23.01.2015 Views

sodininkystė ir daržininkystė 25(4)

sodininkystė ir daržininkystė 25(4)

sodininkystė ir daržininkystė 25(4)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR LIETUVOS<br />

ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI<br />

SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF HORTICULTURE<br />

AND LITHUANIAN UNIVERSITY OF AGRICULTURE<br />

SODININKYSTË IR DARÞININKYSTË<br />

<strong>25</strong>(4)<br />

Eina nuo 1983 m.<br />

Published since 1983<br />

Babtai – 2006


UDK 634/635 (06)<br />

Redaktoriø kolegija<br />

Editorial Board<br />

Doc. dr. Èeslovas BOBINAS – p<strong>ir</strong>mininkas (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (LSDI, biomedicinos mokslai, agronomija),<br />

dr. Edite KAUFMANE (Latvija, Dobelës sodo augalø selekcijos stotis, biomedicinos mokslai,<br />

biologija), dr. Aleksandras KMITAS (LÞÛU, biomedicinos mokslai, agronomija),<br />

dr. Laimutis RAUDONIS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Vidmantas STANYS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Andrzej SADOWSKI (Varðuvos ÞÛA, biomedicinos mokslai, agronomija),<br />

dr. Audrius SASNAUSKAS (LSDI, biomedicinos mokslai, agronomija),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIÈIUS (LÞÛU, biomedicinos mokslai, agronomija).<br />

Redakcinë mokslinë taryba<br />

Editorial Scientific Council<br />

Doc. dr. Èeslovas BOBINAS – p<strong>ir</strong>mininkas (Lietuva),<br />

prof. habil. dr. Pavelas DUCHOVSKIS (Lietuva), dr. Kalju KASK (Estija),<br />

dr. Edite KAUFMANE (Latvija), prof. habil. dr. Zdisùaw KAWECKI (Lenkija),<br />

prof. habil.dr. Albinas LUGAUSKAS (Lietuva), habil. dr. Maria LEJA (Lenkija),<br />

prof. habil. dr. Lech MICHALCZUK (Lenkija), prof. habil. dr. Andrzej SADOWSKI (Lenkija),<br />

dr. Audrius SASNAUSKAS (Lietuva), prof. dr. Ala SILAJEVA (Ukraina),<br />

prof. habil. dr. Alg<strong>ir</strong>das SLIESARAVIÈIUS (Lietuva),<br />

prof. habil. dr. Vidmantas STANYS (Lietuva), prof. dr. Viktor TRAJKOVSKI (Ðvedija).<br />

Redakcijos adresas:<br />

Address of the Editorial Office:<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas<br />

LT-54333 Babtai, Kauno r.<br />

Tel. (8~37) 555 210<br />

Faksas: (8~37) 555 176<br />

El. paðtas institutas@lsdi.lt<br />

Lithuanian Institute of Horticulture<br />

LT-54333 Babtai, Kaunas district, Lithuania<br />

Phone: +370-37-555-210<br />

Telefax: +370-37-555-176<br />

E-mail: institutas@lsdi.lt<br />

Leidinio adresas internete www.lsdi.lt<br />

Leidinys cituojamas CAB Internacional <strong>ir</strong> VINITI duomenø bazëse<br />

© Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, 2006<br />

© Lietuvos þemës ûkio universitetas, 2006<br />

2


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

INTRODUKUOTØ OBELØ VEISLIØ BIOLOGINIØ<br />

SAVYBIØ TYRIMAS<br />

Audrius SASNAUSKAS, Dalia GELVONAUSKIENË,<br />

Bronislovas GELVONAUSKIS, Jûratë Bronë ÐIKÐNIANIENË,<br />

Gintarë ÐABAJEVIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>tos deðimties<br />

introdukuotø veisliø obelø (Malus domestica Borkh.) biologinës savybës. Ávertinta<br />

vaismedþiø su M.26 poskiepiu (4 x 2,5 m) fenologija, þiedø <strong>ir</strong> ûgliø paðalimas, vaismedþiø<br />

augumas, atsparumas rauplëms (Venturia inaequalis (Cke) Wint.), filostiktozei<br />

(Phyllosticta mali Pr. at Del.), vëþiui (Nectria galligena Bres.) bei fotosintezës<br />

pigmentø kiekis.<br />

Nustatyta, kad anksèiausiai þydëti baigia ‘Bolotovskoje’, vëliausiai – ‘Antej’,<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ vaismedþiai. Nuo pavasario<br />

ðalnø maþiausiai nukenèia ‘Katja’ vaismedþiø þiedai. Iðtvermingi þiemà yra ‘Pamiatj<br />

Siubarovoj’ obelø ûgliai. Maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

Rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’ <strong>ir</strong> ‘Sveþestj’ obelys. Filostiktozei atsparios<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ bei ‘Verbnoje’, vëþiui – ‘Sveþestj’<br />

obelys. Didþiausias fotosintezës pigmentø kiekis nustatytas veisliø ‘Sveþestj’ <strong>ir</strong> ‘Antej’<br />

lapuose, o maþiausias – ‘Kurnakovskoje’.<br />

Reikðminiai þodþiai: augumas, atsparumas ligoms, fenologija, fotosintezës pigmentai,<br />

obelys, veislës.<br />

Ávadas. Obelys (Malus domestica Borkh.) yra pagrindinë pasaulio verslinës sodininkystës<br />

kultûra. Lietuvoje jos uþima 76 proc. visø auginamø vaismedþiø ploto<br />

(Raudonis & Valiuðkaitë, 2003). Pastaraisiais metais verslinë sodininkystë intensyvinama<br />

sparèiais tempais (Sansavini <strong>ir</strong> kt., 2005; Cåäîâ, 2005; Ðabajevienë <strong>ir</strong> kt.,<br />

2006). Siekiama auginti veisles, kuriø vaismedþiai iðsisk<strong>ir</strong>tø derlingumu, iðtvermingumu<br />

þiemà, iðaugintø ekologiðkus, aukðtos kokybës, transportabilius, geros iðvaizdos,<br />

skanius <strong>ir</strong> paklausius rinkoje vaisius (Uselis, 2005).<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute iðt<strong>ir</strong>ta daug áva<strong>ir</strong>ios kilmës obelø<br />

veisliø (Bandaravicius <strong>ir</strong> kt., 2000; Bandaravicius <strong>ir</strong> kt., 2001; Sasnauskas <strong>ir</strong> kt.,<br />

2001; Sasnauskas <strong>ir</strong> kt., 2003; Sasnauskas <strong>ir</strong> kt., 2005; Sasnauskas <strong>ir</strong> kt., 2006).<br />

3


Obelø veislës t<strong>ir</strong>iamos kompleksiðkai, parenkami optimalûs poskiepio <strong>ir</strong> áskiepio deriniai,<br />

nustatomos geriausios sodø konstrukcijos (Uselis, 2001; Uselis, 2005).<br />

Darbo tikslas – iðt<strong>ir</strong>ti introdukuotø obelø veisliø su M.26 poskiepiu biologines<br />

savybes.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2006 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinta deðimties obelø veisliø dvimeèiai sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. Obelø veislës ‘Bolotovskoje’, ‘Kurnakovskoje’, ‘Jubiliar’,<br />

‘Sveþestj’ (Rusija), ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ (Baltarusija),<br />

‘Katja’ (Ðvedija) t<strong>ir</strong>tos kartu su ‘Antej’ (Baltarusija) bei ‘Delikates’ (Lenkija),<br />

áraðytomis á Nacionaliná augalø veisliø sàraðà.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet vaismedþiai purkðti nuo ligø<br />

fungicidais (5–6 kartus), o nuo kenkëjø – insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimo metais meteorologinës sàlygos buvo palankios<br />

arba vidutiniðkai palankios obelims þiemoti <strong>ir</strong> augti bei grybinëms ligoms vystytis <strong>ir</strong><br />

plisti. 2003 m., palyginti su daugiameèiais duomenimis, krituliø liepos mënesá iðkrito<br />

42,9 mm daugiau nei áprasta. 2004 m. uþregistruotos ankstyvos pavasario ðalnos<br />

(nuo -0,3°C iki -4,9°C), o kovo mënesio III deðimtadienio oro temperatûra buvo 3,1<br />

°C aukðtesnë uþ daugiametæ vidutinæ. 2005 m. geguþës mënesá iðkrito 22,8 mm krituliø<br />

daugiau nei daugiametis vidurkis.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatyta vaismedþiø þydëjimo tarpsniai<br />

(þydëjimo pradþia, masinio þydëjimo pradþia <strong>ir</strong> pabaiga, þydëjimo pabaiga); þiedø <strong>ir</strong><br />

ûgliø paðalimas (balais, 1–9); vaismedþiø augumas (medþio aukðtis (m), vainiko skersmuo<br />

(m), kamieno skersmuo 50 cm aukðtyje (cm), vainiko projekcijos plotas (m 2 ));<br />

atsparumas rauplëms, filostiktozei, vëþiui (balais, 0–5) bei fotosintezës pigmentai:<br />

chlorofilø <strong>ir</strong> karotinoidø kiekis (mg m -2 nedþiovintø lapø). Fotosintezës pigmentø<br />

(a, b chlorofilø <strong>ir</strong> karotinoidø) kiekis þalioje lapø masëje buvo nustatytas 100% acetono<br />

ekstrakte spektrofotometriniu Wettstein metodu (Beadle, 1987) spektrofotometru<br />

„Genesys 6“ (ThermoSpectronic, JAV). Tyrimo duomenys biometriðkai ávertinti<br />

dispersinës analizës metodais (Tarakanovas, Raudonius, 2003) naudojant ANOVA<br />

statistinæ programà.<br />

Rezultatai. Vegetacija. Þiediniø pumpurai sprogimo tarpsnis truko nuo 7 iki 15<br />

dienø. Tai priklausë nuo veislës <strong>ir</strong> meteorologiniø sàlygø. Anksèiausiai þiediniai pumpurai<br />

pradëjo sprogti balandþio mën. 11 d., vëliausiai – balandþio mën. <strong>25</strong> d. Obelø<br />

þiediniai pumpurai pradëjo sprogti vidutiniðkai balandþio mën. 15–20 dienomis.<br />

T<strong>ir</strong>tø veisliø vaismedþiai vegetacijos pabaigos tarpsnis truko 31 dienà. Anksèiausia<br />

vegetacijos pabaigos data – spalio mën. <strong>25</strong> d., vëliausia – lapkrièio mën. <strong>25</strong> d.<br />

Vidutinë obelø vegetacijos pabaigos data kito nuo spalio 30 d. iki lapkrièio 20 d.<br />

Þydëjimo tarpsniai. Atsiþvelgiant á veislæ, vidutinë obelø þydëjimo pradþia uþregistruota<br />

nuo geguþës mën. 13 d. iki geguþës mën. 16 dienos (1 lentelë).<br />

4


Veislë<br />

Cultivars<br />

1 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø þydëjimo tarpsniai<br />

Table 1. Dates of apple cultivars blossoming<br />

Babtai, 2000–2005 m.<br />

Þydëjimo<br />

pradžia,<br />

mën., d.<br />

Beginning of<br />

blossoming (month,<br />

day)<br />

Masiško<br />

þydëjimo pradþia,<br />

mën., d.<br />

Beginning of full<br />

blossoming (month,<br />

day)<br />

Masiško<br />

þydëjimo<br />

pabaiga, mën., d.<br />

End of full<br />

blossoming (month,<br />

day)<br />

Þydëjimo<br />

pabaiga, mën., d.<br />

End of blossoming<br />

(month, day)<br />

‘Antej’ 05-16 05-19 05-22 05-26<br />

‘Bolotovskoje’ 05-15 05-18 05-21 05-23<br />

‘Delikates’ 05-16 05-19 05-23 05-<strong>25</strong><br />

‘Jubiliar’ 05-15 05-19 05-22 05-24<br />

‘Katja’ 05-14 05-19 05-22 05-24<br />

‘Kovalenkovskoje’ 05-15 05-20 05-23 05-<strong>25</strong><br />

‘Kurnakovskoje’ 05-13 05-16 05-21 05-23<br />

‘Pamiatj Siubarovoj’ 05-16 05-19 05-23 05-<strong>25</strong><br />

‘Svežestj’ 05-15 05-19 05-23 05-<strong>25</strong><br />

‘Verbnoje’ 05-16 05-19 05-23 05-<strong>25</strong><br />

Veisliø vidurkis<br />

Mean<br />

05-15 05-19 05-22 05-<strong>25</strong><br />

R 05 /LSD 05 1,83 1,37 1,09 1,94<br />

T<strong>ir</strong>tos obelø veisliø grupës vaismedþiai masiðkai pradëjo þydëti vidutiniðkai geguþës<br />

16–20 dienomis. Masiðko þydëjimo pabaiga – vidutiniðkai geguþës 21–23 diena.<br />

Vidutinis masiðko þydëjimo tarpsnis truko 5–8 dienas. Anksèiausia vidutinë þydëjimo<br />

pabaigos data – geguþës 23 d., vëliausia – geguþës 26 d. Trumpiausiai þydëjo<br />

t<strong>ir</strong>tos obelø veisliø grupës ‘Bolotovskoje’ (8 dienas), ilgiausiai – ‘Antej’, ‘Katja’,<br />

‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ (10 dienø) vaismedþiai.<br />

Þiedø <strong>ir</strong> ûgliø paðalimas. 2003 m. pavasará stipriausiai paðalo (3,5 balo) ‘Pamiatj<br />

Siubarovoj‘ veislës þiedai. Kitø veisliø þiedai paðalo maþiau (2 balai). 2004 m. pavasario<br />

ðalnos stipriai paþeidë obelø þiedus (4,5–6,6 balo). 2003 m. metø þiemà stipriausiai<br />

paðalo veislës ‘Katja’ (4,2 balo) <strong>ir</strong> ‘Delikates’ (2,4 balo) ûgliai. 2004 m. taip pat<br />

stipriausiai paðalo veislës ‘Katja’ (2,9 balo) ûgliai (2 lentelë).<br />

Vaismedþiø augumas. Aðtuntaisiais augimo metais vidutinis vaismedþiø aukðtis,<br />

atsiþvelgiant á veislæ, buvo nuo 2,93 iki 3,28 m (aukðèiausi ‘Verbnoje’, ‘Antej’ <strong>ir</strong><br />

‘Katja’, þemiausi –‘Bolotovskoje’ <strong>ir</strong> ‘Delikates’ vaismedþiai) (3 lentelë). Obelø vainikø<br />

skersmuo kito nuo 2,31 iki 2,96 m. Plaèiausi vainikai – ‘Jubiliar’, ‘Verbnoje’ <strong>ir</strong><br />

‘Bolotovskoje’, siauriausi – ‘Delikates’, ‘Sveþestj’ <strong>ir</strong> ‘Antej’ vaismedþiø. Vaismedþiø,<br />

kuriø aukðtis <strong>ir</strong> vainiko plotis buvo ribojami genint, kamieno skersmuo tiksliau<br />

atspindëjo augimo stiprumà. Aðtuntaisiais metais kamienø skersmenys kito nuo 19<br />

iki 27,8 cm. Obelø veisliø grupëje augiausios buvo ‘Jubiliar’ <strong>ir</strong> ‘Verbnoje’, silpniausio<br />

augumo – ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

5


2 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø þiedø bei ûgliø paðalimas balais<br />

Table 2. Cold injury of apple cultivar flowers and one year old shoots, scores<br />

Babtai, 2003–2004 m.<br />

Veislë<br />

Cultivars<br />

Þiedø paðalimas pavasario ðalnø<br />

metu balais<br />

Flower injury in spring frost (scores)<br />

Ûgliø paðalimas þiemà balais<br />

Shoot injury in winter (scores)<br />

2003 m. 2004 m. 2003 m. 2004 m.<br />

‘Antej’ 1,8 ± 0,81 5,9 ± 1,07 1,0 ± 0,00 1,7 ± 0,19<br />

‘Bolotovskoje’ 1,0 ± 0,00 5,1 ± 1,40 1,8 ± 0,<strong>25</strong> 2,2 ± 0,40<br />

‘Delikates’ 1,0 ± 0,00 5,4 ± 0,97 2,4 ± 0,30 1,7 ± 0,39<br />

‘Jubiliar’ 1,4 ± 0,20 4,6 ± 1,75 1,8 ± 0,40 1,0 ± 0,00<br />

‘Katja’ 1,0 ± 0,00 4,8 ± 1,32 4,2 ± 0,26 2,9 ± 0,78<br />

‘Kovalenkovskoje’ 1,1 ± 0,09 6,6 ± 0,67 1,0 ± 0,00 1,7 ± 0,34<br />

‘Kurnakovskoje’ 1,6 ± 0,02 4,5 ± 1,<strong>25</strong> 1,3 ± 0,19 1,0 ± 0,00<br />

‘Pamiatj<br />

3,5 ± 0,60 6,3 ± 1,28 1,1 ± 0,10 1,0 ± 0,00<br />

‘Siubarovoj’<br />

‘Svežestj’ 1,0 ± 0,00 6,1 ± 1,57 1,1 ± 0,00 1,7 ± 0,19<br />

‘Verbnoje’ 1,8 ± 0,39 6,0 ± 1,62 1,7 ± 0,26 2,0 ± 0,85<br />

3 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø augumas<br />

Table 3. Tree growth of apple cultivars<br />

Babtai, 2006 m.<br />

Veislë<br />

Cultivars<br />

Vaismedþiø<br />

aukštis<br />

Tree height, m<br />

Vainiko<br />

skersmuo<br />

Crown diameter, m<br />

Vainiko<br />

projekcijos plotas<br />

Crown projection<br />

area, m 2<br />

Kamieno<br />

skersmuo<br />

Trunk diameter, cm<br />

‘Antej’ 3,20 abcd * 2,50 ab 4,96 b 22,1 bc<br />

‘Bolotovskoje’ 2,96 ab 2,96 e 6,89 i 24,4 cd<br />

‘Delikates’ 2,93 a 2,31 a 4,16 a 19,1 ab<br />

‘Jubiliar’ 3,10 abcd 2,90 cde 6,62 h 27,8 f<br />

‘Katja’ 3,<strong>25</strong> bcd 2,55 abc 5,08 c 22,0 bc<br />

‘Kovalenkovskoje’ 3,01 abcd 2,76 bcde 5,85 f 26,1 def<br />

‘Kurnakovskoje’ 3,03 abcd 2,66 bcde 5,32 d 24,6 cdef<br />

‘Pamiatj Siubarovoj’ 3,00 abcd 2,70 bcde 5,78 e 21,6 abc<br />

‘Svežestj’ 3,10 abcd 2,50 ab 4,95 b 19,0 a<br />

‘Verbnoje’ 3,28 d 2,80 bcde 6,2 g 27,0 def<br />

Veisliø vidurkis<br />

Mean<br />

3,08 2,66 5,58 23,4<br />

6


Vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui. T<strong>ir</strong>toje veisliø grupëje<br />

rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ obelys<br />

(4 lentelë.). Rauplëms santykinai atsparios ‘Katja’, ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’<br />

<strong>ir</strong> ‘Verbnoje’ (maksimalus lapø paþeidimas 1–2 balai) obelys. Kontroliniø<br />

veisliø ‘Antej’ bei ‘Delikates’ vaismedþiai jautrûs rauplëms (maksimalus lapø paþeidimas<br />

3–4 balai).<br />

Filostiktozës simptomø nepastebëta ant ‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’<br />

bei ‘Verbnoje’ vaismedþiø lapø. Kitø t<strong>ir</strong>tø obelø lapus filostiktozë paþeidë labai<br />

maþai (iki 1 balo).<br />

Vëþio simptomø pastebëta ant visø t<strong>ir</strong>tø obelø veisliø vaismedþiø kamienø (1–5<br />

balai), iðskyrus veislës ‘Sveþestj’ vaismedþius.<br />

4 lentelë. T<strong>ir</strong>tø obelø veisliø vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui<br />

Table 4. Apple tree resistance to scab, apple blotch and European cancer<br />

Babtai, 2003–2005 m.<br />

Rauplës<br />

Scab<br />

Filostiktozë<br />

Apple blotch<br />

Europinis vëþys<br />

European cancer<br />

min. – min. –<br />

vidutinis<br />

Veislë vidutinis<br />

maks. maks.<br />

þaizdø vidutinis<br />

min.-maks.<br />

–<br />

Cultivars pažeidimas<br />

pažeidimas pažeidimas<br />

skaièius, pažeidimo pažeidimas<br />

balais<br />

balais balais<br />

vnt. balas balais<br />

average score<br />

average average score min–max.<br />

of injury<br />

min. – max. min. – max.<br />

number of of injury score injury<br />

score injury score injury<br />

lesions<br />

‘Antej’ 1,5 1–3 0,1–1 1,2 0,4 1–5<br />

‘Bolotovskoje’ 0 0 0–1 1,2 2,6 3–4<br />

‘Delikates’ 2,4 1-4 0–1 0,2 0,7 1–2<br />

‘Jubiliar’ 0 0 0–0,1 1,4 1,8 1–5<br />

‘Katja’ 0,8 0,1–2 0 3 1,5 1–3<br />

‘Kovalenkovskoje’ 0,9 0,1–1 0 0,8 0,5 1–2<br />

‘Kurnakovskoje’ 0 0 0 0,4 0,4 1–3<br />

‘Pamiatj Siubarovoj’ 1,1 1–2 0–1 1,6 2,1 2–4<br />

‘Svežestj’ 0 0 0–1 0 0 0<br />

‘Verbnoje’ 1 1 0 1,2 0,7 1–2<br />

R 05 /LSD 05<br />

Fotosintezës pigmentai. Chlorofilo a kiekis áva<strong>ir</strong>iø veisliø lapuose áva<strong>ir</strong>avo nuo<br />

293 iki 456 mg m -2 (1 pav.). Didþiausias chlorofilo a kiekis nustatytas ‘Sveþestj’<br />

(456 mg m -2 ) <strong>ir</strong> ‘Antej’ (4<strong>25</strong> mg m -2 ) veisliø lapuose, o maþiausias – ‘Kurnakovskoje’<br />

(293 mg m -2 ). Didþiausias chlorofilo b (117 mg m -2 ) <strong>ir</strong> karotinoidø (atitinkamai<br />

175 <strong>ir</strong> 166 mg m -2 ) kiekis taip pat nustatytas ‘Sveþestj’ <strong>ir</strong> ‘Antej’ veisliø lapuose.<br />

Maþiausias fotosintezës pigmentø kiekis nustatytas ‘Kurnakovskoje’ veislës lapuose:<br />

chlorofilo b – 70 mg m -2 , o karotinoidø – 124 mg m -2 (1 pav.).<br />

7


1 pav. Fotosintezës pigmentø kiekis obelø lapuose<br />

Fig. 1. Amount of photosynthetic pigments in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Chlorofilø a <strong>ir</strong> b santykis áva<strong>ir</strong>avo nuo 3,3 iki 4,3 (2 pav.). Didþiausias chlorofilø<br />

a <strong>ir</strong> b santykis nustatytas ‘Kurnakovskoje’ (4,3) <strong>ir</strong> ‘Sveþestj‘ (4,0) veisliø, maþiausias<br />

– ‘Kovalenkovskoje’ (3,3) veislës vaismedþiø lapuose.<br />

2 pav. Chlorofilø a <strong>ir</strong> b santykis obelø lapuose<br />

Fig. 2. Ratio of chlorophylls a, b in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Praëjusio ðimtmeèio pabaigoje selekcininkai sukûrë daug naujø obelø<br />

veisliø (Menegazzo, Williams, 1988; Sansavini <strong>ir</strong> kt., 2005). Rinkoje vyrauja geros<br />

iðvaizdos, ilgai besilaikantys, kokybiðki geltoni, raudoni, þali bei 2–3 spalvø obuoliai.<br />

Taèiau prie vietos agroklimato sàlygø obelø veislës prisitaiko labai nevienodai (Bandaravièius<br />

<strong>ir</strong> kt., 2001; Sasnauskas <strong>ir</strong> kt., 2006).<br />

Lietuvos agroklimato sàlygomis pavasario ðalnø metu maþiausiai nukenèia ‘Katja’<br />

vaismedþiø þiedai. Nustatyta, kad iðtvermingiausios þiemà ‘Pamiatj Siubarovoj’<br />

obelys. Panaðius tyrimø rezultatus yra gavæ <strong>ir</strong> kiti autoriai (Ñåäîâ <strong>ir</strong> kt., 2005). Tai<br />

8


odo, kad ðios veislës labai atsparios abiotiniams faktoriams. Ávertinus minëtus poþymius,<br />

galima teigti, kad pastarøjø veisliø adaptyvumo lygis yra aukðtas.<br />

Augalo ðeimininko jautrumas ligoms pas<strong>ir</strong>eiðkia jas sukelianèiø patogenø epifitotijos<br />

metais (MacHardy, 1996). Maksimalus paþeidimø balas rodo potencialø augalo<br />

atsparumo ligoms lygá. Tyrimø rezultatai parodë, kad dalis t<strong>ir</strong>tø veisliø nes<strong>ir</strong>go<br />

rauplëmis. Tai nulëmë veislës genetinë prigimtis – monogeninis atsparumas rauplëms<br />

(genas Vf). Lietuvos agroklimato sàlygomis obelys labiau serga rauplëmis <strong>ir</strong><br />

vëþiu negu filostiktoze. T<strong>ir</strong>tø obelø veisliø vaismedþius rauplës paþeidë nuo 0 iki 4,<br />

vëþys – nuo 0 iki 5, filostiktozë – nuo 0 iki 1 (4 lentelë). Galime daryti prielaidà, kad<br />

t<strong>ir</strong>tø obelø atsparumà filostiktozei gali lemti genetinë kontrolë arba tai, kad Lietuvos<br />

filostiktozës sukëlëjo populiacijoje vyrauja av<strong>ir</strong>ulentiðki neagresyvûs patogeno kamienai.<br />

Veislës ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþest’ imunios rauplëms.<br />

Veislës ‘Kurnakovskoje’ vaismedþiai nes<strong>ir</strong>go rauplëmis <strong>ir</strong> filostiktoze. Tyrimø<br />

laikotarpiu veislës ‘Verbnoje’, ‘Katja’, ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’ atsparumas<br />

rauplëms buvo stabilus. Rauplëms jautriausi veisliø ‘Antej’ <strong>ir</strong> ‘Delikates’<br />

vaismedþiai.<br />

Lietuvos agroklimato sàlygos labai palankios europiniam vëþiui vystytis <strong>ir</strong> plisti.<br />

Ið t<strong>ir</strong>tø veisliø grupës vëþys nepaþeidë veislës ‘Sveþestj’ vaismedþiø, o ‘Bolotovskoje’,<br />

‘Pamiatj Siubarovoj’, ‘Jubiliar’, ‘Katja’ vaismedþiai buvo jautriausi vëþio patogenui.<br />

Nustatyta, kad veislë ‘Kurnakovskoje’ atspari rauplëms <strong>ir</strong> filostiktozei, ‘Sveþestj’<br />

– rauplëms <strong>ir</strong> europiniam vëþiui.<br />

Iðtyrus vaismedþiø augumo rodiklius, maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’<br />

obelys.<br />

Obelø, kaip <strong>ir</strong> kitø augalø, produktyvumo potencialà lemia optimalus fotosintezës<br />

pigmentø kiekis <strong>ir</strong> santykis lapuose. Chlorofilai <strong>ir</strong> karotinoidai fotosintezës procese<br />

atlieka specifines funkcijas, todël jø kiekis <strong>ir</strong> tam tikras santykis bûtini, kad fotosintezë<br />

vyktø efektyviai (Datt, 1998; Zarzo-Tejada <strong>ir</strong> kt., 2000). Obelø produktyvumà<br />

lemia daugelis rodikliø, taip pat <strong>ir</strong> chlorofilø <strong>ir</strong> karotinoidø kiekis lapuose. Ðie<br />

fotosintezës pigmentai – lapø fiziologinio aktyvumo indikatoriai (Curran <strong>ir</strong> kt., 1990).<br />

Daugiausia fotosintezës pigmentø nustatyta veisliø ‘Sveþestj‘ <strong>ir</strong> ‘Antej’ lapuose. Taip<br />

pat didelis ðiø veisliø chlorofilø a <strong>ir</strong> b santykis. Maþiausiai fotosintezës pigmentø<br />

nustatyta veislës ‘Kurnakovskoje’ lapuose, taèiau ðios veislës didþiausias chlorofilø a<br />

<strong>ir</strong> b santykis.<br />

Iðvados. 1. Anksèiausiai þydëti baigia ‘Bolotovskoje’, vëliausiai – ‘Antej’, ‘Katja’,<br />

‘Kovalenkovskoje’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’ vaismedþiai.<br />

2. Pavasario ðalnø metu maþiausiai nukenèia ‘Katja’ vaismedþiø þiedai. Þiemà<br />

iðtvermingiausi ‘Pamiatj Siubarovoj’ vaismedþiai.<br />

3. Maþiausiai augios yra ‘Sveþestj’ <strong>ir</strong> ‘Delikates’ obelys.<br />

4. Rauplëms imunios ‘Bolotovskoje’, ‘Jubiliar’, ‘Kurnakovskoje’ <strong>ir</strong> ‘Sveþestj’<br />

obelys. Filostiktozei atsparios ‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ bei ‘Verbnoje’,<br />

vëþiui – ‘Sveþestj’ obelys. Kompleksiniu atsparumu rauplëms <strong>ir</strong> filostiktozei<br />

iðsisk<strong>ir</strong>ia veislës ‘Kurnakovskoje’ o rauplëms <strong>ir</strong> europiniam vëþiui – ‘Sveþestj’ vaismedþiai.<br />

9


5. Daugiausia fotosintezës pigmentø nustatyta veisliø ‘Sveþestj’ <strong>ir</strong> ‘Antej’, o<br />

maþiausiai – ‘Kurnakovskoje’ lapuose.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravicius A., Gelvonauskienë D., Sasnauskas A. Evaluation of apple cultivars<br />

// Estonian agricultural university. Proceedings of the international conference Fruit<br />

production and fruit breeding. Tartu, 2000. Vol. 207. P. 94–98.<br />

2. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø<br />

biologiniø <strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(1).<br />

P. 3–15.<br />

3. Beadle C. I. Plant growth analyses // J. Coombs, D. O. Hall, S. P. Long, J. M. O.<br />

Scurlock (eds.). Techniques in bioproductivity and photosynthesis. 1987. P. 20–<strong>25</strong>.<br />

4. Curran P. J., Dungan J. L., Gholz H. L. Exploring the relationship between reflectance<br />

red edge and chlorophyll content in slash pine // Tree Physiol. 1990. Vol. 7. P. 33–48.<br />

5. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

6. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2005. 211 p.<br />

7. MacHardy W. E. Apple scab. Biology, epidemiology and management. APS Press.<br />

St. Paul. Minesota, 1996. 632 p.<br />

8. Menegazzo G., Williams W. T. Evaluation of new apple varieties in the highlands of<br />

Guatemala // Acta Hort. 1988. Vol. 232. P. 74–75.<br />

9. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

T. 22(3). P. 3–14.<br />

10. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

11. Sasnauskas A., Gelvonauskienë D., Bandaravièius A. F<strong>ir</strong>st results of biologically<br />

and economically important traits of introduced apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. T. 20(3)–2. P. 317–324.<br />

12. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. Evaluation of<br />

biologically and economically important traits of apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. T. 22(3). P. 3<strong>25</strong>–334.<br />

13. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. B., Ðabajevienë<br />

G. Introdukuotø obelø veisliø biologinës savybës // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(1). P. 3–12.<br />

14. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J. B., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars<br />

// Fruit science. 2005. Vol. 222. P. 20–<strong>25</strong>.<br />

15. Ðabajevienë G., Uselis N., Duchovskis P. ‘Auksis’ veislës obelø su P 22 poskiepiu<br />

fotosintetinës pigmentø sistemos formavimas áva<strong>ir</strong>iø konstrukcijø soduose // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(1). P. 23–28.<br />

16. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Metodinë priemonë. Akademija, 2003. 57 p.<br />

10


17. Uselis N. Obelø su þemaûgiu poskiepiu biologiniø-ûkiniø savybiø tyrimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. T. 24(4). P. 22–32.<br />

18. Uselis N. Sodo konstrukcijø átaka þemaûgiø obelø augumui // Sodininkystë <strong>ir</strong><br />

darþininkystë. Babtai, 2001. T. 20(1). P. 35–43.<br />

19. Zarco-Tejada P. J., Miller J. R., Mohammed G. H., Noland T. L. Chlorophyll fluorescence<br />

effects on vegetation apparent reflectance: I Leaf-level measurements and model<br />

simulation // Rem. Sens. Env<strong>ir</strong>on. 2000. Vol. 74. P. 582–595.<br />

20. Ëó÷øèå ñîðòà ïëîäîâûõ è ÿãîäíûõ êóëúòóð ÂÍÈÈÑÏÊ (ðåä. Å. Í. Cåäîâ).<br />

ÂÍÈÈÑÏÊ. Îðåë, 2005. 124 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF BIOLOGICAL TRAITS OF APPLE<br />

CULTIVARS<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, P. Duchovskis<br />

Summary<br />

In 1999–2006 at the Lithuanian Institute of Horticulture phenology, blossoming<br />

abundance and shoot injury, growth, resistance to scab (Venturia inaequalis (Cke)<br />

Wint.), apple blotch (Phyllosticta mali Pr. at Del.), European cancer (Nectria galligena<br />

Bres.) and photosynthetic pigments of fruits were studied in 10 new apple<br />

(Malus domestica Borkh.) cultivars. Trees were grafted on M.26 rootstock and<br />

grown in an orchard at a spacing of 4 x 2.5 m.<br />

Investigations showed that early blossomed cvs. ‘Bolotovskoje’, late – ‘Antej’,<br />

‘Katja’, ‘Kovalenkovskoje’, ‘Kurnakovskoje’ and ‘Sveþestj’ apple tree. The results<br />

of the flower resistance to frost showed that cv. ‘Katja’ are the highly resistance.<br />

Winter hardy are cvs. ‘Pamiatj Siubarovoj’ apple shoots. The weakest growth was<br />

in trees of cvs. ‘Sveþestj’ and ‘Delikates’. Immune to scab are cvs. ‘Bolotovskoje’,<br />

‘Jubiliar’ and ‘Sveþestj’. Resistant to apple blotch are cvs. ‘Katja’, ‘Kovalenkovskoje’,<br />

‘Kurnakovskoje’ and ‘Verbnoje’, to European cancer – ‘Sveþestj’. More photosynthetic<br />

pigments were accumulated in apple trees of cvs. ‘Sveþestj’ and ‘Antej’<br />

leaves, less – in ‘Kurnakovskoje’ leaves.<br />

Key words: apple, cultivars, growth, phenology, photosynthetic pigments, resistance<br />

to diseases.<br />

11


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

INTRODUKUOTØ OBELØ VEISLIØ PRODUKTYVUMO<br />

IR VAISIØ KOKYBËS TYRIMAS<br />

Audrius SASNAUSKAS, Dalia GELVONAUSKIENË, Bronislovas<br />

GELVONAUSKIS, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>ta deðimties<br />

veisliø obelø (Malus domestica Borkh.) su M.26 poskiepiu (4 x 2,5 m) produktyvumas,<br />

vaisiø kokybë <strong>ir</strong> cheminë sudëtis.<br />

T<strong>ir</strong>tø obelø veisliø grupëje didþiausià suminá obuoliø derliø iðaugina ‘Antej’ <strong>ir</strong><br />

‘Kovalenkovskoje’ vaismedþiai. Veisliø ‘Sveþestj’ vaisiø vartojimo laikas yra ilgiausias,<br />

o ‘Jubiliar’ – trumpiausias. Stambiausius vaisius iðaugina veisliø ‘Verbnoje’<br />

<strong>ir</strong> ‘Jubiliar’, smulkiausius – ‘Sveþestj’ obelys. Veisliø ‘Delikates’ bei ‘Sveþestj’<br />

vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta geriausiai. Odelës tv<strong>ir</strong>tumu iðsiskyrë ‘Verbnoje’,<br />

‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’, minkðtimo tv<strong>ir</strong>tumu – ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’<br />

obuoliai.<br />

Reikðminiai þodþiai: cheminë sudëtis, obelys, produktyvumas, vaisiø kokybë,<br />

veislës.<br />

Ávadas. Rinka kelia vis naujus obelø veisliø sortimento <strong>ir</strong> vaisiø kokybës reikalavimus.<br />

Per pastaràjá deðimtmetá Europos moksliniai centrai sukûrë daugiau kaip<br />

500 naujø obelø veisliø <strong>ir</strong> jau lenkia Ðiaurës Amerikos, Azijos bei Okeanijos mokslo<br />

institucijas (Sansavini <strong>ir</strong> kt., 2005). Daugelio Europos ðaliø obelø selekcinëse programose<br />

ypaè daug dëmesio sk<strong>ir</strong>iama vaisiø kokybei. Tai svarbi sodininkystës technologijø<br />

grandis <strong>ir</strong> viena aktualiausiø moksliniø tyrimø krypèiø. Veislës turi iðsisk<strong>ir</strong>ti<br />

vaisiø vienodumu, o pastarieji turi bûti patrauklios spalvos <strong>ir</strong> gero skonio, jø minkðtimas<br />

turi bûti standus, cheminë sudëtis gera (Della Strada, Fideghelli, 2002; Bradford,<br />

Alston, 2004). Ðià vaisiø kokybës charakteristikà lemia agroklimato sàlygos,<br />

technologijos bei augintojø profesionalumas.<br />

Darbo tikslas – iðt<strong>ir</strong>ti introdukuotø obelø veisliø su M.26 poskiepiu produktyvumà<br />

<strong>ir</strong> vaisiø kokybæ.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2005 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinti 10 veisliø dvimeèiai obelø sodinukai su M.26 poskiepiu. Sodinimo<br />

schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

12


Tyrimø objektas. Obelø veislës ‘Bolotovskoje’, ‘Kurnakovskoje’, ‘Jubiliar’,<br />

‘Sveþestj’ (Rusija), ‘Kovalenkovskoje’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ (Baltarusija),<br />

‘Katja’ (Ðvedija) t<strong>ir</strong>tos kartu su ‘Antej’ (Baltarusija) bei ‘Delikates’ (Lenkija),<br />

áraðytomis á Nacionaliná augalø veisliø sàraðà.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet, vegetacijos laikotarpiu, vaismedþiai<br />

purkðti nuo ligø fungicidais (5–6 kartus), o nuo kenkëjø – insekticidais (3–4<br />

kartus).<br />

Meteorologinës sàlygos. Tyrimo metais meteorologinës sàlygos buvo palankios<br />

arba vidutiniðkai palankios vaismedþiams augti <strong>ir</strong> derëti. Jos buvo artimos daugiameèiam<br />

vidurkiui, iðskyrus tai, kad 2003 m., palyginti su daugiameèiais duomenimis,<br />

krituliø liepos mënesá iðkrito 42,9 mm daugiau nei áprasta. 2004 m. uþregistruotos<br />

ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C), o kovo mënesio III deðimtadienio<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ daugiametæ vidutinæ. 2005 m. geguþës<br />

mënesá iðkrito 22,8 mm krituliø daugiau nei daugiametis vidurkis.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatyta vaismedþiø derlius (t ha -1 ), vaisiø<br />

pasisk<strong>ir</strong>stymas á klases pagal skersmená (proc.), vaisiø skynimo laikas, laikymosi<br />

pabaiga, vaisiaus masë (g), kokybë (iðvaizda, patrauklumas, bendra kokybë balais) <strong>ir</strong><br />

cheminë sudëtis (t<strong>ir</strong>pios sausosios medþiagos, sausosios medþiagos, titruojamasis<br />

rûgðtingumas, odelës <strong>ir</strong> minkðtimo tv<strong>ir</strong>tumas). Tyrimo duomenys biometriðkai ávertinti<br />

dispersinës analizës metodais (Tarakanovas, Raudonius, 2003) naudojant ANO-<br />

VA statistinæ programà.<br />

Rezultatai. Derlingumas. Visø t<strong>ir</strong>tø obelø veisliø vaismedþiai pradëjo derëti treèiaisiais<br />

metais po to, kai buvo pasodinti á sodà. Veisliø ‘Kovalenkovskoje’ (7,2 t ha -1 )<br />

bei ‘Jubiliar’ (6,3 t ha -1 ) vaismedþiai iðaugino didþiausià derliø, o veisliø ‘Bolotovsko-<br />

1 pav. Suminis vaisiø derlius, t ha -1<br />

Fig. 1. Cumulative yield of apple cultivars (t ha -1 )<br />

Babtai, 2001–2005 m.<br />

13


je’ (0,3 t ha -1 ) <strong>ir</strong> ‘Kurnakovskoje’ (0,4 t ha -1 ) – maþiausià (1 pav.). Ketv<strong>ir</strong>taisiais<br />

augimo sode metais visø veisliø vaismedþiai derëjo negausiai. Penktaisiais augimo<br />

sode metais suminis vaisiø derlius svyravo nuo 0,6 iki 16,1 t ha -1 . Didþiausià suminá<br />

obuoliø derliø ðeðtaisiais augimo sode metais iðaugino ‘Kurnakovskoje’ (23,1 t ha -1 ) <strong>ir</strong><br />

‘Bolotovskoje’ (17,4 t ha -1 ) vaismedþiai. Septintaisiais augimo sode metais visø t<strong>ir</strong>tø<br />

obelø veisliø derlius buvo gana gausus <strong>ir</strong> kito nuo 13,8 iki 36,9 t ha -1 . Veisliø ’Delikates’<br />

(36,9 t ha -1 ) bei ‘Antej’ (36,4 t ha -1 ) vaismedþiai iðaugino didþiausià derliø, o<br />

‘Bolotovskoje’ (13,8 t ha -1 ) <strong>ir</strong> ‘Verbnoje’ (19,3 t ha -1 ) – maþiausià. T<strong>ir</strong>toje obelø<br />

veisliø grupëje didþiausià suminá obuoliø derliø nuo derëjimo pradþios iðaugino ‘Antej’<br />

<strong>ir</strong> ‘Kovalenkovskoje’ (atitinkamai 70,9 <strong>ir</strong> 67 t ha -1 , arba 1,6 <strong>ir</strong> 1,7 karto daugiau<br />

uþ kitø t<strong>ir</strong>tø veisliø vidutiná derliø) vaismedþiai.<br />

Ávertinus penkiø derëjimo metø derliaus vidurkiø duomenis, nustatyta, kad<br />

gausiausiai derëjo veisliø ‘Antej’ (14,2 t ha -1 ) <strong>ir</strong> ‘Kovalenkovskoje’ (13,4 t ha -1 )<br />

obelys (2 pav.). Obelø veisliø ‘Kovalenkovskoje’ (13,4 t ha -1 ), ‘Jubiliar’ (11,3 t ha -1 )<br />

<strong>ir</strong> ‘Katja’ (10,9 t ha -1 ) derlius buvo didesnis uþ t<strong>ir</strong>tø veisliø derliaus vidurká. Ið esmës<br />

prasèiausiai derëjo ‘Kurnakovskoje’ (9,3 t ha -1 ), ‘Sveþestj’ (8,6 t ha -1 ), ‘Bolotovskoje’<br />

(7,9 t ha -1 ) <strong>ir</strong> ‘Pamiatj Siubarovoj’ (6,7 t ha -1 ) veisliø vaismedþiai.<br />

2 pav. Vidutinis vaisiø derlius, t ha -1<br />

Fig. 2. Average fruit yield (t ha -1 )<br />

Babtai, 2001–2005 m.<br />

Pagal skersmená susk<strong>ir</strong>sèius obuolius á prekines klases nustatyta, kad daugumos<br />

t<strong>ir</strong>tø veisliø visi vaisiai buvo aukðèiausios klasës. ‘Katja’, ‘Kovalenkovskoje’ <strong>ir</strong><br />

‘Sveþestj’ veisliø dalis vaisiø (2–6 proc.) atitiko 1 <strong>ir</strong> 2 klases, o veislë ‘Pamiatj Siubarovoj’<br />

iðaugino 2 proc. nerûðiniø vaisiø (1 lentelë). Per 75 mm skersmená turëjusiø<br />

vaisiø daugiausia uþaugino veisliø ‘Delikates’ (54 proc.), ‘Bolotovskoje’ (39 proc.),<br />

‘Verbnoje’ (35 proc.) bei ‘Antej’ (31 proc.), maþiausiai – ‘Katja’ (1 proc.), ‘Kurnakovskoje’<br />

(6 proc.) bei ‘Pamiatj Siubarovoj’ (7 proc.) vaismedþiai.<br />

14


Veislës<br />

Cultivars<br />

1 lentelë. Vaisiø susk<strong>ir</strong>stymas á klases pagal skersmená, %<br />

Table 1. Distribution of fruits to classes according to diameter %<br />

Babtai, 2005 m.<br />

Aukðèiausia klasë<br />

The highest class<br />

per 75 mm<br />

65–75 mm<br />

iš viso<br />

more than 75 mm<br />

sum total<br />

‘Antej’ 31 69 100<br />

‘Bolotovskoje’ 39 61 100<br />

‘Delikates’ 54 46 100<br />

‘Jubiliar’ <strong>25</strong> 75 100<br />

Skynimo laikas, laikymosi pabaiga <strong>ir</strong> vaisiø kokybës rodikliai. T<strong>ir</strong>tø obelø vaisiø<br />

skynimo laikas buvo nevienodas. Anksèiausiai skinami ‘Jubiliar’ (08-<strong>25</strong>), vëliausiai<br />

– ‘Pamiatj Siubarovoj’ (09-27) bei ‘Antej’ (09-28) vaisiai (2 lentelë).<br />

Ilgiausias buvo ‘Sveþestj’ (iki 05-14), trumpiausias – ‘Jubiliar’ (iki 09-15) veislës<br />

vaisiø vartojimo laikas.<br />

Pagal obuoliø vartojimo laikà obelys sugrupuotos á:<br />

– vasariniø veisliø: ‘Jubiliar’. Obuoliai tinka vartoti iki rugsëjo mën.;<br />

– vëlyvø rudeniniø veisliø: ‘Delikates’, ‘Katja’, ‘Kovalenkovskoje’ <strong>ir</strong> ‘Kurnakovskoje’.<br />

Obuoliai tinka vartoti iki gruodþio mën.;<br />

– þieminiø veisliø: ‘Bolotovskoje’. Obuoliø vartojimo laikas pasibaigia vasario mën.;<br />

– vëlyvø þieminiø veisliø: ‘Antej’, ‘Pamiatj Siubarovoj’, ‘Verbnoje’ <strong>ir</strong> ‘Sveþestj’.<br />

Obuoliai tinka vartoti iki kovo mën. <strong>ir</strong> ilgiau.<br />

Stambiausius vaisius iðaugino veisliø ‘Verbnoje’ (207 g) <strong>ir</strong> ‘Jubiliar’ (194 g),<br />

smulkiausius – ‘Sveþestj’ (107 g) vaismedþiai.<br />

T<strong>ir</strong>toms obelø veislëms bûdingi geri (7–7,4 balo) vaisiø kokybës rodikliai. Veisliø<br />

‘Katja’ <strong>ir</strong> ‘Sveþestj’ vaisiø iðvaizda ávertinta geriausiai (7,5 balo), o ‘Pamiatj Siubarovoj’<br />

– prasèiausiai (7,1 balo). Geru skoniu iðsiskyrë veislës ‘Delikates’ (7,5 balo)<br />

obuoliai. Didþiausiu kokybës balu ávertinti veisliø ‘Delikates’ bei ‘Sveþestj’ (7,4 balo)<br />

obuoliai.<br />

Vaisiø cheminë sudëtis. Ið esmës didþiausiu t<strong>ir</strong>piø sausøjø medþiagø kiekiu iðsiskyrë<br />

veislës ‘Sveþestj’ (14,6 proc.) vaisiai (3 lentelë). Titruojamasis áva<strong>ir</strong>iø veisliø<br />

obuoliø rûgðtingumas kito nuo 0,26 iki 0,98 proc. Titruojamojo rûgðtingumo kiekiu<br />

iðsiskyrë ‘Sveþestj’ obuoliai. Daugiausia sausøjø medþiagø sukaupë ‘Kurnakovskoje’<br />

(17,3 proc.), maþiausiai – ‘Verbnoje’ (12,6 proc.) vaisiai.<br />

15<br />

1 <strong>ir</strong> 2 klasës<br />

1 and 2 classes<br />

60–64 mm<br />

‘Katja’ 1 93 94 6<br />

‘Kovalenkovskoje’ 12 86 98 2<br />

‘Kurnakovskoje’ 6 94 100<br />

‘Pamiatj<br />

Siubarovoj’<br />

Nerûðiniai<br />

Not specific<br />

iki 60 mm<br />

up to 60 mm<br />

7 87 94 4 2<br />

‘Svežestj’ 16 81 97 3<br />

‘Verbnoje’ 35 65 100


2 lentelë. Obelø vaisiø skynimo laikas, laikymosi pabaiga <strong>ir</strong> kokybës rodikliai<br />

Table 2. Harvest date, end of storage and fruit quality parameters of apple cultivars<br />

