. Sëjant morkas vëliau, savikaina didëja. Toks<br />

priklausomumas ats<strong>ir</strong>anda dël maþëjanèio derliaus <strong>ir</strong> papildomo d<strong>ir</strong>vos d<strong>ir</strong>bimo. Skaièiuojama<br />

tik standartinio derliaus savikaina, nes nestandartinis derlius neparduodamas.<br />

Derliø nuimant sk<strong>ir</strong>tingu laiku, standartinis derlius kinta neþymiai <strong>ir</strong> neturi didelës<br />

átakos savikainai (4 pav.).<br />

4 pav. Auginimo sànaudø priklausomumas nuo sëjos laiko<br />

Fig. 4. Sowing time influence on growing expenditure<br />

Atlikus lauko bandymus <strong>ir</strong> apskaièiavus savikainà (Zalatorius <strong>ir</strong> kt. 1998), galima<br />

ávertinti preliminarø pelnà. 5 lentelëje pateiktas pelnas neávertinus saugojimo <strong>ir</strong><br />

realizavimo iðlaidø. Jos sudarytø nuo 10 iki 20 procentø. Pelnas apskaièiuotas pagal<br />

minimalià tø metø realizavimo kainà, kuri yra nuo 0,30 Lt kg -1 .<br />

Didþiausias pelnas gaunamas, kai morkos sëjamos balandþio 20–30 dienomis.<br />

Derliaus nuëmimas sk<strong>ir</strong>tingu laiku pelnui didesnës átakos neturëjo.<br />

207


5 lentelë. Teorinis pelnas neatskaièius realizavimo <strong>ir</strong> saugojimo iðlaidø.<br />

Babtai, 2000–2002 m.<br />

Table 5. Theoretical profit including expenditure of realization and storage.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Standartinis<br />

derlius<br />

Standard yield, t<br />

ha -1<br />

Savikaina<br />

Cost price, Lt kg -1<br />

Realizavimo<br />

kaina<br />

Realization price,<br />

Lt kg -1<br />

Pelnas, tûkst. Lt<br />

Profit, thousand Lt<br />

39,0 0,139 0,30 6,28<br />

34,2 0,158 0,30 4,86<br />

26,80 0,206 0,30 2,52<br />

23,0 0,242 0,30 1,33<br />

Palyginus balandþio treèio deðimtadienio <strong>ir</strong> b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio sëjà, nustatyta,<br />

kad pasëjus anksèiau, gaunamas net 31 proc. derliaus priedas, o tai yra 4 950<br />

litø priedas auginant vienà hektarà morkø. Taigi morkø sëjos laikas ypaè svarbus.<br />

Aptarimas. Lietuvoje nebuvo t<strong>ir</strong>ta morkø sëjos laiko <strong>ir</strong> nuëmimo terminø átaka<br />

derliui, standartinio derliaus iðeigai, ðakniavaisiø iðorinei (prekinei) <strong>ir</strong> vidinei kokybei.<br />

Taèiau bûtina atkreipti dëmesá, kad atsk<strong>ir</strong>ose ðalyse – kaimyninëse <strong>ir</strong> tolimesnëse –<br />

yra labai sk<strong>ir</strong>tingos agroklimato sàlygos, o tai turi átakos sëjos <strong>ir</strong> nuëmimo laikui. Taip<br />

pat <strong>ir</strong> paèioje Lietuvoje yra sk<strong>ir</strong>tingi regionai su savitu, tik tam regionui bûdingu<br />

klimatu bei d<strong>ir</strong>voþemiu. Vienas svarbesniø veiksniø, turintis átakos pas<strong>ir</strong>inktos morkø<br />

veislës ar hibrido sëjos ar nuëmimo terminams, yra augimo vegetacijos trukmë (augimo<br />

iki techninës brandos). Bandymo metu sëta Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute sukurto hibrido ‘Svalia’ F 1<br />

sëkla. Hibridas yra vidutinio ankstyvumo,<br />

taèiau ðakniavaisiai tinka ilgai saugoti, labai geros jø vidinës kokybës savybës. Remiantis<br />

ðiuo tyrimu, galima nustatyti pagrindines auginimo technologijos ga<strong>ir</strong>es <strong>ir</strong><br />

pas<strong>ir</strong>inkti tinkamiausius jos elementus kiekviename atsk<strong>ir</strong>ame regione ar visoje ðalyje.<br />

Iðvados. 1. Standartinio morkø derliaus iðeigai didelës átakos turi sëjos laikas.<br />

Balandþio mën. sëjos derlius – vidutiniðkai 39 t ha -1 , vëlyvesnës sëjos – tolygiai maþëja<br />

iki 26 t ha -1 .<br />

2. Nuëmimo laikas standartinio derliaus iðeigai átakos neturi.<br />

3. Geriausia biocheminë sudëtis tø morkø ðakniavaisiø, kurie buvo sëti balandþio<br />

20–30 dienomis, o derlius nuimtas spalio 9 dienà.<br />

4. Vëlinant sëjos laikà nuo balandþio treèio deðimtadienio iki b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio,<br />

morkø savikaina didëja 1,7 karto, o preliminarus pelnas sumaþëja 4,7<br />

karto.<br />

Gauta 2006-10-<strong>25</strong><br />

Parengta spausdinti 2006-12-11<br />

208


Literatûra<br />

1. Aðmontas V., Masiulienë R., Kviklys D., Barkauskienë Z. Privalomieji kokybiniai<br />

reikalavimai ðvieþiems vaisiams <strong>ir</strong> darþovëms. Babtai, 2001. P. 59–62.<br />

2. Fritz D., Weichmann J. Influence of the harvesting date of carrots on quality and<br />

quality preservation // Acta Horticulturae. 1979. Vol. 93. P. 91–100.<br />

3. Gauèienë O. Morkos. Babtai, 2001. P. 18–22.<br />

4. Gauèienë O., Viðkelis P. Morkø veisliø produktyvumo <strong>ir</strong> kokybës formavimasis<br />

veikiant sk<strong>ir</strong>tingiems abiotiniams faktoriams // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000.<br />

T. 19. P. 21.<br />

5. Sady W., Robak J., Wiech K. Uprawa marchwi. Krakaw, 2000. P. 43–66.<br />

6. Sakalauskas A., Zalatorius V. Morkø auginimo technologijø tyrimas // Þemës ûkio<br />

inþinerija.1996. T. 28(2). P. 111–120.<br />

7. Simon P. W., Wolf X. Y. Carotene in typical and dark orange carrots // Journal of<br />

Agricultural Food Chemistry. 1987. P. 35, 1017–1022.<br />

8. Staugaitis G. Lauko <strong>ir</strong> ðiltnaminiø darþoviø træðimas azoto tràðomis: habilitacinis<br />

darbas. Babtai, 1998. P. 78–81.<br />

9. Suojala T. Effect of harvest time on the storage performance of carrot // J. Hort. Sci.<br />

Biotechnol. 1999. Vol 74(4). P. 484–492.<br />

10. Suojala T. Pre-and Postharvest Development Of Carrot Yield and Qality.<br />

Helsinky, 2000.<br />

11. Tarakanovas P. Statistiniø duomenø apdorojimo paketas. Akademija, 1999. P. 57.<br />

12. Zalatorius V., Baleliûnas P., Zinkevièiûtë D. Morkø auginimo technologijø lygioje<br />

<strong>ir</strong> vagotoje d<strong>ir</strong>voje palyginimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1998. T. 17(4).<br />

P. 89–94.<br />

13. Zalatorius V., Baleliûnas P., Zinkevièiûtë D. Morkø auginimo vagotame pav<strong>ir</strong>ðiuje<br />

agroekonominis efektyvumas // Þemës ûkio mokslai. 1998. Nr. 2. P. 45–49.<br />

14. Zinkevièiûtë D., Baleliûnas P. Zalatorius V. Agrotechniniø <strong>ir</strong> cheminiø priemoniø<br />

átaka morkø piktþolëtumui <strong>ir</strong> derliui // Integruota augalø apsauga: pasiekimai <strong>ir</strong> problemos.<br />

Dotnuva – Akademija, 1997. P. <strong>25</strong>6–<strong>25</strong>8.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF THE OPTIMAL SOWING AND<br />

HARVESTING TIME ON THE YIELD AND QUALITY OF<br />

CARROT ‘SVALIA’ F 1<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis<br />

Summary<br />

The optimal sowing and harvesting time of carrot ‘Svalia’ F 1<br />

was investigated in<br />

the experimental fields of the Lithuanian Institute of Horticulture in 2000–2002. Carrots<br />

were sown in furrowed surface during four periods of sowing. The yield of<br />

every sowing period variant was gathered at seven different terms. It was established<br />

that the sowing time significantly influences the standard carrot yield. Carrot<br />

209


yield of the last decade of April on the average is 39 t ha -1 , and the yield of more late<br />

sowing – the f<strong>ir</strong>st decade of April – evenly decreases up to 26 t ha -1 . The time of<br />

harvesting doesn’t influence the standard yield. It was established that the rootcrops<br />

sown on April 20-30 and gathered on October 9 had the best biochemical<br />

composition. When the sowing time was delayed from the th<strong>ir</strong>d decade of April up<br />

to the f<strong>ir</strong>st decade of July, carrot cost price increased 1.7 times and profit decreased<br />

4.7 times.<br />

Key words: yield, quality, harvesting time, sowing time.<br />

210


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

ÁVAIRIØ AZOTO TRÀÐØ IR CEOLITO ÁTAKA<br />

VALGOMOSIOS MORKOS PRODUKTYVUMUI IR<br />

MORFOMETRINIAMS RODIKLIAMS<br />

Ona BUNDINIENË, Èeslovas BOBINAS, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas O.Bundiniene@lsdi.lt<br />

2004–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute atliktø tyrimø<br />

tikslas – ávertinti kalcio amonio salietros (KAN 27), azoto tràðos su ceolitu (KAN 27<br />

su ceolitu) bei ceolito (prekinis þenklas ZeoVit EcoAgro) <strong>ir</strong> amonio salietros átakà<br />

valgomøjø morkø ‘Samson’ produktyvumui <strong>ir</strong> morfometriniams rodikliams (ðakniavaisio<br />

masë, skersmuo, ilgis) bei jø tarpusavio ryðius <strong>ir</strong> átakà vieni kitiems. Bandymai<br />

atlikti priesmëlio ant lengvo priemolio karbonatingajame sekliai glëjiðkame iðplautþemyje.<br />

Didþiausias valgomøjø morkø prekinis derlius (56,4 t ha -1 ) <strong>ir</strong> jo iðeiga (72,7 proc.)<br />

gauti træðiant azoto tràða su ceolitu (N 90<br />

+N 30<br />

). Træðiant ceolitu (<strong>25</strong> t ha -1 ) <strong>ir</strong> amonio<br />

salietra (N 90<br />

+N 30<br />

), gautas 55,0 t ha -1 prekiniø morkø derlius, jo iðeiga buvo 71,4 proc.,<br />

o auginant be azoto tràðø, gautas 44,9 t ha -1 prekinis derlius, jo iðeiga – 65,9 proc.<br />

Didþiausia (142,8 g) ðakniavaisio masë <strong>ir</strong> jo ilgis (175,4 mm) buvo træðiant morkas<br />

amonio salietra <strong>ir</strong> ceolitu, o didþiausias skersmuo (35,2 mm) – træðiant azoto tràða su<br />

ceolitu. Morkø derliaus didëjimui tiesioginës teigiamos átakos turëjo ðakniavaisio masës<br />

(suminio derliaus r = 0,42, prekinio – r = 0,64) <strong>ir</strong> jo ilgio (atitinkamai r = 0,67 <strong>ir</strong><br />

r = 0,63) didëjimas. Ðakniavaisio skersmuo neturëjo átakos suminio morkø derliaus<br />

didëjimui (r = 0,22), bet vidutiniðkai stipriai veikë prekiná derliø (r = 0,54). Didëjant<br />

ðakniavaisio masei, didëja jo ilgis (r = 0,63) <strong>ir</strong> skersmuo (r = 0,81).<br />

Reikðminiai þodþiai: azoto tràða su ceolitu, ceolitas, kalcio amonio salietra,<br />

prekinis derlius, ðakniavaisio ilgis, ðakniavaisio masë, ðakniavaisio skersmuo, valgomoji<br />

morka.<br />

Ávadas. Optimaliam derliui yra keliami reikalavimai: 1) didelis suminis derlius, 2)<br />

didelë standartinio derliaus iðeiga, 3) maþi laikymo nuostoliai <strong>ir</strong> 4) laikymo metu iðlaikyta<br />

vidinë <strong>ir</strong> iðorinë produkcijos kokybë (Sakalauskas <strong>ir</strong> kt., 2005). Morkø derlingumas,<br />

jø prekinë vertë bei kokybë priklauso nuo naudojamø tràðø <strong>ir</strong> jø formø bei normø<br />

(Gauèienë, 2001; Liet. d<strong>ir</strong>voþemiø ..., 1998, Staugaitis, 1998). Vienai tonai morkø<br />

ðakniavaisiø su atitinkamu kiekiu lapø iðauginti sunaudojama 3,2 kg azoto, 1,2 kg<br />

fosforo (P 2<br />

O 5<br />

), 5,0 kg kalio (K 2<br />

O), 1,9 kg kalcio (CaO) <strong>ir</strong> 0,9 kg magnio (MgO)<br />

(Äåðþãèí, Êóëþêèí, 1988). Auganèiai lapijai reikia daug azoto, o ðakniavaisiams<br />

211


formuotis – kalio <strong>ir</strong> fosforo. Gavusi kalio <strong>ir</strong> kalcio, produkcija geriau iðsilaiko. Be to,<br />

kalcis stabdo d<strong>ir</strong>voþemio rûgðtëjimo procesus (Liet. d<strong>ir</strong>voþemiø ..., 1998). Kalcio<br />

poreiká ið dalies galima patenkinti <strong>ir</strong> d<strong>ir</strong>voþemiø rûgðtëjimà sustabdyti træðiant fiziologiðkai<br />

nerûgðèiomis tràðomis. Viena jø yra kalcio amonio salietra (KAN 27), kurios<br />

sudëtyje yra 27 proc. N (amoniakinis N-NH 4<br />

+<br />

– 13,5 proc. <strong>ir</strong> nitratinis – N-NO 3<br />

-<br />

–<br />

13,5 proc.), 6 proc. kalcio (CaO) <strong>ir</strong> 4 proc. magnio (MgO). Papildomi maisto elementai<br />

– kalcis <strong>ir</strong> magnis – yra ið gamtinio dolomito, kurie sumaþina amonio nitrato<br />

fiziologiná rûgðtumà <strong>ir</strong> tokiu bûdu subalansuoja d<strong>ir</strong>voþemio rûgðtumà bei gerina jo<br />

biologiná aktyvumà. Augalai patræðiami ne tik azotu, bet <strong>ir</strong> kalciu bei magniu, kuriø<br />

trûksta lengvuose <strong>ir</strong> rûgðèiuose d<strong>ir</strong>voþemiuose.<br />

2003 m. pradëta gaminti azoto tràða su ceolitu, kurioje yra 26–27 proc. azoto,<br />

o dalis dolomito (nuo 3 iki 6 proc.) pakeista ceolitu. Tràðos sudëtyje taip pat yra<br />

4,5–5,4 proc. kalcio oksido (CaO) <strong>ir</strong> 3,1–3,5 proc. magnio oksido (MgO). Ceolitas,<br />

esantis kalcio amonio salietros granulëje, pagerina tràðos fizikines savybes (b<strong>ir</strong>umà,<br />

susigulëjimà <strong>ir</strong> laikymàsi) <strong>ir</strong> pailgina maisto medþiagø veikimo laikà.<br />

Ceolitai yra kristaliniai, ðarminiai ar þemës ðarminiai hidratuoti aliumosilikatai,<br />

pasiþymintys didele katijonø mainø geba <strong>ir</strong> gebëjimu absorbuoti amonio jonus bei<br />

judriuosius maisto elementus (Watanabe, 1962; Ilsidar, 1999; Mumpton, 1999) <strong>ir</strong><br />

veikiantys kaip lëtinimo agentas (Ming, Dixon, 1986). Ceolituose beveik nebûna azoto<br />

<strong>ir</strong> fosforo. Jie yra neutralios reakcijos (Ïîñòíèêîâ, 1991). Ceolitai gali bûti naudojami<br />

kaip ekologinës tràðos <strong>ir</strong> d<strong>ir</strong>voþemio rûgðtëjimà maþinanti priemonë. Lietuvoje<br />

parduodamuose ceolituose yra 5,03 proc. kalio <strong>ir</strong> natrio (K 2<br />

O + Na 2<br />

O), 1,07 proc.<br />

magnio (MgO), 2,10 proc. CaO bei mikroelementø (Mn, Zn <strong>ir</strong> kiti).<br />

Tyrimø tikslas – ávertinti kalcio amonio salietros (KAN 27), azoto tràðos su<br />

ceolitu (KAN 27 su ceolitu) bei ceolito (prekinis þenklas ZeoVit EcoAgro) <strong>ir</strong> amonio<br />

salietros átakà valgomøjø morkø derlingumui, prekinio derliaus iðeigai bei ðakniavaisiø<br />

morfometriniams rodikliams <strong>ir</strong> ðiø rodikliø reikðmæ derliaus formavimui.<br />

Tyrimø sàlygos, objektas <strong>ir</strong> metodai. Bandymai atlikti Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute 2004–2005 m. D<strong>ir</strong>voþemis – priesmëlis ant lengvo priemolio<br />

karbonatingasis sekliai glëjiðkas iðplautþemis (IDg 8-k, /Calc(ar)i – Epihypogleyc<br />

Luvisols – LVg-p-w-cc). D<strong>ir</strong>voþemio armuo 22–<strong>25</strong> cm storio, neutralios reakcijos<br />

(pH KCl<br />

7,0), jame yra 1,58 proc. humuso, pakankamai gausu judriøjø fosforo <strong>ir</strong> kalio<br />

(atitinkamai 354 <strong>ir</strong> 146 mg kg -1 d<strong>ir</strong>voþemio) bei kalcio (4 500 mg kg -1 ), taèiau maþai<br />

azotingas (0–60 cm sluoksnyje – 56,6 kg ha -1 N-NH 4<br />

+ N-NO 3<br />

).<br />

D<strong>ir</strong>voþemio ëminiuose nustatyta: pH KCl<br />

(potenciometriniu (ISO 10390:2005) metodu),<br />

humusas, % (sauso deginimo (ISO 10694:1995) metodu), judrieji P 2<br />

O 5<br />

<strong>ir</strong><br />

K 2<br />

O, mg kg -1 (Egnerio-Rimo-Domingo (A-L, Gost 26208-84) metodu), mineralinis<br />

azotas, mg kg -1 (jonometriniu metodu), kalcis <strong>ir</strong> magnis, mg kg -1 (atominës absorbcijos<br />

spektrometriniu (SVP D-06) metodu). Analizës atliktos LÞI Agrocheminiø tyrimø<br />

centre.<br />

Augalø prieðsëlis – juodasis pûdymas. D<strong>ir</strong>vos d<strong>ir</strong>bimo <strong>ir</strong> darþoviø prieþiûros<br />

darbai atlikti pagal LSDI priimtas intensyvaus darþoviø auginimo technologijas.<br />

Morkos augintos vagotame pav<strong>ir</strong>ðiuje 70 cm tarpueiliais. Á hektarà tikslaus iðsëjimo<br />

sëjamàja iðberta 0,8 mln. vnt. daigiø valgomøjø morkø sëklø. Morkos sëtos<br />

2004 05 12 <strong>ir</strong> 2005 05 09.<br />

212


Pagrindinio (fono) træðimo prieð sëjà fosforo <strong>ir</strong> kalio tràðomis normos buvo<br />

nustatytos remiantis d<strong>ir</strong>voþemio agrocheminiø tyrimø duomenimis, azoto iðberta<br />

90 kg ha -1 . Træðta kalio magnezija (30% K 2<br />

O), granuliuotu superfosfatu (19,8% P 2<br />

O 5<br />

).<br />

Azotu træðta prieð sëjà (90 kg ha -1 ) <strong>ir</strong> papildomai (N 30<br />

) augalams esant 4–6 lapeliø<br />

tarpsnio, naudojant schemoje nurodytas tràðas.<br />

Bandymo schema:<br />

1. Be azoto – Fonas – F (P 60<br />

K 120<br />

).<br />

2. F + KAN 27 N 90<br />

+ N 30<br />

. Træðta kalcio amonio salietra.<br />

3. F + KAN 27 su ceolitu N 90<br />

+ N 30<br />

. Træðta azoto tràða su ceolitu.<br />

4. F + 2,5 kg m -2 ceolito + AS N 90<br />

+ N 30<br />

. Træðta ceolitu (<strong>25</strong> t ha -1 ceolito Zeovit<br />

Eco Agro) <strong>ir</strong> amonio salietra.<br />

Bandymai kasmet daryti 4 pakartojimais. Laukeliai iðdëstyti rendomizuotai. Apskaitinio<br />

laukelio plotas – 6,2 m 2 .<br />

Valgomøjø morkø derlius nuimtas darþovëms pasiekus techninæ brandà. Imant<br />

derliø kiekviename laukelyje buvo iðmatuota <strong>ir</strong> pasverta po 10 morkø ðakniavaisiø.<br />

Duomenø patikimumas ávertintas vienfaktorinës dispersinës analizës metodu,<br />

naudojant programà ANOVA, ryðys tarp atsk<strong>ir</strong>ø rodikliø – koreliacinës regresinës<br />

analizës, tarpusavio ryðiø pobûdis <strong>ir</strong> stiprumas – statistinës takø koeficientø analizës<br />

metodais, naudojant programà STAT_ENG (Tarakanovas, Raudonis, 2003).<br />

Meteorologinës sàlygos atsk<strong>ir</strong>ais bandymo vykdymo metais skyrësi: 2004 m.<br />

visais vegetacijos mënesiais, iðskyrus rugpjûtá, oro temperatûra buvo þemesnë, o<br />

2005 m. – ðiek tiek aukðtesnë nei daugiametë vidutinë (1a pav.). Ypaè karðtas buvo<br />

2005 m. liepos mënuo: oro temperatûra buvo 1,4°C aukðtesnë uþ vidutinæ daugiametæ<br />

liepos mënesio temperatûrà.<br />

1 pav. Oro temperatûra (°C) (a) <strong>ir</strong> krituliai (mm) (b).<br />

Kauno meteorologijos stoties duomenys<br />

Fig. 1. A<strong>ir</strong> temperature (°C) (a) and precipitation (mm) (b).<br />

The data of Kaunas Meteorological Station<br />

2004 m. krituliø per vegetacijos laikotarpá iðkrito vidutiniðkai daugiau, 2005 m. –<br />

maþiau uþ vidutinius daugiameèius rodiklius (1 b pav.). Abiejø bandymo vykdymo<br />

metø geguþës mënesiai buvo gan drëgni, taèiau 2005 m. geguþës mënesio pabaigoje<br />

praëjæ gausûs trumpalaikiai lietûs sutrukdë pasëliui normaliai sudygti. Dël susidariusios<br />

plutos morkø pasëlis ðiek tiek praretëjo, bet kadangi b<strong>ir</strong>þelio mënesá buvo pakankamai<br />

drëgmës <strong>ir</strong> ðilumos, augo gerai. Drëgmës trûkumas liepos mënesá (iðkrito tik<br />

213


5,9 proc. daugiametës krituliø normos) pristabdë morkø ðakniavaisiø augimà <strong>ir</strong>, be<br />

abejo, turëjo átakos derlingumui: jis buvo 30,7 proc. maþesnis nei 2004 m., o standartinio<br />

derliaus iðeiga sumaþëjo 5 proc. Didelis drëgmës perteklius buvo abiejø bandymo<br />

vykdymo metø rugpjûèio mënesiais.<br />

Tyrimø rezultatai. Azotas turëjo lemiamos átakos morkø ðakniavaisiø derliui.<br />

Visos tyrimuose naudotos azoto tràðos teigiamai veikë <strong>ir</strong> ið esmës didino suminá (1) <strong>ir</strong><br />

prekiná (2) morkø ðakniavaisiø derliø.<br />

Y = 68,12 + 0,07, r = 0,83 ± 0,15, t = 3,54, F t<br />

= 30,84** (1)<br />

Y = 44,88 + 0,08, r = 0,89 ± 0,12, t = 5,00, F t<br />

= 56,<strong>25</strong>** (2)<br />

Sutartiniai þenklai / Used symbols:<br />

r– koreliacijos koeficientas / coefficient of correlation,<br />

t – Stjudento t-testo kriterijus (sk<strong>ir</strong>tumo patikimumo kriterijus) / statistic derived<br />

in Student's t-test,<br />

F t<br />

– Fiðerio kriterijus / variant ratio (F test<br />

),<br />

R 05<br />

– maþiausias esminis sk<strong>ir</strong>tumas / LSD – the least significant difference,<br />

* – patikimumas, esant 95% tikimybës lygiui / data significant at P = 0.05<br />

probability level,<br />

** – esant 99% tikimybës lygiui/ at P = 0.01 probability level.<br />

Tyrimø duomenys parodë, kad valgomøjø morkø suminis derlius nuo azoto<br />

tràðø (N 90<br />

+ N 30<br />

) padidëjo vidutiniðkai 8,4 t/ha, arba 12,3 proc., palyginti su azotu<br />

netræðtu pasëliu. Vidutiniais 2004–2005 m. duomenimis, nuo kalcio amonio salietros<br />

azoto (KAN 27) valgomøjø morkø suminis derlius padidëjo 6,8 t ha -1 , arba 10,0 proc.<br />

(2 pav.). Træðiant azoto tràða su ceolitu (N 90+30<br />

), suminis derlius padidëjo 9,5 t ha -1 ,<br />

arba 14,0 proc., palyginti su be azoto augintomis morkomis, <strong>ir</strong> 2,7 t ha -1 , arba 3,6 proc.,<br />

palyginti su kalcio amonio salietra træðtø morkø derliumi. Træðiant amonio salietra <strong>ir</strong><br />

prieð morkø sëjà áterpiant <strong>25</strong> t ha -1 ceolito, suminis derlius padidëjo 9,0 t ha -1 , arba<br />

13,2 proc., palyginti su azotu netræðtomis morkomis. Esminio suminio morkø derliaus<br />

sk<strong>ir</strong>tumo, palyginti su azoto tràða su ceolitu træðtomis morkomis, negauta.<br />

Prekinis valgomøjø morkø derlius nuo azoto tràðø (N 90<br />

+ N 30<br />

) padidëjo vidutiniðkai<br />

9,5 t ha -1 , arba 21,2 proc., palyginti su be azoto tràðø augintø morkø derliumi, o<br />

prekinio derliaus iðeiga buvo 5,2 proc. Træðiant morkas kalcio amonio salietra (N 90<br />

+N 30<br />

),<br />

prekinis derlius padidëjo 6,9 t ha -1 , arba 15,5 proc., palyginti su be azoto tràðø augintomis<br />

morkomis, o derliaus iðeiga buvo 3,3 proc. Prekinio derliaus savikaina sumaþëjo<br />

nuo 0,169 Lt kg -1 iki 0,154 Lt kg -1 , arba 15 Lt t -1 . Tas pats azoto kiekis, iðbertas<br />

azoto tràðos su ceolitu forma, prekiná morkø derliø, palyginti su kalcio amonio salietra<br />

træðtø morkø derliumi, padidino 4,6 t ha -1 , arba 8,9 proc., prekinio derliaus iðeigà –<br />

3,5 proc., o savikaina sumaþëjo iki 0,142 Lt kg -1 , arba dar 12 Lt t -1 (palyginti su be<br />

azoto augintomis morkomis, prekinio derliaus savikaina sumaþëjo 27 Lt t -1 ).<br />

Áterpus prieð sëjà ceolità (<strong>25</strong> t ha -1 ) <strong>ir</strong> træðiant amonio salietra (N 90 + 30<br />

), prekinis<br />

morkø ðakniavaisiø derlius, palyginti su azoto tràða su ceolitu træðtø morkø derliumi,<br />

sumaþëjo 1,4 t ha -1 , arba 2,5 proc., iðeiga – 1,3 proc., taèiau buvo 3,2 t ha -1 ,<br />

arba 6,2 proc. didesnis negu træðiant morkas kalcio amonio salietra. Prekinio derliaus<br />

savikaina, palyginti su be azoto tràðø augintomis morkomis, iðaugo 38,5 proc. (iki<br />

214


0,234 Lt kg -1 , arba 65 Lt t -1 ). Rusø tyrëjø duomenys (ßêîâëåâà, 2004; Ïîñòíèêîâ<br />

<strong>ir</strong> kt., 1991a) parodë, kad ceolitas gali veikti 5–7 metus, dël to manoma, kad áterpus<br />

ceolità, kuris stabilizuoja d<strong>ir</strong>voþemio rûgðtumà, savikaina sumaþës.<br />

2 pav. Kalcio amonio salietros, azoto tràðos su ceolitu <strong>ir</strong> ceolito bei amonio salietros<br />

átaka valgomøjø morkø derliui <strong>ir</strong> prekinio derliaus iðeigai<br />

Babtai, vidutiniai 2004–2005 m. duomenys<br />

Fig. 2. Influence of calcium ammonium nitre, nitrogen fertilizers with zeolite and<br />

zeolite and ammonium nitre on yield of carrots and output of marketable yield<br />

Babtai, average of 2004–2005<br />

Azoto tràðos teigiamai veikë valgomosios morkos ðakniavaisio morfometrinius<br />

rodiklius (1 lentelë). Maþiausiai átakos jos turëjo ðakniavaisio skersmeniui (r = 0,36),<br />

didþiausios – ðakniavaisio ilgiui (r = 0,59). Taip pat buvo nustatyta, kad didëjant<br />

ðakniavaisio masei, didëja <strong>ir</strong> jo ilgis (3) bei skersmuo (4).<br />

1 lentelë. Azoto átaka valgomosios morkos ðakniavaisio morfometriniams rodikliams.<br />

Babtai, 2005 m.<br />

Table 1. Influence of nitrogen on morphometrical indices of carrot root-crop. Babtai, 2005<br />

Rodikliai / Indicators (y) Lygtis / Equation r ± S r t F t<br />

Ðakniavaisio masë<br />

Weight of root-crop, g<br />

Šakniavaisio skersmuo<br />

Diameter of root-crop, mm<br />

Šakniavaisio ilgis<br />

Length of root-crop, cm<br />

azotas / nitrogen (N) kg ha -1 – x<br />

114,52 + 0,17 0,45 ± 0,24 0,77 3,53<br />

32,2 + 0,013 0,36 ± 0,<strong>25</strong> 0,48 2,05<br />

163,92 + 0,09 0,59 ± 0,22 1,39 7,46*<br />

Y = 139,76 + 0,<strong>25</strong>, r = 0,63 ± 0,21, t = 1,62, F t<br />

= 9,27** (3)<br />

Y = 22,94 + 0,08, r = 0,81 ± 0,16, t = 5,00, F t<br />

= 26,1** (4)<br />

215


Morkø dydis nustatomas pagal maksimalø ðakniavaisio skersmená arba svorá be<br />

lapø. Subrendusiø morkø ðakniavaisiai, atitinkantys I klasæ, turi bûti ne maþesni kaip<br />

20 mm, atitinkantys ekstra klasæ – ne didesni kaip 45 mm (rûðiuojant pagal skersmená)<br />

<strong>ir</strong> sverti daugiau nei 50 g (I klasë), bet ne daugiau kaip 200 g (ekstra klasë)<br />

(rûðiuojant pagal svorá), tipingi veislei, neáskilæ <strong>ir</strong> neátrûkæ (Privalomieji kokybës reikalavimai,<br />

2003). Tyrimø metais iðaugintos morkos atitiko ekstra klasës reikalavimus.<br />

Ðakniavaisis svërë vidutiniðkai 129,7 g, o jo skersmuo buvo 33,7 mm.<br />

Nuo azoto tràðø morkos ðakniavaisis pailgëjo vidutiniðkai 10,4 mm, arba 6,4 proc.<br />

Ilgiausi ðakniavaisiai buvo prieð sëjà áterpiant ceolità <strong>ir</strong> træðiant amonio salietra<br />

(3 pav.). Palyginti su be azoto tràðø augintomis morkomis, ðakniavaisis pailgëjo 11,5 mm,<br />

arba 7,0 proc. Træðiant morkas kalcio amonio salietra <strong>ir</strong> azoto tràða su ceolitu, ðakniavaisiai<br />

buvo panaðaus ilgio (174,6 <strong>ir</strong> 173,1 mm) <strong>ir</strong> atitinkamai 0,8 <strong>ir</strong> 2,3 mm trumpesni<br />

nei træðiant amonio salietra <strong>ir</strong> prieð sëjà áterpiant ceolità.<br />

3 pav. Kalcio amonio salietros, azoto tràðos su ceolitu <strong>ir</strong> ceolito bei amonio salietros<br />

átaka valgomosios morkos ðakniavaisio morfometriniams rodikliams<br />

Babtai, vidutiniai 2004–2005 m. duomenys<br />

Fig. 3. Influence of calcium ammonium nitre, nitrogen fertilize with zeolite and zeolite<br />

and ammonium nitre on morphometric indices of carrot root-crop<br />

Babtai, average of 2004–2005<br />

Valgomosios morkos ðakniavaisio masë buvo didþiausia taip pat træðiant minëtomis<br />

tràðomis, t. y. 28,3 g, arba 24,7 proc. didesnë nei be azoto tràðø iðauginto ðakniavaisio,<br />

21,7 g, arba 17,9 proc. didesnë nei kalcio amonio salietra træðto <strong>ir</strong> tik 2,3 g,<br />

arba 1,6 proc. nei azoto tràða su ceolitu træðto ðakniavaisio.<br />

Maþiausiai (vidutiniðkai 0,6 mm, arba 1,8 proc.) nuo azoto tràðø didëjo <strong>ir</strong> áva<strong>ir</strong>avo<br />

morkø ðakniavaisio skersmuo. Didþiausio skersmens (35,2 mm) buvo azoto tràða<br />

su ceolitu træðtø morkø ðakniavaisiai.<br />

Morkø ðakniavaisiø morfometriniai rodikliai turëjo átakos derliui. Atlikus statistinæ<br />

analizæ paaiðkëjo, kad morkø suminá derliø vidutiniðkai stipriai (r = 0,67) veikë<br />

ðakniavaisio ilgio, silpnai (r = 0,42) – ðakniavaisio masës didëjimas, o ðakniavaisio<br />

216


skersmens kitimai átakos neturëjo (2 lentelë). Prekiniam morkø ðakniavaisiø derliø<br />

minëti rodikliai turëjo daug didesnës átakos.<br />

2 lentelë. Morfometriniø valgomosios morkos ðakniavaisio rodikliø átaka<br />

derlingumui. Babtai, 2005 m.<br />

Table 2. The influence morphometrical indices of carrot root-crop on the yield.<br />

Babtai, 2005<br />

Rodikliai / Indicators (y) Lygtis / Equation r ± S r t F t<br />

Valgomosios morkos ðakniavaisio masë<br />

Weight of carrot root-crop, g – x<br />

Suminis derlius<br />

Total yield, t ha -1 62,51 + 0,09 0,42 ± 0,24 0,66 2,92<br />

Prekinis derlius<br />

Marketable yield, t ha -1 32,70 + 0,15 0,64 ± 0,21 1,64 9,36**<br />

Valgomosios morkos šakniavaisio skersmuo<br />

Diameter of carrot root-crop, mm – x<br />

Suminis derlius<br />

Total yield, t ha -1 58,53 + 0,47 0,22 ± 0,26 0,18 0,69<br />

Prekinis derlius<br />

Marketable yield, t ha -1 9,65 + 1,27 0,54 ± 0,22 1,14 5,75*<br />

Valgomosios morkos šakniavaisio ilgis<br />

Length of carrot root-crop, mm – x<br />

Suminis derlius<br />

Total yield, t ha -1 10,05 + 0,37 0,67 ± 0,20 1,88 11,44**<br />

Prekinis derlius<br />

Marketable yield, t ha -1 13,15 + 0,38 0,63 ± 0,21 1,62 9,21**<br />

Morkos ðakniavaisio masës (r = 0,64), skersmens (r = 0,54) <strong>ir</strong> ilgio (r = 0,63)<br />

didëjimas vidutiniðkai stipriai veikë prekinio morkø derliaus didëjimà.<br />

Takø analizës rezultatai parodë, kad suminá morkø ðakniavaisiø derliø daugiau<br />

nei ketv<strong>ir</strong>tadaliu (36 proc.) didino morkos ðakniavaisio ilgio, maþiau nei penktadaliu<br />

(20 proc.) – masës didëjimas (4a pav.). Pastebëta, kad ðakniavaisio ilgio didëjimui<br />

tiesioginá dominuojantá efektà turëjo ilgis (0,68), o masës didëjimas turëjo netgi neigiamà,<br />

nors <strong>ir</strong> labai silpnà efektà (-0,01). Skersmens pokyèiai jokio pastebimo efekto<br />

nedarë <strong>ir</strong> jø átaka suminio derliaus didëjimui siekë tik 11 proc. Prekinio derliaus<br />

didëjimui didesnës átakos nei suminiam derliui turëjo ðakniavaisio masës (<strong>25</strong> proc.) <strong>ir</strong><br />

skersmens (22 proc.) didëjimas (4b pav.). Pastebëta, kad nebuvo tiesioginio domi-<br />

217


nuojanèio masës efekto masei (0,06), bet netiesiogiai ðakniavaisio masæ veikë ilgis<br />

(0,30) <strong>ir</strong> skersmuo (0,26). Ðakniavaisio ilgiui <strong>ir</strong> skersmeniui tiesioginá teigiamà dominuojantá<br />

efektà turëjo ilgis <strong>ir</strong> skersmuo (atitinkamai 0,4803 <strong>ir</strong> 0,3280).<br />

Nemaþai átakos suminiam <strong>ir</strong> prekiniam derliui turëjo <strong>ir</strong> kiti veiksniai (d<strong>ir</strong>voþemio<br />

derlingumas, meteorologinës sàlygos <strong>ir</strong> kt.).<br />

4 pav. Suminio <strong>ir</strong> prekinio valgomøjø morkø derliaus priklausomumo<br />

nuo ðakniavaisio masës, skersmens <strong>ir</strong> ilgio átakos pasisk<strong>ir</strong>stymas<br />

Fig. 4. The influence of root-crop weight, diameter and length on total and<br />

marketable carrot yield<br />

Diskusija. D<strong>ir</strong>va morkoms træðiama tik mineralinëmis tràðomis. Atsiþvelgiant á<br />

maisto medþiagø kieká d<strong>ir</strong>voþemyje, morkoms duodama 60–90 kg ha -1 N, 90–120 kg ha -1 P<br />

<strong>ir</strong> 160–200 kg ha -1 K (Gauèienë, 2001). Kitø autoriø Lietuvoje (Staugaitis <strong>ir</strong> kt.,<br />

1993, Staugaitis, 1998) <strong>ir</strong> Baltarusijoje (Perednevas, 1987;) atliktø tyrimø duomenimis,<br />

morkoms azoto tràðos maþai efektyvios, o kai kuriais metais træðti azotu netgi<br />

nereikia. Nuo azoto pertekliaus morkø derlius maþëja (Autko, 2004). Italijoje atliktø<br />

tyrimø duomenimis (morkø veislës ‘Bolero’ <strong>ir</strong> ‘Tini’), træðiant morkas 200 kg/ha -1 N,<br />

33 kg ha -1 P <strong>ir</strong> 123 kg ha -1 K <strong>ir</strong> azotà atiduodant per 2 kartus, padidëjo derlius <strong>ir</strong><br />

pagerëjo kokybë (Beni C. <strong>ir</strong> kt., 2001). Vokietijoje (Gutezeit, 1999) atliktø tyrimø<br />

duomenimis, vidutinio mineralizacijos lygio smëlio d<strong>ir</strong>voþemiuose ankstyvàsias morkas<br />

træðti azotu nebûtina, vëlyvesniø veisliø morkoms reikia 75 kg ha -1 azoto. JAV atliktø<br />

tyrimø duomenimis, tinkamiausias morkø træðimo normos – 60, 30, 1<strong>25</strong> kg ha -1 NPK<br />

(Rubatzky <strong>ir</strong> kt., 1999). Per gausiai træðiant azotu, ðakniavaisiuose susikaupia daug<br />

vandens <strong>ir</strong> nitratø, dël to jie labiau serga, juos labiau paþeidþia kenkëjai, prasèiau<br />

laikosi (Raynal-Lacroix, 1994). Ðiaurës Ukrainoje maþai humusingame iðplautajame<br />

juodþemyje, kuriame gausu judriøjø P 2<br />

O 5<br />

<strong>ir</strong> K 2<br />

O, morkas tikslinga træðti lokaliai nedidelëmis<br />

tràðø normomis (Áîéêî, Âàêóëåíêî, 1999). Træðiant lokaliai, galima perpus<br />

sumaþinti tràðø normas, palyginti su træðimu ant d<strong>ir</strong>vos pav<strong>ir</strong>ðiaus (Ãóìàíþê <strong>ir</strong><br />

kt., 2005).<br />

2004–2005 m. LSDI atliktø tyrimø duomenimis, valgomøjø morkø suminis derlius<br />

nuo azoto tràðø, nepriklausomai nuo jø formos, padidëjo vidutiniðkai 8,4 t ha -1 ,<br />

arba 12,3 proc., prekinis – 9,5 t ha -1 , arba 21,2 proc., palyginti su vien tik fosforo <strong>ir</strong><br />

kalio (fonas P 90<br />

K 120<br />

) træðtø morkø derliumi. Prekinio morkø ðakniavaisiø derliaus iðeiga,<br />

palyginti su be azoto augintomis morkomis, padidëjo vidutiniðkai 5,5 proc. (nuo<br />

65,9 proc., auginant be azoto tràðø, iki vidutiniðkai 71,1 proc., træðiant áva<strong>ir</strong>iomis<br />

218


azoto tràðø formomis). Morkø ðakniavaisiø masë nuo azoto tràðø padidëjo 6,6–28,3 g,<br />

ilgis – 10,7–11,5 mm, o skersmens padidëjimas buvo neþymus. Masës átaka suminiam<br />

<strong>ir</strong> prekiniam morkø derliui buvo atitinkamai 20 <strong>ir</strong> <strong>25</strong> proc., ilgiui – atitinkamai<br />

33 <strong>ir</strong> <strong>25</strong> proc., skersmeniui – 11 <strong>ir</strong> 22 proc.<br />

Zdravkovic <strong>ir</strong> kitø (Zdravkovic <strong>ir</strong> kt., 1997) tyrimø duomenimis, mëðlu træðtos<br />

morkos iðaugino 48,4 t ha -1 , kalcio amonio nitratu – 41,5 t ha -1 <strong>ir</strong> NPK 15 15 15<br />

miðiniu – 41,5 t ha -1 derliø. 2004–2005 m. LSDI gautais vidutiniais duomenimis,<br />

træðiant morkas kalcio amonio salietra, prekinis morkø ðakniavaisiø derlius sumaþëjo<br />

3,2 t ha -1 , arba 6,2 proc., o jo iðeiga – 2,2 proc., palyginti su amonio salietra <strong>ir</strong> ceolitu<br />

træðtais ðakniavaisiais, <strong>ir</strong> atitinkamai 4,6 t ha -1 , arba 8,9 proc. <strong>ir</strong> 3,5 proc., palyginti su<br />

azoto tràða su ceolitu træðtais ðakniavaisiais.<br />

Ceolito panaudojimas substrate pailgina substrato naudojimo laikà <strong>ir</strong> uþtikrina<br />

didesná <strong>ir</strong> stabilø biomasës derliø bei maþesná nitratø kieká jame (Geodakian, Erofeeva,<br />

1996). Daugelio tyrëjø duomenimis (ßêîâëåâà, 2004; Ïîñòíèêîâ <strong>ir</strong> kt., 1991a;<br />

Challinor <strong>ir</strong> kt.,1995; Ilsildar, 1999; Li Z. <strong>ir</strong> kt., 2002; Polat <strong>ir</strong> kt., 2004) duomenimis,<br />

ceolito sorbcinës savybës uþtikrina 15–30 proc. ekonomiðkesná azoto naudojimà,<br />

pailgina maisto medþiagø veikimo trukmæ <strong>ir</strong> sumaþina daþno træðimo bûtinumà. JAV<br />

atliktø tyrimø duomenimis, á akrà (0,405 ha) áterpiant 4–8 t ceolito, kvieèiø derlius<br />

padidëjo 14 proc., baklaþanø – 19–55 proc., morkø – 63 proc., obuoliø – 13–38 proc.<br />

(Mumpton, 1999). Sib<strong>ir</strong>o durpiø mokslinio tyrimo instituto tyrimø duomenys rodo,<br />

kad træðiant pakrikai, granulëje esantis ceolitas nedavë papildomo derliaus, o træðiant<br />

lokaliai, derlius padidëjo 9–13 proc., palyginti su derliumi, gautu træðiant vien durpiø<br />

<strong>ir</strong> mineraliniø tràðø granuliuotu miðiniu (Àëåêñååâà <strong>ir</strong> kt., 1999). 1997–1998 m.<br />

Tailande su cukranendrëmis atliktø tyrimø duomenys (Junrungreang <strong>ir</strong> kt., 2002)<br />

parodë, kad ceolitas, mineralinës tràðos kartu su ceolitu <strong>ir</strong> vien tik mineralinës tràðos<br />

turëjo átakos maisto medþiagø kiekio didëjimui d<strong>ir</strong>voþemyje, taèiau derliø didino tik<br />

træðimas mineralinëmis tràðomis bei mineralinëmis tràðomis <strong>ir</strong> ceolitu. Grupë Graikijos<br />

tyrëjø (Samartzidis <strong>ir</strong> kt., 2005) teigia, kad ceolitas neturi teigiamos átakos roþiø<br />

produktyvumui. Mûsø tyrimuose ceolito áterpimas neturëjo esminës átakos, palyginti<br />

su træðimu azoto tràða su ceolitu.<br />

Iðvados. 1. Didþiausias valgomøjø morkø prekinis derlius (56,4 t ha -1 ) gautas<br />

træðiant azoto tràða su ceolitu (N 90<br />

+ N 30<br />

). Prekinio derliaus iðeiga, træðiant minëta<br />

tràða, buvo 72,7 proc. Træðiant ceolitu (<strong>25</strong> t ha -1 ) <strong>ir</strong> amonio salietra (N 90<br />

+ N 30<br />

),<br />

gautas 55,0 t ha -1 prekiniø morkø derlius, jo iðeiga – 71,4 proc. Auginant be azoto<br />

tràðø, gauta 44,9 t ha -1 prekinio derliaus, o jo iðeiga buvo 65,9 proc.<br />

2. Valgomosios morkos ðakniavaisio masë (142,8 g) <strong>ir</strong> ilgis (175,4 mm)<br />

buvo didþiausi, træðiant morkas amonio salietra <strong>ir</strong> ceolitu, o didþiausias skersmuo<br />

(35,2 mm) – azoto tràða su ceolitu.<br />

3. Morkø derliaus didëjimui tiesioginës teigiamos átakos turëjo ðakniavaisio masës<br />

(suminio derliaus r = 0,42, prekinio – r = 0,64) <strong>ir</strong> jo ilgio (atitinkamai r = 0,67 <strong>ir</strong><br />

r = 0,63) didëjimas. Ðakniavaisio skersmuo neturëjo átakos suminio morkø derliaus<br />

didëjimui (r = 0,22), bet vidutiniðkai stipriai veikë prekiná derliø (r = 0,54).<br />

Padëka. Autoriai dëkoja Lietuvos valstybiniam mokslø <strong>ir</strong> studijø fondui <strong>ir</strong> UAB<br />

„Elega“ uþ finansinæ paramà atliekant tyrimus.<br />

Gauta 2006-10-09<br />

Parengta spausdinti 2006-12-11<br />

219


Literatûra<br />

1. Beni C., Neri U., Felici B., M<strong>ir</strong>aglia R. Fertilizer use in carrots in Central Italy //<br />

Informatore Agrario. 2001. 57(18). P. 71–74.<br />

2. Challinor P. F., Le Pivert J. M., Fuller M. P. The production of standard carnations<br />

of nutrient loaded<br />

3. Gauèienë O. Morkos. Babtai, 2001. 64 p.<br />

4. Geodakian R. O., Erofeeva T. V. The effectiveness of using bio-humus for growing<br />

plants under autonomous conditions // Aviakos. Ekolog. Med. 1996. Vol. 30(3). P. 39–43.<br />

5. Gutezeit B. Yield and nitrate content of carrots (Daucus carota L.) as affected by<br />

nitrogen supply. Acta Horticulture. 1999. Vol. 506. P. 87–92.<br />

6. Ilsildar A. A. Effect of the addition of zeolite to the soil on nutrification // Tr. J. of<br />

Agriculture and forestry. 1999. T. 23. P. 363–368.<br />

7. Junrungreang S., Limtong P., Wattanaprapat K., Patsarayeangyong T. Effect of<br />

zeolite and chemical fertilizer on the change of physical and chemical properties on Lat Ya<br />

soil series for sugar cane / 17 -th WCSS, 14–21 August, 2002. P. 1897-1–1897-7.<br />

8. Li Z., Alessi D., Allen L. Influence of quaternary ammonium on sorption of selected<br />

metal cations onto cilnoptilolite zeolite // Journal of env<strong>ir</strong>onmental quality. 2002.<br />

Vol. 31. P. 1106–1114.<br />

9. Lietuvos d<strong>ir</strong>voþemiø agrocheminës savybës <strong>ir</strong> jø kaita (sudarytojas J. Maþvila)<br />

Kaunas, 1998. 195 p.<br />

10. Ming D. W., Dixon J. B. Clinoptilolite in South Texas soils // Soil Sci. Soc. Amer.<br />

J. 1986. 50. P. 1618–1622.<br />

11. Mumpton F. A. La rosa magica: Uses of natural zeolites in agriculture and industry<br />

//Proc. Natl. Acad. Sci. USA, 1999. Vol. 96. P. 3463–3470.<br />

12. Polat E., Dem<strong>ir</strong> H., Onus N. The usage of natural zeolite (clinoptilolite) in plant<br />

growing // Orchard management in sustainable fruit production. Skierniewice, 2004. 37 p.<br />

13. Privalomieji reikalavimai ðvieþiems vaisiams <strong>ir</strong> darþovëms (sudarytojas P.Viðkelis).<br />

Babtai, 2003. 241 p.<br />

14. Raynal-Lacroix C., Bohec J. and Dily F. 1994. La nutrition azotee de la carotte //<br />

Acta Horticulture. 1994. Vol. 354. P. 119–124.<br />

15. Rubatzky V. E., Qu<strong>ir</strong>os C. F., Simon P. W. Carrots and related vegetable umbelliferae.<br />

USA, University of California, Davis, University of Viskonsin, Madison, 1999. P. 245–<strong>25</strong>6.<br />

16. Sakalauskas A., Zalatorius V., Malinauskaitë S. Biometriniø matmenø átaka morkø<br />

prekiniam paruoðimui // Sodininkystë <strong>ir</strong> darþininkystë, Babtai, 2005. 24(1). P. 72–79<br />

17. Samartzidis C., Awada T., Maloupa E., Radaglou K. And Constantinidou H.-I.A. Rose<br />

productivity and physiological response to different substrates for soil-less culture // Scientia.<br />

2005. Vol. 106(2). P. 203–212.<br />

18. Staugaitis G. Lauko <strong>ir</strong> ðiltnamiø darþoviø træðimo azoto tràðomis optimizavimas:<br />

habilitacinis darbas. Babtai, 1998. 110 p.<br />

19. Staugaitis G., Putelis J., Autukevièius J. Azoto tràðø rûðiø átaka darþoviø derliui <strong>ir</strong><br />

kokybei // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1993. 12. P. 45–53.<br />

20. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë,<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT ið paketo SELEKCIJA ÝR<br />

IRRISTAT. Akademija, 2003. 56 p.<br />

21. Zdravkovic M., Damjanovic M., Corokalo D. The influence of fertilization on<br />

yield of different carrot varieties // Acta Horticulturae. 1997. 462. P. 93–96.<br />

22. Watanabe Y. Effect of natural zeolite as soil amendment in special reference to<br />

the<strong>ir</strong> cation exchange capacities / Memorandum the 4 th committee. Research association<br />

of zeolite. December 11, 1967.<br />

220


23. Àëåêñååâà Ò. Ï., Ïåðôèëüåâà Â. Ä., Êðèíèöûí Ã. Ã. Êîìïëåêñíîå îðãàííî-ìèíåðàëüíoe<br />

óäîáðåíèe ïðîëîíãèðîâàííîãî äåéñòâèÿ íà îñíîâå òîðôà //<br />

Õèìèÿ ðàñòèòåëüíîãî ñûðüÿ. 1999. ¹ 4. Ñ. 53–59.<br />

24. Àóòêî À. À. Â ìèðå îâîùåé. Ìèíñê, 2004. Ñ. 207–231.<br />

<strong>25</strong>. Áîéêî Ã., Âàêóëåíêî Ð. Äîçû è ñïîñîáû âíåñåíèÿ ìèíåðàëüíûõ óäîáðåíèé<br />

íà óðîæàéíîñòü ìîðêîâè // Sodininkystë <strong>ir</strong> darþininkystë. 1999. 18(3). P. 101–106.<br />

26. Ãóìàíþê À. Â., Ãàìàþí È. Ì., Êîðîâàé Â. È, Àíäðèåø À. Í.,<br />

Áîæàêîâñêàÿ Ë. Å. Âëèÿíèå âèäîâ, äîç óäîáðåíèé è ñïîñîáîâ èõ âíåñåíèÿ íà<br />

ïðîäóêòèâíîñòü îâîùíûõ êóëüòóð // Ìàò. êîíô. ïîñâ. 80-ëåòèþ ‚ÐÓÏ Èíñòèòóò<br />

îâîùåâîäñòâà ÍÀÈ Áåëîðóñè‘. Ýôôåêòèâíîå îâîùåâîäñòâî â ñîâðåìåííûõ<br />

óñëîâèÿõ. Ìèíñê, 2005. 2<strong>25</strong>–227.<br />

27. Äåðþãèí È. Ï., Êóëþêèí À. Í. Àãðîõèìè÷åñêèå îñíîâû ñèñòåìû<br />

óäîáðåíèÿ îâîùíûõ è ïëîäîâûõ êóëüòóð. 1988. 269 c.<br />

28. Ïåðåäíåâ Â. Ï. Óäîáðåíèå îâîùíûõ êóëüòóð. Ìèíñê, 1987. C. 144.<br />

29. Ïîñòíèêîâ À. Â., Ðÿáûõ Ð. Ñ., Áàéêîâà Ñ.È. è äð. Îñîáåííîñòè<br />

âîçäåëûâàíèÿ îâîùíûõ êóëüòóð íà öåîëèòîâûõ ñóáñòðàòàõ â òåïëèöàõ // Ñá.<br />

Èñïîëüçîâàíèe ïðèðîäíûõ öåîëèòîâ â íàðîäíîì õîçÿéñòâå. ÑÎ ÐÀÍ.<br />

Íîâîñèáèðñê, 1991a. Ñ. 162–168.<br />

30. Ïîñòíèêîâ À. Â., Çåêóíîâ Ô. Â., Åëèñååâà Í. À. Îâîùíûå êóëüòóðû ïðè<br />

âûðàùèâàíèè íà öåîëèòå // Õèìèçàöèÿ ñåëüñêîãî õîçÿéñòâà. 1991b. ¹ 11. Ñ. 22–<strong>25</strong>.<br />

31. ßêîâëåâà Í. Í. Ýôôåêòèâíîñòü ðåñóðñîñáåðåãàþùèõ òåõíîëîãèé<br />

âûðàùèâàíèÿ îâîùíûõ êóëüòóð íà öåîëèòñîäåðæàùèõ òåïëè÷íûõ ñóáñòðàòàõ //<br />

Ãàâðèø, 2004. ¹ 3. Ñ. 6–8.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE EFFICACY OF DIFFERENT NITROGEN<br />

FERTILIZERS AND ZEOLITE ON PRODUCTIVITY AND<br />

MORPHOMETRICS INDICES OF CARROT<br />

O. Bundiniene, C. Bobinas, P. Duchovskis<br />

Summary<br />

The possibilities of different nitrogen fertilizers have been investigated at the<br />

Lithuanian Institute of Horticulture in 2004–2005. The experiments were carried out<br />

on the sandy or sandy-loam Calc(ar)i – Epihypogleyc Luvisols (LVg-p-w-cc). The<br />

aims of investigation were to assess the efficacy influence of calcium ammonium<br />

nitre (CAN 27), nitrogen fertilizer with zeolite (CAN 27 with zeolite) and zeolite<br />

(commercial sign ZeoVit EcoAgro) and ammonium nitre (AN) on productivity and<br />

morphometrical indices (weight of root-crop, diameter of root-crop and length of<br />

root-crop) of edible carrot. The highest marketable yield (56.4 t ha -1 ) and output of<br />

marketable yield (72.7%) were obtained, when nitrogen fertilizer with zeolite (CAN<br />

27 with zeolite, N 90<br />

+ N 30<br />

) were used. Using ceolite (<strong>25</strong> t ha -1 ) and ammonium nitre<br />

(N 90<br />

+ N 30<br />

) there was obtained 55.0 t ha -1 of marketable yield, respectively, and<br />

output of marketable yield made 71.4% of total yield. The highest weight of carrot<br />

221


oot-crop (142.8 g) and its length (175.4 mm) were obtained, when zeolite and<br />

ammonium nitre were used. The biggest diameter of root-crop (35.2 mm) was obtained,<br />

when nitrogen fertilizer with zeolite was used. The increase of weight and<br />

length of carrot root-crop d<strong>ir</strong>ectly and positively influenced the increase of the total<br />

(r = 0.42, weak and 0.67, averagely strong, respectively) and marketable (r = 0.64<br />

and 0.63, both averagely strong) yield. The diameter of carrot root-crop did not<br />

impact (r = 0.22) the increase of total, but averagely strongly influenced the increase<br />

of marketable yield (r = 0.54). The increase of root-crop weight increased the<br />

length (r = 0.63) and diameter (r = 0.81) of carrot.<br />

Key words: calcium ammonium nitre, diameter of root-crop, length of rootcrop,<br />

marketable yield, nitrogen fertilizer with zeolite, zeolite, weight of root-crop,<br />

carrot.<br />

222


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

UV-B SPINDULIUOTËS POVEIKIS MORKØ<br />

BIOMETRINIAMS RODIKLIAMS<br />

Sandra SAKALAUSKIENË, Auðra BRAZAITYTË,<br />

Jurga SAKALAUSKAITË, Jûratë Bronë ÐIKÐNIANIENË,<br />

Giedrë SAMUOLIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas S.Sakalauskiene@lsdi.lt<br />

2005 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute fitotrono komplekse<br />

buvo atlikti tyrimai siekiant nustatyti UV-B spinduliuotës poveiká morkø biometriniams<br />

rodikliams. Po sudygimo praëjus trims savaitëms, morkos septynias dienas<br />

buvo ðvitinamos atitinkama UV-B spinduliuotës doze. T<strong>ir</strong>tas tokiø UV-B spinduliuotës<br />

doziø poveikis morkø biometriniams rodikliams: 0 (kontrolë), 1, 3, 5, 7 <strong>ir</strong> 9 kJ<br />

m -2 d -1 . Bandymo metu buvo 16 val. fotoperiodas, temperatûra dienà +21°C, naktá –<br />

+17°C. Pasibaigus UV-B poveikiui, kas dvi savaites buvo atliekami augalø biometriniai<br />

matavimai. 1 kJ m 2 d -1 UV-B spinduliuotës dozë stimuliavo morkø fiziologinius<br />

procesus. Ðia doze paveiktø morkø ðakniavaisiuose buvo sukaupta daugiausiai sausøjø<br />

medþiagø. Morkose, paveiktose 5 <strong>ir</strong> 7 kJ m -2 d -1 UV-B spinduliuotës dozëmis,<br />

pas<strong>ir</strong>eiðkë kompensaciniai reiðkiniai, suaktyvëjo adaptaciniai procesai.<br />

Reikðminiai þodþiai: biometriniai rodikliai, Daucus sativus Röhl., UV-B spinduliuotë.<br />

Ávadas. Pastaraisiais deðimtmeèiais vis aktualesnës tampa aplinkos problemos,<br />

susijusios su ozono kiekio pokyèiais stratosferoje <strong>ir</strong> troposferoje. Stratosferos ozono<br />

sluoksnio plonëjimas turi átakos ultravioletinës spinduliuotës srauto, pasiekianèio þemës<br />

pav<strong>ir</strong>ðiø <strong>ir</strong> daranèio daug reikðmingø fotobiologiniø efektø augalams, didëjimui<br />

(Carletti <strong>ir</strong> kt., 2003; Wei <strong>ir</strong> kt., 2003; Yang <strong>ir</strong> kt., 2004).<br />

Ultravioletinë spinduliuotë pagal bangø ilgá sk<strong>ir</strong>stoma á: UV-A (315–400 nm),<br />

UV-B (280–315 nm) <strong>ir</strong> UV-C (100–280 nm) spektro ruoþus. Kuo trumpesnës ðiø<br />

spinduliø bangos, tuo stipresnis poveikis gyviems organizmams. Pavojingiausius UV-C<br />

spindulius stratosferos ozono sluoksnis sugeria beveik visus, o UV-A spinduliø beveik<br />

nesulaiko. Kai kuriø mokslininkø tyrimai parodë, kad pastarieji taip pat daro<br />

neigiamà poveiká augalø fiziologiniams procesams (Helsper <strong>ir</strong> kt., 2003; Krizek, 2004;<br />

Ranèelienë <strong>ir</strong> kt., 2005). UV-B spinduliuotës poveikis augalams yra gan áva<strong>ir</strong>iapusiðkas.<br />

Didesnë negu áprasta spinduliuotë sukelia sk<strong>ir</strong>tingus augalo làsteliø paþeidimus<br />

(Rozema <strong>ir</strong> kt., 1997; Jansen <strong>ir</strong> kt., 1998; Hollosy, 2002). Pakitimai <strong>ir</strong> paþeidimai<br />

223


molekuliniame lygmenyje neabejotinai keièia augimo <strong>ir</strong> vystimosi procesus. (Wei <strong>ir</strong><br />

kt., 2003; Julkunen-Tiitto <strong>ir</strong> kt., 2005). Dël UV-B spinduliuotës poveikio sumaþëja<br />

daugelio augalø rûðiø augimas <strong>ir</strong> biomasë (Correia <strong>ir</strong> kt., 1999; Mazza <strong>ir</strong> kt., 1999).<br />

Taèiau daugelis tyrëjø (Liu <strong>ir</strong> kt., 1995; Stephen <strong>ir</strong> kt., 1999; Schmitz-Hoerner, 2003;<br />

Valkama <strong>ir</strong> kt., 2003) teigia, kad UV-B spinduliuotë nesumaþina biomasës, fotosintetiniø<br />

pigmentø kiekio arba ðis sumaþëjimas yra nedidelis. Tai galima paaiðkinti tuo,<br />

kad sk<strong>ir</strong>tingø genotipø augalai per evoliucijà suformavo sk<strong>ir</strong>tingas morfologines, fiziologines<br />

<strong>ir</strong> biochemines saugos sistemas (Hollosy, 2002), todël nevienodai toleruoja<br />

UV-B spinduliø poveiká.<br />

Augalø atsparumo UV-B spinduliuotei, kaip prisitaikymo prie besikeièianèiø klimato<br />

<strong>ir</strong> kitø aplinkos sàlygø, tyrimai tampa aktualiu moksliniu uþdaviniu <strong>ir</strong> turi neabejotinà<br />

praktinæ reikðmæ. Literatûroje nurodoma sk<strong>ir</strong>tinga áva<strong>ir</strong>iø augalø reakcija á didëjanèià<br />

UV-B spinduliuotæ (Mazza <strong>ir</strong> kt., 1999, Valkama <strong>ir</strong> kt., 2003), todël bûtinas<br />

atsk<strong>ir</strong>ø augalø rûðiø atsparumo tyrimas.<br />

Tyrimo tikslas – kontroliuojamomis sàlygomis ávertinti sk<strong>ir</strong>tingø UV-B doziø<br />

poveiká valgomosios morkos biometriniø rodikliø kitimui.<br />

Tyrimo objektas <strong>ir</strong> metodai. UV-B spinduliuotës poveikio valgomosioms morkoms<br />

(Daucus sativus Röhl.) ‘Garduolës 2’ bandymai buvo daromi Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto fitokamerose.<br />

Morkos augintos artimo neutraliam rûgðtumo (6,0–6,<strong>25</strong> pH) durpiø substrate, 5<br />

litrø vegetaciniuose induose, trimis pakartojimais, ðeðiais variantais. Iki sudygimo <strong>ir</strong><br />

tris savaites po sudygimo jos augintos ðiltnamyje, po to perneðtos dviem dienoms á<br />

fitokameras, kad prisitaikytø prie pasikeitusiø sàlygø, <strong>ir</strong> tada 7 dienas buvo ðvitinamos<br />

atitinkama UV-B spinduliuotës doze. T<strong>ir</strong>tos tokios UV-B spinduliuotës dozës: 0<br />

(kontrolë), 1, 3, 5, 7 <strong>ir</strong> 9 kJ m -2 d -1 .<br />

Bandymo metu buvo palaikomas 16 val. fotoperiodas, temperatûra dienà +21°C,<br />

o naktá +17°C. Kamerose buvo árengtos UV-B lempos (Philips TL 40W/12 RS UV-B<br />

Medical). Augalai kasdien tam tikrà laikà buvo veikiami UV-B spinduliuote, kad gautø<br />

atitinkamà p<strong>ir</strong>miau nurodytà UV-B spinduliuotës paros dozæ. Po ðio poveikio augalai<br />

dar 4 savaites auginti fitotrono kamerose.<br />

Ið karto, pasibaigus UV-B poveikiui, atlikti augalø biometriniai matavimai, kurie<br />

kartoti kas dvi savaites. Atliekant biometrinæ analizæ, iðmatuotas kiekvieno varianto<br />

atsitiktinai pas<strong>ir</strong>inktø penkiø augalø antþeminës dalies aukðtis <strong>ir</strong> lapø skaièius. Po to<br />

lapø ploto matuokliu CI-202, CID iðmatuotas tø paèiø augalø asimiliacinis plotas.<br />