Babtai, 2001–2004 m.<br />

Skynimo<br />

Laikymosi<br />

Vaisiø<br />

Veislës<br />

laikas,<br />

pabaiga, Vaisiø Patrauklum Patrauklum-<br />

Cultivars mën., d.<br />

mën., d. masë<br />

Skonis kokybë<br />

lumas balais<br />

End of Fruit weight,<br />

balais balais<br />

Appearance<br />

Harvest date<br />

Taste (scores)<br />

Quality<br />

storage g (scores)<br />

evaluation<br />

(month, day)<br />

(month, day)<br />

(scores)<br />

‘Antej’ 09-28 f* 03-04 cd 157 c 7,4 cde 7,0 a 7,0 a<br />

‘Bolotovskoje’ 09-21 def 02-12 cd 140 b 7,2 ab 7,3 cd 7,2 b<br />

‘Delikates’ 09-09 ab 12-22 b 147 bc 7,4 cde 7,5 d 7,4 cd<br />

‘Jubiliar’ 08-<strong>25</strong> a 09-15 a 194 e 7,3 bc 7,1 ab 7,2 b<br />

‘Katja’ 09-10 bc 12-18 b 141 b 7,5 de 7,3 cd 7,3 bcd<br />

‘Kovalenkovskoje’ 09-16 bcd 12-24 b 175 f 7,3 bc 7,0 a 7,0 a<br />

‘Kurnakovskoje’ 09-20 c-f 12-23 b 140 b 7,2 ab 7,0 a 7,0 a<br />

‘Pamiatj Siubarovoj’ 09-27 ef 04-05 de 145 bc 7,1 a 7,2 bc 7,2 b<br />

‘Svežestj’ 09-23 def 05-14 e 107 a 7,5 de 7,3 cd 7,4 cd<br />

‘Verbnoje’ 09-<strong>25</strong> def 04-07 de 207 e 7,3 bc 7,2 bc 7,3 bcd<br />

Veisliø vidurkis<br />

Mean<br />

09-19 01-14 155,3 7,32 7,19 7,19<br />

Veislës<br />

Cultivars<br />

3 lentelë. Obelø veisliø vaisiø cheminë sudëtis<br />

Table 3. Biochemical fruit characteristics of apple cultivars<br />

Babtai, 2001–2004 m. vidurkiai / 2001–2004 average<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

16<br />

Titruojamasis<br />

rûgðtingumas<br />

Titratable acidity, %<br />

Sausosios medžiagos<br />

Dry matter, %<br />

‘Antej’ 13,2 0,81 15,4<br />

‘Bolotovskoje’ 13,7 0,38 15,4<br />

‘Delikates’ 11,0 0,31 13,3<br />

‘Jubiliar’ 11,2 0,86 13,3<br />

‘Katja’ 12,1 0,66 13,7<br />

‘Kovalenkovskoje’ 12,3 0,26 15,1<br />

‘Kurnakovskoje’ 12,8 0,61 17,3<br />

‘Pamiatj Siubarovoj’ 12,4 0,82 16,8<br />

‘Svežestj’ 14,6 0,98 16,3<br />

‘Verbnoje’ 12,8 0,65 12,6<br />

Veisliø vidurkis<br />

Mean<br />

12,6 0,63 14,9<br />

R 05 / LSD 05 1,21 0,07 1,90


Odelës tv<strong>ir</strong>tumu iðsiskyrë ‘Verbnoje’ (45,6 kg/cm 2 ), ‘Bolotovskoje’ (45,2 kg/cm 2 )<br />

<strong>ir</strong> ‘Sveþestj’ (44,8 kg/cm 2 ) obuoliai (3 pav). Minkðèiausia buvo ‘Katja’ <strong>ir</strong> ‘Delikates’<br />

obuoliø odelë.<br />

3 pav. Obuoliø odelës tv<strong>ir</strong>tumas, kg/cm 2<br />

Fig. 3. F<strong>ir</strong>mness of apple skin (kg/cm 2 )<br />

Babtai, 2003–2004 m<br />

Minkðtimo tv<strong>ir</strong>tumu iðsiskyrë ‘Bolotovskoje’ (7,7 kg/cm 2 ) <strong>ir</strong> ‘Sveþestj’ (7 kg/cm 2 )<br />

obuoliai. Ið esmës minkðèiausi ‘Kovalenkovskoje’ (3,7 kg/cm 2 ), ‘Delikates’ (4,1 kg/cm 2 ),<br />

‘Katja’ (4,3 kg/cm 2 ) <strong>ir</strong> ‘Jubiliar’ (5,4 kg/cm 2 ) obuoliai (4 pav.).<br />

Minkðtimo tv<strong>ir</strong>tumas / F<strong>ir</strong>mness of flesh, kg/cm 2<br />

4 pav. Obuoliø minkðtimo tv<strong>ir</strong>tumas, kg/cm 2<br />

Fig. 4. F<strong>ir</strong>mness of apple flesh (kg/cm 2 )<br />

Babtai, 2003–2004 m.<br />

17


Aptarimas. Obelø derlingumo tyrimai parodë, kad ‘Antej’ <strong>ir</strong> ‘Kovalenkovskoje’<br />

vaismedþiai iðaugina didþiausià derliø. Panaðius tyrimø rezultatus gavo <strong>ir</strong> Rusijos<br />

mokslininkai (Ñåäîâ <strong>ir</strong> kt., 2004; Ñåäîâ <strong>ir</strong> kt., 2005). Tai rodo ðiø veisliø aukðtà<br />

adaptyvumo lygá. Mûsø tyrimø duomenimis, veislës ‘Pamiatj Siubarovoj’ obelø derlius<br />

buvo negausus. Taèiau Baltarusijos mokslininkai ‘Pamiatj Siubarovoj’ obelø veislæ<br />

iðsk<strong>ir</strong>ia kaip derlingà (Êîçëîâñêàÿ, 2003). Matyt, ðio poþymio atþvilgiu pastarajai<br />

veislei bûdingas nestabilumas, kurá lemia agroklimato sàlygos.<br />

Perd<strong>ir</strong>bimo pramonei reikia nuolat deranèiø obelø, kuriø vaisiuose bûtø daug<br />

cukraus, vidutiniðkai – rûgðèiø, daugiau kaip 1200 mg/l kalio, apie 11 proc. t<strong>ir</strong>piø<br />

sausøjø medþiagø (Fischer <strong>ir</strong> kt., 1999).<br />

Lietuvos agroklimato sàlygomis t<strong>ir</strong>toje veisliø grupëje ‘Delikates’ bei ‘Sveþestj’<br />

veisliø vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta geriausiai. Sk<strong>ir</strong>tingø ðaliø mokslininkø<br />

atliktø tyrimø rezultatai analogiðki (Porebski <strong>ir</strong> kt., 2000; Uselis, 2002; Sasnauskas<br />

<strong>ir</strong> kt., 2003; Ñåäîâ, 2005). Tai rodo aukðtà ðiø veisliø adaptyvumo lygá <strong>ir</strong> jø<br />

augimo arealo plëtimosi galimybæ.<br />

Iðvados. 1. Didþiausià suminá obuoliø derliø iðaugina veisliø ‘Antej’ <strong>ir</strong> ‘Kovalenkovskoje’<br />

vaismedþiai.<br />

2. Ilgiausias ‘Sveþestj’, trumpiausias ’Jubiliar’ vaisiø vartojimo laikas. Stambiausius<br />

vaisius iðaugina veisliø ‘Verbnoje’ <strong>ir</strong> ‘Jubiliar’, smulkiausius – ‘Sveþestj’<br />

vaismedþiai.<br />

3. Veisliø ‘Delikates’ bei ‘Sveþestj’ vaisiø kokybë <strong>ir</strong> cheminë sudëtis ávertinta<br />

geriausiai.<br />

4. Odelës tv<strong>ir</strong>tumu iðsisk<strong>ir</strong>ia ‘Verbnoje’, ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’, minkðtimo<br />

tv<strong>ir</strong>tumu – ‘Bolotovskoje’ <strong>ir</strong> ‘Sveþestj’ obuoliai.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bradford K. J., Alston J. M. Horticultural biotechnology: Challenges for commercial<br />

development // Chronica Horticulturae. 2004. Vol. 44(4). P. 4–8.<br />

2. Della Strada G., Fideghelli C. Le cultivar di pomacee introdote dal 1991–2001 //<br />

L’informatore Agrario. 2002. Vol. 41. P. 65–70.<br />

3. Fischer M., Schüler W., Fischer C., Gerber H. J. Nutzung Pillnitzer apfelsorten für<br />

die herstellung von verarbeitungsprodukten aus biologisch orientiertem Anbau // Erwerbsobstbau.<br />

1999. Vol. 41. P. 93–99.<br />

4. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2005a. 211 p.<br />

5. Porebski S., Ponedzialek W., Rzeznicka B. Porownanie wartosci sensorycznych<br />

owocow osiemnastu odmian jabloni // Zeszyty naukowe instytutu sadownictwa I kwiaciarstwa<br />

w Skierniewicach. 2000. T. 8. P. 355–359.<br />

6. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

7. Sasnauskas A., Gelvonauskienë D., Duchovskis P., Ðikðnianienë J. Evaluation of<br />

biologically and economically important traits of apple cultivars // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. 22(3). P. 3<strong>25</strong>–334.<br />

18


8. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

9. Uselis N. Assessment of productivity and fruit quality of apple cultivars on<br />

rootstock M26 in the fruit bearing orchard // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002.<br />

21(3). P. 14–28.<br />

10. Êîçëîâñêàÿ Ç. À. Ñîâåðøåíñòâîâàíèå ñîðòèìåíòà ÿáëîíè â Áåëà-ðóñè.<br />

Ìèíñê, 2003. 167 ñ.<br />

11. Ëó÷øèå ñîðòà ïëîäîâûõ è ÿãîäíûõ êóëüòóð ÂÍÈÈÑÏÊ (ðåä. Å. Í.<br />

Ñåäîâ). ÂÍÈÈÑÏÊ. Îðåë, 2005. 124 ñ.<br />

12. Ñîðòà ÿáëîíè è ãðóøè (ðåä. Å. Í. Ñåäîâ). ÂÍÈÈÑÏÊ. Îðåë, 2004. 208 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY, FRUIT QUALITY AND CHEMICAL<br />

CHARACTERISTIC OF INTRODUCED APPLE CULTIVARS<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis, P. Viðkelis<br />

Summary<br />

Productivity, fruit quality and biochemical characteristic of 10 new apple (Malus<br />

domestica Borkh.) cultivars were studied at the Lithuanian Institute of Horticulture<br />

in 1999–2005. Trees were grafted on M.26 rootstock at a spacing of 4 x 2.5 m.<br />

Investigations showed that apple trees of cvs. ‘Antej’ and ‘Kovalenkovskoje’<br />

produced the highest cumulative apple yield. The longest period of storage was that<br />

of cv. ‘Sveþestj’, the shortest one – of cv. ‘Jubiliar’ fruits. The largest fruits have<br />

cvs. ‘Verbnoje’ and ‘Jubiliar’, the smallest – cv. ‘Sveþestj’. Fruits of cv. ‘Delikates’<br />

and ‘Sveþestj’ had better quality and chemical characteristic in comparison with<br />

other apple cultivars. ‘Verbnoje’, ‘Bolotovskoje’ and ‘Sveþestj’ were distinguished<br />

for f<strong>ir</strong>mness of skin, ‘Bolotovskoje’ and ‘Sveþestj’ – for f<strong>ir</strong>mness of flesh.<br />

Key words: apple, chemical characteristic, cultivars, fruit quality, productivity.<br />

19


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ SELEKCINIØ NUMERIØ BIOLOGINIØ<br />

SAVYBIØ TYRIMAS<br />

Dalia GELVONAUSKIENË, Audrius SASNAUSKAS,<br />

Bronislovas GELVONAUSKIS, Jûratë Bronë ÐIKÐNIANIENË,<br />

Gintarë ÐABAJEVIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

2000–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>tos ðeðiolikos<br />

selekciniø numeriø obelø (Malus domestica Borkh.) biologinës savybës. Ávertinta<br />

vaismedþiø su M.26 poskiepiu (4 x 2,5 m) fenologija, þiedø <strong>ir</strong> ûgliø paðalimas, vaismedþiø<br />

augumas, atsparumas rauplëms (Venturia inaequalis (Cke) Wint.), filostiktozei<br />

(Phyllosticta mali Pr. at Del.), vëþiui (Nectria galligena Bres.) bei fotosintezës<br />

pigmentø kiekis lapuose.<br />

Nustatyta, kad anksèiausiai þydëti baigia Nr. 19646, o vëliausiai – Nr. 19942 <strong>ir</strong><br />

kontrolinës veislës ‘Antej’ vaismedþiai. Pavasario ðalnoms atspariausi Nr. 20427,<br />

jautriausi – Nr. 20016, Nr. 19436 <strong>ir</strong> Nr. 19709 <strong>ir</strong> veislës ‘Antej’ vaismedþiai. Iðtvermingiausi<br />

þiemà Nr. 19436, Nr. 19646, Nr. 19707, Nr. 20429, Nr. 20978, neiðtvermingiausi<br />

– Nr. 19399, Nr. 20242, Nr. 20427 vaismedþiai. Visi t<strong>ir</strong>ti selekciniai numeriai<br />

imunûs rauplëms. Europinis vëþys nepaþeidë Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427,<br />

rauplëmis <strong>ir</strong> vëþiu – Nr. 19436. Kompleksiniu atsparumu visoms t<strong>ir</strong>toms ligoms<br />

pasiþymëjo Nr. 20016 <strong>ir</strong> Nr. 20429. Selekciniai numeriai skyrësi vaismedþiø aukðèiu,<br />

vainiko skersmeniu <strong>ir</strong> jo projekcijos plotu bei kamieno skersmeniu. Þemiausiø<br />

vaismedþiø aukðtis siekë 2,70, aukðèiausiø – 3,73 m. Maþiausias vainiko skersmuo –<br />

2,53 m, projekcijos plotas – 4,77 m 2 . Nustatyti selekciniø numeriø sk<strong>ir</strong>tumai pagal<br />

chlorofilo a, b <strong>ir</strong> karotinoidø kieká vaismedþiø lapuose. Didþiausias fotosintezës<br />

pigmentø kiekis nustatytas selekcinio numerio 22170 obelø lapuose, maþiausias –<br />

20429 obelø lapuose.<br />

Reikðminiai þodþiai: augumas, atsparumas ligoms, fenologija, fotosintezës pigmentai,<br />

obelys, selekciniai numeriai.<br />

Ávadas. Obelys (Malus domestica Borkh.) – plaèiausiai pasaulyje auginama sodø<br />

kultûra. Lietuvoje jos uþima 76 proc. visø auginamø vaismedþiø ploto (Raudonis<br />

& Valiuðkaitë, 2003). Baltijos ðaliø regiono agroklimato sàlygomis vaismedþiai paðàla<br />

þiemà, nukenèia nuo grybiniø ligø: raupliø (Venturia inaequalis (Cke) Wint., filostik-<br />

20


tozës (Phyllosticta mali Pr. at Del.) (Ikase & Dubravs, 2001) <strong>ir</strong> europinio vëþio<br />

(Nectria galligena Bres), (Kozlovskaya, 2001; Valiuðkaitë <strong>ir</strong> kt., 2003).<br />

Introdukuotø obelø savybës <strong>ir</strong> prisitaikymas prie sk<strong>ir</strong>tingø agroklimato sàlygø<br />

yra labai nevienodas (Bandaravièius <strong>ir</strong> kt., 2001; Uselis, 2001; Sasnauskas <strong>ir</strong> kt.<br />

2005). Daugumos introdukuotø komerciniø obelø veisliø, auginamø mûsø klimato<br />

zonoje, vaisiø kokybë pablogëja, vaismedþiai paðàla. Sodininkystës poreikiams tenkinti<br />

reikia vis naujø veisliø, kuriø biologinës savybës turi tiesioginës átakos vaismedþiø<br />

produktyvumui. Ypaè reikðmingos veislës, labai gerai prisitaikanèios prie nepalankiø<br />

biotiniø <strong>ir</strong> abiotiniø veiksniø (Kozlovskaya <strong>ir</strong> kt., 2000; Sansavini <strong>ir</strong> kt., 2005).<br />

Obelø selekcija <strong>ir</strong> toliau iðlieka aktuali mokslo kryptis. Lietuvoje kryptingi obelø selekcijos<br />

darbai pradëti 1952 m. LSD institute sukurtos komercinës obelø veislës:<br />

‘Auksis’, ‘Noris’, ‘Ðtaris’, ‘Aldas’. 2005 m. sukurtos rauplëms imunios veislës:<br />

‘Skaistis’ <strong>ir</strong> ‘Rudenis’ (Sasnauskas <strong>ir</strong> kt., 2005). Pastaruoju metu þinoma daugiau<br />

kaip 50 genø, lemianèiø áva<strong>ir</strong>ius obelø poþymius (Ïîíoìàðåíêî, Äçþáèíà, 2001).<br />

Obelø selekcijos sëkmë priklauso nuo genetiniø ðaltiniø áva<strong>ir</strong>ovës, tikslingo <strong>ir</strong> sëkmingo<br />

jø panaudojimo kryþminant. Vienas ið prioritetiniø obelø selekcijos programos<br />

tikslø – sukurti imunias <strong>ir</strong> atsparias ligoms, iðtvermingas þiemà, iðauginanèias geros<br />

kokybës vaisius, tinkamas komercinei <strong>ir</strong> ekologinei sodininkystei veisles.<br />

Darbo tikslas – iðt<strong>ir</strong>ti LSD institute sukurtø obelø selekciniø numeriø su M.26<br />

poskiepiu biologines savybes.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 1999–2006 m. Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto obelø veisliø tyrimo sode. 1999 m.<br />

pavasará pasodinta 16 selekciniø numeriø dvimeèiai obelø sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. T<strong>ir</strong>ta 16 perspektyviø obelø hibridø, sukurtø Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118, (‘Prima’ x ‘Idared’), Nr. 19436,<br />

Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235, Nr. 20239,<br />

Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170, (‘Noris’ x ‘Prima’), Nr. 20490 (‘Auksis’ x<br />

‘Prima’) Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x ‘Idared’) kartu su á<br />

Nacionaliná augalø veisliø sàraðà áraðytomis ‘Antej’ <strong>ir</strong> ‘Delikates’ obelø veislëmis.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos,<br />

2005). Nuo ligø vaismedþiai kasmet purkðti fungicidais (5–6 kartus), nuo kenkëjø<br />

– insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimo laikotarpiu buvo sk<strong>ir</strong>tingos meteorologinës sàlygos.<br />

Jos turëjo átakos vaismedþiø biologinëms savybëms bei ligø sukëlëjø vystymuisi<br />

<strong>ir</strong> plitimui. Oro temperatûra <strong>ir</strong> krituliø kiekis tyrimo metais buvo artimi daugiameèiams<br />

vidurkiams, iðskyrus tai, kad 2001 m. liepos mënuo buvo 4°C ðiltesnis, <strong>ir</strong> per<br />

mënesá iðkrito 64 mm krituliø daugiau, palyginti su daugiameèiu vidurkiu. 2002 m.<br />

pavasaris buvo ðiltesnis, taèiau sausesnis uþ vidutiná daugiametá. B<strong>ir</strong>þelá krituliø iðkrito<br />

63 mm daugiau, palyginti su daugiameèiu vidurkiu. 2003 m. pavasará <strong>ir</strong> vasaros<br />

pradþioje oro temperatûra buvo artima daugiametei, o krituliø iðkrito maþiau. B<strong>ir</strong>þelio<br />

<strong>ir</strong> liepos mënesiais orai buvo ðilti <strong>ir</strong> drëgni. 2004 m. kovo mënesio III dekados<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ vidutinæ daugiametæ. Vaismedþiø þydëjimo<br />

laikotarpiu uþregistruotos ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C).<br />

21


2005 m. geguþës mënesá iðkrito 22,8 mm krituliø daugiau nei daugiametis vidurkis.<br />

2002–2003 m. gruodþio mën. temperatûra buvo 5°C þemesnë, o vasario – 1,7°C<br />

aukðtesnë uþ daugiametá vidurká. 2003–2004 m. gruodis <strong>ir</strong> vasaris buvo atitinkamai<br />

1,9°C <strong>ir</strong> 2,5°C ðiltesni, o sausis 2,1°C ðaltesnis uþ daugiametá vidurká.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Obelø hibridø biologiniø savybiø tyrimas<br />

atliktas pagal EUFRIN Obelø <strong>ir</strong> kriauðiø veisliø tyrimo metodikà. Nustatyti vaismedþiø<br />

þydëjimo tarpsniai (þydëjimo pradþia, gausiausio þydëjimo pradþia <strong>ir</strong> pabaiga,<br />

þydëjimo pabaiga), þiedø <strong>ir</strong> ûgliø paðalimas (balais), vaismedþiø augumas (medþio<br />

aukðtis, m, vainiko skersmuo, m, kamieno skersmuo 50 cm aukðtyje, cm, vainiko<br />

projekcijos plotas, m 2 ), atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui (balais) bei fotosintezës<br />

pigmentai (chlorofilø <strong>ir</strong> karotinoidø kiekiai, mg m -2 ). Fotosintezës pigmentø<br />

(chlorofilø a, b <strong>ir</strong> karotinoidø) kiekis þalioje lapø masëje buvo nustatytas 100% acetono<br />

ekstrakte spektrofotometriniu Wettstein metodu (Beadle, 1987) spektrofotometru<br />

„Genesys 6“ (ThermoSpectronic, JAV). Selekciniø hibridø atsparumo rauplëms<br />

genetinei kontrolei nustatyti naudoti DNR þymenys. Tam tikslui obelø bendroji<br />

DNR iðsk<strong>ir</strong>ta ið skystame azote homogenizuoto lapo audinio (0,2 g) taikant CTAB<br />

metodà (Doyle <strong>ir</strong> Doyle, 1990). Vf1 geno specifiniam DNR fragmentui amplifikuoti<br />

buvo naudota pradmenø pora:<br />

VF1SPF (5’-TCTATCTCAGTAGTTTCTATAATTCC-3’),<br />

VF1SPR (5’-GTAGTTACTCTCAAGATTAAGAACTT-3’). Pradmenys parinkti<br />

pagal Genø banko (NCBI) sekà AJ297739, publikuotà internete http://<br />

www.ncbi.nlm.nih.gov/entrez/. PGR sàlygos: DNR denatûracija atlikta 94°C temperatûroje<br />

4 min., toliau 35 ciklø – 94°C 1 min. 45 s, 47°C 1 min. 45 s, 72°C 2 min.<br />

30 s, pabaigoje – 72°C 6 min. PGR reakcijai naudota 1,<strong>25</strong> vieneto polimeraziø miðinio<br />

High Fidelity PCR Enzyme Mix* (fermentas). Reakcija vyko esant 1,5 mM MgCl 2<br />

,<br />

1 µM pradmenø <strong>ir</strong> 0,2 mM dNTP.<br />

Eksperimentiniai duomenys biometriðkai ávertinti dispersinës analizës metodais<br />

(Tarakanovas, Raudonius, 2003), naudojant ANOVA statistinæ programà.<br />

Rezultatai. Þydëjimo tarpsniai <strong>ir</strong> trukmë. Tyrimo laikotarpiu kontrolinës veislës<br />

<strong>ir</strong> selekciniai numeriai pradëdavo þydëti vidutiniðkai geguþës 13–17 dienomis (1<br />

lentelë). Anksèiausiai þydëjo selekciniai numeriai 19436, 19646 <strong>ir</strong> 20427. Praëjus 2–<br />

5 dienoms nuo vaismedþiø þydëjimo pradþios, uþregistruotas jø masinis þydëjimas.<br />

Greièiausiai masiðkai suþydëjo sëjinuko Nr. 19707 vaismedþiai. Vëliausiai prasidëjo<br />

Nr. 19942 vaismedþiø masinio þydëjimo tarpsnis. Masinis þydëjimas truko 2–6 dienas.<br />

Trumpiausias jis buvo Nr. 19942, ilgiausias – Nr. 19436 <strong>ir</strong> Nr. 20978 vaismedþiø.<br />

Kontrolinës veislës <strong>ir</strong> selekciniai numeriai baigë þydëti geguþës 23–26 dienomis.<br />

Þydëjimo tarpsnis truko 8–11 dienø. Trumpiausiai, 8 dienas, þydëjo Nr. 19709 vaismedþiai,<br />

dar 6 sëjinukø <strong>ir</strong> kontrolinës veislës ‘Delikates’ – 9 dienas.<br />

Þiedø <strong>ir</strong> ûgliø paðalimas. 2003 m. pavasario ðalnos stipriausiai paþeidë selekciniø<br />

numeriø 19436 <strong>ir</strong> 20978 obelø þiedus. Jø paþeidimai ávertinti atitinkamai 3,5 <strong>ir</strong> 3,0 balais<br />

(2 lentelë). 2004 m. pavasará ðalnos stipriai paþeidë (3,7–6,9 balo) visø t<strong>ir</strong>tø obelø þiedus.<br />

Maþiausiai nukentëjo Nr. 20427 þiedai. 2003 m. þiemà stipriausiai paðalo selekciniø numeriø<br />

20242 <strong>ir</strong> 19399 obelø ûgliai (atitinkamai 4,4 <strong>ir</strong> 4,0 balai). Kontrolinës veislës ‘Antej’ <strong>ir</strong><br />

Nr. 19436 ûgliai paðalo maþiausiai (1,0 <strong>ir</strong> 1,1 balo). 2004 m. stipriausiai paðalo (3,2 balo)<br />

selekcinio numerio 20235, silpniausiai (1,0 balas) – 19436 obelø ûgliai.<br />

22


Selekciniai<br />

numeriai<br />

Selections<br />

1 lentelë. Obelø selekciniø numeriø vaismedþiø þydëjimo tarpsniai<br />

Table 1. Dates of blossoming time of apple selections<br />

Babtai, 2000–2005 m.<br />

Þydëjimo<br />

pradžia,<br />

mën., d.<br />

Beginning of<br />

blossoming, month,<br />

day<br />

Masinio þydëjimo<br />

pradþia, mën., d.<br />

Beginning of full<br />

blossoming, month,<br />

day<br />

Masinio þydëjimo<br />

pabaiga, mën., d.<br />

The end of full<br />

blossoming, month,<br />

day<br />

Þydëjimo<br />

pabaiga,<br />

mën., d.<br />

The end of<br />

blossoming,<br />

month, day<br />

Þydëjimo<br />

trukmë<br />

dienomis<br />

Length of<br />

blossoming<br />

duration, days<br />

19399 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

19436 05-13 05-17 05-23 05-24 11<br />

19646 05-13 05-16 05-21 05-23 10<br />

19707 05-16 05-18 05-21 05-<strong>25</strong> 9<br />

19709 05-16 05-19 05-22 05-24 8<br />

19942 05-17 05-21 05-23 05-26 9<br />

20016 05-16 05-19 05-22 05-<strong>25</strong> 9<br />

20235 05-14 05-18 05-22 05-24 10<br />

20239 05-16 05-19 05-23 05-<strong>25</strong> 9<br />

20242 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

20427 05-13 05-18 05-22 05-24 11<br />

20429 05-15 05-18 05-22 05-<strong>25</strong> 10<br />

20490 05-15 05-19 05-23 05-<strong>25</strong> 10<br />

20978 05-14 05-18 05-24 05-<strong>25</strong> 11<br />

22170 05-14 05-18 05-22 05-<strong>25</strong> 11<br />

21118 05-15 05-18 05-22 05-24 9<br />

‘Delikates’ 05-16 05-19 05-23 05-<strong>25</strong> 9<br />

‘Antej’ 05-16 05-19 05-22 05-26 10<br />

Vidurkis<br />

Mean<br />

05-15 05-18 05-22 05-24 9,9<br />

R 05 / LSD 05 1,99 3,37 2,01 1,01 0,96<br />

Vaismedþiø augumas. Septintaisiais augimo sode metais aukðèiausi buvo<br />

Nr. 20016 <strong>ir</strong> Nr. 20235 vaismedþiai (atitinkamai 3,73 <strong>ir</strong> 3,50 m) (3 lentelë). Þemiausi<br />

buvo Nr. 19707 (2,70 m.) <strong>ir</strong> Nr. 19436 (2,86 m) medeliai. Didþiausiu vainiko skersmeniu<br />

(atitinkamai 3,40 <strong>ir</strong> 3,26 m) <strong>ir</strong> vainiko projekcijos plotu (atitinkamai 9,07 <strong>ir</strong><br />

8,34 m 2 ) pasiþymëjo Nr. 20239 <strong>ir</strong> Nr. 20429. Minëtø selekciniø numeriø vainiko<br />

rodikliai buvo ið esmës didesni uþ kontroliniø veisliø vainiko rodiklius. Maþiausiu<br />

vaismedþio vainiko skersmeniu (atitinkamai 2,53, 2,56 <strong>ir</strong> 2,56 m) bei projekcijos<br />

plotu (atitinkamai 4,77, 5,16 <strong>ir</strong> 5,16 m 2 ) ið selekciniø numeriø iðsiskyrë Nr. 20490,<br />

Nr. 20427 <strong>ir</strong> Nr. 20242. Pastarøjø selekciniø numeriø vaismedþiø kamieno skersmenys<br />

buvo maþiausi arba vieni maþiausiø.<br />

23


2 lentelë. Obelø selekciniø numeriø vaismedþiø þiedø bei ûgliø paðalimas balais<br />

Table 2. Blossoms and one shoot injury of apple selections, scores<br />

Babtai, 2003–2004 m.<br />

Selekciniai Nr.<br />

<strong>ir</strong> veislës<br />

Selections and<br />

cultivars<br />

Þiedø paðalimas pavasario ðalnø<br />

metu balais<br />

Injury of blossoms caused by spring<br />

frosts, scores<br />

Ûgliø paðalimas þiemà balais<br />

Injury of one year shoots caused by<br />

winter cold, scores<br />

2003 m. 2004 m. 2003 m. 2004 m.<br />

19399 1,5 ± 0,54 5,6 ± 1,24 4,0 ± 0,19 2,0 ± 0,39<br />

19436 3,5 ± 0,60 6,3 ± 1,28 1,1 ± 0,10 1,0 ± 0<br />

19646 2,1 ± 0,62 4,5 ± 1,17 1,4 ± 0,16 2,1 ± 0,45<br />

19707 1,0 ± 0 5,7 ± 1,68 1,4 ± 0,14 2,3 ± 0,34<br />

19709 1,0 ± 0 6,2 ± 0,74 2,6 ± 0,30 2,6 ± 1,<strong>25</strong><br />

19942 - - - -<br />

20016 1,0 ± 0 6,9 ± 1,34 2,0 ± 0,43 1,9 ± 0,30<br />

20235 1,8 ± 0,81 4,6 ± 1,72 1,9 ± 0,26 3,2 ± 1,91<br />

20239 - 4,7 ± 1,56 2,0 ± 0,42 2,9 ± 0,40<br />

20242 1,7 ± 0,43 5,4 ± 1,80 4,4 ± 0,51 2,6 ± 0,30<br />

20427 - 3,7 ± 1,62 3,2 ± 0,57 2,0 ± 0,19<br />

20429 1,0 ± 0 5,5 ± 1,13 1,4 ± 0,07 2,3 ± 0,62<br />

20490 1,4 ± 0,36 4,6 ± 1,44 2,2 ± 0,31 1,9 ± 0,22<br />

20978 3,0 ± 1,40 5,4 ± 1,04 1,6 ± 0,26 1,8 ± 0,62<br />

22170 2,5 ± 0,32 4,9 ± 1,61 2,9 ± 0,58 1,4 ± 0,22<br />

21118 - 5,3 ± 1,58 2,0 ± 0,57 1,4 ± 0,22<br />

‘Delikates’ 1,0 ± 0 5,4 ± 0,97 2,4 ± 0,30 1,7 ± 0,39<br />

‘Antej’ 1,8 ± 0,81 5,9 ± 1,07 1,0 ± 0 1,7 ± 0,19<br />

24


3 lentelë. Obelø selekciniø numeriø vaismedþiø augumas<br />

Table 3. Growth vigour of apple tree selections<br />

Babtai, 2006 m.<br />

Selekciniai<br />

Nr. <strong>ir</strong><br />

Vainiko projekcijos<br />

Vaismedþiø aukðtis Vainiko skersmuo<br />

Kamieno skersmuo<br />

veislës<br />

plotas<br />

Tree height, m Crown diameter, m<br />

Selections<br />

Crown section area, m 2 Trunk diameter, cm<br />

and cultivars<br />

19399 3,43 efgh* 2,93 ef 6,73 d 28,0 efg<br />

19436 2,86 ab 2,83 cdef 6,29 c <strong>25</strong>,0 cd<br />

19646 3,0 bcd 2,60 bcd 5,30 g 29,0 fghi<br />

19707 2,70 a 3,13 fghi 7,69 m 31,5 i<br />

19709 3,06 bcd 2,93 ef 6,73 d 27,0 def<br />

19942 3,16 cde 2,90 def 6,60 j 26,8 def<br />

20016 3,73 h 3,03 efg 7,18 l 26,9 def<br />

20235 3,50 fgh 2,86 cdef 6,43 i <strong>25</strong>,1 cd<br />

20239 3,20 def 3,40 i 9,07 o 30,0 ghi<br />

20242 3,03 bcd 2,56 abc 5,16 b 23,1 bc<br />

20427 3,03 bcd 2,56 abc 5,16 b 22,6 b<br />

20429 3,20 def 3,26 ghi 8,34 n 29,1 fghi<br />

20490 3,03 bcd 2,53 ab 4,77 e <strong>25</strong>,6 de<br />

20978 3,16 cde 2,83 cdef 6,29 c 26,2 de<br />

22170 3,26 def 3,00 efg 7,03 k 22,8 bc<br />

21118 3,06 bcd 2,76 bcde 5,96 h 27,6 efg<br />

‘Delikates’ 2,90 abc 2,3 a 4,16 a 19,1 a<br />

‘Antej’ 3,20 def 2,5 ab 4,96 f 22,1 b<br />

Vidurkis<br />

Mean<br />

3,14 2,83 6,32 <strong>25</strong>,9<br />

* Duomenys apskaièiuoti pagal Dunkano kriterijø / Duncan’s multiple range t-test<br />

Tarp vidurkiø, paþymëtø tomis paèiomis raidëmis, nëra esminiø sk<strong>ir</strong>tumø, kai P=0,05 /<br />

Means followed by the same letter are not significantly different at P=0.5<br />

Vaismedþiø atsparumas rauplëms, filostiktozei <strong>ir</strong> vëþiui. Vizualiai ávertinus vaismedþiø<br />

atsparumà grybinëms ligoms, nustatyta, kad selekciniai numeriai rauplëmis<br />

nes<strong>ir</strong>go, o veislës ‘Delikates’ vaismedþius rauplës labai paþeidë – paþeidimas ávertintas<br />

4 balais, ‘Antej’ veislës – 3 balais (4 lentelë).<br />

<strong>25</strong>


4 lentelë. Obelø selekciniø numeriø vaismedþiø atsparumas grybinëms ligoms<br />

Table 4. Resistance of apple selections to fungal diseases<br />

Babtai, 2003–2005 m.<br />

Selekciniai<br />

Nr. <strong>ir</strong><br />

veislës<br />

Selections<br />

and cultivars<br />

Rauplës<br />

Scab<br />

Filostiktozë<br />

Apple blotch<br />

Europinis vëþys<br />

European cancer<br />

vidutinis min.–maks. min.–maks.<br />

vidutinis<br />

vidutinis<br />

pažeidimas pažeidimas pažeidimas<br />

þaizdø<br />

paþeidimø<br />

balais balais balais<br />

kiekis, vnt.<br />

balas<br />

average<br />

average score min-max. score min-max. score<br />

average score<br />

number of<br />

of injury of injury of injury<br />

of injury<br />

lesions<br />

9399 0 0 0 1,8 0,4 1–3<br />

min.–maks.<br />

pažeidimas<br />

balais<br />

min-max. score<br />

of injury<br />

19436 0 0 0–1 0 0 0<br />

19646 0 0 0 1,5 1,5 1–4<br />

19707 0 0 0 1,0 0,6 1–3<br />

19709 0 0 0–0,1 1,2 1,2 1–3<br />

19942 0 0 0 5,8 3,2 1–5<br />

20016 0 0 0 0 0 0<br />

20235 0 0 0 1,0 0,8 1–2<br />

20239 0 0 0 2,8 1,4 1–3<br />

20242 0 0 0–0,1 1,4 1,0 1–3<br />

20427 0 0 0–1 0,8 0,3 0–1<br />

20429 0 0 0 0 0 0<br />

20490 0 0 0–0,1 1,8 0,7 1–3<br />

20978 0 0 0 1,2 0,8 1–2<br />

22170 0 0 0–0,1 1,2 1,3 1–3<br />

21118 0 0 0–0,1 2,0 0,4 1–3<br />

‘Delikates’ 2,4 1–4 0–1 0,2 0,7 1–2<br />

‘Antej’ 1,5 1–3 0,1–1 1,2 0,4 1–5<br />

26


Atlikus PGR su Vf genui specifiniais VF1SPF, VF1SPR pradmenimis, nustatyta,<br />

kad visi t<strong>ir</strong>ti selekciniai numeriai, kaip <strong>ir</strong> veislë ‘Prima’, kurios atsparumà lemia Vf<br />

genas, turi ðiam genui bûdingà 500 bp DNR fragmentà (1 pav). Rauplëms jautrios<br />

veislës ‘Noris’ vaismedþiai ðio DNR fragmento neturi.<br />

1 pav. Obelø selekciniø numeriø Vf geno fragmento elektroforegrama<br />

Fig. 1. Electrophoregram of Vf gene fragment<br />

1 – 19399; 2 – 19436; 3 – 19646; 4 – 19707; 5 – 19709; 6 – 20016; 7 – 20235; 8 – 19942; 9 –<br />

21118; 10 – 20239; 11 – 20242; 12 – 20427; 13 – 20429; 14 – 20490; 15 – 20978; 16 – 22170;<br />

N – ‘Noris’; P – ‘Prima’; M – DNR grandinës ilgio þymuo O’GeneRuler TM 1 kb DNA Ladder<br />

(fermentas)<br />

Filostiktozë obelø selekciniø numeriø nepaþeidë arba paþeidimai buvo neþymûs.<br />

Visi t<strong>ir</strong>ti selekciniai numeriai, iðskyrus Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429, turëjo<br />

europinio vëþio simptomø. Vëþio sukëlëjui ið esmës jautriausias Nr. 19942. Rauplëmis<br />

<strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427, rauplëmis <strong>ir</strong><br />

vëþiu – Nr. 19436, në viena t<strong>ir</strong>ta liga – Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

Fotosintetiniai pigmentai. Chlorofilo a kiekis áva<strong>ir</strong>iø selekciniø numeriø obelø<br />

lapuose áva<strong>ir</strong>avo nuo 293 iki 466 mg m -2 (2 pav.). Didþiausias (466 mg m -2 ) chlorofilo<br />

a kiekis nustatytas selekcinio numerio 22170 obelø lapuose, maþiausias – 20429<br />

obelø lapuose (293 mg m -2 ). Kontroliniø veisliø ‘Delikates’ <strong>ir</strong> ‘Antej’ obelø lapuose<br />

chlorofilo a kiekis buvo atitinkamai 380 <strong>ir</strong> 4<strong>25</strong> mg m -2 . Didþiausias (134 mg m -2 ) chlorofilo<br />

b kiekis buvo taip pat selekcinio numerio 22170 obelø lapuose, t. y. 29 mg m -2<br />

didesnis nei kontrolinës veislës ‘Delikates’ <strong>ir</strong> 17 mg m -2 – nei ‘Antej’ obelø lapuose.<br />

2 pav. Fotosintezës pigmentø kiekis selekciniø numeriø obelø lapuose<br />

Fig. 2. Amount of photosynthetic pigments in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

27


Maþiausias chlorofilo b (77 mg m -2 ) <strong>ir</strong> karotinoidø (119 mg m -2 ) kiekis nustatytas<br />

selekcinio numerio 20429 obelø lapuose. Didþiausias karotinoidø kiekis (178 mg m -2 )<br />

nustatytas taip pat selekcinio numerio 22170 obelø lapuose. Jis taip pat buvo didesnis<br />

nei kontroliniø veisliø obelø lapuose (2 pav.).<br />

Chlorofilø a <strong>ir</strong> b santykis áva<strong>ir</strong>avo nuo 3,5 iki 4,1 (3 pav.). Didþiausias chlorofilø<br />

a <strong>ir</strong> b santykis nustatytas selekciniø numeriø 20490, 19707, 20239 <strong>ir</strong> 20978, maþiausias<br />

– Nr. 22170 vaismedþiø lapuose. Taèiau esminiø sk<strong>ir</strong>tumø nebuvo.<br />

Selekciniai Nr. <strong>ir</strong> veislës / Selections and cultivars<br />

3 pav. Chlorofilo a <strong>ir</strong> b santykis selekciniø numeriø obelø lapuose<br />

Fig. 3. Relationship of chlorophylls a, b in apple tree leaves<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Obelø þydëjimo laikas yra svarbi jø savybë. Anksti þydintiems vaismedþiams<br />

kyla grësmë, kad jø þiedus paþeis pavasarinës ðalnos. Ðalnø tikimybë yra<br />

didesnë geguþës mënesio pradþioje nei vëlesniais laikotarpiais. Ið t<strong>ir</strong>tø selekciniø numeriø<br />

vëliausiai pradëdavo þydëti Nr. 19942 – praþysdavo vidutiniðkai geguþës 17<br />

dienà (1 lentelë). Dar ðeði t<strong>ir</strong>ti hibridai, kaip <strong>ir</strong> abi kontrolinës veislës, pradëdavo<br />

þydëti dienà anksèiau. Ilgiau þydinèioms obelø veislëms lengviau parinkti veisles dulkininkes.<br />

Ilgiau þydinèios veislës ilgiau þydi kartu, todël didesnë tikimybë, kad tuo<br />

laikotarpiu ar bent jo dalá bus palankios sàlygos vaismedþiams apdulkinti.<br />

Atsparumas pavasario ðalnoms <strong>ir</strong> þiemos ðalèiams yra viena bûtiniausiø obelø<br />

savybiø Lietuvoje. Obelø þiedø atsparumas pavasario ðalnoms priklauso nuo þiedø<br />

iðsivystymo tarpsnio <strong>ir</strong> ðalnos stiprumo. Kai kuriø t<strong>ir</strong>tø selekciniø numeriø vaismedþiai<br />

buvo atsparesni minëtiems neigiamiems aplinkos veiksniams arba jø atsparumas<br />

buvo panaðus á kontroliniø veisliø atsparumà. Nustatytas atsparumo lygis turëtø<br />

bûti pakankamas, kad vaismedþiø produktyvumas mûsø ðalies klimato sàlygomis<br />

bûtø optimalus.<br />

Ekologiniu <strong>ir</strong> komerciniu aspektais vertingiausios yra kompleksiniu atsparumu<br />

ligoms pasiþyminèios obelø veislës (Kellerhals <strong>ir</strong> kt., 2004). Natûraliame sukëlëjo<br />

infekciniame fone, sode, ant selekciniø numeriø vaismedþiø raupliø poþymiø nepastebëta<br />

(4 lentelë). Visø atrinktø selekciniø numeriø vienas ið tëvø buvo veislë ‘Prima’,<br />

turinti Vf genà. Naudojant specifinius Vf genui DNR þymenis, nustatyta, kad<br />

visi t<strong>ir</strong>ti selekciniai numeriai turëjo Vf genui bûdingà DNR fragmentà (2 pav.). Tai<br />

rodo, kad visø hibridø imunumà rauplëms lemia Vf genas.<br />

28


Baltijos ðaliø klimato sàlygos labai palankios europiniam vëþiui plisti <strong>ir</strong> vystytis.<br />

Ið þievës ligø sukëlëjø labiausiai paplitæs N. galligena. Jis paþeidþia jaunus, greitai<br />

auganèius vaismedþius. LSD institute buvo t<strong>ir</strong>tas 20 veisliø atsparumas vëþiui. Nustatyta,<br />

kad visø veisliø vaismedþiai buvo paþeisti ðios ligos sukëlëjo (Valiuðkaitë <strong>ir</strong><br />

kt., 2003). T<strong>ir</strong>tø selekciniø numeriø grupëje vëþiu nes<strong>ir</strong>go Nr. 19496 (‘Katja x ‘Prima’),<br />

Nr. 20016 (‘Prima’ x ‘Idared’) <strong>ir</strong> Nr. 20429 (‘Noris’ x ‘Prima’) vaismedþiai.<br />

Vëþio sukëlëjui ið esmës jautriausias Nr. 19942 (‘Noris’ x ‘Prima’). Nëra iðt<strong>ir</strong>ta obelø<br />

atsparumo vëþiui <strong>ir</strong> filostiktozei genetinë kontrolë. Tikëtina, kad ðiuos poþymius lemia<br />

monogeniniam atsparumui alternatyvus genetinis mechanizmas. Atsparumas áva<strong>ir</strong>ioms<br />

ligoms priklauso nuo sk<strong>ir</strong>tingos genetinës kontrolës. Tai suteikia galimybiø sukurti genotipus,<br />

pasiþyminèius kompleksiniu atsparumu keletui ligø <strong>ir</strong> kenkëjø (Fischer, 2000).<br />

Ið visø LSD institute sukurtø selekciniø numeriø në viena ið t<strong>ir</strong>tø ligø nes<strong>ir</strong>go Nr. 20016<br />

<strong>ir</strong> Nr. 20429. Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go Nr. 19399, Nr. 19646, Nr. 19707,<br />

Nr. 20427, rauplëmis <strong>ir</strong> vëþiu – Nr. 19436.<br />

Obelø veislës, kuriø vaismedþiai yra riboto augumo, ypaè naudingos veisiant<br />

intensyvius verslinius sodus. T<strong>ir</strong>tø selekciniø numeriø vaismedþiø aukðtis tarpusavyje<br />

skyrësi iki vieno metro. Þemiausi buvo Nr. 19707 vaismedþiai, taèiau jø vainiko<br />

skersmuo <strong>ir</strong> projekcijos plotas buvo vieni didþiausiø (3 lentelë). Selekciniai numeriai<br />

(Nr. 20016 <strong>ir</strong> Nr. 20235), kuriø vaismedþiai aukðèiausi, nepasiþymëjo plaèiais vainikais<br />

ar dideliu kamienø skersmeniu.<br />

Augalø produktyvumà lemia glaudþiai susijæ augimo <strong>ir</strong> vystymosi procesai, kuriø<br />

metu keièiasi augalø fotosintezës <strong>ir</strong> kvëpavimo intensyvumas, asimiliacinis plotas,<br />

fotosintetinis potencialas <strong>ir</strong> fotosintezës produktyvumas (Òðåòüÿêîâ, 1998).<br />

Vienas svarbiausiø veiksniø, uþtikrinanèiø augalø fotosintetiná potencialà, yra optimalus<br />

fotosintezës pigmentø kiekis <strong>ir</strong> santykis lapuose (Datt, 1998). Vienas rodikliø,<br />

charakterizuojanèiø augalø bûklæ, yra fotosintetinio aparato darbas, lemiantis pigmentø<br />

kieká lapuose. Mûsø t<strong>ir</strong>tø selekciniø numeriø obelø lapuose fotosintezës pigmentø<br />

kiekis buvo labai áva<strong>ir</strong>us: didþiausias nustatytas selekcinio numerio 22170,<br />

maþiausias – 20429 obelø lapuose. Ðie selekciniai numeriai minëtu rodikliu lenkë<br />

kontrolines veisles ‘Delikates’ <strong>ir</strong> ‘Antej’.<br />

Iðvados. 1. Vertinant t<strong>ir</strong>tø obelø selekciniø numeriø þydëjimo laikà, nustatyta,<br />

kad vëliausia vaismedþiø þydëjimo data yra geguþës 17 diena, o ilgiausias þydëjimo<br />

laikotarpis – 11 dienø.<br />

2. Nuo 2003 m. pavasario ðalnø maþiausiai nukentëjo keturiø selekciniø numeriø<br />

þiedai. Po 2004 m. stipresniø ðalnø vieno hibrido (Nr. 20427) þiedai pas<strong>ir</strong>odë atspariausi.<br />

Selekcinis numeris 19436 iðsiskyrë iðtvermingumu þiemà: jo metûgliai buvo<br />

paþeisti 1–1,4 balo.<br />

3. Selekciniai numeriai imunûs rauplëms. Tai lemia Vf genas. Europinis vëþys<br />

nepaþeidë Nr. 19496, Nr. 20016 <strong>ir</strong> Nr. 20429. Rauplëmis <strong>ir</strong> filostiktoze nes<strong>ir</strong>go<br />

Nr. 19399, Nr. 19646, Nr. 19707, Nr. 20427, rauplëmis <strong>ir</strong> vëþiu – Nr. 19436. Komleksiniu<br />

atsparumu visoms t<strong>ir</strong>toms ligoms pasiþymëjo Nr. 20016 <strong>ir</strong> Nr. 20429.<br />

4. Selekciniai numeriai skyrësi vaismedþiø aukðèiu, vainiko skersmeniu <strong>ir</strong> jo projekcijos<br />

plotu bei kamieno skersmeniu. Þemiausiø vaismedþiø aukðtis siekë 2,70 m<br />

(Nr. 19707), aukðèiausiø – 3,73 m. (Nr. 20016). Maþiausias vainiko skersmuo buvo<br />

2,53 m (Nr. 20490), projekcijos plotas – 4,77 m 2 (Nr. 20490).<br />

29


5. Nustatyti selekciniø numeriø sk<strong>ir</strong>tumai pagal chlorofilo a, b <strong>ir</strong> karotinoidø<br />

kieká vaismedþiø lapuose. Esminiø sk<strong>ir</strong>tumø pagal chlorofilø a <strong>ir</strong> b santyká tarp t<strong>ir</strong>tø<br />

numeriø nenustatyta.<br />

Gauta 2006-11-20<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø biologiniø<br />

<strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1). P. 3–15.<br />

2. Beadle C. I. Plant growth analyses // Coombs J., Hall D. O., Long S. P., Scurlock J.<br />

M. O. (eds.). Techniques in bioproductivity and photosynthesis. 1987. P. 20–<strong>25</strong>.<br />

3. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

4. Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue // Focus. 1990.<br />

12(1). P. 13-15.<br />

5. Fischer C. Multiple resistant apple cultivars and consequences for apple breeding<br />

in the future // ActaHorticulturae. 2000. 538(1). P. 229–234.<br />

6. Ikase, L. & Dumravs, R. Apple breeding for disease resistance in Latvia. Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 265–274.<br />

7. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Babtai:<br />

LSDI, 2005. 211 p.<br />

8. Kellerhals M., Bertschinger L., Gessler C. Use of genetic resources in apple breeding<br />

and for sustainable fruit production // Journal of fruit and ornamental plant research.<br />

2004. Vol. XII. P. 51–62<br />

9. Kozlovskaya Z. Apple genetic resources and the<strong>ir</strong> potential for breeding in Belarus.<br />

// Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 43–49.<br />

10. Kozlovskaya Z. A., Marudo G. M., Ryabtsev A. S. Some results of the apple<br />

breeding programme in Belarus // Acta Horticulturae. 2000. No 538. V. 1. P. 219–223.<br />

11. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

22(3). P. 3–14.<br />

12. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

13. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J. B., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars<br />

// Fruit science. 2005. Vol. 222. P. 20–<strong>25</strong>.<br />

14. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT–PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

15. Uselis N. Assessment of biological and economical trails of 20 apple varieties<br />

on M.26 rootstock in the f<strong>ir</strong>st–fifth years in orchard // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 318–333.<br />

16. Valiuðkaitë A., Raðinskienë A., Uselis N., Raudonis L. Investigation of apple<br />

canker (Nectria galligena Bres.) in intensive medium dwarf apple orchard // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2003. 22(3). P. 194–200.<br />

17. http://www.ncbi.nlm.nih.gov/entrez/<br />

30


18. Ïîíîìàðåíêî Â. Â., Äçþáèíà À. À. Èñïîëüçîâàíèå ìèðîâîé êîëëåê-öèè ÿáëîíè<br />

Âñåðîññèéñêîãî èíñòèòóòà ðàñòåíèåâîäñòâà èì. Í. È. Âàâèëîâà â ñåëåêöèè XXI<br />

âåêà. // Ñîñòîÿíèå è ïåðñïåêòèâû ñåëåêöèè ïëîäîâûõ êóëü-òóð. Ìàòåðèàëû<br />

ìåæäóíàðîäíîé íàó÷íî–ïðàêòè÷åñêîé êîíôåðåíöèè. Ìèíñê, 2001. C. 15–16.<br />

19. Òðåòüÿêîâ Í. Í. Ôèçèîëîãèÿ è áèîõèìèÿ ñåëüñêîõîçÿéñòâåííûõ ðàñòåíèé.<br />

Ìîñêâà, 1998. 639 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF BIOLOGICAL IMPORTANT TRAITS<br />

OF APPLE SELECTIONS<br />

D. Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, P. Duchovskis<br />

Summary<br />

Biological traits of 16 apple (Malus domestica Borkh.) selections were investigated<br />

at the Lithuanian Institute of Horticulture in 2000–2006. Phenology, resistance<br />

of flowers to spring frosts, winterhardiness, apple tree vigour, resistance to scab<br />

(Venturia inaequalis (Cke) Wint.), European canker (Nectria galligena Bres.), apple<br />

blotch (Phyllosticta mali Pr. at Del.) were evaluated and content of pigments in<br />

leaves of apple trees grafted on rootstock M.26 were tested.<br />

It was detected that selection number No. 19464 ended the flowering most early,<br />

No. 19942 and standard cultivar ‘Antej’ – several days later. Flowers of No. 20427<br />

were the most resistant to spring frosts and flowers of No. 20016, No. 19436,<br />

No. 19709 and ‘Antej’ – were the most sensitive. Selection No. 19436 was estimated<br />

as the most winterhardy. Fruit trees of No. 19646, No. 19707, No. 20429,<br />

No. 20978 were fa<strong>ir</strong>ly winterhardy though injuries of one-year-old shoots were little<br />

higher. Winterhardiness of selections No. 19399, No. 20242, No. 20427 were lower.<br />

All investigated selections were immune to apple scab. Apple trees of No. 19496,<br />

No. 20016 and No. 20429 were not damaged by European canker. Symptoms of<br />

scab and apple blotch were not detected for No. 19399, No. 19646, No. 19707 and<br />

No. 20427, to scab and European canker – for No. 19436. Selections No. 20016 and<br />

No. 20429 were resistant to all investigated diseases.<br />

Tested selections differed by tree height, crown diameter, crown section area and<br />

trunk diameter. The height of the lowest trees was 2.70 m and this of the highest –<br />

3.73 m. The lowest crown diameter was 2.53 m and crown section area – 4.77 m 2 .<br />

Significant differences among selections were detected for chlorophyll a, b and carotenoid<br />

content in leaves. Selection No. 22170 had the highest content of photosynthetic<br />

pigments in leaves and No. 20429 – the lowest.<br />

Key words: apple, cultivars, growth, phenology, photosynthetic pigments, resistance<br />

to diseases.<br />

31


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ SELEKCINIØ NUMERIØ PRODUKTYVUMO IR<br />

VAISIØ KOKYBËS TYRIMAS<br />

Dalia GELVONAUSKIENË, Audrius SASNAUSKAS,<br />

Bronislovas GELVONAUSKIS, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas A.Sasnauskas@lsdi.lt<br />

1999–2006 m. t<strong>ir</strong>ta 16 perspektyviø obelø selekciniø numeriø, sukurtø Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118 (‘Prima’ x ‘Idared’),<br />

Nr. 19436, Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235,<br />

Nr. 20239, Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170 (‘Noris’ x ‘Prima’), Nr. 20490<br />

(‘Auksis’ x ‘Prima’), Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x<br />

‘Idared’) kartu su ‘Antej’ <strong>ir</strong> ‘Delikates’ veislëmis. Dvimeèiai obelø sodinukai su M.26<br />

poskiepiu pasodinti 1999 m. pavasará. Sodinimo schema – 4 x 2,5 m, po vienà vaismedá<br />

laukelyje 5 pakartojimais. T<strong>ir</strong>tas vaismedþiø derlius (t/ha), vaisiø skynimo laikas,<br />

laikymasis, vaisiø kokybë <strong>ir</strong> cheminë sudëtis.<br />

Nustatyta, kad didþiausià suminá obuoliø derliø iðaugina ðie selekciniai numeriai:<br />

19436 (vëlyvas þieminis) <strong>ir</strong> 19707 (þieminis). Pagal obuoliø laikymosi laikotarpio<br />

trukmæ selekciniai numeriai sugrupuoti á: vëlyvus rudeninius – Nr. 19646 <strong>ir</strong> Nr. 22170;<br />

þieminius – Nr. 19707, Nr. 19709, Nr. 19942, Nr. 20235, Nr. 20239, Nr. 20242, Nr. 20490;<br />

vëlyvus þieminius – Nr. 19399, Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429, Nr. 20978,<br />

Nr. 21118. Nustatyta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242,<br />

20490, 21118, 19399, 19707, 20429, 20016 vaisiai. Vaisiø dydþio vienodumu iðsiskyrë<br />

Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978. Stambiausius vaisius iðaugino Nr. 22170 (201,3 g)<br />

<strong>ir</strong> Nr. 19646 (199,0 g) vaismedþiai. Tv<strong>ir</strong>èiausia buvo Nr. 19646, Nr. 20242, Nr. 20429,<br />

Nr. 21118 (> 400 N/cm 2 ) vaisiø odelë. Tv<strong>ir</strong>èiausias buvo Nr. 19646 (115 N/cm 2 ).<br />

vaisiø minkðtimas. Ávertinus t<strong>ir</strong>tø poþymiø visumà nustatyta, kad vertingiausi buvo<br />

19436, 19707 obelø selekciniai numeriai. Juos galima registruoti kaip veisles, tinkamas<br />

ekologinei verslinei sodininkystei. Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø<br />

poþymiø genetiniai ðaltiniai.<br />

Reikðminiai þodþiai: cheminë sudëtis, obelys, produktyvumas, selekciniai<br />

numeriai, vaisiø kokybë.<br />

Ávadas. Obelø (Malus domestica Borkh.) selekcijos tikslus lemia rinka <strong>ir</strong><br />

visuomenës poreikiai. Per pastaràjá deðimtmetá Europos moksliniai centrai sukûrë<br />

daugiau kaip 500 naujø obelø veisliø (Sansavini <strong>ir</strong> kt., 2005). Pastaruoju metu pasaulyje<br />

paplitusios obelø veislës – ‘Golden Delicious’, ‘Gala’, ‘Fuji’ <strong>ir</strong> ‘Braeburn’ (Kellerhals<br />

32


<strong>ir</strong> kt., 2004). Introdukuotø obelø veisliø biologinës <strong>ir</strong> ûkinës savybës sk<strong>ir</strong>tingomis<br />

agroklimato sàlygomis yra labai nevienodos (Bandaravièius <strong>ir</strong> kt., 2001; Uselis, 2001;<br />

Sasnauskas <strong>ir</strong> kt., 2005). Mûsø klimato zonoje daugumos introdukuotø komerciniø<br />

obelø veisliø vaisiø kokybë pablogëja, vaismedþiai paðàla. Obelø veislës, pritaikytos<br />

prie tam tikros agroklimato zonos, yra svarbios ekonomine <strong>ir</strong> ekologine prasme<br />

(Kellerhals <strong>ir</strong> kt., 2004). Viena ið pagrindiniø Europos ðaliø obelø selekciniø programø<br />

krypèiø – produktyvumo didinimas <strong>ir</strong> vaisiø kokybës gerinimas. Veislës turi gausiai <strong>ir</strong><br />

kasmet derëti, jø vaisiai turi bûti vienodi, patrauklios spalvos, gero skonio, standaus<br />

minkðtimo, juose turi bûti gausu maisto medþiagø.<br />

Darbo tikslas – iðt<strong>ir</strong>ti Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtø<br />

perspektyviø obelø selekciniø numeriø su M.26 poskiepiu produktyvumà <strong>ir</strong> vaisiø kokybæ.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø vieta. Tyrimai atlikti 2001–2006 m.<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto obelø pomologiniame sode. 1999 m.<br />

pavasará pasodinti 16 selekciniø numeriø dvimeèiai obelø sodinukai su M.26 poskiepiu.<br />

Sodinimo schema – 4 x 2,5 m, po vienà vaismedá laukelyje 5 pakartojimais.<br />

Tyrimø objektas. T<strong>ir</strong>ta 16 perspektyviø obelø hibridø, sukurtø Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institute: Nr. 19399, Nr. 21118, (‘Prima’ x ‘Idared’),<br />

Nr. 19436, Nr. 19707, Nr. 19709, Nr. 19646 (‘Katja’ x ‘Prima’), Nr. 19942, Nr. 20235,<br />

Nr. 20239, Nr. 20242, Nr. 20427, Nr. 20429, Nr. 22170, (‘Noris’ x ‘Prima’), Nr. 20490<br />

(‘Auksis’ x ‘Prima’), Nr. 20978 (‘Tellissaare’ x ‘Prima’), Nr. 20016 (‘Prima’ x<br />

‘Idared’) kartu su áraðytomis á Nacionaliná augalø veisliø 2006 m sàraðà ‘Antej’ <strong>ir</strong><br />

‘Delikates’ obelø veislëmis.<br />

Sodo prieþiûra. Vaismedþiai priþiûrëti pagal LSDI priimtas intensyvias obelø <strong>ir</strong><br />

kriauðiø auginimo technologijas (Uselis, 2005). Kasmet vegetacijos laikotarpiu vaismedþiai<br />

purkðti nuo ligø fungicidais (5–6 kartus), nuo kenkëjø – insekticidais (3–4 kartus).<br />

Meteorologinës sàlygos. Tyrimø laikotarpiu buvo sk<strong>ir</strong>tingos meteorologinës<br />

sàlygos. Jos turëjo átakos vaismedþiø biologinëms savybëms bei ligø sukëlëjø<br />

vystymuisi <strong>ir</strong> plitimui. Oro temperatûra <strong>ir</strong> krituliø kiekis tyrimo metais buvo artimi<br />

daugiameèiams vidurkiams, iðskyrus 2001 m. liepos mënesá, kai temperatûra buvo<br />

4°C aukðtesnë, o krituliø per mënesá iðkrito 64 mm daugiau nei daugiametis vidurkis.<br />

2002 m. pavasaris buvo ðiltesnis, taèiau sausesnis, palyginti su daugiameèiu vidurkiu.<br />

B<strong>ir</strong>þelá krituliø iðkrito 63 mm daugiau uþ daugiametá vidurká. 2003 m. pavasará <strong>ir</strong><br />

vasaros pradþioje oro temperatûra buvo artima daugiametei, o krituliø iðkrito maþiau.<br />

B<strong>ir</strong>þelio <strong>ir</strong> liepos mënesiais orai buvo ðilti <strong>ir</strong> drëgni. 2004 m. kovo mënesio III dekados<br />

oro temperatûra buvo 3,1°C aukðtesnë uþ daugiametæ vidutinæ. Vaismedþiø þydëjimo<br />

laikotarpiu uþregistruotos ankstyvos pavasario ðalnos (nuo -0,3°C iki -4,9°C). 2005 m.<br />

geguþës mënesá iðkrito 22,8 mm krituliø daugiau uþ daugiametá vidurká. 2002–2003 m.<br />

þiemà gruodþio mën. temperatûra buvo 5°C þemesnë, o vasario – 1,7°C aukðtesnë uþ<br />

daugiametæ vidutinæ. 2003–2004 m. þiemà gruodis <strong>ir</strong> vasaris buvo ðiltesni atitinkamai<br />

1,9°C <strong>ir</strong> 2,5°C, o sausis – 2,1°C ðaltesnis uþ daugiametá vidurká.<br />

Tyrimø metodai <strong>ir</strong> statistinë analizë. Nustatytas vaismedþiø derlius (t/ha), vaisiø<br />

pasisk<strong>ir</strong>stymas á klases (proc.) pagal skersmená (aukðèiausia klasë – 65–75 mm, 1 <strong>ir</strong> 2<br />

klasës – 60–64 mm, nerûðiniai – iki 60 mm), vaisiø skynimo laikas, laikymosi pabaiga,<br />

vaisiaus masë (g), kokybë (iðvaizda, patrauklumas, bendra kokybë balais) <strong>ir</strong> cheminë<br />

sudëtis (t<strong>ir</strong>pios sausosios medþiagos, sausosios medþiagos, titruojamasis rûgðtingumas,<br />

33


odelës <strong>ir</strong> minkðtimo tv<strong>ir</strong>tumas). Bendras sausøjø medþiagø kiekis nustatytas gravimetriðkai<br />

– iðdþiovinus vaisius 105°C temperatûroje iki nekintamos masës – Food anglysis, 1986),<br />

t<strong>ir</strong>pios sausosios medþiagos – refraktometru, titruojamasis rûgðtingumas – titruojant<br />

0,1 N NaOH t<strong>ir</strong>palu <strong>ir</strong> perskaièiavus á citrinos rûgðtá (Åðìàêîâ <strong>ir</strong> kt., 1987).<br />

Eksperimentiniai duomenys biometriðkai ávertinti dispersinës analizës metodais<br />

(Tarakanovas, Raudonius, 2003), naudojant ANOVA statistinæ programà.<br />

Rezultatai. Derlius. Obelø selekciniai numeriai <strong>ir</strong> kontrolinës veislës pradëjo<br />

derëti treèiaisiais augimo sode metais. T<strong>ir</strong>tø selekciniø numeriø <strong>ir</strong> veisliø vidutinis<br />

suminis vaisiø derlius siekë 73 t/ha (1 pav.). Kontroliniø veisliø ‘Antej’ <strong>ir</strong> ‘Delikates’<br />

suminis derlius (atitinkamai 55 t/ha <strong>ir</strong> 67 t/ha) buvo maþesnis uþ bandymo derliaus<br />

vidurká. Ið t<strong>ir</strong>tø selekciniø numeriø maþiausiai vaisiø (37 t/ha) subrandino Nr. 20235,<br />

daugiausia (159 t/ha) – Nr. 19436. Pastarojo selekcinio numerio derlius buvo daugiau<br />

nei du kartus didesnis uþ vidurká.<br />

1 pav. Suminis obelø selekciniø numeriø <strong>ir</strong> veisliø vaisiø derlius, t/ha<br />

Fig. 1. Cumulative yield of apple selections and cultivars (t/ ha)<br />

Babtai, 2002–2005 m.<br />

2 pav. Vidutinis obelø selekciniø numeriø <strong>ir</strong> veisliø vaisiø derlius, t/ha<br />

Fig. 2. Cumulative yield of apple selections and cultivars (t/ha)<br />

Babtai, 2001–2005 m.<br />

34


2002–2005 m. vidutinis selekcinio numerio ar veislës derlius siekë nuo 7 t/ha<br />

(Nr. 20235) iki 32 t/ha (Nr. 19436) (2 pav.). Selekciniø numeriø <strong>ir</strong> veisliø derliaus<br />

vidurkis siekë beveik 15 t/ha. Aðtuoni selekciniai numeriai davë didesná vidutiná derliø<br />

uþ bandymo derliaus vidurká. Selekcinio numerio 19436 vidutinis derlius ið esmës<br />

skyrësi nuo kitø selekciniø numeriø <strong>ir</strong> kontroliniø veisliø vidutinio derliaus.<br />

Visi t<strong>ir</strong>ti selekciniai numeriai ðeðtaisiais augimo sode metais (2005 m.) derëjo<br />

gausiai. Kalibruojant vaisius nustatyta, kad 11 selekciniø numeriø vaismedþiai iðaugino<br />

tik aukðèiausios kokybës vaisius (1 lentelë). 1–2 klasës obuoliø kiekis áva<strong>ir</strong>avo nuo 1<br />

(Nr. 20427, Nr. 20490) iki 9 procentø (Nr. 20978). Trys selekciniai numeriai iðaugino<br />

1–2 proc. nerûðiniø obuoliø.<br />

Veislë<br />

Cultivar<br />

1 lentelë. Vaisiø susk<strong>ir</strong>stymas á klases pagal skersmená, %.<br />

Table 1. Classification of fruits according to diameter (%)<br />

Babtai, 2005 m.<br />

Aukðèiausia klasë<br />

The highest class<br />

per 75 mm<br />

65–75 mm<br />

iš viso<br />

more than 75 mm<br />

total<br />

19399 35 65 100<br />

19436 39 61 100<br />

19646 78 22 100<br />

19707 13 87 100<br />

35<br />

I <strong>ir</strong> II klasës<br />

I and II classes<br />

60–64 mm<br />

Nerûðiniai<br />

Not specific<br />

iki 60 mm<br />

up to 60 mm<br />

19709 91 91 7 2<br />

19942 28 72 100<br />

20016 72 28 100<br />

20235 21 75 96 3 1<br />

20239 45 55 100<br />

20242 41 59 100<br />

20427 12 86 98 1 1<br />

20429 57 43 100<br />

20490 20 79 99 1<br />

20978 5 86 91 9<br />

22170 73 27 100<br />

21118 29 71 100<br />

‘Delikates’ 54 46 100<br />

‘Antej’ 31 69 100<br />

Skynimo laikas, laikymosi pabaiga <strong>ir</strong> vaisiø kokybës rodikliai. T<strong>ir</strong>tø obelø<br />

selekciniø numeriø vaisiø skynimo laikas skyrësi. Anksèiausiai skinami Nr. 19707<br />

(09 10), vëliausiai – Nr. 21118 (09 29) vaisiai (2 lentelë).<br />

Ilgiausiai iðsilaikë Nr. 21118 <strong>ir</strong> Nr. 20978 (iki balandþio mën. II dekados),<br />

trumpiausiai – Nr. 19646 <strong>ir</strong> Nr.22170 (atitinkamai iki 11 14 <strong>ir</strong> 12 16) vaisiai.


Pagal obuoliø laikymosi laikotarpio trukmæ selekciniai numeriai sugrupuoti á:<br />

1) vëlyvus rudeninius: Nr. 19646 <strong>ir</strong> Nr. 22170 – vaisius tinka vartoti iki gruodþio mën.;<br />

2) þieminius: Nr. 19707, Nr. 19709, Nr. 19942, Nr. 20235, Nr. 20239, Nr. 20242,<br />

Nr. 20490 – vaisiø vartojimo laikas pasibaigia vasario mën.;<br />

3) vëlyvus þieminius: Nr. 19399, Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429,<br />

Nr. 20978, Nr. 21118 – vaisius tinka vartoti iki kovo mën. <strong>ir</strong> ilgiau.<br />

2 lentelë. Obuoliø skynimo laikas, laikymosi pabaiga <strong>ir</strong> kokybës rodikliai<br />

Table 2. Harvest date, end of storage and fruit quality parameters of apple cultivars and selections<br />

Babtai, 2002–2005 m<br />

Veislë<br />

Cultivar<br />

Skynimo<br />

laikas, mën.,<br />

d.<br />

Harvest date<br />

(month, day)<br />

Laikymosi<br />

pabaiga,<br />

mën., d.<br />

End of storage<br />

(month, day)<br />

Vaisiø masë<br />

Fruit weight, g<br />

36<br />

Patrauklumas<br />

balais<br />

Appearance<br />

(scores)<br />

Skonis<br />

balais<br />

Taste (scores)<br />

Vaisiø<br />

kokybë<br />

balais<br />

Quality<br />

evaluation<br />

(scores)<br />

19399 09 20 03 14 144,6 7,5 7,3 7,3<br />

19436 09 22 03 13 149,0 7,1 7,2 7,1<br />

19646 09 23 11 14 199,0 7,3 7,1 7,1<br />

19707 09 15 01 19 130,6 7,4 7,2 7,3<br />

19709 09 10 01 23 119,6 7,3 7,3 7,3<br />

19942 09 22 01 16 156,0 7,3 5,9 5,9<br />

20016 09 09 03 21 146,6 7,3 7,2 7,2<br />

20235 09 20 02 12 148,7 7,4 7,1 7,2<br />

20239 09 14 01 16 150,0 7,3 6,7 7,0<br />

20242 09 27 01 17 147,7 7,4 7,4 7,4<br />

20427 09 18 03 15 109,0 7,3 7,1 7,2<br />

20429 08 18 03 12 138,0 7,2 7,2 7,2<br />

20490 09 21 02 21 161,7 7,6 7,3 7,4<br />

20978 09 19 04 20 102,7 7,5 7,2 7,2<br />

22170 09 26 12 16 201,3 7,4 7,1 7,2<br />

21118 09 29 04 22 103,4 7,4 7,4 7,4<br />

‘Delikates’ 09 12 12 23 138,7 7,5 7,3 7,4<br />

‘Antej’ 09 26 03 05 171,4 7,3 7,0 7,1<br />

Vidurkis<br />

Mean<br />

09 19 01 15 145,4 7,37 7,12 7,17<br />

R 05 / LSD 05 6,18 7,74 18,3 0,18 0,28 0,12<br />

Ávertinus vaisiaus vidutinæ masæ nustatyta, kad stambiausius vaisius iðaugino<br />

Nr. 22170 (201,3 g) <strong>ir</strong> Nr. 19646 (199,0 g), o smulkiausius – Nr. 20978, Nr. 21118,<br />

Nr. 20427 (102,7–109,0 g) vaismedþiai.


Selekciniai numeriai vaisiø patrauklumu prilygo kontrolinëms veislëms.<br />

Daugumos hibridø vaisiø skonis buvo panaðus á kontroliniø veisliø vaisiø skoná.<br />

Ávertinta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242, 20490 <strong>ir</strong><br />

21118 vaisiai. Hibridø Nr. 19942 <strong>ir</strong> Nr. 20239 vaisiø skonis <strong>ir</strong> kokybë ávertinta<br />

prasèiausiai (2 lentelë).<br />

Vaisiø cheminë sudëtis. T<strong>ir</strong>piø sausøjø medþiagø kiekis t<strong>ir</strong>tø selekciniø numeriø<br />

vaisiuose siekë 11,8–14,0 procentø (3 lentelë). Daugiausia (14,0 proc.) t<strong>ir</strong>piø sausøjø<br />

medþiagø rasta Nr. 19707 <strong>ir</strong> Nr. 19646 vaisiuose. Maþiausiu titruojamuoju rûgðtingumu<br />

iðsiskyrë Nr. 19707 <strong>ir</strong> Nr. 20490 (atitinkamai 0,46 <strong>ir</strong> 0,49 proc.), didþiausiu –<br />

Nr. 20235 <strong>ir</strong> Nr. 20016 (atitinkamai 1,01 <strong>ir</strong> 0,93 proc.) vaisiai. Daugiausia sausøjø<br />

medþiagø (16,0 proc.) rasta Nr. 21118 obuoliuose.<br />

Veislë<br />

Cultivar<br />

3 lentelë. Obuoliø cheminë sudëtis<br />

Table 3. Biochemical characteristic of fruits<br />

Babtai, 2002–2005 m. vidurkiai / average<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Soluble solids, %<br />

Titruojamasis<br />

rûgðtingumas<br />

Titratable acidity, %<br />

Sausosios medžiagos<br />

Dry matter, %<br />

19399 12,7 0,8 14,5<br />

19436 11,8 0,57 12,9<br />

19646 13,8 0,81 14,6<br />

19707 14,0 0,46 15,5<br />

19709 13,3 0,68 14,2<br />

19942 12,6 0,54 14,6<br />

20016 12,6 0,93 14,1<br />

20235 12,1 1,01 14,2<br />

20239 13,7 0,49 15,9<br />

20242 13,2 0,53 15,7<br />

20427 12,5 0,83 13,5<br />

20429 11,9 0,57 13,1<br />

20490 12,1 0,49 14,1<br />

20978 11,8 0,85 13,5<br />

21118 12,5 0,52 16,0<br />

22170 13,4 0,67 14,2<br />

‘Delikates’ 11,0 0,31 13,3<br />

‘Antej’ 14,3 0,80 17,5<br />

Vidurkis<br />

Mean<br />

12,7 0,66 14,5<br />

R 05 / LSD 05 0,89 0,189 1,19<br />

37


Vaisiø sulèiø iðeiga kito nuo 53 (Nr. 20239) iki 75 procentø (Nr. 20978) (3 pav.).<br />

Selekciniø numeriø 19436, 20016 <strong>ir</strong> 20490 vaisiuose sulèiø buvo apie 70 procentø.<br />

Vidutinis sulèiø kiekis t<strong>ir</strong>tuose selekciniø numeriø vaisiuose siekë 67 procentus.<br />

3 pav. Obuoliø sulèiø iðeiga, %<br />

Fig. 3. Output of apple juice (%)<br />

Babtai, 2005 m.<br />

T<strong>ir</strong>tø selekciniø numeriø vaisiø odelës tv<strong>ir</strong>tumas labai skyrësi (4 pav.). Trapiausia<br />

buvo (1<strong>25</strong> g/cm 2 ) Nr. 20239 vaisiø odelë. Jos tv<strong>ir</strong>tumas buvo maþesnis uþ kontroliniø<br />

veisliø (360 N/cm 2 , 220 N/cm 2 ) <strong>ir</strong> bandymo vidurká (350 N/cm 2 ). Tv<strong>ir</strong>èiausia buvo<br />

(daugiau kaip 400 g/cm 2 ) selekciniø numeriø 19646, 20242, 20429, 21118 vaisiø<br />

odelë. Ðeðiø selekciniø numeriø odelë buvo tv<strong>ir</strong>tesnë uþ bandymo vidurká <strong>ir</strong> kontroliniø<br />

veisliø vaisiø odelæ.<br />

4 pav. Obuoliø odelës tv<strong>ir</strong>tumas, g/cm 2<br />

Fig 4. F<strong>ir</strong>mness of apple skin (g/cm 2 )<br />

Selekciniai numeriai labai skyrësi vaisiø minkðtimo tv<strong>ir</strong>tumu (5 pav.). Tv<strong>ir</strong>èiausias<br />

buvo Nr. 19646 minkðtimas – 5 N/cm 2 . Minkðèiausius vaisius (41 N/cm 2 <strong>ir</strong> 49 N/cm 2 )<br />

38


iðaugino Nr. 19942 <strong>ir</strong> Nr. 20239. Ðiuo poþymiu pastarieji selekciniai numeriai ið esmës<br />

nesiskyrë nuo kontroliniø ‘Antej’ <strong>ir</strong> ‘Delikates’ (58 N/cm 2 <strong>ir</strong> 40 N/cm 2 ) veisliø.<br />

5 pav. Obuoliø minkðtimo tv<strong>ir</strong>tumas, N/cm 2<br />

Fig. 5. F<strong>ir</strong>mness of apple flesh (N/cm 2 )<br />

Babtai, 2003–2005 m.<br />

Aptarimas. Tobulëjant sodininkystës, vaisiø perd<strong>ir</strong>bimo technologijoms, augant<br />

rinkos <strong>ir</strong> visuomenës poreikiams reikia vis naujø obelø veisliø. Naujausi genetikos <strong>ir</strong><br />

biotechnologijos pasiekimai suteikia galimybiø viename genotipe sujungti daugelá<br />

vertingø poþymiø, lemiamø sk<strong>ir</strong>tingos genetinës kontrolës. Ypaè reikðmingos yra tos<br />

veislës, kurios gerai prisitaiko prie biotiniø <strong>ir</strong> abiotiniø veiksniø (Kozlovskaya <strong>ir</strong> kt.,<br />

2000; Sansavini <strong>ir</strong> kt., 2005), o perd<strong>ir</strong>bamajai pramonei reikia derlingø, nuolat deranèiø<br />

obelø veisliø, kuriø vaisiuose bûtø daug cukraus, vidutiniðkai – rûgðèiø, apie 11 proc.<br />

t<strong>ir</strong>piø sausøjø medþiagø (Fischer <strong>ir</strong> kt., 1999).<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtø perspektyviø, rauplëms<br />

imuniø selekciniø numeriø tyrimai parodë, kad kasmet nuo derëjimo pradþios<br />

daugumos jø derlius didëjo (1 pav.). Tyrimø laikotarpiu didþiausià suminá derliø davë<br />

Nr. 19436 <strong>ir</strong> Nr. 19707 (‘Katja’ x ‘Prima’ kryþminimo kombinacijos sëjinukai). Labai<br />

derlingas buvo <strong>ir</strong> Nr. 20490, taèiau jo vaismedþiai prameèiavo kaip <strong>ir</strong> kontrolinë veislë<br />

‘Antej’. Þinoma, kad obelø veisliø derlingumas priklauso ne tik nuo genetinës kontrolës,<br />

bet <strong>ir</strong> nuo klimato sàlygø (Ñåäîâ <strong>ir</strong> kt., 2005). Kadangi ‘Antej’ vaismedþiai yra labai<br />

produktyvûs, kasmet derantys (Êîçëîâñêàÿ, 2003), tikëtina, kad jø derëjimo<br />

nepastovumui galëjo átakos turëti nepalankûs abiotiniai veiksniai.<br />

Vienas ið svarbiø vaisiø poþymiø yra jø vienodumas (Laurens, 1998). T<strong>ir</strong>tø<br />

selekciniø numeriø 91–100 proc. vaisiø buvo aukðèiausios klasës. Vaisiø dydþio<br />

vienodumu iðsiskyrë Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978, taèiau jø vaisiai yra gan<br />

smulkûs (1 lentelë). Vaisiø patrauklumas, skonis vertinami subjektyviai. Sk<strong>ir</strong>tingø<br />

ðaliø þmoniø skoniai sk<strong>ir</strong>iasi, pvz., Kinijoje, Japonijoje, Brazilijoje, Indijoje paklausesni<br />

saldûs, o Europoje didesnæ paklausà turi saldþiarûgðèiai, sultingi, trapaus minkðtimo<br />

obuoliai (Êîíäðàòåíêî, Õîìÿê, 2001). Visø selekciniø numeriø (iðskyrus Nr. 19942)<br />

vaisiø kokybë ið esmës prilygo ar tai vienos, ar kitos kontrolinës veislës vaisiø kokybei.<br />

39


Veislës, kuriø vaisiai tinkami perd<strong>ir</strong>bti, turi atitikti su galutiniu produktu (sultys,<br />

dþiovinti vaisiai <strong>ir</strong> kt.) susijusius kriterijus. Belgijoje, Prancûzijoje, Ispanijoje viena ið<br />

obelø selekcijos krypèiø – sukurti veisles, kuriø vaisiai tiktø sultims <strong>ir</strong> sidrams gaminti.<br />

(Êîçëîâñêàÿ, 2003). T<strong>ir</strong>tø selekciniø numeriø vaisiø sulèiø iðeiga kito nuo 53<br />

(Nr. 20239) iki 75 proc. (Nr. 20978) (3 pav.). Selekciniø numeriø 20978, 19436,<br />

20016 <strong>ir</strong> 20490 vaisiai buvo labai sultingi.<br />

Viena svarbiausiø versliniø obelø veisliø savybiø yra geras vaisiø transportabilumas.<br />

Ið t<strong>ir</strong>tø selekciniø numeriø odelës <strong>ir</strong> vaisiaus minkðtimo tv<strong>ir</strong>tumu iðsiskyrë<br />

Nr. 19646. Maþiausias buvo Nr. 20239 vaisiø abiejø audiniø tv<strong>ir</strong>tumas. Ávertinus t<strong>ir</strong>tø<br />

poþymiø visumà nustatyta, kad vertingiausi obelø selekciniai numeriai – 19436 <strong>ir</strong><br />

19707. Juos galima registruoti kaip veisles, tinkamas ekologinei verslinei sodininkystei.<br />

Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø poþymiø genetiniai ðaltiniai<br />

Iðvados. 1. Didþiausià suminá obuoliø derliø iðaugino selekciniai numeriai 19436<br />

(vëlyvas þieminis) <strong>ir</strong> 19707 (þieminis). Aðtuoni selekciniai numeriai davë didesná vidutiná<br />

derliø uþ bandymo vidurká.<br />

2. Pagal obuoliø laikymosi laikotarpio trukmæ selekciniai numeriai sugrupuoti á:<br />

vëlyvus rudeninius – Nr. 19646 <strong>ir</strong> Nr. 22170; þieminius – Nr. 19707, Nr. 19709,<br />

Nr. 19942, Nr.20235, Nr.20239, Nr.20242, Nr.20490; vëlyvus þieminius – Nr. 19399,<br />

Nr. 19436, Nr. 20016, Nr. 20427, Nr. 20429, Nr. 20978, Nr. 21118.<br />

3. Ávertinta, kad geriausio skonio <strong>ir</strong> kokybës yra selekciniø numeriø 20242,<br />

20490, 21118, 19399,19707, 20429, 20016 vaisiai. Vaisiø dydþio vienodumu iðsiskyrë<br />

Nr. 19709, Nr. 20427 <strong>ir</strong> Nr. 20978. 11 selekciniø numeriø vaismedþiai iðaugino tik<br />

aukðèiausios klasës vaisius. Stambiausius vaisius iðaugino Nr. 22170 (201,3 g) <strong>ir</strong><br />

Nr. 19646 (199,0 g) vaismedþiai.<br />

4. Tv<strong>ir</strong>èiausià odelæ turëjo Nr. 19646, Nr. 20242, Nr. 20429, Nr. 21118 (> 400 g/cm 2 )<br />

vaisiai. Tv<strong>ir</strong>èiausias minkðtimas buvo Nr. 19646 (115 N/cm 2 ) vaisiø.<br />

5. Ávertinus t<strong>ir</strong>tø poþymiø visumà, nustatyta, kad vertingiausi yra 19436, 19707<br />

obelø selekciniai numeriai. Juos galima registruoti kaip veisles, tinkamas ekologinei<br />

verslinei sodininkystei. Kiti selekciniai numeriai vertingi selekcijai kaip atsk<strong>ir</strong>ø poþymiø<br />

genetiniai ðaltiniai.<br />

Padëka. Autoriai dëkoja Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui uþ paramà<br />

atliekant ðiuos tyrimus.<br />

Gauta 2006-11-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bandaravièius A., Gelvonauskienë D., Sasnauskas A. Introdukuotø obelø veisliø<br />

biologiniø <strong>ir</strong> ûkiniø savybiø tyrimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1).<br />

P. 315.<br />

2. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). Babtai:<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, 2005. 211 p.<br />

40


3. Fischer M., Schüler W., Fischer C., Gerber H. J. Nutzung Pillnitzer apfelsorten für<br />

die herstellung von verarbeitungsprodukten aus biologisch orientiertem Anbau //<br />

Erwerbsobstbau. 1999. Vol. 41. P. 93–99.<br />

4. Food analysis: general techniques, additives, contaminants, and composition.<br />

Rome: FAO, 1986. 205 p.<br />

5. Kellerhals M., Bertschinger L., Gessler C. Use of genetic resources in apple breeding<br />

and for sustainable fruit production // Journal of fruit and ornamental plant research. 2004.<br />

Vol. XII. P. 51–62.<br />

6. Kozlovskaya Z. Apple genetic resources and the<strong>ir</strong> potential for breeding in Belarus //<br />

Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(3). P. 43–49.<br />

7. Kozlovskaya Z. A., Marudo G.M., Ryabtsev A. S. Some results of the apple breeding<br />

programme in Belarus // Acta Horticulturae. 2000. No 538. V. 1. P. 219–223.<br />

8. Laurens F. Review of the current apple breeding programmes in the world: objectives<br />

for scion cultivar improvements // Acta Horticulturae. 1998. Vol. 477. P. 163–170<br />

9. Sansavini S., Belfanti E., Costa F., Donati F. European apple breeding programs<br />

turn to biotechnology // Chronica Horticulturae. 2005. Vol. 45(2). P. 16–19.<br />

10. Sasnauskas A., Gelvonauskiene D., Gelvonauskis B., Duchovskis P., Viskelis P.,<br />

Siksnianiene J., Bobinas C., Sabajeviene G. Evaluation of new introduced apple cultivars //<br />

Fruit science. Vol. 222. 2005. P. 20–<strong>25</strong>.<br />

11. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPILT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT / Metodinë priemonë. Akademija, 2003. 57 p.<br />

12. Uselis N. Assessment of biological and economical trails of 20 apple varieties on<br />

M.26 rootstock in the f<strong>ir</strong>st-fifth years in orchard // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 318–333.<br />

13. Åðìàêîâ Ô. È., Àðèñèìîâè÷ Â. Â., ßðî÷ Í. Ï., Ïåðóàíñêèé Þ. Â., Ëó-êîâíèêîâà<br />

Ã. À., Èêîííèêîâà Ì. È. Ìåòîäû áèîõèìè÷åñêîâà èññëåäîâàíèÿ ðàñòåíèé (Ïîä<br />

ðåä. À. È. Åðìàêîâà). Ëåíèíãðàä, 1987. 431 ñ.<br />

14. Êîíäðàòåíêî Ò. Å., Õîìÿê Ì. ß. Ñó÷ñíié ñòàí âèðîáíèöòâà ñà-äèâíîãî<br />

ìàòåðiàëó ÿáëóí â Óêðàiíi // Càäiâíèöòâî. 2001. Âèï. 52. C. 64–69<br />

15. Êîçëîâñêàÿ Ç. À. Ñîâåðøåíñòâîâàíèå ñîðòèìåíòà ÿáëîíè â Áåëàðó-ñè.<br />

Ìèíñê, 2003. 167 ñ.<br />

16. Ñîðòà ÿáëîíè è ãðóøè (ðåä. Ñåäîâ Å. Í.) // ÂÍÈÈÑÏÊ. Îðåë, 2004. 208 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY AND FRUIT QUALITY OF APPLE<br />

SELECTIONS<br />

D. Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis, P. Viðkelis<br />

Summary<br />

Advanced selections received at the Lithuanian Institute of Horticulture<br />

(No. 19399, No. 21118, (‘Prima’ x ‘Idared’), No. 19436, No. 19707, No. 19709,<br />

No. 19646 (‘Katja’ x ‘Prima’), No. 19942, No. 20235, No. 20239, No. 20242,<br />

No. 20427, No. 20429, No. 22170, (‘Noris’ x ‘Prima’), No. 20490 (‘Auksis’ x ‘Prima’)<br />

41


No. 20978 (‘Tellissaare’ x ‘Prima’), No. 20016 (‘Prima’ x ‘Idared’) and standard<br />

cultivars ‘Antej’ and ‘Delikates’ were tested in 1999–2006. Two-years-old apple<br />

trees on rootstock M.26 were planted in an orchard in 1999. Trees were placed 4 x<br />

2.5 m and selection was presented by 5 trees, 1 tree per replication. Apple tree yield<br />

(t ha -1 ), fruit size, fruits picking time, storage time, fruit quality and fruit chemical<br />

content was investigated.<br />

It was determined that cumulative yield of selections No. 19436 and 19707 was<br />

the highest. According to storage time, selections were grouped as late autumn cultivars<br />

– No. 19646 and No. 22170, winter cultivars – No. 19707, No. 19709, No. 19942,<br />

No. 20235, No. 20239, No. 20242, No. 20490, late winter cultivars – No. 19399,<br />

No. 19436, No. 20016, No. 20427, No. 20429, No. 20978, No. 21118. Fruits taste<br />

and quality of selections No. 20242, No. 20490, No. 21118, No. 19399, No. 19707,<br />

No. 20429 and No. 20016 were the best. Selections No. 19709, No. 20427 and No.<br />

20978 had uniform fruit size. The largest fruits had selections No. 22170 (201.3 g)<br />

and No. 19646 (199.0 g). Fruit skin f<strong>ir</strong>mness of selections No. 19646, No. 20242,<br />

No. 20429 and No. 21118 (>400 N/cm 2 ) was the highest, flesh f<strong>ir</strong>mness – of selection<br />

No. 19646 (115 N/cm 2 ).<br />

Selections No. 19436 and No. 19707 can be selected as the best ones among<br />

the tested selections.<br />

Kay words: apple selections, chemical content, fruit quality, productivity.<br />

42


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

BRAÐKIØ VEISLIØ TYRIMAS LIETUVOJE<br />

PAGAL TARPTAUTINÆ COST 863 PROGRAMÀ<br />

Rytis RUGIENIUS, Audrius SASNAUSKAS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-45333, Babtai, Kauno r.<br />

El. paðtas r.rugienius@lsdi.lt<br />

2003–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute pagal tarptautinæ<br />

COST863 programà t<strong>ir</strong>tos 10 veisliø <strong>ir</strong> hibridiniø klonø, pasodintø 2003 <strong>ir</strong> 2004<br />

metais, braðkiø biologinës <strong>ir</strong> ûkinës savybës. Vidurio Lietuvos agroklimato sàlygomis<br />

iðtvermingiausios þiemà ið t<strong>ir</strong>tø veisliø buvo ‘Salut’ <strong>ir</strong> ‘Roxana’ braðkës. Labiausiai<br />

paðalo ‘Irma’ <strong>ir</strong> ‘Alba’ veisliø augalai. Pagal derëjimo laikà veislës ‘Qeen Eliza’,<br />

’Salut’, ‘Alba’, ‘Roxana’ prisk<strong>ir</strong>tinos prie vidutinio ankstyvumo, hibridinis klonas<br />

(toliau – h. k.) VR96582 – prie vidutiniðkai vëlyvø, o h. k. 92.340.3 – prie vëlyvø<br />

braðkiø veisliø. Veislë ‘Irma’ yra nejautri dienos ilgumui, dera vidutiniðkai anksti.<br />

Vidutiniðkai per dvejus metus (2004 <strong>ir</strong> 2005) derlingiausia buvo ‘Roxana’ veislë<br />

(19,6 t/ha) <strong>ir</strong> h. k. 92.340.3 (18,5t/ha), 2005 <strong>ir</strong> 2006 metais – ‘Roxana’ (16,5 t/ha) <strong>ir</strong><br />

‘Salut’ (13,8 t/ha). Didþiausias uogas uþaugino ‘Roxana’, ‘Qeen Eliza’ veislës <strong>ir</strong> h. k.<br />

92.340.3. Iðoriniu patrauklumu iðsiskyrë ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkiø uogos.<br />

Tv<strong>ir</strong>tos konsistencijos buvo h. k. 92.340.3, ‘Alba’ <strong>ir</strong> h. k. VR96582 uogos, geriausias<br />

skonis – ‘Irma’ uogø. Pagal ûkiðkai svarbiø savybiø visumà tinkamiausios Lietuvoje<br />

auginti yra ‘Roxana’, ‘Salut’ veisliø <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

Reikðminiai þodþiai: Fragaria ananassa Duch., derlingumas, iðtvermingumas<br />

þiemà, uogø kokybë.<br />

Ávadas. Iðsamios þinios apie naujausias Europoje <strong>ir</strong> pasaulyje sukurtas braðkiø<br />

veisles yra svarbios ne tik augintojams, siekiantiems maksimalaus pelno maþiausiomis<br />

sànaudomis, vartotojams, kuriems svarbi uogø kokybë, bet <strong>ir</strong> selekcininkams,<br />

kurie siekia iðvesti naujas, tobulesnes, visø rinkos dalyviø poreikius atitinkanèias,<br />

þmogaus sveikatà <strong>ir</strong> aplinkà tausojanèias veisles. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute braðkiø veislës buvo t<strong>ir</strong>iamos nuolat, nuolat vykdoma jø selekcija<br />

(Misevièiûtë, Lukoðevièius, 1988; Uselis, Raðinskienë, 1999, 2001; Raðinskienë, Uselis,<br />

2000; Rugienius, Sasnauskas, 2005). Lietuvai ástojus á ES, iðsiplëtë ne tik selekcininkø<br />

<strong>ir</strong> veisliø tyrëjø bendradarbiavimo galimybës, bet <strong>ir</strong> iðkilo naujø uþdaviniø. Pagrindinis<br />

tarptautinës COST programos tikslas yra plëtoti ðaliø bendradarbiavimà mokslo<br />

srityje, skatinti mokslo <strong>ir</strong> verslo sàveikà vartotojo <strong>ir</strong> aplinkos interesais (Faedi, 2004).<br />

Nuo 2001m. LSDI ásijungë á tarptautinæ COST836 (vëliau <strong>ir</strong> á jos tæsiná – COST863)<br />

programà <strong>ir</strong> á jos esminæ veiklà – Europos veisliø tyrimo tinklà. Ðios veiklos tikslas –<br />

43


iðt<strong>ir</strong>ti naujausias braðkiø veisles áva<strong>ir</strong>aus klimato <strong>ir</strong> auginimo technologijø sàlygomis<br />

(Mezzetti, 2004). Kuriant ðá tinklà taip pat buvo siekiama per trumpà laikà ávertinti naujø<br />

veisliø prisitaikymà, tinkamumà auginti <strong>ir</strong> vartoti konkreèioje ðalyje teikiant reikalingà<br />

informacijà augintojams apie naujø veisliø ypatybes, galimybes ðiomis veislëmis uþpildyti<br />

niðas, susidariusias ðiø ðaliø rinkose, ávertinti, ar uogø kokybës rodikliai atitinka<br />

konkretaus vartotojo interesus. Kadangi tos paèios veislës buvo t<strong>ir</strong>iamos visose tinkle<br />

dalyvaujanèiose ðalyse vienu metu, buvo galima plaèiau iðt<strong>ir</strong>ti genotipo <strong>ir</strong> aplinkos sàveikà<br />

(Navatel, Krüger, 2004). Pagal 2001–2004 m. tyrimø rezultatus ðiaurës ðalyse<br />

buvo siûloma auginti ‘Florence’, ‘Kimberly’, ‘Vima Zanta’, ‘Filon’, ‘Madeleine’ <strong>ir</strong> ‘Alice’<br />

veisles (Hietaranta <strong>ir</strong> kt., 2004). Lenkijoje, be ðiø minëtø veisliø, gerai buvo vertinamos<br />

<strong>ir</strong> ‘Tarda’, ‘Civmad’, ‘Maya’, ‘Paros’, ‘Elkat’, ‘Patty’ (Krüger <strong>ir</strong> kt., 2004; Masny,<br />