Sausøjø medþiagø kiekis lapuose <strong>ir</strong> ðakniavaisiuose nustatytas gravimetriðkai, iðdþiovinus<br />

105°C temperatûroje iki nekintamos masës.<br />

Atliekant statistinæ analizæ, vidurkiai <strong>ir</strong> standartiniai nuokrypiai apskaièiuoti naudojant<br />

MS EXCEL statistinæ programà. Duomenø patikimumas ávertintas statistine<br />

programa ANOVA (ANOVA for Excel v 3.43), UV-B spinduliuotës poveikio morkø<br />

biometriniams rodikliams sk<strong>ir</strong>tumø nuo kontrolës reikðmingumas nustatytas Fisher‘s<br />

LSD testu (p ≤ 0,05).<br />

Rezultatai. Sk<strong>ir</strong>tinga UV-B spinduliuotës dozë lapø skaièiui esminës átakos neturëjo.<br />

Po 7 dienø poveikio UV-B spinduliuote daugiausia lapø iðaugino 1 m -2 d -1 kJ<br />

doze ðvitintos morkos. Praëjus dviem savaitëms po poveikio, daugiausia lapø turëjo<br />

kontroliniai augalai. Po keturiø savaièiø 0 (kontrolë), 1 <strong>ir</strong> 3 kJ m -2 d -1 spinduliuotës<br />

224


dozëmis ðvitintø morkø lapø skaièius sumaþëjo, o 5 <strong>ir</strong> 7 kJ m -2 d -1 dozëmis paveiktø<br />

augalø lapø skaièius turëjo tendencijà didëti (1 pav.).<br />

Didþiausià lapø plotà formavo 1 kJ m -2 d -1 UV-B spinduliuotës doze paveikti<br />

augalai. Po poveikio praëjus dviem savaitëms, 1 <strong>ir</strong> 3 kJ m -2 d -1 spinduliuotëmis paveiktø<br />

augalø lapø plotas pradëjo maþëti, o paveiktø 7 <strong>ir</strong> 9 kJ m -2 d -1 – didëjo (2 pav.).<br />

1 pav. Morkø ‘Garduolës 2’ lapø skaièiaus kitimo priklausomumas<br />

nuo sk<strong>ir</strong>tingos UV-B dozës<br />

Fig. 1. The number of carrot ‘Garduolës 2’ leaves at different UV-B dozes<br />

2 pav. Sk<strong>ir</strong>tingos UV–B spinduliuotës poveikis morkø ‘Garduolës 2’ lapø plotui<br />

Fig. 2. The area of carrot ‘Garduolës 2’ leaves at different UV-B doses<br />

UV-B spinduliuotës dozës nuo 1 iki 9 kJ m -2 d -1 morkø antþeminës dalies aukðèiui<br />

esminës átakos neturëjo, taèiau buvo matomos tam tikros didëjimo <strong>ir</strong> maþëjimo tendencijos.<br />

Praëjus dviem savaitëms po poveikio, 7 kJ m -2 d -1 doze veiktø augalø aukðtis,<br />

palyginti su kontrole, padidëjo 3 proc., o po keturiø savaièiø – 10,2 proc. (3 pav.).<br />

Morkos, paveiktos 1 kJ m -2 d -1 doze, sukaupë daugiausia sausøjø medþiagø<br />

antþeminëje dalyje (4 pav.), taèiau esminiø sk<strong>ir</strong>tumø nuo kontroliniø augalø nebuvo.<br />

Sk<strong>ir</strong>tingos UV-B spinduliuotës dozës turëjo átakos sausøjø medþiagø kaupimuisi ðakniavaisiuose.<br />

Daugiausia sausøjø medþiagø ðakniavaisiuose buvo po poveikio praëjus<br />

keturioms savaitëms. Augalai, paveikti 1 kJ m -2 d -1 doze, sausøjø medþiagø ðaknia-<br />

2<strong>25</strong>


vaisiuose sukaupë daugiausia <strong>ir</strong> ið esmës (p < 0,05) skyrësi nuo kontroliniø augalø<br />

(5 pav.).<br />

3 pav. Sk<strong>ir</strong>tingos UV-B spinduliuotës poveikis morkø ‘Garduolës 2’<br />

antþeminës dalies aukðèiui<br />

Fig. 3. The overground height of carrot ‘Garduolës 2’ at different UV-B doses<br />

4 pav. Sausøjø medþiagø kaupimosi morkø ‘Garduolës 2’ antþeminëje dalyje<br />

priklausomumas nuo UV-B dozës<br />

Fig. 4. The accumulation of dry matter in the overground part of carrot ‘Garduolës 2’<br />

at different UV-B doses<br />

5 pav. Sausøjø medþiagø kaupimosi morkø ‘Garduolës 2’ ðakniavaisyje<br />

priklausomumas nuo UV-B dozës<br />

Fig. 5. The accumulation of dry matter in the carrot ‘Garduolës 2’ rhizocarp at different<br />

UV-B doses<br />

226


Aptarimas. Ultravioletinës spinduliuotës poveikis augalams yra áva<strong>ir</strong>iapusis: nedidelës<br />

dozës skatina fiziologinius procesus, taèiau didesnës jos dozës silpnina gyvø<br />

organizmø savisaugos galimybes (Janavièienë, 2005). Sk<strong>ir</strong>tingø genotipø augalai per<br />

evoliucijà suformavo sk<strong>ir</strong>tingas morfologines, fiziologines <strong>ir</strong> biochemines saugos sistemas,<br />

todël nevienodai toleruoja UV-B spinduliuotæ (Hollosy, 2002).<br />

T<strong>ir</strong>tiems morkø biometriniams rodikliams sk<strong>ir</strong>tingos UV-B dozës didelës átakos<br />

neturëjo, taèiau buvo matomos ðiø rodikliø didëjimo <strong>ir</strong> maþëjimo tendencijos.<br />

1 kJ m -2 d -1 UV-B spinduliuotës dozë turëjo stimuliuojantá poveiká lapø skaièiui, lapø<br />

plotui, antþeminës dalies aukðèiui bei sausosioms medþiagoms lapuose <strong>ir</strong> ðakniavaisiuose.<br />

Ir tai natûralu, nes vidutinë paros dozë saulëtomis vasaros dienomis siekia<br />

2,1 kJ m -2 d -1 (Jonavièienë, 2005). Mûsø tyrimø duomenimis, UV-B spinduliuotës<br />

3 kJ m -2 d -1 dozë ðiek tiek prislopino fiziologinius procesus, o 5 <strong>ir</strong> 7 kJ m -2 d -1 dozës<br />

ðiek tiek suaktyvino ðiuos procesus. Manoma, kad taip yra dël to, jog didesnë nei<br />

3 kJ m -2 d -1 dozë stipriau suþadino morkø adaptacinius mechanizmus. Augalai yra<br />

iðvystæ unikalias reagavimo á nuolat kintanèias aplinkos sàlygas sistemas: jauèia supanèià<br />

aplinkà <strong>ir</strong> pritaiko savo fiziologinius bei metabolitinius procesus homeostazei<br />

palaikyti. Veikiant didelëmis UV-B dozëmis, sutrikdþius fermentø veiklà, pas<strong>ir</strong>eiðkia<br />

fotosintezës inhibicija. Visgi kiekvienos rûðies ðie procesai yra specifiniai <strong>ir</strong> augalai<br />

gali aklimatizuotis, indukuodami UV-B absorbuojanèiø flavonoidø biosintezæ <strong>ir</strong> taip<br />

apsaugoti savo fotosintezës sistemà (Allen <strong>ir</strong> kt., 1998).<br />

Iðvados. 1. 1 kJ m 2 d -1 UV-B spinduliuotës dozë stimuliavo morkø fiziologinius<br />

procesus. Ðia doze paveiktø morkø ðakniavaisiuose buvo sukaupta daugiausia sausøjø<br />

medþiagø.<br />

2. Morkose, paveiktose 5 <strong>ir</strong> 7 kJ m -2 d -1 UV-B spinduliuotës dozëmis, pas<strong>ir</strong>eiðkë<br />

kompensaciniai reiðkiniai, suaktyvëjo adaptaciniai procesai.<br />

Padëka. Autoriai dëkingi VMSF uþ finansinæ paramà.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Allen D. J., Nogues S., Baker N. R. Ozone depletion and increased UV-B radiation:<br />

is there a real threat to photosynthesis // Journal of Experimental Botany. 1998. Vol. 49.<br />

P. 1775–1788.<br />

2. Carletti P., Masi A., Wonish A., Grill D., Tausz M., Ferretti M. Changes in antioxidant<br />

and pigment pool dimensions in UV-B <strong>ir</strong>radiated maize seedlings // Env<strong>ir</strong>onmental<br />

and Experimental Botany. 2003. Vol. 50. P. 149–157.<br />

3. Correia C. M., Torres-Pere<strong>ir</strong>a M. S., Torres-Pere<strong>ir</strong>a J. M. G. Growth, photosynthesis<br />

and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B<br />

radiation // Env<strong>ir</strong>onmental Pollution. 1999. Vol.104. P. 383–388.<br />

4. Helsper J. P. F.G., Ric de Vos C. H., Mass F. M., Jonker H. H., van der Broeck H. C.,<br />

Jordi W., Pot C. S., Keizer L. C. P., Schapendonk A. H. C. M. Response of selected antioxidants<br />

and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A<br />

exposure // Physiologia Plantarum. 2003. Vol. 117. P. 171–178.<br />

5. Hollosy F. Effects of ultraviolet radiation on plant cell // Micron. 2002. 33.<br />

P. 179–197.<br />

227


6. Yang H., Zhao Z., Qiang W., An L., Xu S., Wang X. Effects of enhanced UV-B<br />

radiation on the hormonal content of vegetative and reproductive tissues of two tomato<br />

cultivars and the<strong>ir</strong> relationships with reproductive characteristics // Plant Growth Regulation.<br />

2004. Vol. 42. P. <strong>25</strong>1–<strong>25</strong>8.<br />

7. Jansen M. A. K., Gaba V., Grreeberg B.M. Higher plants and UV-B radiation:<br />

balancing damage, repa<strong>ir</strong> and acclimation // Trends in plant science. 1998. Vol. 3.<br />

P. 131–135.<br />

8. Julkunen-Tiitto R., Haggman H., Aphalo P. J., Lavola A., Tegelberg R., Veteli T.<br />

Growth and defense in deciduous tress and shrubs under UV-B // Env<strong>ir</strong>onmental Pollution.<br />

2005. Vol. 137. P. 404–414.<br />

9. Jonavièienë R. Ultravioletinës Saulës spinduliuotës matavimai Lietuvos hidrometeorologijos<br />

tarnyboje // Meteorologija <strong>ir</strong> hidrologija Lietuvoje: raida <strong>ir</strong> perspektyvos //<br />

Respublikinë mokslinë konferencija. 2005 03 23. P. 48–49.<br />

10. Krizek T. D. Influence of PAR and UV-A in determining plant sensitivity and<br />

photomorphogenic responses to UV-B radiation // Photochemistry and Photobiology.<br />

2004. Vol. 79. P. 307–315.<br />

11. Liu L., Gitz D. C., McClure J. W. Effects of UV-B on flavonoids, ferulic acid,<br />

growth and photosynthesis in barely primary leaves // Physologia Plantarum. 1995.<br />

Vol. 93. P. 7<strong>25</strong>–733.<br />

12. Mazza C. A., Battista D., Zima A. M., Szwarcberg-Bracchitta M., Giordano C. V.,<br />

Acevedo A., Scopel A. L., Scopel A. L., Ballare C. L. The effects of solar ultraviolet-B<br />

radiation on the growth and yield of barley are accompanied by increased DNA damage<br />

and antioxidant responses // Plant, Cell and Env<strong>ir</strong>onment. 1999. Vol. 22. P. 61–70.<br />

13. Ranèelienë V., Vyðniauskienë R., Janèys Z., Ðlekytë K. Action of UV-B on Crepis<br />

capillaries (L.) Wallr. Plants in controlled env<strong>ir</strong>onmental conditions // Biologija. 2005. Nr. 3.<br />

P. 74–80.<br />

14. Rozema J., Jos van de Staaij, Bjorn L. O., Caldwell M. UV-B as an env<strong>ir</strong>onmental<br />

factor in plant life: stress and regulation // Tree. 1997. Vol. 12. P. 22–28.<br />

15. Schmitz-Hoerner R., Weissenbock G. Contribution of phenolic compounds to the<br />

UV-B screening capacity of developing barley primary leaves in relation to DNA damage<br />

and repa<strong>ir</strong> under elevated UV-B levels // Phytochemistry. 2003. Vol. 64. P. 243–<strong>25</strong>5.<br />

16. Stephen J., Woodfin R., Corlett J. E., Paul N. D., Jones H. G. Response of barley<br />

and pea crops to supplementary UV-B radiation // Journal of Agricultural Science, Cambridge,<br />

1999. Vol. 132. P. <strong>25</strong>3–261.<br />

17. Valkama E., Kivimaenpaa M., Hartikainen H., Wulff A. The combined effects of<br />

enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure<br />

in strawberry (Fragaria X ananassa) and barley (Hordeum vulgare) treated in the<br />

field // Agricultural and Forest Meteorology. 2003. Vol. 120. P. 267–278.<br />

18. Wei G., Zheng Y., Slusser J. R., Heisler G. M. Impact of enhanced ultraviolet-B<br />

<strong>ir</strong>radiance on cotton growth, development, yield, and qualities under field conditions //<br />

Agricultural and Forest Meteorology. 2003. Vol. 120. P. 241–248.<br />

228


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

BIOMETRIC INDEXES OF CARROT IN RESPONSE<br />

TO DIFFERENT UV-B RADIATION<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë, J. B. Ðikðnianienë,<br />

G. Samuolienë, P. Duchovskis<br />

Summary<br />

Vegetative experiments were carried out in Laboratory of Plant Physiology at<br />

the Lithuanian Institute of Horticulture under phytotron conditions in 2005. The aim<br />

of the study was to establish the impact of different UV-B doses on biometric indexes<br />

of carrots. Plants were treated with different UV-B doses: 0 (reference), 1, 3, 5,<br />

7 <strong>ir</strong> 9 kJ m -2 d -1 . A photoperiod of 16 h was used and a<strong>ir</strong> temperature of 21/17°C<br />

(day/night) was maintained throughout the experiment. Biometric measurements of<br />

plants and photosynthesis productivity were determined at the end of treatment, two<br />

weeks and four weeks after the treatment. The UV-B dose of 1kJ m 2 d -1 stimulated the<br />

physiological processes in the plants. The greatest content of dry weight in carrots<br />

rhizocarp was accumulated applying this dose. The UV-B doses of 5and 7 kJ m -2 d -1<br />

induced the adaptive mechanisms in carrots.<br />

Key words: biometry, Daucus sativus Röhl., UV-B radiation.<br />

229


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POMIDORØ (LYCOPERSICON ESCULENTUM MILL.)<br />

VIRUSØ DIAGNOSTIKA ELEKTRONOMIKROSKOPINIU<br />

IR MOLEKULINIU METODAIS<br />

Irena ZITIKAITË 1 , Elena SURVILIENË 2 Gerda BÛTAITË1<br />

,<br />

1<br />

Botanikos institutas, Þaliøjø Eþerø g. 49, LT-08406, Vilnius.<br />

El. paðtas izitika@botanika.lt; gerda_butaite@yahoo.com<br />

2<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas e.surviliene@lsdi.lt<br />

Straipsnyje pateikiami pomidorus (Lycopersicon esculentum Mill.) paþeidþianèiø<br />

kai kuriø v<strong>ir</strong>usiniø ligø sukëlëjø diagnostikos perðvieèiamosios elektroninës mikroskopijos<br />

<strong>ir</strong> molekulinës biologijos metodais tyrimø rezultatai. V<strong>ir</strong>usø paþeistø pomidorø<br />

ëminiai buvo renkami privaèiuose darþuose <strong>ir</strong> ûkiuose, bandymø laukuose, botanikos<br />

sodø darþoviø kolekcijose áva<strong>ir</strong>iose Lietuvos vietovëse. V<strong>ir</strong>usiniai paþeidimai<br />

pas<strong>ir</strong>eiðkë pomidorø augimo sutrikimu: buvo sutrumpëjæ tarpubambliai, iðryðkëjusios<br />

lapø gyslos, lapai <strong>ir</strong> vaisiai chlorotiðki, margi, deformuoti, jø pav<strong>ir</strong>ðiuje buvo þiediðkø<br />

dëmiø. Siekiant tiksliai nustatyti patogenà, v<strong>ir</strong>usø paþeistø pomidorø mëginiai buvo<br />

atrinkti preliminariai nustaèius v<strong>ir</strong>usus tradiciniais metodais. Atlikus pomidorø lapø<br />

ar vaisiø nevalytø ekstraktø elektronomikroskopinius tyrimus, nustatyta v<strong>ir</strong>ionø morfologija<br />

(izometrinës dalelës). Ið v<strong>ir</strong>usais uþsikrëtusiø augalø audiniø buvo ekstrahuota<br />

<strong>ir</strong> iðvalyta ribonukleininë rûgðtis (RNR). Pagal tiksliai þinomas v<strong>ir</strong>uso baltymo geno<br />

sekas buvo parinktos konkreèiam v<strong>ir</strong>usui specifinës oligonukleotidø (pradmenø) poros.<br />

Su polimerazës grandininës reakcijos (PGR) technika pagal gautø kopijinës dezoks<strong>ir</strong>ibonukleininës<br />

rûgðties (cDNR) amplifikacijos produktø dydþius <strong>ir</strong> lokalizacijos vietà<br />

elektroforezës 5% poliakrilamidiniame gelyje t<strong>ir</strong>tø pomidorø mëginiuose buvo patv<strong>ir</strong>tinti<br />

v<strong>ir</strong>usø identifikavimo rezultatai, gauti t<strong>ir</strong>iant v<strong>ir</strong>usø biologines <strong>ir</strong> morfologines<br />

savybes. Mûsø t<strong>ir</strong>tø pomidorø mëginiuose buvo identifikuoti agurkø mozaikos (Cucumber<br />

mosaic cucumov<strong>ir</strong>us, CMV), pomidorø þiediðkosios dëmëtligës (Tomato ringspot<br />

nepov<strong>ir</strong>us, ToRSV) <strong>ir</strong> vaistuèio mozaikos (Arabis mosaic nepov<strong>ir</strong>us, ArMV) v<strong>ir</strong>usai.<br />

Pastarieji du v<strong>ir</strong>usai yra áraðyti á kenksmingø organizmø sàraðà.<br />

Reikðminiai þodþiai: diagnostika, EM, pomidorai, RT-PGR, v<strong>ir</strong>usai.<br />

Ávadas. Pomidoruose (Lycopersicon esculentum Mill.) parazituoja apie dvi deðimtys<br />

v<strong>ir</strong>usø, sukelianèiø didelius produktyvumo bei derliaus nuostolius <strong>ir</strong> susilpninanèiø<br />

atsparumà kitiems patogenams (grybams, bakterijoms), netinkamai agrotechnikai<br />

<strong>ir</strong> nepalankiems aplinkos veiksniams. Be to, pomidorai yra <strong>ir</strong> daugelio v<strong>ir</strong>usø<br />

230


alternatyvûs augalai ðeimininkai (Brunt <strong>ir</strong> kt., 1996; Edwardson, Chistie, 1997; Ðutic<br />

<strong>ir</strong> kt., 1999). Plaèiai paplitæ pomidoruose yra ðie v<strong>ir</strong>usai: pomidorø mozaikos (Tomato<br />

mosaic tobamov<strong>ir</strong>us), tabako mozaikos (Tobacco mosaic tobamov<strong>ir</strong>us), agurkø mozaikos<br />

(Cucumber mosaic cucumov<strong>ir</strong>us), bulviø X (Potato X potexv<strong>ir</strong>us) <strong>ir</strong> bulviø Y<br />

(Potato Y potyv<strong>ir</strong>us), o pietinëse Europos <strong>ir</strong> Amerikos ðalyse – pomidorø dëmëtojo<br />

vytulio (Tomato spotted wilt tospov<strong>ir</strong>us), pomidorø geltonø lapø garbanës (Tomato<br />

yellow leaf curl begomov<strong>ir</strong>us) <strong>ir</strong> pepino mozaikos (Pepino mosaic potexv<strong>ir</strong>us) v<strong>ir</strong>usai<br />

(Ðutic <strong>ir</strong> kt., 1999). Ypaè neigiamai pomidorø derliø veikia labai juose daþnos<br />

v<strong>ir</strong>usø kompleksinës infekcijos. Pagal pastebëtus pomidorø v<strong>ir</strong>usinës kilmës paþeidimus<br />

tiksliai nusakyti v<strong>ir</strong>uso rûðá yra sunku, nes simptomø iðraiðka gali bûti labai áva<strong>ir</strong>i.<br />

Áva<strong>ir</strong>ûs v<strong>ir</strong>usai tuose paèiuose augaluose gali sukelti vienodus simptomus. Tas pats<br />

v<strong>ir</strong>usas áva<strong>ir</strong>iø veisliø pomidoruose sk<strong>ir</strong>tingu nuo uþsikrëtimo pradþios metu gali pas<strong>ir</strong>eikðti<br />

sk<strong>ir</strong>tingais poþymiais. Gali klaidinti <strong>ir</strong> v<strong>ir</strong>usø miðinys. Todël sukëlëjams tiksliai<br />

identifikuoti naudotini tikslûs <strong>ir</strong> jautrûs metodai.<br />

P<strong>ir</strong>minë pomidoruose aptiktø kai kuriø v<strong>ir</strong>usø identifikacija atlikta mechaniðkai<br />

inokuliuojant augalus – indikatorius infekuotø pomidorø ekstraktais. Uþsikrëtusiø augalø<br />

spektras <strong>ir</strong> iðryðkëjæ simptomai juose leido preliminariai identifikuoti pomidorus<br />

paþeidusius v<strong>ir</strong>usus (Zitikaitë, 1999). Minëtas metodas yra labai imlus laiko <strong>ir</strong> darbo<br />

sànaudoms <strong>ir</strong> nelabai tikslus. Norint greièiau <strong>ir</strong> tiksliau nustatyti pomidorø v<strong>ir</strong>usiniø<br />

ligø sukëlëjus, yra atliekami v<strong>ir</strong>ionø morfologijos tyrimai perðvieèiamuoju elektroniniu<br />

mikroskopu <strong>ir</strong> v<strong>ir</strong>uso RNR fragmentø padauginimai atv<strong>ir</strong>kðtinës transkripcijospolimerazës<br />

grandininëse reakcijose, kombinuojant specifiniø oligonukleotidø poras,<br />

termostabilià DNR polimerazæ, taikant fragmentø denatûravimo, transkripcijos <strong>ir</strong> DNR<br />

sintezës besikartojanèius ciklus aukðtoje temperatûroje (Saiki <strong>ir</strong> kt., 1988).<br />

Darbo tikslas – patikimai identifikuoti pomidoruose aptiktus <strong>ir</strong> klasikiniais metodais<br />

preliminariai ávardytus kai kuriuos v<strong>ir</strong>usus, esant maþam jø titrui ar kompleksinei<br />

v<strong>ir</strong>usinei infekcijai, naudojant tikslius <strong>ir</strong> jautrius elektroninës mikroskopijos (EM)<br />

<strong>ir</strong> molekuliná polimerazës grandininës reakcijos (PGR) metodus.<br />

Tyrimo objektas <strong>ir</strong> metodai. V<strong>ir</strong>usiniø ligø paþeisti pomidorø ëminiai laboratoriniams<br />

tyrimams buvo surinkti privaèiuose darþuose <strong>ir</strong> ûkiuose, bandymø laukuose,<br />

botanikos sodø darþoviø kolekcijose áva<strong>ir</strong>iose Lietuvos vietovëse. Tyrimai buvo atliekami<br />

Fitov<strong>ir</strong>usø laboratorijoje <strong>ir</strong> jai priklausanèiame ðiltnamyje.<br />

Siekiant preliminariai nustatyti sukëlëjø gentá, iðlaikyti <strong>ir</strong> padauginti v<strong>ir</strong>usà, infekcijos<br />

buvo perneðtos á atitinkamus diagnostiniø augalø rinkinius mechaninës inokuliacijos<br />

bûdu.<br />

Kad bûtø nustatyta v<strong>ir</strong>usiniø ligø sukëlëjø daleliø morfologija (v<strong>ir</strong>ionø forma <strong>ir</strong><br />

dydis), t<strong>ir</strong>iant natûraliai infekuotø pomidorø ar d<strong>ir</strong>btinai v<strong>ir</strong>usais uþkrëstø diagnostiniø<br />

augalø lapø ar vaisiø nevalytus ekstraktus, naudotas perðvieèiamasis elektroninis<br />

mikroskopas (EM) JEOL JEM-100S. Instrumentinis didinimas – <strong>25</strong> 000 x (Dijkstra,<br />

de Jager, 1998). Preparatai EM buvo ruoðiami ant specialiø 2–3 mm skersmens tinkleliø,<br />

padengtø koloidine plëvele, kuri tv<strong>ir</strong>tinama anglimi. T<strong>ir</strong>iamoji medþiaga buvo<br />

ruoðiama ágramzdinimo bûdu <strong>ir</strong> kontrastuojama 2% uranilo acetato vandens t<strong>ir</strong>palu.<br />

Kad bûtø nustatyta molekulinë v<strong>ir</strong>uso rûðis, su PGR technika ið infekuotø pomidorø<br />

mëginiø buvo ekstrahuota <strong>ir</strong> iðvalyta ribonukleininë rûgðtis (RNR). Ið infekuotø<br />

pomidorø audiniø ji buvo iðsk<strong>ir</strong>iama pagal Y. Zhango <strong>ir</strong> kitø (Zhang <strong>ir</strong> kt., 1998)<br />

231


metodikà su neþymiomis modifikacijomis <strong>ir</strong> rinkinio “Quick Prep total RNA extraction<br />

kit for the d<strong>ir</strong>ect isolation of total RNA from most eukaryotic tissues or cells“<br />

(Amersham Pharmacia Biotechsciences, UK) instrukcijà bei rekomendacijas. Uþðaldyta<br />

-20°C temperatûroje v<strong>ir</strong>usu uþsikrëtusi augalinë medþiaga (apie <strong>25</strong> mg/g) uþpilama<br />

skystu azotu <strong>ir</strong> homogenizuojama steriliame grûstuvëlyje. Dalis medþiagos atðaldytu<br />

ðpateliu perkeliama á Ependorf mëgintuvëlius. Augalinë medþiaga uþpilama<br />

1 x STE (0,1 M NaCl, 0,05 M TRIS, 0,001 M EDTA) buferiu pH 6,8 <strong>ir</strong> 10% SDS,<br />

pridedant 2 x STE buferyje paruoðto fenolo. Po to centrifuguojama <strong>ir</strong> v<strong>ir</strong>ðutinë fazë<br />

perkeliama á naujà mëgintuvëlá. T<strong>ir</strong>palas uþpilamas 30% etanoliu <strong>ir</strong> pridedama celiuliozës<br />

Whatman CF-11 milteliø. Celiuliozë iðplaunama maiðant <strong>ir</strong> centrifuguojant 3<br />

kartus su 1 x STE buferiu, esant 16,5% etanolio. RNR nusodinama su 3 M natrio<br />

acetatu <strong>ir</strong> etanoliu, inkubuojama esant -20°C temperatûrai. Perplaunama 80% etanoliu,<br />

po to resuspenduojama PGR vandenyje.<br />

Naudojant p<strong>ir</strong>miau minëtà totalinës RNR ekstrakcijos rinkiná, t<strong>ir</strong>iamosios medþiagos<br />

milteliai po homogenizacijos skystame azote uþpilami 150 μl ekstrakcijos<br />

buferio <strong>ir</strong> 3 μl 14,3 M β-merkaptoetanolio. Pridedama 350 μl LiCl <strong>ir</strong> 500 μl CsTFA.<br />

Mëgintuvëliai 10 min. palaikomi lede, po to centrifuguojami 15 min./14 000 g. Nusiurbiami<br />

susidaræ baltymø <strong>ir</strong> DNR sluoksniai. Gautos RNR nuosëdos plaunamos trimis<br />

rinkinio komponentais, kad bûtø paðalintas baltymø <strong>ir</strong> DNR uþterðtumo perv<strong>ir</strong>ðis,<br />

esantis ant nuosëdø ar mëgintuvëliø sieneliø. Po to centrifuguojama 5 min./14 000 g.<br />

Nusiurbiamas supernatantas. Precipitatai uþpilami 70% etanoliu, paruoðtu PGR vandenyje.<br />

Po to medþiaga inkubuojama paliekant ilgesná laikà -20°C temperatûroje. Po<br />

inkubacijos centrifuguojama 5 min./14 000 g. Nusiurbiamas etanolis. Nuosëdos uþpilamos<br />

dejonizuotu H 2<br />

O, paveiktu dietilp<strong>ir</strong>okarbonatu (DEPC), <strong>ir</strong> pridedama ribonukleaziø<br />

inhibitoriaus. Nuosëdos suardomos <strong>ir</strong> t<strong>ir</strong>pinamos maiðant. Mëgintuvëliai<br />

paðildomi 10 min. +65°C temperatûros vandens termostate. Iðt<strong>ir</strong>pinta totalinë RNR<br />

buvo naudojama PGR.<br />

Siekiant atlikti ið pomidorø iðsk<strong>ir</strong>tø v<strong>ir</strong>usø detekcijà atv<strong>ir</strong>kðtinës transkriptazës<br />

(AT) PGR metodu (Dijkstra de Jager, 1998; Forster, Taylor, 1998), naudotasi specifiniais<br />

oligonukleotidø pradmenimis, kurie buvo parinkti pagal tiksliai þinomas v<strong>ir</strong>uso<br />

baltymo geno sekas. Pradmenø poros ið pomidorø iðsk<strong>ir</strong>tø v<strong>ir</strong>usø biologinei diagnostikai<br />

patv<strong>ir</strong>tinti buvo ðios: CMV: U (5’ – GTA GAC ATC TGT GAC GCG GA-3’) nt<br />

114-132 <strong>ir</strong> D ( 5’ – GCG CGA AAC AAG CTT CTT ATC – 3’) nt 633-653 (De Blas<br />

<strong>ir</strong> kt., 1994); ToRSV: U1 (5’ – GAC GAA GTT ATC AAT GGC AGC – 3’) (nt 1.078-<br />

1.098) <strong>ir</strong> D1 (5’ – TCC GTC CAA TCA CGC GAA T – 3’) nt 1.506-1.527) (Griesbach,<br />

1995); ArMV: AP1 2 (5’ – AAT ACC CCG GGT GTT ACA TCG – 3’) <strong>ir</strong> AP2 2<br />

(5’ – CAT TAA CTT AAG ATC AAG GAT TC – 3’) (Pantaleo <strong>ir</strong> kt., 2001). DNR<br />

fragmentø dydþio standartas buvo þymuo Nr. 9: Ôx174DNA/BsuRI(HaeIII) (AB<br />

„Fermentas“, Vilnius, Lietuva). Dydþiai ið v<strong>ir</strong>ðaus á apaèià: 1353, 1078, 872, 603,<br />

310, 281, 271, 234, 194, 118, 72 bp.<br />

AT-PGR trumpa schema: á valytos totalinës RNR t<strong>ir</strong>palà jai denatûruoti pridëta<br />

1% ribonukleaziø inhibitoriaus <strong>ir</strong> reversinio pradmens. Miðinys inkubuojamas 5 min.<br />

+70°C <strong>ir</strong> atðaldomas 5 min. +4°C temperatûroje. Vienvijës cDNR sintezë atliekama á<br />

denatûruotos RNR t<strong>ir</strong>palà pridëjus 5 x reakcijos buferio, ribonukleaziø inhibitoriaus,<br />

dNTP miðinio <strong>ir</strong> AT (RevertAid TM M-MuLV Reverse Transcriptase). Sintezuojama<br />

232


1 pav. CMV paþeisti pomidorø lapai<br />

Fig. 1. Cucumber leaves affected with CMV<br />

233<br />

termocikleryje „Ependorf Mastercycler Personal“ +37°C temperatûroje 60 min. <strong>ir</strong><br />

+70°C temperatûroje 10 min. DNR amplifikacija buvo atliekama á paruoðtà PGR<br />

miðiná (PGR vanduo, abu pradmenys: „Forward“ <strong>ir</strong> „Reverse“, dNTP miðinys, 10 x<br />

PGR buferis su MgCl 2<br />

<strong>ir</strong> rekombinantinë Taq polimerazë) (AB „Fermentas“, Lietuva)<br />

pridëjus t<strong>ir</strong>iamø mëginiø cDNR. AT-PGR buvo atliekama tokiu reþimu: +94°C –<br />

4 min., po to 40 ciklø (+94°C – 1 min., +52 arba +55°C – 2 min., +72°C – 2 min.)<br />

<strong>ir</strong> +72°C – 10 min. Gauti PGR produktai buvo analizuojami elektroforetiðkai (EF)<br />

naudojant 5% poliakrilamidiná gelá 1 x TBE buferyje, daþomi etidþio bromidu. Gautø<br />

cDNR amplifikuotø fragmentø juostelës EF gelyje buvo ryðkinamos <strong>ir</strong> fotografuojamos<br />

UV ðviesoje.<br />

Rezultatai. Pomidorus paþeidusiø kai kuriø v<strong>ir</strong>usø preliminariam biologiniam<br />

identifikavimui patv<strong>ir</strong>tinti buvo atrinkta per 10 v<strong>ir</strong>usiniø izoliatø ið lauko <strong>ir</strong> ðiltnaminiø<br />

pomidorø lapø ar vaisiø mëginiø. Stebëtø pomidorø v<strong>ir</strong>usiniai paþeidimai buvo labai<br />

áva<strong>ir</strong>ûs: margligës, mozaikos, þiediðkosios dëmëtligës, lapø iðaugos, lapalakðèiø <strong>ir</strong><br />

vaisiø deformacijos, áva<strong>ir</strong>aus pobûdþio augimo sutrikimai. Pomidorø mëginiai pagal<br />

v<strong>ir</strong>usiniø paþeidimø tipiðkiausius simptomus buvo iðt<strong>ir</strong>ti EM metodu. Visuose mëginiuose<br />

nustatyti sk<strong>ir</strong>tingos struktûros izometriniai v<strong>ir</strong>ionai.<br />

Agurkø mozaikos v<strong>ir</strong>usas (Cucumber mosaic cucumov<strong>ir</strong>us, CMV) buvo iðsk<strong>ir</strong>tas<br />

ið pomidorø ‘Ryèiai’ <strong>ir</strong> ‘Viltis’, augintø Këdainiø rajono laukuose. V<strong>ir</strong>usø paþeisti<br />

pomidorai buvo aptikti nedideliais þidiniais. Pomidorø lapalakðèiai buvo margi, susmulkëjæ,<br />

parudavusiomis gyslomis, labai deformuoti (1 pav.). Kai kuriø pomidorø<br />

lapai buvo siûliðki, nulinkusiomis þemyn v<strong>ir</strong>ðûnëmis. Tyrimo metu po diagnostiniø<br />

augalø inokuliacijos pas<strong>ir</strong>odë, kad v<strong>ir</strong>usas uþkrëtë Datura L., Gomphrena L., Nicotiana<br />

L., Cucumis L., Lycopersicon Mill, Tetragonia L. genèiø augalus, sukeldamas<br />

juose CMV bûdingus simptomus.<br />

Minëtø augalø nevalytø ekstraktø<br />

EM preparatuose nustatëme izometrinius<br />

(sferinius) su ryðkiu centru,<br />

apie 28 nm skersmens v<strong>ir</strong>ionus<br />

(2 pav.), bûdingus tik Cucumov<strong>ir</strong>us<br />

genties v<strong>ir</strong>usams. Remiantis<br />

augaluose indikatoriuose<br />

v<strong>ir</strong>uso sukeltø simptomø pobûdþiu,<br />

ypaè EM tyrimø v<strong>ir</strong>usiniø daleliø<br />

morfologiniø savybiø duomenimis,<br />

buvo nustatyta, kad t<strong>ir</strong>tuose pomidoruose<br />

v<strong>ir</strong>usinius paþeidimus sukëlë<br />

CMV (Francki <strong>ir</strong> kt., 1979).<br />

V<strong>ir</strong>uso identifikavimui patv<strong>ir</strong>tinti<br />

buvo panaudota AT-PGR. Totalinei<br />

RNR iðsk<strong>ir</strong>ti naudoti 2-jø pomidorø<br />

izoliatø CMV uþsikrëtæ Nicotiana<br />

glutinosa L. <strong>ir</strong> D. stramonium<br />

L. augalø uþðaldyti audiniai.<br />

Rezultatai elektroforezës akrilami-


diniame gelyje parodë, kad AT-PGR buvo gauti numatyti pagal panaudotà oligonukleotidø<br />

porà apie 400 bp (baziø porø) dydþio PGR produktai (3 pav.). Panaudoti pradmenys<br />

tiko CMV izoliatø ið pomidorø cDNR fragmentø amplifikacijai <strong>ir</strong> patv<strong>ir</strong>tino<br />

CMV, iðsk<strong>ir</strong>to ið pomidorø, identifikavimo biologiniu metodu rezultatus.<br />

2 pav. CMV dalelës infekuotø pomidorø ekstraktuose. Brûkðnys – 100 nm<br />

Fig. 2. Particles of CMV in tomato extracts. Bar represents 100 nm<br />

3 pav. AT-PGR amplifikuoti DNR produktai (~400 bp) ið CMV uþsikrëtusiø<br />

agurkø <strong>ir</strong> pomidorø: 1 takelis – DNR þymuo; 2 <strong>ir</strong> 3 takeliai – agurkø izoliatai;<br />

4 <strong>ir</strong> 5 takeliai – CMV, iðsk<strong>ir</strong>tas ið pomidorø; 6 takelis – sveiko augalo audiniai;<br />

7 takelis – neigiama kontrolë<br />

Fig. 3. RT-PCR products of CMV (about 400 bp): lane l - DNA ladder; lanes 2 and<br />

3 - cucumber samples; lanes 4 and 5 - CMV isolated from tomato samples;<br />

lane 6 - tissues of healthy plant; lane 7 - negative control<br />

Pomidorø þiediðkosios dëmëtligës v<strong>ir</strong>usas (Tomato ringspot nepov<strong>ir</strong>us, ToRSV)<br />

mechaninës inokuliacijos bûdu buvo izoliuotas ið ‘Olan’, ‘Sonata’, ‘Dombello’ <strong>ir</strong><br />

‘Raissa’ pomidorø, augintø Këdainiø, Kauno <strong>ir</strong> Vilniaus rajonuose. V<strong>ir</strong>usinæ simptomø<br />

kilmæ rodë lapalakðèiø chlorotinë þiediðkoji dëmëtligë <strong>ir</strong> jø raukðlëtumas, o vaisiø<br />

pav<strong>ir</strong>ðiuje – iðryðkëjæ þiedai baltais apvadais (4 pav.). EM tyrimui atrinktø pomidorø<br />

mëginiø preparatuose matëme daug neapibrëþtais kontûrais izometriniø v<strong>ir</strong>ionø<br />

(5 pav.), charakteringø ToRSV, perneðamam d<strong>ir</strong>vos nematodø (Stace-Smith, 1984;<br />

Brunt <strong>ir</strong> kt., 1996).<br />

234


4 pav. ToRSV paþeistas pomidoro vaisius<br />

Fig. 4. Tomato fruit affected by ToRSV<br />

5 pav. ToRSV dalelës paþeistø augalø<br />

ekstraktuose. Brûkðnys – 100 nm<br />

Fig. 5. The particles of ToRSV in plant<br />

extracts. Bar represents 100 nm<br />

AT-PGR, atliktos su ToRSV izoliatu ið pomidorø, panaudojant publikuotø nukleotidiniø<br />

sekø pagrindu parinktus pradmenis, elektroforezës 5% poliakrilamidiniame<br />

gelyje iðryðkëjæ cDNR amplifikacijos produktai (499 bp) <strong>ir</strong> jø lokalizacijos vieta<br />

(6 pav.) patv<strong>ir</strong>tino ToRSV identifikavimo rezultatus, gautus t<strong>ir</strong>iant v<strong>ir</strong>uso morfologines<br />

savybes <strong>ir</strong> analizuojant ligos pas<strong>ir</strong>eiðkimo simptomus pomidoruose.<br />

6 pav. PGR amplifikuoti DNR produktai (499 bp) ið ToRSV inokuliuotø augalø:<br />

1 <strong>ir</strong> 6 takeliai – DNR dydþio þymuo; 2 takelis – agurkø izoliatas;<br />

3 takelis – ToRSV, izoliuotas ið pomidorø <strong>ir</strong> perneðtas á N. rustica augalus;<br />

4 takelis – vilkdalgiø izoliatas; takelis 5 – neigiama kontrolë<br />

Fig. 6. Gel electrophoresis of PCR product (499 bp) of amplified ToRSV tomato sample:<br />

lanes 1 and 6 – DNA ladder; lane 2 – cucumber isolate; lane 3 – ToRSV isolated from<br />

tomato and infected N. rustica tissue; lane 4 – <strong>ir</strong>is isolate; lane 5 – negative control<br />

Vaistuèio mozaikos v<strong>ir</strong>usas (Arabis mosaic nepov<strong>ir</strong>us). Vilniaus <strong>ir</strong> Ð<strong>ir</strong>vintø<br />

rajonuose augintø ðiltnamio <strong>ir</strong> lauko pomidorø lapø tarpgysliniai audiniai buvo numargëjæ,<br />

gyslos ryðkios, lapalakðèiai raukðlëti <strong>ir</strong> ties pagrindinëmis gyslomis iðlinkæ.<br />

Kituose pomidorø mëginiuose buvo galima matyti tipiðkà lapø mozaikà <strong>ir</strong> gana<br />

ryðkià lapalakðèiø deformacijà (7 pav.). Buvo iðsk<strong>ir</strong>ti 2 izoliatai. T<strong>ir</strong>iant v<strong>ir</strong>uso paþeidþiamø<br />

augalø spektrà <strong>ir</strong> simptomø pas<strong>ir</strong>eiðkimà bei vystymàsi inokuliuotuose<br />

diagnostiniuose augaluose, nustatyta, kad ðis v<strong>ir</strong>usas daugelyje t<strong>ir</strong>tø augalø indikatoriø<br />

sukelia tiek vietinæ (daugiausia nekrotines þaizdas), tiek sisteminæ (margliges,<br />

dëmëtliges, v<strong>ir</strong>ðûniø deformacijà <strong>ir</strong> þemaûgæ) reakcijas. Ði iðsk<strong>ir</strong>tinë sukëlëjo biologinë<br />

savybë leido já preliminariai identifikuoti kaip ArMV ið Nepov<strong>ir</strong>us genties (Murant,<br />

1970; 1981).<br />

235


Ið infekcijos ðaltiniø <strong>ir</strong> tyrimo metu uþkrëstø augalø ágramzdinimo bûdu paruoðtuose<br />

EM preparatuose buvo aptikta daugybë nepov<strong>ir</strong>usams charakteringø izometriniø<br />

v<strong>ir</strong>ionø. V<strong>ir</strong>usinës dalelës buvo apie 28 nm skersmens, netaisyklingø kontûrø (8 pav.).<br />

7 pav. ArMV paþeistas pomidoro lapas<br />

Fig. 7. Tomato leaf affected by ArMV<br />

8 pav. ArMV dalelës pomidorø<br />

ekstraktuose. Brûkðnys – 100 nm.<br />

Fig. 8. Particles of ArMV in tomato<br />

extracts. Bar represents 100 nm<br />

Patogeno identifikavimui patikslinti buvo iðsk<strong>ir</strong>ta uþkrëstø N. glutinosa L. <strong>ir</strong><br />

N. debneyi Domin. augalø lapø audiniø totalinë RNR <strong>ir</strong> panaudota cDNR amplifikacijai<br />

AT-PGR. Po cDNR amplifikacijos termocikleryje, taikant atitinkamà temperatûros reþimà,<br />

v<strong>ir</strong>uso PGR produktai buvo apie 421 bp dydþio (9 pav.), o tai atitinka parinktà<br />

oligonukleotidø porà. Ðie duomenys galutinai árodë, kad ið pomidorø iðsk<strong>ir</strong>ta ArMV.<br />

Visuose bandymuose PGR produktø negauta kontroliniuose mëginiuose: sveiko<br />

N. debneyi augalo audiniai; neigiama kontrolë – PGR buferis + PGR H 2<br />

O.<br />

9 pav. AT-PGR amplifikuoti DNR produktai (420 bp) ið ArMV inokuliuotø augalø:<br />

1 <strong>ir</strong> 8 takeliai – DNR dydþio þymuo; 2 takelis – N. glutinosa; 3 takelis – G. globosa;<br />

4 <strong>ir</strong> 6 takeliai – N. debneyi; 5 takelis – sveikas augalas; 7 takelis – neigiama kontrolë<br />

Fig. 9. Gel electrophoresis of RT-PCR produts of amplified ArMV from tomato samples:<br />

lanes 1 and 8 – DNA fragment size standard; lane 2 – N. glutinosa; lane 3 – G. globosa,<br />

lanes 4 and 6 – N. debneyi; lane 5 –healthy plant; lane 7 – negative control<br />

Aptarimas. Atliekant pomidorø v<strong>ir</strong>usø identifikavimà, taikyti ðiuolaikiniai tikslûs<br />

<strong>ir</strong> jautrûs metodai, kurie leido nustatyti <strong>ir</strong> apibûdinti plaèiai paplitusius ekonomiðkai<br />

reikðmingus v<strong>ir</strong>usus. CMV yra ypaè daug augalø ðeimininkø turintis v<strong>ir</strong>usas. CMV<br />

paþeidþia per 700 rûðiø ið 85 augalø ðeimø. Gamtoje já perneða per 60 rûðiø amarø<br />

(Francki <strong>ir</strong> kt., 1979). CMV patenka ant pomidorø augalø dël to, kad ðio v<strong>ir</strong>uso<br />

236


ðaltiniø gausu gamtoje. CMV rezervatoriai yra ne tik ekonomiðkai vertingi augalai<br />

(darþovës, dekoratyviniai augalai <strong>ir</strong> kt.), bet <strong>ir</strong> dauguma piktþoliø, auganèiø aplink<br />

pomidorø augavietes. Kai kuriø veisliø pomidorø derliaus nuostoliai dël CMV infekcijos<br />

siekia nuo 60 iki 95 proc. (Spaar, Kleinhempel, 1986; Ðutic <strong>ir</strong> kt., 1999).<br />

ToRSV yra vienas þalingiausiø Nepov<strong>ir</strong>us grupëje, paplitæs <strong>ir</strong> Europos ðalyse, <strong>ir</strong><br />

Amerikos þemyne. Já perneða nematodai, kurie uþsikreèia v<strong>ir</strong>usu kelias valandas besimaitindami<br />

uþkrësto augalo sultimis. Ðiuo v<strong>ir</strong>usu uþsikrëtusiø augalø ligos poþymiai<br />

daþnai yra labai specifiniai, ypaè augalø vegetacijos pradþioje. Natûraliomis sàlygomis<br />

ToRSV uþkreèia 285 augalø rûðis ið 159 genèiø <strong>ir</strong> 55 ðeimø (Edwardson, Christie,<br />

1997). Tyrimais paþeidþiamø augalø spektras apima 35 botanines ðeimas (Stace-<br />

Smith, 1984). ToRSV yra kenksmingø organizmø, kuriuos draudþiama áveþti <strong>ir</strong> platinti,<br />

sàraðe.<br />

Kitas nepov<strong>ir</strong>usas – ArMV – yra identifikuotas daugelyje pasaulio ðaliø (Brown,<br />

1986), paþeidþia labai daug augalø. ArMV ðeimininkai ið darþoviø, be pomidorø, yra<br />

<strong>ir</strong> agurkai, morkos, cukriniai runkeliai, salierai, salotos. V<strong>ir</strong>usà platina d<strong>ir</strong>voþemio<br />

Xiphinema genties nematodai, o perneða su sëkla 20 rûðiø augalai ið 14 ðeimø. V<strong>ir</strong>usà<br />

galima perduoti mechanine inokuliacija <strong>ir</strong> vegetatyviðkai dauginant augalus. Ðis patogenas<br />

yra taip pat áraðytas á augalams kenksmingø organizmø sàraðà.<br />

Iðvados. 1. Panaudojus jautrø <strong>ir</strong> tikslø atv<strong>ir</strong>kðtinës transkripcijos polimerazës<br />

grandininës reakcijos (AT-PGR) testà <strong>ir</strong> v<strong>ir</strong>usams specifines oligonukleotidø poras,<br />

pomidoruose buvo identifikuoti trys v<strong>ir</strong>usai: agurkø mozaikos (Cucumber mosaic<br />

cucumov<strong>ir</strong>us), pomidorø þiediðkosios dëmëtligës (Tomato ringspot nepov<strong>ir</strong>us) <strong>ir</strong> vaistuèio<br />

mozaikos (Arabis mosaic nepov<strong>ir</strong>us).<br />

2. Infekuotø pomidorø nevalytø ekstraktø elektronomikroskopiniai tyrimai <strong>ir</strong> tik<br />

izometriniø v<strong>ir</strong>ionø aptikimas visuose preparatuose leido pritaikyti molekulinës biologijos<br />

metodà konkreèiam v<strong>ir</strong>usui pomidoruose nustatyti.<br />

Padëka. Autoriai dëkoja LVMSF uþ finansinæ paramà vykdant ðá darbà (sutarties<br />

Nr. T-85/05, 2005 m.)<br />

Gauta 2006-03-30<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Brown D. J. F. The transmission of two strains of arabis mosaic v<strong>ir</strong>us from England<br />

by populations of Xiphinema diversicaudatum (Nematoda: Dorylaimoidea) from ten countries<br />

// Revue Nematol. 1986. 9(1). P. 83–87.<br />

2. Brunt A. A., Crabtree K., Dallwitz M. J., Gibbs A. J., Watson L. Arabis mosaic<br />

nepov<strong>ir</strong>us; Cucumber mosaic cucumov<strong>ir</strong>us; Tomato ringspot nepov<strong>ir</strong>us // V<strong>ir</strong>uses of Plants.<br />

Descriptions and Lists from the VIDE Database. Cambridge, 1996. P. 112–115, 477–483,<br />

1309–1312.<br />

3. De Blas C., Borja M. J., Saiz M., Romero J. Broad spectrum Detection of Cucumber<br />

Mosaic V<strong>ir</strong>us (CMV) using The Polymerase Chain Reaction // J. Phytopathology. 1994.<br />

Vol. 143. P. 323–329.<br />

4. Dijkstra J., de Jager C. P., Practical Plant V<strong>ir</strong>ology. Protocols and Exercises. Berlin-<br />

Heidelberg, 1998. 459 p.<br />

237


5. Edwardson J. R., Christie R. G. V<strong>ir</strong>uses infecting peppers and other solanaceous<br />

crops. University of Florida. 1997.<br />

6. Forster G. D., Taylor S. C. Plant V<strong>ir</strong>ology Protocols from v<strong>ir</strong>us isolation to transgenic<br />

resistance // Methods in Molecular Biology. Humana Press Totowa, New Jersey, 1998.<br />

Vol. 81. 571 p.<br />

7. Francki R. I. B., Mossop D. W., Hatta T. Cucumber mosaic v<strong>ir</strong>us // C.M.I./A.A.B.<br />

Descriptions of plant v<strong>ir</strong>uses. Association of Applied Biologists, Wellesbourne, UK,<br />

1979. N 213. P. 1–4.<br />

8. Griesbach J. A. Detection of Tomato ringspot v<strong>ir</strong>us by Polymerase Chain Reaction<br />

// Plant Disease. 1995. Vol. 79. N 10. P. 1054–1056.<br />

9. Murant A. F. Arabis mosaic v<strong>ir</strong>us // CMI/AAB Descriptions of plant v<strong>ir</strong>uses.<br />

Association of Applied Biologists, Wellesbourne, UK, 1970. N 16. P. 1–5.<br />

10. Murant A. F. Nepov<strong>ir</strong>uses // In E. Kurstak (ed.). Handbook of Plant V<strong>ir</strong>us infections<br />

and comparative diagnosis: Elsevier/North-Holland Biomedical Press, Amsterdam,<br />

Netherlands, 1981. P. 198–238.<br />

11. Pantaleo V., Saponari M., Gallitelli D. Development of a Nested PCR protocol for<br />

detection of olive-infecting v<strong>ir</strong>uses in crude extracts // Journal of Plant Pathology. 2001.<br />

Vol. 83. N 2. P. 143–146.<br />

12. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K.<br />

B., Erlich H. A. Primer-d<strong>ir</strong>ected enzymatic amplification of DNA with a thermostabile DNA<br />

polymerase // Science. 1988. Vol. 239. P. 487–491.<br />

13. Spaar D., Kleinhempel H. Borba s v<strong>ir</strong>usnymi boleznjami rastenij. Moskva, 1986.<br />

P. 248–3<strong>25</strong>.<br />

14. Stace-Smith R. Tomato ringspot v<strong>ir</strong>us // C.M.I./A.A.B. Descriptions of Plant<br />

v<strong>ir</strong>uses. Association of Applied Biologists, Wellesbourne, UK, 1984. N 290 (no. 18 revised)<br />

1–4 p.<br />

15. Ðutic D. D., Ford R. E., Toðic M. T. Handbook of plant v<strong>ir</strong>us diseases. CRC Press<br />

Washington, 1999. 553 p.<br />

16. Zhang Y. -P., Uyemoto J. K., K<strong>ir</strong>kpatrick B. C. A small-scale procedure for extracting<br />

nucleic acids from woody plants infected with various phytopathogens for PCR<br />

assay // Journal of V<strong>ir</strong>ological Methods. 1998. N 71. P. 45–50.<br />

17. Zitikaitë I. Vozbuditeli v<strong>ir</strong>usnych boleznej tomata i ich identifikacija // Biologija.<br />

1999. Nr. 4. P. 52–61.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE DIAGNOSTIC OF VIRUSES IN TOMATO<br />

(LYCOPERSICON ESCULENTUM MILL.) BY<br />

ELECTRONMICROSCOPIC AND MOLECULAR METHODS<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë<br />

Summary<br />

For detection of v<strong>ir</strong>al disease agents tomato (Lycopersicon esculentum Mill.)<br />

samples of leaves and fruits affected by v<strong>ir</strong>al diseases were collected and investiga-<br />

238


ted. Samples of tomatoes exhibiting v<strong>ir</strong>al symptoms were found in various growing<br />

places. Symptoms associated with v<strong>ir</strong>uses inhibited growth, it became evident shoots<br />

with short internodes, leaf chlorosis, ringspots, mottling, vein clearing and distortion.<br />

The presences of different isometric v<strong>ir</strong>ions were detected in extracts of<br />

tomato samples using transmission electron microscopic (EM) method. Three different<br />

v<strong>ir</strong>uses of two genera have been identified in L. esculentum crop on the basis of<br />

host plant symptoms and morphology of v<strong>ir</strong>ions. A number of the tomato samples<br />

that were found preliminary positive for Cucuber mosaic cucumov<strong>ir</strong>us (CMV), Tomato<br />

ringspot nepov<strong>ir</strong>us (ToRSV), and Arabis mosaic nepov<strong>ir</strong>us (ArMV) in biological<br />

tests were tested by reverse transcription-polymerase chain reaction (RT-PCR)<br />

technique using previously described v<strong>ir</strong>us-specific primers. The PCR reactions resulted<br />

in the specifically amplification of a 400 bp fragment of CMV RNA, 499 bp<br />

fragment of ToRSV RNA and 420 bp fragment of ArMV RNA.<br />

Key words: diagnostic, EM, RT-PCR, tomato, v<strong>ir</strong>us.<br />

239


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POMIDORØ (LYCOPERSICON ESCULENTUM MILL.)<br />

AUGIMO BEI BIOCHEMINIØ RODIKLIØ<br />

PRIKLAUSOMUMAS NUO UV-B SPINDULIUOTËS<br />

Regina VYÐNIAUSKIENË, Vida RANÈELIENË,<br />

Danguolë RAKLEVIÈIENË, Danguolë ÐVEGÞDIENË,<br />

Zenonas JANÈYS, Kazimiera ÐLEKYTË<br />

Botanikos institutas, Þaliøjø eþerø g. 49, LT-08406 Vilnius.<br />

El. paðtas regina.v@botanika.lt<br />

Pavelas DUCHOVSKIS, Auðra BRAZAITYTË,<br />

Jûratë ÐIKÐNIANIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

UV-B spinduliuotës sukeliamas stresas <strong>ir</strong> atsako á já indukcija pomidorams turi<br />

ypatingos reikðmës – reguliuoja jø augimà <strong>ir</strong> áva<strong>ir</strong>iø biologiðkai aktyviø medþiagø<br />

sintezæ. Ðio darbo tikslas buvo nustatyti UV-B spinduliuotës poveiká áva<strong>ir</strong>iems pomidorø<br />

‘Svara’ augimo <strong>ir</strong> biocheminiams rodikliams: augalø augimui, þaliai masei,<br />

sausosioms medþiagoms, lapø masei <strong>ir</strong> plotui, karotinoidø, a <strong>ir</strong> b chlorofilø, baltymø<br />

kiekiui lapuose, superoksido dismutazës (SOD) aktyvumui <strong>ir</strong> frakcijø spektrui<br />

lapuose. Dviem atsk<strong>ir</strong>ais bandymais iðbandytos sk<strong>ir</strong>tingos UV-B spinduliuotës dozës<br />

– 5 <strong>ir</strong> 10 kJ m -2 para -1 . Tyrimais nustatyta, kad manipuliuojant UV-B spinduliuotës<br />

dozëmis galima gauti sk<strong>ir</strong>tingà efektà <strong>ir</strong> taip reguliuoti pomidorø augimo <strong>ir</strong><br />

t<strong>ir</strong>tø medþiagø sintezæ. Áva<strong>ir</strong>ûs augimo <strong>ir</strong> biocheminiai rodikliai yra nevienodai jautrûs<br />

UV-B spinduliuotei. UV-B poveikis lapø plotui priklausë nuo lapo padëties ant<br />

augalo. Kaip atsakas á augimà skatinanèià 5 kJ m -2 para -1 UV-B dozæ keièiasi SOD<br />

spektras.<br />

Reikðminiai þodþiai: UV-B spinduliuotës stresas, dozës, pomidorai, augimas,<br />

SOD (superoksido dismutazës) izozimø spektrai<br />

Ávadas. Pastaruoju metu susidomëjimas Lycopersicon esculentum Mill. yra labai<br />

padidëjæs. Manoma, kad juose esantis likopenas yra labai veiksminga medþiaga,<br />

sauganti þmogaus organizmà nuo vëþio (Examinating.., 2003; Levy, Sharoni, 2004).<br />

UV-B spinduliuotë kaip veiksnys, skatinantis antriniø metabolitø sintezæ, gali padidinti<br />

<strong>ir</strong> ðios biologiðkai aktyvios medþiagos sintezæ (Drumm-Herrel, Mohr, 1982; Sponga<br />

<strong>ir</strong> kt., 1986; Yang <strong>ir</strong> kt., 1999; Verhoeyen <strong>ir</strong> kt., 2002; Guidi <strong>ir</strong> kt., 2005). Kita<br />

vertus, pomidorø apðvita UV-B spinduliais vertinama <strong>ir</strong> kaip priemonë kitos apsaugi-<br />

240


nës medþiagos – provitamino D sintezei padidinti (Björn, Wang, 2000; Björn <strong>ir</strong> kt.,<br />

2002). Ðiø medþiagø sintezës suaktyvëjimas yra augalø atsakas á stresà.<br />

Reaguodamas á stresus sukelianèius veiksnius, augalas mobilizuoja áva<strong>ir</strong>ias já sauganèias<br />

medþiagas: antioksidacinius (Mittler, 2002; Krupa, 2003) <strong>ir</strong> DNR reparacijos<br />

(Hada <strong>ir</strong> kt., 2001) fermentus, signalinius (Booker <strong>ir</strong> kt., 2004; Kacperska, 2004) <strong>ir</strong><br />

PR-baltymus (Thalma<strong>ir</strong> <strong>ir</strong> kt., 1996), flavonoidus <strong>ir</strong> fenilpropanoidus (Tattini <strong>ir</strong> kt.,<br />

2005), hormonus (Baier <strong>ir</strong> kt., 2005). Ði ypatybë gali bûti pritaikyta augalo produkuojamø<br />

biologiðkai vertingø medþiagø sintezei padidinti. Atsakas á spinduliuotæ <strong>ir</strong> stresø<br />

sukeliami efektai priklauso nuo augalo rûðies <strong>ir</strong> jo vidurûðinës áva<strong>ir</strong>ovës, genotipo ypatumø<br />

(Jordan, 1996; Cativelli <strong>ir</strong> kt., 2002; Kakani <strong>ir</strong> kt., 2003); ne iðimtis – <strong>ir</strong> pomidorai<br />

(Srinivas <strong>ir</strong> kt., 2004). Stresus sukelianèiø veiksniø, tarp jø <strong>ir</strong> ultravioletiniø spinduliø<br />

(UV), kurie yra <strong>ir</strong> Saulës spinduliø, pasiekianèiø Þemës pav<strong>ir</strong>ðiø, sudedamoji spektro<br />

dalis, poveikis þemës ûkio augalams yra iðt<strong>ir</strong>tas labai nevienodai. Daugiau turima duomenø<br />

apie javus (Krupa, Jäger, 1996; Marcel, 2002; Kakani <strong>ir</strong> kt., 2003).<br />

Gan ribotai iðt<strong>ir</strong>tas ultravioletiniø spinduliø poveikis <strong>ir</strong> pomidorams, nors þinoma,<br />

kad jiems UV-B sukelia gilius genomo pokyèius – endoreduplikacijà, keièia chromatino<br />

struktûrà (Cavallini <strong>ir</strong> kt., 2001). UV spinduliuotës poveikis pomidorams,<br />

kaip <strong>ir</strong> kitiems augalams, pas<strong>ir</strong>eiðkia per sistemas, reguliuojanèias atsakà á stresà<br />

sukeliantá veiksná (Johannes <strong>ir</strong> kt., 2000; Holley <strong>ir</strong> kt., 2003) <strong>ir</strong> raidà (Hashimoto,<br />

1994; Bertrani, Lercari, 2000; Gitz, Liu-Gitz, 2003; Appenroth <strong>ir</strong> kt., 2006). Tai<br />

tiesiogiai stimuliuoja apsauginiø medþiagø sintezæ (Sponga <strong>ir</strong> kt., 1986), tarp jø –<br />

antioksidantø (Balakumar <strong>ir</strong> kt., 1997), flavonoidø (Verhoeyen <strong>ir</strong> kt., 2002), fenilpropanoidø<br />

(Yang <strong>ir</strong> kt., 1999; Guidi <strong>ir</strong> kt., 2005), antocianinø (Drumm-Herrel, Mohr,<br />

1982). UV pomidoruose taip pat suaktyvina PR-baltymø sintezæ, o tai gali turëti tiesioginës<br />

átakos didesniam atsparumui patogenams (Barka <strong>ir</strong> kt., 2000; Stratmann <strong>ir</strong><br />

kt., 2000), amarams <strong>ir</strong> kitiems vabzdþiams (Johannes <strong>ir</strong> kt., 2000; Stratmann, 2003;<br />

Holley <strong>ir</strong> kt., 2003). Aptarti tyrimai yra vyraujantys, o UV-B spinduliuotës poveikis<br />

pomidorø augimui maþai t<strong>ir</strong>tas. Ypaè neiðt<strong>ir</strong>tas augimo bei biocheminiø rodikliø priklausomumas<br />

nuo apðvitinamø augalø iðsivystymo tarpsnio, taip pat svarbu iðaiðkinti<br />

jautriausius (labiausiai reaguojanèius á spinduliuotæ) augimo <strong>ir</strong> biocheminius rodiklius,<br />

pagal kuriuos galima vertinti pomidorø jautrumà UV-B.<br />

Darbo tikslas – nustatyti UV-B poveiká áva<strong>ir</strong>iems pomidorø ‘Svara’ augimo <strong>ir</strong><br />

biocheminiams rodikliams, augalø augimui, þaliai masei, sausosioms medþiagoms,<br />

lapø masei <strong>ir</strong> plotui, karotinoidø, chlorofilø a <strong>ir</strong> b, baltymø kiekiui lapuose, superoksido<br />

dismutazës (SOD) aktyvumui <strong>ir</strong> frakcijø spektrui lapuose.<br />

Tyrimo objektas <strong>ir</strong> metodai. Pomidorø (Lycopersicon esculentum Mill.) ‘Svara’<br />

daigai iðauginti Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto Augalø fiziologijos<br />

laboratorijos fitotroninio komplekso ðiltnamiuose. Daigai buvo auginami durpinio<br />

substrato su tràðomis PG MIX (NPK 14–16–18; 1,3 kg/m 3 ) pripildytuose plastikiniuose<br />

puodeliuose. Vëliau pomidorai auginti Botanikos institute (Vilnius) auginimo<br />

kameroje „Tulpë“, apðvietimas – liuminescencinëmis lempomis (75 µmol/ 2 ), fotoperiodas<br />

– 16/8 val.; temperatûra +<strong>25</strong>° ± 1°C. Kai dauguma daigø turëjo 6 lapus (vid.<br />

5,7), augalai buvo padalyti á dvi grupes: viena jø toliau auginta be UV-B spinduliuotës<br />

poveikio, kita dalis apðvitinta 10 kJ m -2 p -1 UV-B doze (naudotos UV-B lempos „Philips<br />

TL” 40W/12).<br />

241


Po 10 dienø augalai padalyti á dvi grupes <strong>ir</strong> vienoje ið jø iðt<strong>ir</strong>tas augalø augimas<br />

(þalia biomasë <strong>ir</strong> sausosios medþiagos, lapo plotas, lapø skaièius) <strong>ir</strong> biocheminiai poþymiai<br />