Zurawicz, 2004). Nuo 2003 m. ðalyse COST836 narëse, tarp jø <strong>ir</strong> Lietuvoje, pradëtos<br />

t<strong>ir</strong>ti naujos veislës. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas gavo Europos<br />

medelynuose iðaugintø naujø veisliø daigus bendriems tyrimams. Braðkës tyrimams<br />

augintos pagal Lietuvoje taikomas auginimo technologijas, o vertinimai atlikti pagal<br />

COST836 veikloje priimtas visose ðalyse vienodas metodikas.<br />

Darbo tikslas – ávertinti naujø braðkiø veisliø <strong>ir</strong> selekciniø numeriø, pateiktø<br />

tarptautiniams (COST836 <strong>ir</strong> COST863 veiklø) tyrimams, tinkamumà auginti Lietuvos<br />

agroklimato sàlygomis.<br />

Medþiagos <strong>ir</strong> metodai. Tyrimas atliktas 2003–2006 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto selekciniame uogyne. Tyrimui naudotos braðkiø Fragaria<br />

x ananassa Duch. veislës <strong>ir</strong> selekciniai numeriai, iðvesti Italijos Cesena regiono Forli<br />

bandymø stotyje: ‘Roxana’, ’Alba’ ‘Qeen Eliza’ (iðvesta kaip hibridinis klonas (h. k.)<br />

Nr. 94.568.2), ‘Irma’ (iðvesta kaip h. k. VR 95.42.03), h. k. VR 96.58.2 bei h. k.<br />

92.340.3. Taip pat Lenkijos sodininkystës <strong>ir</strong> gëlininkystës institute Skiernievicuose<br />

iðvesta veislë ‘Salut’. Standartinës veislës – ‘Honeoye’, ’Venta’ <strong>ir</strong> ‘Dangë’. Atliekant<br />

mûsø tyrimà, augalai sodinti <strong>ir</strong> priþiûrëti pagal LSDI priimtas intensyvias sodø <strong>ir</strong><br />

uogynø auginimo technologijas (Uselis, 2002). D<strong>ir</strong>voþemis – sekliai karbonatingas<br />

giliau glëjiðkas rudþemis (RDg4-k1). Braðkës buvo sodinamos du kartus – 2003 m.<br />

(I sodinimas) <strong>ir</strong> 2004 m. (II sodinimas) – eilëmis 0,8 m x 0,3 m atstumu. Apskaitiniame<br />

bandymø laukelyje – 15 augalø. Atlikti keturi bandymo pakartojimai. Abejais<br />

metais sodintø veisliø sudëtis panaði, tik antraisiais metais buvo sodinamos veislës<br />

‘Salut’ <strong>ir</strong> ‘Venta’, bet nebuvo sodinama ‘Honeoye’. Vertinta: augalø paðalimas po<br />

þiemos, balandþio–geguþës mënesá (9 balai – þuvæs, 0 – nepaðalæs); augalø bûklë po<br />

derliaus nuëmimo (9 balai – puiki, 0 – augalai þuvæ), þydëjimo pradþia (data, kai<br />

praþydo 3–5 proc. þiedø); uogø nokimo pradþia (data, kai 3–5 proc. uogø buvo<br />

skynimo brandos); uogø derlius (perskaièiuotas á t/ha), didþiausios uogos masë (trijø<br />

didþiausiø p<strong>ir</strong>mojo ar antrojo skynimo uogø vidutinë masë, g), vidutinë uogos masë<br />

derëjimo pradþioje (antrojo skynimo vidutinë uogos masë, g), vidutinë uogos masë<br />

masinio derëjimo metu (skynimo, kurio metu priskinta daugiausiai uogø, daþniausiai<br />

ketv<strong>ir</strong>tojo ar penktojo, 100 uogø vidutinë masë, g). LSDI pomologinë komisija atliko<br />

uogø iðorinio patrauklumo, minkðtimo konsistencijos, bendros kokybës ávertinimà<br />

balais (1 – maþiausia iðraiðka, 5 – didþiausia iðraiðka). Tyrimø duomenys statistiðkai<br />

ávertinti naudojant programà ANOVA.<br />

Meteorologinës sàlygos tyrimø metais braðkëms augti buvo tipiðkos <strong>ir</strong> vidutiniðkai<br />

palankios. 2004–2005 <strong>ir</strong> 2005–2006 m. þiemà tam tikrais laikotarpiais temperatû-<br />

44


os svyravimai v<strong>ir</strong>ðijo 30°C <strong>ir</strong>, esant nepakankamai sniego dangai, augalai gerokai<br />

paðalo, o tai turëjo átakos jautresniø veisliø augimui <strong>ir</strong> derëjimui. Pavasario ðalnos<br />

tyrimo laikotarpiu didesnës þalos derliui nepadarë. Vegetacijos metu 2004 m. b<strong>ir</strong>þelio<br />

<strong>ir</strong> rugpjûèio mënesiais buvo tarpsniø, kai krituliø iðkrito 1,6 karto daugiau uþ normà<br />

<strong>ir</strong> dël lietaus <strong>ir</strong> drëgmës pertekliaus pablogëjo d<strong>ir</strong>vos aeracija. 2005 metais derëjimo<br />

sàlygos buvo palankios, o 2006 m. derëjimo pabaigos laikotarpis buvo sausas, dël to<br />

uogos susmulkëjo <strong>ir</strong> sutrumpëjo derëjimo laikas.<br />

Rezultatai. Braðkiø iðtvermingumas 2003–2004 m. þiemà buvo sk<strong>ir</strong>tingas <strong>ir</strong><br />

paðalimo þiemà poþymiai 2004 m. pavasará, atsiþvelgiant á veislæ, skyrësi nuo 4,0 iki<br />

7,4 balo (1 lentelë). Jautriausi þiemojimo sàlygoms buvo veislës ‘Irma’ augalai (paðalimas<br />

– 7,4 balo), nuo jos ið esmës nesiskyrë h. k. VR96.58.2, ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong><br />

h. k. 92.340.3 augalai. Maþiau paðalo veisliø ‘Honeoye’, ‘Roxana’ <strong>ir</strong> ‘Dangë’ braðkës.<br />

Paðalimas turëjo átakos augalø bûklei tais paèiais metais. Geriausia buvo ‘Honeoye’,<br />

‘Roxana’ augalø bûklë, prasèiausia – ‘Irma’ <strong>ir</strong> ‘Alba’ augalø, jie po þiemos<br />

paðalimo per vasarà nevisiðkai atsigavo. Hibridinio klono 92.340.3 augalai po paðalimo<br />

atsigavo geriau. Labiausiai 2004–2005 m. þiemà nukentëjo ‘Irma’ veislës augalai<br />

(paðalimas – 7,3–7,6 balo). Nuo jos nedaug skyrësi ‘Alba’ <strong>ir</strong> h. k.VR96.58.2. Hibridinio<br />

klono 92.340.3 augalai nukentëjo maþiau, taèiau veislës ‘Roxana’ augalai buvo<br />

paþeisti labiau nei 2004 m. Áprastos mûsø klimato zonoje veislës paðalo gerokai maþiau<br />

(paðalimas – 2,0–2,7 balo) nei italø selekcijos veislës. 2006 metais matyti panaðios<br />

tendencijos kaip <strong>ir</strong> 2005 m. Dësninga, kad geriausios bûklës 2005 <strong>ir</strong> 2006 m.<br />

vasarà buvo ‘Salut’, ‘Venta’, ‘Dangë’ augalai, taèiau nuo jø nedaug skyrësi <strong>ir</strong> ‘Qeen<br />

Eliza’, ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

1 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø augalø paðalimas þiemà <strong>ir</strong> bûklë balais<br />

Table 1. Cold injury and plant state of different strawberry cultivars (scores)<br />

Babtai, 2004–2006 m.<br />

Pašalimas<br />

Pašalimas<br />

Pašalimas<br />

2004 m. Bûklë 2004 m. 2005 m. Bûklë 2005 m. 2006 m. Bûklë 2006 m.<br />

Veislë, h. k. pavasará vasar¹ pavasará vasar¹ pavasará vasar¹<br />

Cultivar (h.c.) Cold injury, Plant state,<br />

Cold<br />

Plant state,<br />

Cold<br />

Plant state,<br />

spring of summer of 2004<br />

injury,<br />

summer of 2005<br />

injury,<br />

summer of 2006<br />

spring of<br />

spring of<br />

2004<br />

2005<br />

2006<br />

‘Alba’ 6,0 3,4 6,0 4,3 6,0 4,0<br />

‘Qeen Eliza’ 6,0 5,4 4,3 7,0 4,7 6,7<br />

‘Irma’ 7,4 2,6 7,3 2,3 7,6 2,6<br />

VR96.58.2 6,6 4,6 6,3 4,7 6,3 4,3<br />

‘Roxana’ 4,0 7,4 6,0 6,8 6,3 6,0<br />

92.340.3 6,0 5,4 4,3 6,7 4,6 7,0<br />

‘Salut’ - 2,0 8,7 2,3 8,7<br />

‘Honeoye’ 4,0 6,0 2,7 - - -<br />

‘Venta’ - 2,0 7,3 2,3 7,6<br />

‘Dangë’ 4,6 5,4 2,0 9,0 2,0 8,7<br />

R 05 / LSD 05 1,8 1,6 1,1 1,5 1,3 1,4<br />

45


2004 m. braðkës þydëjo <strong>ir</strong> derëjo áprastu laiku (2 lentelë). Anksèiausiai (05-12)<br />

praþydo ‘Qeen Elizos’ <strong>ir</strong> ’Irmos’ augalai, vëliausiai, net aðtuoniomis dienomis vëliau –<br />

hibridinio klono 92.340.3 augalai. Anksèiausiai derëti pradëjo veisliø ‘Alba’ <strong>ir</strong> ‘Roxana’<br />

braðkës, vëliausiai, net 10 dienø vëliau – h. k. 92.340.3 augalai. 2005 metais<br />

abiejø sodinimø (1-ojo – 2003 m. <strong>ir</strong> 2-ojo – 2004 m.) augalai þydëjo <strong>ir</strong> derëjo vienodai,<br />

todël ðiame straipsnyje pateikiami 2005 m. abiejø sodinimø suminiai duomenys.<br />

Dël palyginti þemos oro temperatûros balandþio–geguþës mënesá augalai þydëti pradëjo<br />

vëliau nei 2004 m. Vëliau, orui atðilus, klimato sàlygos buvo palankios braðkëms<br />

derëti. Anksèiausiai 2005 m., kaip <strong>ir</strong> 2004 m., pradëjo þydëti <strong>ir</strong> derëti veislës ‘Irma’<br />

braðkës (atitinkamai 05-21 <strong>ir</strong> 06-18). Nuo jos pagal ðiuos poþymius maþai skyrësi<br />

kitos veislës <strong>ir</strong> h. k. 2005 metais þydëjimo <strong>ir</strong> derëjimo sk<strong>ir</strong>tumai tarp veisliø buvo<br />

maþesni nei 2004 m. Vëliausiai þydëti <strong>ir</strong> derëti tais metais pradëjo h. k. 92.340.3<br />

augalai. 2006 metais matyti tos paèios tendencijos kaip <strong>ir</strong> 2005 metais – vëlesná<br />

þydëjimà lëmë vëluojantis pavasaris, o derëjimo laikas dël smarkaus oro atðilimo b<strong>ir</strong>þelio<br />

pabaigoje buvo beveik artimas vidutiniam. Sk<strong>ir</strong>tumai tarp veisliø taip pat nebuvo<br />

labai dideli – anksèiausiai derëjo ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong> ‘Salut’, vëliausiai – h. k.<br />

92.340.3 braðkës.<br />

2 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø fenologinës fazës<br />

Table 2. Flowering and fruiting time of different strawberry cultivars and hybrid clones<br />

Þydëjimo<br />

Derëjimo<br />

Þydëjimo<br />

Derëjimo<br />

Þydëjimo Derëjimo<br />

pradžia<br />

Veislë<br />

pradžia<br />

pradžia<br />

pradžia<br />

pradžia pradžia<br />

2004 m.<br />

Cultivars<br />

2004 m.<br />

2005 m.<br />

2005 m.<br />

2006 m. 2006 m.<br />

Beginning of<br />

Beginning of<br />

Beginning of Beginning of<br />

Beginning of<br />

Beginning of<br />

flowering,<br />

flowering,<br />

flowering, fruiting,<br />

fruiting, 2004<br />

fruiting, 2005<br />

2004<br />

2005<br />

2006 2006<br />

‘Alba’ 05-14 06-20 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Qeen Eliza’ 05-12 06-<strong>25</strong> 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Irma’ 05-12 06-22 05-21 06-18 05-23 06-23<br />

VR96.58.2 05-19 06-<strong>25</strong> 05-22 06-20 05-24 06-23<br />

‘Roxana’ 05-14 06-20 05-23 06-19 05-<strong>25</strong> 06-21<br />

92.340.3 05-20 06-30 05-24 06-23 05-27 07-28<br />

‘Salut’ - - 05-23 06-19 05-<strong>25</strong> 06-19<br />

‘Honeoye’ 05-14 06-22 05-22 06-18 - -<br />

‘Venta’ - - 05-22 06-18 05-<strong>25</strong> 06-23<br />

‘Dangë’ 05-16 06-<strong>25</strong> 05-23 06-22 05-<strong>25</strong> 06-28<br />

P<strong>ir</strong>mojo sodinimo braðkiø derlius 2004 m. priklausë nuo genotipo <strong>ir</strong> svyravo<br />

nuo 7,3 iki 22,6 t/ha (3 lentelë). 2005 m. veisliø sk<strong>ir</strong>tumai pagal derlingumà buvo dar<br />

didesni (2,9–23,7 t/ha). Derlingumu 2004 m. kitas veisles ið esmës lenkë veislë ‘Roxana’<br />

(22,6 t/ha), o 2005 m. ði veislë nusileido h. k. 92.340.3 (23,7 t/ha) <strong>ir</strong> veislei<br />

‘Dangë’ (20,1 t/ha). Ðiø trijø veisliø vidutinis derlius (2004–2005 m.) buvo didesnis<br />

negu likusiø t<strong>ir</strong>tøjø. Maþiausiai derlinga buvo veislë ‘Irma’ (5,5 t/ha), kurios derlius<br />

2005 metais, kaip <strong>ir</strong> veislës ‘Roxana’, palyginti su 2004 m., ið esmës sumaþëjo. H. k.<br />

46


92.340.3 <strong>ir</strong> veislës ‘Dangë’ derlius 2005 metais labai padidëjo. 2004 metø sodinimo<br />

braðkiø derlius ið esmës maþesnis nei 2003 m. sodinimo. Kaip <strong>ir</strong> p<strong>ir</strong>mojo sodinimo<br />

didþiausià derliø p<strong>ir</strong>maisiais derëjimo metais davë veislë ‘Roxana’ (21,3 t/ha). Ið esmës<br />

nuo jos nesiskyrë <strong>ir</strong> ‘Salut’ (16,0 t/ha). 2006 m. derlius buvo gerokai maþesnis,<br />

o sk<strong>ir</strong>tumai tarp veisliø ne tokie ryðkûs kaip ankstesniais tyrimo metais. Didþiausià<br />

vidutiná 2005–2006 metø derliø davë veislës ‘Roxana’ (16,5 t/ha), ‘Salut’ (13,8 t/ha)<br />

<strong>ir</strong> ‘Dangë’ (12,6 t/ha), maþiausià – ‘Irma’ (6,4 t/ha), ‘Alba’ (6,3 t/ha). Palyginti su<br />

p<strong>ir</strong>mojo sodinimo augalais, labai sumaþëjo h. k. 92.340.3 derlingumas.<br />

3 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø derlius<br />

Table 3. Strawberry yield of different strawberry cultivars<br />

Babtai, 2004–2006 m.<br />

I sodinimas 2004–2005 m.<br />

II sodinimas 2005–2006 m.<br />

I trial (2004–2005)<br />

II trial (2005–2006)<br />

Veislë, h. k.<br />

Cultivars (h.c.)<br />

2004–2005 m.<br />

2004–2005 m.<br />

2004 m. 2005 m. vidurkis 2005 m. 2006 m. vidurkis<br />

Mean of 2004–2005<br />

Mean of 2004–2005<br />

‘Alba’ 10,0 10,5 10,3 8,8 3,7 6,3<br />

‘Qeen Eliza’ 7,3 11,6 9,5 12,4 8,4 1,4<br />

‘Irma’ 8,0 2,9 5,5 7,7 5,2 6,4<br />

VR96.58.2 9,3 8,2 8,8 10,3 6,9 8,6<br />

‘Roxana’ 22,6 16,7 19,6 21,3 11,8 16,5<br />

92.340.3 13,4 23,7 18,5 8,7 7,5 8,1<br />

‘Salut’ - - - 16,0 11,6 13,8<br />

‘Honeoye’ 10,1 13,4 11,7 - -<br />

‘Venta’ - - - 12,9 9,3 11,1<br />

‘Dangë’ 14,1 20,1 17,7 13,9 11,4 12,6<br />

R 05 / LSD 05 4,7 6,6 8,1 7,5 5,5 8,6<br />

Didþiausios bei derëjimo pradþios vidutinës uogø masës duomenys pateikti 4<br />

lentelëje, o vidutinës uogø masës masinio derëjimo metu – 5 lentelëje. Atsk<strong>ir</strong>os veislës<br />

ið esmës skyrësi pagal ðiuos rodiklius. Didþiausia buvo h. k. 92.340.3 vidutinë<br />

uogos masë, jos maksimali masë siekë 57,7 g. Veisliø ‘Qeen Eliza’, ‘Roxana’, h. k.<br />

VR96.58.2 didþiausios uogos masë taip pat v<strong>ir</strong>ðijo 50 g. Ðiø veisliø didþiausia buvo<br />

p<strong>ir</strong>møjø skynimø vidutinë uogos masë. Uogø dydis 2006 m.buvo gerokai maþesnis,<br />

kitais tyrimo metais jis buvo gana stabilus. P<strong>ir</strong>mojo sodinimo braðkiø uogø dydis<br />

2005 m. buvo ðiek tiek maþesnis negu antrojo sodinimo braðkiø, bet ið esmës dydþiu<br />

skyrësi tik veislës ‘Alba’ (didþiausia uoga) <strong>ir</strong> h. k. 92.340.3 bei ‘Qeen Eliza’ (derëjimo<br />

pradþios) uogos.<br />

Vertingiausiø braðkiø veisliø uogos derëjimo metu smulkëja neþymiai. Atliekant<br />

mûsø tyrimà, pakankamai stabilus uogø dydis buvo bûdingas ‘Qeen Eliza’, VR96.58.2,<br />

‘Roxana’‚ Dangës’ <strong>ir</strong> h. k. 92.340.03 braðkëms (5 lentelë). Kekerinio puvinio sk<strong>ir</strong>tingø<br />

veisliø uogos buvo paþeistos nevienodai. Ðis paþeidimas priklausë nuo konkreèiø<br />

47


metø klimato sàlygø, ypaè nuo drëgmës reþimo. 2004 m. paþeistø uogø kiekis svyravo<br />

nuo 6,4 iki 17,8 proc., 2005 m. – nuo 1,0 iki 10,0 proc., 2006 m. buvo paþeista<br />

labai maþai uogø (0–1,4 proc.). Daugiausia paþeista buvo h. k. 9.234.03 bei ‘Irma’<br />

veislës uogø, maþiausiai – ‘Alba’ <strong>ir</strong> ‘Honeoye’.<br />

4 lentelë. Sk<strong>ir</strong>tingø veisliø braðkiø p<strong>ir</strong>mojo (I) <strong>ir</strong> antrojo (II) sodinimø didþiausios<br />

bei derëjimo pradþios vidutinë uogos masë<br />

Table 4. Average weight of the biggest berry and average berry weight at<br />

the beginning of fruiting of different strawberry cultivars and hybrid clones<br />

of f<strong>ir</strong>st (I) and second (II) planting<br />

Babtai, 2004–2005 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

2004 m.<br />

(I)<br />

Didþiausios uogos masë<br />

Weight of the biggest berry, g<br />

2005 m.<br />

(I)<br />

2005 m.<br />

(II)<br />

2006 m.<br />

(II)<br />

Derëjimo pradþios vidutinë uogos masë<br />

Average berry weight at the beginning of<br />

fruiting, g<br />

2004 m.<br />

(I)<br />

2005 m.<br />

(I)<br />

2005 m.<br />

(II)<br />

2006 m.<br />

(II)<br />

‘Alba’ 37,3 33,7 48,7 24,0 13,8 16,1 24,5 11,4<br />

‘Qeen Eliza’ 50,3 46,7 52,7 27,3 20,4 15,1 23,9 15,2<br />

‘Irma’ 30,3 <strong>25</strong>,3 31,3 <strong>25</strong>,3 11,2 12,3 11,7 9,4<br />

VR96.58.2 43,7 44,7 49,3 27,3 15,8 23,9 21,4 10,1<br />

‘Roxana’ 47,3 44,0 50,7 23,0 26,2 17,2 23,0 11,1<br />

92.340.3 49,0 47,7 57,7 31,0 <strong>25</strong>,4 16,3 22,9 13,6<br />

‘Salut’ - - 48,7 <strong>25</strong>,7 - 16,2 9,9<br />

‘Honeoye’ 21,7 31,3 - - 9,3 15,7 - -<br />

‘Venta’ - - 39,0 28,3 - - 17,4 12,6<br />

‘Dangë’ 29,7 <strong>25</strong>,3 34,7 20,0 15,4 15,4 15,9 8,9<br />

R 05 / LSD 05 7,2 8,1 11,7 4,9 4,9 5,5 6,7 3,0<br />

Iðoriðkai patrauklius vaisius iðaugino ‘Roxana’ <strong>ir</strong> h. k. 92.340.3 braðkës (6 lentelë).<br />

Nuo jø ið esmës nesiskyrë ‘Alba’, ‘Qeen Eliza’ <strong>ir</strong> ‘Dangës’ veisliø uogø patrauklumas.<br />

Maþiau patrauklios buvo ‘Irma’, ‘Salut’, ‘Honeoye’ <strong>ir</strong> ‘Ventos’ uogos.<br />

Tv<strong>ir</strong>èiausias minkðtimas buvo h. k. 92.340.3 (4,8 balo), ‘Alba’ <strong>ir</strong> h. k. VR96582<br />

uogø, maþiausiai tv<strong>ir</strong>tos ‘Irmos’ (3,9 balo), ‘Ventos’ (4,1 balo), ‘Honeoye’ <strong>ir</strong> ‘Dangës’<br />

(4,2 balo) uogos. Uogø skonis, atsiþvelgiant á veislæ, buvo ávertintas nuo 4,0<br />

balø (‘Honeoye’) iki 4,6 balo (‘Irma’). Pastarosios veislës uogø skonis panaðus á<br />

‘Ventos’ uogø. Ðios veislës uogø skonis vertinamas labai gerai arba puikiai. ‘Honeoye’<br />

<strong>ir</strong> ‘Salut’ veisliø uogos skoniu neiðsiskyrë. Bendra sk<strong>ir</strong>tingø veisliø uogø kokybë<br />

labai nesiskyrë. Geriausiai ávertinta veisliø ‘Qeen Eliza’, h. k. VR9.658.2 <strong>ir</strong> 9.234.03<br />

bendra uogø kokybë (4,4 balo), prasèiausiai – ‘Honeoye’ (3,9 balo).<br />

48


5 lentelë. Sk<strong>ir</strong>tingø veisliø vidutinë uogos masë (g) (vum) <strong>ir</strong> kekerinio puvinio paþeistø<br />

uogø (%) (s) masinio derëjimo metu<br />

Table 5. Average berry weight (g) (vum) and percentage of berries, injured by grey mold<br />

(s) in the middle of cropping season<br />

Babtai, 2004–2005 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

I sodinimas<br />

I trial<br />

II sodinimas<br />

II trial<br />

2004 m. 2005 m. 2005 m. 2006 m.<br />

vum s vum s vum s vum s<br />

‘Alba’ 11,3 6,4 10,3 2,3 8,8 6,7 8,3 0<br />

‘Qeen Eliza’ 17,2 12,8 8,2 3,0 14,1 4,5 9,2 0<br />

‘Irma’ 11,0 15,7 8,8 4,5 7,2 10,0 9,6 0<br />

VR96.58.2 11,5 8,3 12,1 4,3 10,7 4,2 6,2 0<br />

‘Roxana’ 20,2 9,8 7,6 2,0 11,8 3,6 6,9 1,4<br />

92.340.3 15,9 17,8 11,4 4,5 12,3 6,0 7,2 0<br />

‘Salut’ - - - - 7,7 5,1 7,9 0<br />

‘Honeoye’ 8,0 6,7 6,1 1,0 - - - 0<br />

‘Venta’ - - - - 8,1 10,0 6,8 0<br />

‘Dangë’ 11,8 9,0 11,1 2,2 9,5 4,2 6,6 0<br />

R 05 / LSD 05 4,9 2,6 4,1 1,3 3,5 2,2 1,5 0,3<br />

6 lentelë Sk<strong>ir</strong>tingø braðkiø veisliø uogø kokybë balais<br />

Table 6. Quality of strawberry berries of different cultivars<br />

Babtai, 2004–2006 m.<br />

Veislë, h. k.<br />

Cultivar (h.c.)<br />

Vaisiaus išorinis<br />

patrauklumas<br />

External appearance<br />

Minkštimo<br />

konsistencija<br />

F<strong>ir</strong>mness<br />

Vaisiaus<br />

skonis<br />

Taste<br />

Bendras vaisiaus<br />

kokybës ávertinimas<br />

General evaluation<br />

‘Alba’ 4,4 4,6 4,4 4,3<br />

‘Qeen Eliza’ 4,5 4,4 4,4 4,4<br />

‘Irma’ 4,0 3,9 4,6 4,3<br />

VR96.58.2 4,5 4,6 4,4 4,4<br />

‘Roxana’ 4,6 4,3 4,1 4,3<br />

92.340.3 4,6 4,8 4,4 4,4<br />

‘Salut’ 4,1 4,3 4,2 4,2<br />

‘Honeoye’ 4,0 4,2 4,0 3,9<br />

‘Venta’ 3,8 4,1 4,5 4,2<br />

‘Dangë’ 4,4 4,2 4,4 4,2<br />

R 05 / LSD 05 0,2 0,3 0,1 0,3<br />

49


Aptarimas. Mûsø duomenimis, pagal derëjimo laikà veisles ‘Qeen Eliza’, ‘Irma’,<br />

‘Salut’, ‘Alba’, ’Roxana’ galima bûtø prisk<strong>ir</strong>ti prie vidutinio ankstyvumo,<br />

VR96.58.2 – prie vidutiniðkai vëlyvø, o selekciná numerá 92.340.3 – prie vëlyvø braðkiø<br />

veisliø. Veislës ‘Qeen Eliza’ <strong>ir</strong> ‘Alba’ autoriø (Faedi <strong>ir</strong> kt., 2002a) yra prisk<strong>ir</strong>iamos<br />

prie ankstyvøjø, bet Lietuvos agroklimato sàlygomis jos þydi <strong>ir</strong> dera panaðiu laiku<br />

kaip veislës ‘Venta’ <strong>ir</strong> ‘Honeoye’, todël mes jas taip pat priskyrëme prie vidutinio<br />

ankstyvumo veisliø.<br />

Mûsø duomenimis, daugelis t<strong>ir</strong>tø Italijoje sukurtø braðkiø veisliø nëra pakankamai<br />

prisitaikiusios augti mûsø klimato zonoje. Visos jos, iðskyrus veislæ ‘Roxana’,<br />

paðalo kur kas labiau nei veislës, sukurtos Lietuvoje (‘Venta’, ‘Dangë’) ar ðalyse,<br />

kuriø klimato sàlygos panaðios á Lietuvos (‘Saliut’, ‘Honeoye’). Veislës ‘Roxana’<br />

augalai maþiau paðalo 2004 m., taèiau 2005 <strong>ir</strong> 2006 metais paðalo panaðiai kaip <strong>ir</strong><br />

kitos italiðkos veislës. Matyt, átakos turëjo tai, kad po gausaus derëjimo antraisiais<br />

augimo – p<strong>ir</strong>maisiais derëjimo metais augalai nepajëgë tinkamai pas<strong>ir</strong>uoðti þiemoti.<br />

Panaðias tendencijas, kad daugelis Europos pietuose sukurtø veisliø blogiau þiemoja<br />

<strong>ir</strong> sunkiau atsigauna po derëjimo, pastebëjo <strong>ir</strong> kitø veisliø tyrëjai, dalyvaujantys<br />

COST863 veikloje (Hietaranta <strong>ir</strong> kt., 2004; Krüger <strong>ir</strong> kt., 2004; Masny, Zurawicz,<br />

2004). Sk<strong>ir</strong>tingø veisliø augalai po þiemos atsigavo nevienodai. Veislës ‘Irma’, o ið<br />

dalies <strong>ir</strong> ‘Alba’ bei h. k. VR96.58.2 augalai vegetacijos metu taip <strong>ir</strong> neatsigavo, o kitø<br />

veisliø (‘Qeen Eliza’, ‘Roxana’, h. k. 92.340.3) augalø bûklë vegetacijos metu buvo<br />

daugiau ar maþiau patenkinama. Sk<strong>ir</strong>tingo iðtvermingumo þiemà átaka ypaè akivaizdi<br />

veisliø ‘Irma’ <strong>ir</strong> ‘Roxana’ derliui. Veislës ‘Irma’ augalai jautriausiai reagavo á þiemojimo<br />

sàlygas, tai padarë didelæ átaka derliui. Ði veislë, kaip raðo autoriai Faedi <strong>ir</strong> Baruzzi<br />

(2004) <strong>ir</strong> kaip pastebëta atliekant mûsø tyrimus, yra nejautri dienos ilgumui <strong>ir</strong> antrà<br />

kartà dera liepos antroje pusëje. Taèiau antrasis metø derlius yra gerokai maþesnis<br />

nei p<strong>ir</strong>masis <strong>ir</strong> sudaro tik 20 proc. p<strong>ir</strong>mojo derliaus. Antrasis derlius gali bûti didelis<br />

Italijos sàlygomis, nes ten nuo vieno ðios veislës augalo priskinama daugiau kaip 1 kg<br />

uogø, bet Lietuvos sàlygomis, kur p<strong>ir</strong>masis derlius daug maþesnis <strong>ir</strong> siekia tik 200 g<br />

ið augalo, antrojo derliaus ekonominis naudingumas yra abejotinas. Galima teigti, kad<br />

antrasis derëjimas (kaip <strong>ir</strong> p<strong>ir</strong>masis derëjimas sodinimo metais), nors derlius <strong>ir</strong> nëra<br />

labai gausus, iðsekina augalus, <strong>ir</strong> jie dël trumpesnio nei Italijoje vegetacijos laikotarpio<br />

nespëja tinkamai pas<strong>ir</strong>uoðti þiemoti, paðàla þiemà <strong>ir</strong> kitais metais dera negausiai. Ðia<br />

veislæ Lietuvoje dar reikëtø iðt<strong>ir</strong>ti kartu su kitomis dienos ilgumui nejautriomis veislëmis<br />

taikant specialià auginimo technologijà. Veislës ‘Roxana’ dideles derlingumo potencines<br />

galimybes, pas<strong>ir</strong>eiðkusias 2004 m., lëmë didesnis jos iðtvermingumas þiemà,<br />

taèiau, esant blogesnëms þiemojimo sàlygoms vëlesniais metais, sumaþëjo <strong>ir</strong> ðios<br />

veislës augalø derlingumas. Iðtvermingesniø þiemà veisliø (‘Dangë’, h. k. 92.340.3,<br />

‘Saliut’) <strong>ir</strong> derlingumas buvo didesnis bei stabilesnis. Nagrinëjant abiejø (2003 <strong>ir</strong><br />

2004 m.) sodinimø braðkiø derlingumà konkreèiais metais matyti, kad veislës labai<br />

nevienodai reagavo ne tik á þiemojimo, bet <strong>ir</strong> augimo sàlygas. Konkreèiø metø derliui,<br />

bent jau kai kuriø veisliø, átakos turëjo ankstesniø metø augimo sàlygos. Tuo galima<br />

paaiðkinti <strong>ir</strong> h. k. 92.340.3 antrojo sodinimo augalø gerokai maþesná derliø 2005 metais<br />

nei p<strong>ir</strong>mojo sodinimo augalø. Apibendrinat galima teigti, kad panaðaus á Lietuvos<br />

klimato zonoje sukurtos veislës yra gerokai stabilesnës <strong>ir</strong> patikimesnës, negu sukurtosios<br />

kitose klimato juostose, taèiau pasitaiko <strong>ir</strong> iðimèiø – veislës ‘Roxana’ derlingu-<br />

50


mo potencinës galimybës <strong>ir</strong> patenkinamas iðtvermingumas lëmë tai, kad jos derlius<br />

prilygo, o kai kurias metais <strong>ir</strong> v<strong>ir</strong>ðijo tradiciðkai Lietuvoje auginamø veisliø derliø.<br />

Reikia manyti, kad naudojant reikiamas agrotechnikos priemones (mulèiavimas, priedangos,<br />

laistymas <strong>ir</strong> kt.) ðià veislæ galima bûtø sëkmingai auginti Lietuvoje.<br />

Uogø dydis yra svarbus desertiniø braðkiø rodiklis <strong>ir</strong> vartotojui, <strong>ir</strong> augintojui.<br />

Tai, kad 2005 metais skyrësi veisliø ‘Alba’, ‘Qeen Eliza’, ‘Roxana’ <strong>ir</strong> h. k. 92.340.3<br />

p<strong>ir</strong>mojo <strong>ir</strong> antrojo sodinimø braðkiø uogø vidutinë masë, rodo, kad ðiø veisliø uogø<br />

kokybë priklauso nuo augimo sàlygø bei nuo augalø amþiaus (p<strong>ir</strong>mojo ar antrojo<br />

sodinimo). Mûsø klimato zonoje ðiø veisliø derlius antraisiais derëjimo metais kokybës<br />

poþiûriu yra gerokai prastesnis, nors jo dydis <strong>ir</strong> prilygsta p<strong>ir</strong>møjø metø derliui.<br />

VR96.58.2 <strong>ir</strong> ‘Dangës’ braðkiø uogø masë maþiau priklausë nuo augalø amþiaus. Kiti<br />

desertinëms braðkëms svarbûs rodikliai yra uogø patrauklumas <strong>ir</strong> jø transportabilumas.<br />

T<strong>ir</strong>tø veisliø uogø kokybë ðiuo poþiûriu buvo ðiek tiek geresnë negu kontroliniø<br />

veisliø. Tai yra dësninga, nes jau daug metø braðkiø selekcijoje didelis dëmesys kreipiamas<br />

á uogø kokybæ <strong>ir</strong> ypaè á jø prekinæ iðvaizdà (Faedi <strong>ir</strong> kt, 2002; Roudeillac,<br />

Trajkovski, 2004). Ið t<strong>ir</strong>tø veisliø iðoriðkai patraukliausios buvo ‘Roxanos’, h. k.<br />

92.340.3 <strong>ir</strong> ‘Qeen Elizos’ uogos. Hibridiniø klonø VR96.58.2 <strong>ir</strong> 92.340.3 uogø minkðtimas<br />

buvo tv<strong>ir</strong>èiausios konsistencijos. Ðios keturios minëtos veislës galëtø bûti naudojamos<br />

veislëms, turinèioms poþymiø, kuriø trûksta lietuviðkoms <strong>ir</strong> Lietuvoje auginamoms<br />

veislëms – patrauklià iðvaizdà <strong>ir</strong> tv<strong>ir</strong>tas uogas, kurti. Ankstesnës selekcijos<br />

italø <strong>ir</strong> apskritai Pietø Europos veisliø braðkiø skonis nebuvo geras (Masny, Ýurawicz,<br />

2004). Ádomu paþymëti, kad veisliø, t<strong>ir</strong>tø ðiuo tyrimu, uogø skonis panaðus á<br />

‘Ventos’ veislës uogø skoná <strong>ir</strong> yra kur kas geresnis uþ Lietuvoje paplitusios veislës<br />

‘Honeoye’ uogø skoná. Tai rodo, kad ðiuo metu selekcijoje kreipiamas didesnis dëmesys<br />

á ðá poþymá <strong>ir</strong> pasiekta daug geresniø rezultatø kuriant braðkiø veisles, kuriø<br />

uogos skanesnës.<br />

Iðvados. 1. Vidurio Lietuvos agroklimato sàlygomis iðtvermingiausios þiemà ið<br />

t<strong>ir</strong>tø veisliø yra ‘Salut’ <strong>ir</strong> ‘Roxana’ braðkës. Labiausiai paðàla veisliø ‘Irma’ <strong>ir</strong> ‘Alba’<br />

augalai.<br />

2. Tyrimø duomenimis, pagal derëjimo laikà veisles ‘Qeen Eliza’, ‘Irma’, ‘Salut’,<br />

‘Alba’, ‘Roxana’ galima bûtø prisk<strong>ir</strong>ti prie vidutinio ankstyvumo, hibridiná klonà<br />

VR96.58.2 – prie vidutiniðkai vëlyvø, o h. k. 92.340.3 – prie vëlyvøjø braðkiø veisliø.<br />

3. Derlingiausi 2004–2005 metais buvo ‘Roxana’ veislë (19,6 t/ha) <strong>ir</strong> h. k.<br />

92.340.3 (18,5 t/ha), 2005–2006 metais – ‘Roxana’ (16,5 t/ha) <strong>ir</strong> ‘Salut’ (13,8 t/ha).<br />

Didþiausias uogas uþaugina ‘Roxana’, h. k. 92.340.3 <strong>ir</strong> ‘Qeen Eliza’ veislë.<br />

4. Didþiausiu patrauklumu iðsisk<strong>ir</strong>ia ‘Roxana’ <strong>ir</strong> h. k. 9.234.03 braðkës. Tv<strong>ir</strong>èiausios<br />

yra h. k. 92.340.3, ‘Alba’ <strong>ir</strong> h. k. VR96.58.2 uogos, geriausias ‘Irma’ veislës<br />

uogø skonis.<br />

5. Pagal ûkiðkai svarbiø savybiø visumà tinkamiausios Lietuvoje auginti yra ‘Roxana’,<br />

‘Salut’ <strong>ir</strong> h. k. 92.340.3 braðkës.<br />

Padëka. Dëkojame, kad ðá darbà parëmë Tarptautiniø mokslo <strong>ir</strong> technologijø<br />

plëtros programø agentûra.<br />

Gauta 2006-11-24<br />

Parengta spausdinti 2006-12-11<br />

51


Literatûra<br />

1. Faedi W., Baruzzi G., Cubicciotti G., Lucchi P., Magnani S., Turci P. Recent progress<br />

in strawberry breeding in Italy // Acta Horticulturae. 2002b. T. 567. P. 157–160.<br />

2. Faedi W., Baruzzi G. New strawberry cultivars from Italian breeding activity // Acta<br />

Horticulturae. 2004 T. 649. P. 81–84.<br />

3. Faedi F. COST: Past, Present, Future // Acta Horticulturae. 2004 T. 649. P. 21–24.<br />

4. Faedi W., Morgues F., Rosati C. Strawberry breeding and varieties: situation and<br />

perspectives // Acta Horticulturae. 2002a. T. 567. P. 51–60.<br />

5. Hietaranta T., Svensson B., Daugaard H. European network for strawberry cultivar<br />

evaluation: summary results of the strawberry cultivar trials from the Nordic countries //<br />

Acta Horticulturae. 2004. T. 649. P. 131–136.<br />

6. Intensyvios sodø <strong>ir</strong> uogynø auginimo technologijos (sud. N. Uselis). Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës institutas. Babtai, 2002. P. 190.<br />

7. Krüger E., Krieg R., Innerhofer G., Latet G., Lieten F., MacNaeidhe F., Evenhuis B.,<br />

Kruczynska D. Synthesis of the Central European strawberry cultivar results // Acta<br />

Horticulturae. 2004. T. 649. P. 137–140.<br />

8. Masny A., Ýurawicz E. Field performance of selected strawberry genotypes collected<br />

at the Research Institute of Pomology and Floriculture (RIPF), Skierniewice, Poland //<br />

Acta Horticulturae. 2004. T. 649. P. 147–150.<br />

9. Mezzetti B. COST836: European cooperation on berry research // Acta Horticulturae.<br />

2004. T. 649. P. <strong>25</strong>–26.<br />

9. Misevièiûtë A., Lukoðevièius A. Sodo augalø veisliø tyrimas <strong>ir</strong> selekcija // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1988. T. 7. P. 26–46.<br />

10. Navatel J. C., Krüger E. From Finland to Turkey the European strawberry cultivar<br />

network // Acta Horticulturae. 2004. T. 649. P. 1<strong>25</strong>–130.<br />

11. Raðinskienë A., Uselis N. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(1). P. 53–68.<br />

12. Roudeillac P., Trajkovski K. Breeding for fruit quality and nutrition in strawberries<br />

// Acta Horticulturae. 2004. T. 649. P. 55–60.<br />

13. Rugienius R., Sasnauskas A. Braðkiø veisliø <strong>ir</strong> hibridiniø klonø tyrimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. T. 24(1). P. 34–41.<br />

14. Uselis N., Raðinskienë A. Investigation of strawberry varieties in Lithuania //<br />

Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1999. T. 18(1). P. 165–173.<br />

15. Uselis N., Raðinskienë A. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(2). P. 18–31.<br />

52


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INVESTIGATION OF STRAWBERRY CULTIVARS<br />

ACCORDING TO INTERNATIONAL COST 863<br />

PROGRAMME IN LITHUANIA<br />

R. Rugienius, A. Sasnauskas<br />

Summary<br />

Ten strawberry cultivars and hybrid clones were investigated according to<br />

COST863 action in 2003–2006. Strawberries were planted in two stages – at 2003<br />

and 2004. Under the agroclimatic conditions of the middle of Lithuania cultivars<br />

‘Salut’ <strong>ir</strong> ‘Roxana’ were the most winterhardy. ‘Irma’ and ‘Alba’ were the most<br />

cold susceptible ones. According to our data, ‘Qeen Eliza’, ‘Irma’, ‘Salut’, ‘Alba’,<br />

‘Roxana’ are medium early, hybrid clone (h.c.) VR96582 is medium late, h.c. 92.340.3<br />

is late. ‘Irma’ is weekday neutral. The highest two-year (2004–2005) average yield<br />

of f<strong>ir</strong>st planting was received from ‘Roxana’ (19,6 t/ha) and h.c. 92.340.3 (18,5 t/<br />

ha), the highest yield of another planting (2005–2006) – ‘Roxana’ (16,5 t/ha) and<br />

‘Salut’ (13,8 t/ha). ‘Roxana’, h.c. 923403 and ‘Qeen Eliza’ had the biggest berries.<br />

The best appearance was of ‘Roxana’ and h.c. 9.234.03, berry f<strong>ir</strong>mness – of h.c.<br />

92.340.3, ‘Alba’ and h.c. VR96.582, best taste of ‘Irma.’ Among investigated cultivars<br />

the most promising under Lithuanian conditions were ‘Roxana’, ‘Salut’ and<br />

h.c. 92.340.3 strawberries.<br />

Key words: Fragaria ananassa Duch., fertility, cold resistance, berry quality.<br />

53


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

GROWTH AND FRUITING OF APPLE TREE<br />

CV. ‘JONICA’ ON DIFFERENT ROOTSTOCKS<br />

Przemysùaw BANACH, Maciej GÀSTOÙ<br />

Department of Pomology and Apiculture Agricultural University in<br />

KrakówAl. 29 Listopada 54, 31-4<strong>25</strong> Kraków, Poland.<br />

E-mail przemek351@op.pl<br />

Abstract: The aim of the experiment, conducted in 1999-2003, was to estimate<br />

the influence of five rootstocks (M.9, M.26, P 22, P 59 and P 60) on the growth,<br />

cropping and fruit quality of apple trees ‘Jonica’. The investigated rootstocks significantly<br />

influenced trees’ vigour expressed as trunk cross-section area (TCSA). The<br />

weakest growth was obtained for trees grafted on rootstocks P 59 and P 22 (10.9<br />

and 11.3 cm 2 TCSA), while stronger on M.9 and P 60 (<strong>25</strong>.6 cm 2 and 19.1 cm 2 , respectively).<br />

The trees on M.26 were characterized by the strongest vigour (30.6 cm 2 ).<br />

Weather conditions, especially rainfalls, had a great impact on the growth of the<br />

assessed trees. The growth of trees expressed as crown volume was especially<br />

decreased by rootstocks P 22 and P 59. The highest flowering abundance in comparison<br />

to rootstock M.9 (3.3 in scale 0-5) was observed for P 22 (4.0) followed by P<br />

59 and P 60 (3.5) and M.26 (3.3). Rootstocks did not have an impact on fruit set.<br />

The highest fruit set was observed in 2001 and 2002, and consequently the highest<br />

yield was obtained in these seasons. Though some differences between rootstocks<br />

were found in the respect of yielding, they were not statistically significant. The total<br />

yield varied from 37.5 kg/tree for M.9, 36.4 kg for M.26, 33.3 kg for P 22, 26.1 kg<br />

for P 60 and <strong>25</strong>.3 kg/tree. However, some differences concerning productivity of<br />

trees were found. As far as yield efficiency index is concerned, the most productive<br />

trees were those grafted on rootstocks P 22 and P 59 (2.96 and 2.40 kg/cm 2 , respectively).<br />

Trees on rootstocks M.9, P 60 and M.26 were less productive, with the yield<br />

efficiency index of 1.51, 1.40 and 1.20 kg/cm 2 , respectively. Rootstocks used for<br />

this study significantly differentiated the mean weight of fruit, which varied from<br />

220 g for M.9, followed by M.26 (204 g) and P 60 (197 g), P 22 (178 g) and P 59<br />

(186 g). Rootstocks did not affect fruit coloring.<br />

Key words: apple, rootstock, growth, fruit quality.<br />

Introduction. Rootstock as an integrated part of fruit tree strongly influences<br />

its vigour, productivity and quality of fruits. However, there is no universal rootstock<br />

for all climatic and soil conditions. Altough trees of ‘Jonagold’ grafted on<br />

54


semi-dwarf rootstocks, such as M.26 or P 60 show good orchard performance on<br />

light soils, on fertile ones they grow too vigorously (Skrzyñski and Poniedziaùek<br />

1999). On the other hand, rootstock M.9 with its many advantages (Webster,<br />

1992; Webster and Hollands, 1999) in some conditions is not winter hardy enough<br />

(Czynczyk, 1979, 1997; Webster and Hollands, 1999) and suffers from droughts<br />

(Czynczyk and Omieciñska, 1990; Makosz and Wùodarczyk, 1993). Therefore, it<br />

is necessary to select the rootstock, which is best suited to our severe climatic<br />

conditions. As rootstock of Polish origin are thought to be more frost resistant<br />

(Zagaja et al. 1998), we tried to assess the performance of ‘Jonica’ trees, one of<br />

the most popular cultivars in our orchards, grafted on Polish selection rootstocks:<br />

P 22, P 59 and P 60 in comparison to standard ones: M.9 and M.26. The second<br />

goal was to find a rootstock best adapted to soil and climate conditions, specific<br />

for southern Poland.<br />

Material and methods. The experiment was established in the spring of 1997<br />

in the Experimental Station in Garlica Murowana, near Krakow. The soil of the plot<br />

where the fruit trees were planted was in the valuation class II b. It is of the brown<br />

soil type developed from loess and represents a species determined as silt loam. The<br />

experimental material was composed of one-year-old budded trees of cultivar ‘Jonica’<br />

on five rootstocks: M.9, M.26, P 22, P 59 and P 60. In the orchard the soil<br />

cultivation system was herbicidal fallow in rows and grass in inter-rows. The apple<br />

trees were spaced 1.0 × 4.0 m. The crowns of trees were trimmed in a slender<br />

spindle form. The protection of the trees was carried out according to the recommendations<br />

accepted for commercial plantations. However, no preventive spraying<br />

with calcium salts was applied.<br />

The experiment was established in a randomized blocks design, each treatment<br />

being represented by four replications – plots of five trees each.<br />

The following measurements and observation were made during the experiment:<br />

Growth of trees was estimated as the increase of trunk cross-section area<br />

(TCSA) measured at the height of 30 cm, for biennial periods. Additionally, the<br />

crown volume was annually ascertained.<br />

The flowering abundance was evaluated in scale 0 to 5, where 0 – no flowering,<br />

5 – very intensive flowering. Some branches were labeled and flowers were<br />

counted. In July fruit set was recorded.<br />

At harvest, for each plot, the yield was weighted, the blush area and weight of<br />

100 randomly chosen fruits was recorded. Moreover, the efficiency index was calculated.<br />

The measurements were listed and subjected to analysis of variance. Differences<br />

between the means were ascertained with a multiple Duncan Test, using a Statistica<br />

6.0 program. The mean values for the combinations labeled with the same<br />

letters do not significantly differ at the significance level α = 0.05.<br />

Results and discussion. Used rootstocks significantly affected vegetative growth<br />

of trees (Table 1 and Table 2). As far as trunk cross-sectional area is concerned, the<br />

weakest tree vigour was obtained for P 22 and P 59 rootstock, stronger for P 60 and<br />

M.9. Trees grafted on M.26 revealed the strongest vigour.<br />

55


Table 1. Trunk cross-section area increase (cm 2 ) during 1999-2002 as influenced by<br />

different rootstocks and year of study<br />

1 lentelë. Kamieno skerspjûvio ploto (KSP) priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo<br />

metø 1999–2002 m.<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Initial TCSA,<br />

spring of 1999<br />

TCSA increase<br />

KSP padidëjimas, cm 2<br />

Pradinis KSP 1999 m.<br />

pavasará, cm 2 1999 2000 2001 2002<br />

Final TCSA,<br />

autumn of 2002<br />

Galutinis KSP 2002 m.<br />

rudená, cm 2<br />

‘Jonica’/M.9 2.79 3.84 * bc 6.50 b 6.52 b 5.95 b <strong>25</strong>.6 bc<br />

‘Jonica’/P 60 2.20 3.24 b 4.45 ab 3.50 a 5.72 b 19.1 b<br />

‘Jonica’/M.26 2.73 4.36 c 7.83 b 7.58 b 8.07 c 30.6 c<br />

‘Jonica’/P 22 2.14 1.32 a 1.66 a 2.06 a 4.10 ab 11.3 a<br />

‘Jonica’/P 59 2.05 1.28 a 1.95 a 2.71 a 2.93 a 10.9 a<br />

2.80 a 4.48 b 4.58 b 5.34 c<br />

* Means followed by the same letter do not differ at α = 0.05; Duncan ‘s Multiply Range Test<br />

* Tarp tomis paèiomis raidëmis skiltyse paþymëtø reikðmiø pagal Dunkano kriterijø (α = 0,05)<br />

esminiø sk<strong>ir</strong>tumø nëra.<br />

Table 2. Mean canopy volume (m 3 ) of ‘Jonica’ trees as influenced by different rootstocks<br />

and year of study<br />

2 lentelë. ‘Jonica’ veislës vaismedþiø vidutinio vainiko dydþio priklausomumas nuo<br />

poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Canopy volume<br />

Vainiko dydis, m 3<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinio<br />

vidurkis<br />

1999 2000 2001 2002<br />

‘Jonica’/M.9 1.73 b 1.12 b 1.00 b 2.94 bc 1.70 c<br />

‘Jonica’/P 60 1.53ab 1.00 b 0.79 ab 2.34 b 1.41 bc<br />

‘Jonica’/M.26 1.89 b 1.06 b 1.11 b 3.36 c 1.86 c<br />

‘Jonica’/P 22 1.01 a 0.43 a 0.57 a 1.03 a 0.76 a<br />

‘Jonica’/P 59 1.08 a 0.52 a 0.65 a 1.30 a 0.87 a<br />

1.47 b 0.85 a 0.84 a 2.24 c<br />

This is in accordance with previous reports of Mika et al. (1983), Pätzold and<br />

Fisher (1991), Webster (1997), Baab (1998) and S³owiñski (2001). Skrzyñski and<br />

Poniedziaùek (1998) reported that ‘Jonagold’ trees on rootstocks P 14 and M.26<br />

grew more vigorously, while grafted on P 22 weaker than on M.9. Although some<br />

differences were found between rootstocks M.9 and P 60, they were not statistically<br />

significant. The same reported Voltz et al. (1993) and Ostrowska et al. (2001).<br />

The growth of trees expressed as crown volume was especially decreased by P 22<br />

56


and P 59 rootstocks. This conf<strong>ir</strong>med previous findings of Kruczyñska and Czynczyk<br />

(1998a), Lipecki (1994), Kurlus and Ugolik (1994) and Gruca (2001).<br />

Table 3. Flowering abundance (scale 0-5) of ‘Jonica’ trees as influenced by<br />

different rootstocks and year of study<br />

3 lentelë. ’Jonica‘ veislës vaismedþiø þydëjimo gausos (0–5 skalë) priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Flowering abundance (scale 0-5)<br />

Þydëjimo gausa (0–5 skalë)<br />

1999 2000 2001 2002<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong> poskiepio<br />

derinio vidurkis<br />

‘Jonica’/M.9 4.15 ab 3.60 a 3.<strong>25</strong> bc 2.20 a 3.30 ab<br />

‘Jonica’/P 60 4.05 ab 4.30 a 2.60 ab 2.97 a b 3.48 b<br />

‘Jonica’/M.26 3.85 a 4.35 b 2.00 a 1.95 a 3.03 a<br />

‘Jonica’/P 22 4.80 b 4.20 a 3.40 c 3.66 b 4.01 c<br />

‘Jonica’/P 59 4.50 ab 3.87 a 3.30 bc 2.55 a 3.55 b<br />

4.24 b 4.06 b 2.88 a 2.61 a<br />

Table 4. Fruit set of ‘Jonica’ trees as influenced by different rootstocks<br />

and year of study<br />

4 lentelë. ‘Jonica’ veislës vaismedþiø vaisiø uþuomazgø priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Fruit set<br />

Vaisiø uþuomazgos, %<br />

1999 2000 2001 2002<br />

Mean for treatment<br />

Veislës <strong>ir</strong> poskiepio<br />

derinio vidurkis<br />

‘Jonica’/M.9 8.17 ab 1.60 a 12.7 a 18.6 a 10.26 a<br />

‘Jonica’/P 60 7.47 a 1.27 a 13.2 a 14.9 a 9.21 a<br />

‘Jonica’/M.26 9.00 ab 2.45 a 17.45 a 15.32 a 11.05 a<br />

‘Jonica’/P 22 7.80 ab 5.60 b 15.72 a 20.93 a 12.51 a<br />

‘Jonica’/P 59 9.42 b 1.55 a 15.00 a 13.70 a 9.91 a<br />

8.37 b 2.49 a 14.81 c 16.69 c<br />

Wagenmakers (1994) stated that too strong growth causes poorer light perception,<br />

and consequently decreases flowering intensity. Some authors (Brown et<br />

al., 1985; Bauger et al., 1994; Stutte et al., 1994) pointed out rootstock, which<br />

significantly influences this feature. This experiment also proved it. The highest<br />

flowering abundance in comparison to rootstock M.9 was observed for P 22,<br />

followed by P 59, P 60 and M.26. Rootstocks did not affect the fruit set (Table 4),<br />

however, big differences between seasons regarding this feature were recorded.<br />

The highest fruit set was noted in 2001 and 2002 (14.8% and 16.7%, respectively),<br />

the highest yielding for these years was obtained. Though in some years of the<br />

57


experiment the differences in yield were observed, the total yield was not differentiated<br />

(Table 5).<br />

Table 5. The total yield (kg/tree) of ‘Jonica’ trees and the<strong>ir</strong> efficiency index (kg/cm 2<br />

TCSA) as influenced by different rootstocks and year of study<br />

5 lentelë. ‘Jonica’ veislës vaismedþiø suminio derliaus (kg/vaismedis) <strong>ir</strong> jo produktyvumo<br />

indekso (kg/cm 2 KSP) priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Treatment<br />

Yield (kg/tree)<br />

Veislës <strong>ir</strong><br />

Derlius, kg/vaismedis<br />

poskiepio<br />

derinys 1999 2000 2001 2002<br />

Total, 1999-<br />

2002<br />

1999–2002 m.<br />

suminis derlius<br />

Efficiency index<br />

Produktyvumo<br />

indeksas, kg/cm 2<br />

KSP<br />

‘Jonica’/M.9 8.86 c 6.24 a 9.16 a 13.2 b 37.5 a 1.51 a<br />

‘Jonica’/P 60 4.88 a 4.36 a 6.52 a 10.3 ab 26.1 a 1.40 a<br />

‘Jonica’/M.26 6.04 ab 5.90 a 15.71 a 8.8 ab 36.4 a 1.20 a<br />

‘Jonica’/P 22 7.82 bc 5.82 a 8.92 a 10.7 ab 33.3 a 2.96 b<br />

‘Jonica’/P 59 7.50 bc 3.76 a 6.90 a 7.2 a <strong>25</strong>.3 a 2.40 b<br />

7.02 ab 5.21 a 9.44 b 10.03 b<br />

This is in a line with the previous reports of Kviklys et al. (1999) and Skrzyñski<br />

and Poniedziaùek (1999) who did not record any differences between rootstocks<br />

M.9 and P 60. However, many authors (Baab, 1998; Czynczyk, 1998; Sùowiñski,<br />

2001) pointed out that rootstock M.9 yielded better than P 22 and worse in comparison<br />

to P 60. The most productive trees were those grafted on rootstocks P 22 and<br />

P 59 (2.96 and 2.40 kg/cm 2 , respectively). Trees on rootstocks M.9, P 60 and M.26<br />

were less productive, with the yield efficiency index of 1.51, 1.40 and 1.20 kg/cm 2 ,<br />

respectively.<br />

Table 6. Mean fruit weight (g) of ‘Jonica’ apples as influenced by<br />

different rootstocks and year of study<br />

6 lentelë. ‘Jonica’ veislës vaismedþiø vidutinës vaisiø masës (g)<br />

priklausomumas nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Fruit weight<br />

Mean for<br />

Treatment<br />

Veislës <strong>ir</strong><br />

Vaisiaus masë, g<br />

treatment<br />

poskiepio derinys<br />

Veislës <strong>ir</strong> poskiepio<br />

1999 2000 2001 2002 derinio vidurkis<br />

‘Jonica’/M.9 218 b 206 b 233 b 224 c 220 d<br />

‘Jonica’/P 60 182 a 188 ab 227 b 192 ab 197 bc<br />

‘Jonica’/M.26 196 ab 194 ab 214 ab 210 bc 204 c<br />

‘Jonica’/P 22 169 a 163 a 195 a 186 a 178 a<br />

‘Jonica’/P 59 178 a 169 a 194 a 202 abc 186 ab<br />

190 a 185 a 214 b 204 b<br />

58


M.9 rootstock favored larger fruits, whereas P 22 and P 59 – smaller ones<br />

(Table 6). This conf<strong>ir</strong>med previous findings of Kruczyñska and Czynczyk (1998)<br />

and Skrzyñski (2002). Some authors reported that rootstock M.9 favored better<br />

fruit coloring, whereas worse for P 22 and M.26 (Pätzold and Fisher, Baab, 1998).<br />

However, this was not true for this experiment – investigated rootstocks did not<br />

affected fruit coloring (Table 7).<br />

Treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinys<br />

Table 7. Blush area (scale 0-5) of apple fruit skin as influenced by<br />

different rootstock and year of study<br />

7 lentelë. Obuoliø þievës paraudimo ploto (0–5 skalë) priklausomumas<br />

nuo poskiepiø <strong>ir</strong> tyrimo metø<br />

Blush area<br />

Paraudimo plotas (0–5 skalë)<br />

1999 2000 2001 2002<br />

Mean for<br />

treatment<br />

Veislës <strong>ir</strong><br />

poskiepio derinio<br />

vidurkis<br />

‘Jonica’/M.9 4.00 a 4.<strong>25</strong> ab 3.<strong>25</strong> a 2.<strong>25</strong> a 3.43 a<br />

‘Jonica’/P 60 4.<strong>25</strong> a 4.50 b 3.50 a 3.00 abc 3.81 a<br />

‘Jonica’/M.26 4.00 a 4.<strong>25</strong> ab 3.00 a 2.<strong>25</strong> ab 3.37 a<br />

‘Jonica’/P.22 3.66 a 3.33 a 3.00 a 3.33 c 3.33 a<br />

‘Jonica’/P.59 3.<strong>25</strong> a 4.<strong>25</strong> ab 2.50 a 3.<strong>25</strong> bc 3.31 a<br />

3.84 b 4.16 b 3.05 a 2.79 a<br />

Conclusions. 1. The investigated rootstocks significantly influenced trees’ vigour<br />

expressed as trunk cross-section area (TCSA).<br />

2. Rootstocks did not have an impact on fruit set.<br />

3. The total yield did not depend on used rootstock. The most productive trees<br />

were those grafted on rootstocks P 22 and P 59 followed by M.9, P 60 and M.26.<br />

4. Rootstocks significantly differentiated the mean weight of fruit.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Baab G. Apfelunterlagen Gestern und Heute. Erwerbsobstbau. 1998. 40. P. 162–169.<br />

2. Bauger T. A., Singla S. S, Leach D. W., Walter S. P. Growth, productivity, spur<br />

quality, light transmission and net photosynthesis of ‘Golden Delicious’ apple trees on<br />

four rootstocks in three training systems. Fruit Var. J. 1994. 48. P. <strong>25</strong>1–<strong>25</strong>5.<br />

3. Brown C. S., Young E., Pharr D. M. Rootstock and scion effects on the seasonal<br />

distribution on dry weight and carbohydrates in young apple trees. J. Amer. Soc. Hort.<br />

Sci. 1985. 110. P. 696–701.<br />

4. Czynczyk A. Effect of M.9, B9 and M.26 rootstock on growth, fruiting and frost<br />

resistance of apple trees. J. Fruit Ornam. Plant Res. 1997. 6. P. 143–152.<br />

5. Czynczyk A. Effect of M.9, B9, and M.26 rootstocks on growth, fruiting and winter<br />

hardiness of three apple cultivars. Fruit Sci. rep. 1979. 1. P. 26–33.<br />

59


6. Czynczyk A., Omieciñska B. Karùowe i póùkarùowe podkùadki dla jabùoni. Sad Nowoczesny.<br />

1990. 8. P. 11–16.<br />

7. Czynczyk A. Podkùadki sùaborosnàce podstawowym czynnikiem intensyfikacji<br />

sadów // XXXVIII Ogólnopolska Konferencja Sadownicza. ISiK, Skierniewice, 1998.<br />

P. 101–110.<br />

8. Gruca Z. Wpùyw podkùadki i formy korony na wzrost i plonowanie i jakoúã owoców<br />

jabùoni odmiany ‘Jonagold’ i ‘Melrose’. Zeszyty Naukowe ISiK, Skierniewice, 2001. 9.<br />

P. 101–107.<br />

9. Kruczyñska D., Czynczyk A. Wpùyw podkùadek sùaborosnàcych i wstawek skarlajàcych<br />

na wzrost, plonowanie oraz skùad mineralny liúci trzech odmian jabùoni. Czæúã I.<br />

Wzrost i plonowanie drzew. Zesz. Nauk. ISiK w Skierniewicach, 1998a. T. 5. P. 23–36.<br />

10. Kruczyñska D., Czynczyk A. Wpùyw podkùadek sùaborosnàcych i wstawek skarlajàcych<br />

na wzrost, plonowanie oraz skùad mineralny liúci trzech odmian jabùoni. Czæúã II.<br />

Jakoúãæ owoców. Zesz. Nauk. ISiK w Skierniewicach, 1998b. T. 5. P. 37–46.<br />

11. Kurlus R., Ugolik M. Wzrost i plonowanie odmiany ‘Szampion’, ‘Royal Gala’, i<br />

‘Jonagored’ na podkùadkach polskiej hodowli. XXVI Ogólno. Nauk. Konf. Sad., Skierniewice,<br />

1996. P. 271–273.<br />

12. Kviklys D., Uselis N., Kvikliene N. Rootstock effect on ‘Jonagold’ apple tree<br />

growth, yield fruit quality. Proceedings of the International Seminar “Apple Rootstocks<br />

for Intensive Orchard”. Warszawa, 1999. P. 67–68.<br />

13. Lipecki J. Wzrost drzew i plonowanie jabùoni odmiany ‘Melrose’ i ‘Jonagold’ na<br />

podkùadce M.9 i M.26. XXIII Nauk. Konf. Sad., Skierniewice, 30-08–01-09-1994. P. 8–11.<br />

14. Makosz E., Wùodarczyk P. Wzrost i plonowanie róýnych odmian jabùoni na<br />

podkùadce M.9 w 1992 roku. Ogrodnictwo. 1993. 4. P. 5–8.<br />

15. Mika A., Grochowska M. J., Karoszewska A. Effect of dormant and summerpruning,<br />

disbudding and growths retardants on growth, flower bud formation and fruiting of<br />

young apple trees. Am. Soc. Hort. Sci. 1983. 108. P. 655–660.<br />

16. Naukowa Konferencja Sadownicza Skierniewice 1996. P. 271–273.<br />

17. Ostrowska K., Zdzieszyñska–Mazutrczak R. Wpùyw podkùadek na wzrost i plonowanie<br />

mùodych drzew jabùoni odm ’Jonagold‘. Zesz. Nauk. ISiK Skierniewice, 2001. T. 9.<br />

P. 95–100.<br />

18. Pätzold G., Fischer M. Ergebnisse aus Obstunterlagenprufungen. Teil 1, Schwachwachsende<br />

Apfelunterlagen. Erwerbsobstbau. 1991. T. 33(1). P. 7–10.<br />

19. Skrzyñski J., Poniedzia³ek W. Growth and cropping of ‘Jonagold’ apple trees on<br />

six different rootstocks: M.9, M.26, P 14, P 22 and P 60. Miêdz. Symp. “Apple rootstocks<br />

for intensive orchard”. Warszawa–Ursynów, 1999. P. 97–98.<br />

20. Skrzyñski J., Poniedziaùek W. Ocena wzrostu i owocowania odmiany ‘Jonagold’<br />

na podkùadkach sùaborosnacych. Zesz. Nauk. A.R. w Krakowie, 1998. 333. P. 597–602.<br />

21. Skrzyñski J. Wpùyw podkùadki na wzrost i plonowanie drzew oraz jakoúã i zdolnoúã<br />

przechowalniczà jabùek odmiany ‘Jonagold’. Zesz. Nauk. AR w Krakowie, S., Rozprawy,<br />

2002. 287 p.<br />

22. Sùowiñski A. Numerical compilation of orchard trial results on apple rootstocks.<br />

Department of Pomology and Basic Natural Sciences in Horticulture, Warsaw Agricultural<br />

University–SGGW, 2001.<br />

23. Stutte G. W., Baugher T. A., Walter S. P., Leach D. W., Glenn D. M., Tworkowski<br />

T. J. Rootstock and training system affect dry master and carbohydrate distribution in<br />

‘Golden Delicious’ apple trees. J. Amer. Soc. Hort. Sci. 1994. 119. P. 492–497.<br />

24. Volz R. K., Ferguson I. B., Bowen J. H., Watkins C. B. Crop load effects on fruit<br />

mineral nutrition, maturity, fruiting, and tree growth of ‘Cox’s Orange Pippin’ apple.<br />

J. Hort. Sci. 1993. 68. P. 127–138.<br />

60


<strong>25</strong>. Wagenmakers P. S. Light relations in orchard systems: Praca doktorska. Uniwersytet<br />

Wageningen, Holandia, 1994.<br />

26. Webster A. D. A review of fruit tree rootstocks research, and development. Acta<br />

Hort. 1997. 451. P. 53–73.<br />

27. Webster A. D., Hollands M. S. A rootstocks studies: Comparison of polish,<br />

Russian, USA and UK selection as rootstocks for the apple cultivar ‘Cox Orange Pippin’<br />

(Malus domestica Borkh.). J. Hort. Sci. Biotech. 1999. 74. P. 367–374.<br />

28. Webster A. D. The status of apple rootstocks development // Proc. 88 th Annual<br />

Meeting of the Washington State Hort. Ass. 1992. P. 113–119.<br />

29. Zagaja S. W., Czynczyk A., Jakubowski T. Omieciñska B. Breeding and evaluating<br />

of apple rootstocks for Northern Europe. Hort. Science. 1988. 23. P. 109–112.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

OBELØ VEISLËS ‘JONICA’ SU SKIRTINGAIS<br />

POSKIEPIAIS AUGIMAS IR DERËJIMAS<br />

P. Banach, M. Gàstoù<br />

Santrauka<br />

1999–2003 metais atlikto bandymo tikslas buvo nustatyti penkiø poskiepiø (M.9,<br />

M.26, P 22, P 59 <strong>ir</strong> P 60) átakà obelø veislës ‘Jonica’ augimui, derëjimui <strong>ir</strong> vaisiø<br />

kokybei. T<strong>ir</strong>ti poskiepiai turëjo esminës átakos vaismedþiø augumui – kamieno skerspjûvio<br />

plotui (KSP). Prasèiausiai augo vaismedþiai su P 59 <strong>ir</strong> P 22 poskiepiais (KSP –<br />

atitinkamai 10,9 <strong>ir</strong> 11,3 cm 2 ), geriau – su M.9 <strong>ir</strong> P 60 poskiepiais (KSP – atitinkamai<br />

<strong>25</strong>,6 <strong>ir</strong> 19,1 cm 2 ). Vaismedþiai su M.26 poskiepiu iðsiskyrë stipriausiu augumu (KSP –<br />

30,6 cm 2 ). T<strong>ir</strong>tø vaismedþiø augimui didelæ átakà darë oro sàlygos, ypaè lietûs. Vaismedþiø<br />

vainiko augimà ypaè stabdë P 22 <strong>ir</strong> P 59 poskiepiai. Palyginti su M.9 poskiepiu<br />

(vaismedþiø su juo þydëjimas 0–5 skalëje vertinamas 3,3 balo), gausiausiai þydëjo vaismedþiai<br />

su P 22 (4,0 balai), kiek maþiau – su P 59 <strong>ir</strong> P 60 (3,5 balo) <strong>ir</strong> dar maþiau – su<br />

M.26 poskiepiu (3,3 balo). Poskiepiai nedarë átakos vaisiø uþuomazgoms. Daugiausia<br />

vaisiø obelys uþmezgë 2001 <strong>ir</strong> 2002 metais, taigi bûtent tais metais buvo gautas<br />

didþiausias derlius. Nors vaismedþiø su sk<strong>ir</strong>tingais poskiepiais derlius skyrësi, tie<br />

sk<strong>ir</strong>tumai buvo neesminiai. Obelø su M.9 poskiepiu suminis derlius buvo 37,5 kg ið<br />

vaismedþio, su M.26 – 36,4 kg, su P 22 – 33,3 kg, su P 60 – 26,1 kg <strong>ir</strong> <strong>25</strong>,3 kg ið<br />

vaismedþio. Pagal derliaus produktyvumo indeksà derlingiausi buvo vaismedþiai su<br />

P 22 <strong>ir</strong> P 59 poskiepiais (atitinkamai 2,96 <strong>ir</strong> 2,40 kg/cm 2 ). Vaismedþiai su M.9, P 60<br />

<strong>ir</strong> M.26 poskiepiais buvo maþiau produktyvûs, jø derliaus produktyvumo indeksas<br />

buvo atitinkamai 1,51; 1,40 <strong>ir</strong> 1,20 kg/cm 2 . Ðiam tyrimui naudoti poskiepiai turëjo esminës<br />

átakos vidutinei vaisiaus masei: vaismedþiø su M.9 poskiepiu vaisiaus masë buvo<br />

220 g, su M.26 – 204 g, su P 60 – 197 g, su P 22 – 178 g <strong>ir</strong> su P 59 – 186 g. Poskiepiai<br />

neturëjo átakos vaisiø spalvai.<br />

Reikðminiai þodþiai: obelys, poskiepiai, augimas, vaisiø kokybë.<br />

61


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

SODINAMOSIOS MEDÞIAGOS SVEIKUMO ÁTAKA<br />

OBELØ AUGIMUI IR DERLIUI<br />

Darius KVIKLYS, Jûratë STANKIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas d.kviklys@lsdi.lt<br />

Henk KEMP<br />

Applied Plant Research, Research Unit Fruit Lingewal 1, 6668 LA Randwijk,<br />

The Netherlands<br />

2003–2006 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute atlikti sk<strong>ir</strong>tingo<br />

sveikumo sodinamosios medþiagos átakos vaismedþiø augimui, derliui <strong>ir</strong> jo kokybei<br />

tyrimai. T<strong>ir</strong>ti obelø veisliø ‘Ðampion’ <strong>ir</strong> ‘Jonagold’ su M.9 <strong>ir</strong> M.26 poskiepiais<br />

sertifikuoti dev<strong>ir</strong>usuoti (VF) <strong>ir</strong> nesertifikuoti (NT) sodinukai. Atlikus vaismedþiø v<strong>ir</strong>usologinës<br />

bûklës tyrimus, nesertifikuotuose ‘Ðampion’ vaismedþiuose su M.9 <strong>ir</strong><br />

M.26 poskiepiais nustatyti obelø þiedinës chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno<br />

vagotumo (ASGV) v<strong>ir</strong>usai. Obelø mozaikos v<strong>ir</strong>uso (ApMV) nerasta. 2006 m.<br />

v<strong>ir</strong>usø koncentracija turëjo tendencijà didëti visuose variantuose <strong>ir</strong> ‘Jonagold’ veislës<br />

vaismedþiuose su M.9NT poskiepiais nustatytas ASGV v<strong>ir</strong>usas. Sodo áveisimo metais<br />

sertifikuotø vaismedþiø vegetatyvinis augimas buvo ið esmës intensyvesnis nei<br />

nesertifikuotø vaismedþiø. Antraisiais–ketv<strong>ir</strong>taisiais augimo sode metais vaismedþiø<br />

vegetatyvinë <strong>ir</strong> generatyvinë raida bei vidutinë vaisiaus masë nepriklausë nuo sodinamosios<br />

medþiagos sveikumo.<br />

Reikðminiai þodþiai: derlius, obelys, sodinamoji medþiaga, vaismedþiø ligos,<br />

vegetatyvinis augimas, v<strong>ir</strong>usologinë bûklë.<br />

Ávadas. Be grybiniø <strong>ir</strong> bakteriniø ligø, didelæ þalà þemës ûkio augalams daro v<strong>ir</strong>usinës<br />

ligos. Pagal patv<strong>ir</strong>tintà sodo augalø dauginimo sistemà á rinkà patenkanti sodinamoji<br />

medþiaga privalo bûti sertifikuota. Sertifikuojama tik dev<strong>ir</strong>usuota sodinamoji medþiaga,<br />

taèiau prekiaujama <strong>ir</strong> nesertifikuota CAC kategorijos sodinamàja medþiaga, kurios<br />

kilmë <strong>ir</strong> v<strong>ir</strong>usologinë bûklë nenustatyta. V<strong>ir</strong>usai yra ypaè pavojingi dar <strong>ir</strong> dël to, kad<br />

jø sukelta infekcija yra sisteminio pobûdþio, o simptomai, nelygu augalo veislë <strong>ir</strong> sukëlëjo<br />

tipas, daþniausiai maþai iðreikðti arba jø visai nëra. Todël sveiki, neturintys visø<br />

þinomø v<strong>ir</strong>usø <strong>ir</strong> jiems giminingø organizmø (fitoplazmø, v<strong>ir</strong>oidø, rikecijø) augalai yra<br />

geresnës kokybës, derlingesni <strong>ir</strong> ilgiau gyvena. Ypaè tai svarbu sodo augalams, kurie<br />

turi iðlikti produktyvûs keliolika ar keliasdeðimt metø. Obelyse randama per 40 v<strong>ir</strong>usiniø<br />

62


ligø sukëlëjø, kuriø dauguma priklauso latentiniø v<strong>ir</strong>usø grupei <strong>ir</strong> yra daþniausiai perduodami<br />

tik su sodinamàja medþiaga (Cieszlinska <strong>ir</strong> Malinowski, 2002; Nemeth, 1986).<br />

Pastaraisiais metais, naudojant jautrius v<strong>ir</strong>usø identifikavimo metodus, atrandami nauji<br />

v<strong>ir</strong>usai, jø ðtamai, fitoplazmos, rikecijos <strong>ir</strong> v<strong>ir</strong>oidai (Cieszlinska <strong>ir</strong> kt., 1995; Chunjiang<br />

<strong>ir</strong> kt., 2000; Malinowski <strong>ir</strong> kt., 1997; Malinowski <strong>ir</strong> kt., 1998). V<strong>ir</strong>usø daroma þala<br />

sustiprëja, jeigu augalai uþkrësti keliais v<strong>ir</strong>usais tuo paèiu metu. V<strong>ir</strong>usuoti medþiai tampa<br />

jautresni grybinëms bei bakterinëms ligoms <strong>ir</strong> áva<strong>ir</strong>iems stresams augimo metu (Desvignes,<br />

1999; Zawadzka <strong>ir</strong> kt., 1989; Zawadzka, Guzewska, 1986). Jau net jaunø tokiø<br />

medþiø produktyvumas yra þymiai maþesnis. V<strong>ir</strong>usiniø ligø neigiamà poveiká galima<br />

matyti ne tik sode, bet <strong>ir</strong> dauginimo metu medelyne: sodinukai auga prasèiau, yra ne<br />

tokie veðlûs bei nevienodi (Golis <strong>ir</strong> kt., Maxim <strong>ir</strong> kt., 2004).<br />

Lietuvoje labiausiai paplitæ <strong>ir</strong> ekonomiðkai þalingi yra obelø latentinës þiediðkosios<br />

dëmëtligës (ACLSV), obelø mozaikos (ApMV) <strong>ir</strong> obelø kamieno vagotumo<br />

(ASGV) v<strong>ir</strong>usai. Tyrimø duomenimis, Lietuvoje tarp obelø veisliø <strong>ir</strong> poskiepiø labiausiai<br />

paplitæs yra obelø latentinës þiediðkosios dëmëtligës v<strong>ir</strong>usas. Kiti v<strong>ir</strong>usai randami<br />

tik kai kuriose veislëse <strong>ir</strong> nedidelëmis koncentracijomis (Stankienë <strong>ir</strong> kt., 2000).<br />

Pavojø sodininkystei kelia nepatikrintos v<strong>ir</strong>usologiniu aspektu sodinamosios medþiagos<br />

naudojimas augalams dauginti. V<strong>ir</strong>usai gali sparèiai paplisti per uþsikrëtusius<br />

poskiepius <strong>ir</strong> skiepûglius (Nemeth, 1986).<br />

Darbo tikslas – ávertinti sk<strong>ir</strong>tingos v<strong>ir</strong>usologinës bûklës sodinamosios medþiagos<br />

átakà obelø augimui, derëjimui <strong>ir</strong> vaisiø kokybei.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimai atlikti 2003–2006 metais Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute. T<strong>ir</strong>tos obelø veislës ‘Ðampion’ <strong>ir</strong> ‘Jonagold’ su<br />

M.9 <strong>ir</strong> M.26 poskiepiais. Obelø sodas áveistas 2003 m. pavasará.<br />

Tyrimø schema:<br />

1. M.9 poskiepis, nesertifikuota sodinamoji medþiaga (toliau M.9NT).<br />

2. M.9 poskiepis, sertifikuota dev<strong>ir</strong>usuota sodinamoji medþiaga (toliau M.9VF).<br />

3. M.26 poskiepis, nesertifikuota sodinamoji medþiaga (toliau M.26NT).<br />

4. M.26 poskiepis, sertifikuota dev<strong>ir</strong>usuota sodinamoji medþiaga (toliau M.26VF).<br />

Nesertifikuota sodinamoji medþiaga, kaip <strong>ir</strong> sertifikuota dev<strong>ir</strong>usuota, iðauginta<br />

tame paèiame Nyderlandø medelyne, taèiau skiepûgliai dauginimui imti ið motininiø<br />

medþiø, kuriø v<strong>ir</strong>usologinë bûklë neiðt<strong>ir</strong>ta. Tai reiðkia, kad ði sodinamoji medþiaga<br />

nebûtinai gali turëti v<strong>ir</strong>usø <strong>ir</strong> kitø giminingø organizmø, taèiau nëra t<strong>ir</strong>ta pagal bûtinus<br />

sertifikavimo etapus <strong>ir</strong> procedûras.<br />

Vaismedþiai su M.9 poskiepiu sodinti 3 x 1 m atstumais, o su M.26 – 3 x 1,5 m.<br />

Sodas priþiûrëtas pagal priimtas intensyvias sodø prieþiûros technologijas (Intensyvios<br />

obelø <strong>ir</strong> kriauðiø auginimo technologijos, 2005).<br />

2005 <strong>ir</strong> 2006 m. atliktas v<strong>ir</strong>usologinis vaismedþiø ávertinimas, analizuojant jungtiná<br />

bandiná, paimtà ið kiekvieno varianto. Obelø þiedinës chlorotinës dëmëtligës v<strong>ir</strong>usas<br />

(ACLSV), obelø mozaikos v<strong>ir</strong>usas (ApMV) <strong>ir</strong> obelø kamieno vagotumo v<strong>ir</strong>usas<br />

(ASGV) buvo nustatyti laboratorijoje modifikuotu imunofermentinës analizës DAS-<br />

ELISA metodu (Clark <strong>ir</strong> kt; 1977, Fleg <strong>ir</strong> kt; 1979, Maat; 1992, Fuchs <strong>ir</strong> kt; 1988).<br />

Sode buvo vertinta: kamienëlio storis (mm) 30 cm nuo þemës pav<strong>ir</strong>ðiaus; vidutinis<br />

derlius ið medþio (kg); vidutinë vaisiaus masë (g) sveriant 100 vaisiø ið pakartojimo.<br />

63


Tyrimo variantai kartoti 4 kartus. Variante – 20 vaismedþiø. Duomenys apdoroti<br />

trifaktorinës dispersinës analizës bûdu su „Anova“ kompiuterine programa.<br />

Meteorologinës sàlygos. 2003 m. þiemà krituliø iðkrito daug maþiau, o oro temperatûra<br />

buvo þemesnë negu daugiametis vidurkis. Pavasará iðkrito krituliø 33 procentais<br />

maþiau, bet buvo truputá ðilèiau negu daugiametis vidurkis. 2003 m. vasara <strong>ir</strong><br />

rugsëjo mën. buvo ðiek tiek ðiltesni negu vidutinë daugiametë norma, bet krituliø<br />

kiekis buvo artimas daugiameèiam.<br />

2004 m. sausis buvo ðaltesnis negu áprasta, taèiau sodams didesnës þalos nepadarë.<br />

Balandþio <strong>ir</strong> geguþës mënesiai buvo sausesni negu áprasta. Po palyginti ðiltoko<br />

balandþio geguþës mënuo buvo vësus. Geguþës 14 <strong>ir</strong> 17 dienomis po ðilto periodo<br />

buvo didelës -3 – -2,5°C ðalnos, kurios labai pakenkë sodo augalø þiedams <strong>ir</strong> net<br />

uþuomazgoms, todël p<strong>ir</strong>masis derlius buvo maþesnis.<br />

2005 m. pavasará po ilgo <strong>ir</strong> ðalto periodo staiga atðilus, þydëjimo laikas buvo<br />

trumpas, taèiau tai nepakenkë vaisiø uþmezgimui.<br />

2006 m. ilgas <strong>ir</strong> ðaltas periodas þydëjimo metu, taèiau be ðalnø þiedø apdulkinimui<br />

<strong>ir</strong> vaisiø uþmezgimui átakos neturëjo. Dël ilgalaikës sausros <strong>ir</strong> karðèio liepos<br />

mënesá sumaþëjo vaisiø masë <strong>ir</strong> derlius ið vaismedþio.<br />

Rezultatai. Atlikus vaismedþiø v<strong>ir</strong>usologinës bûklës tyrimus, nesertifikuotuose<br />

‘Ðampion’ veislës vaismedþiuose su M.9 <strong>ir</strong> M.26 poskiepiais 2005 m. nustatyti obelø<br />

þiedinës chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno vagotumo (ASGV) v<strong>ir</strong>usai.<br />

ASVG v<strong>ir</strong>uso koncentracija buvo maþesnë nei ACLSV v<strong>ir</strong>uso. ‘Jonagold’ veislës<br />

vaismedþiuose buvo nustatyta nedidelë obelø kamieno vagotumo v<strong>ir</strong>uso (ASGV) koncentracija.<br />

2006 m. atlikti v<strong>ir</strong>usologiniai tyrimai parodë, kad ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø<br />

koncentracijà ‘Ðampion’ M.9 NT vaismedþiuose padidëjo, palyginti su ACLSV v<strong>ir</strong>uso<br />

koncentracija 2005 m. ‘Ðampion’ veislës vaismedþiuose su M.26NT poskiepiu.<br />

2006 m. ACLSV v<strong>ir</strong>uso koncentracija buvo nepakitusi, o ASGV – padidëjo. T<strong>ir</strong>iant<br />

‘Jonagold’ veislës nesertifikuotø vaismedþiø su M.9NT poskiepiu v<strong>ir</strong>usologinæ bûk-<br />

Variantas<br />

Treatment<br />

1 lentelë. ACLSV v<strong>ir</strong>uso koncentracija 2005 <strong>ir</strong> 2006 m.<br />

Table 1. Detected ACLSV concentration in 2005–2006<br />

2005 m. 2006 m.<br />

‘Šampion’<br />

M.9NT 0,194 ± 0,002 0,220 ± 0,005<br />

M.9VF neigiama / negative (0,078 ± 0,001) neigiama / negative (0,106 ± 0,006)<br />

M.26NT 0,268 ± 0,004 0,269 ± 0,002<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,120 ± 0,003)<br />

‘Jonagold’<br />

M.9NT neigiama / negative (0,078 ± 0,002) neigiama / negative (0,146 ± 0,004)<br />

M.9VF neigiama / negative (0,079 ± 0,001) neigiama / negative (0,091 ± 0,003)<br />

M.26NT neigiama / negative (0,078 ± 0,001) neigiama / negative (0,117 ± 0,002)<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,095 ± 0,007)<br />

64


læ, 2006 m. buvo aptiktas ASGV v<strong>ir</strong>usas. ACLSV koncentracija nev<strong>ir</strong>ðijo paklaidos<br />

ribø, palyginti su 2005 m. Lyginant 2005 <strong>ir</strong> 2006 metø duomenis, nustatyta, kad<br />

sertifikuotuose dev<strong>ir</strong>usuotuose ‘Ðampion <strong>ir</strong> ‘Jonagold’ veisliø vaismedþiuose su poskiepiais<br />

M.9VF <strong>ir</strong> M.26.VF ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø nerasta. Obelø mozaikos (AMV)<br />

v<strong>ir</strong>uso nerasta në viename variante (1, 2 lentelës).<br />

Variantas<br />

Treatment<br />

2 lentelë. ASGV v<strong>ir</strong>uso koncentracija 2005 <strong>ir</strong> 2006 m.<br />

Table 2. ASGV v<strong>ir</strong>us concentration in 2005–2006<br />

2005 m. 2006 m.<br />

‘Šampion’<br />

M.9NT 0,160 ± 0,002 0,190 ± 0,006<br />

M.9VF neigiama / negative (0,072 ± 0,002) neigiama / negative (0,072 ± 0,002)<br />

M.26NT 0,159 ± 0,003 0,199 ± 0,002<br />

M.26VF neigiama / negative (0,080 ± 0,002) neigiama / negative (0,070 ± 0,003)<br />

‘Jonagold’<br />

M.9NT neigiama / negative (0,073 ± 0,003) 0,170 ± 0,005<br />

M.9VF neigiama / negative (0,072 ± 0,002) neigiama / negative (0,095 ± 0,004)<br />

M.26NT neigiama / negative (0,075 ± 0,002) neigiama / negative (0,129 ± 0,006)<br />

M.26VF neigiama / negative (0,070 ± 0,002) neigiama / negative (0,100 ± 0,003)<br />

Augumas. Lyginant sertifikuotus dev<strong>ir</strong>usuotus <strong>ir</strong> nesertifikuotus vaismedþius<br />

2003 m., nustatyta, kad abiejø t<strong>ir</strong>tø veisliø sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø<br />

su abiem poskiepiais kamienëliai storesni negu nesertifikuotø (3 lentelë). 2004 m.<br />

‘Ðampion’ veislës M.9VF vaismedþiai buvo ið esmës storesni nei M.9NT, taèiau<br />

su M.26 poskiepiu nesertifikuotø vaismedþiø kamienëlio skersmuo buvo didesnis<br />

nei dev<strong>ir</strong>usuotø. Treèiaisiais augimo sode metais – 2005 m. M.9VF <strong>ir</strong> M.9NT<br />

kamienëliø skersmuo susilygino, o su M.26 poskiepiu iðliko esminiai sk<strong>ir</strong>tumai<br />

kaip <strong>ir</strong> ankstesniais metais. Ketv<strong>ir</strong>taisiais augimo sode metais – 2006 m. su M.26<br />

poskiepiu nesertifikuoti vaismedþiai buvo ið esmës storesni. ‘Jonagold’ veislës<br />

sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø su abiem poskiepiais kamienëliø storiai p<strong>ir</strong>maisiais,<br />

antraisiais <strong>ir</strong> treèiaisiais augimo metais buvo ið esmës didesni negu nesertifikuotø.<br />

Ketv<strong>ir</strong>taisiais metais nesertifikuotø vaismedþiø skersmuo priaugo ið<br />

esmës daugiau nei sertifikuotø. Vertinant sertifikuotø dev<strong>ir</strong>usuotø <strong>ir</strong> nesertifikuotø<br />

‘Ðampion’ veislës vaismedþiø abu poskiepius kartu, nustatyta, kad sodinimo<br />

metais dev<strong>ir</strong>usuoti vaismedþiai augo stipriau, o 2004 <strong>ir</strong> 2005 metais kamienëlio<br />

skersmens sk<strong>ir</strong>tumai buvo neesminiai. 2006 m. ið esmës pastorëjo nesertifikuotø<br />

vaismedþiø kamienëliai. ‘Jonagold’ veislës nesertifikuotø vaismedþiø kamienëliø<br />

storio dydþiø sk<strong>ir</strong>tumas taip pat buvo esminis, palyginti su sertifikuotais dev<strong>ir</strong>usuotais<br />

2005 <strong>ir</strong> 2006 m. Pastarieji augo veðliau 2005 m., taèiau 2006 m. jau ið<br />

esmës silpniau negu nesertifikuoti.<br />

65


3 lentelë. Sodinamosios medþiagos sveikumo átaka vaismedþiø augimui<br />

Table 3. Effect of health status of planting material on tree growth<br />

Variantas<br />

Treatment<br />

Kamienëlio<br />

skersmuo<br />

2003 m., mm<br />

Trunk diameter<br />

(mm) 2003<br />

Kamienëlio<br />

skersmuo<br />

2004 m., mm<br />

Trunk diameter<br />

(mm) 2004<br />

‘Šampion’<br />

Kamienëlio<br />

skersmuo<br />

2005 m., mm<br />

Trunk diameter<br />

(mm) 2005<br />

Kamienëlio<br />

skersmuo<br />

2006 m., mm<br />

Trunk diameter<br />

(mm) 2006<br />

M.9NT 17,3 <strong>25</strong>,4 30,3 35,75<br />

M.9VF 18,7 27,4 30,3 34,75<br />

M.26NT 18,3 32,4 41,3 50,50<br />

M.26VF 18,7 29,7 39,4 43,00<br />

R 05 / LSD 05 0,59 0,81 1,52 2,69<br />

NT 17,8 28,9 35,8 43,10<br />

VF 18,7 28,6 34,9 38,90<br />

R 05 / LSD 05 0,35 0,51 0,95 1,90<br />

‘Jonagold’<br />

M.9NT 17,2 26,4 33,0 41,00<br />

M.9VF 17,7 26,7 34,8 40,00<br />

M.26NT 18,0 30,5 40,0 53,50<br />

M.26VF 20,0 31,8 45,0 49,<strong>25</strong><br />

R 05 / LSD 05 1,21 1,37 1,52 2,69<br />

NT 17,6 28,5 36,5 47,30<br />

VF 18,8 29,2 39,9 44,60<br />

R 05 / LSD 05 0,85 0,97 1,<strong>25</strong> 1,90<br />

Derlius. 2004 m., antraisiais augimo sode metais, po dideliø pavasariniø ðalnø<br />

buvo skintas negausus obuoliø derlius. Ið esmës gausiausiai derëjo M.9VF vaismedþiai.<br />

Nuo ‘Ðampion’ veislës vaismedþio buvo priskinta vidutiniðkai 2,10 kg, arba<br />

6,93 t/ha obuoliø (4 lentelë). Sertifikuoti dev<strong>ir</strong>usuoti vaismedþiai buvo ið esmës derlingesni<br />

uþ nesertifikuotus. 2005 m. didþiausias derlius buvo skintas nuo M.26NT.<br />

Gausiausias gautas vaismedþiø su M.9 poskiepiu derlius ið hektaro (iki <strong>25</strong> t), esminiø<br />

sk<strong>ir</strong>tumø tarp M.9NT <strong>ir</strong> M.9VF nebuvo. 2006 m. gausiau derëjo dev<strong>ir</strong>usuoti ‘Ðampion’<br />

veislës vaismedþiai su M.26 poskiepiu – 12,88 kg, arba 28,59 t/ha obuoliø<br />

nuo medþio. Lyginant ‘Ðampion’ veislës vaismedþius su abiem poskiepiais, uþfiksuotas<br />

didesnis sertifikuotø dev<strong>ir</strong>usuotø vaismedþiø derlius, o ‘Jonagold’ veislës ið<br />

esmës didesná derliø ið ploto vieneto davë nesertifikuoti vaismedþiai su M.26 poskiepiu<br />

(4, 5 lentelës). Esminiø sk<strong>ir</strong>tumø tarp sertifikuotø <strong>ir</strong> nesertifikuotø vaismedþiø<br />

su M.9 poskiepiu nebuvo.<br />

66


4 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Ðampion’<br />

veislës vaismedþiø derëjimui<br />

Table 4. Effect of health status of planting material on ‘Sampion’ apple yield<br />

2004 m. 2005 m. 2006 m.<br />

Variantas<br />

Treatment kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/tree<br />

kg/tree<br />

kg/tree<br />

M.9NT 1,67 5,52 7,45 24,83 7,24 24,12<br />

M.9VF 2,10 6,93 7,37 24,56 8,64 28,77<br />

M.26NT 0,76 1,66 9,85 21,89 9,86 20,89<br />

M.26VF 1,00 2,20 7,74 17,20 12,88 28,59<br />

R 05 / LSD 05 0,27 0,78 1,20 3,31 3,20 8,21<br />

NT 1,22 3,59 8,65 23,26 8,55 23,01<br />

VF 1,55 4,57 7,56 20,88 10,76 28,68<br />

R 05 / LSD 05 0,16 0,48 0,73 2,02 2,26 5,70<br />

5 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Jonagold’ veislës<br />

vaismedþiø derëjimui<br />

Table 5. Effect of health status of planting material on ‘Jonagold’ apple yield<br />

2004 m. 2005 m. 2006 m.<br />

Variantas<br />

Treatment kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/vaism.<br />

t/ha<br />

kg/tree<br />

kg/tree<br />

kg/tree<br />

M.9NT 0,08 0,28 4,89 16,3 6,55 21,81<br />

M.9VF 0,17 0,58 4,52 15,1 5,74 19,11<br />

M.26NT 0,05 0,11 3,82 8,5 12,40 27,53<br />

M.26VF 0,01 0,01 4,67 10,4 5,95 13,21<br />

R 05 / LSD 05 0,27 0,78 1,20 3,31 3,2 8,21<br />

NT 0,07 0,20 4,37 12,4 9,5 24,67<br />

VF 0,09 0,29 4,59 12,8 5,84 16,16<br />

R 05 / LSD 05 0,16 0,48 0,73 2,02 2,26 5,70<br />

Vaisiø kokybë. 2004 m. ‘Ðampion’ veislës vaismedþiø vidutinë vaisiaus masë<br />

nuo M.9NT <strong>ir</strong> M.26NT buvo didesnë atitinkamai uþ M.9VF <strong>ir</strong> M.26VF, nors esminiø<br />

sk<strong>ir</strong>tumø nenustatyta (6 lentelë). Taèiau vidutinë nesertifikuotø vaismedþiø vaisiaus<br />

masë buvo ið esmës didesnë uþ sertifikuotø dev<strong>ir</strong>usuotø. 2005 m., prieðingai, sertifikuotø<br />

dev<strong>ir</strong>usuotø vaismedþiø vidutinë vaisiaus masë buvo ið esmës didesnë nei nesertifikuotø.<br />

Atsk<strong>ir</strong>ai vertinant poskiepius, nustatyta, kad M.26VF vaisiai buvo ið<br />

esmës didesni uþ M.26NT, o tarp M.9VF <strong>ir</strong> M.9NT sk<strong>ir</strong>tumo nebuvo. 2006 m. didesnë<br />

vaisiaus masë buvo vaismedþiø su nesertifikuotais M.9NT poskiepiais. Vaismedþiø<br />

su M.26 poskiepiu vidutinei vaisiaus masei sodinamosios medþiagos sveikumo<br />

lygis átakos neturëjo. 2004 <strong>ir</strong> 2005 m. ‘Jonagold’ veislës vaismedþiø vaisiaus<br />

masei vaismedþiø sveikumo lygis esminës átakos neturëjo. 2006 m. didesne vaisiaus<br />

67


mase iðsiskyrë sertifikuoti dev<strong>ir</strong>usuoti vaismedþiai su M.9VF poskiepiu, taèiau esminiø<br />

sk<strong>ir</strong>tumø nenustatyta nei su M9.NT, nei lyginant abu poskiepius kartu (7 lentelë).<br />

6 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Ðampion’ veislës<br />

vidutinei vaisiaus masei, g<br />

Table 6. Effect of health status of planting material on ‘Sampion’ apple fruit weight, g<br />