(chlorofilø a <strong>ir</strong> b, karotinoidø, baltymø kiekis lapuose). Tuo metu augalai turëjo<br />

vidutiniðkai 7,5 lapo. Kita dalis augalø toliau buvo ðvitinama ta paèia 10 kJ m -2 p -1 UV-B<br />

doze. Kai augalai buvo ðvitinami 10 ar 14 dienø 10 kJ m -2 p -1 UV-B doze, poveikis<br />

augalams buvo per daug stiprus (1 pav.), todël UV-B spinduliø dozë sumaþinta iki<br />

5 kJ m -2 p -1 . Dalis augalø nebuvo ðvitinami UV-B. Jie naudoti palyginti kaip kontroliniai<br />

arba, jiems uþauginus 9 lapus, vël buvo dalijama á dvi grupes: viena neðvitinta<br />

(kontrolinë), o kita – ðvitinta 5 kJ m -2 p -1 UV-B doze. Visais kartais ðvitinta vidurdiená,<br />

kol pasiekta reikalinga 5 arba 10 kJ m -2 p -1 UV-B spinduliuotës dozë.<br />

Lapø plotui nustatyti augalai skenuoti <strong>ir</strong> naudota „SigmaScan Pro-4“ („Jandel<br />

Scientific Software“) programa. Tø paèiø augalø nustatyta þalia masë <strong>ir</strong> sausosios<br />

medþiagos, ketv<strong>ir</strong>tojo nuo augalo apaèios lapo masë <strong>ir</strong> plotas. Karotinoidø <strong>ir</strong> chlorofilø<br />

a <strong>ir</strong> b kiekis nustatytas treèiajame <strong>ir</strong> ketv<strong>ir</strong>tajame lapuose nuo apaèios. Siekiant<br />

nustatyti SOD aktyvumà <strong>ir</strong> izofermentinæ sudëtá, lapai homogenizuoti ðaltyje (panaudotas<br />

Na-K fosfatinis buferis, pH 7,8). SOD elektroforezë atlikta 4–10% PAAG pagal<br />

V. K. Laemmlá (1970). Bendras SOD aktyvumas nustatytas spektrofotometru.<br />

Metodas paremtas SOD savybe inhibuoti NBT fotocheminæ reakcijà (Beauchamp,<br />

Fridovich 1971). Baltymø kiekis lapuose nustatytas pagal M. N. Bradfordà (1976), o<br />

karotinoidø <strong>ir</strong> chlorofilø a <strong>ir</strong> b kiekis – 100% acetono ekstrakte spektrofotometru,<br />

bangos ilgiai – 662,0, 644,0 <strong>ir</strong> 440,5 nm pagal D. Vetðteinà (Wettstein, 1957). Statistinë<br />

analizë atlikta pagal „MS Exel 2003“ („Microsoft Corporation“) programà.<br />

Rezultatai. Kaip <strong>ir</strong> buvo tikëtasi, periodinë apðvita 10 kJ m -2 p -1 UV-B doze<br />

(10–14 parø) slopino pomidorø augimà <strong>ir</strong> tai buvo pastebima netgi vizualiai (1 pav.).<br />

1 pav. 14 parø ðvitintø 10 kJ m -2 p -1 UV-B (a) <strong>ir</strong> kontroliniø, neðvitintø (b) to paties<br />

amþiaus pomidorø augalø palyginimas<br />

Fig. 1. Comparison of tomato plants exposed (a) for 14 days to 10 kJ m -2 d -1 UV-B with<br />

untreated control (b) plants of the same age<br />

242


Taèiau detalesnis augalø ávertinimas vaizdþiai rodo, kad efektas priklauso ne tiek<br />

nuo spinduliuotës poveikio trukmës, kiek nuo t<strong>ir</strong>to rodiklio: vienus veikia stipriau,<br />

kitus – silpniau (1 lentelë).<br />

1 lentelë. Apðvitos 10 kJ m -2 p -1 UV-B poveikis áva<strong>ir</strong>iems pomidorø augimo <strong>ir</strong><br />

biocheminiams rodikliams<br />

Table 1. Effect of 10 kJ m -2 p -1 UV-B <strong>ir</strong>radiation on different characters of tomato plants<br />

Augalo rodiklis<br />

Plant character<br />

Lapø skaièius<br />

Number of leaves<br />

Augalo aukštis<br />

Plant height, cm<br />

Augalo þalia masë<br />

Fresh weight, g<br />

Augalo sausosios medžiagos<br />

Dry weight, g<br />

Lapo svoris<br />

Weight of leaf, g<br />

UV-B poveikis / UV-B exposure<br />

10 parø / 10 days 14 parø / 14 days<br />

kontrolë / control UV-B<br />

kontrolë /<br />

UV-B<br />

control<br />

7,8 ± 0,2 7,8 ± 0,3 9,2 ± 0,2 9,5 ± 0,5<br />

26,1 ± 1,2 23,4 ± 1, 2 28,1 ± 1,7 21,3 ± 1,9 2<br />

10,7 ± 0,8 7,0 ± 0,6 2 12,4 ± 1,3 5,9 ± 0,9 3<br />

0,49 ± 0,04 0,35 ± 0,04 1 0,63 ± 0,08 0,32 ± 0,06 1<br />

1,59 ± 0,14 0,67 ± 0,09 3 1,93 ± 0,17 0,56 ± 0,12 3<br />

Cha*, mg g -1 1,04 ± 0,02 0,85 ± 0,02 3 0,93 ± 0,02 0,72 ± 0,04 3<br />

Chb*, mg g -1 0,29 ± 0,01 0,26 ± 0,01 1 0,28 ± 0,01 0,<strong>25</strong> ± 0,02<br />

Karotinoidai<br />

Carotenoids, mg g -1<br />

0,48 ± 0,01 0,41 ± 0,02 3 0,43 ± 0,03 0,37 ± 0,02<br />

1 – P < 0,05; 2 – P < 0,01; 3 – P < 0,001<br />

* Cha – chlorofilas a / Chlorophyll a; Chb – chlorofilas b / Chlorophyll b<br />

Lapø skaièius po apðvitos UV-B ið esmës nepasikeitë, todël ðis rodiklis <strong>ir</strong> naudotas<br />

augalø raidai ávertinti. Ið 1 lentelëje pateiktø 8 rodikliø neigiamas UV-B poveikis<br />

labiausiai pas<strong>ir</strong>eiðkë lapø biomasei, kuri po 10 parø apðvitos 10 kJ m -2 p -1 UV-B sumaþëjo<br />

2,37 karto, o po 14 parø – net 3,45 karto. UV-B efektas labai priklausë nuo<br />

pas<strong>ir</strong>inkto rodiklio. Tuo buvo galima ásitikinti, UV-B efektà iðreiðkus procentais <strong>ir</strong><br />

apðvitintus augalus palyginus su kontroliniais augalais (2 pav.).<br />

Akivaizdu, kad gerokai sumaþëjo <strong>ir</strong> augalo sausøjø medþiagø kiekis, tad, reikia<br />

manyti, slopinama fotosintezë. Apie tai galima spræsti <strong>ir</strong> pagal sumaþëjusá pigmentø<br />

kieká lapuose po 10 parø apðvitos. Po 14 parø labiau sumaþëjo tik chlorofilo a kiekis<br />

lapuose (1 lentelë <strong>ir</strong> 2 pav.).<br />

243


2 pav. Apðvitos 10 kJ m -2 p -1 UV-B efektyvumas áva<strong>ir</strong>iems pomidorø rodikliams.<br />

Palyginimas % su kontroliniais neðvitintais augalais<br />

Fig. 2. Effect of 10 kJ m -2 d -1 UV-B radiation on different plant characters of tomato.<br />

Comparison (%) with the level to of control plants without <strong>ir</strong>radiation<br />

Sumaþëjo <strong>ir</strong> lapo plotas (3 pav.), taèiau 10 kJ m -2 p -1 UV-B poveikis labai pastebimai<br />

priklausë nuo t<strong>ir</strong>iamojo lapo padëties ant augalo <strong>ir</strong> apðvitos UV-B trukmës. Kai<br />

apðvita truko 10 parø, treèiojo lapo nuo apaèios plotas sumaþëjo labai neþymiai, taèiau<br />

juo lapai buvo aukðèiau ant stiebo, tuo UV-B efektas lapø plotui buvo stipresnis<br />

(3 pav., a). Kai apðvita 10 kJ m -2 p -1 UV-B truko ilgiau – 14 dienø, lapø plotas dar<br />

labiau sumaþëjo (3 pav., b), netgi to paties treèiojo nuo apaèios lapo, kuriam prieð tai<br />

poveikis buvo paklaidos ribose (palyg. 3 pav., a <strong>ir</strong> b).<br />

3 pav. Sumaþëjæs lapø plotas po pomidorø apðvitos 10 kJ m -2 p -1 UV-B.<br />

Efekto priklausomumas nuo apðvitos trukmës <strong>ir</strong> lapo padëties ant augalo:<br />

a – apðvita 10 parø; b – apðvita 14 parø; 3-L; 4-L; 5-L – lapo padëtis ant<br />

augalo nuo apaèios á v<strong>ir</strong>ðø<br />

Fig. 3. Decrease of leaf area after <strong>ir</strong>radiation of tomato plants with 10 kJ m -2 d -1 UV-B.<br />

Dependence from prolongation of treatment and of leaf position on plant:<br />

a- treatment for 10 days; b – treatment for 14 days; 3-L; 4-L;<br />

5-L – leaf position from bottom to upwards<br />

244


Ádomus buvo 5 kJ m -2 p -1 UV-B spinduliuotës dozës poveikis pomidorams<br />

(2 lentelë). Ðià bandymo dalá reikia vertinti kaip atsk<strong>ir</strong>à bandymà, nes apðvita pradëta<br />

po 14 dienø pertraukos <strong>ir</strong> augalai per tà laiko tarpà ûgtelëjo, nors paèios auginimo<br />

sàlygos nesikeitë. Apðvitinti augalai pagal daugumà t<strong>ir</strong>tø rodikliø lenkë kontrolinius<br />

augalus. Po apðvitinimo 5 kJ m -2 p -1 UV-B doze sumaþëjo tik lapo masë <strong>ir</strong> beveik<br />

nepasikeitë pigmentø (karotinoidø <strong>ir</strong> chlorofilø a <strong>ir</strong> b) kiekis lapuose (2 lentelë ).<br />

2 lentelë. Apðvitos 5 kJ m -2 p -1 UV-B poveikis áva<strong>ir</strong>iems pomidorø rodikliams<br />

Table 2. Effect of 5 kJ m -2 d -1 UV-B on different characters of tomato plants<br />

Augalo rodiklis<br />

Plant character<br />

Lapø skaièius, vnt.<br />

Number of leaves<br />

Augalo aukštis<br />

Plant height, cm<br />

Augalo þalia masë<br />

Fresh weight, g<br />

Augalo sausosios medžiagos<br />

Dry weight, g<br />

Lapo svoris<br />

Weight of leaf, g<br />

Control<br />

Kontrolë<br />

UV-B 5 kJ m - ²<br />

12 ± 0,2 13,1 ± 0,3 2<br />

69,2 ± 2,7 77,1 ± 2,7 1<br />

21,6 ± 1,9 27,4 ± 2,1 1<br />

1,12 ± 0,13 1,72 ± 0,22 1<br />

1,30 ± 0,09 1,02 ± 0,08 1<br />

Cha*, mg g -1 1,48 ± 0,13 1,33 ± 0,02<br />

Chb*, mg g -1 0,56 ± 0,07 0,58 ± 0,05<br />

Karotinoidai<br />

Carotenoids, mg g -1 0,39 ± 0,12 0,50 ± 0,02<br />

1 – P < 0,05; 2 – P < 0,01<br />

* Cha – chlorofilas a / chlorophyll a; Chb – chlorofilas b / chlorophyll b.<br />

4 pav. Apðvitos 5 kJ m -2 p -1 UV-B poveikis pomidorø lapø plotui: 6-L;<br />

5-L – lapo padëtis nuo augalo v<strong>ir</strong>ðûnës<br />

Fig. 4. Effect of <strong>ir</strong>radiation with 5 kJ m -2 d -1 UV-B on leaf area tomato plants: 6-l;<br />

5-L – leaf area from apex<br />

245


Kadangi UV-B apðvitinti augalai turëjo vienu lapu daugiau (kontrolë – 12, o<br />

UV-B – 13), kad bûtø suvienodintos tyrimø sàlygos, antrajame bandyme lapai tyrimams<br />

buvo imami skaièiuojant ne nuo apaèios, bet nuo v<strong>ir</strong>ðûnës, konkreèiai – ðeðtasis<br />

<strong>ir</strong> penktasis (4 pav.). Tai atitiktø kontrolinio augalo septintàjá <strong>ir</strong> aðtuntàjá lapà, o<br />

5 kJ m -2 p -1 UV-B – aðtuntàjá <strong>ir</strong> devintàjá lapà nuo apaèios. Netgi pagal lapø plotà<br />

ryðkaus UV-B poveikio nepastebëta, nors neþymiai lapø plotas sumaþëjo tik jaunesniøjø,<br />

5-tø nuo v<strong>ir</strong>ðûnës lapø, taèiau tarp t<strong>ir</strong>tøjø augalø buvo dideli svyravimai.<br />

Apðvita 5 kJ m -2 p -1 UV-B doze neslopino <strong>ir</strong> baltymø kiekio bei superoksido<br />

dismutazës (SOD) aktyvumo pomidorø lapuose (5 pav.).<br />

5 pav. Superoksido dismutazës (SOD) aktyvumas <strong>ir</strong> baltymø kiekis kontroliniø<br />

(neðvitintø) <strong>ir</strong> 14 parø ðvitintø 5 kJ m -2 p -1 UV-B pomidorø lapuose<br />

Fig. 5. Superoxide dismutase (SOD) activity and protein content in tomato leaves of<br />

unexposed (control – K) or exposed for 14 days with 5 kJ m -2 p -1 UV-B plants<br />

Ðioks toks abiejø ðiø biocheminiø rodikliø padidëjimas yra paklaidos ribose. Taèiau<br />

5 kJ m -2 p -1 UV-B poveikis yra neabejotinas SOD elektroforetiniø frakcijø spektro<br />

pokyèiams. Keturios naujos SOD frakcijos iðryðkëja pomidorø lapuose po poveikio<br />

ðia 5 kJ m -2 p -1 UV-B doze (6 pav.).<br />

6 pav. Superoksido dismutazës spektrø palyginimas ðvitintø 14 parø 5 kJ m -2 p -1 UV-B<br />

<strong>ir</strong> neðvitintø (kontroliniø – K, tokio pat amþiaus) pomidorø lapuose. Papildomos SOD<br />

frakcijos, ats<strong>ir</strong>adusios dël UV-B poveikio, parodytos rodyklëmis. K – kontroliniø<br />

augalø, neðvitintø UV-B, lapai; UVB – SOD ið ðvitintø augalø lapø<br />

Fig. 6. Comparison of superoxide dismutase (SOD) spectra in leaves of tomato. Plants<br />

exposed for 14 days to 5 kJ m -2 d -1 UV-B or in leaves unexposed (control) plants of the<br />

same age. K – SOD in leaves of control plants; UVB – SOD in leaves exposed to UV-B<br />

plants. The new SOD fractions are showen with arrows<br />

246


Aptarimas. Negalima garantuoti dël kitø pomidorø genotipø, bet pomidorø ‘Svara’<br />

tyrimai parodë, kad manipuliuojant UV-B dozëmis <strong>ir</strong> augalø iðsivystymo tarpsniu,<br />

galima valdyti áva<strong>ir</strong>ius augalo augimo <strong>ir</strong> biocheminius rodiklius. Taèiau bûtini konkretûs<br />

kiekvieno genotipo tyrimai, nes UV-B poveikis áva<strong>ir</strong>iems kiekybiniams pomidorø<br />

‘Svara’ rodikliams pas<strong>ir</strong>eiðkë labai nevienodai, o pagal ðiuos poþymius, nulemtus<br />

adityviøjø genø, daþniausiai sk<strong>ir</strong>iasi augalø, tarp jø <strong>ir</strong> pomidorø, veislës. Ryðys tarp<br />

atsako á UV-B poveiká <strong>ir</strong> augalo genotipo pomidorams yra nustatytas (Srinivas <strong>ir</strong> kt.,<br />

2004). Kita vertus, mûsø tyrimai patv<strong>ir</strong>tino, kad, keièiant UV-B dozæ <strong>ir</strong> apðvitos sàlygas,<br />

galima suaktyvinti augalui svarbiø fermentø (Thalma<strong>ir</strong> <strong>ir</strong> kt., 1996; Hada <strong>ir</strong> kt.,<br />

2001) <strong>ir</strong> antriniø metabolitø (Björn, Wang, 2000; Björn <strong>ir</strong> kt., 2002), antocianinø<br />

(Drumm-Herrel, Mohr, 1982; Bertrani, Lercari, 2000), fenilpropanoidø (Yang <strong>ir</strong> kt.,<br />

1999; Guidi <strong>ir</strong> kt., 2005), flavonoidø (Verhoeyen <strong>ir</strong> kt., 2002) sintezæ. Be to, ðios<br />

medþiagos yra apsauginës augalo medþiagos, todël jø sintezës suaktyvinimu galima<br />

bûtø aiðkinti <strong>ir</strong> stimuliuojantá 5 kJ m -2 p -1 UV-B poveiká pomidorams, nustatytà mûsø<br />

darbe. Ði UV dozë stimuliavo netgi chlorofilo a sintezæ, nors 10 kJ m -2 p -1 dozë labai<br />

sumaþino chlorofilo a kieká lapuose.<br />

Ádomûs gauti SOD izozimø spektro pokyèiø, nustatytø elektroforezës metodu,<br />

rezultatai. Ðiame darbe nustatytas bendras SOD aktyvumas, ðvitinant stimuliuojanèia<br />

5 kJ m -2 p -1 UV-B doze, pakito labai neþymiai, bet UV-B poveikis SOD izozimø spektrui<br />

labai akivaizdus. Oksidacinis „sprogimas“ <strong>ir</strong> kaip atsakas á antioksidaciniø fermentø<br />

sintezës suaktyvinimà yra þinomi UV-B streso poþymiai (Mittler, 2002; Krupa,<br />

2003; Kakani <strong>ir</strong> kt., 2003). Tai nustatyta <strong>ir</strong> pomidorams (Balakumar <strong>ir</strong> kt., 1997),<br />

taèiau ðie tyrimai atlikti su tokiomis UV-B dozëmis, kurios augalà veikia slopinanèiai.<br />

SOD izozimø spektro pokyèiai, veikiant stimuliuojanèia UV-B doze, gali bûti viena ið<br />

preadaptacijos prieþasèiø, kai vienas paskui kità naudojami du toksiðki agentai arba<br />

pradþioje ðvitinama maþesne UV-B doze, o po to didesne (Krupa, 2003).<br />

Iðvados. 1. Manipuliuojant UV-B dozëmis <strong>ir</strong> apðvitos sàlygomis, galima reguliuoti<br />

pomidorø augimà.<br />

2. UV-B spinduliuotës poveikis áva<strong>ir</strong>iai pas<strong>ir</strong>eiðkia sk<strong>ir</strong>tingiems pomidorø rodikliams.<br />

Jautriausi UV-B spinduliuotei buvo ðie augimo poþymiai: augalo masë <strong>ir</strong> lapo<br />

plotas, maþiau keitësi karotinoidø, chlorofilø a <strong>ir</strong> b, baltymø kiekis.<br />

3. Stimuliuojanti UV-B dozë labai veikia SOD izozimø spektrà <strong>ir</strong> jø aktyvumà.<br />

Pastaba: Ðis darbas buvo remiamas Lietuvos valstybinio mokslo <strong>ir</strong> studijø fondo<br />

programos APLIKOM.<br />

Gauta 2006-05-31<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Appenroth K. J., Lenk G., Goldau L., Sharma R. Tomato seed germination: regulation<br />

of different response modes by phytochrome B2 and phytochrome A // Plant, Cell<br />

and Env<strong>ir</strong>onment. 2006. Vol. 29. N 4. P.701–709.<br />

2. Baier M., Kandlbinder A., Golldack D., Dietz K.-J. Oxidative stress and ozone:<br />

perception, signalling and response // Plant, Cell and Env<strong>ir</strong>onment. 2005. Vol. 28.<br />

P. 1012–1020.<br />

247


3.Balakumar T., Gayathri B., Anbudurai P. R. Oxidative stress injury in tomato plants<br />

induced by supplemental UV-B radiation // Biologia Plantarum. 1997. Vol. 39. P. 215–221.<br />

4. Barka E. A., Kalantari S., Makhlouf J. Arul J. Impact of UV-C <strong>ir</strong>radiation on the cellwall<br />

degrading enzymes, during ripening of tomato (Lycopersicon esculentum L.) fruit //<br />

Journal of Agricultural and Food Chemistry. 2000. Vol. 48. N 3. P. 667–671.<br />

5. Beauchamp C. O, Fridovich, I. Superoxide dismutase: improved assays and an<br />

assay applicable to acrylamide gels // Analytical Biochemistry. 1971. Vol. 44. P. 276–287.<br />

6. Bertrani L., Lercari B. Evidence against the involment of phytochrome in UV-Binduced<br />

inhibition of stem growth in green tomato plants // Photosynthesis Research.<br />

2000. Vol. 64. N 2–3. P. 107–117.<br />

7. Björn L., Wang T. Vitamin D in an ecological context // International Journal of<br />

C<strong>ir</strong>cumpolar Health. 2000. Vol. 59. P. 26–32.<br />

8. Björn L. O., Widell S., Wang T. Evoliution of UVB regulation and protection in<br />

plants // Advance in Space Research. 2002. Vol. 30. N 6. P. 1557–1562.<br />

9. Booker F. L., Burkey K. O., Overmyer K., Jones A. M. Differential responses of G-<br />

protein Arabidopsis thaliana mutants to ozone // New Phytologist. 2004. Vol. 162. P. 633–641.<br />

10. Bradford M. N. A rapid and sensitive method for the quantification of microgram<br />

quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry.<br />

1976. Vol. 72. P. 248–<strong>25</strong>7.<br />

11. Cativelli L., Baldi P., Crosatti C., DiFonzo N., Faccioli P., Grossi M., Mastrangelo<br />

A.M., Pecchioni N., Stanca A.M. Chromosome regions and stress-related sequences involved<br />

in resistance abiotic stress in Triticacae // Plant Molecular Biology. 2002. Vol. 48.<br />

P. 649–665.<br />

12. Cavallini A., Natali L., Tontoni R., Cionini G., Lercari B. White and UV light effects<br />

on cell nuclei in the aurea genotype of Lycopersicum esculentum L. // Cytobios. 2001.<br />

Vol. 104. N 406. P. 83–98.<br />

13. Drumm-Herrel H., Mohr H. Effect of blue/UV light on anthocyanin synthesis in<br />

tomato seedlings in the absence of bulk carotinoids // Photochemistry and Photobiology.<br />

1982. Vol. 35. P. 229–233.<br />

14. Examining the health benefits of lycopene from tomatoes. Nutritional News. 2003.<br />

April. P. 1–2.<br />

15. Gitz D. C., Liu-Gitz L. How do UV phytomorphogenic responses confer water<br />

stress tolerance // Photochemistry and Photobiology. 2003. Vol. 78. N 6. P. 529–534.<br />

16. Guidi L., Innocenti E. D., Genovesi S., Soldatini G. F. Photosynthesis process and<br />

activities of enzymes involved in the phenylpropanoid patway in resistant and sensitive<br />

genotypes of Lycopersicon esculentum L. exposed to ozone // Plant Science. 2005.<br />

Vol. 168. P. 153–160.<br />

17. Hada M., Hino K., Takeuchi Y. Development of UV defense mechanisms during<br />

growth spinach seedlings // Plant and Cell Physiology. 2001. Vol. 42. N 7. P. 784–787.<br />

18. Hashimoto T. Requ<strong>ir</strong>ements of blue, UV-A, and UV-B light for normal growth of<br />

higher plants, as assessed by action spectra for growth and related phenomena // In:<br />

Lighting in Controlled Env<strong>ir</strong>onments. Workshop. Eds. T.W Tibbitts. NASA-CR Univ.Wisconsin.<br />

1994. P. 95–3309.<br />

19. Holley S. R., Yalamanchili R. D., Ryan C. A., Stratmann J. W. Convergence of<br />

signaling pathways induced by systemin oligosaccharide elicitors, and ultraviolet-B radiation<br />

at the level of mitogen – activated protein kinases in wild tomato suspension –<br />

cultured cells // Plant Physiology. 2003. Vol. 132. P. 1728–1738.<br />

20. Johannes W., Stelmach B. S., Weiler E. W., Rvan C. A. UVB and UVA radiation<br />

activates a 48 KDA myelin basic protein kinase and potentiates wound signaling in tomato<br />

leaves // Photochemistry and Photobiology. 2000. Vol. 71. N 2. P. 116–123.<br />

248


21. Jordan B. R. The effects of ultraviolet-B-radiation on plants // Advances in Botanical<br />

Research. 1996. Vol. 22. P. 97–162.<br />

22. Kacperska A. Sensor types in signal transduction pathways in plant cell responding<br />

to abiotic stressors: do they depend on the stress intensity // Physiologia Plantarum.<br />

2004. Vol. 22. P. 159–168.<br />

23. Kakani V. G., Reddy K. R., Zhao D., Sailaja K. Field crop response to ultraviolet-<br />

B radiation: a review // Agricultural and Forest Meteorology. 2003. Vol. 120. P. 191–218.<br />

24. Krupa S. V., Jäger H.-J. Adverse effect of elevated levels of ultraviolet (UV-B)<br />

radiation and ozone (O 3<br />

) on crop growth and productivity // In: Global Climate Change<br />

and Agricultural Production. J.Willey and Son. Roma. 1996. 7–th part. P. 141–169.<br />

<strong>25</strong>. Krupa S. V. Joint effect of elevated levels of ultraviolet-B radiation, carbon dioxide<br />

and ozone on plants // Photochemistry and Photobiology. 2003. Vol. 78. N 6. P. 535–54.<br />

26. Laemmli V. K. Cleavage of structural proteins during the assembly of the head of<br />

bacteriophage T4 // Nature. 1970. Vol. 227. P. 680–685.<br />

27. Levy J., Sharoni Y. The functions of tomato lycopene and its role in human health.<br />

Herbal Gram. 2004. Vol. 62. P. 49–56.<br />

28. Marcel J. A. K. Ultraviolet-B radiation effects on plants: induction of morphogenetic<br />

responses // Physiologia Plantarum. 2002. Vol. 116. P. 423–429.<br />

29. Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends in Plant<br />

Science. 2002. Vol. 7. P. 405–410.<br />

30. Sponga F., Deitzer G. F., Mancinelli A. L. Cryptochrome, phytochrome and the<br />

phytoregulation of anthocyanin production under blue light // Plant Physiology. 1986.<br />

Vol. 82. N4. P. 952–955.<br />

31. Srinivas A., Behera R. K., Kagawa T., Wada M., Sharma R. High pigment 1<br />

mutation negatively regulates phototropic signal tranduction in tomato seedlings // Plant<br />

Physiology. 2004. Vol. 134. P. 790–800.<br />

32. Stratmann J. W., Stelmach B. A, Weiler E. W. Ryan C. A. UVB/UVA radiation<br />

activities a 48 kDa myelin basic proteinkinase and potentiates wound signaling in tomato<br />

leaves // Photochemistry and Photobiology. 2000. Vol. 71. P. 116–123.<br />

33. Stratmann J.W. Ultraviolet-B-radiation co-opts defense signaling pathways //<br />

Trends in Plant Science. 2003. Vol. 8. P. 526–533.<br />

34. Tattini M., Guidi L., Morassi-Bonzi L., Pinelli P., Remorini D., Degl’Innocenti E.,<br />

Giordano C., Massai R., Agati G. On the role of flavonoids in the integrated mechanisms<br />

of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation // New<br />

Phytologist. 2005. Vol. 167. P. 457–470.<br />

35. Thalma<strong>ir</strong> M., Bauw G., Thiel S., Döhring T., Langebartels C., Sandermann H.<br />

Ozone and ultraviolet B effects on defence-related proteins ß-1,3 glucanase and chitinase<br />

in tobacco // Journal of Plant Physiology. 1996. Vol. 148. P. 222–228.<br />

36. Verhoeyen M. E., Bovy A., Collins G., Mu<strong>ir</strong> S., Robinson S., de Vos C. H. R.,<br />

Colliver S. Increasing antioxidant levels in tomatoes throught modifications in the flavonoid<br />

biosynthetic pathway // Journal of Experimental Botany. 2002. Vol. 53 N 377.<br />

P. 2099–2106.<br />

37. Wettstein, D. Chlorophyll Letale und der submikroskopishe Formweschsel der<br />

Plastiden // Experimental cell research. 1957. Vol. 12. p. 427.<br />

38. Yang X. X., Choi H. W., Yang S. F., Li N. A UV-light activated cinnamic acid isomer<br />

regulates plant growth and gravitropism via and ethylene receptor-independent pathway //<br />

Australian Journal of Plant Physiology. 1999. Vol. 26 N 4. P. 3<strong>25</strong>–335.<br />

249


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

GROWTH PARAMETERS DEPENDENCE OF TOMATO<br />

(LYCOPERSICON ESCULENTUM MILL.) FROM UV-B<br />

IRRADIATION<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë, D. Ðvegþdienë, Z. Janèys,<br />

K. Ðlekytë, P. Duchovskis, A. Brazaitytë, J. Ðikðnianienë<br />

Summary<br />

UV-B stress response induction in tomato may have significance as means for<br />

regulation of plant growth and synthesis of the biological active substances. The<br />

goal of this study was to compare UV-B effect on variuos parameters of tomato cv.<br />

Svara: plant height, fresh and dry weight; weight and area of leaves; concentration<br />

of carotenoids, chlorophylls a and b and protein, superoxside dismutase (SOD) activity<br />

and isozyme spectra in leaves. In two experiments on the same material the<br />

two diferrent UV-B doses 10 and 5 kJ m -2 p -1 UV-B were examinated and it was<br />

showen that manipulation in UV-B doses gives different effect on the same plant<br />

parameter. That effect of UV-B can be used for regulation of tomato growth and<br />

synthesis of various substances. The effect of UV-B on variuos parameters tested in<br />

this work was different. As a tomato response to UV-B, the significant alteration of<br />

SOD spectra has been observed even after treatment with 5 kJ m -2 p -1 UV-B dose<br />

which shows stimulation effect on plant growth parameters.<br />

Key words: UV-B stress, dose differences, tomato, effect on growth, SOD<br />

isozyme spectra.<br />

<strong>25</strong>0


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RAUDONØJØ BUROKËLIØ ‘KAMUOLIAI’ KAI KURIØ<br />

ORGANINIØ MEDÞIAGØ DINAMIKA ÞYDËJIMO<br />

INDUKCIJOS IR EVOKACIJOS TARPSNIAIS<br />

Jûratë Bronë ÐIKÐNIANIENË, Pavelas DUCHOVSKIS,<br />

Pranas VIÐKELIS, Ona Danutë PETRONIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas J.Siksnianiene@lsdi.lt<br />

T<strong>ir</strong>ta organiniø medþiagø kaita raudonøjø burokëliø (Beta vulgaris L. var.<br />

Conditiva Alef.) ‘Kamuoliai’ pasoduose jø laikymo metu bei pasodinus á laukà<br />

þydëjimo indukcijos bei evokacijos tarpsniais. Burokëliø pasodai auginti Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto darþoviø bandymo laukuose pagal institute<br />

taikomas technologijas. Burokëliø ðakniavaisiai laikyti saugykloje +1 - +4°C temperatûroje.<br />

Ëminiai analizëms imti kas mënesá (nuo spalio iki balandþio). Pasodai á<br />

laukà pasodinti geguþës mën., ëminiai analizëms imti kas 10 dienø. Burokëliø þydëjimo<br />

indukcijos procesai tæsiasi per visà laikymo laikà, o pasodinus jø pasodus á<br />

laukà, prasideda evokacijos procesai. Pereinant ið þydëjimo indukcijos á evokacijos<br />

tarpsná, burokëliø ðakniavaisiuose vyksta atsarginiø medþiagø hidrolizë – sacharozës<br />

<strong>ir</strong> bendrojo cukraus bei invertuoto cukraus <strong>ir</strong> azoto medþiagø sintezë. Bendrojo<br />

cukraus <strong>ir</strong> azoto santykis, pereinant ið þydëjimo indukcijos á evokacijos tarpsná,<br />

sumaþëja.<br />

Reikðminiai þodþiai: azoto medþiagos, cukrûs, evokacijos tarpsniai, raudonieji<br />

burokëliai, þydëjimo indukcija.<br />

Ávadas. Þiemojanèiø dvimeèiø <strong>ir</strong> daugiameèiø augalø þydëjimo iniciacijoje iðsk<strong>ir</strong>iami<br />

tokie pagrindiniai etapai: þydëjimo indukcija, evokacija, þiedø iniciacija, gametø<br />

iniciacija <strong>ir</strong> þydëjimo stimulo komplekso destrukcija. Þydëjimo indukcija – etapas,<br />

kai dël iðoriniø <strong>ir</strong> vidiniø veiksniø átakos formuojasi þydëjimo stimulas. Evokacija –<br />

generatyvinës organogenezës genø ekspresija <strong>ir</strong> tolesni procesai iki morfologiðkai<br />

iðreikðto þiedyno pradmens susiformavimo. Tai vienas sudëtingiausiø þydëjimo iniciacijos<br />

etapø, nes vyksta augalo ontogenezës posûkis nuo vegetatyvinës morfogenezës<br />

iki generatyviniø struktûrø formavimo (Duchovskis, 1996, 2000). Evokacijos<br />

procesuose, be hormoniniø <strong>ir</strong> fermentiniø sistemø, dalyvauja <strong>ir</strong> trofinës medþiagos.<br />

Kol kas visai neaiðkûs baltymø metabolizmo pokyèiai áva<strong>ir</strong>iais þydëjimo iniciacijos<br />

etapais. Tai ypaè aktualu evokacijos tarpsnyje, kai vyksta p<strong>ir</strong>møjø reproduktyviø<br />

baltymø sintezë (Wiebe, 1989). Bandoma árodyti, kad þydëjimo iniciacijos procesus<br />

<strong>25</strong>1


lemia <strong>ir</strong> C/N (bendrojo cukraus/azoto) santykis augaluose arba kiti trofiniai veiksniai<br />

(Tran Thanh Van, Trink, 1978; Öûáóëüêî, 1979).<br />

Burokëliø ðakniavaisiuose yra apie 14–16 proc. t<strong>ir</strong>piø sausøjø medþiagø, 8–<br />

12 proc. cukrø, tarp kuriø dominuoja sacharozë. Burokëliø lapuose yra daugiau azoto<br />

junginiø negu ðakniavaisiuose, didþiàjà jø dalá sudaro baltymai (albuminai, globulinai).<br />

Lapuose <strong>ir</strong> ðakniavaisiuose yra daug askorbo rûgðties (20–21 mg 100 g -1 ), vitaminø<br />

B 1<br />

, B 2<br />

, P <strong>ir</strong> PP (Êðàñî÷êèí, 1971).<br />

Angliavandeniø <strong>ir</strong> azoto medþiagø metabolizmas evokacijos metu maþai tyrinëtas.<br />

Tuomet þydëjimo stimulas nestabilus, gali vykti jo destrukcija (Wiebe, 1989).<br />

Dël þydëjimo stimulo destrukcijos apikalinë meristema gali gráþti á vegetatyvinæ bûsenà<br />

(II organogenezës etapas) (Äóõîâñêèé, 1983, Duchovskis, 1998). Neaiðku, kokie angliavandeniø<br />

<strong>ir</strong> azoto medþiagø metaboliniai pasikeitimai gali ávykti dël tokiø pakitimø.<br />

Darbo tikslas – iðt<strong>ir</strong>ti ‘Kamuoliø’ veislës raudonøjø burokëliø angliavandeniø <strong>ir</strong><br />

azoto medþiagø dinamikà þydëjimo indukcijos bei evokacijos metu.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. Tyrimai atlikti 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto (LSDI) Augalø fiziologijos laboratorijoje. Raudonøjø<br />

burokëliø (Beta vulgaris L. var. Conditiva Alef.) ‘Kamuoliai’ pasodai auginti LSDI<br />

darþoviø bandymø laukuose pagal institute taikomas technologijas. Nuimti burokëliø<br />

pasodai laikyti saugykloje +1 – +4°C temperatûroje. Ëminiai analizëms imti kas mënesá<br />

(nuo spalio iki balandþio) per visà laikymo laikà <strong>ir</strong> kas 10 dienø, pasodus pasodinus<br />

á laukà (geguþës mën.). Kiekvienà kartà analizuota po tris kiekvienos dydþio<br />

frakcijos pasodus (1 lentelë). Nustatytas augalø organogenezës etapas, þydëjimo iniciacijos<br />

tarpsnis, cukrø <strong>ir</strong> azoto medþiagø kiekis. Organogenezës etapai nustatyti<br />

pagal F. Kupermano mokyklos sukurtà raidos periodizacijà bei metodologijà (Êóïåðìàí<br />

<strong>ir</strong> kt., 1982), þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniai – pagal P. Duchovská (Duchovskis,<br />

2004).<br />

1 lentelë. Raudonøjø burokëliø ðakniavaisio skersmuo, cm<br />

Table 1. Diameter of red beet root- crop (cm)<br />

Veislë<br />

I frakcija / I faction<br />

II frakcija / II faction<br />

Cultivar 2003–2004 m. 2004–2005 m. 2003–2004 m. 2004–2005 m.<br />

‘Kamuoliai’ 9,86 ± 0,451 9,44 ± 0,370 7,16 ± 0,367 5,80 ± 0,181<br />

2003 m. balandþio <strong>ir</strong> geguþës mënesiø vidutinë paros oro temperatûra buvo ðiek<br />

tiek aukðtesnë uþ daugiametá vidurká (2 lentelë). Vasara buvo ðilta, drëgmës pakako.<br />

Burokëliams dygti <strong>ir</strong> augti sàlygos buvo geros. 2004 m. geguþës <strong>ir</strong> b<strong>ir</strong>þelio vidutinë<br />

paros oro temperatûra buvo þemesnë uþ daugiametá vidurká, o krituliø iðkrito daugiau.<br />

Liepos mënuo buvo kiek vësesnis <strong>ir</strong> sausesnis, rugpjûtá iðkrito gerokai daugiau<br />

krituliø negu daugiametis vidurkis. Burokëliams augti tai buvo gan geri metai.<br />

Cheminës analizës atliktos LSDI Biochemijos <strong>ir</strong> technologijos laboratorijoje taikomais<br />

tyrimø metodais: t<strong>ir</strong>pios sausosios medþiagos nustatytos refraktometru (Ìåòîäû...,<br />

1987), (skaitmeninis refraktometras ATAGO), cukrûs – AOAC metodu (AOAC, 1990),<br />

sausosios medþiagos – gravimetriðkai, iðþiovinus +105°C temperatûroje iki nekintamos<br />

masës (Manuals, 1986), baltymø kiekis – Kjeldalio metodu (N x 6,<strong>25</strong>).<br />

<strong>25</strong>2


2 lentelë. Meteorologinës sàlygos raudonøjø burokëliø vegetacijos metu<br />

Table 2. Meteorological conditions during red beet vegetation<br />

Oro temperatûra / A<strong>ir</strong> temperature, °C Krituliai / Precipitation, mm<br />

Mënuo<br />

1924–2000 m.<br />

1924–2000 m.<br />

Month 2003 m. 2004 m.<br />

2003 m. 2004 m.<br />

vidurkis / average<br />

vidurkis / average<br />

Balandis / April 7,5 9,6 5,8 32,3 32,3 42,0<br />

Geguþë / May 15,7 10,7 11,9 45,1 46,2 43,7<br />

B<strong>ir</strong>želis / June 15,4 13,7 16,6 57,1 77,4 50,4<br />

Liepa / July 20,1 16,1 17,6 118,0 50,4 71,8<br />

Rugpjûtis / August 17,5 16,7 16,3 52,4 123,4 75,8<br />

Rugsëjis / September 12,8 11,6 12,0 27,9 36,2 30,0<br />

Kauno meteorologijos stotis, 2003–2004 m. / Kaunas Meteorological Station, 2003–2004<br />

Cheminës sudëties duomenys matematiðkai apdoroti „Microsoft Excel“ programa.<br />

Apskaièiuota standartinë paklaida.<br />

Rezultatai. Raudonøjø burokëliø augimo kûgeliai laikymo metu buvo II organogenezës<br />

etapo. Prasidëjus burokëliø pasodø vegetacijai, kai jie buvo pasodinti á<br />

laukà, augimo kûgeliai perëjo á I evokacijos tarpsná. Raudonøjø burokëliø augimo<br />

kûgelio skersmuo II organogenezës etape kito nuo 0,13 iki 0,17 mm, III etape –<br />

nuo 0,26 iki 0,33 mm, IV etape – nuo 0,48 iki 0,87 mm (3 lentelë). Pasodinus<br />

pasodus á laukà, II frakcijos burokëliai augo sparèiau <strong>ir</strong> jø augimo kûgeliai buvo<br />

didesni.<br />

3 lentelë. ‘Kamuoliø’ veislës raudonøjø burokëliø augimo kûgeliø skersmuo<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais, mm<br />

Table 3. Apex diameter of red beet cultivar ‘Kamuoliai’ during flowering<br />

induction and evocation stages, mm<br />

Metai<br />

Year<br />

Þydëjimo indukcija,<br />

II organogenezës etapas<br />

Flowering induction,<br />

organogenesis stage II<br />

I evokacijos tarpsnis,<br />

III organogenezës etapas<br />

Evocation stage I,<br />

organogenesis stage III<br />

II evokacijos tarpsnis,<br />

IV organogenezës etapas<br />

Evocation stage II,<br />

organogenesis stage IV<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

2003–2004 m. 0,17 ± 0,0<strong>25</strong> 0,15 ± 0,018 0,27 ± 0,017 0,33 ± 0,076 0,48 ± 0,0<strong>25</strong> 0,87 ± 0,067<br />

2004–2005 m. 0,15 ± 0,015 0,13 ± 0,012 0,26 ± 0,021 0,30 ± 0,072 0,55 ± 0,151 0,70 ± 0,050<br />

2003–2004 m. raudoniesiems burokëliams pereinant ið þydëjimo indukcijos<br />

(II organogenezës etapo) á evokacijos (III – IV organogenezës etapà) tarpsná, sausøjø<br />

medþiagø kiekis sumaþëjo daugiau kaip 3 proc. (4 lentelë). 2004–2005 m. burokëliø<br />

ðakniavaisiuose rasta maþiau sausøjø medþiagø. Tam átakos galëjo turëti didelis<br />

krituliø kiekis vasaros pabaigoje <strong>ir</strong> rudená. Tais metais, burokëliams pereinant ið þydëjimo<br />

indukcijos á evokacijos tarpsná, sausøjø medþiagø kiekis sumaþëjo iki 2,8 proc.<br />

(I frakcijos pasodø) <strong>ir</strong> 4,1 proc. (II frakcijos pasodø).<br />

<strong>25</strong>3


4 lentelë. Sausøjø medþiagø dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose, %<br />

Table 4. The dynamics of dry matter in red beet ‘Kamuoliai’ root crop (%)<br />

Metai<br />

Year<br />

I frakcija / I faction<br />

organogenezës etapas<br />

organogenesis stage<br />

II frakcija / II faction<br />

organogenezës etapas<br />

organogenesis stage<br />

II III – IV II III – IV<br />

2003–2004 m. 18,8 ± 0,45 14,9 ± 0,68 19,4 ± 0,64 15,6 ± 0,73<br />

2004–2005 m. 15,5 ± 0,41 12,7 ± 0,18 17,1 ± 0,4 13,0 ± 0,37<br />

Vidurkis / Average 17,1 ± 0,98 13,8 ± 0,91 18,1 ± 0,77 14,3 ± 1,07<br />

2003–2004 m. I frakcijos burokëliø ðakniavaisiuose þydëjimo indukcijos metu iki<br />

kovo mënesio invertuoto cukraus kiekis kito nuo 0,23 iki 0,65 proc. (1 A pav.). Kovo<br />

mënesá, baigiantis þydëjimo indukcijos tarpsniui, invertuoto cukraus kiekis padidëjo iki<br />

1 proc. <strong>ir</strong> panaðus iðliko visà evokacijos tarpsná. 2004–2005 m. invertuoto cukraus<br />

kiekis burokëliø ðakniavaisiuose kito panaðiai: iki balandþio mën. – nuo 0,<strong>25</strong> iki<br />

0,52 proc., balandþio mën. padidëjo iki 0,65 proc., o geguþës mën. (II evokacijos<br />

tarpsnis) – iki 0,99 proc. (1 B pav.). II frakcijos burokëliø ðakniavaisiuose invertuoto<br />

cukraus kiekis þydëjimo indukcijos <strong>ir</strong> evokacijos metu kito taip: 2003–2004 m. – nuo<br />

0,27 iki 0,71 proc. (1 C pav.), o 2004–2005 m. – nuo 0,32 iki 0,71 proc. (1 D pav.).<br />

1 pav. Invertuoto cukraus dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 1. The dynamics of inverted sugar in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

Sacharozës kiekis, pereinant ið þydëjimo indukcijos á evokacijos tarpsná, sumaþëjo<br />

(2 pav.). 2003–2004 m. þydëjimo indukcijos tarpsniu sacharozës kiekis I frakcijos<br />

burokëliø ðakniavaisiuose kito nuo 7,5 iki 12,6 proc. (2 A pav.), II frakcijos<br />

ðakniavaisiuose – nuo 8,2 iki 11,8 proc. (2 C pav.), 2004–2005 m. I frakcijos ðaknia-<br />

<strong>25</strong>4


vaisiuose – nuo 8,2 iki 10,1proc. (2 B pav.), II frakcijos ðakniavaisiuose – nuo 7,3 iki<br />

11,1 proc. (2 D pav.). Evokacijos tarpsniu sacharozës kiekis sumaþëjo (2 pav). Antru<br />

evokacijos tarpsniu 2003–2004 m. I frakcijos pasoduose buvo 7,2 proc. sacharozës<br />

(2 A pav.), II frakcijos – 7,3 proc. (2 C pav.), o 2004–2005 m. I frakcijos –<br />

6,4 proc. (2 B pav.), II frakcijos – 6,1 proc. (2 D pav.)<br />

2 pav. Sacharozës dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 2. The dynamics of saccharose in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

3 pav. Bendrojo cukraus dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 3. The dynamics of total sugar in red beet ‘Kamuoliai’ root crop during<br />

flowering induction and evocation<br />

<strong>25</strong>5


Bendrojo cukraus kitimo dinamika burokëliø ðakniavaisiuose tokia pati kaip <strong>ir</strong><br />

sacharozës (3 pav.). 2003–2004 m. þydëjimo indukcijos tarpsniu I frakcijos pasoduose<br />

bendrojo cukraus nustatyta 8,1–13,4 proc. (3 A pav.), II frakcijos – 8,7–<br />

12,1 proc. (3 C pav.), o 2004–2005 m. I frakcijos – 8,5–10,4 proc. (3 B pav.),<br />

II frakcijos – 11,3 proc. (3 D pav.). Antru evokacijos tarpsniu bendrojo cukraus<br />

kiekis sumaþëjo I frakcijos pasoduose atitinkamai iki 8,2 proc. (3 A pav.) <strong>ir</strong> 6,9 proc.<br />

(3 B pav.), II frakcijos – atitinkamai 7,9 proc. (3 C pav.) <strong>ir</strong> 6,5 proc. (3 D pav.).<br />

2003–2004 m., burokëliams pereinant ið þydëjimo indukcijos á evokacijos tarpsná,<br />

bendrojo azoto kiekis gerokai padidëjo (4 A, C pav.), o 2004–2005 m. iðliko<br />

nepakitæs (4 B, D pav.). I frakcijos burokëliø ðakniavaisiuose þydëjimo indukcijos<br />

metu bendrojo azoto kiekis kito nuo 1,12 iki 1,43 proc., o II frakcijos – nuo 1,11<br />

iki 1,76 proc. (2003–2004 m.). Evokacijos metu I frakcijos burokëliø ðakniavaisiuose<br />

bendrojo azoto kiekis kito nuo 1,55 iki 1,88 proc., o II frakcijos – nuo 1,79 iki<br />

2,04 proc. (4 A, C pav.). 2004–2005 m. I frakcijos burokëliø ðakniavaisiuose bendrojo<br />

azoto kiekis kito nuo 1,02 iki 1,29 proc., o II frakcijos – nuo 0,98 iki 1,55 proc.<br />

(4 B, D pav.).<br />

Burokëliams ið þydëjimo indukcijos perëjus á evokacijos tarpsná, t<strong>ir</strong>piø sausøjø<br />

medþiagø kiekis sumaþëjo (5 pav). 2003–2004 m. þydëjimo indukcijos tarpsniu burokëliø<br />

ðakniavaisiuose ðios medþiagos kiekis áva<strong>ir</strong>avo nuo 14,6 iki 18,4 proc.<br />

(5 A, C pav.), 2004–2005 m. – nuo 10,0 iki 16,3 proc. (5 B, D pav.). Evokacijos<br />

tarpsniu t<strong>ir</strong>piø sausøjø medþiagø sumaþëjo iki 10,7 proc. (5 pav.).<br />

4 pav. Bendrojo azoto dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 4. The dynamics of total sugar in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

2003–2004 m. I frakcijos burokëliø ðakniavaisiuose bendrojo cukraus <strong>ir</strong> azoto<br />

santykis þydëjimo indukcijos tarpsniu áva<strong>ir</strong>avo nuo 6,0 iki 10,7, o II frakcijos – nuo<br />

5,2 iki 9,9 (6 A, C pav.). Evokacijos tarpsniu ðis santykis sumaþëjo: I frakcijos – iki<br />

5,0–5,3, o II frakcijos – iki 4,2–4,5. 2004–2005 m. I frakcijos burokëliø ðakniavaisiø<br />

<strong>25</strong>6


endrojo cukraus <strong>ir</strong> azoto santykis þydëjimo indukcijos tarpsniu áva<strong>ir</strong>avo nuo 7,0 iki<br />

9,9, o II frakcijos – nuo 5,2 iki 11,8 (6 B, D pav.). Taèiau pereinant á evokacijos<br />

tarpsná tokio ryðkaus sumaþëjimo kaip 2003–2004 m. nebuvo. I frakcijos burokëliø<br />

ðakniavaisiuose evokacijos tarpsniu ðis santykis áva<strong>ir</strong>avo nuo 6,3 iki 7,4, o II frakcijos<br />

– nuo 5,8–6,0.<br />

Aptarimas. Burokëliai, kaip <strong>ir</strong> kiti dvimeèiai augalai, p<strong>ir</strong>maisiais metais suformuoja<br />

lapø skrotelæ, o kitais metais, po foto- <strong>ir</strong> termoindukcijos procesø rudená bei<br />

þiemà, vystosi þiedynstiebiai. Rudená, trumpëjanèio fotoperiodo sàlygomis, veikiant<br />

fitochromo sistemai, lapuose formuojasi fotoindukcijos stimulas, kuris transportuojamas<br />

á apikalines meristemas <strong>ir</strong> deblokuoja þiedyno aðies formavimosi genus. Saugykloje<br />

dël þemø teigiamø temperatûrø þydëjimo indukcijos tarpsnio stimulas formuojasi<br />

augimo kûgeliuose, vyksta þiedyno elementø formavimosi genø raiðka (Duchovskis,<br />

2000). Ðis procesas tæsiasi visà laikymo laikotarpá (Ðikðnianienë <strong>ir</strong> kt.,<br />

2006). Kitø darþoviø (kopûstø, morkø) augimo kûgelio þiedyno aðies diferenciacija<br />

prasideda saugykloje (Duchovskis <strong>ir</strong> kt., 2000; Ðikðnianienë <strong>ir</strong> kt., 2004). Tik pasibaigus<br />

termoindukcijos tarpsniui, prasideda burokëliø þiedyno aðies diferenciacija,<br />

t. y. vyksta evokacijos procesai (3 lentelë).<br />

5 pav. T<strong>ir</strong>piø sausøjø medþiagø dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 5. The dynamics of soluble dry matter in red beet cultivar ‘Kamuoliai’ root crop<br />

during flowering induction and evocation<br />

Raudonøjø burokëliø ðakniavaisiams pereinant ið þydëjimo indukcijos (II organogenezës<br />

etapas) á evokacijos (III – IV organogenezës etapas) tarpsná, sumaþëja<br />

sausøjø medþiagø (4 lentelë), sacharozës (2 pav.) <strong>ir</strong> bendrojo cukraus (3 pav.) bei<br />

t<strong>ir</strong>piø sausøjø medþiagø kiekis (5 pav.). Tai ið dalies galima paaiðkinti tuo, kad tamsoje<br />

augalai nepasipildo medþiagø, o kvëpuoja ið sukauptø atsargø. Kita vertus, vyksta polimeriniø<br />

medþiagø hidrolizës procesai. Panaðûs reiðkiniai pastebëti <strong>ir</strong> kituose dvimeèiuose<br />

augaluose evokacijos tarpsniu (Duchovskis <strong>ir</strong> kt.; 2000, Ðikðnianianë <strong>ir</strong> kt.; 2004,<br />

<strong>25</strong>7


Ðikðnianianë <strong>ir</strong> kt., 2006). Sacharozës sumaþëjo <strong>ir</strong> pereinant ið p<strong>ir</strong>mojo evokacijos<br />

tarpsnio á antràjá. Manoma, kad sacharozë labai reikðminga evokacijos procesuose,<br />

nes, veikiama b-fruktofuranozidazës, skyla á gliukozæ <strong>ir</strong> fruktozæ, kurios yra svarbios<br />

làsteliø energinës medþiagos, pagrindiniai kvëpavimo substratai (Kulka, Rejowski,<br />

1998). Pereinant ið þydëjimo indukcijos á evokacijos tarpsná, sintetinami baltyminiai<br />

metabolitai, reikalingi evokacijos tarpsniui, todël padidëja bendrojo azoto kiekis<br />

(4 pav.). Burokëliams pereinant ið þydëjimo indukcijos á evokacijos tarpsná, bendrojo<br />

cukraus <strong>ir</strong> azoto santykis sumaþëja (6 pav.), nes ðakniavaisiuose sparèiai vyksta evokacijos<br />

tarpsnio metaboliniai bei morfogenetiniai procesai (Kulka, Rejowski, 1998).<br />

6 pav. Bendrojo cukraus <strong>ir</strong> azoto santykio dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 6. The dynamics of total sugar and nitrogen ratio in red beet cultivar ‘Kamuoliai’<br />

root crop during flowering induction and evocation<br />

Iðvados. Burokëliø pasodø augimo kûgeliuose termoindukcijos procesai vyksta<br />

dël þemø teigiamø temperatûrø saugykloje, o evokacijos procesai prasideda, kai pasodai<br />

pasodinami á laukà.<br />

Pereinant ið þydëjimo indukcijos á evokacijos tarpsná, burokëliø ðakniavaisiuose<br />

vyksta atsarginiø medþiagø hidrolizë, invertuoto cukraus <strong>ir</strong> azoto medþiagø sintezë,<br />

sumaþëja sacharozës <strong>ir</strong> bendrojo cukraus kiekis.<br />

Raudoniesiems burokëliams ‘Kamuoliai’ ið þydëjimo indukcijos perëjus á evokacijos<br />

tarpsná, bendrojo cukraus <strong>ir</strong> azoto santykis sumaþëja.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. AOAC. Sucrose in fruits and fruit products // Official Methods of Analysis. Arlington:<br />

VA, 1990. 922 p.<br />

<strong>25</strong>8


2. Duchovskis P. Model of Flowering Initiation in Perennial Plants // Theoretical and<br />

practical Problems in modern Physiology of Cultured Plants. Collection of Scientific Articles.<br />

Babtai, LIH. 1996. P. 15–<strong>25</strong>.<br />

3. Duchovskis P. Photomorphogenetic effects in flowering initiation within perennial<br />

plants // Biologija. 1998. No. 3. P. 42–44.<br />

4. Duchovskis P., Ðikðnianienë J., Bobinas È., Viðkelis P. Baltagûþiø kopûstø peroksidazës<br />

<strong>ir</strong> orto-difenoloksidazës izofermentø bei kai kuriø organiniø medþiagø dinamika evokacijos<br />

etape // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(3)-1. P. 309–316.<br />

5. Duchovskis P. Þiemojanèiø augalø þydëjimo indukcijos bei evokacijos dviejø tarpsniø<br />

koncepsija // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(3)-1. P. 3–10.<br />

6. Duchovskis P. Þiemojanèiø augalø þydëjimo iniciacija // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2004. T.23(2). P. 3–11.<br />

7. Kulka K., Rejowski A. Biochemia. Olsztyn: Wydawnictwo ART, 1998. 609 p.<br />

8. Manuals of food quality control // Food analysis: general techniques, additives,<br />

contaminants, and composition. Rome: FAO, 1986. 205 p.<br />

9. Ðikðnianienë J. B., Duchovskis P., Viðkelis P., Karklelienë R., Samuolienë G. Valgomøjø<br />

morkø (Daucus sativus Röhl.) angliavandeniø <strong>ir</strong> azotiniø medþiagø dinamika evokacijos<br />

metu // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2004. T. 23(2). P. 137–142.<br />

10. Ðikðnianienë J. B., Duchovskis P., Viðkelis P., Petronienë D. Raudonøjø burokëliø<br />

Ilgiai angliavandeniø <strong>ir</strong> azoto medþiagø dinamika þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais<br />

// Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(1). P. 100–109.<br />

11. Tran Thanh Van M., Trink H. Morphogenesis in thin cell layers: concept, methodology<br />

and results. Calgary (Canada), 1978. P. 37–48.<br />

12. Wiebe H.-J. Vernalisation von wichtigen Gemûsearten–Ein Ûberblick // Gartenbauwissenchaft.<br />

1989. 54. P. 97–104.<br />

13. Äóõîâñêèé Ï., Ðæàíîâà Å. È. Òåìïû è îñîáåííîñòè îðãàíîãåíåçà ðàéãðàñà<br />

ïàñòáèùíîãî (Llium perenne L.) â åñòåñâåííûõ è èñêóñòâåííûõ óñëîâèÿõ<br />

âûðàùèâàíèÿ // Ñåëüñêîõîçÿéñâåííàÿ áèîëîãèÿ. 1983. ¹ 9. Ñ. 52–55.<br />

14. Êðàñî÷êèí Â. Ò. Õàðàêòåðèñòèêà ñåìåéñòâà Ìàðåâûõ èëè Ñîëÿíêîâûõ,<br />

- Chenopodiaceae Less. // Êóëüòóðíàÿ ôëîðà ÑÑÑÐ / Êîðíåïëîäíûå ðàñòåíèÿ.<br />

Ëåíèíãðàä, 1971. Ò. ÕIX. C. 7–266.<br />

15. Êóïåðìàí Ô. Ì., Ðæàíîâà Å. È., Ìóðàøåâ Â. Â. è äð. Áèîëîãèÿ ðàçâèòèÿ<br />

êóëüòóðíûõ ðàñòåíèé. Ìîñêâà, 1982. 343 c.<br />

16. Ìåòîäû áèîõèìè÷åñêîãî èññëåäîâàíèÿ ðàñòåíèé / Ïîä ðåä. À. È.<br />

Åðìàêîâà. Ëåíèíãðàä, 1987. 431 c.<br />

17. Öûáóëüêî Â. Ñ. Àíàëèç ýêñïåðèìåíòàëüíîé îáîñíîâàííîñòè îñíîâíûõ<br />

òåîðèé è ãèïîòåç áèîëîãè÷åñêîé ïðèðîäû ôîòîïåðèîäèçìà // Ôèçèîëîãèÿ è<br />

áèîõèìèÿ êóëüòóðíûõ ðàñòåíèé. 1979. Ò. 29, ¹ 4. Ñ. <strong>25</strong>8–264.<br />

<strong>25</strong>9


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE DYNAMICS OF SOME ORGANIC SUBSTANCES OF<br />

RED BEET ‘KAMUOLIAI’ AT FLOWERING INDUCTION<br />

AND EVOCATION STAGES<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis, O. D. Petronienë<br />

Summary<br />

The variation of organic substances of red beet (Beta vulgaris L. var. Conditiva<br />

Alef.) ‘Kamuoliai’ at flowering induction and evocation stages were investigated<br />

during storage and after planting in a field. Beet plantings were grown in experimental<br />

fields of LIH according to the technologies applied at the Institute. Beet root<br />

crops were stored in storage at the temperature of +1 – +4°C. The samples for<br />

analyses were taken each month (from October up till April). Plantings were planted<br />

in field in May and the samples for analyses were taken every 10 days. The processes<br />

of beet flowering induction continue during all the period of watering, and when<br />

beet plantings are planted in field evocation processes start up. During transitional<br />

period from flowering induction to evocation, hydrolysis of reserve substances,<br />

decrease of the amount of saccharose and total sugar and synthesis of inverted<br />

sugar and nitric substances occur. The ratio of the total sugar and nitrogen during<br />

transition from flowering induction to evocation decreases.<br />

Key words: nitric substances, evocation periods, flowering induction, nitric<br />

substances, red beet, sugars.<br />

260


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

AUGALØ, AUGINAMØ ÞALIAJAI TRÀÐAI,<br />

AGROBIOLOGINIS ÁVERTINIMAS IR ÁTAKA<br />

SVOGÛNØ DERLIUI<br />

Roma STARKUTË, Laisvûnë DUCHOVSKIENË,<br />

Vytautas ZALATORIUS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas vytas@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës darþininkystës institute ekologiðkai darþovëms<br />

auginti sk<strong>ir</strong>tame bandymø lauke t<strong>ir</strong>ti <strong>ir</strong> ávertinti þaliajai tràðai tinkamiausi augalai<br />

<strong>ir</strong> nustatyta jø átaka ekologiðkai auginamø svogûnø derliui. T<strong>ir</strong>ti augalai þaliajai<br />

tràðai: mieþiai, mieþiai su dobilø ásëliu, vasariniai kvieèiai, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys,<br />

aliejiniai ridikai. Kontrolinis variantas – juodasis pûdymas.<br />

Nustatyta, kad þaliajai tràðai auginamø augalø biomasë armenyje paliko nevienodà<br />

organinës medþiagos kieká. Daugiausia sausøjø medþiagø – 7,3 t ha -1 buvo áterpta<br />

su vasariniø kvieèiø þalia mase.<br />

Daugiausia þalios masës (43,2 t ha -1 ) uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys, vasariniai<br />

kvieèiai – 32,5 t ha -1 , mieþiai su dobilø ásëliu – 30,2 t ha -1 , maþiausiai – mieþiai <strong>ir</strong><br />

aliejiniai ridikai (atitinkamai 24,5 <strong>ir</strong> 27,0 t ha -1 ).<br />

Ávertintas tabakiniø tripsø Thrips tabaci gausumas visuose variantuose, esminiø<br />

sk<strong>ir</strong>tumø tarp variantø nenustatyta.<br />

Þaliajai tràðai auginamas þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys svogûnø prekiná derliø padidino<br />

3,1 proc., vasariniai kvieèiai – 5,7 proc., mieþiai su dobilø ásëliu – 7,3 proc. Maþiausiai<br />

átakos svogûnø derliui turëjo þaliajai tràðai auginami mieþiai <strong>ir</strong> aliejiniai ridikai.<br />

Daugiausia piktþoliø (191 vnt. m -2 ) rasta svogûnø, augintø po mieþiø su dobilø<br />

ásëliu, pasëlyje, maþiausiai – 29 vnt. m 2 – po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio augintø svogûnø<br />

pasëlyje.<br />

Reikðminiai þodþiai: augalai þaliajai tràðai, biomasë, piktþolës, sausosios medþiagos,<br />

svogûnai, tabakiniai tripsai.<br />

Ávadas. Auginant darþoves ekologiðkai, viena veiksmingiausiø priemoniø, palaikanèiø<br />

d<strong>ir</strong>voþemio derlingumà, yra træðimas organinëmis tràðomis. Sistemingai træðiant<br />

organinëmis tràðomis – mëðlu, padidëja d<strong>ir</strong>voþemio biologinis aktyvumas, pagerëja<br />

fizikinës <strong>ir</strong> cheminës savybës, vandens <strong>ir</strong> oro reþimas (Tripolskaja, 1994). Organinëse<br />

tràðose yra visø augalams reikalingø maisto medþiagø – azoto, fosforo, kalio,<br />

kalcio bei mikroelementø – boro, mangano, kobalto, vario, cinko, molibdeno, sieros.<br />

261


Organinës tràðos yra daugumos d<strong>ir</strong>voþemio mikroorganizmø maisto ðaltinis. Jos skatina<br />

saprofitiniø mikroorganizmø vystymàsi <strong>ir</strong> taip sumaþina patogeniniø mikroorganizmø<br />

kieká (Þekonienë, Bakutis, Jankauskas <strong>ir</strong> kt. 1997; Äîâáàí, 1991; Íîâîñ¸ëîâ,<br />

Øëàïóíîâ <strong>ir</strong> kt., 1987). Kadangi mëðlo sukaupiama palyginti maþai, reikia auginti<br />

daugiau augalø þaliajai tràðai. Þalioji tràða gerokai pigesnë, o jos poveikis p<strong>ir</strong>maisiais<br />

metais jà áterpus daþnai geresnis negu mëðlo (Àëåêñååâ, 1996).<br />

Þaliajai tràðai labiausiai tinka ankðtiniai augalai: paðariniai <strong>ir</strong> siauralapiai sideratiniai<br />

lubinai, paðarinës pupos, seradëlës, vikiai, þ<strong>ir</strong>niai <strong>ir</strong> dobilai, nes jø nereikia træðti<br />

azoto tràðomis, jie patys aps<strong>ir</strong>ûpina azotu, nemaþai jo sukaupia þalioje masëje <strong>ir</strong> ðaknyse.<br />