Variantas<br />

Treatment<br />

2004 m. 2005 m. 2006 m.<br />

M.9NT 195 121 163<br />

M.9VF 183 124 148<br />

M.26NT 172 133 171<br />

M.26VF 161 147 172<br />

R 05 / LSD 05 15,2 7,6 13,9<br />

NT 183 127 167<br />

VF 172 136 160<br />

R 05 / LSD 05 8,8 4,7 9,8<br />

7 lentelë. Sodinamosios medþiagos sveikumo átaka ‘Jonagold’ veislës<br />

vidutinei vaisiaus masei, g<br />

Table 7. Effect of health status of planting material on ‘Jonagold’ apple fruit weight, g<br />

Variantas<br />

Treatment<br />

2004 m. 2005 m. 2006 m.<br />

M.9NT 150 139 165<br />

M.9VF 150 136 172<br />

M.26NT 157 143 165<br />

M.26VF 150 139 164<br />

R 05 / LSD 05 12.1 7.6 13,9<br />

NT 154 141 165<br />

VF 150 138 168<br />

R 05 / LSD 05 8,7 4,7 9,83<br />

Aptarimas. Atlikus v<strong>ir</strong>usologinius obelø vaismedþiø tyrimus, surasti obelø þiedinës<br />

chlorotinës dëmëtligës (ACLSV) <strong>ir</strong> obelø kamieno vagotumo (ASGV) v<strong>ir</strong>usai.<br />

Obelø mozaikos v<strong>ir</strong>uso ApMV nebuvo rasta. ACLSV priklauso patogeniniø latentiniø<br />

obelø v<strong>ir</strong>usø grupei. Tai vienas labiausiai paplitusiø augalø, taip pat <strong>ir</strong> obelø, v<strong>ir</strong>usø,<br />

daþnai aptinkamø kartu su kitais latentiniais v<strong>ir</strong>usais, o tai sustiprina jø poveiká <strong>ir</strong><br />

pas<strong>ir</strong>eiðkimà. Árodyta, kad ACLSV gali sumaþinti poskiepio <strong>ir</strong> áskiepio atitikimà (Nemeth,<br />

1986). ASGV v<strong>ir</strong>usas yra randamas obelyse <strong>ir</strong> kriauðëse <strong>ir</strong> taip pat priklauso II<br />

latentiniø v<strong>ir</strong>usø tipui. V<strong>ir</strong>usas yra pakankamai stabilus, taèiau randamas augaluose<br />

tik kartu su kitais latentiniais v<strong>ir</strong>usais <strong>ir</strong> retais atvejais sukelia poskiepiø þuvimà (Yanase,<br />

1983). Nors nustatyti v<strong>ir</strong>usai gali pakenkti obelø atsparumui, poskiepio <strong>ir</strong> áskiepio<br />

68


atitikimui <strong>ir</strong> augimui sode (Maxim <strong>ir</strong> kt., 2004), taèiau jø koncentracija t<strong>ir</strong>tuose bandiniuose<br />

buvo maþa <strong>ir</strong> turëjo tendencijà didëti. Todël galima manyti, kad ðiø v<strong>ir</strong>usø<br />

átaka vaismedþiø augimui <strong>ir</strong> derëjimui yra minimali <strong>ir</strong> priklauso daugiau nuo veislës <strong>ir</strong><br />

meterologiniø sàlygø. Taèiau negalima teigti, kad nesertifikuoti vaismedþiai nebuvo<br />

uþkrësti <strong>ir</strong> kitais v<strong>ir</strong>usais, kurie galëjo neigiamai paveikti obelø vegetatyviná <strong>ir</strong> generatyviná<br />

vystymàsi. Dev<strong>ir</strong>usuotuose vaismedþiuose v<strong>ir</strong>usø nebuvo rasta. Ketv<strong>ir</strong>taisiais<br />

augimo sode metais – 2006 m. vaismedþiuose su poskiepiu M.9NT jau buvo nustatytas<br />

ASGV v<strong>ir</strong>usas. Bûtø galima daryti prielaidà, kad nesertifikuotuose ‘Jonagold‘<br />

veislës su poskiepiu M.9NT vaismedþiuose su ASGV ðio v<strong>ir</strong>uso koncentracija didës<br />

bei daugës medþiø, uþkrëstø ASGV. Be to, negalima atmesti prielaidos, kad nesertifikuotuose<br />

vaismedþiuose, bëgant metams, bus aptiktas <strong>ir</strong> ApMV v<strong>ir</strong>usas.<br />

Sertifikuotuose dev<strong>ir</strong>usuotuose vaismedþiuose ACLSV <strong>ir</strong> ASGV koncentracija,<br />

nors <strong>ir</strong> didëjo, bet nelabai stipriai. Galima manyti, kad vëlesniu sodo augimo<br />

metu, ats<strong>ir</strong>andant naujiems v<strong>ir</strong>usams <strong>ir</strong> didëjant jø koncentracijai, nesertifikuoti<br />

vaismedþiai blogiau vegetatyviðkai vystysis <strong>ir</strong> derës negu sertifikuoti, taèiau ðiuo<br />

metu nustatyti aiðkiø tendencijø <strong>ir</strong> sk<strong>ir</strong>tumø tarp sertifikuotø <strong>ir</strong> nesertifikuotø vaismedþiø<br />

augimo <strong>ir</strong> derëjimo dar negalima. Taip pat negalima teigti, kad vaismedþiø<br />

augimo, derëjimo ar vaisiø kokybës vienodumas priklausë nuo sodinamosios medþiagos<br />

sveikumo lygio.<br />

Sveika sodinamoji medþiaga garantuoja geresná vaismedþiø prigijimà <strong>ir</strong> veðlesná<br />

augimà p<strong>ir</strong>maisiais metais (Ciezsliñska, Malinowski, 2002). Tai ypaè svarbu ðiuolaikiniuose<br />

intensyviuose soduose, kad vaismedþiai greièiau uþpildytø jiems sk<strong>ir</strong>tà plotà<br />

<strong>ir</strong> pradëtø kuo anksèiau derëti. V<strong>ir</strong>usai gali susilpninti medþiø augimà <strong>ir</strong> medelyne<br />

(Golis <strong>ir</strong> kt., 2000; Maxim <strong>ir</strong> kt., 2004, Hammond; 2005) <strong>ir</strong> sode (Wertheim, 1998).<br />

Atlikti tyrimai patv<strong>ir</strong>tino, kad dev<strong>ir</strong>usuoti vaismedþiai sodinimo metais stipriau vystësi<br />

vegetatyviðkai.<br />

Nors medþiø v<strong>ir</strong>usologinë bûklë gali turëti átakos vaisiø kokybei (Zawadska,<br />

Guzewska, 1986), taèiau ðiais tyrimais to nenustatyta. Vidutinë vaisiaus masë koreliavo<br />

su derliumi. 2004 m. ‘Ðampion’ veislës dev<strong>ir</strong>usuoti vaismedþiai derëjo gausiau,<br />

bet jø vidutinë vaisiaus masë buvo maþesnë uþ nesertifikuotø. Taèiau kitais metais,<br />

nuo nesertifikuotø obelø skinant didesná derliø, dev<strong>ir</strong>usuoti vaismedþiai uþaugino ið<br />

esmës didesnës masës vaisius. Visais tyrimø metais ‘Jonagold’ veislës vaismedþiø<br />

vaisiaus masës esminiø sk<strong>ir</strong>tumø nenustatyta.<br />

Iðvados. 1. Sodo áveisimo metais dev<strong>ir</strong>usuotø ‘Ðampion’ bei ‘Jonagold’ obelø<br />

veislës vaismedþiø vegetatyvinis augimas yra ið esmës intensyvesnis nei nesertifikuotø<br />

vaismedþiø.<br />

2. Antraisiais–ketv<strong>ir</strong>taisiais augimo sode metais vaismedþiø vegetatyvinë <strong>ir</strong> generatyvinë<br />

raida bei vidutinë vaisiaus masë nepriklausë nuo sodinamosios medþiagos<br />

sveikumo lygio.<br />

3. ACLSV <strong>ir</strong> ASGV v<strong>ir</strong>usø koncentracija turëjo tendencijà didëti abiejø veisliø<br />

obelø su abiem poskiepiais vaismedþiuose. Ketv<strong>ir</strong>taisiais augimo sode metais <strong>ir</strong> ‘Jonagold’<br />

veislës vaismedþiuose su poskiepiu M.9NT buvo nustatytas ASGV v<strong>ir</strong>usas.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

69


Literatûra<br />

1. Chunjiang L., Nobu Y., Tsuyoshi T., Tsutae I., Kouji Y., H<strong>ir</strong>oki K. Nucleotide sequent<br />

and genome organization of Apple latent spheric v<strong>ir</strong>us: a new v<strong>ir</strong>us classified into the<br />

family Comov<strong>ir</strong>idaE // Journal of General V<strong>ir</strong>ology. 2000. Vol. 81. P. 541–547.<br />

2. Cieszliñska M., Malinowski T. V<strong>ir</strong>us and v<strong>ir</strong>us-like diseases of fruit trees and small<br />

fruits // Zeszyty Naukowe Instytuta Sadownictwa. 2002. Vol. 10. P. 197–206.<br />

3. Cieszliñska M, Malinowski T, Zawadzka B. Studies on several strains of apple<br />

chlorotic leaf spot v<strong>ir</strong>us (ACLSV) isolated from different fruit tree species // Acta Horticulturae.<br />

1995. Vol. 386. P. 63–71.<br />

4. Clark M, Adams A. N. Characteristics of microplate method of enzyme linked<br />

immunosorbent assay for detection of plant v<strong>ir</strong>us // Journal of General V<strong>ir</strong>ology. 1977.<br />

Vol. 34. P. 479–483.<br />

5. Desvignes J. C. V<strong>ir</strong>us Diseases of Fruit Trees. Ctifl, 1999. 202 pp.<br />

6. Fleg L. C., Clark M. F. The detection of Apple Chlorotic leafspot v<strong>ir</strong>us by modified<br />

procedure of enzyme linked immunosorbent assay (ELISA) // Annual Applied Biology.<br />

1979. Vol. 91. P. 61–65.<br />

7. Fuchs E., Gruntzig M., Al Kai B. Das serologische Nachweis mechanisch Übertagbaren<br />

V<strong>ir</strong>en des Kern – und Steinobstes // Nachrichen blat für den Pflanenschutz in der<br />

DDR. 1988. Vol. 42(10). P. 208–211.<br />

8. Golis T., Bielicki P., Zawadzka B., Czynczyk A. Jakocê drzewek jabloni uzyskanych<br />

w szkólce w zaleznoszci od stopnia porazenia w<strong>ir</strong>usami podkladek i zrazów // Rocz. AR<br />

Poznañ CCCXXIII. 2000. Vol. 31(2). P. 45–50.<br />

9. Hammond, R. Plant V<strong>ir</strong>us-Based Vectors In Agriculture And Biotechnology // In<br />

Vitro Cellular And Developmental Biology – Plants. 2005. Vol. 41. P. 405–410.<br />

10. Intensyvios obelø <strong>ir</strong> kriauðiø auginimo technologijos (sud. N. Uselis). LSDI.<br />

Babtai, 2005. 212 p.<br />

11. Kviklys D., Stankiene J. Sodinamosios medþiagos sveikatingumo átaka obelø<br />

veislës Ðampion augimui <strong>ir</strong> derëjimui jauname sode // Sodininkystë <strong>ir</strong> darþininkystë. Babtai,<br />

2005. 24(4). P. 48–56.<br />

12. Maat D. Z. Enzyme-linked immunosorbent assay (ELISA) (1). 1992. P. 1–13.<br />

13. Malinowski T., Cieszliñska M., Zawadzka B., Interewicz B., Porêbska A. Characterization<br />

of monoclonal antibodies against applechlorotic leaf spot v<strong>ir</strong>us (ACLSV) and<br />

the<strong>ir</strong> application for detection of ACLSV and identification of its strains // Phytopathologia<br />

Polonia. 1997. Vol. 14. P. 35–40.<br />

14. Malinowski T., Komorowska B., Golis T., Zawadzka B. Detection of apple stem<br />

pitting v<strong>ir</strong>us and pear vein yellows v<strong>ir</strong>us using reverse transcription – polymerase chain<br />

reaction // Acta Horticulturae. 1998. Vol. 472. P. 87–95.<br />

15. Maxim A., Zagrai L., Zagrai I., Isac M. Studies on the influence of Apple stem<br />

grooving v<strong>ir</strong>us on tree growth of various apple cultivars in the nursery // Acta Horticulturae.<br />

2004. Vol. 657. P. 41–44.<br />

16. Nemeth M. V<strong>ir</strong>us, Mycoplazma and Ricketsia Diseases of Fruit Trees. Academia<br />

Kiado, Budapest. 1986. 841 p.<br />

17. Stankiene J., Stanys V. Investigations of Apple V<strong>ir</strong>us Diseases and obtaining<br />

V<strong>ir</strong>us Free Clones of some Apple Cultivars and Rootstocks in Lithuania // Fruit science.<br />

2000. Vol. 207. P. 51–55.<br />

18. Wrona D., C. Kot. Cropping and fruit quality of ‘Sampion’ apple trees on M.9,<br />

depending on fertilization // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002. T. 21(3). P. 120–<br />

1<strong>25</strong>.<br />

70


19. Yanase H. Back transmission apple stem grooving v<strong>ir</strong>us to apple seedlings and<br />

introduction of symptoms of apple topwork disease in Mitsuba kaido (Malus sieboldii)<br />

and Kobano zumi (Malus sieboldii, var. arborescens) rootstocks // Acta Horticulturae.<br />

1983. T. 130. P. 117–122.<br />

20. Zawadzka B., Guzewska I. The influence of apple mosaic and apple rubbery wood<br />

diseases on storage disorders and fruit quality of Jonared, McIntosh, and Spartan cultivars<br />

// Fruit Science Reports. 1986. Vol. 13(4). P. 185–191.<br />

21. Zawadzka, B. The influence of v<strong>ir</strong>us and mycoplasma diseases on frost damage<br />

of apple trees // Acta Horticulturae. 1989. Vol. 235. P. 59–67.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EFFECT OF HEALTH STATUS OF PLANTING MATERIAL<br />

ON APPLE TREE GROWTH AND YIELD<br />

D. Kviklys, J. Stankienë, H. Kemp<br />

Summary<br />

Trials on the effect of planting material of different health status on fruit tree<br />

growth, yield and fruit quality were conducted at the Lithuanian Institute of Horticulture<br />

during 2003–2006. Certified v<strong>ir</strong>us free and not tested trees of cvs. ‘Ðampion’<br />

and ‘Jonagold’ on M.9 and M.26 rootstocks were tested. Low concentrations<br />

of Apple chlorotic leave spot v<strong>ir</strong>us (ACLSV) and Apple stem groowing v<strong>ir</strong>us (ASGV)<br />

v<strong>ir</strong>uses were detected in not certified planting material of cv. ‘Ðampion’ in 2005 and<br />

Apple stem groowing v<strong>ir</strong>us (ASGV) in not certified planting material on M.9 of cv.<br />

‘Jonagold’ in 2006. Concentration of v<strong>ir</strong>uses had tendency to increase. V<strong>ir</strong>us free<br />

trees had stronger vegetative growth (total shoot length and stem diameter) at planting<br />

year than not tested ones. During second and fourth year in the orchard vegetative<br />

and generative development of apple trees and fruit weight did not depend on<br />

health status of planting material.<br />

Key words: apple, planting material, vegetative growth, v<strong>ir</strong>us diseases, v<strong>ir</strong>us<br />

status, yield.<br />

71


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

AGROTECHNINIØ (ÛKININKAVIMO) SISTEMØ ÁTAKA<br />

‘ELISE’ VEISLËS OBELØ DERLIUI, PRODUKCIJOS<br />

KOKYBEI IR DIRVOÞEMIO SUDËÈIAI<br />

Sk<strong>ir</strong>mantas NOMINAITIS, Vida Marija RUTKOVIENË<br />

Lietuvos þemës ûkio universitetas, LT-53345, Studentø g. 11, Akademija,<br />

Kauno r., el. paðtas ai@nora.lzua.lt; sk<strong>ir</strong>mantas.nominaitis@lzuu.lt<br />

Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas biochem@lsdi.lt<br />

Palyginamasis tyrimas darytas 2002–2005 metais Kauno kolegijos Kraðtotvarkos<br />

fakulteto mokomajame sode, áveistame karbonatingame sekliai glëjiðkame iðplautþemyje.<br />

T<strong>ir</strong>ta sk<strong>ir</strong>tingø agrotechniniø sistemø átaka obelø veislës ‘Elise’ derëjimo<br />

dinamikai <strong>ir</strong> derliui bei vaisiø kokybei.<br />

Nustatyta, kad taikant sk<strong>ir</strong>tingo intensyvumo – áprastinæ <strong>ir</strong> ekologinæ – agrotechnines<br />

sistemas, ‘Elise’ obelø derlingumas ið esmës skyrësi paskutiniaisiais tyrimo<br />

metais. Didesnis derlius gautas ekologinës gamybos variante. Ekologiðkuose obuoliuose<br />

buvo daugiau vitamino C, geresnës buvo jø elektrocheminës savybës.<br />

Reikðminiai þodþiai: obuoliø kokybë, derlingumas, ekologinë gamyba, cheminë<br />

sudëtis<br />

Ávadas. Ekologinë gamyba vaidina vis svarbesná vaidmená ágyvendinant ES aplinkosaugos<br />

programas, daugiau dëmesio sk<strong>ir</strong>iant aplinkai <strong>ir</strong> iðteklius tausojantiems ûkininkavimo<br />

metodams, sprendþiant maisto saugos uþdavinius (Tauscher <strong>ir</strong> kt. 2003;<br />

Alfoeldi <strong>ir</strong> kt. 1996) Vis daugiau kalbama apie taupias, efektyvias, tausojanèias, tvarias<br />

sistemas, kurios maþina áva<strong>ir</strong>iø iðtekliø naudojimà, saugo aplinkà <strong>ir</strong> vartotojus aprûpina<br />

saugiu bei geros kokybës maistu (Kadþiulienë, 2004). Þemës ûkio produktø <strong>ir</strong> þaliavø<br />

gamybos intensyvinimas, didinantis aplinkos tarðà, ðiandien tampa nebeaktualus dar <strong>ir</strong><br />

todël, kad daugeliui ðaliø pavyko iðspræsti maisto produktø nepritekliø problemà (Spiekermann,<br />

2001). Pagamintos produkcijos pertekliø eksportuoti á besivystanèius kraðtus<br />

ateityje bus nenaudinga, nes pasaulio prekybos politika remia idëjà skatinti vietos<br />

gamintojus aps<strong>ir</strong>ûpinti þemës ûkio þaliavomis <strong>ir</strong> produktais (Tauscher <strong>ir</strong> kt., 2003).<br />

Intensyviai tobulëjant genø inþinerijai, produktø ávaizdþio kûrimo ar augalø auginimo<br />

be substrato technologijoms, vël kyla didelis susidomëjimas vidine maisto produktø<br />

kokybe. Ðie gyvybiniø procesø valdymo technologiniai pasiekimai kelia sus<strong>ir</strong>ûpinimà<br />

daugeliui þmoniø (Huber, Fuchs, 2003).<br />

72


Daugiau kaip pusæ amþiaus sodo, kaip <strong>ir</strong> kitø kultûriniø augalø, selekcininkai<br />

derino savo tyrimus prie augalo produktyvumà skatinanèiø intensyvios gamybos technologijø<br />

(Bloksma, 2003). Sumedëjæ sodo augalai yra daugiametë kultûra <strong>ir</strong> gamintojams<br />

pradëjus ûkininkauti ekologiðkai, be sintetiniø pesticidø <strong>ir</strong> greitai t<strong>ir</strong>pstanèiø tràðø,<br />

iðkyla uþdavinys palaikyti optimalø augalø derëjimà <strong>ir</strong> sveikatà bei produkcijos<br />

kokybæ (Bloksma, Northolt <strong>ir</strong> kt., 2004) (Geipel, Kreckl, 2006).<br />

Darbo tikslas – kompleksiðkai ávertinti obelø veislës ‘Elise’ vaisiø kokybæ <strong>ir</strong><br />

derëjimà, taikant áprastinæ <strong>ir</strong> ekologinæ agrotechnines sistemas, bei ðiø sistemø poveiká<br />

d<strong>ir</strong>voþemiui.<br />

Tyrimo objektas <strong>ir</strong> metodai. Bandymas atliktas 2002–2005 metais Kauno kolegijos<br />

Kraðtotvarkos fakulteto mokomajame sode pagal schemà:<br />

I – taikytos intensyvios agrotechninës priemonës. Træðta du kartus: amonio<br />

salietra <strong>ir</strong> „Kem<strong>ir</strong>a Kombi“. Augalø apsaugos nuo ligø <strong>ir</strong> kenkëjø priemonës per vegetacijà<br />

naudotos vidutiniðkai 9 kartus;<br />

II – ekologinës gamybos variante sintetiniai pesticidai <strong>ir</strong> tràðos nenaudoti. Skystomis<br />

natûralios kilmës tràðomis „Biokal 01“ <strong>ir</strong> „Biokal 02“ træðta per lapus, o „Biokal 03“<br />

granuliø presuoti kubeliai iðberti pomedþiuose. Rudená ekologinës gamybos variantas<br />

(pomedþiai) træðtas kompostu – 8 kg/m 2 .<br />

Tyrimui pas<strong>ir</strong>inkta þieminë obelø veislë ‘Elize’, sukurta Olandijoje. Vaisiai vidutinio<br />

dydþio, apvalaus kûgio formos, odelë pasidengusi raudoniu su bronzos atspalviu.<br />

Vaismedþiai vidutinio augumo, vidutiniðkai iðtvermingi þiemà, vidutiniðkai jautrûs<br />

rauplëms, jautrûs þievës ligoms.<br />

Veislës ‘Elize’, poskiepis M.9, sodinimo schema 3,5 x 1,2 m. Sodas pasodintas<br />

2002 m. pavasará, sodinamoji medþiaga importuota ið Olandijos. Sodas lietintas laðeline<br />

drëkinimo sistema. Vaismedþiø pomedþiuose áprastinës gamybos variante palaikytas<br />

herbicidinis pûdymas, ekologinës gamybos variante – juodasis pûdymas. Abiejø<br />

variantø pomedþiai mulèiuoti medþio droþlëmis. Bandymo plotas – lyguma su nedideliu<br />

nuolydþiu ðiaurës kryptimi. Bandymo vietoje vyrauja karbonatingieji sekliai<br />

glëjiðki iðplautþemiai (Calcari – Hipogleyic Luvisols), vidutinio sunkumo <strong>ir</strong> sunkûs<br />

priemoliai, kur d<strong>ir</strong>voþemio pH KCl<br />

6,8–7,5, humuso kiekis nedidelis – 1,2–1,8%, P 2<br />

O 5<br />

–<br />

126–155 mg/kg, K 2<br />

O – 130–151 mg/kg.<br />

Meteorologinës sàlygos vertintos remiantis Kauno meteorologinës stoties duomenimis.<br />

Visais tyrimo metais vidutinës mënesio temperatûros vegetacijos pradþioje<br />

nedaug skyrësi, o vegetacijos vidurys <strong>ir</strong> pabaiga buvo ðiltesni, iðskyrus 2003 metus,<br />

kai spalio mënesio vidutinë temperatûra buvo 2,2°C þemesnë uþ daugiametá vidurká.<br />

Krituliø kiekis áva<strong>ir</strong>avo labiau: 2003 metais lietingas buvo liepos, o 2005 m. – rugpjûèio<br />

mënuo. Ávertinus temperatûros svyravimus visais tyrimo metais, galima teigti,<br />

kad sàlygos sodo augalams augti buvo palankios.<br />

Obuoliø cheminës analizës atliktos LSDI Biochemijos <strong>ir</strong> technologijos laboratorijoje.<br />

T<strong>ir</strong>pios sausosios medþiagos nustatytos refraktometru (Ïåòåðáóðãñêèé, 1963),<br />

monosacharidai bei sacharozë – Bertrano metodu (Åðìàêîâ <strong>ir</strong> kt., 1987), titruojamasis<br />

rûgðtingumas, iðreikðtas obuoliø rûgðtimi – titruojant 0,1 N natrio ðarmo t<strong>ir</strong>palu,<br />

askorbo rûgðtis – titruojant 2,6-dichlorfenolindofenolio natrio druskos t<strong>ir</strong>palu<br />

(Åðìàêîâ <strong>ir</strong> kt., 1987), nitratai – potenciometriðkai, su jonselektyviu elektrodu (Metodiniai<br />

nurodymai, 1990), sausosios medþiagos – gravimetriðkai, iðdþiovinus 105°C<br />

temperatûroje iki nekintamos masës (Food analysis, 1986). Vaisiø odelës tv<strong>ir</strong>tumas<br />

73


nustatytas penetrometru IDP-500, audiniø tv<strong>ir</strong>tumas – penetrometru FT 327. Ið kiekvieno<br />

varianto imta po 10 vaisiø, tv<strong>ir</strong>tumas matuotas prieðingose vaisiaus pusëse.<br />

Vaisiø elektrocheminiai tyrimai atlikti LÞÛU Aplinkotyros laboratorijoje. Vandenilio<br />

jonø koncentracija nustatyta tiesioginës potenciometrijos metodu, matuojant jonometru<br />

Methrom AG CH -9101, redokso potencialas (rH vertë) nustatytas tiesioginës<br />

potenciometrijos metodu, matuojant jonometru Methrom AG CH –9101, naudojant<br />

platinos elektrodà, savitasis elektrinis laidis (rho vertë) matuotas konduktometru<br />

intoLAB WTW. Iðvestinio dydþio P vertë, charakterizuojanti produkto energinæ vertæ,<br />

apskaièiuota pagal NERST-o lygtá:<br />

P[µW] = [29,07 (rH-2pH)] 2 x rho -1<br />

Rezultatai. Tyrimo metais abiejø variantø derlius akivaizdþiai didëjo, nes tyrimas<br />

pradëtas antraisiais po sodo pasodinimo metais. P<strong>ir</strong>møjø <strong>ir</strong> antrøjø derëjimo<br />

metø duomenimis, obelø veislës ’Elise’ derëjimo dinamikos sk<strong>ir</strong>tumai, taikant sk<strong>ir</strong>tingo<br />

ûkininkavimo sistemas, neesminiai. 2005 metais ekologinës gamybos variante<br />

gautas 5 proc. didesnis derlius (1 pav.).<br />

1 pav. Ûkininkavimo sistemos átaka derliui<br />

Fig. 1. Farming system effect on yield<br />

2 pav. Ûkininkavimo sistemos átaka ‘Elise’<br />

vaisiø odelës kietumui<br />

Fig. 2. Farming system effect on ‘Elise’ fruit skin<br />

f<strong>ir</strong>mness<br />

3 pav. Ûkininkavimo sistemos átaka<br />

‘Elise’ vaisiø minkðtimo kietumui<br />

Fig. 3. Farming system effect on<br />

‘Elise’ fruit tissue f<strong>ir</strong>mness<br />

74


Sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas obuoliø technologinëms savybëms, t. y.<br />

obuoliø odelës tv<strong>ir</strong>tumui <strong>ir</strong> minkðtimo kietumui, esminës átakos neturëjo.<br />

1 lentelë. Ûkininkavimo sistemos átaka ‘Elise’ veislës obuoliø cheminei sudëèiai<br />

Table 1. Farming system effect on ‘Elise’ fruit chemical composition<br />

Variantai<br />

Treatment<br />

Ekologinë<br />

gamyba<br />

Organic farming<br />

Áprastinë gamyba<br />

Conventional<br />

farming<br />

Bendrasis cukrus<br />

Total sugar content,<br />

%<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

Askorbo rugštis<br />

Vitamin C, mg%<br />

10,9 12,6 14,7 2,27<br />

10,56 12,8 14,9 1,93<br />

R 05 / LSD 05 1,04 1,00 1,14 0,28<br />

Vertinant obuoliø cheminæ sudëtá, nustatyta, kad visais tyrimo metais bendrojo<br />

cukraus, t<strong>ir</strong>piø sausøjø medþiagø <strong>ir</strong> sausøjø medþiagø kiekiø sk<strong>ir</strong>tumai tarp variantø<br />

buvo neesminiai (1 lentelë).<br />

2 lentelë. Ûkininkavimo sistemos átaka ‘Elise’ veislës obuoliø mineralinei sudëèiai<br />

Table 2. Farming system effect on ‘Elise’ fruit mineral composition<br />

Variantai<br />

%<br />

Treatment N P K Ca<br />

Ekologinë gamyba<br />

Organic farming<br />

0,23 0,08 0,72 0,08<br />

Áprastinë gamyba<br />

Conventional farming<br />

0,27 0,08 0,66 0,04<br />

R 05 / LSD 05 0,11 0,01 0,07 0,19<br />

Nustatyti esminiai vitamino C kiekio sk<strong>ir</strong>tumai: ekologiðki obuoliai jo sukaupë<br />

daugiau. Analizuojant vaisiø mineralinæ sudëtá, tyrimo metais esminiø sk<strong>ir</strong>tumø tarp<br />

variantø nenustatyta (2 lentelë).<br />

LÞÛU Aplinkotyros laboratorijoje iðtyrus ‘Elise’ veislës ekologiðkø <strong>ir</strong> pagal áprastines<br />

technologijas auginamø obuoliø elektrochemines savybes derëjimo metu, nustatyta,<br />

kad ekologinës gamybos obuoliø elektrocheminës savybës geriausios ðiems<br />

pasiekus skynimo brandà (spalio mën.). Obuolius sandëliuojant nemodifikuotos aplinkos<br />

sàlygomis, ðios savybës blogëja, taèiau ekologiðkø obuoliø P vertë gruodþio<br />

mënesá buvo didesnë nei áprastiniø obuoliø (4 pav).<br />

75


4 pav. Agrotechninës sistemos átaka obuoliø elektrocheminiø savybiø<br />

kitimui derëjimo <strong>ir</strong> laikymo metu<br />

Fig. 4. Farming system effect on the data of electrochemical parameter variation<br />

during yielding and storage of ‘Elise’ fruit<br />

5 pav. Agrotechniniø sistemø átaka vario kiekiui v<strong>ir</strong>ðutiniame d<strong>ir</strong>voþemio<br />

sluoksnyje sodo pomedþiuose<br />

Fig. 5. Agrotechnical system influence on copper amount in top horizon of orchard soil<br />

Vertinant d<strong>ir</strong>voþemio sudëties kitimà pomedþiø v<strong>ir</strong>ðutiniame sluoksnyje 2003–2005<br />

metais, nustatyta, kad humuso <strong>ir</strong> bendrojo azoto kiekis ið esmës nekito. Nustatyti Cu<br />

kiekio esminiai sk<strong>ir</strong>tumai tarp variantø. Paskutiniaisiais tyrimo metais ekologinës gamybos<br />

variante judriøjø vario formø susikaupë net 43 proc. daugiau nei áprastinës<br />

sistemos variante, taèiau didþiausios leidþiamos koncentracijos (DLK) nev<strong>ir</strong>ðijo (5 pav.).<br />

Aptarimas. Rezultatai rodo, kad sk<strong>ir</strong>tingos agrotechninës sistemos turëjo átakos<br />

vaisiø derliui tik paskutiniaisiais tyrimo metais, o jø cheminei sudëèiai <strong>ir</strong> technologinëms<br />

savybëms esminës átakos neturëjo, taèiau pastebëtos tendencijos patv<strong>ir</strong>tino<br />

kitø mokslininkø gautus rezultatus. Weibel <strong>ir</strong> kt. (2000) palyginamuoju bandymu tyrë<br />

‘Golden Delicious’ obuolius, uþaugintus tausojanèios <strong>ir</strong> ekologinës gamybos variantuose.<br />

Ekologiðkø obuoliø vaisiø minkðtimo kietumas buvo 14 proc. didesnis, nusta-<br />

76


tyta, kad ekologiðki ‘Golden Delicious’ obuoliai sukaupë 31 proc. daugiau fosforo,<br />

19 proc. daugiau fenoliø, geresnës buvo jø juslinës savybës <strong>ir</strong> elektrocheminiai rodikliai.<br />

Velim<strong>ir</strong>ov <strong>ir</strong> kt. (1995), Ruth (2001) ‘Golden Delicious’ ekologiðkuose obuoliuose<br />

aptiko daugiau vitamino C, nustatë, kad jø vaisiø minkðtimas kietesnis. Mûsø<br />

atliktame bandyme ekologiðkuose obuoliuose taip pat buvo daugiau vitamino C. Ekologiðkø<br />

‘Elize’ vaisiø minkðtimas <strong>ir</strong> odelës kietumas bandymo metais prilygo ðiems<br />

pagal áprastines technologijas auginamø obuoliø rodikliams.<br />

Maisto chemijos <strong>ir</strong> technologijø srities mokslo darbuotojai dabartinius produktø<br />

kokybës vertinimo metodus (Tauscher 2003), pagrástus produkto sudedamøjø daliø<br />

analize, siûlo papildyti metodais, kurie apibûdintø produktà kaip visumà. Ði produktø<br />

gyvybingumà <strong>ir</strong> tinkamumà vartoti apibûdinanti kokybës sàvoka buvo iðplëtota praëjusio<br />

ðimtmeèio paskutiniaisiais deðimtmeèiais. Tam pas<strong>ir</strong>inktas produkto elektrocheminiø<br />

rodikliø iðvestinis dydis – produkto vertë P. Rodiklis apskaièiuojamas iðmatavus<br />

pH vertæ, redokso potencialà <strong>ir</strong> elektriná laidumà augalo sultyse. Vertingesni tie<br />

produktø mëginiai, kuriø P vertë yra þemesnë, – jø gyvybingumas didesnis (Velim<strong>ir</strong>ov<br />

2002). Analizuojant produkto energinæ P vertæ, nustatyti akivaizdûs obuoliø kokybës<br />

sk<strong>ir</strong>tumai tarp variantø laikymo metu. Tai patv<strong>ir</strong>tina <strong>ir</strong> Weibel <strong>ir</strong> kt. (2000)<br />

atlikti tyrimai. Ávertinus pomedþiø v<strong>ir</strong>ðutinio d<strong>ir</strong>voþemio sluoksnio savybiø kitimà,<br />

galima teigti, kad sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas esminës átakos neturëjo.<br />

Ðio bandymo rezultatai rodo, kad obelø veislæ ‘Elise’ galima auginti intensyviuose<br />

<strong>ir</strong> ekologinës gamybos soduose, nes ekologiðkø <strong>ir</strong> áprastai auginamø vaisiø kokybë<br />

buvo panaði.<br />

Iðvados. 1. Sk<strong>ir</strong>tingø agrotechniniø sistemø taikymas vaisiø mineralinei <strong>ir</strong> cheminei<br />

sudëèiai átakos neturëjo.<br />

2. Ekologiðki ‘Elise’ veislës obuoliai sukaupia daugiau vitamino C nei pagal áprastines<br />

gamybos technologijas auginami tos paèios veislës obuoliai.<br />

3. Ekologiðki ‘Elise’ veislës obuoliai laikymo metu pasiþymi geresnëmis elektrocheminëmis<br />

savybëmis.<br />

Gauta 2006-11-17<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Alföldi T., Mäder P., Niggli U., Spiess E., Dubois D., Besson J. Quality of plant<br />

products. Darmstadt, 1996.<br />

2. Benavides A., Recasens I., Casero T., Soria Y., Puy J. Multivariate analysis of<br />

quality and mineral parameters on golden smoothie apples treated before harvest with<br />

calcium and stored in controlled atmosphere // Food Science and Technology International.<br />

2002. Vol.8. P. 139–146.<br />

3. Bloksma J. Biologische appels en Peren. Driebergen – LBI 2003.<br />

4. Bloksma J., Northolt M., Machteld H., Jansonius P., Zanen M. Parameters for apple<br />

quality. LBI. 2004. P. 15–21.<br />

5. Geipel K., Kreckl W. Organic apple farming without pesticide application. Ecofruit -<br />

12th International Conference on Cultivation Technique and Phytopathological Problems<br />

in Organic Fruit-Growing 2006. P. 133–137.<br />

77


6. Huber K., Fuchs N. Wie w<strong>ir</strong>kt die Erzeugungsqualität von Lebensmitteln Lebendige<br />

Erde, Nr.: 4/2003.<br />

7. Kadþiulienë Þ. Ankðtiniø þolynai ekologinei <strong>ir</strong> tausojamajai þemd<strong>ir</strong>bystei. Mano<br />

ûkis, 2004. Nr. 9.<br />

8. Kviklienë N. Influence of harvest date on physiological and biochemical processes<br />

in apple fruit. Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2004. T. 23. P. 412–420.<br />

9. Metodiniai nurodymai nitratams nustatyti augalininkystës produkcijoje. Vilnius,<br />

1990.<br />

10. Spiekermann U. Ernährung und Lebens(mittel)qualität – ein historischer Rückblick<br />

bis zur Gegenwart. Bona, 2001.<br />

11. Tauscher B. <strong>ir</strong> kt. Bewertung von Lebensmitteln unterschiedener Produktionsverfahren.<br />

Münster-Hiltrup 2003.<br />

12. Velim<strong>ir</strong>ov A. Integrative Methods of Product Quality Assessment in Connection<br />

with the P-Value-Determination. Lednice, 2002.<br />

13. Velim<strong>ir</strong>ov A., Plochberger K., Schott W., Walz V. Neue Untersuchungen zur Qualität<br />

unterschiedlich angebauter Äpfel Bioskop. 1995.<br />

14. Weibel F. P.; Bickel R.; Leuthold S., Alfoeldi T. Are organically grown apples<br />

tastier and healthier Acta Horticulturae 2000. P. 417–426.<br />

15. Wrona D., Kot C. Cropping and fruit quality of Sampion apple trees on M.9,<br />

depending on N fertilization. Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2002. T. 21. P. 120–1<strong>25</strong>.<br />

16. Ìåòîäû áèîõèìè÷åñêîãî èññëåäîâàíèÿ ðàñòåíèé // Ïîä ðåä. À. È. Åðìàêîâà.<br />

Ëåíèíãðàä, 1987.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF DIFFERENT AGROTECHNICAL<br />

MEASURES ON APPLE-TREE ‘ELISA’ YIELD,<br />

PRODUCTION QUALITY AND COMPOSITION OF SOIL<br />

S. Nominaitis, V. M. Rutkovienë, P. Viðkelis<br />

Summary<br />

Investigations were carried out in 2002–2005 in the Demonstration orchard of<br />

Land management faculty in Kaunas College. There was investigated an effect of<br />

different agro technical measures (organic and conventional farming) on yield of<br />

apple-tree ‘Elisa’ yield, production quality and composition of soil.<br />

It was established that during f<strong>ir</strong>st two farming years, differences of apples<br />

yield between systems were not defined. On the th<strong>ir</strong>d year of investigation yield of<br />

organic apple-trees has been higher than conventional. The results of production<br />

quality study showed, that amount of vitamin C was significantly greater in organic<br />

apples. Electrochemical properties were better in organic apples too.<br />

Key words: apple quality, harvest, organic farming, chemical composition.<br />

78


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POSKIEPIØ ÁTAKA OBELØ VAISMEDÞIØ<br />

FOTOSINTEZËS SISTEMOS VEIKLAI<br />

Gintarë ÐABAJEVIENË 1 , Darius KVIKLYS 1 ,<br />

Nomeda KVIKLIENË 1 , Aistë KASIULEVIÈIÛTË 2 ,<br />

Pavelas DUCHOVSKIS 1<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas G.Sabajeviene@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio universitetas, LT-53067 Akademija, Kauno r.<br />

2004–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute buvo atlikti fotosintezës<br />

pigmentø sistemos obelø lapuose tyrimai.T<strong>ir</strong>tos ‘Belaruskoje malinovoje’<br />

veislës obelys su 9 poskiepiais: Bulboga, Pure 1, B.9, B.396, B.491, M.9, M.26,<br />

P 60, P 22. Tyrimo laikotarpiu fotosintezës pigmentø kiekiai <strong>ir</strong> jø santykis kito. Obelims<br />

gausiai derant, bendras fotosintezës pigmentø kiekis lapuose buvo didesnis, jø<br />

santykis – maþesnis. Fotosintezës pigmentø kiekis lapuose priklausë nuo obelø poskiepiø.<br />

Vaismedþiø su Pure 1 <strong>ir</strong> P 22 poskiepiais lapai chlorofilø <strong>ir</strong> karotinoidø sintetino<br />

daugiausiai, o su M.26 <strong>ir</strong> B.396 – maþiausiai. Vidutinis vaismedþiø lapo plotas<br />

taip pat priklausë nuo poskiepio <strong>ir</strong> derliaus. Vidutinis lapo plotas buvo maþiausias su<br />

Pure 1 <strong>ir</strong> M.9, o didþiausias su Bulboga <strong>ir</strong> P 60 poskiepiais. Obelims gausiau derant,<br />

maþëjo vidutinis lapo plotas.<br />

Reikðminiai þodþiai: derlius, fotosintezës pigmentai, lapo plotas, obelis, poskiepiai.<br />

Ávadas. Lietuvoje <strong>ir</strong> kitose ðalyse atliktais tyrimais nustatyta, kad poskiepis turi<br />

átakos áskiepio derëjimo pradþiai, derlingumui, vaisiø kokybei, vaismedþio fiziologiniams<br />

rodikliams (Fallahi <strong>ir</strong> kt., 2002; Marini <strong>ir</strong> kt., 2002; Kviklys <strong>ir</strong> kt., 2006; Kviklienë,<br />

Kviklys, 2006; Ðabajevienë <strong>ir</strong> kt, 2006). Taèiau fiziologiniai <strong>ir</strong> biocheminiai<br />

mechanizmai, kurie lemia morfologinius sk<strong>ir</strong>tumus nëra visiðkai iðaiðkinti. Nukrypimas<br />

nuo vaismedþiø rûðiai ar netgi atsk<strong>ir</strong>ai veislei bûtinø specifiniø optimaliø fiziologiniø<br />

sàlygø gali sukelti stresà. Vienas rodikliø, leidþianèiø nustatyti vaismedþio bûsenà,<br />

yra fotosintezës aparato darbas <strong>ir</strong> já lemiantis pigmentø kiekis obels lapuose (Gitelson,<br />

Merzlyak, 1995; Merzlyak <strong>ir</strong> kt., 1999).<br />

Sk<strong>ir</strong>tingos chlorofilø formos bei karotinoidai, kaip fotosintezës aparato dalys,<br />

atlieka specifines fotosintezës proceso funkcijas, todël jø kiekis <strong>ir</strong> tam tikras santykis<br />

bûtini, kad fotosintezë vyktø efektyviai (Datt, 1998; Zarco-Tejada <strong>ir</strong> kt., 2000). Chlorofilai<br />

yra pagrindiniai pigmentai, paverèiantys ðviesos energijà kaupiamàja chemine<br />

79


energija. Nuo fotosintezës pigmentø veikimo priklauso lapo absorbuotos saulës ðviesos<br />

kiekis. Taigi nuo chlorofilø kiekio tiesiogiai priklauso fotosintezës potencialas <strong>ir</strong><br />

p<strong>ir</strong>minë produkcija (Curran <strong>ir</strong> kt.,1990; Filella <strong>ir</strong> kt., 1995). Chlorofilai taip pat tiesiogiai<br />

rodo augalo mitybos bûsenà, nes didþioji lapuose esanèio azoto dalis áeina á chlorofilø<br />

sudëtá (Moran <strong>ir</strong> kt., 2000). Karotinoidai aktyviai dalyvauja fotosintezës aparato<br />

veikloje. Kintant augimo sàlygoms, keièiasi <strong>ir</strong> jø kiekis lapuose (Demmig-Adams,<br />

Adams, 1996).<br />

Darbo tikslas – iðt<strong>ir</strong>ti ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais poskiepiais<br />

fotosintezës pigmentø sistemos formavimàsi.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. 2004–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute deranèiame sode t<strong>ir</strong>tos ‘Belaruskoje malinovoje’ veislës obelys su 9<br />

poskiepiais (Bulboga, Pure 1, B.9, B.396, B.491, M.9, M.26, P 60, P 22). Vaismedþiai<br />

formuoti laibos verpstës formos vainikais, sodinimo schema – 4 x 1,5 m. Tyrimas<br />

atliktas keturiais pakartojimais, po 3 medþius kiekviename. Pakartojimai iðdëstyti<br />

atsitiktine tvarka.<br />

Lapø ëminiai imti rugpjûèio mënesá nuo trijø medþiø ið pietinës pusës. Fotosintezës<br />

pigmentø analizei paimta 0,2–0,4 g þalios masës (ið visiðkai iðsivysèiusio lapo),<br />

sutrinta su 1 g CaCO 3<br />

, filtruota <strong>ir</strong> praskiesta 100% acetonu iki 50 ml pagal Wetshtein<br />

(Ãàâðèëåíêî <strong>ir</strong> kt. 2003). T<strong>ir</strong>iamøjø medþiagø koncentracija nustatyta spektrofotometru<br />

(Genesys 6, ThermoSpectronic). Matavimai atlikti 3 biologiniais pakartojimais.<br />

Lapø plotas matuotas automatiniu matuokliu WinDias. Tyrimo duomenys ávertinti<br />

dispersinës analizës metodu naudojant ANOVA statistinæ programà.<br />

2004 m. sausis buvo ðaltesnis negu áprasta, taèiau sodams didesnës þalos nepadarë.<br />

Balandþio <strong>ir</strong> geguþës mënesiai buvo sausesni negu áprasta. Po palyginti ðilto<br />

balandþio geguþës mënuo buvo vësus. Geguþës 14 <strong>ir</strong> 17 dienomis po ðilto laikotarpio<br />

buvo didelës -3° – -2,5°C ðalnos, kurios labai pakenkë sodo augalø þiedams <strong>ir</strong> net<br />

uþuomazgoms, todël derlius buvo maþesnis.<br />

2005 m. pavasará po ilgo <strong>ir</strong> ðalto laikotarpio staiga atðilus, þydëjimo laikas buvo<br />

trumpas, taèiau tai nepakenkë vaisiø uþuomazgoms.<br />

2006 m., obelims þydint, ilgà laikotarpá buvo ðalta, taèiau ðalnø nebuvo, taigi<br />

neigiamos átakos ðios meteorologinës sàlygos þiedø apdulkinimui <strong>ir</strong> vaisiø uþmezgimui<br />

neturëjo. Dël ilgalaikës sausros <strong>ir</strong> karðèio liepos mënesá sumaþëjo vaisiø masë <strong>ir</strong><br />

derlius ið vaismedþio.<br />

Rezultatai. Fotosintezës pigmentø kiekio <strong>ir</strong> santykio kitimas obelø su sk<strong>ir</strong>tingais<br />

poskiepiais lapuose priklausë nuo metø (1 <strong>ir</strong> 2 lentelës). 2004 m. t<strong>ir</strong>ti vaismedþiai<br />

fotosintezës pigmentø sintetino maþiausiai (obelø su B.396, B.146 poskiepiais lapuose<br />

bendras chlorofilø kiekis nesiekë 300 mg m -2 ), taèiau iðsiskyrë dideliu chlorofilø<br />

santykiu. Daugiausia chlorofilø (bendras jø kiekis – 394,3 mg m -2 ) kaupë vaismedþiai<br />

su Pure 1 poskiepiu. Efektyviausiai fotosintezës pigmentø sintezë vyko vaismedþiø<br />

su Pure 1 <strong>ir</strong> Bulboga poskiepiais lapuose, chlorofilø a/b santykis juose v<strong>ir</strong>ðijo 4.<br />

Maþiausias chlorofilø a/b santykis buvo nustatytas ‘Belaruskoje malinovoje’ obelø su<br />

P 22 poskiepiu lapuose (3,67). Intensyviausiai fotosintezës pigmentø kaupimas ‘Belaruskoje<br />

malinovoje’ obelø su sk<strong>ir</strong>tingais poskiepiais lapuose vyko 2005 m. Daugiausia<br />

chlorofilø sintetino vaismedþiai su Pure 1, P 60 <strong>ir</strong> P 22 poskiepiais (bendras jø<br />

kiekis – apie 520 mg m -2 ). Didþiausias chlorofilø a/b santykis nustatytas vaismedþiø<br />

80


su P 22 poskiepiu lapuose (3,5). 2006 metais daugiausia chlorofilø kaupë vaismedþiai<br />

su Pure 1 <strong>ir</strong> B.146 poskiepiais (483 mg m -2 ). Silpniausiai ðiø pigmentø sintezë<br />

vyko obelø su M.9 poskiepiu lapuose (363 mg m -2 ). Chlorofilø a/b santykis ðiais<br />

metais t<strong>ir</strong>tuose vaismedþiuose skyrësi nereikðmingai <strong>ir</strong> buvo apie 3.<br />

1 lentelë. Chlorofilø a/b santykis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose<br />

Table 1. Chlorophyll a/b ratio in leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 4,06 b* 3,18 abc 3,15 b 3,46<br />

B.146 3,9 ab 3,21 abc 3,1 ab 3,4<br />

B.396 4,0 ab 3,28 abc 3,06 ab 3,45<br />

B.9 3,92 ab 3,39 bc 3,06 ab 3,46<br />

P 22 3,67 a 3,53 c 3,05 ab 3,42<br />

P 60 3,91 ab 3,<strong>25</strong> abc 3,03 ab 3,4<br />

M.9 3,99 ab 3,26 abc 2,96 ab 3,4<br />

M.26 3,97 ab 3,02 a 3,03 ab 3,34<br />

Bulboga 4,01 ab 3,18 abc 3,06 ab 3,42<br />

Vidurkis<br />

Average 3,92 3,26 3,06<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Karotinoidø sintezë obelø su sk<strong>ir</strong>tingais poskiepiais lapuose visais tyrimo metais<br />

vyko analogiðkai chlorofilø sintezei (3 lentelë). 2004 m. vaismedþiai karotinoidø kaupë<br />

maþiausiai (obelø su B.146 poskiepiu lapuose jø kiekis buvo tik 100 mg m -2 ).<br />

Daugiausia karotinoidø sintetino vaismedþiai su M.9 <strong>ir</strong> Pure 1 poskiepiais. 2005 m.<br />

ðiø pigmentø sintezë vyko intensyviausiai. Daugiausia karotinoidø kaupë obelys<br />

su P 60 <strong>ir</strong> P 22 poskiepiais (apie 145 mg m -2 ). 2006 m. didþiausias karotinoidø<br />

kiekis nustatytas vaismedþiuose su Pure 1, B.146 <strong>ir</strong> Bulboga poskiepiais (apie<br />

130 mg m-2). Obelys su M.9 poskiepiu karotinoidø kaupë ypaè maþai (98,7 mg m -2 ).<br />

81


2 lentelë. Bendras chlorofilø a + b kiekis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose, mg m -2<br />

Table 2. Chlorophyll a + b content (mg m -2 ) in leaves of apple tree cv. ‘Belaruskoje<br />

malinovoje’ on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 394,3 e* 528,6 e 83,2 e 468,7<br />

B.146 292,4 a 486 bcd 483,0 e 420,47<br />

B.396 292,4 a 464 abc 404,2 bc 386,87<br />

B.9 330,2 bc 466,2 abc 423,4 c 406,6<br />

P 22 353,6 cd 521,0 cd 449,8 d 441,47<br />

P 60 326,3 abc 522,6 d 394,4 bc 414,43<br />

M.9 375,6 de 441,8 ab 363,3 a 393,57<br />

M.26 304,7 ab 433,6 a 392,1 bc 376,8<br />

Bulboga 300,4 ab 493,0 bcd 415,7 c 403,03<br />

Vidurkis<br />

Average 330,0 484,1 423,2<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

3 lentelë. Karotinoidø kiekis ‘Belaruskoje malinovoje’ veislës obelø<br />

su sk<strong>ir</strong>tingais poskiepiais lapuose, mg m -2<br />

Table 3. Carotenoid content (mg m -2 ) in leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 112,8 bc* 135,9 cd 133 e 127,23<br />

B.146 100 a 137,9 d 127,8 e 121,9<br />

B.396 105,2 ab 126,5 abc 112,3 bc 114,67<br />

B.9 108,6 ab 133,1 bcd 111,0 abc 117,57<br />

P 22 110,9 bc 147,8 e 120,0 de 126,23<br />

P 60 111,7 bc 144,1 d 116,3 cd 124,03<br />

M.9 121,1 c 123,0 ab 98,7 a 114,27<br />

M.26 103,5 ab 122,2 a 105,6 ab 110,43<br />

Bulboga 104,6 ab 132,4 bc 128,7 e 121,9<br />

Vidurkis<br />

Average 108,7 133,7 117,0<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05)<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

82


Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais poskiepiais lapo<br />

plotas taip pat priklausë nuo metø (4 lentelë). Didþiausias vidutinis lapo plotas nustatytas<br />

2004 m. (39,18 cm 2 ). Didþiausius lapus augino vaismedþiai su Bulboga, o<br />

maþiausius – su Pure 1 <strong>ir</strong> M.9 poskiepiais. 2005 metais fotosintezei obelø lapuose<br />

vykstant efektyviausiai, vidutinis lapo plotas buvo maþiausias (31,83 cm 2 .). Didþiausias<br />

lapo plotas vaismedþiø su P 60 <strong>ir</strong> P 22 poskiepiais, o maþiausias – su M.9. 2006 m.<br />

didþiausius lapus augino vaismedþiai su Bulboga (40,84 cm 2 ), o maþiausius – su Pure<br />

1 (32,03 cm 2 ) poskiepiu. Per visus tyrimo metus vaismedþiø su Pure 1 <strong>ir</strong> M.9 poskiepiais<br />

lapai buvo maþesni, o su Bulboga <strong>ir</strong> P 60 poskiepiais – didþiausi.<br />

4 lentelë. Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais<br />

poskiepiais lapo plotas, cm 2<br />

Table 4. Average leaf area of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks<br />

Poskiepis<br />

2004 m. 2005 m. 2006 m.<br />

Vidurkis<br />

Rootstock<br />

Average<br />

Pure 1 35,67 a* 30,64 ab 32,03 a 32,78<br />

B.146 40,94 ab 31,35 ab 35,85 b 36,05<br />

B.396 38,95 ab 32,79 ab 33,96 ab 35,23<br />

B.9 39,67 ab 30,67 ab 34,79 ab 35,04<br />

P 22 36,48 ab 33,87 b 36,55 bc 35,64<br />

P 60 41,75 ab 35,35 b 36,55 b 37,88<br />

M.9 35,44 a 28,38 a 35,93 b 33,<strong>25</strong><br />

M.26 41,11ab 31,34 ab 37,05 bc 36,50<br />

Bulboga 42,58b 32,08 ab 40,84 c 38,50<br />

Vidurkis<br />

Average 39,18 31,83 35,95<br />

35,65<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05).<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Dël pavasario ðalnø 2004 m. vidutinis obelø derlius buvo labai maþas – vidutiniðkai<br />

7 kg ið vaismedþio. Maþiau nuo ðalnø nukentëjo vaismedþiai su M.9 <strong>ir</strong> B.396<br />

poskiepiais. Gausiausiai obelys derëjo 2005 m. – 18 kg. Ið esmës derlingiausi buvo<br />

vaismedþiai su B.146 <strong>ir</strong> M.26, o 2006 m. – su Bulboga <strong>ir</strong> M.9 poskiepiais. Vidutiniðkai<br />

per trejus tyrimo metus didþiausias derlius surinktas nuo vaismedþiø su stipriausiai<br />

auganèiais B.146 <strong>ir</strong> Bulboga poskiepiais, o maþiausias derlius – su nykðtukiniu<br />

poskiepiu P 22.<br />

83


5 lentelë. Vidutinis ‘Belaruskoje malinovoje’ veislës obelø su sk<strong>ir</strong>tingais<br />

poskiepiais derlius, kg/ið vaismedþio<br />

Table 5. Average yield of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks (kg/tree)<br />

Poskiepis<br />

Rootstock<br />

Metai<br />

Year<br />

2004 2005 2006<br />

Vidurkis<br />

Average<br />

Pure 1 6,9 bc 12,0 a 11,49 b 10,13<br />

B.146 3,04 a 30,9 d 16,45 c 16,80<br />

B.396 10,54 d 22,6 c 7,49 b 13,54<br />

B.9 9,56 cd 8,02 a 17,38 c 11,65<br />

P 22 6,87 bc 9,04 a 7,75 b 7,89<br />

P 60 3,81 ab 22,7 c 10,90 b 12,47<br />

M.9 11,34 d 10,4 a 18,56 cd 13,43<br />

M.26 9,07 cd 29,0 d 2,17 a 13,41<br />

Bulboga 4,07 ab 17,9 b 22,22 d 14,73<br />

Vidurkis<br />

Average<br />

7,24 18,06 12,71 12,67<br />

*Tomis paèiomis raidëmis lentelës skiltyse paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia (P≤0,05).<br />

*Values followed by the same letters within the columns are not statistically different at P≤0.05.<br />

Aptarimas. Vienas svarbiausiø veiksniø, uþtikrinanèiø aukðtà augalø agrobiologiná<br />

potencialà, yra optimalus fotosintezës pigmentø kiekis <strong>ir</strong> jø santykis lapuose<br />

(Datt, 1998). Chlorofilø kiekis – svarbus veiksnys, lemiantis fotosintezës intensyvumà,<br />

o chlorofilø a/b santykis bei chlorofilø sumos su karotinoidais santykis – fotosintezës<br />

aktyvumo rodikliai. Analizuojant tyrimo duomenis, nustatytas ryðys tarp chlorofilø<br />

sintezës efektyvumo <strong>ir</strong> derliaus. Panaðûs dësningumai uþfiksuoti atliekant <strong>ir</strong><br />

ankstesnius mûsø tyrimus su ‘Auksis’ veisle (Ðabajevienë <strong>ir</strong> kt., 2006). Didþiausias<br />

chlorofilø santykis nustatytas 2004 m., kai ‘Belaruskoje malinovoje’ veislës obelys<br />

nebuvo produktyvios. 2005 m. <strong>ir</strong> 2006 m., vaismedþiams derant labai gausiai, chlorofilø<br />

a/b santykis sumaþëjo. Nepaisant to, chlorofilø a/b santykis t<strong>ir</strong>tø ‘Belaruskoje<br />

malinovoje’ veislës obelø lapuose iðliko pakankamai didelis (didesnis nei 3) <strong>ir</strong> fotosintezës<br />

nelëtino. Nors áva<strong>ir</strong>iais metais poskiepiø átaka chlorofilø a/b santykiui buvo<br />

sk<strong>ir</strong>tinga <strong>ir</strong> uþfiksuoti esminiai jø sk<strong>ir</strong>tumai, taèiau vidutiniðkai per tyrimø metus poskiepiø<br />

nulemtas chlorofilø a/b santykis buvo labai panaðus, iðskyrus M.26 poskiepá,<br />

iðsiskyrusá kiek maþesniu santykiu. Panaðûs duomenys gauti <strong>ir</strong> atliekant tyrimus su<br />

obelø veisle ‘Auksis’, taèiau, jà t<strong>ir</strong>iant, maþesnis chlorofilø a/b santykis nustatytas<br />

obelø su P 22 poskiepiu lapuose (Ðabajevienë <strong>ir</strong> kt., 2006).<br />

Chlorofilø <strong>ir</strong> karotinoidø kiekio kitimas lapuose rodo vaismedþio fiziologinæ bûsenà<br />

(Merzlyak <strong>ir</strong> kt., 1999). Kintant augimo sàlygoms, keièiasi <strong>ir</strong> jø kiekis lapuose<br />

(Demmig-Adams, Adams, 1996). 2004 metais dël pavasario ðalnø sumaþëjus derliui,<br />

fotosintezës pigmentø sintezë sulëtëjo <strong>ir</strong> suaktyvëjo vegetatyvinis augimas. Tyrimo<br />

84


metais ‘Belaruskoje malinovoje’ veislës obelys daugiausia chlorofilø <strong>ir</strong> karotinoidø<br />

kaupë su stipriausiai vaismedþiø vegetatyviná augumà ribojanèiais poskiepiais Pure 1<br />

<strong>ir</strong> P 22, o maþiausiai – su M.26 <strong>ir</strong> B.396 poskiepiais. T<strong>ir</strong>iant poskiepius su obelø<br />

veisle ‘Auksis’, obelys su M.26 poskiepiu fotosintezës pigmentø taip pat sintetino<br />

maþiausiai (Ðabajevienë <strong>ir</strong> kt., 2006).<br />

Vaismedþiø gebëjimas pask<strong>ir</strong>styti <strong>ir</strong> naudoti ðviesos energijà priklauso nuo genotipo<br />

<strong>ir</strong> nuo aplinkos sàlygø (Greer <strong>ir</strong> kt., 1997). Nustatytas ryðys tarp vidutinio lapo<br />

ploto <strong>ir</strong> derliaus gausumo. Didëjant derliui, maþëjo vidutinis lapo plotas. Maþiausi<br />

lapo ploto pokyèiai uþfiksuoti vaismedþiø su P 22 (apie 3 cm 2 ) <strong>ir</strong> Pure 1 (5 cm 2 )<br />

poskiepiais, kuriø derlius trejø metø laikotarpiu taip pat kito maþiausiai. Didþiausi<br />

lapo ploto pokyèiai pastebëti su Bulboga, M.26 <strong>ir</strong> B.146 poskiepiais (iki 10 cm 2 ),<br />

kuriø vidutinis vaismedþio derlius skyrësi nuo 5 iki 10 kartø. Taèiau iðryðkëjo <strong>ir</strong><br />

sk<strong>ir</strong>tinga poskiepiø átaka lapo ploto <strong>ir</strong> derliaus priklausomumui. Nebuvo nustatyti<br />

bendri vaismedþiø su B.9, P 60 <strong>ir</strong> M.9 poskiepiais dësningumai – jø vidutinio lapo<br />

ploto pokyèiai priklausë ne tik nuo derliaus pokyèiø.<br />

Silpniau auganèiø vaismedþiø su Pure 1 <strong>ir</strong> M.9 poskiepiais vidutinis lapo plotas<br />

buvo maþiausias, o stipriau auganèiø su Bulboga <strong>ir</strong> P 60 poskiepiais – didþiausias.<br />

Taèiau tiesioginis ryðis tarp poskiepio nulemto vaismedþio augumo <strong>ir</strong> vidutinio lapo<br />

ploto nebuvo nustatytas, nes <strong>ir</strong> su nykðtukiniu P 22, <strong>ir</strong> su pusiau þemaûgiu M.26<br />

poskiepiu vidutinis lapo plotas buvo artimas tyrimø vidurkiui.<br />

Iðvados. 1. Nustatytas ryðys tarp chlorofilø sintezës efektyvumo <strong>ir</strong> derliaus.<br />

Obelims gausiai derant, bendras fotosintezës pigmentø kiekis lapuose buvo didesnis,<br />

jø santykis – maþesnis.<br />

2. Poskiepio genotipas lemia fotosintezës pigmentø sintezæ. Vaismedþiø su Pure 1<br />

<strong>ir</strong> P 22 poskiepiais lapai chlorofilø <strong>ir</strong> karotinoidø sintetino daugiausia, o su M.26 <strong>ir</strong><br />

B.396 – maþiausiai.<br />

3. Vidutinis lapo plotas buvo maþiausias su Pure 1 <strong>ir</strong> M.9, o didþiausias – su<br />

Bulboga <strong>ir</strong> P 60 poskiepiais. Obelims gausiau derant, maþëja vidutinis lapo plotas.<br />

Padëka. Darbo autoriai dëkingi Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui<br />

uþ finansinæ paramà.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Curran P. J., Dungan J. L., Gholz H. L. Exploring the relationship between reflectance<br />

red edge and chlorophyll content in slash pine // Tree Physiol. 1990. Vol. 7. P. 33–48.<br />

2. Datt B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a + b, and<br />

Total Carotenoid Content in Eucalyptus Leaves // Remote Sens. Env<strong>ir</strong>on. 1998. Vol. 66.<br />

P. 111–121.<br />

3. Demmig-Adams B., Adams W. W. The role of xanthophylls cycle carotenoids in<br />

the protection of photosynthesis // Trends in plant science. 1996. Vol. 1. No. 1. P. 62–73.<br />

4. Fallahi E., Colt W. M, Fallahi B., Chun I. J. The importance of apple rootstocks on<br />

three growth, yield, fruit quality, leaf nutrition and photosynthesis with an emphasis on<br />

‘Fuji’ // MortTecnology. 2002. Vol. 12. P. 38–44.<br />

85


5. Filella I., Serrano I., Serra J., Peuelas J. Evaluating wheat nitrogen status with<br />

canopy reflectance indices and discriminant analysis // Crop Sci. 1995. Vol. 35. P. 1400–<br />

1405.<br />

6. Gitelson A. A., Merzlyak M. N. Remote Sensing of Chlorophyll Concentration in<br />

Higher Plant Leaves // Adv. Space Res. 1998. Vol. 22. P. 689–692.<br />

7. Greer D. H., Wünsche J. N., Palmer J. W. Effects of fruiting on seasonal apple leaf<br />

chlorophyll fluorescence // Acta Horticulturae.1997. 451. P. 345–350.<br />

8. Kviklienë N., Kviklys D. Rootstock effect on maturity and quality of ‘Auksis’<br />

apples // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. <strong>25</strong>8–263<br />

9. Kviklys D., Kviklienë N., Bite A., Lepsis J., Lukut T., Haak E. Baltic fruit rootstock<br />

studies: evaluation of 12 rootstocks for apple cultivar ‘Auksis’ // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(3). P. 334–341.<br />

10. Marini R. P., Barden J. A., Cline J. A., Perry R. L., Robinson T. Effect of apple<br />

rootstocks on average ‘Gala” fruit weight at four locations after adjusting for crop load //<br />

Amr. Sci. Hort. Sci. 2002. Vol. 127. P. 749–753.<br />

11. Merzlyak M. N, Gitelson A. A., Chivkunova O. B., Rakitin V. Y. Nondestructive<br />

optical detection of leaf senescence and fruit ripening // Physiol Plant. 1999. Vol. 106.<br />

P. 135–141.<br />

12. Moran J. A., Mitchell A. K., Goodmanson G., Stockburger K. A. Differentiation<br />

among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance:<br />

a comparison of methods. // Tree Physiol. 2000. Vol. 20. P. 1113–1120.<br />

13 Ðabajevienë G., Kviklys D., Duchovskis P. Rootstock effect on photosynthetic<br />

pigment formation in leaves of apple cv. ‘Auksis’ // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2006. T. <strong>25</strong>(3). P. 357–363.<br />

14. Zarco-Tejada P. J., Miller J. R., Mohammed G. H., Noland T. L. Chlorophyll fluorescence<br />

effects on vegetation apparent reflectance: I Leaf-level measurements and model<br />

simulation // Rem. Sens. Env<strong>ir</strong>on. 2000. Vol. 74. P. 582–595.<br />

15. Ãàâðèëåíêî Â. Ô., Ëàäûãèíà Ì. Å., Õàíäðîáèíà Ë. Ì. Áîëüøîé ïðàêòèêóì<br />

ïî ôèçèîëîãèè ðàñòåíèé. Ìîñêâà, Aêaäåìèÿ, 2003. <strong>25</strong>6 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

ROOTSTOCK EFFECT ON PHOTOSYNTHETIC PIGMENT<br />

SYSTEM FORMATION IN APPLE TREE LEAVES<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë, A. Kasiulevièiûtë, P. Duchovskis<br />

Summary<br />

Photosynthetic pigment system in the leaves of apple tree cv. ‘Belaruskoje malinovoje’<br />

on different rootstocks was investigated at the Lithuanian Institute of Horticulture<br />

during 2004–2006. Nine rootstocks were included: Bulboga, Pure1, B.9,<br />

B.396, B.416, M.9, M.26, P 60, P 22. The photosynthetic pigment content and<br />

ratios of apple tree cv. ‘Belaruskoje malinovoje’ on different rootstocks varied between<br />

years. Photosynthetic pigment content and chlorophyll a/b ratio in apple leaves<br />

depended on crop load: the higher crop the higher photosynthetic pigment content<br />

86


and lower chlorophyll a/b ratio. Rootstock genotype determines accumulation of<br />

photosynthetic pigments. Apple rootstocks Pure 1 and P 22 accumulated the largest<br />

amount of total chlorophyll and carotenoid content. The lowest photosynthetic pigment<br />

content was found in apple trees with M.26 and B. 396 rootstocks. Average<br />

leaf area depended on crop load and rootstock. The biggest leaves were on fruit<br />

trees with Bullboga and P 60, and the smallest with Pure 1 and M.9 rootstocks.<br />

Increasing crop load decreased average leaf area.<br />

Key words: leaf area, Malus x domestica, photosynthetic pigment, rootstock,<br />

yield.<br />

87


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

QUALITY OF ‘JONICA’ APPLE FRUIT AS<br />

INFLUENCED BY ROOTSTOCKS<br />

Jan SKRZYÑSKI, Maciej GÀSTOÙ<br />

Department of Pomology and Apiculture, Faculty of Horticulture, Agricultural<br />

University in Kraków, Al. 29 Listopada 54, 31-4<strong>25</strong> Kraków, Poland.<br />

E-mail jskrzy@wp.pl<br />

Abstract. The influence of five vegetative rootstocks (M.9, M.26, P 22, P 59<br />

and P 60) on fruit quality was evaluated. Fruit size, flesh f<strong>ir</strong>mness, seed number,<br />

starch index (SI), soluble solids content (SSC), and titratable acidity (TA) were<br />

measured during two consecutive seasons. The analysis was performed at optimum<br />

harvest date time and after 6 months of storage, followed by simulated shelf life<br />

period at 20°C. There was no evident effect of rootstocks on fruit maturity at harvest<br />

as determined by Streif’s index and starch index. However, fruit from trees on<br />

P 22 tended to have less starch and lower F/RS values. At harvest flesh f<strong>ir</strong>mness of<br />

apples from trees on rootstocks P 22 and P 59 was the highest, respectively the<br />

lowest one was observed for M.26 rootstock. Fruits from trees grafted on M.9 and<br />

M.26 had the highest mean weight (223 g and 218 g, respectively), whereas P 22<br />

and P 59 – 179 g and 170 g. A negative correlation between fruit size and flesh<br />

f<strong>ir</strong>mness was observed. After storage and additional shelf life period flesh f<strong>ir</strong>mness<br />

of fruits from M.9 rootstock was the lowest, while those on P 22 and P 59, like at<br />

harvest time, had higher values. Soluble solids content was significantly influenced<br />

by rootstock type, especially in 2004. Fruit from trees on rootstocks P 22 and P 59<br />

had high SSC at harvest and at two post storage evaluations. The lowest values for<br />

respective time of analysis were noted for fruit from M.9 and M.26, respectively.<br />

Titratable acidity was influenced by the rootstock type and the year of study. Higher<br />

values were observed in 2004. Rootstock P 59 favoured high TA in ‘Jonica’ fruit.<br />

Correlations between studied parameters were established and will be discussed.<br />

Key words: Malus x domestica, fruit size, flesh f<strong>ir</strong>mness, soluble solids, acids,<br />

Streif’s index.<br />

Introduction. The effect of type of rootstock, on which specific cultivar is<br />

raised, on the whole tree performance and fruit quality components are one of the<br />

most important issues in fruit science. The decision, which rootstock should be<br />

selected for a given planned orchard, is crucial for future orchard management and<br />

profitability.<br />

88


The main objectives of planting trees on vegetative rootstocks are: regulation<br />

of tree size, growth rate and crown volume, induction of early bearing and high<br />

cropping, adaptation of root system to existing soil and climatic conditions (water<br />

deficit toleration, winter hardiness, etc.). Expected beneficial effect on quality of<br />

fruit is often listed at the end of objectives. However, the influence on fruit quality<br />

in an existing worldwide overproduction of apples becomes now more important<br />

issue.<br />

According to Webster and Hollands (1999), we knew still too little about interactions<br />

between rootstock and scion. Rootstock and scion cultivar affect each<br />

other mutually, therefore each combination of those components should be treated<br />

separately (Schneider et al., 1978). The most commonly used in Europe rootstock<br />

M.9 is lately more often criticized (Groot, 1997; Riesen and Husistein, 1998). Studies<br />

on similar crown volumes trees suggest that the more dwarfing rootstock the<br />

better light penetration and photosynthetic productivity could be observed (Baugher<br />

et al., 1994). This logically should influence the whole tree performance and most<br />

importantly – fruit quality. According to Kader (1985), quality is a combination of<br />

features including appearance, texture, flavour, nutritive value and safety. Consumer<br />

demands are already high for flesh f<strong>ir</strong>mness and taste (Autio et al., 1996). For citrus<br />

fruit the influence of rootstock on quality is already well defined (Castle, 1995). For<br />

‘Jonagold’ fruit (and its sport’s as well) flesh f<strong>ir</strong>mness is considered to be the most<br />

important parameter, which by 50% decide internal components of quality (Pladett<br />

et al., 1992). Soluble solids content and acidity in an equal share contribute to the<br />

remaining part of those components. Balanced sugars and acid ratio in apple fruit<br />

could provide sweet but refreshing taste. The latter may occur only when appropriate<br />

acid content is maintained (Vangdal, 1985; Sekse, 1992). For commercially important<br />

apple cultivars such as ‘Jonagold’, there are already known minimal values<br />

for the<strong>ir</strong> acceptability in a selling period – soluble solids should be within 13–14%<br />

and flesh f<strong>ir</strong>mness no lower than 45 N (Hoehn et al., 2001).<br />

The objective of our study was to compare the effect of new Polish rootstocks<br />

and well-known English ones on the main quality features of ‘Jonica’ apples.<br />

Materials and methods. The experiments were carried out on ‘Jonica’ trees<br />

planted on rootstocks of Polish selection: P 22, P 59, P 60 and of Malling Series: M.26,<br />

M.9. The studies were realized in the period of the beginning of full production capacity<br />

of the experimental orchard (4–6 years after planting). Trees were planted at a<br />

spacing of 4 x 1.2 m, in four, 5 trees per each replication. Each 6 th tree in a row was a<br />

pollinator – ‘Ðampion’. All trees were trained as slender spindle. From the middle of<br />

September, fruits from boundary rows around experimental plots were sampled in<br />

weekly intervals for optimum harvest date evaluation. Fruits were picked when Streif’s<br />

harvest index values calculated according to formula F(RS) -1 were within recommended<br />

range (Streif, 1983). Mean fruit size (as weight in grams) and percent of blush<br />

coloured area were evaluated on a 100 fruit sample. Fruit quality evaluation and analysis<br />

(fruit flesh f<strong>ir</strong>mness, soluble solids content, titratable acidity, starch pattern, etc.)<br />

were carried out according to standard methods (Johnson, 1992). The analyses were<br />

performed at optimum harvest date and respective ones after storage for 6 months,<br />

89


followed by simulated shelf life period of 7 days at 20°C. Fruits were stored in a<br />

conventional refrigerated room at 1–2°C, 90–92% RH for 180 days.<br />

Results were subjected to the analysis of variance using Duncan’s Multiple<br />

Range test. Tables contain means for 2 consecutive seasons (2003 and 2004), since<br />

similar relationships were observed during both years of study.<br />

Results and discussion. On the average, fruit size, expressed on a weight<br />

basis of apples from trees on studied rootstocks (Table 1) were within or slightly<br />

below optimal for consumption for ‘Jonica’ (200–220 g). However, trees on M.9<br />

tended to produce significantly larger fruits and on P 22 – smaller ones. Fruits<br />

from trees grafted on M.9 and M.26 had the highest mean weight (223 g and 218<br />

g, respectively), whereas these on P 22 and P 59 – 179 g and 170 g. The results<br />

for rootstock M.9 were in agreement with other reports (Babalar and Primoradian,<br />

1996; Groot, 1997), and seemed to be non-dependent on crop volume (within<br />

optimum range) as suggested by Ferguson and Watkins (1992). Webster and Hollands<br />

(1999) and Pätzold and Fisher (1991) also report about the smallest fruits<br />

from trees on P 22.<br />

Very little information exists on the importance of seed number in apple fruit so<br />

far. However, taking into account physiological involvement of seeds in Ca uptake<br />

and transport into apple fruit this phenomena deserves more attention. The most<br />

numerous seeds were present in fruits from trees on rootstock P 60, where also<br />

high fruit Ca was observed (data not published).<br />

Table 1. Fruit size, seed number and blush area of ‘Jonica’ apples at harvest<br />

1 lentelë. ‘Jonika’ veislës obelø vaisiø dydis, sëklø skaièius <strong>ir</strong> paraudimo<br />

plotas derliaus nuëmimo metu<br />

Rootstock<br />

Poskiepis<br />

Fruit size<br />

Vaisiø dydis,<br />

g<br />

Seed number<br />

Sëklø skaièius, vnt.<br />

Blush area<br />

Paraudimo plotas,<br />

%<br />

M.9 223 e 4.7 c 60 ab<br />

M.26 218 d 4.3 ab 63 a<br />

P 22 179 b 4.6 bc 71 b<br />

P 59 170 a 4.0 a 66 ab<br />

P 60 197 c 4.8 c 60 a<br />

*Means within columns followed by the same letter do not differ at α = 0.05<br />

* Tarp skiltyse ta paèia raide paþymëtø skaièiø nëra esminiø sk<strong>ir</strong>tumø, kai α = 0,05.<br />

In practical terms there was no effect of rootstock on area covered by blush of<br />

‘Jonica’ fruit. All fruits satisfy minimal requ<strong>ir</strong>ement for that cultivar to be classified<br />

according to EU standards at Class I (at least 1/3 of skin area covered by blush). In<br />

other studies with vigorous cultivars, such as ‘Jonica’, fruits from trees on P 22<br />

were having more % blush than on other rootstocks (Autio et al., 1996; Baab, 1998).<br />

Our study conf<strong>ir</strong>ms those earlier results. In some other experiments better coloration<br />

was also observed for fruits from trees on MM.106, while in others – on the<br />

most dwarfing M.27 (Drake et al., 1991).<br />

90


Table 2. Fruit flesh f<strong>ir</strong>mness, starch index, Streif’s index, total soluble solids and<br />

titratable acidity of ‘Jonica’ apples as affected by rootstocks at harvest<br />

2 lentelë. Poskiepiø átaka ’Jonika‘ veislës obelø vaisiø minkðtimo kietumui,<br />

krakmolo indeksui, Streifo indeksui, bendram t<strong>ir</strong>piø sausøjø medþiagø kiekiui <strong>ir</strong><br />

titruojamajam rûgðtingumui derliaus nuëmimo metu<br />

Rootstock<br />

Poskiepis<br />

Flesh f<strong>ir</strong>mness<br />

Minkštimo<br />

kietumas, kg cm -2<br />

Starch index<br />

(scale1-10)<br />

Krakmolo indeksas<br />

(skalë 1–10)<br />

Streif’s<br />

index<br />

Streifo<br />

indeksas<br />

Total soluble<br />

solids<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos, %<br />

Titratable acidity (mg<br />

malate 100 g -1 )<br />

Titruojamasis<br />

rûgðtingumas, mg malato<br />

100 g -1 )<br />

M.9 8.1 b 9.3 bc 0.07 n.s. 12.6 b 635 b<br />

M.26 7.9 a 8.9 a 0.07 12.0 a 601 ab<br />

P 22 8.6 c 9.6 d 0.07 13.3 c 586 a<br />

P 59 8.6 c 9.4 c 0.07 13.2 c 630 b<br />

P 60 8.1 b 9.2 b 0.07 12.6 b 603 ab<br />

* Means within columns followed by the same letter do not differ at α = 0.05<br />

* Tarp skiltyse ta paèia raide paþymëtø skaièiø nëra esminiø sk<strong>ir</strong>tumø, kai α = 0,05.<br />

There was no evident effect of rootstocks on fruit maturity at harvest as determined<br />

by Streif index and starch index (Table 2). However, fruits from trees on P 22<br />

tended to have less starch and lower F/RS values. At harvest flesh f<strong>ir</strong>mness of<br />

apples from trees on rootstocks P 22 and P 59 was the highest. Respectively, the<br />

lowest ones were observed for M.26 rootstock. In opposition to those findings, in<br />

both reports of Drake et al., (1991) and Autio (1994) it was evident that the more<br />

dwarf rootstock the higher fruit flesh f<strong>ir</strong>mness. According to Johnson (1992), rootstock<br />

and flesh f<strong>ir</strong>mness are ind<strong>ir</strong>ectly related through a negative correlation – fruit<br />

size and flesh f<strong>ir</strong>mness. Presented study seems to conf<strong>ir</strong>m such relationship, small<br />

apple fruits originating from trees on P 22 rootstock were having the highest flesh<br />

f<strong>ir</strong>mness at harvest.<br />

‘Jonica’ fruit from trees on rootstock M.9 reached harvest maturity usually 3–<br />

5 days earlier than on other rootstocks (unpublished results), and tend to obtain the<br />

lowest values of Streif’s index for fruits from trees on P 22.<br />

Rootstock did affect the content of carbohydrates and organic acids (Table 2).<br />

Soluble solids content was the highest for fruits from trees on P 22 and P 59. This<br />

conf<strong>ir</strong>m the results of Autio et al., (1996), who stated that fruits from trees on<br />

rootstocks from P series tended to contain more soluble solids than from M.26 or<br />

M.9, respectively. Results of cited above author and of our study are in opposition<br />

to earlier reports stating that fruits from trees on M.9 and M.26 tended to have<br />

more soluble solids (Autio 1994). Some authors claimed that soluble solids content<br />

was negatively correlated to trunk cross sectional area (Autio et al., 1996). Such<br />

tendency could be observed in a reported study only for fruit from trees on P 22<br />

and P 59.<br />

91


Table 3. The effect of rootstocks on fruit flesh f<strong>ir</strong>mness, total soluble<br />

solids and titratable acidity of ‘Jonica’ apples after storage and simulated<br />

shelf life period of 7 days at 20°C<br />

3 lentelë. Poskiepiø átaka ’Jonika‘ veislës obelø vaisiø minkðtimo kietumui,<br />

bendram t<strong>ir</strong>piø sausøjø medþiagø kiekiui <strong>ir</strong> titruojamajam rûgðtingumui po<br />

laikymo <strong>ir</strong> 7 dienas palaikius 20°C temperatûroje<br />

After storage<br />

Po laikymo<br />

After storage in optimal conditions for 180 days ‘Jonica’ apples in general satisfy<br />

quality criteria for Class 1 or Extra (Table 3). The results have shown that<br />

rootstocks influenced the quality of fruits after storage and additional period of simulated<br />

shelf life. The maintenance of ‘Jonica’ apple flesh f<strong>ir</strong>mness after storage for<br />

180 days and 7 days at 20°C was the best for fruits from trees on P 22 and P 59.<br />

Drake et al. (1991), however, observed such tendency for fruits from trees on more<br />

vigorous rootstocks. Fruits from all rootstocks/scion combinations in our study<br />

maintained after storage flesh f<strong>ir</strong>mness above 4.5 kg. This should satisfy consumers’<br />

minimal requ<strong>ir</strong>ements of 45 N for fruit acceptability as indicated by P³ocharski<br />

and Konopacka (1999) and Hoehn et al. (2001). However, Goffings and Herregods<br />

(1994) suggested slightly higher value of 5 kg. The retention of total soluble<br />

solids (TSS) after storage and a period of simulated shelf life reflected the relationships<br />

observed at harvest time (Skrzyñski, 2006). There were on the average 1%<br />

smaller values of TSS, which is a common result after storage in regular a<strong>ir</strong>. The<br />

best retention of titratable acidity was for fruit from trees on rootstocks of M. series<br />

after storage. After additional 7 days at room temperature fruits from trees on P 59<br />

and P 60 tended to have higher titratable acidity.<br />

Fruits from those rootstocks may fully satisfy consumer expectations for fresh<br />

consumption due to balanced sugars and acids content as suggested by Vangdal (1985)<br />

and Sekse (1992). It was not conf<strong>ir</strong>med that in general apples from trees on rootstock<br />

M.26 tend to produce fruits with more balanced components (Vangdal, 1985).<br />

Conclusions. 1. The effects of rootstocks on the main fruit quality attributes at<br />

harvest were significant.<br />

2. Rootstocks affect ‘Jonica’ fruit quality retention after storage and shelf life.<br />

3. Trees on P60 and M.9 were of balanced vigor and fruits from those trees<br />

were of the best quality.<br />

92<br />

After 7 days storage at 20°C<br />

Palaikius 7 dienas 20°C temperatûroje<br />

titratable<br />

total<br />

flesh<br />

acidity<br />

total<br />

Rootstock<br />

soluble<br />

Poskiepis f<strong>ir</strong>mness<br />

(mg malate flesh f<strong>ir</strong>mness soluble<br />

solids<br />

minkštimo<br />

100 g -1 ) minkštimo solids<br />

kietumas,<br />

t<strong>ir</strong>pios titruojamasis<br />

kietumas,<br />

kg cm -2 sausosios rûgðtingumas, kg cm -2 sausosios<br />

medžiagos,<br />

medžiagos, % mg malato<br />

%<br />

100 g -1<br />

M.9 5.1 b 12.1 a 292 cd 4.8 b 12.3 c 234 n.s.<br />

titratable<br />

acidity (mg<br />

malate 100 g -1 )<br />

titruojamasis<br />

rûgðtingumas, mg<br />

malato 100 g -1<br />

M.26 4.9 a 12.0 a 301 d 4.7 a 11.9 a 247<br />

P 22 5.6 e 13.0 d <strong>25</strong>3 a 5.1 d 12.7 d 230<br />

P 59 5.5 d 12.8 c 275 b 5.1 d 12.5 d <strong>25</strong>8<br />

P 60 5.4 c 12.3 b 287 bc 4.9 b 12.1 b <strong>25</strong>3


Acknowledgements. This work was partially supported by the State Committee<br />

for Scientific Research (KBN) under contract 3 P06 R 058<strong>25</strong>.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Autio W. R., Hayden R. A., Micke W. C., Brown G. R. Rootstock affects ripening,<br />

color, and shape of ‘Starkspur Supreme Delicious’ apples in the 1984 NC-140 cooperative<br />

planting. Fruit Var. J. 1996. 50(1). P. 45–53.<br />

2. Autio W. R. Rootstock affects apple ripening, quality and storability. Compact<br />

Fruit Tree. 1994. 27. P. 41–47.<br />

3. Baab G. Apfelunterlagen Gestern und Heute. Erwerbsobstbau. 1998. 40. P. 162–169.<br />

4. Babalar M., Primoradian M. Rootstock effect on ethylene production, fruit size,<br />

fruit shape and other quality parameters during growth period of ‘Red Delicious’ apples.<br />

Iranian J. Agric. Sci. 1996. 27(1). P. 33–39.<br />

5. Baugher T. A., Singha S., Leach D. W., Walter S. P. Growth, productivity, spur<br />

quality, light transmission and net photosynthesis of ‘Golden Delicious’ apple trees on<br />

four rootstocks in three training systems. Fruit Var. J. 1994. 48. P. <strong>25</strong>1–<strong>25</strong>5.<br />

6. Castle W. S. Rootstock as a fruit quality factor in citrus and deciduous tree crops.<br />

New Zealand J. Crop Hort. Sci. 1995. 23(4). P. 383–394.<br />

7. Drake S. R, Larsen F. E., Higgins S. S. Quality and storage of ‘Granny Smith’ and<br />

‘Greenspur’ apples on seedling, M.26, and MM.111 rootstocks. J. Amer. Soc. Hort. Sci.<br />

1991. 116(2). P. 261–264.<br />

8. Ferguson I. B., Watkins C. B. Crop load affects mineral concentrations and incidence<br />

of Bitter Pit in ‘Cox’s Orange Pippin’ apple fruit. J. Amer. Soc. Hort. Sci. 1992. 117(3).<br />

P. 373–376.<br />

9. Groot M. J. FPO-onderzoek naar economische aspecten onderstammenkeuze. M.9<br />

niet altijd de beste keuze. Fruitteelt. 1997. 87. P. 18–19.<br />

10. Hoehn E. H., Gasser F., Guggenbuhl B., Casutt M. M. Consumer demands on<br />

eating quality of apples: minimum requ<strong>ir</strong>ements on f<strong>ir</strong>mness, soluble solids and acidity. VI<br />

Intern. CA Research Conference, Rotterdam, Abstract 16-02, 2001.<br />

11. Johnson D. S. The effect of flower and fruit thinning on the f<strong>ir</strong>mness of ‘Cox’s<br />

Orange Pippin’ apples at harvest and after storage. J. Hort. Sci. 1992. 61. P. 95–101.<br />

12. Kader A. A. Quality factors: definition and evaluation for fresh horticultural<br />

crops // Postharvest technology of horticultural crops. Eds: Kader et al. Cooperative<br />

Extension, Univ. Calif., Davies, Spec. Publ. 1985. 3311. P. 118–121.<br />

13. Pätzold G., Fisher M. Ergebnisse aus Obstunterlagenprüfungen // Schwachwachsende<br />

Apfelunterlagen. Erwerbsobstbau. 1991. 33. P. 7–10.<br />

14. P³ocharski W. J., Konopacka D. The relation between mechanical and sensory<br />

parameters of apples and pears. Acta Hort. 1999. P. 485, 309–317.<br />

15. Riesen W., Husistein A. Influence of rootstocks on apple fruit quality. Acta Hort.<br />

1998. 466. P. 161–167.<br />

16. Schneider G. W., Chaplin C. E., Martin D. C. Effects of apple rootstocks, tree<br />

spacing, and cultivar on fruit and tree size, yield and foliar mineral composition. J. Amer.<br />

Soc. Hort. Sci. 1978. 103. P. 230–232.<br />

17. Sekse L. Changes in the content of soluble solids and titratable acids in apples<br />

during ripening and storage. Norw. J. Agric. Sci. 1992. P. 6, 111–119.<br />

93


18. Skrzyñski J. Growth and productivity of apple trees and fruit quality at harvest as<br />

affected by rootstocks. Acta Hort. (in print). 2006.<br />

19. Streif J. Der optimale Erntetermin beim Äpfel. I. Qualitätsentwicklung und Reife.<br />

Gartenbauwissenschaft. 1983. 48. P. 154–159.<br />

20. Vangdal E. Quality criteria for fruit for fresh consumption. Acta Agric. Scand.<br />

1985. P. 35, 41–47.<br />

21. Webster A. D., Hollands M. S. Apple rootstock studies: comparison of Polish,<br />

Russian, USA and UK selections as rootstocks for the apple cultivar ‘Cox’s Orange Pippin’<br />

(Malus domestica Borkh.). J. Hort. Sci. Biotech. 1999. 74. P. 367–374.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

’JONIKA‘ VEISLËS OBELØ VAISIØ KOKYBËS PRIKLAUSOMUMAS NUO<br />

POSKIEPIØ<br />

J. Skrzyñski, M. Gàstoù<br />

Santrauka<br />

Ðiuo tyrimu ávertinta penkiø vegetatyviniø poskiepiø (M.9, M.26, P 22, P 59 <strong>ir</strong><br />

P 60) átaka vaisiø kokybei. Du sezonus ið eilës buvo matuotas vaisiø dydis, minkðtimo<br />

tv<strong>ir</strong>tumas, krakmolo indeksas (KI), t<strong>ir</strong>piø sausøjø medþiagø (TSM) kiekis, titruojamasis<br />

rûgðtingumas (TR), nustatytas sëklø skaièius. Analizë buvo atlikta optimaliu<br />

derliaus nuëmimo metu <strong>ir</strong> praëjus 6 laikymo mënesiams, po kuriø obuoliai<br />

buvo papildomai laikomi 20°C temperatûroje. Streifo indeksas <strong>ir</strong> krakmolo indeksas<br />

parodë, kad poskiepiai vaisiø brandai akivaizdþios átakos neturëjo. Taèiau vaismedþiø<br />

su P 22 poskiepiu vaisiuose buvo maþiau krakmolo <strong>ir</strong> maþesnës F <strong>ir</strong> RS santykio<br />

reikðmës. Derliaus nuëmimo metu kieèiausi buvo vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais,<br />

minkðèiausi – vaismedþiø su P 26 poskiepiu obuoliai. Vidutinë didþiausia buvo<br />

vaismedþiø, áskiepytø á M.9 <strong>ir</strong> M.26, vaisiø masë (atitinkamai 223 <strong>ir</strong> 218 g), o vaismedþiø,<br />

áskiepytø á P 22 <strong>ir</strong> P 59, – atitinkamai 179 <strong>ir</strong> 170 g. Nustatyta neigiama<br />

koreliacija tarp vaisiø dydþio <strong>ir</strong> minkðtimo kietumo. Po laikymo <strong>ir</strong> papildomo vaisiø<br />

laikymo minkðèiausi buvo vaismedþiø su M.9 poskiepiu vaisiai. Kaip <strong>ir</strong> derliaus nuëmimo<br />

metu, kietesni buvo vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais vaisiai. Poskiepiø<br />

rûðis darë esminæ átakà t<strong>ir</strong>piø sausøjø medþiagø kiekiui, ypaè 2004 metais. Derliaus<br />

nuëmimo metu <strong>ir</strong> atliekant dvi analizes po laikymo daugiausia t<strong>ir</strong>piø sausøjø medþiagø<br />

nustatyta vaismedþiø su P 22 <strong>ir</strong> P 59 poskiepiais vaisiuose. Analiziø duomenimis,<br />

maþiausiai ðiø medþiagø buvo vaismedþiø su M.9 <strong>ir</strong> M.26 poskiepiais vaisiuose. Titruojamajam<br />

rûgðtingumui darë átakà poskiepio rûðis <strong>ir</strong> tyrimo metai. Didesnës jo reikðmës<br />

buvo nustatytos 2004 metais. Didelá TR kieká ‘Jonika’ vaisiuose lëmë P 59<br />

poskiepis. Buvo nustatyti koreliaciniai ryðiai tarp t<strong>ir</strong>tø rodikliø.<br />

Reikðminiai þodþiai: Malus x domestica, vaisiø dydis, minkðtimo kietumas,<br />

t<strong>ir</strong>pios sausosios medþiagos, rûgðtys, Streifo indeksas.<br />

94


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

TECHNIQUES FOR COLD HARDINESS RESEARCH<br />

FOR APPLE ROOTSTOCKS<br />

Jean-Pierre PRIVÉ<br />

Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food<br />

Canada, Bouctouche New Brunswick, E4S 2J2, Canada.<br />

E-mail privej@agr.gc.ca<br />

Abstract. Three reliable methods are explained for estimating different types of<br />

cold hardiness in Malus. They include: 1) a whole plant controlled freezing experiment<br />

for the assessment of low mid-winter injury, 2) electrical impedance spectroscopy<br />

(Z), for the estimation of multiple freeze-thaw cycling injury and 3) a controlled<br />

freezing protocol to facilitate the rapid screening of large populations of Malus<br />

seedlings. The aim of this manuscript is not the results of these three methods but<br />

rather the description of the methods for cold hardiness testing. With the f<strong>ir</strong>st method,<br />

plant mortality and morbidity (shoot, trunk and root regrowth) proved to be<br />

good indicators for evaluating low mid-winter cold hardiness. Of these, incremental<br />

root growth was the most sensitive to cold temperatures. The results from this<br />

study were validated by the good correlations between the laboratory findings and<br />

the 2004 field survival data from New York, USA following a test winter. The next<br />

method, Z, used root pieces of Ottawa 3 subjected to one, two and three controlled<br />

freeze-thaw cycles at temperatures of -3, -6, -9 and -12°C. Root tissue integrity, as<br />

measured by Z, was severely reduced with multiple events of freeze-thaw cycling<br />

and conf<strong>ir</strong>ms that freeze-thaw cycling is more detrimental to apple rootstock viability<br />

than periods of constant freezing. Screening for cold hardiness in seedlings of<br />

Malus, 16–20 weeks after radicle emergence, was the th<strong>ir</strong>d method and holds promise<br />

in segregating large seedling populations and could increase the efficacy of<br />

breeding for cold hardiness.<br />

Key words: cold stress, electrical impedance spectroscopy, Malus, seedling<br />

screening, whole plant freezing and regrowth.<br />

Introduction. The cold hardening process of plants in temperate zones of the<br />

world parallels the march of the seasons. Canada, situated between the arctic and<br />

the 42°N latitude, has many different growing areas, all with the<strong>ir</strong> own particular<br />

env<strong>ir</strong>onments. Recently, studies have begun to examine the relationship between<br />

local climate and apple production (Caprio and Quamme, 1999). In the Okanagan<br />

95


Valley of British Columbia, low temperatures during late fall and early winter were<br />

the main climatic factors limiting apple production in this area. Similar studies have<br />

been done for Atlantic Canada but low temperatures were not found to be associated<br />

with low production (Privé et al., 2000). However, what seems common to apple<br />

rootstock injury in the Maritimes are the multiple freeze-thaw events which occur<br />

throughout the winter, causing a melting of the insulating snow cover and permitting<br />

freeze-thaw cycling to occur deep below the soil surface. Although soil temperatures<br />

at 10 cm in 1992 dropped to near -9°C, this temperature is not known to harm<br />

most of the rootstocks in our region (Privé and LeBlanc, 1999). However, the midwinter<br />

thaw was very stressful to plant integrity since tree mortality and vigour were<br />

seriously affected in the subsequent growing season.<br />

In cold hardiness studies, there is the challenge of evaluating many plant samples<br />

for the<strong>ir</strong> survival at various developmental stages and freezing stresses. It is the<br />

purpose of this manuscript to examine three techniques used to assess apple rootstock<br />

hardiness at Agriculture and Agri-Food Canada in Eastern Canada. These include<br />

1) using whole plant controlled freezing tests and regrowth parameters; 2) cell<br />

integrity of root pieces subjected to freeze-thaw cycling and assessed using electrical<br />

bioimpedance spectroscopy (Z) and 3) a seedling screening protocol used to<br />

facilitate rapid progress in breeding programs.<br />

Materials and methods. Plant material. Uniform specimens of various apple<br />

rootstocks were lifted from the nursery in the autumn, packed in moist sawdust,<br />

and placed in refrigerated storage at 3°C. Following two months in storage, whole<br />

plants were removed for whole plant controlled freezing tests and roots pieces from<br />

these same plants were cut from each of the rootstocks for the Z-analysis.<br />

Freezing experiments. In the whole plant controlled freezing experiment, trees<br />

were removed from cold storage, rinsed with water to remove soil and sawdust.<br />