Ankðtiniai augalai turi tv<strong>ir</strong>tà ðaknø sistemà, todël ið gilesniø d<strong>ir</strong>vos sluoksniø<br />

paima maisto medþiagas <strong>ir</strong> kitiems augalams neprieinamus junginius. Pastaruoju metu<br />

daþnai auginami <strong>ir</strong> posëliniai augalai, kuriø vegetacijos laikotarpis trumpas: garstyèios,<br />

aliejiniai ridikai, vasariniai rapsai. Aparus augalus þaliajai tràðai, á d<strong>ir</strong>voþemá áterpiama<br />

daug organiniø medþiagø, pagerëja biologinës d<strong>ir</strong>voþemio savybës, o dël kryþmaþiedþiuose<br />

augaluose esanèiø fitoncidø pagerëja d<strong>ir</strong>voþemio fitosanitarinë bûklë<br />

(Lazauskas, 1992; Velièka, 2002; Íîâîñ¸ëîâ, Ðóäîìèí, Øëàïóíîâ <strong>ir</strong> kt., 1987;<br />

Wallgren and Lindon; I994, Cheng and Coleman, 1990). Tinkamas prieðsëlis <strong>ir</strong> gilus<br />

arimas sumaþina tabakiniø tripsø populiacijà svogûnø pasëlyje (Brewster, 1994).<br />

Ekologiðkai auginant didesnius ðvariø darþoviø plotus sëjomainoje be tràðø <strong>ir</strong><br />

pesticidø, træðiant tik þaliàja tràða, svarbu nenualinti d<strong>ir</strong>vø, iðlaikyti reikiamà pasëliø<br />

ðvarumo lygá bei derlingumà, kad darþoviø auginimo bûdas bûtø pelningas. Iðlaikyti<br />

d<strong>ir</strong>voþemio derlingumà <strong>ir</strong> já didinti – pagrindinis ekologinio ûkininkavimo uþdavinys.<br />

Darbo tikslas – parinkti tinkamiausius augalus þaliajai tràðai <strong>ir</strong> nustatyti jø átakà<br />

ekologiðkai auginamø svogûnø derliui.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. Tyrimai atlikti Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute ekologiðkai darþovëms auginti paruoðtame bandymø lauke. D<strong>ir</strong>voþemis<br />

– priesmëlis ant lengvo priemolio, karbonatingasis sekliai glëjiðkas iðplautþemis<br />

(IDg 8-k, /Calc(ar)i – Epihypogleyc Luvisols LVg-p-w-cc) (Buivydaitë <strong>ir</strong> kt., 2001).<br />

Ariamojo sluoksnio pH KCL<br />

7,4 – 7,7, judriøjø P 2<br />

O 5<br />

– 370–211 mg kg -1 , K 2<br />

O – 151–<br />

249 mg kg -1 , humuso –1,64–1,69 proc. 2003 m. prieð árengiant bandymà mineralinio<br />

azoto 0–60 cm gylyje buvo 92 kg ha -1 .<br />

Tyrimø schema. Tyrimai atlikti dviejø laukø sëjomainoje. 2003 m. þaliajai tràðai<br />

augalai auginti viename lauke, 2004 m. tame paèiame lauke auginti svogûnai, o antrajame<br />

lauke auginti tie patys augalai þaliajai tràðai, po kuriø 2005 m. auginti svogûnai.<br />

P<strong>ir</strong>maisiais metais þaliajai tràðai auginti augalai:<br />

1. Juodasis pûdymas<br />

2. Mieþiai<br />

3. Mieþiai su dobilø ásëliu<br />

4. Vasariniai kvieèiai<br />

5. Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

6. Aliejiniai ridikai<br />

Antraisiais metais augintos darþovës – svogûnai.<br />

Tyrimø variantai kartoti po keturis kartus. Sideratø varianto (visø laukeliø) plotas<br />

– 264 m 2 . Darþoviø apskaitiniø laukeliø plotas – 14 m 2 .<br />

Augalø þaliajai tràðai prieðsëlis – juodasis pûdymas.<br />

262


Anksti pavasará, pradþiûvus d<strong>ir</strong>vai, ji kultivuojama <strong>ir</strong> akëjama.<br />

Geguþës antràjá deðimtadiená þaliajai tràðai pasëti aliejiniai ridikai (<strong>25</strong> kg ha -1 ),<br />

þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys (1<strong>25</strong> : 1<strong>25</strong> kg ha -1 ), vasariniai kvieèiai (180 kg ha -1 ), mieþiai be<br />

ásëlio (170 kg ha -1 ) <strong>ir</strong> mieþiai su dobilø ásëliu (170 kg ha -1 ). Mieþiams sudygus á juos<br />

ásëti dobilai (14 kg ha -1 ). Sëklos norma apskaièiuota 100% ûkine verte.<br />

Aliejiniø ridikø þalia masë nupjauta þydëjimo pabaigoje, kai pradeda formuotis<br />

apatinës ankðtaros. Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys nupjautas augalams masiðkai þydint, vasariniai<br />

kvieèiai <strong>ir</strong> mieþiai – plaukëjant. Þalia masë buvo susmulkinta <strong>ir</strong> aparta. Nuo<br />

laukelio, kuriame buvo ásëti dobilai, ðiaudai nugrëbti, o vëlai rudená dobilai uþarti.<br />

Juodasis pûdymas ád<strong>ir</strong>btas sluoksniniu bûdu, artas du kartus, kultivuotas tris<br />

kartus.<br />

Sideratiniai augalai <strong>ir</strong> po jø augintos darþovës træðti nebuvo.<br />

Ið kiekvieno laukelio paimtas augalø þalios masës 1 kg ëminys <strong>ir</strong> nustatytas<br />

sausøjø medþiagø procentas bei atliktos cheminës analizës. Atsiþvelgiant á sausøjø<br />

medþiagø procentà <strong>ir</strong> þalios masës kieká, apskaièiuotas sausøjø medþiagø kiekis. Antraisiais<br />

<strong>ir</strong> treèiaisiais metais nustatytas azoto, fosforo <strong>ir</strong> kalio kiekis augalø antþeminëje<br />

masëje. Þalioje antþeminëje masëje azotas <strong>ir</strong> fosforas nustatyti kolorimetriniu<br />

bûdu, o kalis – liepsnos fotometru. 2004–2005 m. nustatytas augalø tankumas, piktþolëtumas,<br />

kenkëjø paplitimas svogûnø pasëlyje. Tripsø gausumas nustatytas apþiûrint<br />

po 4 svogûnø augalus kiekviename apskaitiniame laukelyje.<br />

Tyrimø duomenys statistiðkai apdoroti ANOVA programa (Tarakanovas, Raudonius,<br />

2003). Pateikiama maþiausio esminio sk<strong>ir</strong>tumo tarp variantø riba – R 05<br />

.<br />

Mënuo<br />

Month 2003<br />

m.<br />

Balandis<br />

April<br />

Geguþë<br />

May<br />

B<strong>ir</strong>želis<br />

June<br />

Liepa<br />

July<br />

Rugpjûtis<br />

August<br />

Rugsëjis<br />

September<br />

1 lentelë. Meteorologinës sàlygos<br />

Table 1. Meteorological conditions<br />

Vidutinë oro temperatûra<br />

Mean a<strong>ir</strong> temperature, °C<br />

263<br />

Krituliai<br />

Precipitation, mm<br />

1924–2000 m.<br />

2004 2005 vidurkis 2003 2004 2005<br />

m. m. average of 1924– m. m. m.<br />

2000<br />

7,5 9,6 8,9 7,2 32,3 32,3 33,5 42,0<br />

1924–2000 m.<br />

vidurkis<br />

average of 1924–<br />

2000<br />

15,7 10,7 11,5 12,0 45,1 46,2 65,4 43,7<br />

15,4 13,7 14,8 16,5 57,1 77,4 66,6 51,2<br />

20,1 16,1 19,1 17,7 118,0 50,4 3,8 71,3<br />

17,5 16,7 14,7 16,4 52,4 123,4 109,4 74,6<br />

12,8 11,6 12,8 12,0 27,9 36,2 19,9 29,7


2003 metø pavasaris buvo sausesnis, taèiau ðiltesnis palyginti su daugiameèiu<br />

vidurkiu (1 lentelë). Augalams sudygti sàlygos buvo vidutiniðkos. Vasara <strong>ir</strong> rugsëjo<br />

mënuo ðiek tiek ðiltesni, krituliø kiekis artimas daugiameèiam vidurkiui. 2004 m. oras<br />

buvo vësesnis <strong>ir</strong> drëgnesnis, taèiau sàlygos augti visiems augalams buvo palankios.<br />

2005 m. geguþës <strong>ir</strong> b<strong>ir</strong>þelio mën. krituliø iðkrito daugiau negu vidutiniðkai. Liepa buvo<br />

karðta <strong>ir</strong> sausa. Rugpjûtis buvo gerokai drëgnesnis negu áprasta. Svogûnams sudygti<br />

<strong>ir</strong> augti sàlygos buvo nepalankios. Gautas maþesnis svogûnø prekinis derlius.<br />

Rezultatai. Vidutiniais dvejø metø duomenimis, daugiausiai (43,2 t ha -1 ) þalios<br />

masës uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys (2 lentelë). Mieþiai uþaugino maþiausiai þalios<br />

masës – 24,5 t ha -1 , arba 18,7 t ha -1 maþiau negu þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys. Mieþiai su<br />

dobilø ásëliu, vasariniai kvieèiai bei aliejiniai ridikai þalios masës uþaugino maþiau –<br />

atitinkamai 13,0; 10,7 <strong>ir</strong> 16,2 t ha -1 .<br />

2 lentelë. Maisto medþiagø kiekio sideratiniø augalø antþeminëje biomasëje vidutiniai<br />

duomenys. Babtai, 2003–2004 m.<br />

Table 2. Amount of nutrition value of biomass of terraneus part of plants grown for green<br />

manure, mean date. Babtai, 2003–2004<br />

Variantas<br />

Treatments<br />

Juod. pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

natûrali iðraiðka<br />

natural expression<br />

-<br />

Organinës tràðos<br />

Organic fertilizer, t ha-1<br />

sausosios medžiagos<br />

dry matter<br />

R 05 / LSD 05 3,0 0,5<br />

Maisto medžiagos<br />

Nutrition value, kg ha-1<br />

-1 -1<br />

N P 2 O 5 K 2 O<br />

24,5 4,1 62 14 79<br />

30,2 5,9 87 21 121<br />

32,5 7,3 98 19 1<strong>25</strong><br />

43,2 6,5 104 20 150<br />

27,0 3,1 35 15 91<br />

Daugiausia sausøjø medþiagø (7,3 t ha -1 ) buvo uþarta su vasariniø kvieèiø<br />

þalia mase. Mieþiø, mieþiø su dobilø ásëliu, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio bei aliejiniø ridikø<br />

þalioje masëje sausøjø medþiagø kiekis buvo maþesnis – atitinkamai 1,8;1,4; 0,8;<br />

4,2 karto.<br />

Atlikus uþartos þalios masës cheminius tyrimus, apskaièiuotas á d<strong>ir</strong>và patekusiø<br />

maisto medþiagø kiekis. Azoto þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio þalioje masëje buvo 104 kg ha -1 –<br />

tai 42 kg ha -1 daugiau negu mieþiø, 17 kg ha -1 daugiau negu mieþiø su dobilø ásëliu,<br />

6 kg ha -1 daugiau negu vasariniø kvieèiø <strong>ir</strong> 69 kg ha -1 daugiau negu aliejiniø ridikø<br />

þalioje masëje.<br />

264


Daugiausia fosforo uþarta su mieþiø su dobilø ásëliu, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio <strong>ir</strong><br />

vasariniø kvieèiø þalia mase (atitinkamai 21, 20 <strong>ir</strong> 19 kg ha -1 ). Maþiausiai fosforo<br />

buvo mieþiø <strong>ir</strong> aliejiniø ridikø þalioje masëje (atitinkamai 14 <strong>ir</strong> 15 kg ha -1 ).<br />

Daugiausia kalio (atitinkamai 150, 1<strong>25</strong> <strong>ir</strong> 121 kg ha -1 ) su þaliàja tràða áterpta uþarus<br />

þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðiná, vasarinius kvieèius <strong>ir</strong> mieþius su dobilø ásëliu, maþiausiai – áterpus<br />

aliejinius ridikus bei mieþius (atitinkamai 91 <strong>ir</strong> 79 kg ha -1 ).<br />

3 lentelë. Tabakiniø tripsø gausumas po sk<strong>ir</strong>tingø prieðsëliø augintø<br />

svogûnø pasëlyje. Babtai, 2004 m.<br />

Table 3. Amount of onion thrips in onions growing after different preceding crop.<br />

Babtai, 2004<br />

Variantas<br />

Treatments<br />

Juod.pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

Tripsø gausumas, vnt./augalo<br />

Amount of thrips, unit/plant<br />

07-30 08-11 08-27 09-02<br />

1,50 4,37 2,81 1,12<br />

1,56 3,50 2,62 1,0<br />

1,44 4,31 2,87 1,06<br />

1,69 4,19 2,44 1,06<br />

1,37 3,69 2,<strong>25</strong> 1,19<br />

1,50 4,19 2,56 1,31<br />

R 05 / LSD 05 0,08 0,502 0,477 0,244<br />

4 lentelë. Tabakiniø tripsø gausumas po sk<strong>ir</strong>tingø prieðsëliø augintø svogûnø<br />

pasëlyje. Babtai, 2005 m.<br />

Table 4. Amount of onion thrips in onions growing after different preceding crop.<br />

Babtai, 2005<br />

Variantas<br />

Treatments<br />

Tripsø gausumas, vnt./augalo<br />

Amount of thrips, unit/plant<br />

07-12 07-<strong>25</strong> 08-01 08-18<br />

1 2 3 4 5<br />

Juod. pûdymas, kontrolë 3,69 12,56 22,69 2,87<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

4,19 13,62 23,19 1,50<br />

3,50 12,81 23,0 2,87<br />

4,19 12,69 21,94 2,69<br />

265


4 lentelës tæsinys<br />

1 2 3 4 5<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys 4,50 13,19 23,44 2,06<br />

Peas and outs<br />

Aliejiniai ridikai<br />

4,12 13,69 23,12 2,37<br />

Rape<br />

R 05 / LSD 05 0,548 0,451 1,00 0,172<br />

2004 m. tabakiniø tripsø buvo negausu <strong>ir</strong> esminiø sk<strong>ir</strong>tumø tarp variantø nebuvo.<br />

2005 m. tripsø ið esmës maþiau buvo kontroliniame variante (08–18) <strong>ir</strong> svogûnø,<br />

augintø po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio bei po mieþiø, pasëlyje.<br />

2004–2005 m. vidutiniais duomenimis suminio svogûnø derliaus esminis priedas<br />

(atitinkamai 3,3–3,4 t ha -1 ) gautas auginant juos po mieþiø su dobilø ásëliu, vasariniø<br />

kvieèiø, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (1 pav.).<br />

1 pav. Þaliosios tràðos átaka svogûnø suminiam derliui<br />

Gig. 1. Influence of green manure on yield of onions<br />

Svogûnø prekinis derlius 2004 m. buvo didþiausias auginant juos po vasariniø<br />

kvieèiø bei þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (atitinkamai 21,5 <strong>ir</strong> 21,8 t ha -1 ). Palyginti su<br />

kontrole, gautas esminis derliaus priedas (atitinkamai 1,6 <strong>ir</strong> 1,9 t ha -1 ). Auginat<br />

svogûnus po mieþiø <strong>ir</strong> aliejiniø ridikø, gautas esminis derliaus nuostolis (atitinkamai<br />

1,7 <strong>ir</strong> 1,9 t ha -1 ). Mieþiai su dobilø ásëliu davë neesminá svogûnø derliaus<br />

priedà (1,0 t ha -1 ).<br />

2005 m. esminis prekinio svogûnø derliaus priedas (1,6 t ha -1 ) gautas tik auginant<br />

svogûnus po mieþiø su dobilø ásëliu. Kituose variantuose derliaus priedo negauta.<br />

Visais tyrimø metais didþiausias svogûnø prekinis derlius gautas auginant juos<br />

po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio, vasariniø kvieèiø <strong>ir</strong> mieþiø su dobilø ásëliu (5 lentelë).<br />

Palyginti su kontrole, gautas esminis derliaus priedas (atitinkamai 3,1; 5,2 <strong>ir</strong><br />

7,3 proc.). Auginant svogûnus po mieþiø bei aliejiniø ridikø, derlius, palyginti su<br />

kontrole, gautas maþesnis (atitinkamai 5,7 <strong>ir</strong> 6,8 proc.).<br />

266


5 lentelë. Þaliosios tràðos átaka svogûnø prekiniam derliui, t ha -1 .<br />

Babtai, 2004–2005 m.<br />

Table 5. Influence of green manure for onion marketable yield t ha-1. Babtai, 2004–2005<br />

Variantas<br />

Treatments<br />

Juod. pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

2004 m. 2005 m.<br />

Vidurkis<br />

Average<br />

t ha-1<br />

sant. sk.<br />

t ha-1<br />

sant. sk.<br />

t ha-1<br />

sant.sk.<br />

relative numbers relative numbers relative numbers<br />

19,9 100 18,6 100 19,2 100<br />

18,2 91,4 18,0 96,8 18,1 94,3<br />

20,9 105,0 20,2 108,6 20,6 107,3<br />

21,8 109,5 18,6 100 20,2 105,2<br />

21,6 108,5 18,0 96,8 19,8 103,1<br />

18,0 90,4 17,8 95,7 17,9 93,2<br />

R 05 / LSD 05 1,7 0,9 1,4<br />

Træðimas þaliàja tràða svogûnø tankumui átakos neturëjo. Viename ilginiame metre<br />

sudygo vidutiniðkai 35 augalai.<br />

Svogûnø pasëlyje vyravo trumpaamþës dviskiltës piktþolës. Daugiausia piktþoliø<br />

(191 vnt. m -2 ) rasta svogûnuose, augintuose po mieþiø su dobilø ásëliu, maþiausiai –<br />

29 vnt. m -2 – svogûnuose, augintuose po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio. Svogûnuose, augintuose<br />

po mieþiø bei vasariniø kvieèiø, juodajame pûdyme bei po aliejiniø ridikø, rasta<br />

atitinkamai 66, 80, 40 <strong>ir</strong> 43 vnt. m -2 piktþoliø.<br />

Aptarimas. Auginant darþoves ekologiðkai, vienas ið ðaltiniø, pagausinanèiø maisto<br />

medþiagø d<strong>ir</strong>voje <strong>ir</strong> didinanèiø darþoviø derlingumà, yra þalioji tràða. Þaliajai tràðai<br />

auginant ankðtinius augalus, apariama 40–50 t ha -1 , javus – 30 t ha -1 þalios masës.<br />

Áterpus þaliàjà tràðà á d<strong>ir</strong>và, azoto á jà patenka nuo 74 iki 180,0 kg ha -1 , fosforo – nuo<br />

16,4 iki 108 kg ha -1 , kalio – nuo 24 iki 270 kg ha -1 . Augalø, sk<strong>ir</strong>tø þaliajai tràðai,<br />

biomasës sausosios medþiagos <strong>ir</strong> azotas nulemia, koks biologinio azoto kiekis susikaups<br />

augaluose (Rudokas, 2003; Maikðtienë, 2005; Cherr, Scholberg and McSorley,<br />

2006). Tabakiniai tripsai maitinasi organiniu azotu, bet po prieðsëlio auginama<br />

kultûra nevisiðkai pasisavina prieðsëlio sukauptas maisto medþiagas. Tripsø gausumà<br />

daþnai lemia ne tik maisto kiekybë <strong>ir</strong> kokybë, bet <strong>ir</strong> meteorologinës sàlygos (Brewster,<br />

1994). Todël tripsø gausumu, jø skaièiaus sumaþëjimu ar padidëjimu ið esmës<br />

neiðsiskyrë në vienas variantas. Áva<strong>ir</strong>iø mokslininkø atliktø tyrimø duomenimis nustatyta,<br />

kad þalioji tràða didina posëliø derliø (Rudokas, 2003; Ìàèñååíêî, 1996;<br />

Starkutë; Kmitas, 2000). Atlikus tyrimus LSD institute <strong>ir</strong> iðanalizavus þaliosios tràðos<br />

átakà ekologiðkai auginamø svogûnø derliui, nustatyta, kad gauti duomenys analogiðki<br />

kitø mokslininkø atliktø tyrimø rezultatams.<br />

267


Iðvados. 1. Daugiausia þalios masës (43,2 t ha -1 ) uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys.<br />

2. Tarp t<strong>ir</strong>tø variantø esminiø tabakiniø tripsø gausumo sk<strong>ir</strong>tumø nebuvo.<br />

3. Svogûnø suminio derliaus esminis priedas gautas auginant juos po mieþiø su<br />

dobilø ásëliu, vasariniø kvieèiø, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (atitinkamai 3,3; 3,3; 3,4 t ha -1 ).<br />

4. Þaliajai tràðai auginamas þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys svogûnø prekiná derliø padidino<br />

3,1 proc., vasariniai kvieèiai – 5,7 proc.; mieþiai su dobilø ásëliu – 7,3 proc. Maþiausià<br />

átakà svogûnø derliui turëjo þaliajai tràðai auginami mieþiai <strong>ir</strong> aliejiniai ridikai.<br />

5. Daugiausia piktþoliø (691 vnt. m 2 ) rasta svogûnø, augintø po mieþiø su dobilø<br />

ásëliu, pasëlyje, maþiausiai – (109 vnt. m 2 ) – po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio augintø svogûnø<br />

pasëlyje.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Brewster J. L. Onions and other vegetables alliums. Wallingford: CAB International.<br />

1994. P. 178–183.<br />

2. Buivydaitë V., Motuzas A., Vaièys M. Naujoji Lietuvos d<strong>ir</strong>voþemiø klasifikacija<br />

1999. Akademija, 2001. P. 84.<br />

3. Cheng W., Coleman D. C. Effect of living roots soil organic matter decomposition //<br />

Soil. Biol. Biochem. 1990.Vol. 22. N 6. P. 781–787.<br />

4. Cherr C. M., Scholberg J. M., and McSorley R. Green manure as nitrogen source for<br />

sweet corn in a warm-temperate env<strong>ir</strong>onment // American society of agronomy. 2006.<br />

Vol. 98(5). P. 1173–1180.<br />

5. Lazauskas J. Þalioji tràða. Vilnius, 1992. P. 4–36.<br />

6. Maikðtienë S. Áva<strong>ir</strong>iø organiniø tràðø <strong>ir</strong> tarpiniø pasëliø poveikis limnoglacialinës<br />

kilmës priemoliø agrocheminëms savybëms // Þemës ûkio mokslai. 2005. Nr. 1. P. 1–11.<br />

7. Rudokas V. Sideraciniai augalai <strong>ir</strong> jø átaka bulvëms // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. T. 22(1). P. 121–134.<br />

8. Starkutë R., Kmitas A. Sideratø tyrimas lauko darþoviø sëjomainoje // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(4). P. 84–92.<br />

9. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT – PLOT <strong>ir</strong> paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Akademija, 2003. P. 56.<br />

10. Tripolskaja L. Organiniø <strong>ir</strong> mineraliniø tràðø naudojimo paðarø sëjomainoje velëniniame<br />

jauriniame priesmëlio d<strong>ir</strong>voþemyje mokslinis pagrindimas: habilituoto darbo disertacija<br />

Dotnuva, 1994. P. 61–64.<br />

11. Velièka R. Rapsai. Kaunas, 2002. P. 320.<br />

12. Þekonienë V., Bakutis B., Jankauskas B. <strong>ir</strong> kt. Ekologinë þemd<strong>ir</strong>bystë.<br />

Vilnius, 1997. P. 95.<br />

13. Wallgren B., Linden B. Influence of different catch crops and ploughing times on<br />

soil mineral nitrogen // Proceedings of 13th International Conference. Denmark. 1994.<br />

P. 215–220.<br />

14. Àëåêñååâ Ã. Ê. Âëèÿíèå ñèäåðàòîâ íà ïëîäîðîäèå ïî÷âû è óðîæàéíîñòü<br />

ñåëüñêîõîçÿéñòâåííûõ êóëüòóð // Èíòåíñèâíîå çåìëåäåëèÿ â óñëîâèÿõ ðûíî÷íîé<br />

268


ýêîíîìèêè: Ìàòåðèàëû ×óâàøñêîé ðåñïóáëèêàíñêîé àãðàðíîé íàó÷íî –<br />

ïðîèçâîäñòâåííîé êîíôåðåíöèè. ×åáîêñàðû, 1996. Ñ. 42–45.<br />

15. Äîâáàí Ê. È. Çåë¸íîå óäîáðåíèå – âàæíûé ðåçåðâ ïëîäîðîäèÿ è óëó÷øåíèÿ<br />

ýêîíîìè÷åñêîé îáñòàíîâêè // Áþëëåòåíü ÂÍÈÈ. 1991. ¹ 107.Ñ. 56–59.<br />

16. Ìàèñååíêî Â. Ô., Áåëîóñ Í. Ì. Äåéñòâèå çåë¸íûõ óäîáðåíèé íà<br />

ïëîäîðîäèå ïî÷âû, óðîæàé îçèìîé ðæè è åãî êà÷åñòâî // Õèìèÿ â ñåëüñêîì<br />

õîçÿéñòâå.1996. ¹ 3. Ñ. 24–<strong>25</strong>.<br />

17. Íîâîñ¸ëîâ Þ. Ê., Ðóäîìèí Â. Â., Øëàïóíîâ Â. Í. è äð. Òåõíîëîãèÿ<br />

âîçäåëûâàíèÿ êîðìîâûõ êóëüòóð â ïðîìåæóòî÷íûõ ïîñåâàõ â Íå÷åðíîç¸ìíîé<br />

çîíå åâðîïåéñêîé ÷àñòè ÐÑÔÑÐ, Áåëîðóññèè è Ïðèáàëòèêå. Ìîñêâà, 1987.<br />

Ñ. 12–15.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

AGROBIOLOGICAL EVALUATION OF PLANTS FOR<br />

GREEN MANURE AND IT’S INFFLUENCE ON YIELD<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius<br />

Summary<br />

In 2003–2005 in Lithuanian Institute of Horticulture in trial field for ecologically<br />

grown vegetables there were investigated and evaluated plant availability for green<br />

manure and estimated it’s influence on ecologically grown onions yield. Investigated<br />

plants: barely, barely with undesown clover, summer wheat, peas and outs, rape.<br />

Control treatment – black fallow.<br />

Was estimated that biomass of plants for green manure leaves in the soil different<br />

amount of organic matter.<br />

The highest amount of green matter – 43.2 t ha -1 was get from peas and outs,<br />

summer wheat -32.5 t ha -1 , barely with undesown clover – 30.2 t ha -1 , lowest –<br />

barely and rape (24.5 and 27.0 t ha -1 ).<br />

There were not found any significant differences of amount of Thrips tabaci<br />

between treatments.<br />

Green manure from peas and outs increase onions yield by 3.1%; green manure<br />

from summer wheat – 5.7%, green manure from barely with undersown clover –<br />

7.3%. The lowest impact for onion yield has had green manure from barely and<br />

rape.<br />

The highest number of weeds (191 unit/m 2 ) was found in onions grown after<br />

barely with undersown clover, lowest number – 29 unit/m 2 in onions grown after<br />

peas and outs.<br />

Key words: biomass, dry matter, onions, plants for green manure, onion thrips,<br />

weeds.<br />

269


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

HERBICIDO BOXER 800 EC (V. M. PROSULFOCARB<br />

800 G L -1 ) ÁTAKA VALGOMØJØ SVOGÛNØ PASËLIO<br />

DERLINGUMUI IR PIKTÞOLËTUMUI<br />

Danguolë KAVALIAUSKAITË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El.paðtas d.kavaliauskaitë@lsdi.lt<br />

2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute buvo atlikti<br />

herbicido boxer (v.m. prosulfocarb 800 g l -1 ) veiksmingumo bandymai valgomøjø<br />

svogûnø pasëlyje.<br />

Tyrimø metais herbicidas boxer veiksmingai maþino <strong>ir</strong> suminá piktþoliø skaièiø,<br />

<strong>ir</strong> jø orasausæ masæ. 2005 m. herbicidà boxer panaudojus po svogûnø sëjos, veiksmingiausia<br />

buvo 5,0 l ha -1 norma – ji suminá piktþoliø skaièiø sumaþino 92,7 proc.,<br />

4,0 l ha -1 – 79,3 proc., 3,0 l ha -1 – 73,7 proc.. 2006 m. herbicidà boxer panaudojus<br />

svogûnams esant 1–3 lapeliø tarpsnio, jo veiksmingumas buvo maþesnis. Didþiausia<br />

herbicido boxer norma – 5,0 l ha -1 suminá piktþoliø skaièiø sumaþino 64,9 proc.,<br />

4,0 l ha -1 – 44,5 proc., 3,0 l ha -1 – 47,5 proc.<br />

Reikðminiai þodþiai: derlius, herbicidai, naudojimo laikas, svogûnai, piktþolës.<br />

Ávadas. Valgomieji svogûnai yra labai jautrûs piktþolëms visà vegetacijà. Intensyvios<br />

þemd<strong>ir</strong>bystës sàlygomis neámanoma iðauginti gausaus valgomøjø svogûnø<br />

derliaus nenaudojant herbicidø. Tai pats veiksmingiausias piktþoliø naikinimo bûdas.<br />

Profesionalaus naudojimo augalø apsaugos priemoniø sàraðe (2005) Lietuvoje registruotø<br />

herbicidø, tinkamø svogûnø pasëliams, yra nedaug <strong>ir</strong> jø veiksmingumas<br />

nepakankamas, todël nuolat ieðkoma naujø, veiksmingesniø herbicidø. Naikinti piktþoles<br />

herbicidais valgomøjø svogûnø pasëliuose bûtina pradëti ið karto po sëjos.<br />

Pagrindiniai veiksniai, kurie lemia herbicidø naudojimo veiksmingumà, yra tinkamo<br />

preparato <strong>ir</strong> purðkimo laiko parinkimas, todël ypaè svarbu turëti galimybæ naudoti<br />

veiksmingus <strong>ir</strong> saugius herbicidus.<br />

Herbicidas boxer (v.m. prosulfocarb 800 g l -1 ) áva<strong>ir</strong>iose ðalyse naudojamas kvieèiø,<br />

rugiø, mieþiø <strong>ir</strong> bulviø pasëliuose. Ðis herbicidas sk<strong>ir</strong>tas maþinti <strong>ir</strong> vienaskilèiø, <strong>ir</strong><br />

dviskilèiø piktþoliø skaièiø pasëlyje. Ðiam herbicidui jautrios daugelis piktþoliø: kibieji<br />

lipikai (Galium aparine), veronikos, varpinës piktþolës, ið jø – smilguolës (Apera),<br />

paðiauðëliai (Alopecurus), svidrës (Lolium), vienametës miglës (Poa annua). Her-<br />

270


icido boxer veiksmingumas t<strong>ir</strong>tas Europos <strong>ir</strong> Azijos ðalyse, daugiausia þieminiø javø<br />

pasëliuose (Glasgow <strong>ir</strong> kt., 1987; Khan <strong>ir</strong> kt., 2003; Vera <strong>ir</strong> kt., 2001). Prancûzijoje <strong>ir</strong><br />

Didþiojoje Britanijoje t<strong>ir</strong>ta, kaip veiksmingai herbicidas boxer naikina kibiuosius lipikus<br />

(Galium aparine), varpines piktþoles po sëjos <strong>ir</strong> piktþolëms esant 1–2 lapeliø<br />

tarpsnio (Anonymuos, 2000; Glasgow <strong>ir</strong> kt., 1987). Tai pat t<strong>ir</strong>ta, kaip padidinti herbicido<br />

boxer prasiskverbimà per lapus, naudojant jo miðinius su kitais herbicidais<br />

(Cabane <strong>ir</strong> kt., 1999; Schott <strong>ir</strong> kt., 1991). Moksliniø tyrimø duomenys rodo, kad<br />

herbicidas boxer á piktþoles daugiausia patenka per d<strong>ir</strong>voþemá, taèiau negalima tv<strong>ir</strong>tinti,<br />

kad herbicidas negali patekti <strong>ir</strong> per lapus (Vera <strong>ir</strong> kt., 2001).<br />

Lietuvoje herbicidas boxer darþoviø pasëliuose t<strong>ir</strong>tas nebuvo.<br />

Darbo tikslas – iðt<strong>ir</strong>ti herbicido boxer poveiká piktþolëms svogûnø pasëlyje <strong>ir</strong> jo<br />

átakà svogûnø derlingumui <strong>ir</strong> kokybei.<br />

Tyrimo objektas <strong>ir</strong> metodai. Bandymas atliktas 2005–2006 m. velëniniame glëjiðkame<br />

pajaurëjusiame d<strong>ir</strong>voþemyje, kurio granuliometrinë sudëtis – lengvas priemolis<br />

ant priemolio, reakcija artima neutraliai. Pavasará prieð sëjà iðbarstyta 600 kg ha -1 kompleksiniø<br />

tràðø Hydrokomplex 120-11-18. ‘Babtø didþiøjø’ veislës svogûnai pasëti<br />

2005 m. balandþio 29 d., o 2006 m. – geguþës 4 d. Sëklos iðbertos pakrikai 8 cm<br />

ploèio juostoje, sëjos schema 4 x (62 + 8) cm.<br />

Herbicidai purkðti pagal schemà:<br />

1) Kontrolë (be herbicidø, ravëta)<br />

2) Boxer 5,0 l ha -1<br />

3) Boxer 4,0 l ha -1<br />

4) Boxer 3,0 l ha -1<br />

5) Stompas 3,0 l ha -1 .<br />

Herbicidai purkðti nugariniu purkðtuvu. Vandens norma – 300 l ha -1 . 2005 m.<br />

herbicidai purkðti po svogûnø sëjos, o 2006 m. – svogûnams esant 1–3 lapeliø tarpsnio.<br />

Piktþolës ravëtos vienà kartà. Piktþolës suskaièiuotos keturiose kiekvieno laukelio<br />

vietose, 0,<strong>25</strong> m 2 dydþio ploteliuose, einant per laukelá ástriþai, vienà kartà praëjus<br />

mënesiui po paskutinio purðkimo.<br />

Valgomøjø svogûnø piktþolëtumo <strong>ir</strong> derliaus duomenys apskaièiuoti dispersinës<br />

analizës bûdu (Dospechov, 1979).<br />

Tyrimø rezultatai. Valgomøjø svogûnø pasëlio piktþolëtumas tyrimø metais<br />

skyrësi. Tam turëjo átakos <strong>ir</strong> t<strong>ir</strong>tø herbicidø naudojimo laikas, <strong>ir</strong> sk<strong>ir</strong>tingos metø meteorologinës<br />

sàlygos. 2005 m. vasarà visos t<strong>ir</strong>tos herbicido boxer normos buvo labai<br />

veiksmingos – piktþoliø skaièius visuose purkðtuose laukeliuose buvo ið esmës maþesnis<br />

palyginti su nepurkðtais.<br />

Palyginus visø t<strong>ir</strong>tø herbicido boxer normø veiksmingumà su standartiniu herbicidu<br />

stompu (3,0 l ha -1 ), esminio sk<strong>ir</strong>tumo nenustatyta tik purðkiant 3,0 l ha -1 herbicido<br />

boxer norma. Visø t<strong>ir</strong>tø herbicido boxer normø veiksmingumas buvo sk<strong>ir</strong>tingas:<br />

didþiausios herbicido boxer normos – 5,0 l ha -1 veiksmingumas, palyginti su standartinio<br />

herbicido stompo 3,0 l ha -1 norma, buvo net 41,8 proc. didesnis, maþiausios<br />

herbicido boxer normos – 3,0 l ha -1 veiksmingumas, palyginti su didþiausia 5,0 l ha -1<br />

norma, buvo perpus maþesnis – ji buvo tik 22,8 proc. veiksmingesnë uþ standartiná<br />

herbicidà stompà (1 lentelë).<br />

271


1 lentelë. Herbicido boxer, purkðto po sëjos, átaka piktþoliø skaièiui svogûnø pasëlyje.<br />

Babtai, 2005 m.<br />

Table 1. Influence of herbicide boxer applied after onion sowing on the number of weeds<br />

in onion crop. Babtai, 2005<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Suminis piktþoliø<br />

skaièius, vnt. m -2<br />

Total weed number,<br />

(pcs. m -2 )<br />

Suminio piktþoliø<br />

skaièiaus sumaþëjimas<br />

(%), palyginti su<br />

nepurkštais laukeliais<br />

The reduction of total weed<br />

number (%) in comparison with<br />

untreated<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

)<br />

2 lentelë. Herbicido boxer, purkðto svogûnams esant 1–3 lapeliø tarpsnio, átaka<br />

piktþoliø skaièiui svogûnø pasëlyje. Babtai, 2006 m.<br />

Table 2. Number of weeds in onion crop after herbicide boxer spraying at<br />

onion 1-3 leaf stage. Babtai, 2006<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

).<br />

** – ið esmës maþiau negu herbicidu stompu nupurkðtame variante (R 05<br />

) / Essentially less than in<br />

Stomp treated (LSD 05<br />

).<br />

272<br />

Suminio piktþoliø<br />

skaièiaus sumaþëjimas<br />

(%), palyginti su stompu<br />

purkštais laukeliais<br />

The reduction of total weed<br />

number (%) in comparison with<br />

Stomp treated<br />

133,0 - -<br />

Boxer 5,0 l ha -1 9,7* 92,7 41,8<br />

Boxer 4,0 l ha -1 27,5* 79,3 28,4<br />

Boxer 3,0 l ha -1 35,0* 73,7 22,8<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

65,2* 50,9 -<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Suminis<br />

piktþoliø<br />

skaièius,<br />

vnt. m -2<br />

Total weed<br />

number (pcs. m -2 )<br />

Vienametës<br />

dviskiltës<br />

piktþolës,<br />

vnt. m -2<br />

Annual<br />

dicotyledonous<br />

weeds (pcs. m -2 )<br />

Vienameèiø<br />

dviskilèiø piktþoliø<br />

sumaþëjimas (%),<br />

palyginti su<br />

nepurkštais laukeliais<br />

Annual dicotyledonous<br />

weeds reduction (%) in<br />

comparison with untreated<br />

Vienameèiø dviskilèiø<br />

piktþoliø sumaþëjimas<br />

(%), palyginti su<br />

stompu purkštais<br />

laukeliais<br />

Annual dicotyledonous<br />

weeds reduction (%) in<br />

comparison with Stomp<br />

treated<br />

24,4 18,1 - -<br />

Boxer 5,0 l ha -1 8,5* 5,6** 69,1 11,6<br />

Boxer 4,0 l ha -1 13,5* 6,6* 63,7 6,2<br />

Boxer 3,0 l ha -1 12,8* 7,2* 60,5 2,9<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

17,4 7,7* 57,5 -


2006 m. herbicidu boxer nupurðkus pasëlá svogûnams esant 1–3 lapeliø tarpsnio,<br />

suminis piktþoliø skaièius sk<strong>ir</strong>tinguose variantuose sumaþëjo 44,5–64,9 proc., o<br />

vienameèiø dviskilèiø – 60,5–69,1 proc. Suminis piktþoliø skaièius ið esmës sumaþëjo<br />

visuose herbicidu boxer nupurkðtuose laukeliuose, palyginti su nepurkðtais <strong>ir</strong> standartiniu<br />

herbicidu stompu (3,0 l ha -1 ) nupurkðtais laukeliais (2 lentelë). Vienameèiø<br />

dviskilèiø piktþoliø skaièius ið esmës sumaþëjo visuose herbicidais nupurkðtuose laukeliuose.<br />

Didþiausia herbicido boxer 5,0 l ha -1 norma buvo ið esmës veiksmingesnë<br />

uþ standartinio herbicido stomp 3,0 l ha -1 normà. Ði norma buvo 11,6 proc. veiksmingesnë<br />

uþ standartinio herbicido stompo 3,0 l ha -1 normà, o maþiausia herbicido<br />

boxer norma – 3,0 l ha -1 buvo tik 2,9 proc. veiksmingesnë uþ standartiná herbicidà<br />

stompà (2 lentelë). Nupurðkus herbicidu boxer 1–3 lapeliø tarpsnio svogûnø pasëlá<br />

sk<strong>ir</strong>tingomis normomis, jø veiksmingumas buvo nevienodas <strong>ir</strong> kur kas maþesnis nei<br />

purðkiant po sëjos.<br />

Tyrimø metais visuose laukeliuose, purkðtuose áva<strong>ir</strong>iomis herbicido boxer normomis,<br />

bendra piktþoliø orasausë masë ið esmës buvo maþesnë, palyginti su nepurkðtais<br />

laukeliais, <strong>ir</strong> purðkiant po sëjos, <strong>ir</strong> svogûnams esant 1–3 lapeliø tarpsnio,<br />

nors nupurðkus vëliau, piktþoliø orasausë masë sumaþëjo maþiau negu nupurðkus po<br />

sëjos (3 lentelë).<br />

3 lentelë. Piktþoliø orasausë masë (g m -2 ) svogûnø pasëlyje. Babtai, 2005–2006 m.<br />

Table 3. Weed a<strong>ir</strong>-dry weight (g m -2 ) in onion crop. Babtai, 2005–2006<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

2005 m. purkðta po sëjos<br />

sprayed after sowing<br />

Piktþoliø orasausë masë, g m -2<br />

Weed a<strong>ir</strong>-dry weight (g m -2 )<br />

2006 m. purkðta svogûnams esant<br />

1–3 lapeliø tarpsnio<br />

sprayed at onion 1–3 leaf stage<br />

149,5 180,4<br />

Boxer 5,0 l ha -1 1,2* 15,3*<br />

Boxer 4,0 l ha -1 6,0* 14,1*<br />

Boxer 3,0 l ha -1 6,5* 15,2*<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 , standard<br />

12,0* 17,2*<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

).<br />

Tyrimø metais bandomajame svogûnø pasëlyje vyravo ðios piktþolës: baltoji balanda<br />

(Chenopodium album L.), trikertë þvaginë (Capsella bursa-pastoris L.), bekvapis<br />

ðunramunis (Tripleurospermum perforatum L.), darþinë þliûgë (Stellaria media<br />

(L.) Vill.), paprastoji þilë (Senecio vulgaris L.), paprastoji rietmenë (Echinochloa<br />

crus-galli L.).<br />

2005 m. visos herbicido boxer normos vienodai sumaþino pagrindiniø vienameèiø<br />

dviskilèiø piktþoliø skaièiø svogûnø pasëlyje. Purðkiant visomis t<strong>ir</strong>tomis normomis,<br />

baltosios balandos, trikertës þvaginës, bekvapiai ðunramuniai, darþinës þliûgës <strong>ir</strong><br />

273


paprastosios þilës buvo visai sunaikintos. Paprastosios rietmenës buvo jautriausios<br />

didþiausiai herbicido boxer normai – 5,0 l ha -1 , ðiø piktþoliø skaièius pasëlyje sumaþëjo<br />

84,7 proc. 4,0 l ha -1 <strong>ir</strong> 3,0 l ha -1 herbicido boxer normos paprastøjø rietmeniø skaièiø<br />

svogûnø pasëlyje sumaþino atitinkamai 56,0 <strong>ir</strong> 45,1 proc. Visos t<strong>ir</strong>tos herbicido boxer<br />

normos buvo 6,8–46,4 proc. veiksmingesnës uþ herbicidà stompà (3 lentelë).<br />

4 lentelë. Pagrindiniø piktþoliø rûðiø sumaþëjimas (%) svogûnø pasëlyje.<br />

Babtai, 2005–2006 m.<br />

Table 4. Reduction of main weed species (%) in onion crop. Babtai, 2005–2006<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Baltoji<br />

balanda<br />

(Chenopodium<br />

album L.)<br />

Lamb'squarters<br />

Trikertë<br />

þvaginë<br />

(Capsella<br />

bursapastoris<br />

L.)<br />

Shepherd’s<br />

purse<br />

Bekvapis<br />

šunramunis<br />

(Matricaria<br />

inodora<br />

L.)<br />

Scentless<br />

mayweed<br />

Darþinë<br />

þliûgë<br />

(Stellaria<br />

media (L.)<br />

Vill.)<br />

Common<br />

chickweed<br />

Paprastoji<br />

þilë<br />

(Senecio<br />

vulgaris<br />

L.)<br />

Common<br />

groundsel<br />

2005 m. herbicidas boxer purkðtas po sëjos<br />

2005 herbicide boxer sprayed after sowing<br />

Paprastoji<br />

rietmenë<br />

(Echinochloa<br />

crusgalli<br />

(L.))<br />

Barnyardgras<br />

s<br />

- - - - - -<br />

Boxer 5,0 l ha -1 100 100 100 100 100 84,7<br />

Boxer 4,0 l ha -1 100 100 100 100 100 56,0<br />

Boxer 3,0 l ha -1 100 100 100 100 100 45,1<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

100 100 64 100 100 38,3<br />

Variantai<br />

Treatment<br />

Nepurkšta (ravëta)<br />

Untreated<br />

2006 m. herbicidas boxer purkðtas svogûnams esant 1–3 lapeliø tarpsnio<br />

herbicide boxer sprayed at 1-3 leaf onion stage in 2006<br />

Baltoji<br />

balanda<br />

(Chenopodium<br />

album<br />

L.)<br />

Lamb's-quarters<br />

Trikertë<br />

þvaginë<br />

(Capsella<br />

bursapastoris<br />

L.)<br />

Shepherd’s<br />

purse<br />

Bekvapis<br />

šunramunis<br />

(Matricaria<br />

inodora L.)<br />

Scentless<br />

mayweed<br />

Darþinë<br />

þliûgë<br />

(Stellaria<br />

media (L.)<br />

Vill.)<br />

Common<br />

chickweed<br />

Paprastoji þilë<br />

(Senecio<br />

vulgaris L.)<br />

Common<br />

groundsel<br />

- - - - -<br />

Boxer 5,0 l ha -1 43,2 94,2 31,2 100 66,0<br />

Boxer 4,0 l ha -1 42,0 100 27,2 100 38,4<br />

Boxer 3,0 l ha -1 32,5 100 9,8 100 42,2<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

0,3 100 13,3 100 34,0<br />

274


2006 m. visos herbicido boxer normos, iðpurkðtos svogûnams esant 1–3 lapeliø<br />

tarpsnio, sumaþino pagrindiniø vienameèiø dviskilèiø piktþoliø skaièiø svogûnø pasëlyje.<br />

Trikertës þvaginës <strong>ir</strong> darþinës þliûgës buvo visai sunaikintos. Baltosios balandos<br />

buvo jautriausios 5,0 l ha -1 <strong>ir</strong> 4,0 l ha -1 herbicido boxer normoms, ðiø piktþoliø<br />

pasëlyje sumaþëjo atitinkamai 43,2 <strong>ir</strong> 42,0 proc. Bekvapiai ðunramuniai taip pat buvo<br />

jautriausi 5,0 l ha -1 <strong>ir</strong> 4,0 l ha -1 herbicido boxer normoms, ðiø piktþoliø sumaþëjo<br />

atitinkamai 31,2 <strong>ir</strong> 27,2 proc. Paprastosios þilës buvo jautriausios didþiausiai 5,0 l ha -1<br />

herbicido boxer normai, ðiø piktþoliø pasëlyje sumaþëjo 66,0 proc. Standartiniu herbicidu<br />

stompu (3,0 l ha -1 ) nupurkðtuose laukeliuose visai sunaikintos buvo tik trikertës<br />

þvaginës <strong>ir</strong> darþinës þliûgës, maþiausiai jautrios buvo baltosios balandos – jø sumaþëjo<br />

tik 0,3 proc. (3 lentelë). Dvejø metø tyrimø duomenimis, dauguma pagrindiniø<br />

piktþoliø daug jautresnës herbicidui boxer já panaudojus po sëjos.<br />

2005 m. svogûnø ropeliø derlius buvo ið esmës maþesnis visuose herbicidu<br />

boxer po sëjos nupurkðtuose laukeliuose, palyginti su herbicidu stompu (3,0 l ha -1 )<br />

purkðtø laukeliø svogûnø ropeliø derliumi (5 lentelë). 2006 m. svogûnø ropeliø derlius<br />

buvo ið esmës maþesnis visuose herbicidu boxer nupurkðtuose laukeliuose, palyginti<br />

su svogûnø ropeliø derliumi herbicidais nepurkðtuose laukeliuose. Standartiniu<br />

herbicidu stompu (3,0 l ha -1 ) nupurkðtuose laukeliuose svogûnø ropeliø derliaus nebuvo<br />

gauta, nes dël gausiø liûèiø antroje vasaros pusëje laukeliai ilgà laikà buvo uþm<strong>ir</strong>kæ<br />

(5 lentelë). Herbicido boxer fitotoksiðkumas svogûnams iðryðkëjo <strong>ir</strong> p<strong>ir</strong>maisiais<br />

tyrimo metais, purðkiant já po sëjos, <strong>ir</strong> dar labiau antraisiais tyrimø metais, kai<br />

herbicidu boxer buvo nupurkðti jau sudygæ svogûnai. Kad <strong>ir</strong> kokia norma buvo panaudota,<br />

ðis herbicidas labai fitotoksiðkai veikë <strong>ir</strong> patá pasëlá (jis labai iðretëjo), <strong>ir</strong><br />

svogûnø ropeliø derliø bei kokybæ.<br />

Variantai<br />

Treatments<br />

Nepurkðta (ravëta)<br />

Untreated<br />

5 lentelë. Svogûnø ropeliø derlius, t ha -1 . Babtai, 2005–2006 m.<br />

Table 5. Marketable onion yield, t ha -1 . Babtai, 2005–2006<br />

Prekinis derlius<br />

Prekinio derliaus % nuo bendro<br />

Marketable yield, t ha -1<br />

derliaus<br />

Marketable yield (%) from general yield<br />

2005 m. 2006 m. 2005 m. 2006 m.<br />

10,7 7,9 73,8 84,9<br />

Boxer 5,0 l ha -1 10,0 1,8 90,1 62,0<br />

Boxer 4,0 l ha -1 10,8 1,4 90,7 58,3<br />

Boxer 3,0 l ha -1 16,1 1,1 86,1 55,0<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

23,0 0 85,2 0<br />

R 05 / LSD 05 2,5 0,84 - -<br />

Diskusija. T<strong>ir</strong>iamos herbicido boxer normos veiksmingai naikino pagrindines<br />

piktþoles valgomøjø svogûnø pasëliuose. Kad herbicidas boxer veiksmingai naikina<br />

275


vienametes dviskiltes <strong>ir</strong> daugelá vienaskilèiø piktþoliø, patv<strong>ir</strong>tina <strong>ir</strong> kitø autoriø duomenys,<br />

gauti javø pasëliuose (Anonymus, 2000; Glasgow <strong>ir</strong> kt., 1987; Khan <strong>ir</strong> kt.,<br />

2003; Streibig <strong>ir</strong> kt., 1984; Vera <strong>ir</strong> kt., 2001). Herbicidas boxer veiksmingiau maþino<br />

piktþoliø kieká <strong>ir</strong> daug geriau naikino atsk<strong>ir</strong>as pagrindiniø piktþoliø rûðis purðkiant juo<br />

po sëjos, o ne svogûnams esant 1–3 lapeliø tarpsnio. Glasgow tyrimø duomenys taip<br />

pat parodë, kad herbicidas boxer geriausiai naikina piktþoles, naudojant já po sëjos<br />

arba kai piktþolës yra ne didesnës nei 1–2 lapeliø tarpsnio (Glasgow <strong>ir</strong> kt., 1987).<br />

Nupurðkus herbicidu boxer, kai piktþolës yra didesnës negu 1–2 lapeliø, jis yra ne<br />

toks veiksmingas, nes iðgaruoja nuo lapø pav<strong>ir</strong>ðiaus (Anonymus, 2000). Daugeliu<br />

atveju yra pastebimas ðio herbicido veiksmingumo priklausomumas nuo jo prasiskverbimo<br />

per lapus (Cabann <strong>ir</strong> kt., 1999; Schott <strong>ir</strong> kt., 1991), bet kitø autoriø duomenys<br />

rodo, kad tai susijæ ne visuomet (van Toor <strong>ir</strong> kt., 1994; van Toor <strong>ir</strong> kt., 1995).<br />

Atlikti tyrimai rodo, kad purðkiant herbicidu boxer, galima veiksmingai sumaþinti<br />

pasëliø piktþolëtumà vegetacijos metu. Deja, naudoti herbicidà boxer valgomøjø<br />

svogûnø pasëliuose dël jo didelio fitotoksiðkumo svogûnams nerekomenduojama.<br />

Iðvados. 1. Tyrimø metais herbicidas boxer labai veiksmingai (44,5–92,7 proc.)<br />

maþino suminá piktþoliø skaièiø svogûnø pasëliuose.<br />

2. Vienametës dviskiltës piktþolës: baltoji balanda (Chenopodium album L.), bekvapis<br />

ðunramunis (Matricaria inodora L.), paprastoji þilë (Senecio vulgaris L.),<br />

buvo jautriausios herbicidui boxer purðkiant juo po sëjos, o trikertë þvaginë (Capsella<br />

bursa-pastoris L.) <strong>ir</strong> darþinë þliûgë (Stellaria media (L.) Vill.) – <strong>ir</strong> purðkiant po sëjos,<br />

<strong>ir</strong> svogûnams esant 1–3 lapeliø tarpsnio.<br />

3. Tyrimø metais herbicidas boxer svogûnø pasëlá veikë fitotoksiðkai, todël jis<br />

iðretëjo, labai sumaþëjo derlius <strong>ir</strong> pablogëjo svogûnø ropeliø kokybë.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Anonymous. Prosulfocarbe, in: Cluzeau S., Paternelle M. C., Lhoutellier C. (Eds.),<br />

Index Phytosanita<strong>ir</strong>e, ACTA. Paris, 2000. P. 358–359.<br />

2. Cabbanne F., Gaudry J. C., Streibig J. C. Influence of alkyl oleates on efficacy of<br />

phenmedipham applied as an acetone: water solution on Galium aparine // Weed Research.<br />

1999. 39. P. 57–67.<br />

3. Dospechov B. A. Metodika polevogo opyta. M., 1979. 335 s. (Russ.).<br />

4. Glasgow J. L., Mojica E., Bacer D. R., Tillis H., Gore N. R., Kurtz P. J. SC-0574-A new<br />

selective herbicide for use in winter cereals // In: Proceeding of the 1987 British Crop<br />

Protection Conference –Weeds. Brighton, 1987. P. 27–33.<br />

5. Khan M. H., Hassan G., Khan N., Khan M. A. Efficacy of Different Herbicides for<br />

Controlling Broadleaf Weed in Wheat // Asian Journal of Plant Sciences. 2003. 2(3).<br />

P. <strong>25</strong>4–<strong>25</strong>6.<br />

6. Profesionalaus naudojimo augalø apsaugos priemoniø sàraðas. Vilnius, 2005. P. 81.<br />

7. Schott J. J., Dufour J. L., Gauvrit C. Effects of adjuvants on herbicidal action. III.<br />

Effects of petroleum and rapeseed oils on diclofop-methyl action on ryegrass // Agronomie.<br />

1991. 11. P. 27–34.<br />

276


8. Streibig J. C. Measurement of phytotoxicity of commercial and unformulated soilapplied<br />

herbicides // Weed Research. 1984. 24. P. 327–331.<br />

9. van Toor R. F., Hayes A. L., Cooke B. K., Holloway P. J. Relationships between the<br />

herbicidal activity and foliar uptake of surfactant-containing solutions of glyphosate<br />

applied to foliage of oats and field beans // Crop protection. 1994. 13. P. 260–270.<br />

10. van Toor R. F., Hayes A. L., Holloway P. J. Relationships between activity and<br />

foliar uptake of surfactant-containing solutions of diclofop-methyl on oats // In Fourth<br />

International Symposium on Adjuvants for Agrochemicals, Melbourne, 1995. P. 279–284.<br />

11. Vera V., Gauvrit C., Cabanne F. Efficacy and foliar absorption of flupyrsulfuronmethyl<br />

and prosulfocarb applied alone or in mixture on Lolium multiflorum and wheat //<br />

Agronomie. 2001. 21. P. 33–43.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF HERBICIDE BOXER 800 EC<br />

(PROSULFOCARB 800 G L -1 ) ON EDIBLE ONION<br />

CROP WEEDING AND HARVEST<br />

D. Kavaliauskaitë<br />

Summary<br />

Field experiments in edible onion crop to investigate herbicide boxer (a.i. prosulfocarb<br />

800 g l -1 ) were carried out at the Lithuanian Institute of Horticulture in<br />

2005–2006.<br />

Herbicide boxer very effectively decreased total number and a<strong>ir</strong>-dry mass of<br />

weeds in both years of investigation. In 2005 herbicide boxer was sprayed after<br />

onion sowing. Most effective the biggest norm – 5.0 l ha -1 of boxer decreased total<br />

number of weeds by 92.7%; 4.0 l ha -1 – 79.3%, 3.0 l ha -1 – 73.7%. The efficacy of<br />

herbicide boxer treated at onion 1-3 leaf stage in 2006 was lower. The biggest norm –<br />

5.0 l ha -1 of boxer decreased total number of weeds by 64.9%; 4,0 l ha -1 – 44.5%,<br />

3.0 l ha -1 – 47.5%.<br />

Key words: herbicide, onion, spraying time, yield, weeds.<br />

277


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

FITOHORMONØ DINAMIKA IR VAIDMUO PO<br />

PAPRASTOJO KMYNO ÞYDËJIMO INDUKCIJOS<br />

Giedrë SAMUOLIENË 1,2 , Pavelas DUCHOVSKIS 1,2<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas g.samuoliene@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio univers<strong>ir</strong>etas, LT-53067 Noreikiðkës, Kauno r.<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto fitotroniniame komplekse modeliuojamomis<br />

sàlygomis atlikti paprastojo kmyno (Carum carvi L.) fitohormonø dinamikos<br />

<strong>ir</strong> vaidmens tyrimai sk<strong>ir</strong>tingais þydëjimo iniciacijos tarpsniais. Tyrimo tikslas –<br />

nustatyti fitohormonø veiklos sàsajas su þydëjimo iniciacijos procesais. Giberelo,<br />

indolil-3 acto <strong>ir</strong> abscizo rûgðtims bei zeatinui sk<strong>ir</strong>styti <strong>ir</strong> nustatyti naudotas efektyviosios<br />

skysèiø chromatografijos metodas (HPLC) su diodø matricos detektoriumi. Fotoperiodo<br />

<strong>ir</strong> temperatûros sàlygos þydëjimo indukcijos metu: EXP1 – 0 val. <strong>ir</strong> 4°C,<br />

EXP2 – 8 val. <strong>ir</strong> 4°C, EXP3 – 16 val. <strong>ir</strong> 4°C, EXP4 – 8 val. <strong>ir</strong> 21(16)°C, EXP5 –<br />

16 val. <strong>ir</strong> 21 (16)°C (dienos (nakties) temperatûra). Tyrimai parodë, kaip áva<strong>ir</strong>iais<br />

evokacijos bei þiedø iniciacijos tarpsniais kinta fitohormonø koncentracijos bei jø<br />

santykis. Augalø þydëjimo iniciacijos procesai susijæ su juvenalinio periodo trukme.<br />

Paprastojo kmyno juvenalinio tarpsnio pabaiga siejama su tuo momentu, kai augalas<br />

skrotelëje suformuoja 9 asimiliuojanèius lapus.<br />

Rezultatai parodë, kad tamsoje kmynai <strong>ir</strong> su 7, <strong>ir</strong> su 9 lapais skrotelëje visai<br />

nesivystë <strong>ir</strong> sunyko. Geriausiai floralinis vystymasis pas<strong>ir</strong>eiðkë augalus veikiant þema<br />

teigiama temperatûra <strong>ir</strong> ilgos dienos fotoperiodu. Ðiomis sàlygomis GA 3<br />

<strong>ir</strong> ABA santykis<br />

I <strong>ir</strong> II evokacijos tarpsnio metu yra didelis, o po þiedø iniciacijos þiedø diferenciacijos<br />

metu ðis santykis sumaþëjo perpus. Zeatino <strong>ir</strong> IAA santykis II evokacijos<br />

tarpsnio metu buvo artimas 0. Tai gali reikðti, kad dingsta apikalinis dominavimas.<br />

Ilgos dienos fotoperiodo sàlygomis augalus veikiant aukðta temperatûra (EXP5), ðis<br />

santykis neatkuriamas <strong>ir</strong> þiedø iniciacijos metu, taèiau ðiuo momentu pas<strong>ir</strong>eiðkia antagonistinë<br />

ABA <strong>ir</strong> IAA sàveika. Tokia fitohormonø veikla galëjo sulëtinti kmynø vystymosi<br />

procesus.<br />

Apibendrinant galima teigti, kad juvenalinio periodo pabaiga paprastojo kmyno<br />

ontogenezëje sietina su tuo momentu, kai augalai suformuoja 9 asimiliuojanèius lapus<br />

<strong>ir</strong> visiðkai pas<strong>ir</strong>uoðia priimti foto- <strong>ir</strong> termoindukcijos procesus. Paprastojo kmyno<br />

floraliniam vystymuisi svarbesni yra termoindukcijos nei fotoindukcijos procesai.<br />

Stabilø visø fitohormonø sintezës maþëjimà iki paprastojo kmyno þiedø diferenciaci-<br />

278


jos bei geriausià floraliná vystymàsi lemia þemos teigiamos temperatûros bei ilgos<br />

dienos fotoperiodo derinys.<br />

Reikðminiai þodþiai: evokacija, fitohormonai, paprastasis kmynas, þiedø iniciacija.<br />

Ávadas. Augalø pas<strong>ir</strong>uoðimas þydëti labai priklauso nuo tinkamo þydëjimo indukcijos<br />

laiko. Dël ðios prieþasties þydëjimo iniciacija yra reguliuojama kintanèiø aplinkos<br />

veiksniø, tokiø kaip fotoperiodas <strong>ir</strong> temperatûra, ji taip pat labai priklauso <strong>ir</strong><br />

nuo augalø iðsivystymo lygio (Bernier <strong>ir</strong> kt., 1993). Ðviesa <strong>ir</strong> temperatûra turi didelës<br />

átakos augalø morfogenezës procesams. Aplinkos veiksniø kaità jauèia sk<strong>ir</strong>tingi augalø<br />

organai. Suþadindami vidiná stimulà, jie siunèia signalà á apikalines meristemas.<br />

Egzistuoja keletas hipoteziø, koncepcijø bei teorijø, aiðkinanèiø augalo perëjimo ið<br />

vegetatyvinio augimo á generatyviná vystymàsi mechanizmus. Daugelyje ðiø teorijø,<br />

be kitø veiksniø, analizuojami áva<strong>ir</strong>ûs fitohormonø veiklos þydëjimo reguliavimo aspektai<br />

(Sachs <strong>ir</strong> Hackett, 1983). Manoma, kad fitohormonai dalyvauja reguliuojant<br />

metabolizmo transdukcijà. Tai pas<strong>ir</strong>eiðkia priëmus ðviesos signalà <strong>ir</strong> po transdukcijos<br />

á fiziologiná atsakà (Krapiel <strong>ir</strong> Miginiac, 1997). Fitohormonø santykis <strong>ir</strong> sàveika þydëjimo<br />

iniciacijos metu yra labai svarbus <strong>ir</strong> ne iki galo iðt<strong>ir</strong>tas klausimas. Dvimeèiai<br />

augalai þydi po vernalizacijos, t. y. þiedø iniciacijai reikalingos þemos temperatûros<br />

(Glãucia <strong>ir</strong> kt., 1994). Yra du þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniai. P<strong>ir</strong>masis<br />

þydëjimo indukcijos periodas yra fotoindukcija. Fotomorfogenetinës sistemos metabolitai<br />

ið lapø transportuojami á apikalines meristemas, kur pas<strong>ir</strong>eiðkia þiedyno aðies<br />

formavimo genø ekspresija. Nuo ðio momento prasideda I evokacijos tarpsnis, kuris<br />

baigiasi þiedyno aðies suformavimu. Antrasis þiemojanèiø augalø þydëjimo indukcijos<br />

tarpsnis yra termoindukcija. Termoindukcijos proceso metabolitai lemia þiedyno<br />

aðies struktûrø formavimà (II evokacijos tarpsnis). Ðiø morfogenetiniø procesø pabaigoje<br />

vyksta <strong>ir</strong> þiedø iniciacija (Duchovskis, 2004).<br />

Darbo tikslas – iðt<strong>ir</strong>ti fitohormonø vaidmená <strong>ir</strong> dinamikà sk<strong>ir</strong>tingais paprastojo<br />

kmyno þydëjimo iniciacijos tarpsniais.<br />

Tyrimo objektas <strong>ir</strong> metodai. Paprastasis kmynas Carum carvi L., var. ‘Gintaras’<br />

sëtas á vegetacinius indus (54 x 34 x 15 cm) su artimos neutraliai pH reakcijos<br />

durpiø substratu. Kmynams sudygus, ðiltnamyje buvo 20 ± 50°C temperatûra bei<br />

16 val. fotoperiodas (ðvitinta Son-T Agro lempomis). Kiekvienà savaitæ augalai træðti<br />

„Kem<strong>ir</strong>a Combi“ tràðø (NPK-14:11:15 <strong>ir</strong> mikroelementai) t<strong>ir</strong>palu, kenkëjai naikinti<br />

standartiniais augalø apsaugos bûdais. Kmynams pasiekus 7 <strong>ir</strong> 9 lapø skrotelëje iðsivystymo<br />

lygá, vegetaciniai indai su augalais perkelti 120 paroms á fitotrono kameras,<br />

kad pereitø foto- <strong>ir</strong> termoindukcijos procesus. Fotoperiodo <strong>ir</strong> temperatûros sàlygos<br />

þydëjimo indukcijos metu: EXP1 – 0 val. <strong>ir</strong> 4°C, EXP2 – 8 val. <strong>ir</strong> 4°C, EXP3 –<br />

16 val. <strong>ir</strong> 4°C, EXP4 – 8 val. <strong>ir</strong> 21 (16)°C, EXP5 – 16 val. <strong>ir</strong> 21 (16)°C (dienos<br />

(nakties) temperatûra). Evokacijos, þiedø iniciacijos bei diferenciacijos procesai (Duchowski,<br />

1995) bei organogenezës etapai (Êóïåðìàí <strong>ir</strong> kt., 1982) stebëti mënesá,<br />

esant 16 val. fotoperiodui <strong>ir</strong> 21 (16) ± 2°C dienos (nakties) temperatûrai.<br />

Fitohormonø bandiniai efektyviajai skysèiø chromatografijai (HPLC) atlikti ruoðiami<br />

sutrinant 1– 2 g þalios masës su skystu azotu, ekstakcija atliekama uþpilant<br />

10 ml izopropanolio. Bandinys centrifuguojamas 2 500 apsisukimø per minutæ greièiu<br />

5 min., nupylus ekstraktà, centrifuguojama dar tris kartus kaskart uþpilant po<br />

279


2 ml izopropanolio. Surinktas bandinys garinamas rotaciniu garintuvu, gryninamas<br />

kietafazës ekstrakcijos metodu, naudojant NH2-kartridþus, <strong>ir</strong> vël garinamas. Paruoðti<br />

bandiniai saugomi mëgintuvëliuose 4°C temperatûroje (Wang, 2003).<br />

Giberelo rûgðties (GA3), indolil-3-acto rûgðties (IAA), abscizo rûgðties (ABA) <strong>ir</strong><br />

zeatino analizës atliktos Shimadzu 10A HPLC modelio chromatografu su diodø matricos<br />

detektoriumi (SPD-M 10A VP, Japonija), kolona termostatuota 35°C temperatûroje.<br />

Sk<strong>ir</strong>stymas atliktas Intersil ODS-2 kolonële (150 x 4,6 mm). Judriosios fazës<br />

gradientas: 40% metanolis su 1% acto rûgðties GA3, 45% metanolis su 1% acto<br />

rûgðties IAA, 50% metanolis su 1% acto rûgðties zeatinui <strong>ir</strong> 55% metanolis su 1%<br />

acto rûgðties ABA sk<strong>ir</strong>styti. Detekcija: <strong>25</strong>4, 280, 270 <strong>ir</strong> <strong>25</strong>4 nm atitinkamai GA3,<br />

IAA, zeatinui <strong>ir</strong> ABA. Tëkmës greitis – 1 ml/min.<br />

Standartiniam nuokrypiui nuo vidurkio apskaièiuoti naudota „MS Exel“ programa.<br />

Rezultatai. Kmynai, iðsivystæ iki 7 lapø skrotelëje bei sudëti á fitotrono kameras<br />

foto- bei termoindukcijos procesams praeiti, vëliau visuose t<strong>ir</strong>tuose veiksniø<br />

deriniuose liko vegetatyvinës bûsenos (II organogenezës etape). Tamsoje kmynai<br />

<strong>ir</strong> su 7, <strong>ir</strong> su 9 lapais skrotelëje visai nesivystë <strong>ir</strong> sunyko (1 lentelë). Kmynai su 9<br />

lapais skrotelëje vystësi nevienodai. Geriausiai kmynai vystësi veikiant 16 val. fotoperiodu<br />

bei 4°C temperatûra (EXP 3). Palaikant 21 (16)°C dienos (nakties) temperatûrà,<br />

paprastasis kmynas <strong>ir</strong> trumpos (EXP 4), <strong>ir</strong> ilgos (EXP 5) dienos fotoperiodo<br />

sàlygomis vystësi vienodai <strong>ir</strong> lëèiau nei EXP 3. Sunkiausiai paprastasis kmynas<br />

vystësi veikiant ilgos dienos fotoperiodu bei þema temperatûra (EXP 2)<br />

(1 lentelë).<br />

1 lentelë. Paprastojo kmyno sk<strong>ir</strong>tingø þydëjimo iniciacijos tarpsniø intensyvumo lygis<br />

Table 1. The intensity level of different flowering initiation stages in common caraway<br />

Veiksniø<br />

deriniai<br />

Treatment<br />

II evokacijos<br />

Þiedø diferenciacija<br />

Þiedø iniciacija (Va<br />

tarpsnis (IV<br />

(Vb, Vc<br />

organogenezës<br />

organogenezës<br />

organogenezës<br />

etapas)<br />

etapas)<br />

etapas)<br />

Flower initiation<br />

Evocation stage II (organogenesis stage<br />

Flower differentiation<br />

(organogenesis stage IV) Va)<br />

(organogenesis stage<br />

Vb, Vc)<br />

7 9 7 9 7 9 7 9<br />

I evokacijos tarpsnis<br />

(III organogenezës<br />

etapas)<br />

Evocation stage I<br />

(organogenesis stage III)<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

EXP1 - - - - - - - -<br />

EXP2 - + - + - + - +<br />

EXP3 - + + + - + + + - + + + - + + +<br />

EXP4 - + + - + + - + + - + +<br />

EXP5 - + + - + + - + + - + +<br />

„+/-„ – vystymosi intensyvumo lygis / development intensity level.<br />

EXP1 – 0 val. <strong>ir</strong>/and 4°C, EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val. <strong>ir</strong>/<br />

and 21 (16)°C, EXP5 – 16 val. <strong>ir</strong>/and 21/ (16)°C.<br />

280


Po þydëjimo indukcijos giberelo rûgðties koncentracija sumaþëjo visuose poveikio<br />

deriniuose, ypaè trumpos dienos bei aukðtos temperatûros sàlygomis (EXP4)<br />

(1 pav.). II evokacijos tarpsnio metu EXP4 poveikio derinyje ðio fitohormono koncentracija<br />

iðaugo beveik 16 kartø, palyginti su I evokacijos tarpsniu, o kituose poveikio<br />

deriniuose GA3 sintezë sumaþëjo. Þiedø iniciacijos metu visuose poveikio deriniuose<br />

giberelo rûgðties biosintezë vyko neaktyviai (Va organogenezës etapas), o þiedø<br />

diferenciacijos metu labai suaktyvëjo. Labiausiai GA 3<br />

sintezë svyravo trumpos<br />

dienos bei aukðtos temperatûros sàlygomis (EXP4) (1A pav.). Po þydëjimo indukcijos<br />

indolil-3-acto rûgðties, abscizo rûgðties bei zeatino koncentracijos sumaþëjo EXP3<br />

<strong>ir</strong> EXP4 poveikio deriniuose <strong>ir</strong> beveik du kartus padidëjo EXP2 <strong>ir</strong> EXP5 poveikio<br />

deriniuose (1B pav.).<br />

Zeatinas IAA ABA<br />

1 pav. Fitohormonø kiekio kitimas sk<strong>ir</strong>tingais paprastojo kmyno þydëjimo iniciacijos<br />

tarpsniais. I – prieð þydëjimo indukcijà; 1 <strong>ir</strong> 2 – I <strong>ir</strong> II evokacijos tarpsniai, 3 – þiedø<br />

iniciacija, 4 – þiedø diferenciacija<br />

Fig. 1. Variation of phytohormones contents in common caraway during various flowering<br />

initiation stages. I – before flowering induction; 1 and 2 – evocation stages I and II, 3 –<br />

flower initiation, 4 – flower differentiation<br />

EXP1 – 0 val. <strong>ir</strong>/and 4°C, EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val.<br />

<strong>ir</strong>/and 21 (16)°C, EXP5 – 16 val. <strong>ir</strong>/and 21 (16)°C.<br />

Trumpos dienos <strong>ir</strong> þemos temperatûros sàlygomis (EXP2) ABA <strong>ir</strong> IAA santykis<br />

iðaugo II evokacijos tarpsnio metu, o kmynams pasiekus V organogenezës etapà,<br />

t. y. prasidëjus þiedø iniciacijos bei diferenciacijos procesams, ðis santykis sumaþëjo.<br />

Zeatino <strong>ir</strong> IAA santykis buvo lygus 1 visais þydëjimo iniciacijos tarpsniais, o GA3 <strong>ir</strong><br />

ABA santykis þiedø iniciacijos bei diferenciacijos metu padidëjo dvigubai, palyginti<br />

su II evokacijos tarpsniu. Geriausiai augalai vystësi ilgos dienos bei þemø temperatûrø<br />

sàlygomis (EXP3), GA 3<br />

<strong>ir</strong> ABA santykis kito nedaug <strong>ir</strong> iðliko didelis visais þydëjimo<br />

iniciacijos tarpsniais, tik þiedø diferenciacijos metu sumaþëjo maþdaug perpus.<br />

ABA <strong>ir</strong> IAA santykis sumaþëjo þiedø iniciacijos metu. Augalus veikiant trumpos dienos<br />

fotoperiodu bei aukðta temperatûra (EXP4), ABA <strong>ir</strong> IAA bei zeatino <strong>ir</strong> IAA santykis<br />

buvo lygus 1 visais þydëjimo iniciacijos tarpsniais. Esant toms paèioms sàlygoms,<br />

GA 3<br />

<strong>ir</strong> ABA santykis po I evokacijos tarpsnio padidëjo apie 5 kartus <strong>ir</strong> vël tiek<br />

pat sumaþëjo þiedø diferenciacijos metu (2 lentelë). Augalus veikiant taip pat aukðta<br />

temperatûra, bet ilgos dienos fotoperiodu (EXP5), ABA <strong>ir</strong> IAA santykis I <strong>ir</strong> II evokacijos<br />

bei þiedø iniciacijos tarpsniais sumaþëjo perpus, taèiau padidëjo þiedø diferenciacijos<br />

metu.<br />

281


2 lentelë. Fitohormonø santykis sk<strong>ir</strong>tingais paprastojo kmyno þydëjimo iniciacijos<br />

tarpsniais<br />

Table 2. The ratio of ohytohormones during different flowering initiation stages in<br />

common caraway<br />

Poveikio<br />

variantas<br />

Treatment<br />

GA3/ABA<br />

I evokacijos<br />

tarpsnis<br />

evocation stage I<br />

ABA/IAA<br />

Zeatinas/IAA<br />

Þydëjimo iniciacijos tarpsniai<br />

Flowering initiation stage<br />

II evokacijos<br />

tarpsnis<br />

evocation stage II<br />

GA3/ABA<br />

ABA/IAA<br />

Zeatinas/IAA<br />

GA3/ABA<br />

Þiedø iniciacija<br />

flower initiation<br />

ABA/IAA<br />

Zeatinas/IAA<br />

Þiedø<br />

diferenciacija<br />

flower differentiation<br />

EXP2 278 0 1 85 2 1 158 0 1 160 1 1<br />

EXP3 219 1 1 301 1 0 297 0 1 149 1 2<br />

EXP4 66 1 1 343 1 1 246 1 1 58 1 1<br />

EXP5 80 1 1 40 1 0 <strong>25</strong> 0 0 230 18 15<br />

GA3/ABA<br />

ABA/IAA<br />

Zeatinas/IAA<br />

EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val. <strong>ir</strong>/and 21 (16)°C, EXP5 –<br />

16 val. <strong>ir</strong>/and 21 (16)°C.<br />

Diskusija. Paprastasis kmynas (Carum carvi L.), kaip <strong>ir</strong> petraþolës, morkos,<br />

krapai <strong>ir</strong> kt., priklauso Apiaceae ðeimai. Paprastasis kmynas, kaip <strong>ir</strong> kiti dvimeèiai<br />

augalai, sëjos metais formuoja vien tik skrotelæ <strong>ir</strong> tik po foto- <strong>ir</strong> termoindukcijos<br />

rudená <strong>ir</strong> þiemà suformuoja þiedynstiebá. Labai svarbu nustatyti kiekvienos rûðies<br />

minimalø iðsivystymo lygá, kai tinkamu fotoperiodu <strong>ir</strong> þema temperatûra gali bûti<br />

indukuojamas þydëjimas. Ankstesni mûsø tyrimai rodo, kad juvenalinio tarpsnio pabaiga<br />

foto- <strong>ir</strong> termoindukcijai yra sk<strong>ir</strong>tinga (Duchovskis <strong>ir</strong> kt, 2003). Yra du þydëjimo<br />

indukcijos <strong>ir</strong> evokacijos tarpsniai. P<strong>ir</strong>masis þydëjimo indukcijos tarpsnis yra fotoindukcija<br />

(morkoms – turint 5 lapus skrotelëje). Fotomorfogenetinës sistemos metabolitai<br />

ið lapø transportuojami á apikalines meristemas, kur pas<strong>ir</strong>eiðkia þiedyno aðies<br />

formavimo genø ekspresija (tikëtina per SOC1, FT genus) (Duchovskis, 2004). Nuo<br />

ðio momento prasideda I evokacijos tarpsnis, kuris baigiasi þiedyno aðies suformavimu.<br />

Antrasis þiemojanèiø augalø þydëjimo indukcijos tarpsnis yra termoindukcija<br />

(morkoms – kai iðsivystymo lygis pasiekia 9 lapus skrotelëje). Termoindukcijos proceso<br />

metabolitai lemia þiedyno aðies struktûrø formavimà (II evokacijos tarpsnis).<br />

Labiausiai tikëtina, kad FLC, FRI genai yra atsakingi uþ II evokacijos tarpsná. Ðiø<br />

procesø pabaigoje taip pat vyksta þiedø iniciacija (Duchovskis, 2004). Paprastasis<br />

kmynas, pasiekæs iðsivystymo lygá iki 7 <strong>ir</strong> 9 lapø skrotelëje, dedamas á fitotrono<br />

kameras þydëjimo indukcijai sukelti. Po ðio poveikio kmynø su 7 lapais skrotelëje,<br />

vëliau veikiant sk<strong>ir</strong>tingais foto- <strong>ir</strong> termoperiodais, augimas buvo vien tik vegetatyvinis<br />

(1 lentelë). Juvenalinio periodo pabaiga sietina su visiðku augalo pas<strong>ir</strong>uoðimu priimti<br />

foto- <strong>ir</strong> termoindukcijos procesus. Paprastojo kmyno ontogenezëje tuo momentu<br />

augalai suformuoja 9 asimiliuojanèius lapus. Fotoperiodas apribojo þydëjimà, ta-<br />

282


èiau ðie apribojimai gali iðnykti veikiant þemomis ar aukðtomis temperatûromis (Zeevaart,<br />

1976). Pagal Zeevaart teiginá <strong>ir</strong> mûsø bandymuose paprastasis kmynas su 9<br />

lapais skrotelëje þydëjo visuose poveikiø variantuose, tik nevienodai intensyviai. Geriausiai<br />

floralinis vystymasis pas<strong>ir</strong>eiðkë augalus veikiant þema teigiama temperatûra <strong>ir</strong><br />

ilgos dienos fotoperiodu (1 lentelë).<br />

Reguliuojant daugelio augalø rûðiø þydëjimà giberelinas vaidina svarbø vaidmená<br />

(Michaels <strong>ir</strong> Amasino, 2000). Ar gali bûti taip, kad GA 3<br />

kiekio padidëjimas arba ðio<br />

hormono metabolizmo pakitimas veiktø kaip þydëjimui átakos turintis mechanizmas<br />

neveikiant þydëjimo indukcijà skatinanèiu fotoperiodu arba ðalèiu Remiantis mûsø<br />

duomenis, galima teigti, kad giberelo rûgðties koncentracijos sumaþëjimas po evokacijos<br />

procesø nulemia greitesnæ þiedstiebio elongacijà <strong>ir</strong> þiedø formavimà. Yra þinoma,<br />

kad hormonø veikla pas<strong>ir</strong>eiðkia <strong>ir</strong> antagonistiðkai, <strong>ir</strong> stimuliuojanèiai <strong>ir</strong> ðiø veiklø<br />

balansas nulemia kiekvieno fitohormono átakà þydëjimo iniciacijai (Johri <strong>ir</strong> Mitra,<br />

2001). Nustatyta, kad kmynus veikiant ilgos dienos fotoperiodu <strong>ir</strong> þema temperatûra,<br />

augalai vystësi geriausiai, GA 3<br />

<strong>ir</strong> ABA santykis I <strong>ir</strong> II evokacijos tarpsnio metu<br />

buvo didelis, o po þiedø iniciacijos þiedø diferenciacijos metu sumaþëjo perpus. Tai<br />

gali bûti susijæ su greitesniais þydëjimo indukcijos procesais. Kitomis sàlygomis<br />

augalai vystësi prasèiau <strong>ir</strong> tai atsispindi GA 3<br />

<strong>ir</strong> ABA santykio antagonistinës veiklos<br />

balanse, ypaè kmynus veikiant ilgos dienos fotoperiodu bei aukðta temperatûra. Ið<br />

gautø duomenø matyti, kad fotoperiodo bei temperatûros poveikis fitohormonø<br />

santykiui kmynø þydëjimo iniciacijos procesø metu yra didelis. Taèiau paprastojo<br />

kmyno vystymuisi svarbesnë termoindukcijos nei fotoindukcijos átaka: blogiausiai<br />

kmynai vystësi esant trumpai dienai <strong>ir</strong> þemoms temperatûroms (EXP2), nors þiedø<br />

iniciacijos bei diferenciacijos procesø metu GA 3<br />

<strong>ir</strong> ABA santykis buvo didelis <strong>ir</strong><br />

þiedo elementø formavimàsi ðis balansas veikë stimuliuojanèiai. Esant aukðtai temperatûrai,<br />

nesvarbu, kokia buvo fotoperiodo trukmë, kmynai vystësi geriau (EXP4<br />

<strong>ir</strong> EXP5), nors GA 3<br />

<strong>ir</strong> ABA santykis (ypaè ilgos dienos sàlygomis) buvo itin maþas<br />

(EXP5).<br />

Auksinai paprastai siejami su làsteliø tásimo procesais, auksinø <strong>ir</strong> citokininø bendra<br />

veikla làsteliø dalijimosi procesuose pas<strong>ir</strong>eiðkia stimuliojanèiai (Johri <strong>ir</strong> Mitra,<br />

2001). Taip pat zeatino bei indolil-3-acto rûgðties santykis labai svarbus morfogenezës<br />

iniciacijos procesuose. Þinoma, kad auksinai atsakingi uþ apikaliná dominavimà,<br />

o kinetino sintezë vyksta ðaknyje <strong>ir</strong> skatina ûgliø morfogenezæ. Vykstant ðiø fitohormonø<br />

perneðimui ið jø sintezës vietos, keièiasi <strong>ir</strong> santykis. Mûsø duomenimis kmynus<br />

veikiant ilgos dienos fotoperiodu, neatsiþvelgiant á temperatûros poveiká (EXP3<br />

<strong>ir</strong> EXP5), zeatino <strong>ir</strong> IAA santykis II evokacijos tarpsnio metu buvo artimas 0. Todël<br />

zeatino bei IAA veikla prieð þiedø iniciacijos procesus pas<strong>ir</strong>eiðkia antagonistiðkai. Tai<br />

gali turëti átakos apikalinio dominavimo iðnykimui bei pradmeninio þiedyno ðoniniø<br />

elementø formavimuisi. Taèiau ðoniniø þiedo aðies elementø formavimasis gali bûti<br />

nulemtas dar I evokacijos tarpsnio pabaigoje. Þiedø diferenciacijos procesø metu,<br />

aktyviai formuojantis þiedo aðies elementø struktûroms, pas<strong>ir</strong>eiðkia stimuoliuojanti<br />

citokininø bei auksinø saveika. Ilgos dienos fotoperiodo sàlygomis augalus veikiant<br />

aukðta temperatûra (EXP5), ðis santykis neatkuriamas <strong>ir</strong> þiedø iniciacijos metu, taèiau<br />

ðiuo momentu pas<strong>ir</strong>eiðkia antagonistinë ABA <strong>ir</strong> IAA sàveika. Tokia fitohormonø<br />

veikla galëjo lëtinti kmynø vystymosi procesus.<br />

283


Iðvados. 1. Juvenalinio periodo pabaiga paprastojo kmyno ontogenezëje sietina<br />

su tuo momentu, kai augalai suformuoja 9 asimiliuojanèius lapus <strong>ir</strong> visiðkai pas<strong>ir</strong>uoðia<br />

priimti foto- <strong>ir</strong> termoindukcijos procesus.<br />

2. Paprastojo kmyno floraliniam vystymuisi svarbesni termoindukcijos nei fotoindukcijos<br />

procesai.<br />

3. Stabilø visø fitohormonø sintezës maþëjimà iki paprastojo kmyno þiedø diferenciacijos<br />

bei geriausià floraliná vystymàsi lemia þemos teigiamos temperatûros bei<br />

ilgos dienos fotoperiodo derinys.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bernier G., Havelange A., Housa C., Petitjean A., Lejeune P. Physiological signals<br />

that induce flowering // Plant Cell. 1993. Vol. 5. P. 1147–1155.<br />

2. Duchovskis P. Flowering initiation of wintering plants // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2004. T. 23(2). P. 3–11.<br />

3. Duchovskis P., N. Þukauskas, Ðikðnianienë J. B., Samuolienë G. Valgomøjø morkø<br />

juvenalinio periodo, þydëjimo indukcijos <strong>ir</strong> evokacijos procesø ypatumai // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2003. T. 22(1). P. 86–93.<br />

4. Duchowski P. Acta Academiae Agriculturae ac Technicae Olstenensis Agricultura //<br />

Supplementum. 1995. 61.<br />

5. Glãucia M., Dias-Tagliacozzo, Válio F.M. Ivany. Effect of vernalization on fowering<br />

of Daucus carota. // R. Bras. Fisiol. Veg. 1994. Vol. 6. P. 71–73.<br />

6. Johri M. M., Mitra D. Current Science 2001. Vol. 80(2). P. 199–205.<br />

7. Kraepiel Y., Miginiac E. Photomorphogenesis and phytohormones // Plant, Cell<br />

and Env<strong>ir</strong>onment. 1997. 20. P. 807–812.<br />

8. Michaels S. D., Amasino R. M. Plant, cell and env<strong>ir</strong>onment. 2000. 23. P. 1145–1153.<br />

9. Sachs R. M., Hackett W. P. Source-sink relationships in flowering // W. J. Meudt.<br />

Strategies of plant reproduction. Allenheld, Osmun, Granada, 1983. P. 263–272.<br />

10. Zeevaart Jan A. D. Ann. Rev. Plant Physiol. 1976. 27. P. 321–347.<br />

11. Wang Y., Mopper S., Hasenstein K. H. Effects of salinity on endogenous ABA,<br />

IAA, JA and SA in Iris hexagona // Journal of Chemical Ecology. 2003. 27. P. 327–342.<br />

12. Êóïåðìàí Ô. Ì., Ðæàíîâà Å. È., Ìóðàøåâ Â. Â., Ëüâîâà È. Í., Ñåäîâà Å. À.,<br />

Àõóíäîâà Â.À., Ùåðáèíà È.Ï. Áèîëîãèÿ ðàçâèòèÿ êóëüòóðíûõ ðàñòåíèé.<br />

Ìîñêâà: Âûñøàÿ øêîëà, 1982. 343 c.<br />

284


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

DYNAMICS AND ROLE OF PHYTOHORMONES IN<br />

COMMON CARAWAY AFTER FLOWERING INDUCTION<br />

G. Samuolienë, P. Duchovskis<br />

Summary<br />

This study was aimed on investigation of phytohormones dynamic and role in<br />

common caraway (Carum carvi L.) during different flowering initiation stages. The<br />

process of common caraway flowering initiation and morphogenesis was studied in<br />

a phytotron facility. Different level of development is needed for photo- and thermoinduction<br />

of caraway. 9 leaves in rosette are needed to complete the juvenile<br />

period. High-performance liquid chromatography (HPLC) with diode array detection<br />

was used for separation and determination of gibberellic, indol-3-acetic and abscisic<br />

acids, and zeatin. Conditions of photo and thermoperiod during flowering induction:<br />

EXP2 – 8 hr and 4°C, EXP3 – 16 hr and 4°C, EXP4 – 8 hr and 21/16°C, EXP5 –<br />

16 hr and 21/16°C.<br />

Our results showed that under dark treatment both in caraway with 7 and 9<br />

leaves in rosette did not develop at all and rotted away. The best floral development<br />

was observed when plants were treated under low positive temperature and long day<br />

photoperiod (EXP3). Under these conditions the GA3/IAA ratio during evocation<br />

stages I and II was high, but it decreased twice after flower initiation. During evocation<br />

stage II zeatin/IAA ratio was equal to 0. This could mean that the apical dominance<br />

disappeared. Under treatment with long day photoperiod and high temperature<br />

(EXP5) this ratio did not increase even during flower initiation. Otherwise during<br />

this moment an antagonistic interaction between ABA and IAA occurs. This phytohormones<br />

action could influence slower developmental processes of common caraway.<br />

In summary, for development of common caraway thermoinduction is more<br />

important than influence of photoinduction. The best generative development was<br />

noticed when plants were treated under low temperature and long day photoperiod.<br />

For common caraway floral development thermoinduction processes are more important<br />

than photoinduction. The stabile decrease of all phytohormones synthesis till<br />

flower differentiation and the best floral development is determined by low positive<br />

temperatures and long day photoperiod.<br />

Key words: caraway, evocation, flowering initiation, phytohormones.<br />

285


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(3).<br />

SODINIMO TANKUMO ÁTAKA PAVASARINIØ AGURKØ<br />

PRODUKTYVUMUI<br />

Julë JANKAUSKIENË, Auðra BRAZAITYTË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas j.jankauskiene@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute dviguba polimerine<br />

plëvele dengtuose ðiltnamiuose (ðonai dengti plastiko lakðtais) mineralinëje<br />

vatoje auginti du agurkø hibridai <strong>ir</strong> t<strong>ir</strong>ta sodinimo tankumo átaka agurkø hibridø fotosintezës<br />

sistemai, derliui bei kokybei. Auginti agurkø hibridai ‘Mandy’, ‘Componist’.<br />

Agurkai sodinti sk<strong>ir</strong>tingais tankumais: 2,0; 2,3; 2,6 augalo/m 2 . Vegetacijos metu nustatytas<br />

sausøjø medþiagø bei pigmentø kiekis augalø lapuose, matuotas fotosintezës<br />

intensyvumas. Pigmentø bei sausøjø medþiagø kiekis, fotosintezës intensyvumas agurkø<br />

lapuose priklauso <strong>ir</strong> nuo hibrido, <strong>ir</strong> nuo sodinimo tankumo. Sodinimo tankumas<br />

turi átakos t<strong>ir</strong>tø agurkø hibridø ankstyvumui, taip pat veikia derliaus dydá. Agurkø<br />

hibridø, augintø 2,6 aug./m 2 tankumu, derlius esti didesnis negu augintø 2,0 <strong>ir</strong><br />

2,3 aug./m 2 tankumu. Vidutinë vaisiaus masë visuose variantuose vienoda.<br />

Reikðminiai þodþiai: agurkai, derlius, fotosintezës intensyvumas, hibridai, pigmentai,<br />

sausosios medþiagos, sodinimo tankumas.<br />

Ávadas. Siekiant ið ploto vieneto gauti kuo daugiau produkcijos, labai svarbu<br />

tinkamai iðnaudoti ðiltnamio plotà (Papadopoulos, 1994). Vienas svarbiausiø darþoviø<br />

auginimo ðiltnamiuose technologijos elementø, kuriø dëka galima reguliuoti derliaus<br />

kieká, yra maitinamasis plotas. Optimalus plotas vienam agurko augalui yra<br />

0,7–0,8 m 2 . Idealu, kai tarp eiliø bei augalø eilëje yra tas pats atstumas. Taèiau ðiltnamiuose<br />

augalø tankumui átakos turi atramø, ðildymo vamzdþiø iðdëstymas <strong>ir</strong> kt. Augalø<br />

maitinamasis plotas priklauso nuo veislës, hibrido, auginimo laiko (t. y. apðvietimo),<br />

auginimo bûdo, taip pat nuo mineralinës mitybos (Papadopoulos, 1994). Atstumas<br />

tarp augalø eilëje gali bûti 45–60 cm. Didelæ lapijà turintys agurkai sodinami<br />

reèiau. Vëlyvà pavasará <strong>ir</strong> ankstyvà rudená, kai apðvietimo sàlygos yra geros, augalai<br />

gali bûti sodinami tankiau, taèiau pasodinus per tankiai, gali sumaþëti derlingumas,<br />

nes augalai gauna maþiau ðviesos, gelsta jø lapai, tarp augalø laikosi drëgnas oras, jie<br />

blogiau vëdinami <strong>ir</strong> greièiau suserga (Îâîùåâîäñòâî..., 1995).<br />

Fotosintezë yra pagrindinis fiziologinis procesas, kuriuo augalai reaguoja á pasikeitusias<br />

aplinkos sàlygas. Jos intensyvumas daþnai t<strong>ir</strong>iamas sudarant áva<strong>ir</strong>ias augimo<br />

sàlygas ðiltnamiuose (Hand <strong>ir</strong> kt., 1992; Tornley <strong>ir</strong> kt., 1992). Pigmentai yra<br />

286


fotosintezës sistemos dalis, jø pokyèiai yra svarbus sàlygø tinkamumo ðiltnamio augalams<br />

rodiklis. Sausøjø medþiagø kiekis agurkuose priklauso nuo maisto medþiagø<br />

kiekio d<strong>ir</strong>voþemyje (Espinola <strong>ir</strong> kt., 2001). Taip pat tam átakos turi <strong>ir</strong> kiti veiksniai:<br />

auginimo laikotarpis, vaisiø kiekis ant augalo, tankis <strong>ir</strong> kt. (Heuvelink <strong>ir</strong> kt., 1989;<br />

Gomez <strong>ir</strong> kt., 2003; Peil, Lopez-Galvez, 2005). Nustatyta, kad sk<strong>ir</strong>tingos polimerinës<br />

ðiltnamio dangos neturi átakos sausøjø medþiagø kiekiui agurkuose, taèiau jø<br />

susikaupia daugiau tuose augaluose, kurie auga stikliniuose ðiltnamiuose (Papadopoulos,<br />

Hao, 1999).<br />

Darbo tikslas – nustatyti pavasará auginamø trumpavaisiø agurkø sodinimo<br />

tankumo átakà fotosintezës pigmentams, jos intensyvumui, derëjimo ankstyvumui <strong>ir</strong><br />

suminiam derliui.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimai atlikti 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto dviguba polimerine plëvele dengtuose ðiltnamiuose<br />

(ðonai dengti plastiko lakðtais). Agurkai auginti mineralinëje vatoje. Sëjos laikas 2003<br />

metais – kovo mën. 3 diena, 2004 metais – vasario mën. 27 diena, 2005 metais –<br />

vasario mën. 28 diena. Agurkø daigai auginti daigyne ant stelaþø, papildomai ðvytinti.<br />

Á ðiltnamá sodinti 2003 04 02, 2004 03 31, 2005 04 08. Agurkai træðti „Nutrifol“<br />

(þalias <strong>ir</strong> rudas) tràðomis, magnio sulfatu, kalcio bei amonio salietra atsiþvelgiant á<br />

augimo tarpsná. Vandeniui rûgðtinti naudota azoto rûgðtis. Druskø koncentracija maitinamajame<br />

t<strong>ir</strong>pale – EC 2,5–2,8, rûgðtumas – pH 5,5–5,8. Tyrimo objektas (A faktorius)<br />

– a 0 – hibridas ‘Mandy’, a 1 – hibridas ‘Componist’. T<strong>ir</strong>tas sodinimo tankumas<br />

(B faktorius): b 0 – 2,0 aug./m 2 , b 1 – 2,3 aug./m 2 , b 2 – 2,6 aug./m 2 . Laukelio<br />

plotas – 8,8 m 2 . Variantai kartoti po keturis kartus. Laukeliai iðdëstyti atsitiktine tvarka.<br />

Bandymo metu atlikti biometriniai stebëjimai (praëjus 1, 2, 3 savaitëms po sodinimo,<br />

matuotas augalø aukðtis, skaièiuoti lapai), nustatytas pigmentø <strong>ir</strong> sausøjø medþiagø<br />

kiekis lapuose (kas mënesá vegetacijos metu), fotosintezës intensyvumas matuotas<br />

neðiojama fotosintezës sistema CI-310 (CID Inc., USA). Sausosios medþiagos<br />

nustatytos iðdþiovinus lapus 105 ± 20°C temperatûroje iki nekintamos masës.<br />

Pigmentø kiekis nustatytas sprektrofotometru (pagal Vetðteinà) (Wettstein, 1957).<br />

T<strong>ir</strong>ti visai susiformavæ lapai. Atlikta agurkø derliaus apskaita. Agurkai buvo skinami<br />

tris kartus per savaitæ <strong>ir</strong> rûðiuojami á standartinius <strong>ir</strong> nestandartinius. Derliaus duomenys<br />

apdoroti statistiniais metodais (Tarakanovas, Raudonius, 2003).<br />

Tyrimø rezultatai. Vegetacijos metu augalai augo nevienodai, jø aukðtis priklausë<br />

nuo hibrido <strong>ir</strong> nuo augalø sodinimo tankio. ‘Mandy’ hibrido augalai buvo<br />

aukðtesni <strong>ir</strong> turëjo daugiau lapø, pasodinus 2,3 aug./m 2 , negu augalai, sodinti 2 <strong>ir</strong><br />

2,6 aug./m 2 tankumais (1 lentelë). ‘Componist’ hibrido aukðèiausi buvo reèiausiai,<br />

t. y. 2 aug./m 2 tankumu, pasodinti augalai. Ðie agurkai taip pat iðaugino daugiau lapø.<br />

Matuojant p<strong>ir</strong>màjá kartà, jie buvo atitinkamai 17,1 <strong>ir</strong> 18 proc. aukðtesni negu augalai,<br />

pasodinti 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumais, matuojant antràjá kartà – atitinkamai 11,1 <strong>ir</strong><br />

13,9 proc. aukðtesni, treèiàjá – atitinkamai 7,30 <strong>ir</strong> 8,8 proc. aukðtesni.<br />

Vegetacijos metu daugiausia sausøjø medþiagø lapuose sukaupë reèiausiai, t. y.<br />

2,0 aug./m 2 , pasodinti agurkai (abu hibridai), nors esminio sk<strong>ir</strong>tumo tarp variantø<br />

nebuvo (1 pav.). Matuojant p<strong>ir</strong>màjá kartà, sausøjø medþiagø buvo atitinkamai 1,8 <strong>ir</strong><br />

7,5 proc. daugiau negu lapuose agurkø, augusiø 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumu, matuojant<br />

antràjá kartà – atitinkamai 1,6 <strong>ir</strong> 5,1 proc. daugiau, treèiàjá – 5,6 <strong>ir</strong> 14,3 proc.<br />

287


daugiau. Agurkai, auginti 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumu, lapuose sukaupë beveik vienodà<br />

sausøjø medþiagø kieká.<br />

1 lentelë. Sk<strong>ir</strong>tingu tankumu augintø agurkø aukðtis <strong>ir</strong> lapø skaièius vegetacijos metu.<br />

Babtai, 2003–2005 m.<br />

Table 1. Plant height and the number of leaves of cucumbers grown at different density.<br />

Babtai, 2003-2005<br />

Variantas<br />

Variants<br />

2 augalai<br />

augalo<br />

aukštis<br />

plant<br />

height, cm<br />

I matavimas<br />

Measure<br />

lapø<br />

skaièius,<br />

vnt.<br />

number of<br />

leaves (unit)<br />

augalo<br />

aukštis<br />

plant height,<br />

cm<br />

‘Mandy’ F 1<br />

II matavimas<br />

Measure<br />

lapø<br />

skaièius, vnt.<br />

number of<br />

leaves (unit)<br />

III matavimas<br />

Measure<br />

augalo<br />

aukštis<br />

plant height,<br />

cm<br />

lapø<br />

skaièius,<br />

vnt.<br />

number of<br />

leaves (unit)<br />

2 plants, m 2 28,0 5,8 48,6 7,7 76,8 10,9<br />

2,3 augalo<br />

2.3 of plant, m 2 29,5 6,1 52,5 8,4 83,9 11,6<br />

2,6 augalo<br />

2.6 of plant, m 2 28,3 5,9 51,7 8,1 79,2 11,3<br />

2 augalai<br />

‘Componist’ F 1<br />

2 plants, m 2 31,5 5,9 53,1 8,1 83,9 11,2<br />

2,3 augalo<br />

2.3 of plant, m 2 26,9 5,3 46,6 7,6 77,1 10,7<br />

2,6 augalo<br />

2.6 of plant, m 2 26,7 5,5 47,8 7,7 78,2 10,9<br />

1 pav. Sausøjø medþiagø kiekis sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu<br />

Fig. 1. The amount of dry matter in the leaves of cucumbers grown at different density<br />

during vegetation<br />

288


2 lentelë. Fotosintetiniø pigmentø kiekis sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu (mg/1 g þalios masës). Babtai, 2003–2005 m.<br />

Table 2. The amount of photosynthetic pigments in the leaves of cucumbers grown at<br />

different density during vegetation (mg/1g fresh mass). Babtai, 2003-2005<br />

Variantas<br />

Variants<br />

I matavimas / measure II matavimas / measure III matavimas / measure<br />

chlorofilas<br />

chlorofilas<br />

karoti- chlorofilas<br />

chlorofilas<br />

karotinoidafilas<br />

chloro-<br />

chlorofilas<br />

karotinoidai<br />

noidai<br />

chloro-<br />

chlorophyll<br />

chlorophyll<br />

chlorophyll<br />

a<br />

noids phyll<br />

phyll<br />

carote-<br />

chloro-<br />

carotenoidphyll<br />

chloro-<br />

carotenoids<br />

a + b<br />

a<br />

a + b<br />

a<br />

a + b<br />

‘Mandy’ F 1<br />

2 augalai<br />

1,16 a 1,56 a 0,36 a 1,66 b 2,26 b 0,54 b 1,76 ab 2,44 ab 0,55 ab<br />

plant, m 2<br />

2,3 augalo<br />

plant, m 2 1,34 b 1,80 c 0,44 c 1,57 ab 2,12 ab 0,49 ab 1,78 ab 2,46 ab 0,54 ab<br />

2,6 augalo<br />

plant, m 2 1,43 c 1,94 c 0,46 c 1,62 ab 2,21 ab 0,52 ab 1,97 b 2,72 b 0,60 b<br />

2 augalai<br />

‘Componist’ F 1<br />

plant, m 2 1,29 b 1,74 b 0,41 b 1,42 ab 1,92 ab 0,46 ab 1,54 ab 2,12 ab 0,49 ab<br />

2,3 augalo<br />

plant, m 2 1,26 ab 1,70 ab 0,40 ab 1,46 ab 1,98 ab 0,48 ab 1,68 b 2,26 b 0,52 b<br />

2,6 augalo<br />

plant, m 2 1,26 ab 1,69 ab 0,40 ab 1,59 b 2,16 b 0,51 b 1,60 ab 2,21 ab 0,50 ab<br />

Tomis paèiomis raidëmis stulpeliuose paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia, kai P ≤ 0,05.<br />

Values indicated by the same letters within the columns are not statistically different at P ≤ 0.05<br />

Chlorofilø kiekis þaliuose agurkø lapuose vegetacijos metu kito (2 lentelë). Hibrido<br />

‘Mandy’ augalø, pasodintø tankiausiai, lapuose vaisiø derëjimo pradþioje nustatyta<br />

daugiau pigmentø negu reèiau pasodintø augalø lapuose. Sk<strong>ir</strong>tumai tarp áva<strong>ir</strong>iu<br />

tankumu augusiø augalø buvo ryðkesni negu kitu vegetacijos metu. Matuojant antràjá<br />

kartà (kada apðvietimas buvo didþiausias), sk<strong>ir</strong>tumai tarp variantø buvo nedideli. Treèiojo<br />

matavimo metu ðiek tiek daugiau pigmentø sintetino tankiau pasodinti agurkai.<br />

Reèiausiai augusiø hibrido ‘Componist’ augalø lapuose vaisiø derëjimo pradþioje aptikta<br />

daugiau pigmentø. Taèiau kitais vegetacijos laikotarpiais jø kiekis buvo didesnis<br />

tankiau augusiø agurkø lapuose.<br />

Fotosintezë matuota vaisiø derëjimo pradþioje, 10–12 valandomis, kai apðvietimas<br />

didþiausias. Agurkø hibridø, augusiø 2,3 aug./m 2 tankumu, lapuose ji vyko intensyviau.<br />

Fotosintezë ðiek tiek intensyviau vyko ‘Mandy’ hibrido lapuose (2 pav.).<br />

289


2 pav. Fotosintezës intensyvumas sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu<br />

Fig. 2. Photosynthesis intensity in the leaves of cucumbers grown at different<br />

density during vegetation<br />

3 pav. Sk<strong>ir</strong>tingu tankumu augintø agurkø ankstyvasis <strong>ir</strong> suminis derlius<br />

Fig. 3. Early and total yield of cucumbers grown at different density<br />

4 pav. Sk<strong>ir</strong>tingu tankumu augintø agurkø vidutinë vaisiaus masë<br />

Fig. 4. The average fruit mass of cucumbers grown at different density<br />

Sodinimo tankumas (B faktorius) turëjo átakos agurkø derliaus ankstyvumui <strong>ir</strong><br />

suminiam derliui (3 pav.). Didëjant augalø sodinimo tankumui, didëjo agurkø derlius.<br />

Didþiausià ankstyvàjá derliø davë tankiausiai sodinti agurkai: p<strong>ir</strong>màjá derëjimo<br />

mënesá jis siekë 5,8–5,9 kg/m 2 (priklausomai nuo hibrido) <strong>ir</strong> sudarë atitinkamai<br />

24,9 <strong>ir</strong> <strong>25</strong>,7 proc. viso derliaus. Didþiausias gautas 2,6 aug./m 2 tankumu pasodintø<br />

290


abiejø hibridø suminis derlius: jis buvo atitinkamai 17,5 <strong>ir</strong> 20,4 proc. (priklausomai<br />

nuo hibrido) didesnis (esminis sk<strong>ir</strong>tumas) negu augalø, augintø 2,0 aug./m 2 tankumu.<br />

Hibridai, sodinti 2,3 aug./m 2 tankumu, davë 10,4–14,2 proc. didesná derliø (neesminis<br />

sk<strong>ir</strong>tumas) negu agurkai, sodinti 2,0 aug./m 2 tankumu.<br />

Sodinimo tankumas neturëjo átakos vidutinei vaisiaus masei (4 pav.). ‘Mandy’<br />

hibrido vidutinë vaisiaus masë buvo ðiek tiek maþesnë negu ‘Componist’ hibrido:<br />

vidutinë ‘Mandy’ hibrido vaisiaus masë áva<strong>ir</strong>avo nuo 84,4 g iki 85,7 g, ‘Componist’<br />

hibrido – nuo 91,4 g iki 91,9 g.<br />

Aptarimas. Sodinimo tankumas – vienas veiksniø, lemianèiø ne tik derliaus<br />

dydá, bet <strong>ir</strong> jo kokybæ. Agurkø derlius priklauso nuo sodinimo laiko bei tankumo.<br />

Auginant agurkus þiemà, nustatyta, kad juos geriausia sodinti 2 <strong>ir</strong> 2,5 aug./m 2 tankumu<br />

(El-Aidy, 1991). Auginant juos kaip antrà kultûrà, tinkamiausias sodinimo tankis<br />

yra 100 x 50 cm. Tada gautas didþiausias agurkø derlius – 5,5 kg/m 2 (Yilmaz, Gebologlu,<br />

2002). Didþiausias efektas, tankiausiai sodinant agurkus, gautas, kai jie auginti<br />

vasarà, esant didþiausiam apðvietimui. Ekonominiu poþiûriu rekomenduojama á kvadratiná<br />

metrà sodinti 2 augalus (Liebig, 1981). Ðvedijos ðiltnamiuose atliktø tyrimø<br />

duomenimis, didesnis derlius gautas sodinant 3 augalus negu 2 <strong>ir</strong> 2,5 augalo á kvadratiná<br />

metrà (Ottosson, Hansson, 1981). T<strong>ir</strong>ta agurkø sodinimo tankumo átaka (0,7–<br />

3,1 aug./m 2 ) augalø produktyvumui <strong>ir</strong> vidutinei vaisiaus masei. Sodinimo tankis turëjo<br />

teigiamos átakos augalø produktyvumui bei vidutinei vaisiaus masei <strong>ir</strong> kito priklausomai<br />

nuo auginimo laiko (Bakker, van de Vooren, 1985). Mûsø tyrimo duomenimis,<br />

sodinimo tankumas neturëjo átakos vidutinei vaisiaus masei, taèiau didëjant augalø<br />

skaièiui kvadratiniame metre, didëjo <strong>ir</strong> augalø derlius. Kitø tyrimø duomenimis, augalø<br />

tankis neturëjo átakos ankstyvajam derliui bei vaisiø kokybei. Reèiau sodinamø<br />

augalø derlius maþëjo, bet didëjo vieno augalo derlius (Echevarrîa, Castro, 2002).<br />

Kaip rodo ðio tyrimo duomenys, didþiausià derliø davë tankiausiai sodinti augalai,<br />

taèiau skaièiuojant vieno augalo derliø, didþiausià já iðaugino reèiausiai sodintø abiejø<br />

hibridø augalai: ‘Componist’ F 1<br />

– 9,7 kg/aug., ‘Mandy’ F 1<br />

– 9,6 kg/aug.<br />

De Resende <strong>ir</strong> Flori (2004) tyrë agurkø augalø tankinimo eilutëje (kas 20 <strong>ir</strong> 40 cm)<br />

átakà jø derliui. Didesnë augalø vegetatyvinë masë buvo juos sodinant kas 40 cm, o<br />

didesnis derlius gautas, sodinant kas 20 cm eilutëje, taèiau derliaus sk<strong>ir</strong>tumas buvo<br />

neesminis (El-Aidy, Moustafa, 1978).<br />

Kad augalai bûtø produktyvûs, svarbu uþtikrinti optimalià fotosintezës eigà. Esant<br />

dideliam apðvietimui, fotosintezës intensyvumas priklausë nuo tankumo (Tornley <strong>ir</strong><br />

kt., 1992). Atliekant ðá bandymà, didelio apðvietimo sàlygomis fotosintezë vyko intensyviausiai,<br />

kai kvadratiniame metre augo 2,3 augalo. Taèiau suminiam derliui tai<br />

átakos neturëjo – didþiausias jis buvo tankiausiai augusiø agurkø. Toká neatitikimà<br />

galëjo lemti tai, kad fotosintezë buvo matuota tuo vegetacijos metu, kai apðvietimas<br />

buvo didþiausias. Taèiau apðvietimo sàlygos vegetacijos metu ne visuomet bûna palankios<br />

agurkams augti. Chlorofilø kiekis – svarbus veiksnys, nulemiantis fotosintezës<br />

efektyvumà. Jø kiekis keièiasi, kintant aplinkos sàlygoms, vystantis augalams<br />

(Ñåìè÷åâ, 1970). Nors augalø tankumas neturëjo didelës átakos pigmentø kiekiui<br />

agurkø lapuose, taèiau tankiau augæ agurkai áva<strong>ir</strong>iais vegetacijos tarpsniais kaupë<br />

lapuose daugiau chlorofilø. Todël galima daryti prielaidà, kad palankesnës sàlygos<br />

fotosintezei vykti buvo agurkams augant tankiau.<br />

291


T<strong>ir</strong>ta agurkø sodinimo tankumo átaka sausøjø medþiagø kiekiui juose <strong>ir</strong> pasisk<strong>ir</strong>stymui<br />

vegetatyvinëje dalyje bei vaisiuose (Schvambach <strong>ir</strong> kt., 2002). Sausøjø<br />

medþiagø kiekis vaisiuose bei vegetatyvinëje augalo dalyje maþëjo, kai augalai buvo<br />

auginti 2,3 aug./m 2 tankumu, palyginti su augalais, auganèiais 1,8 aug./m 2 tankumu<br />

(Peil, López-Gãlvez, 2002). Mûsø tyrimø duomenimis, didþiausias sausøjø medþiagø<br />

kiekis buvo reèiausiai sodintø augalø lapuose. Gauta stipri neigiama koreliacija<br />

tarp augalø skaièiaus kvadratiniame metre <strong>ir</strong> sausøjø medþiagø kiekio agurkø lapuose<br />

(r = - 0,87 (‘Mandy’ F 1<br />

), r = - 0,98 (‘Componist’ F 1<br />

). Taip pat stipri neigiama<br />

koreliacija gauta tarp sausøjø medþiagø kiekio agurkø lapuose <strong>ir</strong> derliaus (r = - 0,96<br />

abiejø hibridø). Didëjant augalø skaièiui kvadratiniame metre <strong>ir</strong> augalø derliui, maþëja<br />

sausøjø medþiagø kiekis augalø lapuose. Taèiau gauta stipri teigiama koreliacija tarp<br />

augalø skaièiaus kvadratiniame metre <strong>ir</strong> derliaus (r = 0,97 (‘Mandy’ F 1<br />

), r = 0,99<br />

(‘Componist’ F 1<br />

), t. y. agurkø derlius priklauso nuo augalø skaièiaus kvadratiniame<br />

metre.<br />

Tyrimø duomenimis, didinant augalø skaièiø kvadratiniame metre, didëja suminis<br />

agurkø derlius bei fotosintezës intensyvumas augalø lapuose. Fotosintezës pigmentø<br />

kiekis augalø lapuose kinta neþymiai, taèiau sausøjø medþiagø kiekis juose<br />

maþëja.<br />

Iðvados. 1. Pavasará auginamø agurkø sodinimo tankumas turi átakos derliaus<br />

ankstyvumui <strong>ir</strong> suminiam derliui. Agurkai, pasodinti 2,6 aug./m 2 tankumu, duoda<br />

didþiausià ankstyvàjá derliø, jø suminis derlius taip pat didþiausias.<br />

2. Agurkø sodinimo tankumas neturi didelës átakos fotosintezës pigmentams<br />

augalø lapuose.<br />

3. Agurkø, pasodintø 2,3 aug./m 2 tankumu, lapuose fotosintezë vyko intensyviausiai.<br />

4. Reèiausiai pasodinti agurkai – 2 aug./m 2 – lapuose sukaupia daugiausia sausøjø<br />

medþiagø. Didëjant augalø skaièiui kvadratiniame metre, maþëja sausøjø medþiagø<br />

kiekis augalø lapuose (r = - 0,87 (‘Mandy’ F 1<br />

), r = - 0,98 (‘Componist’ F 1<br />

).<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bakker J. C., van de Vooren J. Plant densities and training systems at greenhouse<br />

cucumber // Acta Hort. 1985. N 156. P. 43–48.<br />

2. Echevarrîa P. H., Castro A. R. Influence of different plant densities on the yield<br />

and quality of greenhouse-grown cucumbers grafted on shintoza (CUCURBITA MAXIMA<br />

X CUCURBITA MOSCHATA) // Acta Hort. 2002. N 588. P. 63–67.<br />

3. El-Aidy F. The effect of planting date, density, variety and shade on production of<br />

cucumber under tunnels // Acta Hort. 1991. N 287. P. 281–288.<br />

4. El-Aidy F., Moustafa S. A. Effect of plant density and fertilizer ratio on growth and<br />

yield of cucumber grown under plastic tunnels // Acta Hort. 1978. N 84. P. 73–78.<br />

5. Espinola H. N. R., Andriolo J. L., Bartz H. R. Dry matter accumulation and distribution<br />

of pickling cucumber plants under three mineral nutrient levels // Cienc. Rural. 2001.<br />

Vol. 31. N 3. P. 387–392.<br />

292


6. De Resende G. M, Flori J. E. Effect of plant spacing on the yield and quality of<br />

pickling cucumber cultivars // Hortic. Bras. 2004. Vol. 22. N 1. P. 117–120.<br />

7. Gomez M. D., Baille A., Gonzalez-Real M. M., Mercader J. M. Dry matter partitioning<br />

of greenhouse cucumber crops as affected by fruit load // Acta Hort. 2003. N 614.<br />

P. 573–578.<br />

8. Hand D. W., Clark G., Hannah M. A., Tornley J. H. M., Wilson J. W. Measuring the<br />

canopy net photosynthesis of glasshouse crops // Journal of Experimental Botany. 1992.<br />

Vol. 43. N 3. P. 375–381.<br />

9. Heuvelink E., Marcelis L. F. M. Dry matter distribution in tomato and cucumber //<br />

Acta Hort. 1989. N 260. P. 149–180.<br />

10. Yilmaz E., Gebologlu N. A Research on growing of cucumber (CUCUMIS SATI-<br />

VUS L.) and squash (CUCURBITA PEPO L.) as second crop // Acta Hort. 2002. N 579.<br />

P. 307–312.<br />

11. Liebig H.-.P. Physiological and economical aspects of cucumber crop density //<br />

Acta Hort. 1981. N 118. P. 149–164.<br />

12. Ottosson L., Hansson T. Cultivation of greenhouse cucumber in Sweden // Acta<br />

Hort. 1981. N 118. P. 31–40.<br />

13. Papadopoulos A. P., Hao. X Effects of supplemental lighting and cover materials<br />

on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse<br />

cucumber // Scientia Horticulturae. 1999. N 80. P. 1–18.<br />

14. Papadopoulos A. P. Growing greenhouse seedless cucumbers in soil and in<br />

soilless media. Agriculture and Agri-Food Publication 1902E. 1994. 126 pp.<br />

15. Peil R. M., López-Gãlvez J. Dry-matter partitioning as a determinant of greenhouse<br />

fruit vegetable crops production // R.bras. Agrociência. 2005. Vol. 11. N 1. P. 5–11.<br />

16. Peil R. M., López-Gãlvez J. Fruit growth and biomass allocation to the fruits in<br />

cucumber: effect of plant density and arrangement // Acta Hort. 2002. N 588. P. 75–80<br />

17. Schvambach J. L., Andriolo J. L., Helwein A. B. Dry matter accumulation and<br />

partitioning of picling cucumber plants under different plant densities // Ciencia Rural.<br />

2002. Vol. 32. N1. P. 35–41.<br />

18. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Akademija, 2003. 56 p.<br />

19. Tornley J. H. M., Hand D. W., Wilson J. W. Modelling light absorption and<br />

canopy net photosynthesis of glasshouse row crops and application to cucumber //<br />

Journal of Experimental Botany. 1992. Vol. 43. N 3. P. 383–391.<br />

20. Wettstein D. Chlorophyll Letale und der submikroskopishe Formweschsel der<br />

Plastiden // Experimental cell research. 1957. Vol. 12. 427 p.<br />

21. Îâîùåâîäñòâî çàùèùåííîãî ãðóíòà / Ïîä ðåä. Â. À. Áðûçãàëîâà. Ìîñêâà:<br />

Êîëîñ, 1995. 351 ñ.<br />

22. Ñåìè÷åâ Â. Í. Ñîäåðæàíèå ïèãìåíòîâ â ëèñòüÿõ îãóðöîâ è òîìàòîâ ïðè<br />

âûðàùèâàíèè â ðàçëè÷íûõ êóëüòèâàöèîííûõ ñîîðóæåíèÿõ // Òð. ïî ïðèêë.<br />

áîòàíèêå, ãåíåòèêå è ñåëåêöèè. 1970. 42(3).Ñ. 149–156.<br />

293


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(3).<br />

PHYSIOLOGICAL ASPECTS OF CUCUMBER<br />

CROP DENSITY<br />

J. Jankauskienë, A. Brazaitytë<br />

Summary<br />

In 2003-2005 two cucumber hybrids were grown in mineral rockwool in greenhouses<br />

covered with double polymeric film (sides covered with plastics sheets) at<br />

the Lithuanian Horticulture Institute and the influence of plant density on cucumber<br />

hybrid photosynthesis system, yield and quality was investigated. There were grown<br />

cucumber hybrids ‘Mandy’and ‘Componist’. Cucumbers were planted at different<br />

densities: 2.0, 2.3, 2.6 plant/m 2 . During vegetation it was established the amount of<br />

dry matter and pigments in plant leaves, the intensity of photosynthesis was measured.<br />

The amount of pigments and dry matter, photosynthesis intensity in cucumber<br />

leaves depends both on hybrid and plant density. Plant density influences the earliness<br />

of the investigated cucumber hybrids, also affects the volume of yield. The<br />

yield of cucumber hybrids grown at a density 2.6 plant/m 2 is bigger that this of<br />

cucumber hybrids grown at a density 2.0 and 2.3 plant/m 2 . The average fruit mass in<br />

all variants was the same.<br />

Key words: cucumber, dry matter, hybrid, yield, photosynthesis intensity, pigments,<br />

plant density.<br />

294


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF HORTICULTURE<br />

AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RESPONSE OF SEVERAL CULTIVARS OF SOWING PEA<br />

TO FUNGICIDE-INSECTICIDE DRESSINGS AND<br />

HERBICIDES<br />

Beata SZWEJKOWSKA*, Pavelas DUCHOVSKIS**<br />

*Cha<strong>ir</strong> of Plant Production, University of Warmia and Mazury,<br />

Oczapowskiego 8, 10-719 Olsztyn, Poland. E-mail b-szw@gazeta.pl<br />

**Lithuanian Institute of Horticulture, Kauno 30 LT-54333 Babtai, Kaunas<br />

distr., Lithuania. E-mail p.duchovskis@lsdi.ly<br />

The effect of fungicide-insecticide dressings and herbicides on the development<br />

of plants, degree of injury caused by diseases and pests, as well as susceptibility<br />

to weed infestation were estimated in three-year experiment carried out in the<br />

years 2004–2006. In addition, it was estimated to what degree the chemical protection<br />

effected the number of pods on the plant, which is the main component of the<br />

crop. The investigation has shown a positive response of cultivars to the dressings<br />

applied as no negative effects on germination, emergence and development were<br />

observed during the whole vegetation period. The effectiveness of dressings against<br />

diseases and pests was high. The Super Homai insecticide dressing protected plants<br />

against diseases and pests most effectively. Good results were also recorded for<br />

herbicides, the application of which was justifiable because it efficiently reduced the<br />

level of weed infestation, and this allowed obtaining the highest number of pods both<br />

per fruit-bearing node and per plant.<br />

Key words: diseases, dressings, growing technology, pea, pests, cultivar.<br />

Introduction. The pea yield is determined not only by genetic properties of<br />

cultivars, climatic conditions or fertilization, but also by other agrotechnical factors,<br />

such as complex protection against diseases, pests or weeds, since the specific<br />

developmental rhythm of leguminous plants, including pea, causes a lot of problems<br />

during cultivation. The period of a slow rate of growth in the phase of seedling and<br />

leaf rosette is particularly unfavourable because plants in this time not only get weedy<br />

easily but they are more susceptible and exposed to diseases and pests, as well<br />

(Szwejda, 1992; Cantot et. al., 1993; Mrówczyñski and Wachowiak, 2000; Wnuk<br />

and Poboýniak, 2000; Borowiecki and Ksiæýak, 2001). Some authors, for example,<br />

Fiedorow and Weber (1996), Horoszkiewicz and Filoda (2000), stress a high influence<br />

of the course of inoculation by Rhizobium bacteria, therefore, they claim that<br />

an application of simple plant dressing measure is very important. Podleúny et al.<br />

295


(1993), Adamczewski (1988), Rychcik (2005) also indicate that leguminous plants,<br />

including pea, are characterized by high susceptibility to severe weed infestation,<br />

which is connected with the<strong>ir</strong> slow growth and development in the initial period<br />

following sowing and emergence. Traditional methods of weed control, consisting<br />

mainly in harrowing, are not always effective, therefore herbicides, which protect<br />

plants against excessive weed infestation more effectively, are in common use.<br />

The aim of this study was to determine to what degree applied seed dressings<br />

protect plants against injury by diseases and pests, and applied herbicides against<br />

weeds. In addition, the effect of chemical agents on the development of plants and<br />

formation of pods in the fruit-bearing node and plant was estimated.<br />

Methods. The investigation was carried out within the framework of 3-year<br />

field experiment established in the fields of the experimental centre at Ba³cyny near<br />

Ostróda in the years 2004–2006.<br />

The following seed dressings were used, including fungicides:<br />

– Funaben T,<br />

– Sarfun T 450 FS<br />

and insecticides:<br />

– Super Homai 70 DS (+ with action against pathogens),<br />

– Gaucho 350 FS.<br />

The f<strong>ir</strong>st three dressings were used in a dose of 4 g per 1 kg of seeds, while<br />

Gaucho 350 FS dressing – in the amount of 4 ml per 1 kg of seeds. They were put<br />

onto pea seeds of 14% moisture just before sowing.<br />

Basagran 600 SL (in a dose of 2 kg/ha) and Afalon 50 WP (1.5 l/ha) were used<br />

against weeds after emergence. The weed infestation of plants was estimated with<br />

the botanical-frame method, determining the number and botanical composition of<br />

weeds per 1 m 2 in each plot.<br />

The phytopathological evaluation of plants for damages by pests was carried<br />

out in the phase of a filled pod according to the methodology of cultivar economic<br />

value (CEV) study utilized by the Main Research Centre for Cultivars of Cultivated<br />

Plants (MRCCCP) in S³upia Wielka in 9-degree scale (9 – the best, most favourable<br />

state, and 1 – the worst, least favourable state).<br />

The phytopathological evaluation of the degree of plant injury with diseases<br />

was carried out in the phase of filled pod using a 5-degree Hillstrand and Auld scale,<br />

where: 1° means below 2% of the injured area, 2° – 3–10% of the injured area, 3° –<br />

11–30% of the injured area, 4° – 31–50% of the injured area, 5° – over 50% of the<br />

injured area.<br />

Four sowing pea cultivars were involved in the experiment: ‘Brylant’, ‘Wenus’,<br />

‘Marych’ and ‘Eureka’.<br />

The field trial was performed in a split-plot design, in four replications. The<br />

experimental plot area was 14.4 m 2 .<br />

Results. It has been found out that the dynamics of germination and emergence<br />

of the seeds of treated pea was similar to the dynamics of plants grown in control<br />

plots. Emergences were good and steady and no harmful effects of the application<br />

of dressings on the course of germination and intensity and punctuality of emergence<br />

were recorded in any of the cultivars. It was only in the objects treated with<br />

296


Gaucho 350 FS preparation that a slight delay of emergence was recorded in ‘Wenus’<br />

cultivar. In the subsequent phases of development, plants in treated objects<br />

developed faster and better than those grown in control plots (the latter were generally<br />

lower in particular phases).<br />

The phytopathological evaluation of plant health (injuries by diseases and pests)<br />

during the whole period of vegetation has shown that the most effective protection<br />

against injury by both pests and diseases was provided by Super Homai seed dressing<br />

(Tables 1 and 2). Thus, the effectiveness of the dressing and its additional<br />

function of protection against diseases were conf<strong>ir</strong>med.<br />

In the objects protected with seed dressings, the state of injury by diseases –<br />

mainly ascochyta leaf spot, root rot, pea rust and mildew, did not exceed the scale of<br />

2°, while in the objects without seed dressing injury by diseases ranged in the scale<br />

from 4° to 5°.<br />

The degree of injuries caused by pests (pea moth, pea weevil, striped pea leaf<br />

weevil and pea aphid) ranged in the scale 6.5°–8.9°, and in the control objects – in<br />

the scale 1°–4.5.<br />

Table 1. Insect infestation of pea edible cultivars (in 9° scale)<br />

1 lentelë. Kenkëjø paplitimas þ<strong>ir</strong>niø pasëlyje (pagal 9 balø skalæ).<br />

Baùcyny, 2004–2006 m.<br />

A. Pulse cultivars / Valgomøjø þ<strong>ir</strong>niø veislës<br />

‘Brylant’<br />

‘Wenus’<br />

agrophages / kenkëjai<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Acyrthosiphon<br />

pisum<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Acyrthosiphon<br />

pisum<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

2.0 3.0 2.5 1.5 2.0 3.0 3.0 2.0 2.4<br />

Sëklos neapdorotos<br />

Funaben T 6.3 6.1 6.2 6.1 6.0 6.2 6.0 6.1 6.1<br />

Sarfun T 6.9 6.7 7.0 7.0 6.5 6.9 6.9 7.0 6.9<br />

Gaucho FS 6.2 6.3 6.0 6.2 6.1 6.2 6.0 6.2 6.2<br />

Super Homai 8.0 7.7 7.8 8.0 7.2 7.5 7.7 7.8 7.7<br />

Mean / Vidurkis 5.9 6.0 5.9 5.8 5.6 6.0 5.9 5.8<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences)<br />

R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

297


Seed dressings chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

B. Fodder cultivars / Paðariniø þ<strong>ir</strong>niø veislës<br />

Laspeyresia<br />

Nigricana<br />

‘Marych’<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

agrophages / kenkëjai<br />

‘Eureka’<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

Aphidina<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Table. 2. Occurrence of diseases (5°)<br />

2 lentelë. Ligø paplitimas þ<strong>ir</strong>niø pasëlyje (pagal 5 balø skalæ)<br />

A. Pulse cultivars / Valgomøjø þ<strong>ir</strong>niø veislës<br />

Aphidina<br />

Mean<br />

Vidurkis<br />

4.0 4.5 4.0 4.5 4.0 4.5 4.0 3.0 4.1<br />

Funaben T 6.4 6.3 6.5 6.3 6.5 6.2 6.2 6.3 6.3<br />

Sarfun T 6.6 6.4 6.5 6.5 6.5 6.2 6.4 6.5 6.5<br />

Gaucho FS 6.0 6.4 6.4 6.0 6.0 6.2 6.0 6.3 6.2<br />

Super Homai 7.9 8.0 8.1 8.0 8.0 7.9 7.9 7.8 7.9<br />

Mean / Vidurkis 6.2 6.3 5.9 6.3 6.2 6.2 6.1 6.0<br />

‘Brylant’<br />

‘Wenus’<br />

Seed dressings chemicals<br />

Sëklø Sëklø apdorojimas cheminiais<br />

preparatais preparatais<br />

Ascochyta<br />

Fusarium<br />

Uromyces<br />

pisi<br />

Diseases / Ligos<br />

Erysiphe<br />

pisi<br />

Askochytoza<br />

Fuzarioza<br />

Uromyces<br />

pisi<br />

Erysiphe<br />

pisi<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

4.1 5.0 3.0 3.0 5.0 4.3 3.0 3.0 3.8<br />

Funaben T 1.0 1.0 0 1.0 1.0 0.6 0 0 0.6<br />

Sarfun T 1.2 0.5 0 1.0 1.4 1.0 0 0 0.6<br />

Gaucho FS 1.5 1.0 0 1.3 1.2 1.3 0 0 0.8<br />

Super Homai 1.0 0 0 0 0.5 0.7 0 0 0.3<br />

Mean / Vidurkis 1.8 1.5 0.6 1.3 1.8 1.7 0.6 0.6<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

298


B. Fodder cultivars / Paðariniø þ<strong>ir</strong>niø veislës<br />

‘Brylant’<br />

‘Wenus’<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Ascochyta<br />

Fusarium<br />

Uromyces<br />

pisi<br />

Diseases / Ligos<br />

Erysiphe<br />

pisi<br />

Askochytoza<br />

Fuzarioza<br />

Uromyces<br />

pisi<br />

Erysiphe<br />

pisi<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

4.1 5.0 3.0 3.0 5.0 4.3 3.0 3.0 3.8<br />

Funaben T 1.0 1.0 0 1.0 1.0 0.6 0 0 0.6<br />

Sarfun T 1.2 0.5 0 1.0 1.4 1.0 0 0 0.6<br />

Gaucho FS 1.5 1.0 0 1.3 1.2 1.3 0 0 0.8<br />

Super Homai 1.0 0 0 0 0.5 0.7 0 0 0.3<br />

Mean / Vidurkis 1.8 1.5 0.6 1.3 1.8 1.7 0.6 0.6<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

The highest intensity of diseases and pests was recorded in the f<strong>ir</strong>st year of<br />

investigation (2004). According to the phytopathological evaluation, the harmfulness<br />

threshold was exceeded in the control objects in every year of the investigation,<br />

and the intensification of the occurrence of pests amounted to over 50%. On the<br />

other hand, in the chemically protected objects the degree of injury was relatively<br />

low apart from edible cultivars (‘Wenus’, ‘Brylant’), which were more exposed to<br />

injury by Laspeyresia nigricana and Sitona lineatus than fodder cultivars. This fact<br />

could also be observed in the control objects (Table 1 and 2).<br />

The application of seed dressings protected plants efficiently not only in the<br />

f<strong>ir</strong>st weeks of growth and development but also during the whole period of vegetation<br />

and effectively contributed to a larger number of pods in a fruit-bearing node<br />

and thus on a plant.<br />

Positive results were also obtained by applying herbicides, which had a positive<br />

effect on the growth and development of plants and the number of pods per plant.<br />

Research has shown that the largest number of pods per fruit-bearing node and the<br />

whole plant was recorded in the objects were Basagran and Afalon herbicides were<br />

used. Herbicides reduced the development of weeds effectively as they were not<br />

recorded in any of the pea cultivars after the emergence. On the other hand, a repeated<br />

weed classification before harvest showed that the highest density of weeds in<br />

all pea cultivars occurred in the control objects without herbicides and was on average<br />

13 times higher in comparison with the objects protected with herbicides (Tables<br />

3 and 4).<br />

299


Cultivar ‘Brylant’, where the occurrence of 0.7 weed items per 1 m 2 of plot<br />

area was recorded, proved to be the most competitive cultivar in relation to weeds,<br />

and ‘Eureka’ turned out to be the least competitive one (on the average 1.5 items of<br />

weeds/1m 2 ).<br />

Table 3. Number of weeds (units m -2 ). Baùcyny, 2003–2006<br />

3 lentelë. Piktþoliø skaièius þ<strong>ir</strong>niø pasëlyje, vnt. m –2 . Baùcyny, 2003–2006 m.<br />

Number of weeds,units m -2<br />

Piktþoliø skaièius, vnt. m. -2<br />

mechanical protection of chemical protection of<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

plants from weeds<br />

mechaninë augalø apsauga<br />

nuo piktþoliø<br />

plants from weeds<br />

cheminë augalø apsauga nuo<br />

piktþoliø<br />

Mean<br />

Vidurkis<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

No seed dressing chemicals<br />

(after germination)<br />

Sëklos po sudygimo neapdorotos<br />

Afalon + Basagran (before<br />

harvesting)<br />

(iki derliaus nuëmimo)<br />

No seed dressing chemical (after<br />

germination)<br />

Sëklos po sudygimo neapdorotos<br />

Afalon + Basagran (before<br />

harvesting)<br />

(iki derliaus nuëmimo)<br />

6 8 7 9 - - - - 7.5<br />

- - - - 0 0 0 0 0<br />

18 19 20 21 - - - - 19.5<br />

- - - - 0.7 1.0 1.3 1.5 1.1<br />

LSD (p = 0.05) for: sort of protection of plants c. to w. 9.8; cultivar – n.s., interaction of the sort<br />

of plant protection c. to w.: cultivar r.n. – n.s. (not significant differences) / R 05<br />

: ryðys tarp augalø<br />

apsaugos bûdø – 9,8, tarp veisliø – neesminis, tarp augalø apsaugos bûdø <strong>ir</strong> veisliø sàveikos –<br />

neesminis<br />

300


Table. 4. Number of pods per plant,units m -2 . Baùcyny, 2003–2006<br />

4 lentelë. Ankðèiø skaièius ant augalo, vnt. m -2 . Baùcyny, 2003–2006 m.<br />

Number of weeds, units m -2<br />

Piktþoliø skaièius, vnt m -2<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

mechanical protection of<br />

plants from weeds<br />

mechaninë augalø apsauga<br />

nuo piktþoliø<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

chemical protection of<br />

plants from weeds<br />

cheminë augalø apsauga nuo<br />

piktþoliø<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

Mean<br />

Vidurkis<br />

No seed dressing chemicals<br />

Sëklos neapdorotos<br />

7 7 10 8 - - - - 8.0<br />

Funaben T - - - - 12 12 13 12 12.0<br />

Sarfun T - - - - 12 12 13 12 12.0<br />

Gaucho FS - - - - 12 12 13 11 12.0<br />

Super Homai - - - - 13 13 16 14 14.0<br />

Mean / Vidurkis 7 7 9 8 12.3 12.3 13.8 12.3<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant difference) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

Discussion. Nowacki and Bujalski (1996), Cantot (1986), Cantot et al. (1993),<br />

Tylkowska (2000), Wiatr (2003–2006), Jasiñska and Kotecki (1999) estimated in<br />

the<strong>ir</strong> investigations concerning pea protection that loss caused by diseases and pests<br />

during the vegetation period – particularly with unfavourable climatic conditions –<br />

may amount even to 50% of seed yield and more. This is conf<strong>ir</strong>med by research by<br />

Chodulska-Filipowicz (1997) on broad bean cropping, which showed that the loss in<br />

the yield resulting from no plant protection against pests amounted to as much as<br />

70%.<br />

This investigation also conf<strong>ir</strong>ms this thesis because in the objects not protected<br />

chemically the phytopathological estimation of total injuries by diseases and pests<br />

amounted to over 70%. In addition, the lowest number of pods per plant was recorded<br />

in all cultivars in every year of the study, which determined the amount of the<br />

yields obtained.<br />

Jædryczka et al. (1991), Horoszkiewicz and Filoda (2000), Mrówczyñski and<br />

Wachowiak (2000), Mrówczyñski and Sobkowiak (1998), Matùosz and Kaniuczak<br />

(2003), Majchrzak et al. (1998) indicate that pea is very sensitive to diseases and<br />

pests occurring during plant vegetation, and a treatment of seeds with chemical<br />

agents before sowing is one of the simplest measures, which should be obligatorily<br />

used in modern agrotechnique of this plant. However, Kotliñski (1999) claims that<br />

under certain conditions some dressings can show phytotoxic action in relation to<br />

seeds. This author stresses the fact that this occurs most often in the case of com-<br />

301


ined application of dressings, which then may show synergistic action. Fungicideinsecticide<br />

dressings used in this experiment reduced the development of pathogens<br />

and pests effectively both during germination and emergence and at further stages<br />

of growth and development. Contrary to the findings of Kotliñski (1999), who indicated<br />

a number of dressings, including Funaben T and Gaucho 350 FS, as those,<br />

which negatively affect germination and emergence, the present investigation has<br />

not conf<strong>ir</strong>med this fact. Apart from a slight delay of emergence only in cultivar<br />

‘Wenus’ in the plots, in which Gaucho 350 FS dressing was used, no negative<br />

impact was observed in other cases. In the objects with dressings, plants developed<br />

properly and set more pods in the fruit-bearing node and, at the same time, on a<br />

plant.<br />

There are varied opinions in the literature about the effects caused by feeding<br />

pests (striped pea leaf weevil, pea moth, pea weevil or aphids) and the involved loss.<br />

Most authors stress the fact that an intensification of negative effects of pests’<br />

feeding depends on vegetation conditions in particular years of cultivation, and the<br />

loss caused by them amounts to 15–80% of potential yields. According to the research<br />

of Cantot et al. (1993) the loss in seeds caused only by striped pea leaf weevil<br />

amounted to over 0.1 t/ha. However, in Nelsen’s (1990) investigation, due to an<br />

intensification of striped pea leaf weevil, the loss in yields reached 28% and was the<br />

effect of a reduced number of pods per plant. In this research, the total loss caused<br />

by diseases and pests in control objects amounted on the average to over 70%. The<br />

number of pods in these objects was the lowest, and 30–35% lower than in the<br />

protected objects.<br />

Ciesielski and Wachowiak (1993), while studying the effectiveness of 26 insecticides<br />

used for protecting pea and faba bean, found out that the<strong>ir</strong> effectiveness was<br />

high and amounted to over 90% of possible loss. This investigation indicates that the<br />

effectiveness of insecticides, including Super Homai dressings in particular, in protecting<br />

against pests amounted to over 95% in all the years of investigation.<br />

Pea is characterized by its susceptibility to intense weed infestation. Podleúny<br />

et al. (1993), Adamczewski et al. (1988), Rychcik (2005) stress the fact that the<br />

effectiveness of weed-killing action of herbicides, although dependent on soil and<br />

climatic conditions and the technique and time of the treatment, is very high and<br />

necessary in pea agrotechnique. In the study by Anyszka et al. (1999), the effectiveness<br />

of applied herbicides (Basagran 600 SL, Barox 460 SL) was high, the weed<br />

reduction being estimated within the range 93.4–100%. In this investigation, the<br />

effectiveness of applied herbicides (Basagran 600 SL and Afalon 50 WP) was evaluated<br />

at 100% after the emergence and over 90% before harvest. It is noteworthy<br />

that the effectiveness of herbicides used in weed control in the experiment was very<br />

high particularly in the last two years because drought also contributed to the reduction<br />

of the development of weeds.<br />

To sum up, it should be emphasized that all above-mentioned authors stress the<br />

fact that modern protection consists in taking advantage of all available methods and<br />

ways of disease, pest and weed control, starting with an introduction of resistant<br />

cultivars to cultivation, treatment of sowing material, and ending with biological and<br />

chemical methods of plant protection.<br />

302


Conclusions. 1. The analysis of the effect of fungicide and insecticide dressing<br />

application on the growth and development of sowing pea allowed drawing the<br />

following conclusions:<br />

2. The application of both fungicide and insecticide dressings reduced the occurrence<br />

of diseases and pests effectively. Super Homai insecticide dressing protected<br />

plants against diseases and pests most effectively.<br />

3. The application of herbicides, which enabled even a 100% elimination of<br />

weeds appearing in the pea emergence phase, and a 90–95% elimination of weeds in<br />

the phase before harvest, was particularly effective.<br />

4. The application of dressings and herbicides did not cause any noticeable side<br />

effects in the growth and development of plants, but contributed effectively to the<br />

increase in the number of pods per plant, which is the main element of the seed yield.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Adamczewski K. Zalety i wady chemicznego zwalczania chwastów / Mat. XXVIII<br />

Sesji Nauk. IOR. Cz. I. Poznañ. 1988. S. 56–69.<br />

2. Anyszka Z. Zastosowanie herbicydów Barox 460 SL i Basagran 600 SL metodà dawek<br />

dzielonych w uprawie grochu zielonego // Post. w Ochr. Roúl. 1999. T. 39(2). S. 665–667.<br />

3. Borowiecki J., Ksiæýak J. Stan badañ nad oprzædzikiem prægowanym (Sitona lineatus)<br />

– szkodnikiem grochu // Post. Nauk Roln. 2001. T. 3. S. 99–110.<br />

4. Cantot P. Quantification des populations de Sitona lineatus L. Et de leurs attaques<br />

sur pois proteagineux (Pisum sativum L.) // Agronomie. 1986. Vol. 6(5). P. 481–486.<br />

5. Cantot P., Taupin P., Hacquet J. Maitriser le sitone du pois // Bulletin semences.<br />

1993. Vol. 122. P. 34–37.<br />

6. Ciesielski F., Wachowiak H. Badania nad ocenà przydatnoúci nowych preparatów<br />

w zwalczaniu szkodników bobiku w latach 1989–1991 // Biul. Nauk ART. 1993. T. 1(12).<br />

S. 267–272.<br />

7. Chodulska – Filipowicz L. Wartoúã siewna nasion i plonowanie kilku odmian bobu<br />

(Vicia faba L. var. Major) uprawianych bez ochrony chemicznej // Zesz. Prob. Pos. Nauk<br />

Roln. 1997. Z. 446. S. 463–466.<br />

8. Fiedorow Z., Weber Z. Choroby roúlin uprawnych. W-Wa, 1996. S. 110–133.<br />

9. Horoszkiewicz J., Filoda G. Choroby grzybowe roúlin stràczkowych – objawy i<br />

etiologia. IOR, Poznañ, 2000.<br />

10. Jasiñska Z., Kotecki A. Szczegóùowa Uprawa Roúlin. Tom II, Roúliny stràczkowe.<br />

Wrocùaw, 1999. S. 46–62.<br />

11. Jædryczka M., Lenartowska E., Frence l I. Evaluation of pea (Pisum sativum L)<br />

resistance to fusarioses // Phytopath. Polonoca. 1991. Vol. 2(XIV). S. 95–101.<br />

12. Kotliñski S. Porównanie kilku zestawów zapraw insektycydowo-fungicydowych<br />

na wschody i masæ siewek grochu w zaleýnoúci od wilgotnoúcizaprawianych nasion,<br />

terminu wysiewu oraz temperatury w czsie wschodów // Progr. In Protec. / Post. w Ochr.<br />

Roúl. 1999. Vol. 39(2). S. 906–914.<br />

13. Majchrzak B., Kurowski T. P., Czajka W. Reakcja grochu na grzyby chorobotwórcze<br />

w zróýnicowanych warunkach agrotechnicznych // Zesz. Nauk. AR Kraków, 1998. T. 333.<br />

S. 191–195.<br />

303


14. Matùosz I., Kaniuczak Z. Wraýliwoúã róýnych odmian grochu na uszkodzenia<br />

powodowane przez pachówkæ stràkóweczkæ // Post. w Ochr. Roúl. 2003. T. 43(2).<br />

S. 803–805.<br />

15. Mrówczyñski M., Sobkowiak M. Integrowane programy ochrony grochu przed<br />

szkodnikami // Ochr. Roúl. 1998. T. 42(8). S. 15–19.<br />

16. Mrówczyñski M., Wachowiak H. Szkodniki roúlin stràczkowych wystæpujàce w<br />

Polsce – ich rozpoznanie i zwalczanie. Ins. Ochr. Roúlin, Poznañ, 2000.<br />

17. Nelsen B. Yield response of Vicia faba In relation to infestation levels of Sitona<br />

lineatus L. // J. Appl. Ent. 1990. Vol. 110. P. 398–407.<br />

18. Nowacki J., Bujalski M. Szkodniki Roúlin Uprawnych. 1996. S. 52–62.<br />

19. Podleúny J., Lenartowicz W., Ksiæýak J. Przydatnoúã niektórych herbicydów do<br />

zwalczania chwastów w zasiewach grochu // Fragm. Agron.1993. T. 4(40). S. 77–179.<br />

20. Rychcik B. Wpùyw nastæpstwa roúlin i herbicydu na zachwaszczenie grochu<br />

siewnego // Frag. Agron. 2005. T. 2(86). S. 190–196.<br />

21. Szwejda J. Atrakcyjnoúã odmian i zwalczanie szkodników wystæpujàcych w grochu<br />

(Pisum sativum L) // Biul. Warz.1992. T. 39. S. 129–137.<br />

22. Wiatr K. Roúliny stràczkowe (Synteza wyników doúwiadczeñ odmianowych rejestru<br />

COBORU). Sùupia Wielka, 2003–2006, Z. 5 i 7.<br />

23. Wnuk A., Poboýniak M. Szkodliwoúã pachówki stràkóweczki (Laspeyresianigricana<br />

Steph.) i stràkowca grochowego (Bruchus pisorum L.) na róýnych odmianach grochu<br />

// Zesz. Nauk. AR Kraków, 2000. T. 71. S. 367–371.<br />

24. Wyniki PDO (porejestrowych doúwiadczeñ odmianowych) COBORU (Centralny<br />

Oúrodek Badania Odmian Roúlin Uprawnych). Sùupia Wielka, 2003–2006.<br />

<strong>25</strong>. Zalecenia Ochrony Roúlin na lata 2003–2006. Instytut Ochrony Roúlin w Poznaniu.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ÁVAIRIØ VEISLIØ ÞIRNIØ REAKCIJA Á BEICAVIMÀ<br />

FUNGICIDAIS IR INSEKTICIDAIS BEI Á HERBICIDUS<br />

B. Szwejkowska, P. Duchovskis<br />

Santrauka<br />

2004–2006 m. atlikti áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø beicavimo insekticidais <strong>ir</strong> fungicidais<br />

efektyvumo ligø <strong>ir</strong> kenkëjø paplitimui bei herbicidø poveikio piktþolëms lauko bandymai.<br />

Nustatyta, kad cheminiai augalø apsaugos preparatai veikia ankðèiø formavimàsi<br />

ant augalø, kurie yra esminë derliaus sudedamoji dalis. T<strong>ir</strong>tø veisliø þ<strong>ir</strong>niai teigiamai<br />

reagavo á apdorojimà cheminiais apreparatais vegetacijos metu, nenustatyta esminio<br />

neigiamo poveikio augalø dygimui, augimui <strong>ir</strong> vystymuisi. Pesticidø panaudojimas<br />

buvo labai efektyvus.<br />

Reikðminiai þodþiai: auginimo technologija, beicavimas, kenkëjai, ligos, veislës,<br />

þ<strong>ir</strong>niai.<br />

304


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

EFFECT OF CARBOXYLIC ACID HYDRAZID<br />

DERIVATIVES ON THE ADVENTITIOUS ROOTS<br />

FORMATION AND PHOTOSYNTHETIC ELECTRON<br />

TRANSPORT IN PHASEOLUS VULGARIS<br />

V. A. ÐLAPAKAUSKAS, E. KAZLAUSKAS AND S. GLIOÞERIS<br />

Lithuanian University of Agriculture, Department of Botany, Studentø str. 11,<br />

LT-53067, Akademija, Kaunas distr.<br />

The influence of carboxylic acid hydrazid derivatives (CAHD) on bean (Phaseolus<br />

vulgaris L.) adventitious root formation and photosynthetic electron transport<br />

was investigated. These plant growth regulators were applied on bean hypocotyls<br />

cuttings and the dynamics of adventitious root formation was observed. CAHD influence<br />

on photosynthetic apparatus was examined by measuring changes of chlorophyll<br />

fluorescence yield. Results of experiment revealed that chlorophyll fluorescence<br />

parameters qP (photochemical quenching) and ETR (photosynthetic electron<br />

transport rate) at 310 µmol·m -2·s -1 PAR (photosynthetic active radiation) correlated<br />

with adventitious root number (r = 0.77) and was significantly increased after application<br />

of 0.05 mg·l -1 and 0.075 mg·l -1 of st-120 as well as st-119 at 0.10 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 concentrations. Bean cuttings, treated with 0.05 mg·l -1 st-120 showed<br />

the biggest number of adventitious root followed by highest root mass. Growth<br />

regulator st-119 in 0.10 mg·l -1 and 0.<strong>25</strong> mg·l -1 concentrations demonstrated lower<br />

effect than 0.05 mg·l -1 of st-120 but also significantly induced adventitious root<br />

formation. Both CAHD significantly raised qP which represents the actual fraction<br />

of open PSII (II photosystem) reaction centers and ETR that reflects efficiency of<br />

photosynthetic energy conversion and it is closely related with quantum yield of CO 2<br />

fixation. Investigative growth regulators did not markedly increase chlorophyll concentration<br />

in bean leaves.<br />

Key words: growth regulators, chlorophyll fluorescence, common bean, adventitious<br />

roots.<br />

Introduction. Plant growth regulators as well as endogenously synthesized<br />

phytohormones are responsible for many physiological and developmental processes<br />

in plant. Carboxylic acid hydrazid derivatives (CAHD) are synthetic growth regulators,<br />

which are synthesized from b-alanine and hypothetically have a similar<br />

mode of operation as auxins. Results from experiments with Caladium (accomplis-<br />

305


hed in Lithuanian University of Agriculture, Department of Botany) demonstrate that<br />

CAHD had physiological effect like NAA (naphthalene acetic acid) and stimulated<br />

tubercle formation in vitro.<br />

During the recent decade the modes of operation of growth regulating substances<br />

are of the big interest. Accordingly, there were made number of experiments<br />

proving the importance of phytohormones on root formation. At present, it is well<br />

known that lateral and adventitious root initiation is mostly promoted by auxin group<br />

phytohormones as NAA or IAA (Indole-3-acetic acid) (Weigel et al., 1984; Moncousin<br />

et al., 1989). For example, the induction of soybean adventitious roots could be<br />

stimulated by exogenously applied auxins and polyamines (Zin-Huang et al., 1998;<br />

Sagee et al., 1992; Hausman, 1993). There were published also some interesting<br />

studies suggesting that other phytohormones can play an important role in altering<br />

root growth and development (Weathers et al., 2005). As it has been proposed by<br />

Ohkawa et al. (1989), gibberellins can promote growth of ha<strong>ir</strong>y roots in some species,<br />

including Datura innoxia and Artemisia annua (Weathers et al., 2005). Some<br />

authors demonstrated that brassinosteroids participate in the initiation of Arabidopsis<br />

lateral roots and synergistically interact with auxins by affecting its polar transport<br />

and in this hormonal cross-talk mechanism promotes initiation of lateral root<br />

primordial (Fang et al., 2004).<br />

There are numerous reports describing the promoting effect of different phytohormones<br />

on photosynthetic process. Pandey et al. (2000) proposed that in cotton<br />

exogenously applied IAA enhanced RuBPCO (Ribulose-1.5-bisphosphate carboxylase/oxygenase)<br />

activity. BAP (Benzyl amino purine) increased RuBPCO activity under<br />

water logging and draught stresses. Cytokinins together with light promote deetiolation<br />

and play the most important role in plastid development (Parthier, 1979).<br />

Exogenously applied BA (benzyl adenine) or kinetin promotes grana formation and<br />

stacking, chloroplast differentiation and plastid multiplication (Chory et al., 1994;<br />

Synkova et al., 2003). All these changes in photosynthetic apparatus regulated by<br />

phytohormones should be sensitively reflected by measuring chlorophyll fluorescence.<br />

Hence, the fluorometry might be a useful tool in the assessment of the physiological<br />

plant response to different conditions, including exogenously applied plant<br />

growth regulators. For instance, chlorophyll fluorescence parameter as actual efficiency<br />

of PSII photochemistry (ΔF/Fm’) can give a measure of the linear electron<br />

transport rate (ETR) and thus the indication of overall photosynthesis (Maxwell and<br />

Johnson, 2000; Juneau et al., 2005). In addition, this parameter correlates with the<br />

quantum yield of carbon fixation (Φ CO2<br />

). Thus, the chlorophyll fluorescence technique<br />

potentially has many applications in plant production and development programs<br />

as well as assessment of env<strong>ir</strong>onmental stresses. The current understanding of how<br />

changes in chlorophyll fluorescence characteristics pertain to plant physiological<br />

performance have led to a widespread use of chlorophyll measurements in plant<br />

physiological studies (Baker and Rosenqvist, 2004).<br />

The aim of the present study is to investigate the effect of CAHD on Phaseolus<br />

vulgaris adventitious root formation and the leaf photosynthetic performance by<br />

means of the chlorophyll fluorescence technique. Furthermore, we are attempting to<br />

determine if the CAHD have a similar effect as auxin group phytohormones.<br />

306


Materials and methods. Plants. Common beans cv. ‘Vytautas’ (Phaseolus<br />

vulgaris) were grown in soil-vermiculite substratum for two weeks. Before the<br />

treatments with growth regulators (CAHD – st-120 and st-119), 14 days bean hypocotyls<br />

were cut at the upper side of root neck. Prepared cuttings consisted of 8 cm<br />

hypocotyl, cotyledons, epicotyl and two primary leaves. After removing roots, cuttings<br />

were immediately immersed to glasses with solution, containing distilled water<br />

and particular concentration of CAHD. Each variant contained 8 cuttings, experiment<br />

was repeated three times. After 24 hours, cuttings were transferred to distilled<br />

water and kept there till the end of experiment. Water in glass was changed every 24<br />

hours.<br />

Treatments. To discover the most effective concentration of CAHD, there were<br />

made two experimental sets. During the f<strong>ir</strong>st experiment, the widest range of<br />

concentrations was chosen – 5 × 10 -5 , 5 × 10 -4 , 5 × 10 -3 , 0.05, 0.1, 1.0 and 5.0 mg·l -1 of<br />

each CAHD (data not shown). Second experiment was made with the reference to<br />

f<strong>ir</strong>st one by selecting the most effective concentrations, which were split up in smaller<br />

gradient. St-120 were tested in 0.01, 0.02, 0.03, 0.04, 0.05 and 0.075 mg·l -1 , whereas<br />

st-119 in 0.05mg/l, 0.075 mg/l, 0.1 mg/l, 0.<strong>25</strong> mg/l, 0.5 mg/l and 1.0 mg/l concentrations.<br />

Fluorescence measurements. Chlorophyll fluorescence was recorded with portable<br />

fluorometer (PAM-210, Walz, Germany). Chlorophyll fluorescence measurements were<br />

performed on the light adapted beans. For each plant of a variant repetition, two fluorescence<br />

measurements on both leaves in different four places were done. Actinic<br />

PAR was 310 µmol photons·m -2·s -1 , <strong>ir</strong>radiance of day light lamps was 200 µmol photons·m -2·s -1 .<br />

Saturation pulse – red light emitting diode with 3 500 µmol photons·m -2·s -1 PAR density was<br />

applied after 3 min. of actinic illumination.<br />

In this article, we evaluated the photochemical quenching (qP) and relative<br />

electron transport rate (ETR). Parameter qP represents capacity of PSII RCs to<br />

execute charge separation and it is ind<strong>ir</strong>ectly proportional to a redox state of primary<br />

electron acceptor Q A<br />

(Roháèek, 2002). ETR indicates the efficiency of photosynthetic<br />

energy conversion and/or photosynthetic carbon fixation at given PAR. According<br />

to Genty et al. (1989) ETR can be correlated with quantum yield of CO 2<br />

assimilation.<br />

The definitions of both parameters are as follows:<br />

qP = (Fm’ – Ft) / (Fm’ – Fo’); (1)<br />

ETR = (Fm’ – Ft) / Fm’ × PAR × 0.5 × 0.84 (2)<br />

In Eq. 2, (Fm’ – Ft) / Fm’ = ΔF / Fm’ means the actual efficiency of PSII<br />

photochemistry, PAR – photosynthetically active radiation, 0.5 is a multiplication<br />

factor indicating that according to light-driven electron flow, transport of a single<br />

electron needs the absorption of 2 quanta. Coefficient 0.84 indicates the specific<br />

fraction of incident quanta absorbed by the leaf. (White and Critchley, 1999). In<br />

both equations, Fm’ is the maximum chlorophyll fluorescence yield measured on a<br />

light adapted sample with closed PSII RCs and all active non-photochemical processes<br />

in a thylakoid membrane optimized. Fo’ is the minimum chlorophyll fluorescence<br />

yield measured on a light adapted sample with open PSII RC, measured after<br />

turning off actinic light and application of short flash of infrared light. Ft – actual<br />

307


chlorophyll fluorescence yield at any time of induction by an actinic light (Rohãèek<br />

and Bartãk, 1999).<br />

Concentration of chlorophylls. Chlorophylls (a + b) content in fresh bean leaves<br />

was determined by spectrophotometer (Beckman DU-40, UK), using solvent<br />

90% acetone. According to Wetshtein methodic, the equations (3) and (4) were<br />

employed to determine concentration of chlorophyll a (C a<br />

) and chlorophyll b (C b<br />

)<br />

(Ãàâðèëåíêî, 1975).<br />

C a<br />

= 9.78D 662<br />

– 0.99D 644<br />

(3)<br />

C b<br />

= 21.43D 645<br />

– 4.65D 662<br />

(4)<br />

Absorbance of chlorophyll extraction was measured at wavelength of 643 and<br />

660 nm.<br />

Statistical analysis. Statistical significance among the means of particular values<br />

was estimated by one-way ANOVA (Tukey test) using program “Statistica 6”<br />

(StatSoft 2001). Reciprocity among fluorescence parameters and adventitious root<br />

formation was demonstrated using correlation coefficient and regression equations.<br />

Results and discussion. Experimental growth regulators – st-119 and st-120 –<br />

affected adventitious root formation on bean hypocotyls cuttings at relatively small<br />

concentrations. In both experimental sets, the most effective was 0.05 mg·l -1 st-120<br />

solution which significantly (p = 0.00014) induced initiation of adventitious roots<br />

(Fig.1). In comparison with control plants, st-120 at 0.04 mg·l -1 (p = 0.04) and<br />

0.075 mg·l -1 (p = 0.002) concentrations had significantly higher number of roots per<br />

plant, but less than 0.05 mg·l -1 of the same growth regulator. Application of st-119 at<br />

0.1 mg·l -1 (p = 0.044) and 0.<strong>25</strong> mg·l -1 (p = 0.00015) concentration also considerably<br />

promoted adventitious root initiation (Fig.1) and root growth (Fig. 6), but was less<br />

effective than st-120. The pronounced effect was seen on fifth day after treatment<br />

with abovementioned effective concentrations of growth regulators. The rest experimental<br />

concentrations had no significant effect on root formation and showed no<br />

difference from control plants, which were treated with distilled water.<br />

Fig. 1. Adventitious root number per bean hypocotyl cutting treated with<br />

CAHD – st-120 (mg·l -1 ) and st-119 (mg·l -1 ). Measurements were done after 6,<br />

10 and 14 days respectively after treatment. (Significance level p = 0.05)<br />

1 pav. Augimo reguliatoriais st-120 (mg·l -1 ) <strong>ir</strong> st-119 (mg·l -1 ) apipurkðtø nupjautø pupeliø<br />

hipokotiliø pridëtiniø ðaknø skaièius. Matavimai atlikti praëjus 6, 10 <strong>ir</strong> 14 dienø po<br />

purðkimo (patikimumo lygis p = 0,05)<br />

308


Effect like induction of adventitious root formation is typical for auxin group<br />

phytohormones as it was found in experiments of Jun Chen et al. (1995) with soybeans<br />

cuttings, treated with NAA. Adventitious root formation was induced by NAA<br />

between 10 and 500 µM showed the optimum root number at 500 µM followed by<br />

inhibition at 1 000 µM and higher concentrations of NAA. Similar results were also<br />

reported by Zin-Huang et al. (1998), when adventitious root formation was particularly<br />

enhanced by exogenously applied auxins and polyamines. IBA promoted the<br />

soybean hypocotyls rooting in vitro more than NAA did. It could be explained as the<br />

exogenously applied auxin (IBA or NAA) acts on polyamine synthase and IAA oxidase<br />

at the gene level or through enzyme regulation (Zin-Huang et al., 1998).<br />

Chlorophyll fluorescence, emitted from PSII responds to large number of different<br />

env<strong>ir</strong>onmental factors and reflects the physiological state of higher plants and<br />

algae. Fluorescence measurements are based on the principle by which light quantum,<br />

captured by chlorophyll of light-harvesting complex is transferred to chlorophyll<br />

P680 in PSII RC and via electron transport chain between both photosystems<br />

produces photochemical work. Otherwise it can be dissipated non-photochemically<br />

as heat or fluorescence. As described by Kitajima and Butler (1975) these processes<br />

can be considered as competing f<strong>ir</strong>st order reactions with rate constants for fluorescence,<br />

thermal dissipation and photochemistry. Increased flow of the excitation energy<br />

into a photochemical pathway leads to a decrease (quenching) of the chlorophyll<br />

fluorescence yield. In this way chlorophyll fluorescence reflects changes in the efficiency<br />

of photosynthetic processes (Schreiber et al., 1995; Weis and Lechtenberg,<br />

1989; Govindjee, 1995). Exploring the influence of phytohormones on photosynthesis<br />

the most reported effect is stomata regulation, also protective mechanism in the<br />

stress conditions. However, the scientific literature contains more evidence that phytohormones<br />

can regulate other processes of photosynthesis. For instance, Pandey et<br />

al. (2000) reported in the experiment of hormonal regulation of photosynthetic enzymes<br />

in cotton under water stress reported that all investigative hormones (IAA,<br />

GA3, BAP, ABA and ETH) enhanced RuBPCO activity and IAA was most stimulatory.<br />

Various experiments show that phytohormones positively affect photosynthetic<br />

processes under stress conditions. Soybeans exogenously treated with different plant<br />

growth regulators under water stress had a noticeable effect on the chlorophyll<br />

content, photosynthetic rate and PSII photochemical efficiency whereas under normal<br />

conditions no significant difference between control and plants affected with<br />

growth regulators was found (Mingcai et al., 2004). Analyzing the effect of ABA<br />

and cytokinins on bean stomatal conductance, rates of transp<strong>ir</strong>ation and photosynthesis,<br />

Pospiðilova J. (2003) reported that both growth regulators decreased net photosynthetic<br />

rate, transp<strong>ir</strong>ation rate and stomatal conductance in sufficiently watered<br />

plants when they were immersed to the solution with phytohormones (Pospiðilova,<br />

2003).<br />

Results of the present study demonstrated that particular CAHD concentrations,<br />

which stimulated adventitious root formation, also increase bean photosynthetic<br />

activity. As it is seen in Fig. 4, st-120 (0.05 mg·l -1 ) enhanced photochemical<br />

quenching and was by 11% higher than in control plants. This parameter shows<br />

the actual fraction of PSII reaction centers that are in open state (with re-oxidised<br />

309


Q A<br />

) and indicates the photochemical capacity of PSII in light adapted state (Roháèek,<br />

2002; Oxborough and Baker, 1997). Increased values of qP maintain a higher<br />

proportion of oxidized Q A<br />

and indicate effective electron transport between both<br />

photosystems as well as efficient energy utilization by Calvin cycle activity. Reduction<br />

rate of the PSII primary electron acceptor Q A<br />

is predominantly controlled<br />

by the rate of reduction of intersystem electron carrier pool (PQ pool) and the<br />

distribution of excitation energy within both photosystems (PSII and PSI) (Yordanov<br />

et al., 1995).<br />

In all bean plants, affected with CAHD, qP mean was about 0.8 which characterizes<br />

that almost all PSII are functionally almost intact. But as seen from Fig. 4,<br />

0.05 mg·l -1 and 0.075 mg·l -1 of st-120 (p = 0.00013 and p = 0.003) as well as<br />

0.10 mg·l -1 and 0.<strong>25</strong> mg·l -1 of st-119 (p = 0.027 and p = 0.00014) showed much<br />

higher qP values than in control plants. In addition, qP and number of adventitious<br />

root per bean hypocotyl cutting had a strong correlation (Fig. 5). We suppose that<br />

abovementioned experimental growth regulators by significantly increasing qP, performed<br />

potentially higher reoxidation rate of Q A<br />

and also improved activity of Calvin<br />

cycle, which is partially represented by relatively higher ETR values (Fig. 2).<br />

Fig. 2. Photosynthetic electron transport rate (ETR) at 310 µmol·m -2·s-1 PFD in bean<br />

leaves treated with different CAHD (st-120 and st-119) concentrations<br />

(Significance level 0.05)<br />

2 pav. Pupeliø hipokotiliø lapø fotosintetinio elektronø transporto greitis<br />

-1<br />

(ETR) panaudojus augimo reguliatorius st-120 <strong>ir</strong> st-119. Apðviestumas – 310 µmol·m-2·s (patikimumo lygis p = 0,05)<br />

Fig. 3. Reciprocity between photosynthetic electron transport rate (ETR) at 310<br />

µmol·m -2·s -1 PFD and root number per bean hypocotyl cutting. (R-regresion coefficient)<br />

3 pav. Pupeliø hipokotiliø pridëtiniø ðaknø skaièiaus priklausomumas nuo fotosintetinio<br />

elektronø transporto greièio (esant 310 µmol·m -2·s -1 apðviestumui)<br />

(R – regresijos koeficientas)<br />

310


Fig. 4. Photochemical fluorescence quenching (qP) in bean leaves treated with different<br />

CAHD (st-120 and st-119) concentrations. (Significance level 0.05)<br />

4 pav. Pupeliø hipokotiliø fotocheminis fluorescencijos slopinimas apipurðkus augimo<br />

reguliatoriais st-120 <strong>ir</strong> st-119 (patikimumo lygis p = 0,05)<br />

Fig. 5. Reciprocity between photochemical fluorescence quenching (qP) and root<br />

number per bean hypocotyl cutting (R-regresion coefficient)<br />

5 pav. Pupeliø hipokotiliø pridëtiniø ðaknø skaièiaus priklausomumas nuo fotocheminio<br />

fluorescencijos slopinimo (qP) (R – regresijos koeficientas)<br />

Considering the finding that adventitious root initiation could be regulated by<br />

the level of endogenous phytohormone levels (Zin-Huang et al., 1998) or exogenously<br />

applied growth regulators, its growth is either dependant on carbon allocation<br />

in roots and CO 2<br />

assimilation rate (Katrina et al., 1999). Under sufficient light<br />

intensity CO 2<br />

assimilation rate is usually evaluated by the quantum yield of photosynthesis<br />

and might be linearly related to ETR. According to Michito et al. (2003),<br />

gross photosynthesis rate and ETR has a linear relationship under PFD of<br />

400 µmol photons·m -2·s -1 . Nevertheless, relationship between ETR and rate of electron<br />

transport depending on CO2 assimilation (J CO2<br />

) varies in different plant species with<br />

particular leaf anatomy. Results by Michito et al. (2003) indicate that symmetric<br />

leaves of Acacia with high chlorophyll content had a high correlation between J CO2<br />

and ΔF/Fm’ at all PFDs. Asymmetric Cucumis leaves with low chlorophyll concentration<br />

showed the same result, whereas Ternstroemia asymmetric leaves with high<br />

content of chlorophyll pigments had the linear relationship between mentioned parameters<br />

only at low PFDs.<br />

In the present study we found that 0.05 mg·l -1 st-120 at 310 µmol/m -2 s -1 PFD<br />

intensity raised ETR to 76.7 µmol·m -2·s -1 and compared to control, it was by <strong>25</strong>%<br />

higher (p = 0.00014) (Fig. 2). In addition, ETR was also significantly increased in<br />

beans treated with 0.075 mg·l -1 of st-120 (p = 0.001) likewise as 0.1 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 of st-119 (p = 0.006 and p = 0.00016). In the rest of experimental<br />

variants, photosynthetic electron transport rate was slightly reduced by smaller<br />

311


ΔF/Fm’, which could be associated with partially blocked photosynthetic energy<br />

conversion and electron transport. (Lichtenthaler and Burkart, 2003). Moreover, high<br />

ETR values of beans treated with 0.05 mg·l -1 , 0.075 mg·l -1 of st-120, 0.1 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 of st-119 showed a high correlation (r = 0.77) with adventitious root biomass<br />

as well as root number per plant (Fig. 3). As follows from our results, the<br />

experimental growth regulators increased the efficiency of PSII photochemistry as<br />

well as ETR and on this basis raised efficiency of photosynthetic energy conversion,<br />

J CO2<br />

and gross photosynthetic rate by supplying more assimilates to adventitious roots.<br />

Auxin group phytohormones activity on photosynthetic efficiency of Brassica<br />

juncea was reported by Ahmad et al. (2001). In the experiments with Brassica juncea<br />

plants, chlorosubstituted auxins were tested on photosynthesis and some related<br />

processes. Monochloroindole acetic acids as 4-Cl-IAA either 7-Cl-IAA and dichloroindole<br />

acetic acid 4.7-Cl2-IAA stimulated the activity of photosynthetic carbohylases,<br />

which are the most abundant soluble proteins in chloroplasts of C3 plants after<br />

RuBPCO. Chlorosubstituted auxins enhanced the net photosynthetic rate, which has<br />

a linear relationship with ETR (Ahmed et al., 2001).<br />

Fig. 6. Adventitious root weight (mg per plant) of beans cuttings affected with growth<br />

regulators (CAHD) st-120 and st-119<br />

6 pav. Augimo reguliatoriø paveiktø pupeliø hipokotiliø pridëtiniø ðaknø masë, mg<br />

augale<br />

Fig. 7. Chlorophyll (a + b) concentration (mg·g- 1 ) in bean fresh leaves after 14 days<br />

when CAHD were applied on bean cuttings<br />

7 pav. Chlorofilo (a + b) koncentracija (mg·g- 1 ) augimo reguliatoriø paveiktuose pupeliø<br />

hipokotiliø lapuose<br />

Chlorophyll content in bean leaves after application of different concentrations of<br />

CAHD had a similar dynamic trend as changes in chlorophyll fluorescence (Fig. 7).<br />

312


Correlation coefficient (r) between total chlorophyll content in bean leaves and ETR<br />

was about 0.6. The content of chlorophyll was not markedly increased by examined<br />

growth regulators<br />

Conclusions. Experimental growth regulators, Carboxylic acid hydrazid derivatives<br />

(CAHD) – st-120 and st-119, applied on bean hypocotyl cuttings had<br />

the auxin like effect. The CAHD st-120 at 0.05 mg·l -1 and 0.075 mg·l -1 as well as<br />

st-119 at 0.1 mg·l -1 and 0.<strong>25</strong> mg·l -1 concentrations significantly induced been<br />

adventitious root initiation. Abovementioned experimental growth regulators also<br />

positively affected bean photosynthetic performance by increasing ETR, which<br />

represents photosynthetic energy conversion and can be correlated with quantum<br />

yield of CO 2<br />

assimilation. Photochemical quenching of chlorophyll fluorescence<br />

(qP) was also increased in beans, treated with physiologically effective<br />

CAHD concentrations. Raised value of qP was associated with higher proportion<br />

of oxidized Q A<br />

(fraction of open PS II reaction centers) and improved activity<br />

of Calvin cycle.<br />

Gauta 2006-11-06<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Ahmad A., Hayat S., Fariduddin Q., Ahmad I. Photosynthetic efficiency of plants<br />

of Brassica juncea, treated with chlorosubstituted auxins // Photosynthetica. 2001.<br />

Vol. 39(4). P. 565–568.<br />

2. Baker N. R., Rosenqvist E. Applications of chlorophyll fluorescence can improve<br />

crop production strategies: an examination of future possibilities // J Exp Bot. 2004.<br />

Vol. 55(44). P. 1607–1621.<br />

3. Chen J., Witham F. H., Heuser C. W. Inhibition of NAA - induced adventitious<br />

roots in mung bean cuttings by kinetin, zeatin, ethidium bromide and other DNA intercalators<br />

// The World Wide Web Journal of Biology. 1995. Vol. 1.<br />

4. Chory J., Reinecke D., Sim S., Washbum T., Brenner M. A role for cytokinins in deetiolation<br />

in Arabidopsis det mutants have an altered response to cytokinins // Plant<br />

Physiol. 1994. Vol. 104. P. 339–347.<br />

5. Fang B., Junjiang S., Shari R. B., Gloria K. M., Tadao A., Zhenbiao Y. Brassinosteroids<br />

interact with auxin to promote lateral root development in Arabidopsis // Plant<br />

Physiology. 2004. Vol. 134. P. 1624–1631.<br />

6. Genty B., Briantais J. M., Baker N. R. The relationship between the quantum yield<br />

of photosynthetic electron transport and quenching of chlorophyll fluorescence // Biochim<br />

Biophys Acta. 1989. Vol. 990. P. 87–92.<br />

7. Govindjee. Sixty-three years since Kautsky: chlorophyll a fluorescence // Aust J<br />

Plant Physiol. 1995. Vol. 22. P. 20–90.<br />

8. Hausman J. F. Changes in peroxidase activity, auxin level and ethylene production<br />

during root formation by poplar shoots raised in vitro // Plant Growth Regul. 1993. Vol. 13.<br />

P. 263–268.<br />

9. Husen J. I. A., Dequan L. I. Relationship between photosystem II electron transport<br />

and photosynthetic CO 2<br />

assimilation responses to <strong>ir</strong>radiance in young apple tree<br />

leaves // Photosynthetica. 2002. Vol. 40(1). P. 139–144.<br />

313


10. Juneau P., Green B. R., Harrison P. J. Simulation of Pulse-Amplitude-Modulated<br />

(PAM) fluorescence: Limitation of some PAM-parameters in studying env<strong>ir</strong>onmental stress<br />

effects // Photosynthetica. Vol. 43(1). P. 75–83.<br />

11. Katrina J. S., Jordan D. N., Smith S. D., Neuman D. S. Effect of atmospheric CO 2<br />

enrichment on root growth and carbohydrate allocation of Phaseolus spp. // Int. J. Plant<br />

Sci. 1999. Vol. 160(6). P. 1075–1081.<br />

12. Kitajima M., Butler W. L. Quenching of chlorophyll fluorescence and primary<br />

photochemistry in chloroplast by dibromothymoquinone // Biochim Biophys Acta. 1975.<br />

Vol. 376. P. 105–115.<br />

13. Lichtenthaler H. K., Burkart S. Photosynthesis and high light stress // Bulg. J.<br />

Plant Physiol. 1999. Vol. <strong>25</strong>. P. 3–1.<br />

14. Maxwell K., Johnson G. N. Chlorophyll fluorescence – a practical guide // J Exp<br />

Bot. 2000. Vol. 51. P. 659–668.<br />

15. Michito T., Masaru S., Yoshichika K. Leaf factors affecting the relationship between<br />

chlorophyll fluorescence and the rate of photosynthetic electron transport as determined<br />

from CO 2<br />

uptake // J. Plant Physiol. 2003. Vol. 160. P. 1131–1139.<br />

16. Mingcai Z., Liusheng D., Zhixi Z., Jianming L., Xiaoli T., Baomin W., Zhongpei H.,<br />

Zhaohu L. Effects of plant growth regulators on water deficit-induced yield loss in soybean.<br />

Proceedings for the 4th International Crop Science Congress. 2004 26 September – 1 October.<br />

17. Moncousin C., Favre J., Gaspar T. Early changes in auxin and ethylene production<br />

in vine cuttings before adventitious rooting // Plant Cell Tiss. Org. Cult. 1989. Vol. 19.<br />

P. 235–242.<br />

18. Ohkawa H., Kamada H., Sudo H., Harada H. Effects of gibberellic acid on ha<strong>ir</strong>y<br />

root growth in the Datura innoxia // J. Plant Physiol. 1989. Vol. 134. P. 633–636.<br />

19. Oxborough K., Baker N. R. Resolving chlorophyll a fluorescence images of photosynthetic<br />

efficiency into photochemical and non-photochemical components – calculation<br />

of qP and Fv’/Fm’ without Fo’ // Photosynth. Res. 1997. Vol. 54. P. 135–142.<br />

20. Pandey D. M., Goswami C. L., Kumar B., Sudha J. Hormonal regulation of photosynthetic<br />

enzymes in cotton under water stress // Photosynthetica. 2000. Vol. 38(3).<br />

P. 403–407.<br />

21. Parthier B. The equivocal of phytohormones (cytokinins) in chloroplast development<br />

// Biochem. Physiol. Pflanz. 1979. Vol. 174. P. 173–214.<br />

22. Pospiðilova J. Interaction of cytokinins and abscisic acid during regulation of<br />

stomatal opening in bean leaves // Photosynthetica. 2003. Vol. 41(1). P. 49–56.<br />

23. Rohãèek K., Bartãk M. Technique of the modulated chlorophyll fluorescence:<br />

basic concepts, useful parameters and some applications // Photosynthetica. 1999.<br />

Vol. 37(3). P. 339–363.<br />

24. Rohãèek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic<br />

meaning and mutual relationships // Photosynthetica. 2002. Vol. 40(1). P. 13–29.<br />

<strong>25</strong>. Sagee O., Raviv M., Medina S., Becker D., Cosse A. Involvement of rooting<br />

factors and free IAA in the rootability of citrus species stem cuttings // Sci. Hort. 1992.<br />

Vol. 51. P. 187–195.<br />

26. Schreiber U., Hormann H., Neubauer C., Klughammer C. Assessment of photosystem<br />

II photochemical quantum yield by chlorophyll fluorescence quenching analysis<br />

// Aust. J. Plant Physiol. 1995. Vol. 22. P. 209–220.<br />

27. Synkova H., Pechova R., Valce R. Changes in chloroplast ultrastructure in Pssuipt<br />

tobacco during plant ontogeny // Photosynthetica. 2003. Vol. 41(1). P. 117–126.<br />

28. Weathers P. J., Bunk G., McCoy M. C. The effect of phytohormones on growth<br />

and artemisin production in Artemisia annua ha<strong>ir</strong>y roots // In Vitro Cell. Dev. Biol. 2005.<br />

Vol. 41. P. 47–53.<br />

314


29. Weigel U., Horn W., Hock B. Endogenous auxin levels in terminal stem cuttings of<br />

Chrysanthemum morifolium during adventitious rooting // Physiol. Plant. 1984. Vol. 61.<br />

P. 422–428.<br />

30. Weis E., Lechtenberg D. Fluorescence analysis during steady-state photosynthesis<br />

// Phil. Trans R London 1989. Vol. 323. P. <strong>25</strong>3–268.<br />

31. White A. J., Critchley C. Rapid light curves: A new fluorescence method to<br />

assess the state of the photosynthetic apparatus // Photosynth. Res. 1999. Vol. 59.<br />

P. 63–72.<br />

32. Yordanov I. Responses of photosynthesis to stress and plant growth regulators //<br />

Bulg. J. Plant Physiol. 1995. Vol. 21(2–3). P. 51–70.<br />

33. Zin-Huang L., Wei-Chang W., Yan-Sin Yen. Effect of hormone treatment on root<br />

formation and endogenous indole-3-acetic acid and polyamine levels of Glycine max<br />

cultivated in vitro // Bot. Bull. Acad. Sin. 1998. Vol. 39. P. 113–118.<br />

34. Ãàâðèëåíêî Â. Ô. Ëàäûãèíà Ì. Å. Õàíäîáèíà Ë. Ì. Áîëüøîé ïðàêòèêóì<br />

ïî ôèçèîëîãèé ðîñòåíèé. Ìîñêâà, 1975.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

KARBOKSIRÛGÐÈIØ HIDRAZIDØ DARINIØ ÁTAKA<br />

PUPELIØ PRIDËTINIØ ÐAKNØ FORMAVIMUISI IR<br />

FOTOSINTETINIAM ELEKTRONØ JUDËJIMUI<br />

V. A. Ðlapakauskas, E. Kazlauskas <strong>ir</strong> S. Glioþeris<br />

Santrauka<br />

Tyrimø tikslas – nustatyti, koká poveiká turi augimo reguliatoriai – karboks<strong>ir</strong>ûgðèiø<br />

hidrazidø dariniai st-120 <strong>ir</strong> st-119 – pupeliø hipokotiliø pridëtiniø ðaknø<br />

formavimuisi <strong>ir</strong> fotosintetinio elektronø judëjimo greièiui (ETR). Panaudojus augimo<br />

reguliatorius, buvo stebima pupeliø hipokotiliø pridëtiniø ðaknø augimo dinamika.<br />

Fotosintetinio elektronø judëjimo greièiui (esant 310 µmol m -2 s -1 aktininës ðviesos<br />

intensyvumui) <strong>ir</strong> fotocheminiam fluorescencijos slopinimui (qP) nustatyti buvo<br />

pritaikytas fluorometrijos metodas, matuojant chlorofilo fluorescencijà ðviesoje<br />

adaptuotose pupelëse. Ðiais tyrimais nustatyta, kad st-120 augimo reguliatoriaus<br />

0,05 mg·l -1 <strong>ir</strong> 0,075 mg·l -1 koncentracijos bei st-119 augimo reguliatoriaus 0,1 mg·l -1 <strong>ir</strong><br />

0,<strong>25</strong> mg·l -1 koncentracijos darë esminæ átakà pupeliø hipokotiliø pridëtiniø ðaknø formavimuisi,<br />

ðviesos energijos v<strong>ir</strong>smo á fotosintetinæ energijà naðumui (ETR) <strong>ir</strong><br />

II fotosistemos reakciniø centrø oksredo bûklei (qP). Tarp pupeliø pridëtiniø ðaknø<br />

skaièiaus <strong>ir</strong> chlorofilo fluorescencijos rodikliø ETR bei qP nustatytas stiprus koreliacinis<br />

ryðys. Didþiausià efektà analizuojamiems rodikliams turëjo st-120 augimo reguliatoriaus<br />

0,05 mg·l -1 koncentracija. Nuo t<strong>ir</strong>iamø augimo reguliatoriø gerokai padidëjo<br />

chlorofilo (a + b) koncentracija.<br />

Reikðminiai þodþiai: augimo reguliatoriai, chlorofilo fluorescencija, fotosintetinis<br />

elektronø judëjimo greitis, pupelës, pridëtinës ðaknys.<br />

315


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RAUSVAÞIEDËS EÞIUOLËS (ECHINACEA PURPUREA<br />

(L.) MOENCH) PRODUKTYVUMAS, TAIKANT<br />

INTENSYVIAS AUGINIMO TECHNOLOGIJAS<br />

Edita DAMBRAUSKIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas e.dambrauskiene@lsdi.lt<br />

Pramoninio rausvaþiedës eþiuolës auginimo tyrimai Lietuvoje atlikti p<strong>ir</strong>mà kartà.<br />

2003–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto bazëje daryti lauko<br />

bandymai <strong>ir</strong> laboratoriniai tyrimai. Taikant intensyvias vaistaþoliø auginimo technologijas,<br />

parinkti elementai, kurie uþtikrina pastovø, gausø geros kokybës rausvaþiedës<br />

eþiuolës þaliavos derliø. Keleriø metø tyrimais ávertintos biologinës rausvaþiedës eþiuolës<br />

savybës, kuriomis remiantis galima planuoti pramoniná ðiø vaistaþoliø auginimà. Nustatytas<br />

augalø þolës <strong>ir</strong> ðaknø derlius bei orasausës þaliavos iðeiga. Numatytos priemonës,<br />

kurios galëtø padidinti rausvaþiedës eþiuolës produktyvumà.<br />

Reikðminiai þodþiai: biologija, Echinacea purpurea (L.) Moench, intensyvus<br />

auginimas, produktyvumas, rausvaþiedë eþiuolë, vaistaþolës.<br />

Ávadas. Vaistaþoliø auginimas – viena ið netradiciniø Lietuvos þemës ûkio ðakø,<br />

turinti puikias tolesnës plëtros perspektyvas. Daugelis stambesniø <strong>ir</strong> smulkiø vaistaþoliø<br />

augintojø turi nedaug teoriniø þiniø bei praktinës pat<strong>ir</strong>ties. Besikurianèios stambios<br />

bendrovës, pleèianèios vaistaþoliø plotus, orientuojasi á intensyvias, maksimaliai<br />

mechanizuotas vaistaþoliø auginimo technologijas, pagrástas mokslo tyrimø rezultatais.<br />

Atsiþvelgdami á tai, Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto mokslo<br />

darbuotojai atlieka nemaþai moksliniø tyrimø, kuriø objektas – vaistiniai augalai.<br />

Rausvaþiedë eþiuolë (Echinacea purpurea (L.) Moench) dël savo antimikrobiniø<br />

bei imunitetà stiprinanèiø savybiø – viena populiariausiø ðiø dienø vaistaþoliø. Ji kilusi<br />

ið Ðiaurës Amerikos, iki ðiol Lietuvoje daþniau auginta kaip dekoratyvinis augalas.<br />

Mûsø kraðte net<strong>ir</strong>tos agrotechninës rausvaþiedþiø eþiuoliø auginimo sàlygos, ypaè<br />

intensyvaus auginimo ypatumai. Apie dekoratyvines bei vaistines ðio augalo savybes<br />

yra sukaupta daug þiniø. VDU Kauno botanikos sode atliktais tyrimais iðnagrinëtos<br />

biologinës <strong>ir</strong> fitocheminës rausvaþiedës eþiuolës savybës (Ragaþinskienë, 1999). Taèiau<br />

pasigendama duomenø apie eþiuolei tinkamà d<strong>ir</strong>voþemá, kiek maisto medþiagø<br />

ðie augalai turi gauti <strong>ir</strong> kaip turi bûti træðiami, kad iðaugintø gerà derliø. Daugelyje<br />

ðaltiniø nurodoma, kad eþiuoliø sëklos yra maþo lauko daigumo, todël ðiuos augalus<br />

geriau sodinti daigais (Juknevièienë, Ragaþinskienë, 1995; Prazna <strong>ir</strong> kt., 1993). Vais-<br />

316


tinei þaliavai tinka rausvaþiedës eþiuolës þolë (<strong>25</strong>–40 cm ûgliai), ji pjaunama masinio<br />

þydëjimo metu, <strong>ir</strong> ðaknys, jos kasamos rudená, spalio mënesá, arba pavasará, prieð<br />

suþeliant augalams, balandþio pradþioje (Lapinskienë <strong>ir</strong> kt., 1999). Eþiuolës produktyvumà<br />

lemia ne tik auginimo sàlygos, bet <strong>ir</strong> augalø amþius. Nustatyta, kad gausiausias<br />

þolës derlius gaunamas ketv<strong>ir</strong>taisiais <strong>ir</strong> penktaisiais, o ðaknys tinkamiausios antraisiais<br />

<strong>ir</strong> treèiaisiais auginimo metais (Lapinskienë <strong>ir</strong> kt., 1998; Samorodov, Pospelov,<br />

2004). Ketv<strong>ir</strong>taisiais auginimo metais ðaknys sveria daugiau, taèiau pusë jø –<br />

apm<strong>ir</strong>usios <strong>ir</strong> kaip vaistinë þaliava yra maþai vertingos (Parmentei, Littlejhn, 1996).<br />

Pleèiant rausvaþiedës eþiuolës pramoniná auginimà <strong>ir</strong> taikant intensyvias auginimo<br />

technologijas, svarbu atsiþvelgti á biologiná augalo potencialà esant tam tikroms<br />

auginimo sàlygoms. Sk<strong>ir</strong>tingose ðalyse atlikti tyrimai leidþia manyti, kad eþiuolë yra<br />

tinkama masiðkai auginti (Galambosi <strong>ir</strong> kt., 1994; Hobbs, 1989; Muntean, Tamas,<br />

1989; Êóïåíêî, Îñòàïêî, 1997). Atliekant selekciná darbà, jau ats<strong>ir</strong>anda áva<strong>ir</strong>iø rausvaþiedës<br />

eþiuolës formø <strong>ir</strong> veisliø, kurios sk<strong>ir</strong>iasi ne tik produktyvumu, bet <strong>ir</strong> biocheminëmis<br />

savybëmis (Getko <strong>ir</strong> kt., 2006; Hodisan, Tamas, 1984).<br />

Darbo tikslas – iðt<strong>ir</strong>ti <strong>ir</strong> ávertinti intensyvaus auginimo poveiká rausvaþiedës<br />

eþiuolës vaistinës þaliavos produktyvumui.<br />

Tyrimo sàlygos <strong>ir</strong> metodika. Tyrimai atlikti 2003–2006 metais Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto ðiltnamiuose, bandymø laukuose <strong>ir</strong> Biochemijos<br />

<strong>ir</strong> technologijos laboratorijoje. P<strong>ir</strong>maisiais tyrimø metais, geguþës pabaigoje, eþiuolë<br />

buvo sëta tiesiai á laukà, taèiau sëklos labai blogai dygo, todël tolesniais tyrimø metais<br />

ðio auginimo bûdo buvo atsisakyta. Daigams rausvaþiedë eþiuolë auginta ðildomuose<br />

dviguba polimerine plëvele dengtuose ðiltnamiuose, kur buvo pasëta p<strong>ir</strong>màjà balandþio<br />

dekadà. Ðiltnamyje daigai auginti 50–60 dienø. 2–3 tikrøjø lapeliø tarpsnio eþiuolës<br />

daigai pasodinti lauke p<strong>ir</strong>mosiomis b<strong>ir</strong>þelio dienomis. Laikantis mechanizuoto auginimo<br />

technologijos, pas<strong>ir</strong>inktas 70 cm tarpueiliø plotis, o atstumas tarp augalø –<br />

50 cm. Pavasará, prieð vegetacijà, laukas patræðtas kompleksinëmis tràðomis „Kem<strong>ir</strong>a<br />

Skalsa 8–12–23“. Vegetacijos metu, b<strong>ir</strong>þelio mënesá, augalai vienà kartà papildomai<br />

træðti amonio salietra – 30 kg ha -1 N. Per vasarà tarpueiliai 3 kartus purenti traktoriniu<br />

purentuvu, 2 kartus ravëta rankomis. Rausvaþiedës eþiuolës þolës <strong>ir</strong> ðaknø derlius<br />

buvo imtas antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais. Þolë (40 cm ûgliai)<br />

pjauta masinio þydëjimo metu, ðaknys nukastos rugsëjo pabaigoje. Darbo metu<br />

atlikti fenologiniai stebëjimai, ávertintas augalø þiemojimas. Vaistinë þaliava (eþiuoliø<br />

þolë <strong>ir</strong> ðaknys) dþiovinta ðildomoje dþiovykloje 40°C temperatûroje. Derliaus duomenys<br />

apdoroti statistine programa ANOVA.<br />

Tyrimø metais meteorologinës sàlygos buvo palankios rausvaþiedës eþiuolës<br />

vegetacijai. 2003-øjø, p<strong>ir</strong>møjø auginimo metø, vasara buvo sausa <strong>ir</strong> karðta, taèiau<br />

pasodinti eþiuolës daigai gerai prigijo. 2004 m. pavasaris buvo ankstyvas <strong>ir</strong> ðiltas,<br />

todël antrameèiø eþiuoliø vegetacija prasidëjo anksèiau, balandþio pabaigoje, o 2005<br />

<strong>ir</strong> 2006 m. áprastu metu – geguþës pradþioje. Tyrimø metais liepos <strong>ir</strong> rugpjûèio mënesiais<br />

buvo labai sausa, todël eþiuolës produktyvumas buvo maþesnis. Þiemojimo sàlygos<br />

visais tyrimø metais buvo panaðios: gan ðalti þiemos mënesiai <strong>ir</strong> permainingi<br />

orai kovo mënesá. Esant tokioms sàlygoms nedidelë dalis rausvaþiedës eþiuolës augalø<br />

þuvo.<br />

317


Rezultatai. Fenologinis rausvaþiedës eþiuolës, kaip <strong>ir</strong> daugelio daugiameèiø augalø,<br />

vystymasis prasideda vidutinei paros temperatûrai pakilus iki +5°C. Vegetacijos<br />

pradþia priklauso nuo meteorologiniø sàlygø, todël kasmet augalai gali pradëti vegetuoti<br />

ne tuo paèiu laiku. Tyrimø metais rausvaþiedës eþiuolës augalai po þiemos<br />

vegetuoti pradëjo paskutinæ balandþio arba p<strong>ir</strong>màjà geguþës dekadà (1 lentelë). Butonizacijos<br />

pradþia – b<strong>ir</strong>þelio mënesá, o masiðkai þydëti ðie augalai pradeda po dviejø<br />

dekadø – nuo antrosios liepos iki p<strong>ir</strong>mosios rugpjûèio dekados, nelygu metai. Rugpjûèio<br />

pabaigoje–rugsëjo mënesá augalas brandina lukðtavaisius (1 lentelë). Fenologiniai<br />

stebëjimai rodo, kad Lietuvos klimato sàlygos yra tinkamos rausvaþiedei eþiuolei<br />

vegetuoti, nes augalai pereina visà vystymosi ciklà iki sëklø brandos.<br />

Augimo tarpsnis<br />

Growth stage<br />

Vegetacijos pradžia<br />

Beginning of vegetation<br />

Butonizacijos pradžia<br />

Beginning of buttonization<br />

Þydëjimo pradþia<br />

Beginning of flowering<br />

Masinis žydëjimas<br />

Mass flowering<br />

Vaisiø brandinimas<br />

Ripening of fruits<br />

1 lentelë. Rausvaþiedës eþiuolës fenologija<br />

Table 1. Phenology of eastern purple coneflower<br />

2004 m. 2005 m. 2006 m.<br />

04 20 05 10 05 01<br />

06 01 06 20 06 10<br />

06 20 07 10 07 01<br />

07 10 08 01 07 20<br />

08 20 09 10 09 01<br />

Tyrimø metais nustatyta, kad neperþiemoja tik nedidelë dalis rausvaþiedës eþiuolës<br />

augalø (2 lentelë). Daugiausia þuvo p<strong>ir</strong>mameèiø (4 proc.) <strong>ir</strong> antrameèiø (5 proc.)<br />

augalø. Vyresni augalai sutv<strong>ir</strong>tëja <strong>ir</strong> þiemoja geriau. Po treèios þiemos nunyko 2 proc.<br />

eþiuolës augalø.<br />

2 lentelë. Perþiemojusiø rausvaþiedës eþiuolës augalø skaièius, %<br />

Table 2. Number of eastern purple coneflower plants after wintering (%)<br />

Po 2004–2005 m. žiemos<br />

After winter of 2004–2005<br />

96 ± 0,7 95 ± 0,6 98 ± 0,8<br />

Po 2003–2004 m. žiemos<br />

After winter of 2003–2004<br />

Po 2005–2006 m. žiemos<br />

After winter of 2005–2006<br />

Rausvaþiedës eþiuolës þolë vaistinei þaliavai pjauta masinio þydëjimo metu, o<br />

ðaknys kasamos vegetacijos pabaigoje – rudená. Þydinèiø augalø antþeminë dalis gan<br />

masyvi, nes augalai uþauga iki 90 cm aukðèio, o ðaknø sistema nedidelë. Taèiau<br />

medicininiu poþiûriu rausvaþiedës eþiuolës ðaknys yra vertingesnës uþ stiebus ar ûglius.<br />

Mûsø tyrimø duomenimis, rausvaþiedës eþiuolës produktyvumas kasmet didëja.<br />

318


Antrøjø augimo metø ðvieþias rausvaþiedës eþiuolës þolës derlius siekia 44,2 t ha -1 ,<br />

treèiaisiais augimo metais – 56,7 t ha -1 , o ketv<strong>ir</strong>taisiais – 73,1 t ha -1 . Sausos vaistinës<br />

þaliavos iðeiga atsk<strong>ir</strong>ais metais ðiek tiek áva<strong>ir</strong>uoja, taèiau vidutiniai duomenys tolygûs.<br />

Iðdþiovintos rausvaþiedës eþiuolës þolës svoris siekia 28, ðaknø – 35 proc. p<strong>ir</strong>minio<br />

ðvieþios þaliavos svorio. Dþiovinant eþiuolës þolë netenka nuo 70 iki 75 proc., ðaknys –<br />

nuo 60 iki 70 proc. drëgmës. Taigi, antrøjø auginimo metø vaistinës eþiuolës þolës<br />

orasausës masës derlius buvo 12,4 t ha -1 , treèiøjø – 15,9 t ha -1 , ketv<strong>ir</strong>tøjø – 20,5 t ha -1 .<br />

Ðaknø orasausës masës derlius didëja nuo 0,8 t ha -1 (antraisiais auginimo metais) iki<br />

1,8 t ha -1 (ketv<strong>ir</strong>taisiais auginimo metais) (3 lentelë).<br />

Auginimo<br />

metai<br />

Growing year<br />

3 lentelë. Rausvaþiedës eþiuolës þolës <strong>ir</strong> ðaknø derlius<br />

Table 3. Yield of eastern purple coneflower grass and root<br />

Þolës derlius, t ha -1<br />

Grass yield (t ha -1 )<br />

Ðaknø derlius, t ha -1<br />

Root yield (t ha -1 )<br />

þalia masë orasausë masë þalia masë orasausë masë<br />

fresh matter dry matter fresh matter dry matter<br />

II 44,2 ± 1,85 12,4 ± 0,64 2,2 ± 0,08 0,8 ± 0,04<br />

III 56,7 ± 2,09 15,9 ± 0,71 3,4 ± 0,09 1,2 ± 0,05<br />

IV 73,1 ± 2,40 20,5 ± 0,73 5,3 ± 0,12 1,8 ± 0,05<br />

Aptarimas. 2003–2006 m. atlikti rausvaþiedës eþiuolës auginimo pagal intensyvias<br />

technologijas tyrimai gali bûti tv<strong>ir</strong>tas vaistaþoliø auginimo Lietuvoje pramoniniu<br />

bûdu pagrindas. Fenologiniai stebëjimai patv<strong>ir</strong>tino, kad visais tyrimø metais rausvaþiedës<br />

eþiuolës pereina visus augimo etapus iki sëklø subrandinimo. Eþiuoliø produktyvumas<br />

kasmet didëja. P<strong>ir</strong>maisiais auginimo metais nerekomenduojama augalus<br />

naudoti vaistinei þaliavai, nes antþeminë augalo dalis menka, be generatyviniø organø,<br />

o ðaknys negausios (Ragaþinskienë, 1997). Rausvaþiedës eþiuolës gali augti vienoje<br />

vietoje 5–7 metus, taèiau taikant intensyvias auginimo technologijas <strong>ir</strong> kasant jø<br />

ðaknis, naujus augalus tenka sodinti kas 2 metai. Medicinos tikslams eþiuoliø ðaknis<br />

geriau nukasti antraisiais ar treèiaisiais auginimo metais, nes vëliau pablogëja jø kokybë.<br />

Tokiø þaliavos nuëmimo taisykliø laikosi Ukrainoje <strong>ir</strong> kitose ðalyse d<strong>ir</strong>bantys<br />

eþiuoliø tyrëjai (Samorodov, 2004; Prazna, 1993; Êóïåíêî, 1997). Manome, kad<br />

mûsø pas<strong>ir</strong>inkta daigø sodinimo schema (70 x 50 cm) yra tinkama maitinamojo ploto<br />

atþvilgiu, taip pat leidþia visiðkai mechanizuoti sodinimo, prieþiûros <strong>ir</strong> derliaus nuëmimo<br />

darbus. Rausvaþiedë eþiuolë nëra lepus augalas, taèiau pernelyg drëgnuose d<strong>ir</strong>voþemiuose<br />

blogiau þiemoja. Mûsø bandymuose naudotos tràðos nepakenkë eþiuoliø<br />

produktyvumui. Augalai buvo pakankamai sveiki <strong>ir</strong> veðlûs. Taèiau reikëtø atlikti iðsamesnius<br />

tyrimus ðiuo klausimu, nes daug biologinës masës uþauginantys augalai reikalauja<br />

<strong>ir</strong> daugiau maisto medþiagø. LSD institute atliekami detalûs træðimo tyrimai<br />

ateityje leis plaèiau komentuoti rausvaþiedës eþiuolës træðimo sàlygas. Siekiant gausesnio<br />

eþiuoliø produktyvumo, svarbu parinkti derlingà, daugiameèiams augalams<br />

þiemoti tinkamà laukà, kurio sukultûrimo lygis leistø visiðkai mechanizuoti darbus.<br />

Iðvados. 1. Klimato sàlygos Lietuvoje yra tinkamos auginti rausvaþiedæ eþiuolæ<br />

pramoniniu bûdu <strong>ir</strong> ruoðti vaistinæ þaliavà.<br />

319


2. Taikant intensyvias auginimo technologijas, rausvaþiedës eþiuolës produktyvumas<br />

kasmet didëja: antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais gauta<br />

atitinkamai 44,2; 56,7 <strong>ir</strong> 73,1 t ha -1 þalios masës. Vidutinë apdþiovintos þaliavos<br />

iðeiga – 28 procentai. Orasausës masës derlius tyrimø metais siekë atitinkamai 12,4;<br />

15,9; 20,5 t ha -1 .<br />

3. Rausvaþiedës eþiuolës ðaknø derlius, palyginti su þolës derliumi, negausus:<br />

antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais prikasta atitinkamai 2,2; 3,4 <strong>ir</strong><br />

5,3 t ha -1 ðvieþiø ðaknø. Vidutinë orasausiø ðaknø iðeiga – 35 procentai. Vaistinei<br />

þaliavai tinkamø ðaknø derlius antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais<br />

buvo atitinkamai 0,8; 1,2 <strong>ir</strong> 1,8 t ha -1 .<br />

Pastaba. Darbas atliktas ið dalies Lietuvos valstybinio mokslo <strong>ir</strong> studijø fondo<br />

lëðomis, ágyvendinant projektà „Vaistiniø augalø auginimo technologijø <strong>ir</strong> þaliavos<br />

kokybës tyrimai“ (sutarties numeris G-43/06)<br />

Gauta 2006-11-06<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Galambosi B., Pulliainen E., Pullainen E., Karlas M. Overwintering of Echinacea<br />

purpurea in Finland During // Production of herbs, spices and medical plants in Nordic<br />

countries. Mikkelin (Finland). 1994. P. 69–70.<br />

2. Getko N., Kabuðeva V., Kronivec A., Kriuèionok A. Perspektyviø rausvaþiedës<br />

eþiuolës (Echinacea purpurea (L.) Moench) formø atranka heterogeninëje kultûrinëje<br />

populiacijoje // Vytauto Didþiojo universiteto Botanikos sodo raðtai. 2006. T. 11. P. 71–75.<br />

3. Hobbs C. The Echinacea Handbook. Oregon, Eclectic Med. Publ. 1989. 118 p.<br />

4. Hodisan V., Tamas M. Study farmaciobotanic comparativ al speciilor Echinacea<br />

angustifolia Moench si E. Purpurea (L.) Moench // Farmacija. 1984. V. 32(4). P. 203–210.<br />

5. Juknevièienë G., Ragaþinskienë O. Purpurinës eþiuolës tyrimai Kauno botanikos<br />

sode // Lietuvos farmacijos þinios. 1995. Nr. 1–2. P. 11.<br />

6. Lapinskienë N., Ragaþinskienë O., Rimkienë S. Echinacea purpurea (L.) Moench<br />

fenologija <strong>ir</strong> biologinis produktyvumas // Botanika Lithuanica. 1999. Vol. 5(1). P. 41–59.<br />

7. Muntean L., Tamas M. Echinacea Specil de perspectiva in Romania // Herba romanica.<br />

1989. Vol. 9. P. 79–85.<br />

8. Parmentei G., Littlejhn R. Planting density effects on root yield of purple coneflower<br />

(Echinacea purpurea (L.) Moench) // N. Zealand Crop Horticult. Sci. 1996. Vol. <strong>25</strong>(2).<br />

P. 169–175.<br />

9. Prazna L., Pozmazi A., Lefter J., Lelik L., Karsai-Bihâtsi E., Vitânui Gy. The cultivation<br />

and analysis of Echinacea purpurea // J. Hungarian Pharm. Soc. // IX Congr. Pharmaceutical<br />

Soc. Budapest. 1993. P. 110.<br />

10. Ragaþinskienë O. Purpurinës eþiuolës (Echinacea purpurea (L.) Moench) antþeminës<br />

<strong>ir</strong> poþeminës daliø vystymasis // Botanika Lithuanica. 1997. Vol. 3(3). P. <strong>25</strong>1–271.<br />

11. Ragaþinskienë O. Purpurinës eþiuolës (Echinacea purpurea (L.) Moench) introdukcija<br />

Lietuvoje: daktaro disertacijos santrauka. Kaunas, 1999. <strong>25</strong> p.<br />

12. Samorodov N., Pospelov V. Genus Echinacea Moench in Ukraine: Sixty-year<br />

experience of studying and using // International Scientific Congress „The development<br />

of contemporary growing and analysis of medical plants“ / Papers of reports.<br />

Kaunas, 2004. P. 98–99.<br />

320


13. Êóïåíêî Í., Îñòàïêî È. Èíòðîäóêöèÿ Echinacea purpurea (L.) Moench â<br />

Äîíáàññå // ×åòâåðòà ìiæíàðîäíà êîíôåðåíöiÿ ç ìåäè÷íîi áîòàíiêè / òåç. äîï.<br />

Êèiâ, 1997. Ñ. 213–214.<br />

14. Ëàïèíñêåíå Í., Ðàãàæèíñêåíå Î., Ðèìêåíå Ñ. Õàðàêòåðèñòèêà ïîäçåìíîé<br />

÷àñòè ýõèíàöåè ïóðïóðíîé â óñëîâèÿõ èíòðîäóêöèè â Ëèòâå // Èçó÷åíèå è<br />

èñïîëüçîâàíèå ýõèíàöåè / ìàòåðèàëû ìåæäóíàð. íàó÷. êîíô. Ïîëòàâà, 1998.<br />

Ñ. 24–26.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY OF EASTERN PURPLE CONEFLOWER<br />

(ECHINACEA PURPUREA L. MOENCH) APPLYING<br />

INTENSIVE GROWING TECHNOLOGIES<br />

E. Dambrauskienë<br />

Summary<br />

Investigations of the industrial growing of eastern purple coneflower (Echinacea<br />

purpurea L. Moench) were conducted for the f<strong>ir</strong>st time in Lithuania. Field and<br />

laboratory experiments in the basis of the Lithuanian Institute of Horticulture were<br />

carried out in 2003–2006. When applying the intensive growing technologies there<br />

were chosen elements, which guarantee the constantly abundant and qualitative yield<br />

of eastern purple coneflower. During the investigations, which lasted for several<br />

years, there were evaluated the biological features of eastern purple coneflower and<br />

basing on them it was possible to plan industrial growing of this herb. The yield of<br />

plant grass and roots and the output of dry matter were established. The means,<br />

which might increase the productivity of eastern purple coneflower, were previsioned.<br />

Key words: biology, Echinacea purpurea L. Moench, intensive growing, productivity,<br />

eastern purple coneflower, herbs.<br />

321


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

EFFECT OF CLIMATIC CONDITIONS AND SEED<br />

DRESSING ON THE YIELD AND PROTEIN CONTENT<br />

IN SEEDS OF PEA<br />

Beata SZWEJKOWSKA *, Pavelas DUCHOVSKIS **<br />

*Cha<strong>ir</strong> of Plant Production, University of Warmia and Mazury in Olsztyn,<br />

Oczapowskiego 8, 10-719 Poland. E–mail: b-szw@gazeta.pl<br />

**Lithuanian Institute of Horticulture, Kauno 30, LT–54333 Babtai, Kaunas<br />

distr., Lithuania. E–mail: p.duchovskis@lsdi.lt<br />

In three-year field trial, completed in 2004–2006, the influence of climatic conditions<br />

and fungicide-insecticide seed dressing preparations on the content and yield<br />

of protein in seeds of several seed pea cultivars (Pisum sativum L.) was assessed.<br />

The study was conducted with three fungicide and insecticide seed dressing chemicals:<br />

Sarfun T 65 and Funaben T (disease control) and Super Homai 70 DS (disease<br />

and pest control). Four seed pea cultivars were grown: two edible ones – cv. ‘Brylant’<br />

and ‘Wenus’, and two field ones – ‘Eurika’ and ‘Marych’. The course of<br />

climatic conditions during the vegetative seasons was shown to have exerted considerable<br />

influence on the processes of total protein accumulation in pea seeds and<br />

protein yields. Weather had particularly positive effect in the f<strong>ir</strong>st and second years<br />

of the trial when more protein was accumulated in seeds of all four pea cultivars. It<br />

was so because in both years, especially during vegetative seasons, a<strong>ir</strong> temperatures<br />

and sunlight were favourable. In contrast, more rainfall and consequently more cloudy<br />

days in the th<strong>ir</strong>d year of the trial did not favour protein accumulation. The effect of<br />

the preparations applied on the volume of protein yields in pea seeds was moderate.<br />

It was produced via significant reduction of the effect of plant diseases and pests on<br />

total weight of seeds. However, fungicide and insecticide seed dressing chemicals<br />

were found to have no impact (or else the<strong>ir</strong> effect was not significant statistically)<br />

on the relative (%) content of protein in seed mass. The analysis of the predispositions<br />

of four cultivars to total protein accumulation proved that field varieties (‘Marych’<br />

and ‘Eurika’) were superior to the edible ones (‘Brylant’ and ‘Wenus’) in that<br />

respect.<br />

Key words: cultivars, pea, seed dressing chemicals, total protein.<br />

Introduction. Papilonaceous plants, including legumes, are rich source of proteins,<br />

which is in constant demand. This stimulates a wealth of research on the<br />

concentration of protein, composition of amino acids, digestibility and factors, which<br />

322


affect proper utilisation of this nutrient (Pisulewska, 1993; Kulig et al., 1997; Pastuszewska,<br />

1997; Martyniak, 2001). Such studies are growing in importance at the<br />

moment, as dieticians recommend substituting some animal protein and fat with<br />

plant nutrients (Lampart-Szczapa, 1997; Pastuszewska and Ochtabiñska, 1995). Increased<br />

demand for high-protein foodstuffs, which can be obtained for example from<br />

pea seeds, meets certain obstacles, both natural as the production of pea is strongly<br />

dependent on the climatic conditions, and economic factors (Pahl i Hoffman, 1995).<br />

Kotecki (1990), Alvino and Leone (1993), Fougereus and Dore (1997), Szukaùa<br />

et al. (1997) point to the fact that seed yield and protein content in seeds of leguminous<br />

plants, including pea, depend not only on genetic factors but also on the weather<br />

conditions (moisture and temperatures). Considering the latter, it is worth noticing<br />

that the literature usually contains information pertaining to the optimum water<br />

and temperature demands of a particular plant species, without making any distinction<br />

between cultivars. This problem has been raised by such authors as Andrzejewska<br />

et al. (2002), Szukaùa et al. (1997), Alvino and Leone (1993), who emphasise the<br />

fact that cultivars not only differ in the<strong>ir</strong> morphology and use, but they also respond<br />

differently to meteorological conditions, including temperatures and sunlight, which<br />

are of great importance for accumulation of protein. As far as yield of seeds is<br />

concerned, optimum a<strong>ir</strong> humidity and rainfall are more important.<br />

The aim of the present study has been to determine to what extent weather<br />

conditions and seed dressing chemicals, which control plant diseases and pests,<br />

influence the content and yield of protein in seeds of several pea cultivars.<br />

Methods and conditions. The experiment was carried out at the Experimental<br />

and Plant Production Station in Baùcyny near Ostróda, in the years 2004–2006. A<br />

strict, two-factor field trial was established on good wheat soil complex (2), classified<br />

according to the Polish soil classification system as class IIIb. It was rich in<br />

phosphorus and potassium and moderately rich in magnesium. The soil pH was 6.7.<br />

In each year of the trial pea was preceded by cereals.<br />

The variables in the experiment consisted of:<br />

– weather conditions (an independent variable, but characterised by high probability<br />

of variability, especially of average temperatures and rainfalls during subsequent<br />

months of pea vegetation seasons in a three-year trial);<br />

– either no seed dressing chemicals (control plots) or application of plant disease<br />

control preparations (Funaben T, Sarfun T) or disease and pest control preparation<br />

(Super Homai 70 DS);<br />

– two different types of pea cultivars: edible (‘Brylant’ and ‘Wenus’) and field<br />

ones (‘Marych’ and ‘Eurika’).<br />

In each year of the trial, seeds were sown in the f<strong>ir</strong>st decade of April, using a<br />

row seed drill, with the plant density of 100 plants per 1 square meter. Pea plants<br />

were harvested at two stages, in each year on the same day – 31 st of July. The<br />

volume of yields was assessed at comparable seed moisture content (14%), and the<br />

concentration of total protein was determined in laboratory, with Kjeldahl’s method<br />

applied to average samples collected from replications.<br />

The field experiment was established in a split-plot design, with four replications.<br />

Each plot measured 14.4 m 2 in surface area. The results were processed<br />

323


statistically using analysis of variance for multiple trials, testing the hypotheses according<br />

to T-student test at α = 0.05.<br />

While discussing the effect of the seed dressing chemicals applied and the weather<br />

conditions on the content of total protein in pea seeds, it is necessary to state a<br />

priori that weather conditions prevailing during the three years of the experiment<br />

were variable. Two basic factors, in particular, were highly changeable – a<strong>ir</strong> temperature<br />

and rainfall (Fig. 1 and 2).<br />

Fig. 1. Monthly precipitation during vegetation. Long-term: average in the period of<br />

1961–1990<br />

1 pav. Krituliø kiekis per mënesá. Daugiameèiai – vidutiniðkai per 1961–1990 metus<br />

The f<strong>ir</strong>st year of the tests (2004) was warm, with mean monthly precipitation<br />

suitable for the growth and development of pea plants. The second year (2005) was<br />

warmer, with the mean monthly temperature higher than long-term means and with<br />

lack of rains in April and July. Regardless of those differences, both years can be<br />

considered favourable for pea cultivation.<br />

The last year of the trial (2006) was completely different. Early spring was<br />

rather cold, whereas June and July were extremely hot with very little and sporadically<br />

occurring rainfall. It should be stressed that July in 2006 was the hottest month<br />

in this part of Poland during the past 200 years – the average temperature reached<br />

more than 23.5°C.<br />

Fig. 2. Monthly temperatures during vegetation. Long-term: average in the period of<br />

1961–1990<br />

2 pav. Mënesio temperatûrø vidurkis per vegetacijà. Daugiameèiai – vidutiniðkai per<br />

1961–1990 metus<br />

324


Results. The results of the experiments show clearly what effect weather conditions<br />

produced on the yield of protein obtained from each pea cultivar tested. Let<br />

us not forget that the volume of protein yields was a product of two traits, i.e. seed<br />

yield volume and per cent concentration of protein in seeds, both under the d<strong>ir</strong>ect<br />

influence of weather conditions, rather than an intrinsic characteristic. Those two<br />

traits significantly varied between the years of the trial, showing a diverse d<strong>ir</strong>ection<br />

of modification. On the one hand, the mean seed yield volume for all the four pea<br />

cultivars was higher in the f<strong>ir</strong>st two years (4.38 and 4.32 dt/ha, respectively), decreasing<br />

considerably in the th<strong>ir</strong>d year (down to 3.11 dt/ha). On the other hand, the<br />

relative protein content in pea seeds was the highest in the last year of the trial<br />

(<strong>25</strong>.3%), which was considerably higher than in the f<strong>ir</strong>st two years (20.9 and 23.9%,<br />

respectively) (Tables 1 and 2). This means that the less favourable weather inhibited<br />

synthesis of non-protein compounds in pea seeds to a slightly larger extent than that<br />

of protein.<br />

Year<br />

Metai<br />

Table 1. Yield of pea seeds. Baùcyny, 2004–2006<br />

1 lentelë. Þ<strong>ir</strong>niø sëklø derlius. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Mean of<br />

cultivars<br />

Veislës vidurkis<br />

2004 4.48 4.61 3.49 4.95 4.38<br />

2005 4.52 4.39 3.50 4.87 4.32<br />

2006 3.35 3.21 2.83 3.03 3.11<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.34; interaction of cultivar<br />

and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,34; veisliø <strong>ir</strong> metø –<br />

neesminiai.<br />

Table 2. Content of total protein in pea seed. Baùcyny, 2004–2006<br />

2 lentelë. Suminis baltymø kiekis þ<strong>ir</strong>niø sëklose. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

Mean of<br />

cultivars<br />

Veislës vidurkis<br />

Year<br />

Metai ‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

%<br />

2004 20.5 20.5 21.3 21.3 20.9<br />

2005 22.5 22.8 <strong>25</strong>.5 24.8 23.9<br />

2006 23.7 23.5 27.5 26.5 <strong>25</strong>.3<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.09; interaction of<br />

cultivar and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,09; veisliø <strong>ir</strong><br />

metø – neesminiai.<br />

3<strong>25</strong>


The variability in the seed yields obtained in the consecutive years of the experiment<br />

was significantly higher than that of the relative protein content in seed mass,<br />

which meant that the protein yield was positively correlated with the yield of seeds,<br />

depending on the changeable weather conditions. In other words, higher seed yield<br />

well compensated for the depressed relative protein yield (Table 3).<br />

Table 3. Total protein yield in pea seed. Baùcyny, 2004–2006<br />

3 lentelë. Suminis baltymø þ<strong>ir</strong>niø sëklose derlius. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

Mean of<br />

Year<br />

cultivars<br />

Metai ‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Veislës vidurkis<br />

2004 0.918 0.945 0.743 1.054 0.915<br />

2005 1.017 1.001 0.893 1.208 1.032<br />

2006 0.794 0.754 0.778 0.803 0.787<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.23; interaction of cultivar<br />

and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,23; veisliø <strong>ir</strong> metø –<br />

neesminiai.<br />

Comparing the cultivars, it needs to be said that the highest relative decline in<br />

yields in the th<strong>ir</strong>d year of the experiment was recorded for cv. ‘Eurika’ and ‘Wenus’<br />

(Fig. 3), although the increase in the relative content of protein compensated this<br />

loss, especially in the case of cv. ‘Eurika’, whose relative protein yield in the th<strong>ir</strong>d<br />

year of the experiment was the highest among all the cultivars tested (Table 3).<br />

Fig. 3. Variation of yield of the pea seed (yield in 2004 = 100%)<br />

3 pav. Þ<strong>ir</strong>niø sëklø derliaus kintamumas (2004 m. derlius = 100%)<br />

The application of seed dressing chemicals was an experimental variable, which<br />

was independent from weather conditions. The response of pea seed yielding to the<br />

preparations used was clearly evident and statistically significant in years. Versus the<br />

control plots, where no seed dressing treatments were conducted, the protein yield<br />

obtained was much higher. Such correlation occurred <strong>ir</strong>respective of weather conditions,<br />

in all the years of the trial and for all the cultivars. The increased seed mass<br />

attributed to the application of the seed dressing chemicals was caused by the pro-<br />

326


tective action of the latter, which inhibited the development of pathogenic organisms<br />

and pests. Three preparations, which offered complex protection of the crops, were<br />

tested in the present study: Sarfun and Funaben to control plant diseases and Super<br />

Homai to control diseases and pests. In comparison with the control plots, the plots<br />

where the above preparations had been applied revealed much weaker negative effects<br />

on the growth and development of pea plants caused mainly by such diseases<br />

as cochyta blight (Ascochita pinodest) and fungal diseases evoked by Fusarium spp.<br />

Less severe damage was caused by plant pests, including pea moth (Laspeyresia<br />

nigricana Steph), pea beetle (Bruchus pisorum L.), weevils (Sitona L.) and pea<br />

aphid (Acyrthosiphon pisum Harris).<br />

As mentioned before, the volume of protein yield depended on the seed yield<br />

mass and its relative protein content. The effect of the seed dressing preparations<br />

consisted mainly in raising the seed yield, whereas the modification of the relative<br />

protein content in seeds, albeit unid<strong>ir</strong>ectional (the largest change occurred when<br />

Super Homai had been applied) was statistically non-significant.<br />

While analysing the potential capability of the cultivars to accumulate protein in<br />

seeds, it appeared to be the highest for the field cultivar ‘Eurika’, followed by two<br />

edible varieties ‘Brylant’ and ‘Wenus’. The lowest protein mass per plot area unit<br />

was determined for the field cultivar ‘Marych’, which was attributed to the lowest<br />

total yield of seeds, as the relative protein content in the seeds of this cultivar was the<br />

highest among the four pea varieties (Tables 4, 5).<br />

Table 4 Yield of pea seed in relationship to the seed dressing chemicals. Baùcyny,<br />

2004–2006<br />

4 lentelë. Þ<strong>ir</strong>niø sëklø apdorojimo cheminiais preparatais poveikis sëklø derliui.<br />

Baùcyny, 2004–2006 m.<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

No seed dressing chemicals<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Mean<br />

Vidurkis<br />

Sëklos neapdorotos 3.51 3.35 2.87 3.73 3.36<br />

Sarfun / Funaben 4.18 4.<strong>25</strong> 3.30 4.39 4.03<br />

Super Homai 4.59 4.57 3.64 4.73 4.38<br />

Mean / Vidurkis 4.09 4.06 3.27 4.28<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); seed dressing chemicals – n.s.;<br />

interaction of cultivar and seed dressing chemicals – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø,<br />

tarp sëklø apdorojimo cheminiais preparatais, tarp veisliø <strong>ir</strong> apdorojimo cheminiais<br />

preparatais sàveikos neesminiai.<br />

327


Table 5 Contents of total protein in pea seed in relationship to the seed dressing<br />

chemicals<br />

5 lentelë. Bendrøjø baltymø koncentracijos þ<strong>ir</strong>niø sëklose priklausomumas nuo sëklø<br />

apdorojimo cheminiais preparatais<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

Mean<br />

Vidurkis<br />

%<br />

No seed dressing chemicals<br />

Sëklos neapdorotos 21.6 21.9 24.4 23.8 22.9<br />

Sarfun / Funaben 22.5 22.4 24.8 24.4 23.5<br />

Super Homai 22.6 22.7 <strong>25</strong>.2 24.5 23.7<br />

Mean / Vidurkis 22.2 22.3 24.8 24.2<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); seed dressing chemicals – n.s.;<br />

interaction of cultivar and seed dressing chemicals – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø,<br />

tarp sëklø apdorojimo cheminiais preparatais, tarp veisliø <strong>ir</strong> apdorojimo cheminiais<br />

preparatais sàveikos neesminiai.<br />

Discussion. The main source of plant protein, which is a staple nutrient in<br />

foodstuffs, is found in leguminous plants, including pea, which are cultivated all<br />

over the world. At present, it is recommended to increase the share of plant protein<br />

in human diets. The content of this nutrient in leguminous plants is diverse and<br />

depends on a plant species, genetic traits of cultivars and the course of the weather<br />

conditions during the vegetative season. Such a strong response of pea to changeable<br />

weather conditions has negative consequences for farmers. It is perceived as a<br />

problem in many countries (Alvino and Leone, 1993; Martin et al., 1994; Fougereus<br />

and Dore, 1997). In Poland, Jasiñska and Kotecki (1994), Kotecki (1990), Pisulewska<br />

(1993) conf<strong>ir</strong>m that both seed yield and protein content in seeds, apart from<br />

genetic traits of crops, also depend on climatic conditions, which prevail during the<br />

growth and development of plants. The present study has clearly verified this hypothesis.<br />

Slightly different moisture and temperature conditions, which occurred in<br />

each year of the experiment, caused a significant difference in the content of protein<br />

in the seeds of four seed pea cultivars. The trial has also demonstrated a positive<br />

correlation between the yield of seeds and the protein yield, which is in accord with<br />

other researches (Úwiêcicki and Úwiêcicki, 1981). The lowest total protein content<br />

in the seeds of all the four pea cultivars was determined in 2004; it was 3% lower<br />

than in 2005 and 4.2% lower than in 2006. Jasiñska and Kotecki (1994) show that<br />

differences in the content of protein caused by climatic factors can range within<br />

4.5%. The differences recorded hereby in the content of total protein in pea seeds<br />

were caused, apart from genetic traits, by an immediate influence of weather conditions<br />

as well as an ind<strong>ir</strong>ect influence of seed dressing chemicals applied. The difference<br />

to the advantage of seed dressing preparations, in relative values, was ca 2%,<br />

but turned out to be statistically non-significant. The results reported by Kolasiñski<br />

and Grzelak (1993) and Kolasiñski (1997) show that while selecting and applying<br />

328


seed dressing chemicals it is necessary to know what response they can cause in<br />

seeds of various crops. This study did not reveal any negative impact of the chemicals<br />

applied on seed quality, vigour or emergence.<br />

Conclusions. 1. The analysis of the climatic conditions and seed dressing chemicals<br />

contained in the present study, on the content and yield of total protein in<br />

seeds of several pea cultivars enables us to draw the following conclusions:<br />

2. Changeable weather conditions significantly influenced the content and yield<br />

of total protein in seed of four pea cultivars examined. The accumulation of protein<br />

in seeds and increase in the seed mass obtained per surface area unit were favoured<br />

by higher temperature during the vegetative season, moderate rainfall and, as a result,<br />

more sunlight.<br />

3. Inhibition of fungal diseases and infestation by plant pests caused by the<br />

application of seed dressing resulted mainly in a considerable increase in the seed<br />

mass per surface area unit. This fact, along with the statistically non-significant<br />

effect of the seed dressing chemicals applied on the relative protein content, meant<br />

that a considerable increase in the mass of protein per surface area unit was obtained<br />

versus the control plots.<br />

4. Four pea cultivars tested showed statistically conf<strong>ir</strong>med variation in the capability<br />

to accumulate protein. Two field cultivars, ‘Eurika’ and ‘Marych’, showed<br />

particularly high potential for protein accumulation, although in the former cultivar it<br />

consisted mainly of its ability to accumulate relatively high quantities of protein in<br />

seed mass.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Alvino A., Leone A. Response to low soil water potential in pea genotypes (Pisum<br />

sativum L.) with different leaf morphology // Scientia Hort. 1993. Vol. 53. P. 21–34.<br />

2. Andrzejewska J., Wiatr K., Pilarczyk W. Wartoúã gospodarcza wybranych odmian<br />

grochu siewnego (Pisum sativum L.) na glebach kompleksu ýytniego bardzo dobrego //<br />

Acta Sci. Pol., Agricultura. 2002. T. 1(1). P. 59–72.<br />

3. Fougereus J. A., Dore T. Water stress during reproductive stages affects see and<br />

yield of pea (Pisum sativum L.). Crop. Sci. 1997. 37(4) s. P. 1247–1<strong>25</strong>2.<br />

4. Jasiñska Z., Kotecki A. Roúliny stràczkowe. PWN, Warszawa, 1994.<br />

5. Kotecki A. Wpùyw ukùadu warunków wilgotnoúciowych i termicznych na plonowanie<br />

grochu siewnego odmiany Kaliski // Zesz. Nauk. AR we Wrocùawiu, Rolnictwo,<br />

1990. T. LII. S. 69–82.<br />

6. Kulig B., Pisulewska E., Zióùek W., Antoniewicz A. Wpùyw sposobu zbioru na<br />

plonowanie i jakoúã biaùka nasion dwóch odmian grochu siewnego // Zesz. Probl. Pos.<br />

Nauk Rol. 1997. Z. 446. S. 147–152.<br />

7. Lampart – Szczapa E. Nasiona roúlin stràczkowych w ýywieniu czùowieka wartoúã<br />

biologiczna i technologiczna // Zesz. Probl. Pos. Nauk Roln. 1997. Z. 446. S. 61–81.<br />

8. Martyniak S. Oddziaùywanie chemicznych zapraw nasiennych na efektywnoúã<br />

szczepienia roúlin stràczkowych bakteriami symbiotycznymi / Post. w Ochr. Roúl. Poznañ,<br />

2001. T. 41.<br />

329


9. Martin I., Tenorio J. L., Ayerbe L. Yield, growth and water use of conventional<br />

leafless peas in semi-arid env<strong>ir</strong>onments // Crop Sci. 1994. Vol. 34. P. 1576–1583.<br />

10. Pahl H., Hoffmann H. Economics of grain legumes cultivation In the F.R.G. with<br />

special regard to the CAP reform. Proc. and Europ. Conf. Grain Legumes, Copenhagen,<br />

1995. P. 4–5.<br />

11. Pastuszewska B., Ochtabiñska A. Protein value of legume seeds fed to rats as the<br />

only source of protein or in combination with cereals / Proc. 2nd Europ. Grain Legumes,<br />

Copenhagen, 1995. P. 272.<br />

12. Pastuszewska B. Wartoúã pokarmowa nasion roúlin stràczkowych w ýywieniu<br />

zwierzàt // Zesz. Probl.Pos. Nauk Roln.1997. Z. 446. S. 83–94.<br />

13. Pisulewska E. Plonowanie i wartoúã odýywcza biaùka nasion grochu siewnego i<br />

peluszki w zaleýnoúci od dolistnego nawoýenia mikroelementami // Acta. Agrar. et Silv.,<br />

ser.Agr. 1993. T. XXXI. S. 99–105.<br />

14. Szukaùa J., Maciejewski S., Sobiech S. Wpùyw deszczowania i nawoýenia azotowego<br />

na plonowanie bobiku, grochu siewnego i ùubinu biaùego // Zesz. Probl. Post. Nauk<br />

Roln. 1997. Z. 446. S. 247–<strong>25</strong>2.<br />

15. Úwiæcicki W., Swiæcicki W. K. Roúliny stràczkowe êródùem biaùka paszowego.<br />

PWRiL, Warszawa, 1981.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

METEOROLOGINIØ SÀLYGØ IR SËKLØ APDOROJIMO<br />

CHEMINIAIS PREPARATAIS ÁTAKA ÞIRNIØ DERLIUI IR<br />

BALTYMØ KIEKIUI<br />

B. Szwejkowska, P. Duchovskis<br />

Santrauka<br />

2004–2006 metais atlikti lauko bandymai, siekiant nustatyti meteorologiniø sàlygø<br />

<strong>ir</strong> sëklø apdorojimo cheminiais preparatais átakà áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø derliui <strong>ir</strong><br />

baltymø kaupimuisi. Nustatyta, kad þ<strong>ir</strong>niø derlius <strong>ir</strong> baltymø kiekis jø sëklose ið esmës<br />

priklausë nuo veislës genotipo <strong>ir</strong> atsk<strong>ir</strong>ø metø meteorologiniø sàlygø, ypaè nuo<br />

aukðtesnës temperatûros bei optimalaus apðvietimo. Sëklø apdorojimas áva<strong>ir</strong>iais cheminiais<br />

preparatais ið esmës nedarë átakos þ<strong>ir</strong>niø derliui bei baltymø kiekiui sëklose.<br />

Reikðminiai þodþiai: suminis baltymø kiekis, sëklø apdorojimas cheminiais preparatais,<br />

veislë, þ<strong>ir</strong>niai.<br />

330


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

ÞEMOS TEMPERATÛROS POVEIKIS SUPEROKSIDO<br />

DISMUTAZËS AKTYVUMUI ATSPARIUOSE ÐALNOMS<br />

BULVIØ HIBRIDUOSE<br />

Regina VYÐNIAUSKIENË, Zenonas JANÈYS, Rapolas SPALINSKAS<br />

Botanikos institutas, Þaliøjø eþerø g. 49, LT-08406 Vilnius.<br />

El. paðtas regina.v@botanika.lt<br />

Buvo iðt<strong>ir</strong>ti atspariø ðalnoms Solanum tuberosum L. <strong>ir</strong> S. commersonii Dun. hibridø,<br />

augintø in vitro kultûroje, superoksido dismutazës (SOD) <strong>ir</strong> fotosintetiniø pigmentø<br />

pokyèiai po adaptacijos þema (+6°C) temperatûra. Nustatyti tëviniø formø –<br />

S. commersonii <strong>ir</strong> S. tuberosum – tarprûðiniai SOD izofermentinio spektro sk<strong>ir</strong>tumai.<br />

Hibridai paveldëjo ið recipiento S. tuberosum veislës ‘Matilda’ SOD spektro tipà su 6<br />

izoformomis <strong>ir</strong> ið donoro S. commersonii adaptacijos metu indukuojamà SOD-1 izoformà.<br />

Tarprûðiniø hibridø SOD aktyvumas yra didesnis nei jautrios ðalnoms recipientinës<br />

rûðies S. tuberosum veislës ‘Matilda’, taèiau maþesnis nei S. commersonii<br />

Dun. Po 14 <strong>ir</strong> 21 dienos adaptacijos þema temperatûra visuose augaluose sumaþëjo<br />

fotosintezës pigmentø kiekis, taèiau padidëjo SOD aktyvumas <strong>ir</strong> tik hibride H323<br />

SOD aktyvumas ðiek tiek maþëjo. Galbût hibrido H323 izofermentinio SOD aktyvumo<br />

sumaþëjimas yra ne visai susijæs su ið S. commersonii paveldëtu atsparumu þemai<br />

temperatûrai. Aukðtas H188 hibrido SOD aktyvumo lygis leidþia tikëtis, kad SOD<br />

izofermentai dalyvauja bulviø atsparumo ðalèiui formavimosi procese.<br />

Reikðminiai þodþiai: SOD – superoksido dismutazë, S. commersonii Dun.,<br />

S. tuberosum veislë ‘Matilda’, tarprûðiniai hibridai.<br />

Ávadas. Þemos temperatûros sukeliami augalø paþeidimai daþniausiai pas<strong>ir</strong>eiðkia<br />

laikinais metabolizmo sutrikimais, o minusinës temperatûros sukelia <strong>ir</strong> negráþtamus<br />

pakitimus. Taèiau atsparûs ðalèiui augalai gali atsigauti po p<strong>ir</strong>miniø paþeidimø. Nustatyta,<br />

kad vienø ðalèio indukuojamø Cor (cold regulated) genø grupës koduojami baltymai<br />

apsaugo làstelës membranines struktûras nuo dehidratacijos <strong>ir</strong> t<strong>ir</strong>piø toksinø,<br />

kitos genø grupës koduojami baltymai reaguoja netiesiogiai á ðalèio stresà <strong>ir</strong> tarpininkauja<br />

biocheminiuose <strong>ir</strong> fiziologiniuose procesuose adaptacijos ðalèiui metu (Steponkus,<br />

1998; Shinozaki, Yamaguchi-Shinozaki, 1997). Atsparumas þemai temperatûrai<br />

yra genetiðkai kontroliuojamas procesas, sietinas <strong>ir</strong> su metabolizmo persitvarkymu,<br />

<strong>ir</strong> genø raiðka augalo làstelëse.<br />

Be atsako á ðaltá, augalø genø apsauginëse reakcijose svarbûs <strong>ir</strong> antioksidacinio<br />

streso fermentai. Oksidaciniai paþeidimai, ats<strong>ir</strong>andantys dël neigiamø temperatûrø,<br />

331


daþniausiai susijæs su superoksido radikalø pertekliumi. Superoksido dismutazës (SOD)<br />

izofermentas (EC 1.15.1.1) svarbiausias augalø antioksidacinëse reakcijose, nes paðalina<br />

superoksido radikalus (O 2-<br />

) dismutazës reakcijos metu. Ðiai reakcijai vykstant<br />

susidaro vandenilio peroksidas <strong>ir</strong> deguonis. Vandenilio peroksido perteklius detoksikuojamas<br />

kitø antioksidaciniø fermentø – katalazës <strong>ir</strong> peroksidazës. Antioksidaciniø<br />

izofermentø aktyvumo padidëjimas daþniausiai siejamas su antioksidaciniu augalo<br />

atsaku á sukeltà stresà (Blokhina <strong>ir</strong> kt, 2003). Augalo atsako intensyvumà á oksidaciná<br />

stresà galima nustatyti pagal padidëjusá antioksidaciniø fermentø aktyvumà adaptacijos<br />

metu. Yra duomenø, kad pakankamai didelis antioksidacinis fermentinis aktyvumas<br />

gali apsaugoti augalà nuo oksidacijos paþaidø, tuo padidindamas augalo tolerantiðkumà<br />

stresiniams veiksniams (Foyer, 1994).<br />

Darbo tikslas – iðt<strong>ir</strong>ti tarprûðiniø atspariø ðalnoms bulviø hibridø adaptaciná<br />

þemos temperatûros poveiká antioksidaciniø fermentø aktyvumui. Pagrindiniai uþdaviniai<br />

– nustatyti atspariø ðalnoms somatiniø bulviø hibridø SOD elektroforezinius<br />

spektrus, SOD aktyvumà, palyginti su tëvinëmis formomis <strong>ir</strong> ávertinti galimà SOD<br />

izofermentø dalyvavimà adaptacijos þemai temperatûrai procese.<br />

Tyrimo objektas <strong>ir</strong> metodai. Somatiniai bulviø hibridai yra paveldëjæ ið donoro –<br />

laukinës rûðies Solanum commersonii Dun. genominës DNR fragmentus <strong>ir</strong> ágavæ<br />

atsparumà ðalèiui (Proscevièius, 1987). Atsparios ðalèiui Solanum commersonii Dun.<br />

rûðies <strong>ir</strong> kultûrinës veislës S. tuberosum veislës ‘Matilda’ somatiniai bulviø hibridai<br />

(H188, H323, H269) auginami in vitro sàlygomis. Adaptacijos bandymai atliekami su<br />

trijø savaièiø amþiaus kultûromis: kontroliniai augalai (K) auginami +22°C temperatûroje,<br />

adaptacija (Ad) vyksta +6°C temperatûroje, esant 16/8 val. fotoperiodui.<br />

SOD izofermentiniams tyrimams lapø auginiai imami po 7, 14 <strong>ir</strong> 21 dienø adaptacijos.<br />

SOD iðsk<strong>ir</strong>iamas lapus homogenizuojant Na-K fosfatiniu buferiu, pH 7,8. SOD<br />

elektroforetiðkai frakcionuojamas 4–10% PAAG pagal V. K. Laemmlá (1970). Bendras<br />

SOD aktyvumas buvo nustatomas spektrofotometru. Metodas paremtas SOD<br />

savybe inhibuoti NBT fotocheminæ reakcijà (Beyer, Fridovich 1987).<br />

Baltymo koncentracija apskaièiuojama pagal BSA kalibracinæ kreivæ<br />

(Bradford, 1976). Fotosintetiniai pigmentai nustatomi spektofotometru 100% acetone.<br />

Statistinë analizë atlikta naudojant MS („Microsoft Corporation“) „Exel 2003“<br />

statistinës analizës programiniø priedø paketà.<br />

Rezultatai. T<strong>ir</strong>iant natyviø baltymø elektroforegramas, buvo nustatyti bulviø<br />

superoksido dismutazës (SOD) izofermentiniai profiliai: atsparaus ðalèiui S. commersonii<br />

Dun., jautrios ðalèiui Solanum tuberosum L. veislës ‘Matilda’ <strong>ir</strong> atspariø ðalnoms<br />

H323, H188 hibridø SOD profiliai. Laukinës rûðies S. commersonii SOD spektras<br />

susideda ið keturiø izoformø, kurios buvo paþymëtos SOD-1, SOD-2, SOD-3,<br />

SOD-4 pagal elektroforeziná paslankumà (R f<br />

). Numeracija pradedama anodo link nuo<br />

lëèiausiai judanèios izoformos, kuriø R f<br />

atitinkamai yra 0,30; 0,38; 0,42; 0,48.<br />

Kultûrinës S. tuberosum veislës ‘Matilda’ spektrà sudaro ðeðios SOD izoformos,<br />

paþymëtos SOD-2, SOD-3a, SOD-4, SOD-5, SOD-6, SOD-7, kuriø R f<br />

yra<br />

atitinkamai 0,38; 0,45; 0,48; 0,51; 0,56 <strong>ir</strong> 0,67. Lyginant tëvines formas tarpusavyje,<br />

buvo nustatyta, kad dvi juostos – SOD-2 <strong>ir</strong> SOD-4 – aptinkamos <strong>ir</strong> laukinëje S. commersonii<br />

rûðyje, <strong>ir</strong> kultûrinës rûðies S. tuberosum veislëje ‘Matilda’. Taèiau S. commersonii<br />

spektrui bûdinga SOD-1 izoforma neaptinkama veislës ‘Matilda’ kontrolëje.<br />

332


Pastarojoje aptinkamos, be jau minëtø, dar 3 izoformos: SOD-5, SOD-6 <strong>ir</strong> SOD-7,<br />

kuriø neturi laukinë rûðis S. commersonii. Taigi, elektroforetiðkai buvo nustatyta, kad<br />

ðalnoms atsparûs hibridai H188 <strong>ir</strong> H323 paveldëjo kultûrinës rûðies SOD izoformø<br />

profilá, kuris susideda ið 6 izoformø. Schematiðkai pavaizduota 1 pav., A.<br />

1 pav. Bulviø Solanum commersonii <strong>ir</strong> S. tuberosum <strong>ir</strong> atspariø ðalnoms hibridø SOD<br />

izoformø profiliø schema. A – kontroliniai augalai, B – po 14 dienø adaptacijos (+6°C)<br />

Þymëjimai: S. com. – (S. commersonii), S. tuberosum veislë ‘Matilda’, hibridai: H188 <strong>ir</strong><br />

H323. Panaudotas 10% PAAG.<br />

Fig. 1. SOD isozyme profiles from hybrids of potato Solanum commersonii and S. tuberosum.<br />

SOD izoforms elektoforetic profiles: A – control plants, B – after 14 day adaptation (+6°C)<br />

Designations: S. commersonii- S. com., S. tuberosum cv. ‘Matilda’, hybrids: H188 and H323.<br />

Po 14 dienø adaptacijos indukuojama SOD-1 izoforma hibriduose H188, H323<br />

<strong>ir</strong> tëvinëse formose, taèiau ðios izoformos SOD aktyvumas intensyvesnis S. commersonii<br />

po adaptacijos.<br />

2 pav. SOD izofermentinio aktyvumo pokyèiai po 14 dienø adapacijos bulviø<br />

Solanum tuberosum <strong>ir</strong> S. commersonii hibriduose: takeliai: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum v. ‘Matilda’; 5, 6 – H188; 7, 8 – H323; kontrolës – 1, 3, 5, 7;<br />

adaptacija (+ 6°C) – 2, 4, 6, 8. Naudotas 10% PAAG. Vaizdas revertuotas.<br />

Fig. 2. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids of potato after 14 days after adaptation: Lanes: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum cv. ‘Matilda’; 5, 6 – H188; 7, 8 – H323. Control – 1, 3, 5, 7;<br />

adaptation (+ 6°C)- 2, 4, 6, 8. 10% PAG. Image reversed.<br />

333


Taèiau po 21 dienos adaptacijos SOD-1 izoforma ats<strong>ir</strong>anda <strong>ir</strong> visuose kontroliniuose<br />

augaluose. (3 pav.). Po 21 dienos adaptacijos S. commersonii padidëja SOD-5<br />

izoformos aktyvumas. Tikriausiai izoformos SOD-1 sintezë susijusi ne tik su adaptacijos<br />

procesais, bet <strong>ir</strong> su augalo senëjimu.<br />

3 pav. SOD izofermentinio aktyvumo pokyèiai po 21 dienos adaptacijos Solanum<br />

tuberosum <strong>ir</strong> S. commersonii hibriduose: takeliai: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum v. ‘Matilda’; 5, 6 – H323; 7, 8 – H188; 9, 10 – H269;<br />

11, 12 – H545; 13, 14 – H515; kontrolës – 1, 3, 5, 7, 9, 11, 13;<br />

adaptacija (+ 6°C) – 2, 4, 6, 8, 10, 12. Vaizdas revertuotas.<br />

Fig. 3. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids after 21 days after adaptation: Lanes: 1, 2 – S. commersonii; 3, 4 – S. tuberosum cv.<br />

‘Matilda’; 5, 6 – H188; 7, 8 – H323;. Control – 1, 3, 5, 7 9, 11, 13, 15; adaptation (+ 6°C) –<br />

2, 4, 6, 8, 10, 12, 14. Image reversed.<br />

T<strong>ir</strong>dami bendràjá SOD aktyvumà, nustatëme, kad po 14 <strong>ir</strong> 21 dienø adaptacijos<br />

jis padidëja, palyginti su kontrole. Pateiktame 4 pav. matyti, kad SOD aktyvumas<br />

S.commersonii 7 kartus v<strong>ir</strong>ðija kultûrinës S. tuberosum veislës ‘Matilda’ SOD<br />

lygá, o po adaptacijos padidëja net iki 8,5 karto. SOD aktyvumas S. tuberosum<br />

veislës ‘Matilda’ po adaptacijos pakyla beveik dvigubai, bet yra þymiai maþesnis,<br />

palyginti su laukinës S.commersonii SOD aktyvumu. Hibrido H188 po adaptacijos<br />

SOD aktyvumas padidëja, taèiau jo kontrolinis SOD lygis yra beveik 3 kartus didesnis<br />

negu kultûrinës S. tuberosum veislës ‘Matilda’, todël absoliutus atsparaus<br />

hibrido SOD aktyvumo padidëjimas yra triskart didesnis. Kiek netikëtas hibrido<br />

H323 bendro SOD aktyvumo sumaþëjimas po adaptacijos, bet vis tiek hibrido H323<br />

bendras SOD aktyvumo lygis lieka 1,5 karto didesnis negu jautrios S. tuberosum<br />

veislës ‘Matilda’ po adaptacijos <strong>ir</strong> prilygsta atsparaus ðalnoms hibrido H188 kontroliniam<br />

lygiui.<br />

Po 14 dienø poveikio þema temperatûra baltymø kiekis sumaþëjo visuose t<strong>ir</strong>tuose<br />

augaluose. Þymûs yra baltymø kiekio svyravimai tarp rûðiø. Ypaè jautriai reagavo<br />

á temperatûros sumaþëjimà S. commersonii augalai – baltymø kiekis sumaþëjo 2,5<br />

karto, o hibridø adaptacijos poveikis nebuvo toks ryðkus.<br />

334


4 pav. SOD aktyvumo <strong>ir</strong> baltymø kiekio pokyèiai po 14 dienø adapacijos Solanum<br />

tuberosum <strong>ir</strong> S. commersonii <strong>ir</strong> atspariuose ðalnoms hibriduose<br />

Þymëjimai: kontrolës: S. com. K – S. commersonii; S. tub. – S. tuberosum ‘Matilda’ K;<br />

hibridai – H323 K, H188 K; adaptacija: S. com. Ad – S. commersonii, S.tub. ‘Matilda’<br />

Ad S tuberosum; hibridai: H323 Ad, H188 Ad; SOD aktyvumas, nM min - ¹ g - ¹<br />

þalios biomasës. Baltymø kiekis, mg g -1 þalios biomasës.<br />

Fig. 4. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids after 14 days after adaptation. Designation: control - S. commersonii- S. com. K,<br />

S. tuberosum – S. tub. ‘Matilda’ K, hybrids - H323 K, H188 K; adaptacion - S. commersonii –<br />

S. com. Ad, S. tuberosum – S. tub. ‘Matilda’ Ad; hybrids – H323 Ad, H188 Ad. SOD activity,<br />

nM min - ¹ g - ¹ f.wt. Protein, mg g -1 f.w.; f.w. – fresh weight.<br />

Taigi, bendras SOD aktyvumo tyrimas rodo, kad laukinës S. commersonii <strong>ir</strong> kultûrinës<br />

S. tuberosum veislës ‘Matilda’ <strong>ir</strong> jø atsparaus hibrido H188 fermentinës sistemos<br />

aktyvumo padidëjimas, indukuojamas þema teigiama temperatûra, yra proporcingas, o<br />

sk<strong>ir</strong>tumai kiekybiniai, taèiau H323 hibrido SOD aktyvumas adaptacijos metu maþëja.<br />

T<strong>ir</strong>iant fotosintezës pigmentø pokyèius adaptacijos metu, nustatyta, kad jø kiekis<br />

visø variantø bulvëse maþëja, iðskyrus hibrido H 323 chlorofilà b (1 lentelë).<br />

1 lentelë. Bulviø Solanum tuberosum <strong>ir</strong> S. commersonii atspariø ðalnoms hibridø<br />

adaptacijos þema temperatûra poveikis fotosintetiniø pigmentø kiekiui augalø lapuose<br />

Table 1. Low temperature influence on pigments concentration in the leaves of potato<br />

S. tuberosum and S. commersonii hybrids<br />

Pavadinimas<br />

Nomination<br />

Pigmentai, mg g - ¹ þ. m<br />

Pigments, mg g - ¹f. w<br />

karotinai<br />

ChA<br />

ChB<br />

carotines<br />

S. com 0,505 ± 0,024 0,176 ± 0,014 0,226 ± 0,013<br />

S. com ad 0,<strong>25</strong>3 ± 0,007 0,089 ± 0,008 0,120 ± 0,001<br />

‘Matilda’ 0,341 ± 0,119 0,1<strong>25</strong> ± 0,042 0,152 ± 0,056<br />

‘Matilda’ ad 0,244 ± 0,005 0,108 ± 0,010 0,116 ± 0,002<br />

H 323 0,284 ± 0,022 0,086 ± 0,013 0,121 ± 0,009<br />

H 323 ad 0,265 ± 0,027 0,112 ± 0,011 0,110 ± 0,015<br />

H 188 0,577 ± 0,053 0,176 ± 0,0<strong>25</strong> 0,239 ± 0,021<br />

H 188 ad 0,388 ± 0,018 0,146 ± 0,014 0,174 ± 0,002<br />

Paaiðkinimai: ChA – chlorofilas a, ChB – chlorofilas b / Designation. Chlorophyll – ChA,<br />

chlorophyll b – Ch<br />

335


Pateikti duomenys rodo, kad S. commersonii jautriausiai reaguoja á þemas teigiamas<br />

temperatûras visais t<strong>ir</strong>tais rodikliais <strong>ir</strong> ChA, ChB beveik siekia 50 proc. Tas<br />

pats pasakytina apie atsparø hibridà H188. Taèiau H323 ChA <strong>ir</strong> karotino kiekio sumaþëjimas<br />

neþymus (nesiekë 10 proc.), nors ChB kiekis padidëjo net 30 proc. Taèiau<br />

H188 ChA, ChB <strong>ir</strong> karotinø kiekis prilygsta laukinës rûðies S. comersonii pigmentø<br />

kiekiui <strong>ir</strong> net didesnis uþ já.<br />

Aptarimas. T<strong>ir</strong>dami bulviø Solanum commersonii <strong>ir</strong> S. tuberosum SOD izoformø<br />

spektrus, aptikome, kad jie yra sk<strong>ir</strong>tingø tipø, o atsparûs ðalnoms hibridai visiðkai<br />

paveldëjo kultûrinës veislës SOD izofermentiná spektro tipà.<br />

Adaptacijos (+6°) metu S. commersonii <strong>ir</strong> atspariuose ðalnoms hibriduose H323<br />

<strong>ir</strong> H188 indukuojamos SOD-1 <strong>ir</strong> SOD-5 izoformos. Pastaroji konstitutyvi – randama<br />

<strong>ir</strong> jautrioje S. tuberosum veislëje ‘Matilda’, <strong>ir</strong> hibridø H323, H188 kontrolëje bei po<br />

adaptacijos. Matyt, SOD-1 izoforma yra paveldëta ið donoro <strong>ir</strong> yra specifinë laukinei<br />

rûðiai. Ðalèio adaptacijos metu indukuojama <strong>ir</strong> SOD-5 izoforma, kurios aktyvumas<br />

labai ryðkus veikiant ðalèiu S. commersonii. Ðià izoformà turi <strong>ir</strong> jautri ðalnoms S. tuberosum<br />

veislë ‘Matilda’, taip pat atsparûs ðalnoms hibridai <strong>ir</strong> kontrolëje, <strong>ir</strong> adaptacijos<br />

þema teigiama temperatûra metu.<br />

Adaptacija suaktyvina augalo apsauginæ sistemà, nes padidëja atsk<strong>ir</strong>ø SOD izoformø<br />

aktyvumas <strong>ir</strong> tëvinëse formose, <strong>ir</strong> hibride H188. Taip pat adaptacija sukelia<br />

fotosintetiniø pigmentø – chlorofilø a, b <strong>ir</strong> karotinoidø kiekio sumaþëjimà. Kitø autoriø<br />

duomenimis, þemos teigiamos temperatros kukurûzuose <strong>ir</strong> ðpinatuose sukelia fotosintezës<br />

pigmentø kiekio sumaþëjimà, kuris tiesiogiai koreliuoja su antioksidaciniø<br />

fermentø aktyvumo padidëjimu. Tai pagrindþia prielaidà, kad pakankamai didelis antioksidacinis<br />

aktyvumas gali apsaugoti augalà nuo oksidacijos paþaidø, esant stresams,<br />

todël <strong>ir</strong> padidëja tolerantiðkumas tam veiksniui.<br />

Atspariame ðalèiui hibride H323 (kitaip negu H188) antioksidacinis SOD aktyvumas<br />

maþëja, nors iðlieka aukðtesnis negu jautrios ðalnoms kultûrinës veislës ‘Matilda’.<br />

Þema temperatûra slopina fotosintezës procesà, tuo maþindama <strong>ir</strong> chlorofilo a,<br />

<strong>ir</strong> karotinoidø kieká. Taèiau staigmenà pateikia hibridas H323 – chlorofilo b sintezë<br />

þymiai padidëja. Taigi, apibendrinant SOD aktyvumo <strong>ir</strong> fotosintetiniø pigmentø tyrimø<br />

duomenis adaptacijos metu, galima teigti, kad chlorofilo b sintezë atv<strong>ir</strong>kðèiai susijusi<br />

su SOD sinteze atspariame H323 hibride. Taèiau, kaip matyti ið ankstesniø<br />

tyrimø, abiejø ðiø hibridø atsparumo ðalèiui lygis aukðtas <strong>ir</strong> jie pakelia po adaptacijos<br />

net iki -5°C ðalnas (Proscevièius <strong>ir</strong> kt., 1998). Galbût hibrido H323 antioksidacinis<br />

SOD aktyvumas yra nevisiðkai susijæs su adaptacija. Manytume, kad tai nulemta<br />

hibrido H323 sk<strong>ir</strong>tingos atsparumo ðalèiui reguliacijos. Aukðtas abiejø H188 <strong>ir</strong> H323<br />

hibridø SOD aktyvumo lygis leidþia tikëtis, kad SOD izofermentai dalyvauja bulviø<br />

atsparumo ðalèiui formavimosi procese.<br />

Iðvados. SOD elektroforeziniais tyrimais nustatyti S. commersonii <strong>ir</strong> S. tuberosum<br />

tarprûðiniai SOD izofermentinio profilio sk<strong>ir</strong>tumai. Atsparûs ðalnoms hibridai<br />

paveldëjo ið recipiento S. tuberosum veislës ‘Matilda’ SOD spektro tipà, o ið<br />

donoro – indukuojamà SOD-1 izoformà, priklausanèià indukuojamam atsparumui.<br />

Aukðtas SOD aktyvumo lygis kontroliniuose augaluose <strong>ir</strong> hibride H188 po adaptacijos<br />

leidþia teigti, kad SOD izofermentai dalyvauja bulviø atsparumo formavimosi<br />

ðalèiui procese.<br />

336


Padëka. Ðis darbas buvo remiamas pagal Lietuvos valstybinio mokslo <strong>ir</strong> studijø<br />

fondo ABIOTECHA programà.<br />

Gauta 2006-11-14<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Beauchamp C. O, Fridovich I. Superoxide dismutase: improved assays and an<br />

assay applicable to acrylamide gels // Anal. Biochem. 1971. Vol. 44. P. 276–287.<br />

2. Blokhina O., V<strong>ir</strong>olainen E., Fagerstedt K. V. Antioksidants, Oxidative damage and<br />

oxygen deprivation stress: a review // Annals of Botany. 2003. Vol. 91. P. 179–194.<br />

3. Bradford M. N. A rapid and sensitive method for the quantification of microgram<br />

quantities of protein utilizing the principle of protein–dye binding // Analytical Biochemistry.<br />

1976. Vol. 72. P. 248–<strong>25</strong>7.<br />

4. Foyer C. H., Descourviêres P., Kunert K. J. Protection against oxygen radicals: an<br />

important defence mechanism studied in transgenic plants // Plant Cell Env<strong>ir</strong>on. 1994.<br />

Vol. 17. P. 507–523.<br />

5. Laemmli V. K. Cleavage of structural proteins during the assembly of the head of<br />

bacteriophage T4 // Nature. 1970. Vol. 227. P. 680–685.<br />

6. Levitt J. Responses of plants to env<strong>ir</strong>onmental stress. Chilling, freezing, and high<br />

temperature stresses // Ed 2. Academic Press, New York, 1980. P. 497.<br />

7. Perl A., Perl–Treves R., Galili S., Aviv D., Shalgi E., Malkin S. & Galun E. Enhanced<br />

oxidative–stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases<br />

// The Appl. Genet. 1993. Vol. 85. P. 568–576.<br />

8. Proscevièius J., Staðevski Z., Tiunaitienë N., Ganusauskienë R. Interspecific somatic<br />

hybridization between potato Solanum tuberosum L. and S. commersonii Dun.<br />

Biologija. 1998. Vol. 1. P. 68–71.<br />

9. Shinozaki K., Yamaguchi–Shinozaki K. Gene expression and signal transduction in<br />

waterstress response. Plant Physiol. 1997. Vol. 115. P. 327–334.<br />

10. Steponkus P. L., Uemura M., Joseph R. A., Gilmour S. J., Thomoshow M. F. Mode<br />

of action the COR15a gene of the freezing tolerance of Arabidopsis thaliana. // PNAS.<br />

1998. Vol. 95. P. 14570–14575.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

IMPACT OF LOW TEMPERATURE ON SUPEROXIDE<br />

DISMUTASE (SOD) ACTIVITY OF FROST RESISTANT<br />

HYBRIDS OF POTATOES<br />

R. Vyðniauskienë, Z. Janèys, R. Spalinskas<br />

Summary<br />

The isoenzymes changes of superoxide dismutase (SOD) and photosynthetic<br />

pigments in frost resistant somatic hybrids of Solanum tuberosum L. and S. com-<br />

337


mersonii Dun. in vitro culture after low (+6°C) temperature adaptation were investigated.<br />

There have discovered interspecific differences of SOD isoenzyme profiles<br />

in paternal forms – S. commersonii, S. tuberosum. The hybrids inherited the SOD<br />

profiles with 6 isoforms from the recipient S. tuberosum cv. ‘Matilda’, while from<br />

donor, a wild species S. commersonii, SOD-1 isoenzymes were inherited. However,<br />

the SOD activity studies showed that SOD activity of the interspecific hybrids was<br />

higher than of S. tuberosum cv. ‘Matilda’, but lower than of S. commersonii Dun.<br />

species. After 14 and 21 days of adaptation in all plants the reduction of photosynthetic<br />

pigments and increase in the SOD activity were observed, but in the hybrid<br />

H323 SOD activity was slightly decreasing. Probably, the reduction of isoenzymatic<br />

SOD activity in the hybrid H323 is not completely related with the adaptation to low<br />

temperature inherited from S. commersonii. High level of SOD activity in the hybrid<br />

H188 allow the statement that, perhaps, SOD isoenzymes participated in the process<br />

of plant adaptation to low temperature.<br />

Key words: SOD – superoxide dismutase, S. commersonii Dun., S. tuberosum<br />

c. ‚Matilda’, interspecific hybrids.<br />

338


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

PRANEÐIMAS SPAUDAI<br />

2006 10 16<br />

VILNIUS<br />

ES LËÐOS INVESTUOJAMOS Á ÞEMËS IR MIÐKØ ÛKIO<br />

STUDENTUS, MOKSLININKUS BEI TYRËJUS<br />

Þemës <strong>ir</strong> miðkø ûkio studentø, mokslininkø bei tyrëjø augalø genø inþinerijos <strong>ir</strong><br />

biotechnologijos srities kvalifikacija keliama investuojant Europos Sàjungos sk<strong>ir</strong>iamos<br />

paramos lëðas. Taip didinamas þemës <strong>ir</strong> miðkø ûkio specialistø konkurencingumas<br />

Europos Sàjungoje bei gebëjimas prisitaikyti d<strong>ir</strong>bti þiniø ekonomikos sàlygomis,<br />

stabdoma potencialiø mokslininkø emigracija <strong>ir</strong> protø nutekëjimas.<br />

Biotechnologijos mokslo þinovø teigimu, ðiuolaikiniams biotechnologiniams augalø<br />

tyrimams vykdyti reikia daug þiniø, kurios savo prigimtimi bûtø keliø biotechnologijos<br />

mokslo ðakø sintezë. Todël savo pajëgas suvienijæ 4 mokslo tyrimo ástaigos –<br />

Biotechnologijos institutas, Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, Lietuvos<br />

miðkø institutas bei Lietuvos þemd<strong>ir</strong>bystës institutas – vykdo iki 2-jø metø trunkanèius<br />

Europos Sàjungos paramos lëðomis finansuojamus projektus, sk<strong>ir</strong>tus þemës<br />

<strong>ir</strong> miðkø ûkio specialistø kompetencijai didinti biotechnologijos srityje. Tobulinant<br />

aukðèiausios pakopos studentø rengimà þemës <strong>ir</strong> miðkø ûkyje prisideda <strong>ir</strong> Lietuvos<br />

þemës ûkio universitetas.<br />

Jau baigta surengti didþioji dalis augalø genø inþinerijos <strong>ir</strong> biotechnologijos teoriniø<br />

bei praktiniø mokymo kursø, vykdant projektus „Þmoniø iðtekliø kokybës gerinimas<br />

þemës <strong>ir</strong> miðkø ûkio biotechnologiniø tyrimø srityje“ bei „Aukðèiausios studijø<br />

pakopos – magistrantø <strong>ir</strong> doktorantø – rengimas þemës <strong>ir</strong> miðkø ûkio augalø biotechnologijø<br />

srityje“, kuriø kiekvienam ágyvendinti numatyta sk<strong>ir</strong>ti po 1,9 mln. Lt ið Europos<br />

socialinio fondo. Numatyta, kad ðiuos kursus iðklausys po 20 magistrantø <strong>ir</strong><br />

doktorantø bei 40 mokslininkø <strong>ir</strong> kitø tyrëjø, tarp kuriø bûtø tiek pat vyrø <strong>ir</strong> moterø.<br />

Mokymø rengimas sudarë puikias galimybes specialistams artimiau bendrauti, keistis<br />

sukaupta pat<strong>ir</strong>timi <strong>ir</strong> þiniomis, papildyti þinias, susipaþinti su naujausiais tyrimø metodais<br />

bei literatûra. Be to, laukiami rezultatai yra moksliniø tyrimø skaièiaus padidëjimas,<br />

iðvestos naujos augalø veislës.<br />

Projektus ágyvendinant praktiðkai, iðryðkëjo didþiulis aukðtesniosios studijø pakopos<br />

studentø bei mokslininkø <strong>ir</strong> kitø tyrëjø susidomëjimas rengiamais augalø biotechnologijos<br />

mokymais. Iðleistø mokomøjø leidinukø paklausa þymiai v<strong>ir</strong>ðijo ið anksto<br />

planuotà, todël dabar mëginama padidinti jø t<strong>ir</strong>aþà. Rengiamus mokymus aktualiais<br />

339


klausimais lankë ne tik projektus ágyvendinanèiø institucijø atstovai, bet <strong>ir</strong> klausytojai<br />

ið kitø institucijø: Vytauto Didþiojo, Kauno technologijos, Kauno medicinos, Vilniaus<br />

universitetø, Kauno miðkø <strong>ir</strong> aplinkos inþinerijos kolegijos (KMAIK), Miðko genetiniø<br />

iðtekliø, sëklø <strong>ir</strong> sodmenø tarnybos, Augalø genø banko, VÁ „Dubravos eksperimentinë<br />

mokomoji miðkø urëdija“.<br />

Lietuvoje, ágyvendinant 2004-2006 m. BPD 2.5 priemonæ „Þmoniðkøjø iðtekliø<br />

kokybës gerinimas moksliniø tyrimø <strong>ir</strong> inovacijø srityje“, 2005–2007 metø laikotarpiu<br />

vykdomi vienas kità papildantys Europos socialinio fondo finansuojami projektai:<br />

„Þmoniø iðtekliø kokybës gerinimas þemës <strong>ir</strong> miðkø ûkio biotechnologiniø tyrimø<br />

srityje“ <strong>ir</strong> „Aukðèiausios studijø pakopos – magistrantø <strong>ir</strong> doktorantø – rengimas<br />

þemës <strong>ir</strong> miðkø ûkio augalø biotechnologijø srityje“.<br />

Daugiau informacijos: R. Abraitis, projekto vadovas, tel. (8~5) 269 1883,<br />

mob. tel. (8~650) 22895, el.p. Abraitis@ibt.lt;<br />

http://agrobiotech-vs06.ibt.lt, http://agrobiotech-vs05.ibt.lt.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

340


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

IÐKILUS MOKSLININKAS SODININKAS<br />

ALGIMANTAS KVIKLYS<br />

KRONIKA<br />

2006 m. lapkrièio 23 d. sukanka 70 metø kaip<br />

gimë iðkilus sodininkas <strong>ir</strong> þymus mokslininkas Algimantas<br />

Kviklys, kuris visas savo þinias <strong>ir</strong> jëgas atidavë<br />

Lietuvos sodininkystës mokslo <strong>ir</strong> verslo plëtrai.<br />

Algimantas Kviklys gimë 1936 m. lapkrièio 23 d.<br />

Rokiðkyje, mokytojø ðeimoje. Vëliau su tëvais gyveno<br />

Kaune. 1941 m. ðeima buvo iðtremta á Altajaus<br />

kraðtà, po karo nelegaliai gráþo á Lietuvà. Algimantas<br />

Kviklys 1951–1955 m. mokësi Vilniaus þemës ûkio<br />

technikume <strong>ir</strong> baigë já, o po to vienerius metus studijavo<br />

Lietuvos þemës ûkio akademijoje. Taèiau jausdamas<br />

didelá potrauká sodininkystei, iðvaþiavo á Mièiûrinskà<br />

<strong>ir</strong> ástojo á visasàjunginá Mièiûrinsko sodininkystës<br />

institutà. Baigæs studijas, gráþo á Lietuvà <strong>ir</strong><br />

pradëjo d<strong>ir</strong>bti Vilniaus vaismedþiø veisliø tyrimo<br />

punkto vedëju, kartu dëstë Vilniaus pedagoginiame Algimantas Kviklys<br />

institute.<br />

1963 m. Algimantas Kviklys buvo pakviestas d<strong>ir</strong>bti á Vytënø sodininkystës <strong>ir</strong> darþininkystës<br />

bandymø stotá. Pradþioje bandymø stotyje d<strong>ir</strong>bo jaunesniuoju, vëliau – vyresniuoju<br />

moksliniu bendradarbiu. 1971 m. Algimantas Kviklys visasàjunginiame Mièiûrinsko<br />

sodininkystës institute apgynë þemës ûkio mokslø kandidato disertacijà<br />

tema „Vegetatyviniai poskiepiai <strong>ir</strong> jø dauginimas Lietuvos TSR“. Kaip gabus <strong>ir</strong> energingas<br />

darbuotojas 1972 m. buvo pask<strong>ir</strong>tas vadovauti Sodø agrotechnikos skyriui,<br />

kuriam sëkmingai vadovavo dvideðimt metø. Jo vadovavimo dëka Sodininkystës technologijø<br />

skyrius tapo vienu aktyviausiø skyriø tuometinëje bandymø stotyje, o vëliau –<br />

<strong>ir</strong> institute. Skyrius iðsiplëtë iki 12 mokslo darbuotojø. Skyriaus mokslininkai ne tik<br />

tradiciðkai tyrë sëklavaisiø <strong>ir</strong> kaulavaisiø sodø veisimo <strong>ir</strong> prieþiûros technologijas, bet<br />

kûrë <strong>ir</strong> uoginiø augalø verslinio auginimo technologijas. Skyriaus vedëjo Algimanto<br />

Kviklio didelës kompetencijos sodininkystës mokslo <strong>ir</strong> verslo srityje bei plaèiø paþiûrø<br />

<strong>ir</strong> nenuilstamos energijos dëka jo vadovaujamo skyriaus mokslininkø kolektyvas<br />

visada sprendë tuo laikotarpiu labai svarbius sodininkystës <strong>ir</strong> uogininkystës technologinius<br />

klausimus. Tyrimø rezultatai buvo reikalingi <strong>ir</strong> sparèiai besipleèianèiai mëgëjiðkai<br />

sodininkystei, <strong>ir</strong> verslinei sodininkystei, kuri buvo plëtojama tuo laikotarpiu gan<br />

paþangiuose specializuotuose sodininkystës ûkiuose.<br />

341


Algimanto Kviklio mokslinë t<strong>ir</strong>iamoji veikla prasidëjo dar studijuojant visasàjunginiame<br />

Mièiûrinsko sodininkystës institute. P<strong>ir</strong>mieji moksliniai tyrimai <strong>ir</strong> p<strong>ir</strong>mosios<br />

mokslinës publikacijos, paskelbtos 1960–1961 m. Mièiûrinske <strong>ir</strong> Maskvoje, buvo ið<br />

darþininkystës srities. Buvo t<strong>ir</strong>ta pomidorø auginimo galimybës elektros lauke bei<br />

pomidorø generatyviniø <strong>ir</strong> vegetatyviniø hibridø paveldëjimas <strong>ir</strong> kintamumas. Nors<br />

studijø metais p<strong>ir</strong>muosius tyrimus Algimantas Kviklys atliko darþininkystës srityje,<br />

taèiau jau tuo metu jis buvo susiþavëjæs þemaûge sodininkyste (tuo metu Mièiûrinske<br />

buvo stipri <strong>ir</strong> átakinga prof. Budagovskio þemaûgës sodininkystës mokykla) <strong>ir</strong> ateityje<br />

daugelá savo moksliniø darbø skyrë svarbiausioms mokslinëms problemoms þemaûgës<br />

sodininkystës srityje spræsti bei ðiems sodams propaguoti. Dar d<strong>ir</strong>bdamas<br />

Vilniaus vaismedþiø veisliø tyrimo punkte surinko obelø vegetatyviniø poskiepiø kolekcijà<br />

<strong>ir</strong> 1963 m. jà persikëlë á Vytënø sodininkystës <strong>ir</strong> darþininkystës bandymø stotá.<br />

P<strong>ir</strong>miausia vegetatyviniai obelø poskiepiai buvo t<strong>ir</strong>iami medelyne, daugiausia dëmesio<br />

sk<strong>ir</strong>iant poskiepiø atsparumui ðalèiams bei iðtvermingumui nepalankiomis þiemojimo<br />

sàlygomis. Jau po 1965–1966 m. nepalankios þiemos buvo nustatyta, kad tuo metu<br />

plaèiai plintantis þemaûgis poskiepis B.396 buvo iðtvermingas nepalankioms þiemojimo<br />

sàlygoms, o dauguma MM <strong>ir</strong> M serijos poskiepiø buvo nepakankamai iðtvermingi<br />

ar visai neiðtvermingi. Buvo ieðkoma gerai besiðaknijanèiø poskiepiø <strong>ir</strong> t<strong>ir</strong>iamos jø<br />

ásiðaknijimà gerinanèios priemonës. Iðtyrus sodinukø su vegetatyviniais poskiepiais<br />

augimà medelyne, nustatyta, kad sodinukø kokybë labai priklauso nuo poskiepio augumo.<br />

Baigus tyrimus, patikslinti sodinukø kokybës reikalavimai, atsiþvelgiant á poskiepiø<br />

augumà.<br />

Nuo 1969 m. pradëtas naujas <strong>ir</strong> pats svarbiausias tyrimø etapas – áva<strong>ir</strong>aus augumo<br />

vegetatyviniø poskiepiø tyrimas sode. Ið 17 t<strong>ir</strong>tø áva<strong>ir</strong>aus augumo poskiepiø tuometinës<br />

intensyvios sodininkystës reikalavimus, kai vaismedþiai buvo auginami be<br />

atramø <strong>ir</strong> formuojami aukðtiniais retaðakiais ar artimais natûraliems vainikais, labiausiai<br />

atitiko MM.106 poskiepis. Nustatyta, kad p<strong>ir</strong>maisiais derëjimo metais vaismedþiai<br />

su M.9, B.9 <strong>ir</strong> MM.106 poskiepiais dera 3–5 kartus gausiau negu su sëkliniais<br />

poskiepiais, o septintaisiais–aðtuntaisiais metais – gausiai.<br />

1971–1988 m. buvo t<strong>ir</strong>ta dar 33 vegetatyviniø poskiepiø grupë. Atliekant ðá tyrimà,<br />

1978–1979 m. þiema buvo labai ðalta <strong>ir</strong> besniegë, todël buvo galima ávertinti<br />

vaismedþiø su sk<strong>ir</strong>tingais poskiepiais atsparumà ðalèiui. Po ðaltos þiemos derëjimo<br />

gausumu iðsiskyrë vaismedþiai su tokiais iðtvermingais poskiepiais kaip B.118 <strong>ir</strong> B.545,<br />

nors iki tol gausiau derëjo vaismedþiai su kitais poskiepiais. Vaismedþiai su minëtais<br />

poskiepiais buvo panaðaus augumo kaip <strong>ir</strong> su MM.106, bet po ðaltos þiemos vaismedþiai<br />

su B.118, B.545 poskiepiais derëjo daug gausiau negu su MM.106 poskiepiu:<br />

pastarieji buvo stipriai paðalæ. Ðiø tyrimø rezultatai labai aktualûs <strong>ir</strong> ðiuo metu, nes<br />

veisiant sodus prastesnëse d<strong>ir</strong>vose, derinant poskiepius su silpnesnio augumo veislëmis<br />

ar veisiant þaliavinius sodus, iðtvermingas <strong>ir</strong> produktyvus B.118 poskiepis galëtø<br />

bûti sëkmingai naudojamas <strong>ir</strong> ðiuo metu.<br />

Atliekant poskiepiø tyrimus, visada buvo ieðkoma tokiø poskiepiø, kurie turëtø<br />

pakankamai stiprià ðaknø sistemà <strong>ir</strong> vaismedþiai iðlaikytø gausø derliø be papildomø<br />

atramø. Tai buvo viena ið prieþasèiø, dël kurios neiðplito labai þemi, su silpna ðaknø<br />

sistema poskiepiai, su kuriais vaismedþiams reikia atramø, o plito vidutinio augumo<br />

poskiepiai, su kuriais vaismedþiai galëjo augti <strong>ir</strong> be papildomø atramø. Neatsitiktinai<br />

342


uvo pradëti plaèiai t<strong>ir</strong>ti þemaûgiai tarpininkai. Vyravo nuomonë, kad á ‘Paprastojo<br />

antaninio’ poskiepá áskiepijus þemaûgá tarpininkà, o á já – norimà veislæ, vaismedþiai<br />

bus þemaûgiai, bet turës tv<strong>ir</strong>tà ðaknø sistemà <strong>ir</strong> nereikës palaikomøjø kuolø. Buvo<br />

nustatyta, kad obelims geriausi buvo 10–15 cm ilgio B.9 <strong>ir</strong> 3-3-72 intarpai.<br />

Algimantas Kviklys d<strong>ir</strong>bo ne tik su obelø, bet <strong>ir</strong> su kitø sodo augalø poskiepiais.<br />

Geriausi rezultatai gauti d<strong>ir</strong>bant su svarainiais (Cidonija oblonga) kaip kriauðiø poskiepiais.<br />

Tyrimø pradþioje (1963–1973 m.) buvo t<strong>ir</strong>tos aðtuonios vegetatyviðkai dauginamos<br />

svarainiø formos kaip kriauðiø poskiepiai. Svarbiausias ið jø buvo svarainis A.<br />

T<strong>ir</strong>iant svarainius kaip kriauðiø poskiepius, daug dëmesio buvo sk<strong>ir</strong>iama kriauðiø veisliø<br />

suaugimo su svarainiais anatomijai. Nustatyta, kad ið t<strong>ir</strong>tø gausybës veisliø geriausiai<br />

su svarainiais suaugo ‘Jûratë’, ‘Sonata’ <strong>ir</strong> Nr. 31. Vëliau jos buvo pradëtos naudoti<br />

kaip tarpininkës dauginant þemaûges kriauðes su svarainio poskiepiu. Deja, po 1978–<br />

1979 m. ðaltos þiemos svarainiø kolekcija <strong>ir</strong> kriauðiø su svarainio poskiepiu sodas<br />

iððalo.<br />

Siekiant sukurti þemaûgius <strong>ir</strong> iðtvermingus þiemà kriauðiø poskiepius ið treèiosios<br />

Lietuvoje iðaugusiø svarainiø kartos, kurie sëkmingai perþiemojo 1955–1956 m.<br />

ðaltà þiemà, kai temperatûra buvo nukritusi iki -38°C, buvo atrinkti atsk<strong>ir</strong>i sëkliniai<br />

augalai <strong>ir</strong> padauginti sëklomis kaip kriauðiø poskiepiai. Ðiuo metu ið minëtø sëjinukø<br />

yra atrinkti <strong>ir</strong> registruoti trys K serijos sëkliniai svarainiø poskiepiai, su kuriais Lietuvos<br />

sàlygomis kriauðës gausiai dera <strong>ir</strong> iðaugina geros kokybës vaisius. Taèiau svarbiausia,<br />

kad kriauðës su ðiais registruotais svarainiø poskiepiais yra pakankamai iðtvermingos<br />

þiemà. To negalima pasakyti apie daugumà kitø Europoje plaèiai paplitusiø<br />

svarainiø poskiepiø. Algimantas Kviklys taip pat ieðkojo þemaûgiø poskiepiø ar<br />

vaismedþius þeminanèiø tarpininkø <strong>ir</strong> slyvoms bei treðnëms. Ðiuos darbus perëmë <strong>ir</strong><br />

baigë kiti tyrëjai.<br />

Nors Algimantas Kviklys atliko daug tyrimø, paraðë knygà „Þemaûgiai vaismedþiai“<br />

(1977 m.) <strong>ir</strong> dëjo daug pastangø, kad Lietuvoje iðplistø þemaûgë sodininkystë,<br />

taèiau tuometinës ûkinës <strong>ir</strong> ekonominës sàlygos bei konservatyvus valdþios poþiûris<br />

neleido to padaryti plaèiai. Tarybiniais metais daþni buvo verslinës sodininkystës plëtros<br />

vajai. Kartais bûdavo suplanuojama atsk<strong>ir</strong>uose ûkiuose per metus pasodinti net iki<br />

100 ha naujø sodø. Sparèiai veisiant sodus, daþnai pritrûkdavo sodinukø <strong>ir</strong>, siekiant<br />

vykdyti planus, vaismedþius tekdavo sodinti retai. Tuo laiku kuras buvo pigus, pesticidai<br />

nebrangûs, konkurencija vaisiø rinkoje buvo maþa, todël verslinë sodininkystë<br />

buvo plëtojama labai neintensyviai. Daþnai net <strong>ir</strong> kà tik pasodinti versliniai sodai buvo<br />

prastai priþiûrimi, menkai genimi, neformuojami. Esant tokiai situacijai sodininkystës<br />

versle, daug kapitaliniø ádëjimø <strong>ir</strong> specialiø þiniø reikalaujantys versliniai þemaûgiai<br />

sodai nepaplito. Neatsitiktinai, matydamas esamà sodininkystës verslo padëtá ðalyje <strong>ir</strong><br />

siekdamas paskatinti þemaûgës sodininkystës plëtrà Lietuvoje, Algimantas Kviklys<br />

ëmësi dar vieno þingsnio – iðvertë <strong>ir</strong> pritaikë Lietuvos sàlygoms þymaus Lenkijos<br />

sodininkystës mokslininko A. Mikos knygà „Vaismedþiø <strong>ir</strong> vaiskrûmiø genëjimas“(1987<br />

m.). Tuo laikotarpiu Lenkija, prieðingai negu Tarybø Sàjunga, pradëjo sekti ne Amerikos,<br />

o Vakarø Europos pavyzdþiu – veisë nedidelius, bet labai intensyvius, tankius<br />

þemaûgius sodus, kurie greitai pradëdavo gausiai derëti <strong>ir</strong> pat<strong>ir</strong>tos sodo áveisimo <strong>ir</strong><br />

prieþiûros iðlaidos greitai sugráþdavo. Deja, tik po Algimanto Kviklio m<strong>ir</strong>ties nepriklausomoje<br />

Lietuvoje buvo ryþtingai pasukta þemaûgës sodininkystës plëtros krypti-<br />

343


mi. Lietuvai rengiantis stoti á Europos Sàjungà, ðalies verslinë sodininkystë <strong>ir</strong> sodininkystës<br />

mokslas taip pat buvo pertvarkomi ES pavyzdþiu. Buvo toliau tæsiami <strong>ir</strong> pleèiami<br />

Algimanto Kviklio pradëti þemaûgiø poskiepiø tyrimai (juos atlieka sûnus Darius<br />

Kviklys), árengti nauji labai intensyviø þemaûgiø sodø konstrukcijø, vaismedþiø<br />

vainikø formø, vaisiø kokybës gerinimo bei prameèiavimo maþinimo <strong>ir</strong> kiti su intensyvios<br />

sodininkystës verslu susijæ bandymai.<br />

Algimantas Kviklys, bûdamas vienas þymiausiø medelynø specialistø tuometinëje<br />

Sàjungoje, p<strong>ir</strong>masis praktiðkai pritaikë <strong>ir</strong> iðpopuliarino vaismedþiø akiavimà ne<br />

kaip áprasta, uþkiðant akutæ po þieve, o akutæ priglaudþiant. Akiuojant priglaudimu,<br />

galima akiuoti <strong>ir</strong> plonesnius poskiepius arba kai prastai atðoka poskiepio þievë. Vis tik<br />

svarbiausia, kad akiuojant ðiuo metodu, darbo naðumas padidëja du <strong>ir</strong> daugiau kartø.<br />

Akiavimas priglaudimu buvo pademonstruotas 1976 m. p<strong>ir</strong>majame akiavimo konkurse<br />

Lietuvoje. Vëlesniuose konkursuose ðá akiavimo metodà naudojo jau <strong>ir</strong> kitø medelynø<br />

akiuotojos. Nors visasàjunginiame akiavimo konkurse Lietuvos delegacija áspûdingai<br />

pademonstravo naujàjá akiavimo bûdà <strong>ir</strong> didelá tokio darbo naðumà, taèiau tuometiniai<br />

þymiausi Sàjungos medelynø specialistai nenorëjo to pripaþinti. Vis tik Algimanto<br />

Kviklio pasiûlytas akiavimo bûdas plito <strong>ir</strong> po 10 metø visoje Tarybø Sàjungoje<br />

vaismedþiai buvo akiuojami priglaudþiant akutæ, o ne uþkiðant jà. Tai leido þymiai<br />

padidinti svarbiausio medelyne darbo – akiavimo naðumà.<br />

Algimantas Kviklys buvo didelës erudicijos mokslininkas <strong>ir</strong> vadovaudamas skyriui,<br />

kuriame buvo kuriamos sodininkystës technologijos, jis ne tik tyrinëjo poskiepius<br />

medelyne bei sode, bet domëjosi <strong>ir</strong> visais kitais aktualiausiais sodininkystës klausimais.<br />

Praëjus labai ðaltai <strong>ir</strong> besniegei 1978–1979 m. þiemai, jo iniciatyva Lietuvoje<br />

buvo suorganizuota visasàjunginë mokslinë konferencija, sk<strong>ir</strong>ta sodø paðalimo klausimams<br />

aptarti. Po jos, be kitø moksliniø <strong>ir</strong> populiariø straipsniø, buvo iðleista broðiûra<br />

„Lietuvos sodø paðalimas 1978–1979 metø þiemà <strong>ir</strong> priemonës jø iðtvermingumui<br />

padidinti“ (1982 m.), kurios pagrindinis autorius buvo A. Kviklys.<br />

Kurdami tuometines sodø veisimo <strong>ir</strong> prieþiûros technologijas, A. Kviklys kartu<br />

su kitais skyriaus darbuotojais iðtyrë <strong>ir</strong> sudarë versliniams sodams <strong>ir</strong> uogynams tinkamø<br />

herbicidø naudojimo sistemà. Ðio darbo rezultatas – kartu su L. Kulikausku<br />

paraðyta broðiûra „Herbicidai sodininkystëje“ (1979 m.).<br />

Kilus poreikiui tiksliau ávertinti versliniø sodø mitybà, A. Kviklys kartu su<br />

S. Ðvagþdþiu ádiegë Lietuvoje vaismedþiø mitybos vertinimo ne tik pagal d<strong>ir</strong>vos, bet<br />

<strong>ir</strong> pagal lapø cheminës analizës duomenis sistemà. A. Kviklio pasiûlymu versliniuose<br />

soduose buvo ádiegta srovinë derliaus dorojimo technologija. Kartu su A. Lokcikaite<br />

buvo pradëti labai aktualûs obelø uþuomazgø retinimo, derëjimo optimizavimo bei<br />

vaisiø kokybës gerinimo darbai.<br />

Aðtuntajame praëjusio ðimtmeèio deðimtmetyje buvo atkreiptas dëmesys á uogininkystës<br />

plëtrà specializuotuose versliniuose soduose bei uogynuose. Todël A. Kviklio<br />

iniciatyva, bendradarbiaujant su S. Kutkevièiumi, buvo sukurta <strong>ir</strong> plaèiai versliniuose<br />

uogynuose ádiegta mechanizuota serbentø auginimo <strong>ir</strong> derliaus nuëmimo technologija.<br />

Ði technologija buvo pristatyta mûsø institute suorganizuotoje visasàjunginëje konferencijoje.<br />

Mokslinis ðios technologijos pagrindimas pateiktas S. Kutkevièiaus disertacijoje.<br />

Ði technologija versliniuose serbentynuose plaèiai taikoma <strong>ir</strong> dabar.<br />

344


Kilus avieèiø poreikiui, buvo sukurta mechanizuoto avieèiø dauginimo technologija<br />

<strong>ir</strong> iðplësti avieèiø veisliø bei auginimo technologijos tobulinimo tyrimai, kuriuos<br />

A. Kviklio vadovaujama atliko L. Ðvitraitë-Buskienë.<br />

Buvo pradëti platûs braðkiø auginimo <strong>ir</strong> dauginimo technologijø tobulinimo tyrimai,<br />

ið kuriø rezultatø A. Kviklio vadovaujamas asp<strong>ir</strong>antas N. Uselis paraðë <strong>ir</strong> sëkmingai<br />

apgynë disertacijà tema „Braðkiø dauginimo <strong>ir</strong> auginimo ypatumai Lietuvos TSR“<br />

(1990 m).<br />

A. Kviklio iniciatyva buvo pradëti sodininkystës ekonominiai tyrimai. L. Braþukienë<br />

tyrë pagrindiniø fondø reikðmæ <strong>ir</strong> jø efektyvumo didinimo bûdus specializuotuose<br />

sodininkystës ûkiuose, rengë kapitaliniø iðlaidø normatyvus intensyviems sodams<br />

<strong>ir</strong> uogynams áveisti <strong>ir</strong> priþiûrëti.<br />

Algimantas Kviklys yra paraðæs kelias knygas <strong>ir</strong> iðspausdinæs daugiau kaip 180<br />

moksliniø <strong>ir</strong> populiariø straipsniø. Vieni reikðmingiausiø leidiniø, sk<strong>ir</strong>tø sodininkystës<br />

specialistams, yra knygos „Intensyvios sodø <strong>ir</strong> uogynø auginimo technologijos“<br />

(1986 m.) <strong>ir</strong> „Intensyvus obelø sodas“ (1988 m.). Algimantas Kviklys buvo ðiø<br />

knygø sudarytojas <strong>ir</strong> bendraautorius. Knygoje „Intensyvios sodø <strong>ir</strong> uogynø auginimo<br />

technologijos“ aptarti visi vaisiø <strong>ir</strong> uogø verslinio auginimo aspektai, leidþiantys tuometinëmis<br />

ekonominëmis <strong>ir</strong> organizacinëmis sàlygomis gauti didelius derlius <strong>ir</strong> iðauginti<br />

konkurencingà pagrindiniø Lietuvoje auginamø vaisiø <strong>ir</strong> uogø produkcijà. Knygoje<br />

„Intensyvus obelø sodas“, remiantis ilgameèiais Vytënø bandymø stoties bei<br />

kitø ðaliø mokslo ástaigø tyrimø duomenimis bei patyrimu, apibendrinti intensyviø<br />

sodø áveisimo <strong>ir</strong> prieþiûros pagrindai Lietuvoje. Ðios knygos pradþioje pateiktas intensyvaus<br />

sodo apibûdinimas: intensyvus sodas – tai optimalus ekologiniø sàlygø <strong>ir</strong><br />

veisliø biologinio potencialo panaudojimas parinkus tokias agrotechnines priemones,<br />

kurios padëtø gauti didþiausià <strong>ir</strong> geros kokybës derliø ið ploto vieneto pat<strong>ir</strong>iant<br />

maþiausias (arba racionaliausias) energijos <strong>ir</strong> darbo sànaudos produkcijos vienetui.<br />

Ðis teiginys dar aktualesnis ðiais laikais, praëjus 20 metø, kai labai sumaþëjo darbingø<br />

þmoniø, iðaugo energijos <strong>ir</strong> kitø iðtekliø kainos bei þymiai padidëjo konkurencija<br />

vaisiø rinkoje. Minëta knyga turëjo didelæ reikðmæ tuometinei versliniø sodø plëtrai<br />

ðalyje.<br />

Algimantas Kviklys ne tik d<strong>ir</strong>bo t<strong>ir</strong>iamàjá darbà <strong>ir</strong> vadovavo Sodø agrotechnikos<br />

skyriui, bet <strong>ir</strong> buvo instituto tarybos p<strong>ir</strong>mininkas, metodinës komisijos p<strong>ir</strong>mininkas.<br />

A. Kviklys, kaip mokslininkas, buvo gerai þinomas <strong>ir</strong> Tarybø Sàjungoje. Jis buvo<br />

Visasàjunginës þemës ûkio mokslø akademijos Vakarø skyriaus biuro, Visasàjunginio<br />

sodininkystës instituto metodinës komisijos, Visasàjunginës sodininkystës enciklopedijos<br />

redaktoriø komisijos, Lietuvos sodininkystës draugijos centro valdybos bei<br />

kitø organizacijø narys. Mokëjo rusø, anglø, vokieèiø, lenkø, latviø, ukrainieèiø, bulgarø,<br />

èekø <strong>ir</strong> esperanto kalbas<br />

Algimantas Kviklys buvo didelës erudicijos þymus mokslininkas, visà savo gyvenimà<br />

paðventæs sodininkystës mokslo <strong>ir</strong> verslo plëtrai. Deja, klastinga liga pak<strong>ir</strong>to<br />

mokslininkà paèiame kûrybiniø jëgø þydëjime. Liko neiðspræsta dar daug moksliniø<br />

problemø, neparaðyta daug knygø.<br />

Nobertas USELIS<br />

345<br />

Gauta 2006-10-16<br />

Parengta spausdinti 2006-12-11


ATMINTINË AUTORIAMS, RAÐANTIEMS Á MOKSLO DARBUS<br />

„SODININKYSTË IR DARÞININKYSTË“<br />

Straipsnio rankraðèio pateikimo–priëmimo procedûra<br />

Straipsnius redakcijai gali pateikti bet kurie Lietuvos ar uþsienio ðalies mokslo<br />

darbuotojai bei asmenys, d<strong>ir</strong>bantys moksliná darbà. Ne mokslo darbuotojo<br />

straipsnis turi bûti paraðytas kartu su mokslo darbuotoju.<br />

Rankraðtis redakcijai siunèiamas paðtu dviem egzemplioriais, atspausdintas<br />

kompiuteriu popieriuje, laikantis toliau tekste nurodytø reikalavimø. Pateiktas<br />

straipsnio rankraðtis uþregistruojamas <strong>ir</strong> perduodamas redkolegijos nariui,<br />

kuruojanèiam ðià sritá. Jis ávertina, ar rankraðèio turinys <strong>ir</strong> forma atitinka<br />

svarbiausius periodiniams straipsniams keliamus reikalavimus. Rankraðèiai, kurie<br />

buvo atmesti p<strong>ir</strong>mojo vertinimo metu, su aiðkinamuoju raðtu gràþinami autoriui.<br />

Jeigu straipsnio tinkamumas nekelia abejoniø, redkolegijos narys sk<strong>ir</strong>ia du<br />

recenzentus.<br />

Pataisytà rankraðtá autorius per deðimt dienø turi atsiøsti el. paðtu<br />

arba paðtu redakcijai kartu su elektronine laikmena (diskeliu).<br />

Koks turi bûti rankraðtis:<br />

Struktûra <strong>ir</strong> apimtis<br />

Rankraðèio forma turi atitikti periodiniams moksliniams straipsniams keliamus<br />

reikalavimus. Teksto <strong>ir</strong> jo sudedamøjø daliø seka tokia:<br />

- Straipsnio pavadinimas (ne daugiau kaip 10 þodþiø);<br />

- Autoriaus vardas, pavardë<br />

Vardas raðomas maþosiomis, pavardë – didþiosiomis raidëmis. Jeigu yra<br />

keli autoriai, raðoma maþëjanèia jø autorystës indëlio tvarka.<br />

- Institucija, adresas, elektroninis paðtas<br />

Pagrindinis tekstas<br />

- Santrauka (iki 1400 raðybos þenklø arba <strong>25</strong>0 þodþiø);<br />

Labai glaustai pateikiami tikslai, sàlygos, svarbiausieji rezultatai.<br />

- Reikðminiai þodþiai (ne daugiau kaip 10 þodþiø abëcëlës tvarka);<br />

- Ávadas<br />

Trumpai iðdëstoma nagrinëjama problema, ankstesnieji kitø panaðiø tyrimø<br />

rezultatai, darbo reikalingumas, originalumas. Nurodomas darbo tikslas.<br />

- Tyrimo objektas <strong>ir</strong> metodai<br />

- Rezultatai<br />

Trumpai iðdëstomi tyrimø metu surinkti duomenys, dokumentai (lentelës,<br />

grafikai).<br />

- Aptarimas<br />

346


Aptariami, bet ne kartojami „Rezultatø“ skyrelyje pateikti duomenys,<br />

palyginami su kitø autoriø duomenimis, aiðkinamos t<strong>ir</strong>tø reiðkiniø prieþastys,<br />

keliamos naujos idëjos, hipotezës.<br />

- Iðvados;<br />

- Literatûra<br />

Rekomenduojama skelbti ne maþiau kaip 10 naujausiø raðoma tema<br />

literatûros ðaltiniø.<br />

- Santrauka anglø kalba (600–1400 sp. þenklø)<br />

- Padëka (neprivaloma)<br />

Straipsnio pabaigoje turi bûti autoriaus (-iø) ar kitø uþ straipsná atsakingø<br />

asmenø paraðas (-ai) bei pas<strong>ir</strong>aðymo data.<br />

Straipsniø, paraðytø remiantis netradiciniais bandymø duomenimis <strong>ir</strong> rezultatais<br />

struktûros dalys gali bûti <strong>ir</strong> kitokios.<br />

Straipsnis turi bûti ne daugiau kaip 10–15 puslapiø apimties, áskaitant<br />

lenteles <strong>ir</strong> paveikslus (didesnës apimties straipsniai derinami su redkolegijos<br />

p<strong>ir</strong>mininku).<br />

Teksto parengimas<br />

Straipsnis raðomas lietuviø, anglø ar rusø kalba IBM tipo kompiuteriu,<br />

spausdinamas MO Microsoft WORD for Windows 95; 98; 2000 teksto<br />

redaktoriais TIMES NEW ROMAN 12 dydþio ðriftu, vienoje A 4<br />

formato<br />

(210 x 297 mm) lapo pusëje, atstumas tarp rankraðèio eiluèiø – 1 (single),<br />

teksto po recenzijø – 1,5 (1,5 lines), iðlyginamas ið abiejø pusiø, pateikiamas<br />

elektroninëje laikmenoje – 1,44 MB diskelyje. Paraðèiø plotis v<strong>ir</strong>ðuje <strong>ir</strong><br />

apaèioje – 2 cm, deðinëje – 1,5 cm, ka<strong>ir</strong>ëje – 3 cm.<br />

Paryðkintai (Bold) raðoma straipsnio pavadinimas visomis kalbomis, antraðtës<br />

bei svarbiausieji struktûriniai elementai (santrauka, ávadas, metodai, sàlygos,<br />

rezultatai, diskusija, iðvados, literatûra). Kursyvu (Italic) raðomi lotyniðki<br />

augalø rûðiø, genèiø, ligø, kenkëjø <strong>ir</strong> mikroorganizmø pavadinimai. Augalø veisliø<br />

pavadinimai raðomi viengubose kabutëse.<br />

Cituojamas ðaltinis tekste nurodomas lenktiniuose skliaustuose (autoriaus<br />

pavardë, metai).<br />

Lentelës<br />

Lentelëse neturëtø bûti kartojami paveiksluose ar kitose iliustracijose pateikti<br />

duomenys.<br />

Lenteliø tekstas raðomas lietuviø <strong>ir</strong> anglø kalbomis. Jeigu straipsnis paraðytas<br />

rusø kalba – rusø <strong>ir</strong> anglø. Jei lietuviðkas <strong>ir</strong> angliðkas tekstas talpinamas<br />

vienoje eilutëje, tarp jø dedamas þenklas /. Lentelës teksto dalys vertikaliomis <strong>ir</strong><br />

347


horizontaliomis linijomis neatsk<strong>ir</strong>iamos. Horizontaliomis linijomis atsk<strong>ir</strong>iamos tik<br />

lentelës metrikos dalys bei lentelës pabaiga. Lentelës padëtis puslapyje tik vertikali<br />

(Portrait).<br />

Bandymø variantai lentelëse neturi bûti þymimi skaièiais, sudëtingomis<br />

santrumpomis, o pateikiami visa arba suprantamai sutrumpinta apraðo forma.<br />

Statistiniai duomenys, skaièiai <strong>ir</strong> skaitmenys<br />

Pageidautina detaliai apraðyti taikytus tyrimø metodus <strong>ir</strong> nurodyti jø originalius<br />

ðaltinius. Labai svarbi informacija apie lauko, vegetaciniø <strong>ir</strong> kt. bandymø iðdëstymo<br />

schemà <strong>ir</strong> jos pas<strong>ir</strong>inkimo motyvus. Lentelëse <strong>ir</strong> paveiksluose pateikiami duomenys<br />

privalo bûti statistiðkai apdoroti: apskaièiuoti vidurkiai, jø kitimo paklaidos,<br />

ryðio <strong>ir</strong> jo tikslumo koeficientai, esminio sk<strong>ir</strong>tumo ribos (priimtiniausia apskaièiuoti<br />

95% arba <strong>ir</strong> – 90,99% tikimybës lygiu) <strong>ir</strong> pan. Rodikliø þymëjimo santrumpos<br />

turi bûti paaiðkintos, jeigu jos neatitinka tarptautiniø ISO standartø [13].<br />

Reikðminiø skaièiø turi bûti ne daugiau negu leidþia bandymo metodas. Variantø<br />

vidurkiai turi bûti suapvalinti iki 1/10, apskaièiuotos jø standartinës paklaidos.<br />

Kieká þymintys skaièiai raðomi arabiðkais skaitmenimis, pvz.: 15 tonø, o eilæ<br />

þymintys gali bûti raðomi <strong>ir</strong> romëniðkai, <strong>ir</strong> arabiðkai, pvz.: XX amþius, 2 pavyzdys.<br />

Skaièiai nuo vieneto iki devyniø raðomi þodþiu, iðskyrus, kai jie reiðkia<br />

matavimo vienetø dydá (pvz.: 5 km, bet „trys variantai“) arba yra prasminë skaièiø<br />

seka (pvz.: 6, 9, 12 tarpsnis). Tarp daugiaþenkliø skaièiø klasiø paliekamas tarpelis,<br />

pvz., 42 351. Procentai þymimi %, kai reiðkia konkretø skaièiø, taèiau „procentiniai<br />

vienetai“ raðomi tik þodþiu. Deðimtainës trupmenos dalys nuo sveikøjø skaièiø<br />

atsk<strong>ir</strong>iamos kableliu.<br />

Paveikslai<br />

Visa iliustracinë medþiaga - brëþiniai, grafikai, diagramos, fotografijos, pieðiniai<br />

<strong>ir</strong> kt. – vadinami bendru paveikslø vardu. Tekstas juose raðomas lietuviø <strong>ir</strong> anglø<br />

kalbomis.<br />

Paveikslai turi bûti nespalvoti, padaryti Microsoft Office 95, 98, 2000<br />

paketo elektroninëje lentelëje EXCEL arba naudojantis kitomis ðio paketo<br />

programomis <strong>ir</strong> pateikiami straipsnio tekste bei atsk<strong>ir</strong>a EXCEL byla<br />

diskelyje. Ranka pieðti, braiþyti, kopijuoti paveikslai nepriimami arba jie<br />

perdaromi pagal galiojanèius maketavimo ákainius. Redakcija pasilieka teisæ keisti<br />

jø formatà pagal straipsnio ar viso leidinio dizainà.<br />

Áraðai <strong>ir</strong> simboliai paveiksluose turi bûti paraðyti ne maþesniu kaip 10 ðrifto<br />

dydþiu. Paveikslø blokø dalys turi bûti suþymëtos raidëmis a, b, c <strong>ir</strong> t.t.<br />

Literatûros sàraðas<br />

Á literatûros sàraðà gali bûti átraukiama:<br />

- straipsniai, atspausdinti moksliniuose periodiniuose þurnaluose,<br />

moksliniuose recenzuotuose leidiniuose ( knygose, monografijose), moksliniø<br />

348


konferencijø, simpoziumø, kuriø medþiaga buvo recenzuota arba struktûros <strong>ir</strong><br />

apimties poþiûriu atitinka moksliniø periodiniø leidiniø straipsniø reikalavimus,<br />

straipsniø rinkiniuose;<br />

- mokslinës knygos, monografijos, maþesnës apimties recenzuoti <strong>ir</strong><br />

tik iðimtinai mokslinës pask<strong>ir</strong>ties leidiniai (t. y. disertacijø mokslo laipsniui<br />

ágyti santraukos) arba jø dalys.<br />

Á sàraðà rekomenduojama átraukti ne maþiau kaip deðimt literatûros ðaltiniø.<br />

Visi jie turi bûti cituojami tekste. Du treèdaliai ðaltiniø turëtø bûti ne senesni kaip<br />

ketveriø–ðeðeriø metø, o senesni – tik ypatingai reikðmingi <strong>ir</strong> svarbûs. Autoriaus<br />

cituotini tik tie darbai, kurie tiesiogiai susijæ su nagrinëjama tema.<br />

Mokslinës ataskaitos, rankraðtinë medþiaga, vadovëliai, þinynai, konferencijø<br />

medþiaga (tezës ar trumpi praneðimai), rekomendacijos, reklaminiai lankstinukai<br />

bei laikraðèiai literatûros ðaltiniais nelaikomi <strong>ir</strong> á sàraðà neátraukiami. Nuorodos á<br />

standartus, þinynus <strong>ir</strong> kitus normatyvinius teisinius dokumentus nurodomos puslapiø<br />

iðnaðose.<br />

Uþsienyje leistø þurnalø, konferencijø rinkiniø <strong>ir</strong> kt. pavadinimai netrumpinami.<br />

Literatûra sàraðe suraðoma abëcëlës tvarka.<br />

Knygos<br />

Bulavas J. Augalø selekcija. V.: Mintis, 1963. P. 2–15.<br />

Straipsniai ið moksliniø þurnalø <strong>ir</strong> periodiniø leidiniø<br />

Juozaitis J. Pomidorø auginimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai,<br />

2000. T. 20. P. 4–9.<br />

Koch J. Plough depth // Soil Science. 1998. Vol. 15. N 2. P. 12–15.<br />

Disertacijø santraukos<br />

Simonaitis J. Þ<strong>ir</strong>niø agrotechnika: daktaro disertacijos santrauka. Kaunas,<br />

1988. <strong>25</strong> p.<br />

349


GUIDELINES FOR THE PREPARATION AND SUBMISSION OF ARTICLES<br />

TO THE VOLUMES OF SCIENTIFIC WORKS „SODININKYSTË IR<br />

DARÞININKYSTË“<br />

Rules for Submission – Acceptance of Papers.<br />

Papers can be contributed by Lithuanian and foreign researchers or persons<br />

carrying out scientific research. The latter’s paper will be accepted only when the<br />

coauthor is an investigator.<br />

Manuscripts should be sent by mail printed out in two copies taking in account<br />

following instructions. The manuscript will be registered and submitted to the member<br />

of the Editorial Board in charge. He(she) will evaluate if the contents and the form<br />

conf<strong>ir</strong>m with the main requ<strong>ir</strong>ements for periodical articles. Manuscripts rejected<br />

during the f<strong>ir</strong>st evaluation will be returned to the author with explanatory remarks. If<br />

the article is approved the member of the Editorial Board appoints two reviewers.<br />

The author must return the corrected manuscript to the Editorial Board<br />

in ten days by email or by mail in a diskette.<br />

Standard Manuscript<br />

Structure and length<br />

The form of a manuscript has to conf<strong>ir</strong>m with requ<strong>ir</strong>ements for periodical<br />

scientific articles. The paper should be organized in the following order:<br />

-Title (should not exceed 10 words);<br />

-Author(s)’ names<br />

The name should be written in small letters, the surname – in capital letters. If<br />

there is more than one author they are listed according to the<strong>ir</strong> input to the paper.<br />

-Institution(s), address, email address;<br />

-Research report:<br />

-Abstract (should not exceed 1400 characters or <strong>25</strong>0 words);<br />

Should contain the statement of the aims, methods and main results in short.<br />

-Key words (should not exceed 10 words in alphabetical order);<br />

-Introduction<br />

Should present the investigated subject, results of earlier related research, reasons<br />

of the study, innovation.<br />

-Materials and methods;<br />

-Results<br />

Should present concisely the collected data during investigation, documentation<br />

(tables, figures).<br />

-Discussion<br />

Should not repeat results presented in “Results” but should interpret them<br />

with reference to the results obtained by other authors, explain the reasons of the<br />

investigated phenomena, raise new ideas, hypotheses.<br />

-Conclusions;<br />

-References<br />

Should be kept to a minimum of 10 latest references on this theme.<br />

-Summary in English (up to 2000 characters or 350 words);<br />

-Acknowledgements (not compulsory);<br />

350


The paper should be ended by a signature of the author(s) or other persons<br />

responsible for the article and the date.<br />

Articles written based on non-traditional trial data and the obtained results may<br />

have other than traditional structural parts of a paper.<br />

The article should not exceed 10-15 pages, tables and figures included (longer<br />

articles are agreed with the cha<strong>ir</strong>man of the Editorial Board).<br />

Text preparation<br />

The manuscripts should be submitted in Lithuanian, English or Russian, typed<br />

by IBM type computer, used MO Microsoft WORD for Windows 95; 98; 2000<br />

word-processor format, the font to be typed - TIMES NEW ROMAN size 12, on<br />

A 4 paper (210 x 297 mm) one side, for a manuscript – single spaced, for the text<br />

after reviews - 1,5 lines, justified, in a 1,44 MB diskette. Margins: top - 2 cm,<br />

bottom - 2 cm, right -1.5 cm, left - 3 cm.<br />

In bold are written the title of the paper in all languages, headings and all main<br />

structural elements (abstract, introduction, materials, methods, results,<br />

discussion, conclusions, references). In Italic are written Latin names of species,<br />

genera, diseases, pests and microorganisms. Cultivar is it be placed within single<br />

quatation marks.<br />

Tables<br />

If results are already given in figures, tables should not be used. Double<br />

documentation is not acceptable.<br />

Text in tables is written in Lithuanian and English languages. If the text is written<br />

in Russian – in Russian and English. If Lithuanian and English texts are in one line<br />

they are separated by /. Do not use vertical and horizontal lines to separate parts of<br />

the text. A horizontal line separates only headings of columns and the end of the<br />

table. Orientation in a page only vertical (Portrait).<br />

Trial variants in tables should not be numbered or submitted in complicated<br />

abbreviations. Tables should be self explanatory, and if there are abbreviations, they<br />

should be understandable.<br />

Statistical data, figures, numerals<br />

It is des<strong>ir</strong>able to describe in detail the applied research methods and indicate<br />

references. The information on the scheme (design) of field, vegetative and other<br />

trials and motivation of the<strong>ir</strong> choice are very important. Data presented in tables and<br />

figures must be statistically processed: means, standard errors, correlation<br />

coefficients, significance of differences, (most acceptable at 95% or and – 90.99%<br />

level), etc. calculated. Abbreviations of parameters should be explained if they are<br />

not international standard abbreviations (ISO) [13].<br />

Value figures should not be more than the trial method allows. Means of values<br />

should be rounded off to 1/10, the<strong>ir</strong> standard errors calculated.<br />

For figures indicating quantity should be used Arabic numerals, e.g.: 15 tons,<br />

and for consecutive numbering can be used both Roman and Arabic numerals, e.g.:<br />

XX century, 2nd sample.<br />

Numbers from one to nine are written in words, except when they mean<br />

measurement size (e.g.: 5 km, but “three variants”) or numbered consecutively (e.g.:<br />

phase 6, 9, 12). In many-figured numbers between classes an interval is made, e.g.,<br />

42 351. Percent is noted as %, when a specific number is implied, though „percent<br />

unit“ is written in words. In decimals use the decimal point.<br />

351


Figures<br />

All illustrations – drawings, graphs, diagrams, photographs are considered as<br />

figures. The text in them is written in Lithuanian and English.<br />

Figures must be drafted in black color in Microsoft Office 95, 98, 2000 packet<br />

EXCEL or other programs of this packet and included into the text and submitted<br />

as a separate EXCEL file in a diskette. Drawings must be professionally drafted<br />

or they can be redrafted by a professional and the work will be paid by the author<br />

according to the price list. Notice that the Editorial Board has the right to change<br />

the<strong>ir</strong> format according to the design of the article or the whole publication.<br />

Letters and symbols in figures are recommended not smaller than size 10. Block<br />

parts of figures should be numbered consecutively by letters a, b, c, etc.<br />

References<br />

Into references can be included:<br />

-articles, published in scientific periodical journals, scientific reviewed<br />

publications (books, monographs), article collections of scientific conferences and<br />

symposiums whose papers were reviewed or they meet the requ<strong>ir</strong>ements of scientific<br />

periodical publications with reference to the structure and the length of the article;<br />

-scientific books, monographs, reviewed publications of smaller volume<br />

and exclusively for scientific purpose (i.e. abstracts of theses to obtain a<br />

scientific degree) or the<strong>ir</strong> parts;<br />

It is recommended to include a minimum of 10 references. All of them must be<br />

cited in the text. Two th<strong>ir</strong>ds of references should be not older than four-six years,<br />

and if older – only very significant. Cited are only these works, which are d<strong>ir</strong>ectly<br />

related to the investigated theme.<br />

Scientific reports, manuscripts, textbooks, reference books, conference<br />

proceedings (theses or short presentations), recommendations, pamphlets, articles<br />

in newspapers are not considered as references and are not included into references<br />

list. References to standards, reference books or other regulations and rules are<br />

indicated in footnotes.<br />

Names of journals, volumes of conference articles, etc, are not abbreviated.<br />

The reference list should be arranged in alphabetical order.<br />

Book:<br />

Wertheim S.J. Rootstock guide. Wilhelminadorp. 1998. 144 p.<br />

Journal article<br />

Johnson D.S. Controlled atmosphere storage of apples in UK // Acta horticulturae.<br />

1999. Vol. 485. P.187-193.<br />

Koch J. Plough depth // Soil Science. 1998. Vol. 15. N 2. P. 12-15.<br />

Thesis abstract<br />

Karkleliene R. Inheritance of quantitative characters and estimation of combining<br />

ability in carrots: summary of doctoral dissertation. Babtai, 2001. 43 p.<br />

352


TURINYS<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Introdukuotø obelø veisliø biologiniø savybiø tyrimas ........................................ 3<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

P. Viðkelis. Introdukuotø obelø veisliø produktyvumo <strong>ir</strong> vaisiø<br />

kokybës tyrimas ...................................................................................................... 12<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Obelø selekciniø numeriø biologiniø savybiø tyrimas ........................................ 20<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

P. V i ð k e l i s . Obelø selekciniø numeriø produktyvumo <strong>ir</strong> vaisiø kokybës<br />

tyrimas ...................................................................................................................... 32<br />

R. Rugienius, A. Sasnauskas. Braðkiø veisliø tyrimas Lietuvoje<br />

pagal tarptautinæ COST 863 programà ..................................................................... 43<br />

P. Banach, M. Gàstoù . Obelø veislës ‘Jonica’ su sk<strong>ir</strong>tingais poskiepiais<br />

augimas <strong>ir</strong> derëjimas ................................................................................................. 54<br />

D.Kviklys, J. Stankienë, H. Kemp. Sodinamosios medþiagos<br />

sveikumo átaka obelø augimui <strong>ir</strong> derliui ................................................................ 62<br />

S. Nominaitis, V. M. Rutkovienë, P. Viškelis. Agrotechniniø<br />

(ûkininkavimo) sistemø átaka ‘Elise’ veislës obelø derliui, produkcijos<br />

kokybei <strong>ir</strong> d<strong>ir</strong>voþemio sudëèiai ............................................................................... 72<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë,<br />

A.Kasiulevièiûtë, P. Duchovskis. Poskiepiø átaka obelø<br />

vaismedþiø fotosintezës sistemos veiklai .............................................................. 79<br />

J. Skrzyñski, M. Gàstoù. ‘Jonica’ veislës obelø vaisiø kokybës<br />

priklausomumas nuo poskiepiø ............................................................................... 88<br />

J. P. Privé. Obelø poskiepiø atsparumo ðalèiui tyrimai ......................................... 95<br />

R. Petrokas, P. Duchovskis. Miðkinës obels (Malus sylvestris Mill.)<br />

sk<strong>ir</strong>iamieji ypatumai ............................................................................................... 104<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys,<br />

J. B. Ðikðnianienë, E. Kupèinskienë. Obelø ligø <strong>ir</strong> kenkëjø<br />

plitimo ávertinimas sk<strong>ir</strong>tingos pramoninës tarðos rajonuose ............................. 114<br />

L. Taparauskienë. Drëkinimo átaka ‘Senga Sengana’ braðkëms .................. 124<br />

L. Buskienë, N. Uselis, J. Lanauskas. Geleþies tràðø átaka<br />

‘Bogota’ veislës braðkiø mitybai, iðsivystymui <strong>ir</strong> derliui ................................. 137<br />

A.Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë,<br />

P. Duchovskis, A. Brazaitytë, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë,<br />

N. Uselis, B. Gelvonauskis. Kompleksinis UV-B spinduliuotës <strong>ir</strong><br />

temperatûros poveikis braðkiø fiziologiniams rodikliams ................................... 146<br />

L. Raudonis. Abamectino poveikis þemuoginëms erkëms Tarsonemus pallidus<br />

(Acari: Tarsonemidae) braðkëse ............................................................................ 153<br />

L. Raudonis. Abemectino toksiðkumas raudonosioms sodinëms erkëms<br />

Panonychus ulmi (Acari: Tetranychidae) obelyse ............................................... 162<br />

353


J. Lanauskas, D. Kviklys. Kaulavaisiø poskiepiø tyrimai Lietuvoje ......... 170<br />

M.Meland, O. Fr∅ ynes. Slyvø veisliø ‘Opal’ <strong>ir</strong> ‘Reine Claude de GF 1119’,<br />

auginamø Norvegijoje, penkiø poskiepiø charakteristika ...................................... 179<br />

K.Baranauskis, J. Sakalauskaitë, A. Brazaitytë,<br />

A. Urbonavièiûtë, G. Samuolienë, G. Ðabajevienë,<br />

S. Sakalauskienë, J. B. Ðikðnianienë, P. Duchovskis.<br />

UV sugerianèiø pigmentø pokyèiai augalø lapuose veikiant UV-B spinduliuotei . 187<br />

R. Karklelienë. Morkø <strong>ir</strong> burokëliø lietuviðkø veisliø bei hibridø ypatumai<br />

ekologinëje <strong>ir</strong> intensyvioje darþininkystëje ............................................................ 193<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis. Optimalaus sëjos <strong>ir</strong><br />

nuëmimo laiko átaka morkø ‘Svalia’ F 1<br />

derliui <strong>ir</strong> kokybei ................................ 201<br />

O.Bundinienë, È. Bobinas, P. Duchovskis. Áva<strong>ir</strong>iø azoto<br />

tràðø <strong>ir</strong> ceolito átaka valgomosios morkos produktyvumui <strong>ir</strong><br />

morfometriniams rodikliams .................................................................................. 211<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë,<br />

J. B. Ðikðnianienë, G. Samuolienë, P. Duchovskis.<br />

UV-B spinduliuotës poveikis morkø biometriniams rodikliams ........................ 223<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë. Pomidorø (Lycopersicon<br />

esculentum Mill.) v<strong>ir</strong>usø diagnostika elektronomikroskopiniu <strong>ir</strong> molekuliniu<br />

metodais ................................................................................................................. 230<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë,<br />

D. Ðvegþdienë, Z. Janèys, K. Ðlekytë, P. Duchovskis,<br />

A. Brazaitytë, J. Ðikðnianienë. Pomidorø (Lycopersicon<br />

esculentum Mill.) augimo bei biocheminiø rodikliø priklausomumas<br />

nuo UV-B spinduliuotës........................................................................................ 240<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis,<br />

O. D. Petronienë. Raudonøjø burokëliø ‘Kamuoliai’ kai kuriø<br />

organiniø medþiagø dinamika þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais .... <strong>25</strong>1<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius. Augalø, auginamø<br />

þaliajai tràðai, agrobiologinis ávertinimas <strong>ir</strong> átaka svogûnø derliui ................... 261<br />

D.Kavaliauskaitë. Herbicido Boxer 800 EC (v. m. Prosulfocarb 800 g l -1 )<br />

átaka valgomøjø svogûnø pasëlio derlingumui <strong>ir</strong> piktþolëtumui ...................... 270<br />

G. Samuolienë, P. Duchovskis. Fitohormonø dinamika <strong>ir</strong> vaidmuo<br />

po paprastojo kmyno þydëjimo indukcijos ......................................................... 278<br />

J. Jankauskienë, A. Brazaitytë. Sodinimo tankumo átaka<br />

pavasariniø agurkø produktyvumui ....................................................................... 286<br />

B. Szwejkowska, P. Duchovskis. Áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø reakcija á<br />

beicavimà fungicidais <strong>ir</strong> insekticidais bei á herbicidus ........................................... 295<br />

V. A. Ð lapakauskas, E. Kazlauskas, S. Glioþ eris.<br />

Karboks<strong>ir</strong>ûgðèiø hidrazidø dariniø átaka pupeliø pridëtiniø ðaknø<br />

formavimuisi <strong>ir</strong> fotosintetiniam elektronø judëjimui ............................................... 305<br />

E. Dambrauskienë. Rausvaþiedës eþiuolës (Echinacea purpurea (L.)<br />

Moench) produktyvumas, taikant intensyvias auginimo technologijas ............. 316<br />

B. Szwejkowska, P. Duchovskis. Meteorologiniø sàlygø <strong>ir</strong> sëklø<br />

apdorojimo cheminiais preparatais átaka þ<strong>ir</strong>niø derliui <strong>ir</strong> baltymø kiekiui ............... 322<br />

354


R. Vyðniauskienë, Z. Janèys, R. Spalinskas. Þemos<br />

temperatûros poveikis superoksido dismutazës aktyvumui atspariuose<br />

ðalnoms bulviø hibriduose ................................................................................... 331<br />

P ranešimas spaudai. ES lëðos investuojamos á þemës <strong>ir</strong> miðkø ûkio<br />

studentus, mokslininkus bei tyrëjus ...................................................................... 339<br />

Kronika. Iškilus mokslininkas sodininkas Algimantas Kviklys ......................... 341<br />

Atmintinë autoriams, raðantiems á mokslo darbus „Sodininkystë <strong>ir</strong> darþininkystë“ ... 346<br />

355


CONTENTS<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Investigation of biological traits of apple cultivars .................................................... 3<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

P. Viðkelis. Productivity, fruit quality and chemical characteristic of<br />

introduced apple cultivars ...................................................................................... 12<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Investigation of biological important traits of apple selections ......................... 20<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

P. Viðkelis. Productivity and fruit quality of apple selections .................... 32<br />

R. Rugienius, A. Sasnauskas. Investigation of strawberry cultivars<br />

according to international COST 863 programme in Lithuania ............................ 43<br />

P. Banach, M. Gàstoù. Growth and fruiting of apple tree cv. ‘Jonica’<br />

on different rootstocks ............................................................................................. 54<br />

D.Kviklys, J. Stankienë, H. Kemp. Effect of health status of<br />

planting material on apple tree growth and yield ............................................... 62<br />

S. Nominaitis, V. M. Rutkovienë, P. Viðkelis. Influence of<br />

different agrotechnical measures on apple-tree ‘Elisa’ yield, production<br />

quality and composition of soil ............................................................................ 72<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë,<br />

A. Kasiulevièiûtë, P. Duchovskis. Rootstock effect on<br />

photosynthetic pigment system formation in apple tree leaves .......................... 79<br />

J. Skrzyñski, M. Gàstoù. Quality of ‘Jonica’ apple fruit as influenced by<br />

rootstocks ................................................................................................................ 88<br />

J . P. P r i v é . Techniques for cold hardiness research for apple rootstocks. ............ 95<br />

R. Petrokas, P. Duchovskis. Distinctive characteristics of Malus<br />

sylvestris Mill ......................................................................................................... 104<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys,<br />

J. B. Ðikðnianienë, E. Kupèinskienë. Evaluation of apple<br />

diseases and pest spread in different regions of industrial emission ............. 114<br />

L. Taparauskienë. Influence of <strong>ir</strong>rigation on strawberries<br />

‘Senga Sengana’.................................................................................................... 124<br />

L. Buskienë, N. Uselis, J. Lanauskas. Effect of foliar applied <strong>ir</strong>on<br />

fertilizers on nutrition, development and yield of strawberry cv. ‘Bogota’ .... 137<br />

A.Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë,<br />

P. Duchovskis, A. Brazaitytë, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë.<br />

The complex exposure of temperature and UV-B <strong>ir</strong>radiation on<br />

physiological indices in strawberry ..................................................................... 146<br />

L. Raudonis. The effect of abamectin on strawberry mite Tarsonemus<br />

pallidus (Acari: Tarsonemidae) in strawberries ..................................................... 153<br />

356


L. Raudonis. Toxicity of abamectin to fruit tree red spider mite, Panonychus<br />

ulmi (Acari: Tetranychidae) in apple tree site ........................................................ 162<br />

J. Lanauskas, D. Kviklys. Stone fruit rootstok research in Lithuania....... 170<br />

M.Meland, O. Fr∅ynes. Performance of five plum rootstocks to<br />

the plum cultivars ‘Opal’ and ‘Reine Claude GF 1119’ growing in Norway ............ 179<br />

K.Baranauskis, J. Sakalauskaitë, A. Brazaitytë,<br />

A. Urbonavièiûtë, G. Samuolienë, G. Ðabajevienë,<br />

S. Sakalauskaitë, J. B. Ðikðnianienë, P. Duchovskis.<br />

Variability of UV-absorbing compounds in plant leaves under UV-B exposure ..... 187<br />

R. Karklelienë. Features of Lithuanian carrot and red beet varieties and<br />

hybrids in ecological and intensive vegetable growing ......................................... 193<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis. Influence of the optimal<br />

sowing and harvesting time on the yield and quality of carrot ‘Svalia’ F 1<br />

........................ 201<br />

O.Bundinienë, È. Bobinas, P. Duchovskis. Influence efficacy<br />

of different nitrogen fertilizers and zeolite on productivity and<br />

morphometrics indices of carrot .......................................................................... 211<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë,<br />

J. B. Ðikðnianienë, G. Samuolienë, P. Duchovskis.<br />

Biometric indexes of carrot in response to different UV-B radiation .............. 223<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë. The diagnostic of<br />

v<strong>ir</strong>uses in tomato (Lycopersicon esculentum Mill.)<br />

by electronmicroscopic and molecular methods ................................................. 230<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë,<br />

D. Ðvegþdienë, Z. Janèys, K. Ðlekytë, P. Duchovskis,<br />

A. Brazaitytë, J. Ðikðnianienë. Growth parameters dependence<br />

of tomato (Lycopersicon esculentum Mill.) from UV-B <strong>ir</strong>radiation................... 240<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis,<br />

O. D. Petronienë. The dynamics of some organic substances of<br />

red beet ‘Kamuoliai’ at flowering induction and evocation stages .................. <strong>25</strong>1<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius. Agrobiological<br />

evaluation of plants for green manure and it’s inffluence on yield ............... 261<br />

D. Kavaliauskaitë. Influence of herbicide Boxer 800 EC<br />

(Prosulfocarb 800 gl -1 ) on edible onion crop weeding and harvest ............... 270<br />

G. Samuolienë, P. Duchovskis. Dynamics and role of<br />

phytohormones in common caraway after flowering induction ........................ 278<br />

J. Jankauskienë, A. Brazaitytë. Physiological aspects of<br />

cucumber crop density ......................................................................................... 286<br />

B. Szwejkowska, P. Duchovskis. Response of several cultivars<br />

of sowing pea to fungicide-insecticide dressings and herbicides .......................... 295<br />

V. A. Ðlapakauskas, E. Kazlauskas <strong>ir</strong> S. Glioþeris.<br />

Effect of carboxylic acid hydrazid derivatives on the adventitious roots<br />

formation and photosynthetic electron transport in Phaseolus vulgaris .............. 305<br />

E. Dambrauskienë. Productivity of eastern purple coneflower<br />

(Echinacea purpurea L. moench) applying intensive growing technologies ..... 316<br />

357


B. Szwejkowska, P. Duchovskis. Effect of climatic conditions and<br />

seed dressing on the yield and protein content in seeds of pea ............................ 322<br />

R. Vyðniauskienë, Z. Janèys, R. Spalinskas. Impact of low<br />

temperature on superoxide dismutase (SOD) activity of frost resistant<br />

hybrids of potatoes .............................................................................................. 331<br />

Guidelines for the preparation and submission of articles to the volumes of<br />

scientific works „Sodininkystë <strong>ir</strong> darþininkystë“ .................................................... 350<br />

358


359


ISSN 0236-4212<br />

Mokslinis leidinys<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto <strong>ir</strong><br />

Lietuvos þemës ûkio universiteto mokslo darbai<br />

SODININKYSTË IR DARÞININKYSTË. T.<strong>25</strong>(4). 1-384.<br />

Redaktorës <strong>ir</strong> korektorës: Jolanta KRIÛNIENË, Danguolë VANAGAITË<br />

Kompiuteriu maketavo Graþina NARUÐIENË<br />

SL 1070. 2006 08 <strong>25</strong> 24 sp. l T<strong>ir</strong>aþas 200 egz.<br />

Iðleido Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas,<br />

LT-54333 Babtai, Kauno r.<br />

Spausdino UAB „Judex“ leidykla-spaustuvë, Europos pr. 122,<br />

LT-46351 Kaunas<br />

Uþsakymo Nr. 4<strong>25</strong>.<br />

360

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!