Roots were then equipped with thermocouples, placed in plastic bags as described<br />

by Privé and Embree (1997), and all groups except the control were placed into a 3<br />

x 3 m walk-in controlled-climate chamber preset to -3°C. The bagged control trees<br />

were returned to cold-storage. A CR-7 datalogger (Campbell Scientific, Calgary,<br />

AB) was programmed to read all thermocouples every minute and to output 15<br />

minute average values, including minimum and maximum values. The six freezethaw<br />

treatments were based on freezing cycles of 16 hours at -12°C and thawing<br />

cycles of 16 hours at +2°C. Once all the treatments were completed, trees were<br />

returned to cold storage and sawdust was added to each of the bags to conserve<br />

moisture until the trees could be potted. All trees were bare-rooted in the bags for the<br />

same period, including the control. No root dehydration or injury due to the freezing<br />

treatments was visible d<strong>ir</strong>ectly after the treatments. Prior to potting the plants, initial<br />

measurements were taken on trunk cross-sectional area (TCA/cm 2 ) and root volume<br />

(cm 3 ). Root volume was calculated using the Archimedes principle: W a<strong>ir</strong><br />

– W water<br />

= B<br />

= Vρ; where W = mass; B = buoyant force; V = volume and ρ = liquid density.<br />

Following these initial measurements, rootstocks were planted in 16-liter pots with a<br />

soilless mixture (Agro-Mix, Fafard, Shippagan, N. B.), placed in trenches in the<br />

field, and grown under normal cultural practices for the area. Pots were drip-<strong>ir</strong>rigated<br />

as requ<strong>ir</strong>ed and fertilized weekly until late July with 20N-20P-20K (1 g·liter -1 ).<br />

96


For the Z experiment, root pieces (2–4 mm diameter) were randomly selected<br />

from apple rootstocks and cut into 3–4 cm long segments. The samples were prepared<br />

and frozen as described by Privé and Zhang (1996). Cooling rates were programmed<br />

at 4.8°C·hr -1 and held for one hour at the pre-selected test temperatures of<br />

-3, -6, -9, and -12°C, then removed and allowed to thaw for 20 minutes at 20°C<br />

before being analysed using Z (this is considered a 1X freeze-thaw treatment). One<br />

advantage of measuring tissue impedance (Æ) as an indicator of physiological status<br />

is that the tissue is not destroyed while useful data are being obtained. This permitted<br />

the same root segments to be analyzed for multiple freeze-thaw events. Hence, our<br />

samples were again placed into the test tubes, re-frozen at the pre-selected test<br />

temperatures for a second time, re-thawed and re-analysed for a second time (treatment<br />

2X). This procedure was repeated once again (treatment 3X).<br />

For the rootstock seedling experiments, seeds were stratified in moist sand at 3<br />

to 5°C for 9 weeks. At the f<strong>ir</strong>st sign of radicle emergence, 60 seeds for each of the<br />

three genotypes were planted in a soilless mixture in Styro seedling trays (240 cells/<br />

tray, Beaver Plastics Ltd., Edmonton AB, Canada). All exterior cells of the tray were<br />

filled with seedlings and acted as buffers for the treatment seedlings. Plants were<br />

grown in a greenhouse for 6–8 weeks under good growing conditions (16 h, 20–<br />

30°C, 900 μmol·m -2·s -1 , fertilised with 200 ppm of 10N-52P-10K once a week for 3<br />

weeks followed by 200 ppm of 20N-20P-20K at 3x/week for another 3 weeks until<br />

plants were 5–7 cm.). Seedlings were then acclimated in controlled env<strong>ir</strong>onment<br />

chambers (8 h of 600 μmol·m -2·s -1 , 12-15°C/3–4°C D/N, 100 ppm 20N-20P-20K<br />

once a week for 6 weeks). Two frost events (-3°C for 16 h) were then given in the<br />

next two weeks while growing at 10/3°C D/N and 8 h light periods. Following this,<br />

the trays were placed in insulated boxes with vermiculite and heating cables to prevent<br />

the roots from freezing and placed in programmable freezers. Cooling rates<br />

were programmed at 2°C·hr -1 and held for one hour at the pre-selected test temperatures<br />

of -10, -20, -<strong>25</strong>, -30, and -40°C, removed and held in cold storage (3–5°C)<br />

overnight.<br />

Cold hardiness evaluations. For the whole-plant controlled freezing experiment,<br />

tree mortality was recorded, final root volume and trunk cross-sectional area (TCSA)<br />

were measured to calculate the growth increment over the season, and new shoot<br />

growth dry weight was determined after oven drying at 80°C for one week. Root<br />

and shoot regrowth data were only taken from surviving trees at each of the selected<br />

temperatures. Validation of mortality was done by comparing our laboratory results<br />

with field results (percent survival) from the Champlain Valley in New York, USA in<br />

2004.<br />

For the electrical impedance experiment, the spectra between 100 Hz and 800<br />

kHz were measured by a computer-controlled Hewlett Packard 4284A Precision<br />

LCR Meter using needle electrodes (Zhang and Willison, 1992). The impedance<br />

spectra were analyzed by a complex nonlinear least squares program called BIA,<br />

which was written in Visual Basic (available upon request from Dr. Zhang). The<br />

formula used in the program was: Z = R ∞<br />

+ (R o<br />

- R ∞<br />

) / [1 + (jωτ) ψ ], where Z is<br />

impedance; R o<br />

corresponds to extracellular resistance or the resistance at extremely<br />

low frequency; R ∞<br />

corresponds to total tissue resistance or the resistance at<br />

97


extremely high frequency as though all membranes were destroyed; τ is a generalized<br />

time constant of the tissue; ψ is a distribution factor of the time constant<br />

(Repo et al., 1993); ψ is a complex number operator [(-1) 1/2 ] and ω is angular<br />

frequency of the alternate current. The ô and ø parameters characterize the whole<br />

system and describe the distribution of cell sizes. Impedance parameters were<br />

normalized to values for 1 cm 3 of tissue. In this report, all data are normalized and<br />

all resistances are expressed as ohm·cm -1 .<br />

For the seedling experiment, mortality tests were conducted on the plants once<br />

they were removed from cold storage, moved to the greenhouse, defoliated with<br />

scissors, and regrown for four weeks. Plant viability was measured as percent seedling<br />

survival. This was collected as binomial data with each plant given a rating of<br />

either 1 or 0. Only plants that had a ≥ 50% stem death were recorded as 0. Percentages<br />

of plant population mortality were then calculated by dividing the number of<br />

plants given a rating of zero over the total number of seedlings per tray per selection<br />

population.<br />

Statistical analysis. With the f<strong>ir</strong>st method, the mortality of apple cultivars was<br />

related to a series of freezing temperatures by logistic regression, from which the<br />

temperature that 20% of trees died was determined (i.e., LT 20<br />

). The predicted values<br />

for LT 20<br />

were obtained from a mixed model (REML) analysis, with year and cultivar<br />

as fixed factors. The morbidity of the surviving trees, which were planted in the<br />

field, was assessed by the increases in root volume and trunk diameter and reduction<br />

in shoot growth. The increase in root volume was calculated for each individual tree.<br />

Both root volume and trunk diameter increases were regressed on the log scale for<br />

each group of cultivar and replicate trees; the percentage increase was calculated<br />

from the ratio of the mean final to mean initial measurements. This ratio of the<br />

means is a more precise estimate of the fractional increase than from the mean of the<br />

ratios from individual trees. To calculate the temperature at which 50% regrowth<br />

occurred a “linear divided by linear” functional relationship was used, i.e., Y = a + (b /<br />

(1 + c t)), where t = temperature, and from which the temperature at RT 50<br />

was<br />

calculated using the estimated parameters. A hardiness index was computed by averaging<br />

the results of the four regrowth attributes. Correlations between our results<br />

(root volume RT 50<br />

) and the Champlain Valley field results (% survival) were used to<br />

validate our findings.<br />

With the second method, unit weighting statistical procedures were used for all<br />

impedance spectral analyses. In most analyses, the full range impedance data (100<br />

Hz to 800 KHz) were used. Please refer to Privé and Zhang (1996) for details.<br />

With the last method, the survival of the three genotypes to freezing was analysed<br />

as a General Linear Model (GLM), (SAS Institute Inc., Cary, N. C.) with the<br />

number of plants surviving as a binomial variant with a logistic link function (McCullagh<br />

and Nelder, 1983). The data were back-transformed [y = 100×exp(p)/(1 +<br />

exp(p))] in order to express the data as percentages.<br />

Results. The whole-plant controlled freezing experiments followed by regrowth<br />

measurements provided a good segregation of the cold hardiness of various<br />

apple rootstocks (Table 1). In the subsample of rootstocks presented in this<br />

manuscript, KSC28 had the highest (-14.3°C) while M.4 had the lowest (-8.1°C)<br />

98


hardiness index. Other rootstocks that had good hardiness indices include M.9Emla,<br />

CG6179, M.26Emla and P 2. Differences in cold hardiness are evident between<br />

rootstocks but also between the various components used to calculate overall hardiness.<br />

Rootstock mortality (LT 20<br />

) was highest for M.4 and G.16 and lowest for<br />

KSC28, G65, M.9Emla, M.26Emla, P 2, CG6179 and B.118. Root volume increase<br />

was the most sensitive to cold injury while both incremental increases in new<br />

shoot growth and trunk diameters were quite similar in the<strong>ir</strong> sensitivity. CG6179,<br />

M.9Emla and M.26Emla had a 50% reduction in root growth at temperatures between<br />

-11 and -12°C (RT 50<br />

) while B.9 and A.2 reported the same reduction at<br />

temperatures between -4.7 and -5.3°C (Table 1). To validate our results we compared<br />

our laboratory results with those from the 2004 test winter from the Champlain<br />

Valley of New York in 2004. A good correlation was found between the field<br />

tree survival data and our controlled freezing results (r = -0.70) (Fig. 1) thus<br />

indicating a good fit.<br />

Table 1. Whole plant rootstock screening<br />

1 lentelë. Poskiepio testavimas<br />

Rootstock<br />

Poskiepis<br />

New shoot<br />

growth<br />

Naujø ûgliø<br />

augimas<br />

(RT 50 , °C)<br />

Trunk diameter<br />

increase<br />

Kamieno<br />

padidëjimas<br />

(RT 50 , °C)<br />

Root volume<br />

increase<br />

Ðaknø tûrio<br />

padidëjimas<br />

(RT 50 , °C)<br />

Mortality<br />

Žuvimas<br />

(LT 20, °C)<br />

Hardiness index<br />

Atsparumo rodiklis<br />

(°C)<br />

A.2 -10.9 -13.8 -5.3 -11.8 -10.4<br />

B.9 -9.7 -10.7 -4.7 -10.7 -9.0<br />

B.118 -12.6 -11.0 -8.0 -12.0 -10.9<br />

CG179 -13.5 -13.3 -12.3 -12.4 -12.9<br />

CG202 -9.7 -10.8 -7.7 -11.1 -9.8<br />

CG210 -14.1 -13.2 -8.5 -11.1 -11.7<br />

G.16 -12.7 -13.0 -9.4 -9.8 -11.2<br />

G.30 -12.6 -13.1 -8.8 -11.8 -11.6<br />

G.65 -14 -9.6 -9.9 -12.9 -11.6<br />

KSC28 -16.9 -16.5 -9.4 -14.1 -14.3<br />

M.26 -11.4 -15.0 -6.5 -12.1 -11.3<br />

M.26EMLA -13.0 -14.2 -11.3 -12.6 -12.8<br />

M.27 -12.9 -9.5 -5.3 -12.4 -10.0<br />

M.4 -7.9 -10.6 -5.8 -8.2 -8.1<br />

M.9 -13.4 -12.5 -5.2 -11.1 -10.6<br />

M.9.EMLA -14.5 -14.3 -11.9 -12.7 -13.3<br />

P 2 -13.4 -14.4 -9.8 -12.5 -12.5<br />

99


Fig. 1. Correlation between controlled freezing results (as indicated by root hardiness<br />

(RT 50<br />

for root volume increase) and field data from New York in 2002 (% survival)<br />

1 pav. Koreliacija tarp kontroliuojamo ðalèio rezultatø (ðaknø atsparumas, ðaknø tûrio<br />

padidëjimas RT 50<br />

) <strong>ir</strong> lauko duomenø Niujorke 2002 metais (iðlikusiø poskiepiø, %)<br />

Electrical impedance (Z) proved to be a very sensitive tool in monitoring for<br />

changes in cell integrity associated to cold stress. The exponential decrease in extracellular<br />

resistance with decreasing temperatures can be described by the equations:<br />

Ro = 44298.23×exp (0.1894×T), Ro = 17798.33×exp (0.1640×T), Ro = 12242.27×exp<br />

(0.1349×T) for the root pieces receiving the 1X, 2X or 3X freeze-thaw cycling<br />

treatments, respectively (Fig. 2). At each of the temperatures, it was obvious that<br />

freeze-thaw cycling was very detrimental to the viability of these root pieces. At<br />

-3°C, two freeze-thaw events were enough to severely injure the root tissue and at<br />

-9°C, one freeze-thaw event was enough to severely reduce root viability to the<br />

extent that further freeze-thaw cycling had no additional effect. Two freeze-thaw<br />

events at -3°C equalled the damage from one freeze-thaw event at -9°C.<br />

Fig. 2 Extracellular resistance (Ro), derived from Z measurements from<br />

Ottawa 3 apple root pieces subjected to one (1X), two (2X) and three (3X)<br />

freeze-thaw cycle treatments<br />

2 pav. Ottawa 3 poskiepio làsteliø atsparumas (Ro), ávertintas Z rodikliais, ið<br />

3 ðaknies daliø, veiktø vienu (1X), dviem (2X) <strong>ir</strong> trimis ðaldymo-atðildymo ciklais<br />

100


Only genotype 1 was able to survive temperatures < -20°C (Fig. 3). Temperatures<br />

at which seedling survival was reduced by 50% were -13.6, -15.7 and -17.5°C<br />

for genotypes 2, 3 and 1, respectively. For these three genotypes it seems that the<br />

best screening temperatures for differentiating the population were between -10 and<br />

-20°C but this is specific to the genotypes undergoing evaluation.<br />

Fig.3 Mortality of three apple rootstock seedlings following controlled<br />

acclimation and freezing<br />

3 pav. Obelø su trimis sk<strong>ir</strong>tingais poskiepiais þuvimas kontroliuojamomis<br />

aklimatizacijos <strong>ir</strong> ðaldymo sàlygomis<br />

Discussion. Mortality, shoot, trunk and root regrowth results were summarized<br />

in an attempt to segregate populations of different apple rootstocks according<br />

to the<strong>ir</strong> cold hardiness (Table 1). Low mid- winter injury is the type of<br />

cold stress for which this method is best suited. Most of the results from the<br />

present study agree with the literature (Czynczyk and Holubowicz, 1984; Quamme,<br />

1990) and since they were well correlated with in vivo field data, we recommend<br />

this whole-plant recovery evaluation method for cold hardiness screening<br />

of apple rootstocks.<br />

Freeze-thaw cycling was very detrimental to either cell viability or regrowth.<br />

Using the Z-technique, the extracellular resistance parameter (R o<br />

), was very responsive<br />

to freeze-thaw cycling, decreasing exponentially with increasing cold<br />

stress. The decrease in R o<br />

is mostly due to release of intracellular electrolytes to<br />

extracellular space (Zhang et al., 1992). It is speculated that the release of electrolytes<br />

to extracellular space is due to membrane rupture and reseal during freezethaw<br />

cycling, but the event of rupture-reseal does not necessarily involve membrane<br />

functional loss in non-lethal freeze-thaw stresses (Zhang et al., 1994). Membrane<br />

rupture could have been caused by the piercing of the cellular membranes by<br />

ice crystals or by the osmotic contraction and expansion of the membranes due to<br />

the drastic difference in solute concentrations between the frozen and un-frozen<br />

state. This latter explanation seems most likely because most evidence seems to<br />

suggest that solute loading and vesicle expansion are very important to plant freezing<br />

tolerance (Kaye and Guy, 1995). Freeze-thaw cycling caused more root inju-<br />

101


y than constant periods of cold. Although more complicated than the whole-plant<br />

method, this technique is best suited for the evaluation of freeze-thaw cycling as it<br />

is non-destructive and allows for continual sampling of the same tissues over<br />

multiple freeze-thaw cycles.<br />

Screening seedlings of Malus, 16–20 weeks after emergence, using a protocol<br />

to induce acclimation and select the hardiest individuals could improve the efficacy<br />

of breeding for cold hardiness by eliminating a large proportion of cold-tender seedlings<br />

before time and maintenance costs are invested in field plantings. Plant viability,<br />

collected in the form of binomial values and used to calculate percent seedling survival<br />

was a simple, efficient and precise method to segregate seedling populations for<br />

cold hardiness. We are presently running field trials with these same genotypes in the<br />

hopes of getting a test winter to compare our controlled studies to in vivo field<br />

results.<br />

Acknowledgements. Thanks to K. McRae and B. Walker for the<strong>ir</strong> statistical<br />

help and A. LeBlanc and M. Cao for the<strong>ir</strong> technical assistance.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Caprio J. M. and Quamme H. A., Weather conditions associated with apple production<br />

in the Okanagan Valley of British Columbia. Can. J. Plant Sci. 1999. 79. P. 129–137.<br />

2. Kaye C. and Guy C. L. Perspective of plant cold tolerance; physiology and molecular<br />

responses. Sci. Prog. 1995. 78. P. 271–299.<br />

3. McCullagh P. and Nelder J. A. Generalized Linear Models, Chapman and Hall,<br />

London, 1983.<br />

4. Privé J.-P., Caprio J. M., Quamme H. A. and Embree C. Weather conditions associated<br />

with apple production in the Annapolis Valley of Nova Scotia and the Okanagan<br />

Valley of British Columbia. Proc. of the 11 th Atlantic Region Hydrotechnical Conference.<br />

2000. p. 33 (Abstr.)<br />

5. Privé J.-P., Embree C.G. Freezing media affects cooling rate and regrowth of KSC28<br />

apple rootstocks. Can. J. Plant Sci. 1997. 77. P. 461–471.<br />

6. Privé J.-P., LeBlanc A. Apple and small fruits research report. AAFC technical<br />

report no 99–01. 1999. 77 pp.<br />

7. Privé J.-P., Zhang M. I. N. Estimating cold stress in ‘Beautiful Arcade’ apple roots<br />

using electrical impedance analysis. HortTech. 1996. 6. P. 54–58.<br />

8. Repo T., Zhang M. I. N. Modelling woody plant tissues using a distributed electrical<br />

c<strong>ir</strong>cuit. J. Expt. Bot. 1993. 44. P. 977–982.<br />

9. Zhang M. I. N., Willison J. H. M. Electrical impedance analysis in plant tissues: In<br />

vivo detection of freezing injury. Can. J. Bot. 1992. 70. P. 2<strong>25</strong>4–2<strong>25</strong>8.<br />

10. Zhang M. I. N., Willison J. H. M., Xiao X. and Cheung C. H. Membrane-damage<br />

due to freeze-thaw stress in enhanced by post-thaw immersion in hypotonic solution.<br />

Can. J. Plant Sci. 1994. 74. P. 357–358.<br />

102


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

OBELØ POSKIEPIØ ATSPARUMO ÐALÈIUI TYRIMAI<br />

J.-P. Privé<br />

Santrauka<br />

Ðiuo bandymu t<strong>ir</strong>ti trys esminiai obelø atsparumo ðalèiui ávertinimo metodai:<br />

1) viso augalo ðaldymas kontroliuojamomis sàlygomis þemø vidurþiemio temperatûrø<br />

paþeidimams ávertinti, 2) elektrinës varþos spektrometrija (Z) pasikartojanèiø uþðalimo-atðilimo<br />

ciklø daromiems paþeidimams ávertinti, 3) kontroliuojamas ðaldymas<br />

obelø sëjinukø populiacijoms bûdingø bruoþø kaupimui palengvinti. Ðio darbo tikslas<br />

– atsparumo ðalèiui vertinimo metodø ávertinimas, apibendrinimas, o ne rezultatai,<br />

gauti naudojant ðiuos metodus. P<strong>ir</strong>masis metodas árodo, kad augalo m<strong>ir</strong>tingumas <strong>ir</strong><br />

ligotumas, ðaknø, kamieno <strong>ir</strong> ðakø ataugimas yra tinkami rodikliai nustatant atsparumà<br />

þiemos ðalèiams. Ðaknø prieaugis jautriausias þemoms temperatûroms. Ðie duomenys<br />

pagrásti stipria koreliacija tarp laboratoriniø <strong>ir</strong> lauko bandymø, atliktø 2004<br />

metø þiemà Niujorke, JAV. Antruoju (Z) metodu ávertintas làsteliø atsparumas Ottawa<br />

3 poskiepio obelø ðaknyse, veiktose vienu, dviem <strong>ir</strong> trimis ðaldymo-atðildymo<br />

ciklais, keièiant -3, -6, -9 <strong>ir</strong> -12°C temperatûras. Didelis taip veikiamø poskiepiø<br />

ðaknø audiniø vientisumo sumaþëjimas rodo, kad ðaldymo-ðildymo ciklø padaryta<br />

þala daug didesnë nei nuolatinio ðaldymo. Treèiasis metodas naudotas atliekant obelø<br />

sëjinukø atsparumo ðalèiui tyrimus. Didelëms populiacijoms bûdingø bruoþø sukaupimas<br />

padidina ðalèiui atspariø veisliø efektyvumà.<br />

Reikðminiai þodþiai: ataugimas, elektrinës varþos spektroskopija, obelys, sëjinukø<br />

testavimas, ðalèio stresas, viso augalo ðaldymas.<br />

103


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

MIÐKINËS OBELS (MALUS SYLVESTRIS MILL.)<br />

SKIRIAMIEJI YPATUMAI<br />

Raimundas PETROKAS<br />

Lietuvos miðkø institutas, Liepø 1, LT-53101, G<strong>ir</strong>ionys, Kauno r.<br />

El. paðtas raimundaspetrokas@myway.com<br />

Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas p.duchovskis@lsdi.lt<br />

Lapø peroksidazës izofermentinës sudëties kaitos fone buvo nagrinëjami miðkinës<br />

obels (Malus sylvestris Mill.) vaisiø dengiamosios spalvos ypatumai. Darbo objektas<br />

– miðke aptiktos savaime plintanèios obelys <strong>ir</strong> jø trimeèiai generatyviniai palikuonys,<br />

iðauginti LSDI medelyne. T<strong>ir</strong>iant peroksidazës þymenis, ávertintas jos izoformø<br />

elektroforetinis mobilumas bei t<strong>ir</strong>tø ðeimø spektrai. Nustatyta, kad miðkiniø<br />

obelø, kuriø vaisiai neturi dengiamosios spalvos, visø palikuoniø peroksidazës spektruose<br />

nëra izoformø, kuriø Rf = 0,43, o laukinës obels sk<strong>ir</strong>iamuoju poþymiu reikëtø<br />

laikyti peroksidazës izoformà, kurios Rf = 0,67. Vaisiø dengiamosios spalvos nebuvimas<br />

taip pat yra sk<strong>ir</strong>iamasis Malus sylvestris Mill. medþiø, auganèiø ne tik miðke, bet<br />

<strong>ir</strong> atv<strong>ir</strong>ose vietose bei pamiðkëse, poþymis.<br />

Reikðminiai þodþiai: fenotipas, miðkinë obelis, peroksidazës izoformos.<br />

Ávadas. Manoma, kad ðalèiui atspari miðkinë obelis (Malus sylvestris Mill.) ats<strong>ir</strong>ado<br />

antrojo ledynmeèio epochoje ið Malus orientalis Uglitz., iðplitusios ið Kaukazo á<br />

ðiauræ (Ñêèáèíñêàÿ, 1966). Miðkinës obels kilmës centras – tarp iðtisinio ledyno<br />

Dnepro <strong>ir</strong> Dono lieþuviø – Kursko, Voroneþo sritys. Traukiantis ledynui, miðkinës<br />

obelys iðplito á ðiauræ iki Karelijos sàsmaukos <strong>ir</strong> á Europà. Miðkinë obelis prarado<br />

plaukuotumà, kuris bûdingas jos protëviams (Malus orientalis Uglitz.), kilusiems ið<br />

Malus sieversii (Ledeb.) M. Roem. – sekcijos Eumalus Zbl. tikrosios obels, iðsisk<strong>ir</strong>ianèios<br />

savo poþymiø pastovumu. Bûdingiausias M. sieversii poþymis – antocianinas,<br />

esantis ðakø þievëje, lapø gyslose <strong>ir</strong> koteliuose, iðtisinë violetiðkai raudona nokstanèiø<br />

<strong>ir</strong> raudona prinokusiø vaisiø spalva. Ið Malus orientalis Uglitz. miðkinë obelis<br />

galëjo paveldëti pradiná jaunø ûgliø augimo taðkø plaukuotumà, horizontalø lapø iðsidëstymà<br />

apatinëse ðakose (kad efektyviau vyktø fotosintezë drëgnoje miðko tankmëje),<br />

stiprø lajos ðakojimàsi bei vëlyvesná derëjimà. Kai kuriø autoriø (Ñàìèãóëëèí <strong>ir</strong><br />

kt., 1994) duomenimis, genetiðkai M. sylvestris artimiausia Ðiaurës Kaukazo <strong>ir</strong> Vidu-<br />

104


inës Azijos rûðims – M. orientalis <strong>ir</strong> M. sieversii (1 pav.), o maþiausias genetinis<br />

atstumas nustatytas iki Malus sieversii (Ledeb.) M. Roem. – pagrindinio M. domestica<br />

p<strong>ir</strong>mtako (Forte <strong>ir</strong> kt., 2001).<br />

1 pav. Galimi giminystës ryðiai tarp Malus rûðiø. D – nukrentantys taurëlapiai, P –<br />

iðliekantys taurëlapiai, L – skiautëti lapai, NL – beskiauèiai lapai, G – yra sklereidþiø,<br />

NG – nëra sklereidþiø (Juniper <strong>ir</strong> kt., 1999)<br />

Fig. 1. Possible relationships between Malus species. D – calyx deciduous, P – calyx<br />

persistent, L – leaves lobed, NL – leaves not lobed, G – grit cells, NG – no grit cells<br />

Antrinë, arba dengiamoji, obels vaisiø spalva priklauso nuo daþanèiø medþiagø<br />

gausumo odelës làstelëse (Tuinyla <strong>ir</strong> kt., 1990). Massimo Pigliucci (1996) raðo, kad<br />

augalai, kuriø áprastos augavietës yra ten, kur nuolatinës paunksmës nëra, patekæ á<br />

paunksmæ su maþu raudonøjø <strong>ir</strong> infraraudonøjø spinduliø santykiu, slopina chlorofilo<br />

<strong>ir</strong> antriniø pigmentø sintezæ. Taigi iðeitø, kad miðko radavietëse kultûriniø obelø vaisiai<br />

gali neturëti dengiamosios spalvos.<br />

Biocheminiuose procesuose, kuriø katalizatoriai – fermentai, atsispindi augalø<br />

reakcija á aplinkos veiksnius. Fermentø makromolekuliø funkciniai elementai yra ið<br />

dalies arba visiðkai savarankiðki to paties baltymo polipeptidai – domenai. Augalø<br />

peroksidaziø makromolekules paprastai sudaro du tokie domenai (Rosby, 2000, Aucla<strong>ir</strong>,<br />

2004), todël juos gali nulemti ne tik to paties geno subvienetai, bet <strong>ir</strong> sk<strong>ir</strong>tingi,<br />

nealeliniai genai. Peroksidazës katalizuojamø biocheminiø reakcijø efektas gali bûti<br />

prisk<strong>ir</strong>iamas genams modifikatoriams, komplementariems genams arba netgi poligenams.<br />

Peroksidazë (1.11.1.7.) priklauso oksidoreduktaziø klasës fermentams (Glemþa,<br />

1987). Pagal jos izoformø kitimà lapø ekstraktuose identifikuojamos obelø veislës <strong>ir</strong><br />

rûðys (Vinterhalter, James, 1982, Ìàëû÷åíêî, Ãðóøèí, 1986, Barnes, 1993, Manganaris,<br />

Alston, 1993, Gelvonauskis, Ðikðnianienë, 2001). Tø paèiø organø izofermentø<br />

sudëtá atitinkamame ontogenezës etape lemia tik genotipas (Êîíàðåâ, 1987).<br />

Darbo tikslas – nustatyti miðkinës obels vaisiø fenotipinius ypatumus lapø peroksidazës<br />

izofermentinës sudëties kaitos fone.<br />

Tyrimo objektas <strong>ir</strong> metodai. Siekiant iðt<strong>ir</strong>ti miðkinës obels genotipiná kintamumà,<br />

buvo ávertinti 27 generatyvinës brandos medþiai (1 lentelë). 1997–1999 m. surinkti<br />

jø prinokæ vaisiai – maþiausiai po trisdeðimt nuo kiekvienos obels. Ið sëklø<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute (LSDI) buvo iðauginti 27 ðeimø<br />

sëjinukai. Peroksidazës izofermentinës sudëties kaita t<strong>ir</strong>ta septyniø ðeimø trimeèiø<br />

105


sodinukø (108 genotipai) lapuose. Ðiam tyrimui pagal motininiø medþiø fenotipinio<br />

ávertinimo rezultatus buvo parinktos tokios miðke aptiktø obelø ðeimos: tipiðkos miðkinës<br />

obels Nr. 3, miðkinës obels Nr. 22, kuri turëjo pagrindinio Malus domestica Borkh.<br />

p<strong>ir</strong>mtako – Malus sieversii (Ledeb.) M. Roem. – poþymiø, Nr. 18 bei Nr. 13, miðke<br />

aptiktos kultûrinës kilmës obels Nr. 1, seniausios (~70 m. amþiaus) netikrojo branduolio<br />

neturëjusios miðkinës obels Nr. 4 <strong>ir</strong> miðko gilumoje uþaugusios obels Nr. 23 ðeimos.<br />

Motininë obelis Nr. 1 <strong>ir</strong> Nr. 3 auga Vaiðvydavos g<strong>ir</strong>ininkijoje, Nr. 4 – Ðilënø, Nr. 13 –<br />

Balskø, Nr. 18 – Stempliø, Nr. 22 – Lanèiûnavos <strong>ir</strong> Nr. 23 – Ðilinës g<strong>ir</strong>ininkijoje. Miðkinës<br />

obels sk<strong>ir</strong>iamieji poþymiai, kuriais vadovaujantis atrinkti motininiai medþiai, buvo<br />

ðie: 2–2,5 cm ploèio vaisiai, rutuliðki arba plokðti, gelsvi, be dengiamosios spalvos arba<br />

rausvaðoniai, vaiskoèio <strong>ir</strong> vaisiaus ilgiø santykis = 1, ûgliai ploni, trumpaûgliai baigiasi<br />

dygliu (dygliaûgliai), pumpurai <strong>ir</strong> lapai pliki, lapø ilgis < 6 cm, plotis < 4 cm (Öåòòåðìàí,<br />

1950, Ëèõîíîñ, 1963, Íîâèêîâ, 1965, Wagner, 1995 bei tyrimø medþiaga). Fenotipiniø<br />

poþymiø ypatumai tipiðkose miðkinës obels radavietëse ávertinti pagal tyrimui parengtus<br />

morfologiniø poþymiø deskriptorius (Petrokas, 2002).<br />

Sodinukø lapø peroksidazës izofermentinës sudëties tyrimas atliktas LSDI Augalø<br />

fiziologijos laboratorijoje 2004 m. liepos II deðimtadiená, nes nustatyta, kad peroksidazës<br />

izoformø kiekis obelø lapuose kinta vegetacijos metu (Gelvonauskis, Ðikðnianienë,<br />

2001), o daugiausia jø <strong>ir</strong> geriausias ryðkumas gelyje – liepos mënesá.<br />

Ëminiø paëmimas <strong>ir</strong> paruoðimas. Lapø (4–6 lapas nuo ûglio v<strong>ir</strong>ðûnës) ëminiai<br />

paimti p<strong>ir</strong>moje dienos pusëje <strong>ir</strong> padëti á laboratorijos ðaldytuvà (anksti ryte, visi vienu<br />

metu). Netrukus 0,<strong>25</strong> g lapo audinio sutrinta trintuvëje ant ledo, pridëta 2 ml trisglicininio<br />

buferio (pH 8,3), 0,015 g askorbo, 0,03 g glutamo rûgðties (izofermentams<br />

stabilizuoti) <strong>ir</strong> 0,05 g polivinylp<strong>ir</strong>olidono (fenoliniams junginiams „suriðti“ – mëginiams<br />

iðgryninti). Obels lapø mëginiai centrifuguoti 4 min. 8000 aps./min. greièiu<br />

kambario temperatûroje. Po to pridëta bromfenolo mëlynojo daþo (daþas parodo elektroforezës<br />

pabaigà).<br />

Elektroforetinis buferis. Tris-glicininis buferis (pH 8,3) – 2-amino-2-(hydroksimetyl)-1,3-propandiolio<br />

(Tris) – 3 g, glicino – 14,4 g – praskiestas distiliuotu vandeniu<br />

iki 500 ml. Naudotas tokios koncentracijos t<strong>ir</strong>palas: 100 ml buferio <strong>ir</strong> 900 ml<br />

vandens.<br />

Poliakrilamidinio gelio gamyba. Poliakrilamidinis nedenatûruojantis gelis ruoðtas<br />

pagal Daviso (1964) metodikà. Koncentruojanèio gelio polimerizacija inicijuota apðvieèiant<br />

t<strong>ir</strong>palà (riboflavinà) ultravioletiniø spinduliø lempa.<br />

Elektroforezë vyko vertikalaus gelio aparate nuo katodo (-) link anodo (+),<br />

srovë – 20 mA, átampa – 120V. Kai daþas pasiekdavo frakcionuojantá gelá, perjungta<br />

40 mA srovë <strong>ir</strong> 220 V átampa. Px izoformos pasiþymi sk<strong>ir</strong>tingu elektrostatiniu krûviu,<br />

todël elektriniame lauke juda sk<strong>ir</strong>tingu greièiu <strong>ir</strong> po tam tikrà laikotarpá trukusios<br />

elektroforezës gelyje uþima sk<strong>ir</strong>tingas pozicijas.<br />

Gelio daþymas. Peroksidazës (Px) izoformos elektroforegramose iðryðkintos<br />

pagal modifikuotà Jaaska (1972) metodikà.<br />

Pagal peroksidazës izoformø pozicijas, po elektroforezës iðryðkintas gelyje, elektroforegramose<br />

buvo apskaièiuotas jø elektroforetinis mobilumas (dviem pakartojimais)<br />

pagal formulæ Rf = r i<br />

R -1 , kur: r i<br />

– atstumas nuo frakcionuojanèio gelio pradþios<br />

iki izofermento pozicijos; R – atstumas nuo sk<strong>ir</strong>iamojo gelio pradþios iki bromfenolio<br />

mëlynojo juostos gelio apaèioje.<br />

106


1 lentelë. Generatyvinæ brandà pasiekusios Pietvakariø <strong>ir</strong> Vidurio Lietuvos miðkinës<br />

obelys, kuriø palikuonys iðauginti LSDI medelyne<br />

Table 1. Data of mature wild apple trees from the forests of southwestern and central<br />

Lithuania, which progeny was grown in LIH nursery-garden<br />

Medžio<br />

Nr.<br />

Tree<br />

No.<br />

15<br />

16<br />

8<br />

26<br />

23<br />

9<br />

10<br />

11<br />

19<br />

14<br />

3<br />

27<br />

20<br />

13<br />

22<br />

24<br />

<strong>25</strong><br />

4<br />

Radavietë<br />

Habitat<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Miškas<br />

Forest<br />

Pamiðkë<br />

F. edge<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

Miškas<br />

Forest<br />

M. pakelë<br />

F. roadside<br />

Pamiðkë<br />

F. edge<br />

Amžiaus kl.<br />

Age class<br />

(10 yr)<br />

III<br />

IV<br />

V<br />

D 1,3 ,<br />

cm<br />

H, m<br />

H /<br />

H LAJOS/<br />

107<br />

CROWN<br />

H /<br />

D LAJOS/<br />

CROWN<br />

13 5 1,42 1,00<br />

16 8 1,14 2,00<br />

13 8 1,33 1,33<br />

13 10 1,11 1,81<br />

10 11 1,37 2,20<br />

21 11 1,22 2,20<br />

11 7 1,75 1,40<br />

14 10 1,42 2,22<br />

16 12 1,20 2,66<br />

17 14 1,40 2,15<br />

15 14 1,16 3,11<br />

24 14 2,00 2,54<br />

15,5 11 1,22 2,00<br />

12 13 1,18 2,60<br />

13 13 1,18 5,20<br />

14 14 1,40 2,54<br />

VI 29 17 1,41 3,09<br />

VII <strong>25</strong> 12 1,20 2,40<br />

Stiebo<br />

išreikštumas<br />

Stem expression<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki v<strong>ir</strong>ðûnës<br />

Up to the tree top<br />

Iki 1/2 lajos<br />

Up to ½ of crown<br />

height<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki 1/2 lajos<br />

Up to ½ of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Iki v<strong>ir</strong>ðûnës<br />

Up to the tree<br />

top<br />

Iki 1/2 lajos<br />

Up to 1/2 of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Iki 3/4 lajos<br />

Up to ¾ of<br />

crown height<br />

Iki lajos<br />

Up to the crown<br />

basis<br />

Keli stiebai<br />

Few stems from<br />

the ground<br />

Iki 3/4 lajos<br />

Up to ¾ of crown<br />

height<br />

Branduolio<br />

bûklë<br />

Heartwood<br />

condition<br />

Patamsëjæs<br />

Dark<br />

Nëra<br />

Indiscernible<br />

Patamsëjæs<br />

Dark<br />

Nëra<br />

Indiscernible<br />

Átrûnijæs<br />

Rotten<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs/<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Šviesus<br />

Pale<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Šviesus<br />

Pale<br />

Patamsëjæs<br />

Dark<br />

Šviesus<br />

Pale<br />

Iki lajos<br />

Nëra<br />

Up to the crown<br />

Indiscernible<br />

basis<br />

Pastaba: paryðkintu ðriftu paþymëti medþiai, kuriø palikuoniø lapuose t<strong>ir</strong>tos peroksidazës þymenos.<br />

Note: female-trees, which progeny was examined with the aid of peroxidase analysis, are in bold.


Rezultatai. Prielaida, kad miðko radavietëse vaisiai neturi dengiamosios spalvos<br />

<strong>ir</strong> tai <strong>ir</strong> yra sk<strong>ir</strong>iamasis miðkinës obels poþymis (2 lentelë), neatitinka mokslo<br />

literatûroje pateikto miðkinës obels apraðymo (Öåòòåðìàí, 1950, Ëèõîíîñ, 1963,<br />

Íîâèêîâ, 1965, Wagner, 1995). Matyt, pagrindinis dengiamosios spalvos nebuvimo<br />

veiksnys yra apðvietimo pobûdis miðkinës obels gamtinëse augavietëse – netiesioginë,<br />

iðsklaidyta saulës ðviesa <strong>ir</strong> nepalankus raudonøjø <strong>ir</strong> infraraudonøjø spinduliø<br />

santykis dël kaimyniniø augalø, sugerianèiø fotosintetiðkai aktyvius raudonuosius spindulius<br />

(Pigliucci 1996, Du Preez <strong>ir</strong> kt., 2004), bei ultravioletiniø spinduliø (370 nm)<br />

trûkumas. Taèiau reakcijos á tiesioginá saulës apðvietimà (Tuinyla <strong>ir</strong> kt., 1990) <strong>ir</strong><br />

antocianino produkcijos didëjimo galimybës koncepcijà paneigia obels Nr. 18 (Ðilutës<br />

miðkø urëdija, Stempliø g<strong>ir</strong>ininkija), auganèios atv<strong>ir</strong>oje vietoje, poþymiai – jos<br />

vaisiai <strong>ir</strong>gi neturëjo dengiamosios spalvos. Galbût visai neatsitiktinai peroksidazës<br />

izoformos, kuriø Rf = 0,55 <strong>ir</strong> Rf = 0,67, buvo visø ðios obels palikuoniø spektruose,<br />

sk<strong>ir</strong>tingai nuo kitø t<strong>ir</strong>tø kultûrinës kilmës <strong>ir</strong> miðkiniø obelø ðeimø (3 lentelë, 2 pav.).<br />

Dengiamosios spalvos taip pat neturëjo miðkiniø obelø Nr. 13 <strong>ir</strong> Nr. 3 vaisiai. Në<br />

vienas ið trijø minëtø obelø palikuoniø neturëjo lapø peroksidazës izoformø, kuriø<br />

Rf = 0,43 <strong>ir</strong> Rf = 0,63. Kad bûtø nustatyta, kaip tai susijæ su dengiamosios spalvos<br />

nebuvimu, reikëtø tolesnio tyrimo. Kita vertus, maþai yra obelø veisliø (‘Paprastasis<br />

antaninis’, ‘Popierinis’), kuriø obuoliai bûna vienspalviai, <strong>ir</strong> panaðu, kad dengiamosios<br />

spalvos nebuvimas yra sk<strong>ir</strong>iamasis miðkinës obels medþiø, auganèiø ne tik miðke,<br />

bet <strong>ir</strong> atv<strong>ir</strong>ose vietose bei pamiðkëse (miðkinë obelis Nr. 18 <strong>ir</strong> Nr. 4 – 1 lentelë),<br />

poþymis.<br />

2 lentelë. Savaime plintanèiø obelø vaisiø áva<strong>ir</strong>ovë<br />

Table 2. Spine bearing and fruit diversity of wild apples<br />

Medžio<br />

Nr.<br />

Tree No.<br />

26*<br />

27*<br />

23<br />

22<br />

14<br />

<strong>25</strong><br />

3, 8<br />

15<br />

11<br />

24<br />

Ðakeliø<br />

dygliuotumas<br />

Spine bearing<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliaûgliai<br />

Pointed shoots<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Dygliai<br />

Spines<br />

Nëra<br />

Absent<br />

Vaisiø forma<br />

Fruit shape<br />

Plokšèia<br />

Flat<br />

Plokšèia<br />

Flat<br />

Kriaušiška<br />

Pear-shaped<br />

Plokšèia<br />

Flat<br />

Plokšèia<br />

Flat<br />

Rutuliška<br />

Globular<br />

Rutuliška<br />

Globular<br />

Kûgiðka<br />

Conic<br />

Kiaušiniška<br />

Ovoid<br />

Plokšèia<br />

Flat<br />

Pagrindinë<br />

vaisiø spalva<br />

Fruit ground<br />

colour<br />

Geltona<br />

Yellow<br />

Gelsva<br />

Yellowish<br />

Žalia<br />

Green<br />

Gelsva<br />

Yellowish<br />

Žalia<br />

Green<br />

Geltona<br />

Yellow<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Gelsva<br />

Yellowish<br />

Dengiamoji<br />

vaisiø spalva<br />

Fruit over colour<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Rausva<br />

Reddish<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

Nëra<br />

Absent<br />

-<br />

-<br />

-<br />

Dengiamosios<br />

spalvos pobûdis<br />

Pattern of over<br />

colour<br />

Šonai<br />

Sides<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

108


17<br />

19<br />

13*<br />

4**<br />

6*<br />

1<br />

7<br />

9<br />

16, 20<br />

10<br />

5<br />

18<br />

Absent Flat Yellowish Absent<br />

Nëra<br />

Plokšèia Gelsva Geltona<br />

Absent Flat Yellowish Yellow<br />

Nëra<br />

Rutuliška Geltona Nëra<br />

Absent Globular Yellow Absent<br />

Nëra<br />

Rutuliška Gelsva Nëra<br />

Absent Globular Yellowish Absent<br />

Nëra<br />

Rutuliška Gelsva Nëra<br />

Absent Globular Yellowish Absent<br />

Nëra<br />

Rutuliška Gelsva Geltona<br />

Absent Globular Yellowish Yellow<br />

Nëra<br />

Rutuliška Gelsva Rausva<br />

Absent Globular Yellowish Reddish<br />

Nëra<br />

Rutuliška Žalsva Geltona<br />

Absent Globular Greenish Yellow<br />

Nëra<br />

Rutuliška Žalsva Rausva<br />

Absent Globular Greenish Reddish<br />

Nëra<br />

Rutuliška Žalia Nëra<br />

Absent Globular Green Absent<br />

Nëra<br />

Kûgiðka Žalsva Nëra<br />

Absent Conic Greenish Absent<br />

Nëra<br />

Kiaušiniška Gelsva Nëra<br />

Absent Ovoid Yellowish Absent<br />

Nëra<br />

Kriaušiška Geltona Nëra<br />

Absent Pear-shaped Yellow Absent<br />

Šonai<br />

Sides<br />

-<br />

-<br />

-<br />

Šonai<br />

Sides<br />

Dëmës<br />

Spots<br />

Šonai<br />

Sides<br />

Dëmës<br />

Spots<br />

-<br />

-<br />

-<br />

-<br />

*Lapø apaèioje reti plaukeliai / Sparse pubescence on the underneath of leaves<br />

**Lapø apaèia plaukuota / Pubescence on the underneath of leaves<br />

2 pav. Obels Nr. 18 palikuoniø lapø peroksidazës izofermentø elektroforegrama<br />

Fig. 2. The progeny of wild apple tree No. 18: peroxidase ‘runs’ in polyacrylamide gels<br />

109


Aptarimas. Paþymëtina, kad obelis Nr. 18, kitais savo poþymiais visiðkai nepanaði<br />

á kultûrinës kilmës obelis (tokias kaip, pavyzdþiui, Nr. 1), iðaugino miðkinëms<br />

obelims nebûdingus kriauðiðkus vaisius (2 lentelë). Neolito epochos iðkasenose aptikti<br />

p<strong>ir</strong>mykðtës Malus sylvestris vaisiai (4 lentelë) – taip pat kriauðiðkos (arba apvalios)<br />

formos (Klichowska, 1990). Neolito (prieð 11 200 m.) <strong>ir</strong> Bronzos (prieð 4500 m.)<br />

epochø Europos gyventojai vaisius skynë iðimtinai nuo laukiniø medþiø (Hopf, 1973,<br />

Schweingruber, 1979, Zohary, Hopf, 1988, Dolatowski, 1990), kita vertus, Linnaeus’as<br />

(1753) pripaþino tik keturias Maloideae poðeimio gentis: tuo metu obelys<br />

laikytos Pyrus genties rûðimis. Gal visi ðie faktai turi „bendrà vardiklá“ Jeigu taip,<br />

tuomet lapø peroksidazës izoformà, kurios Rf = 0,67, reikëtø laikyti sk<strong>ir</strong>iamuoju<br />

Malus sylvestris Mill. poþymiu, nes tokiø izoformø nebuvo në viename kultûrinës<br />

kilmës obels Nr. 1 <strong>ir</strong> obels Nr. 22 palikuoniø spektre. Obelis Nr. 22 (1 lentelë) Këdainiø<br />

urëdijos Lanèiûnavos g<strong>ir</strong>ininkijoje aptikta miðko masyve esanèioje k<strong>ir</strong>tavietëje.<br />

Ðios obels aukðèio <strong>ir</strong> lajos ploèio santykis buvo iðsk<strong>ir</strong>tinai didelis, be to, ji augo viena<br />

tarp kitø medþiø. Jos iðsivystæ lapai plaèiai elipsiðki <strong>ir</strong> stori, iki 9,5 cm ilgio (lapkotis<br />

iki 4 cm) <strong>ir</strong> iki 6 cm ploèio, lapo kotelis priaugimo vietoje lenktas. Panaðaus dydþio<br />

lapai buvo <strong>ir</strong> lajos v<strong>ir</strong>ðutinëje, <strong>ir</strong> apatinëje dalyje. Obels pagrindinës lapø gyslos, lapkoèiai<br />

<strong>ir</strong> nokstantys vaisiai – su violetiðkai raudonu atspalviu, o metûgiai – rausvai<br />

rudi. Tai rodo, kad ði obelis galëjo turëti iðryðkëjusiø Malus sieversii (Ledeb.) M.<br />

Roem. poþymiø. M. sieversii – pagrindinis M. domestica p<strong>ir</strong>mtakas (Forte <strong>ir</strong> kt.,<br />

2001). Ðios obels, kaip <strong>ir</strong> kultûrinës kilmës obels Nr. 1, palikuoniø spektruose nebuvo<br />

lapø peroksidazës izoformø, kuriø Rf – 0,67, 0,73 <strong>ir</strong> 0,77 (3 lentelë).<br />

Šeimos<br />

Nr.<br />

Progeny<br />

No.<br />

3 lentelë. Obels ðeimø sk<strong>ir</strong>tumai pagal lapø peroksidazës izoformø<br />

elektroforetiná mobilumà Rf<br />

Table 3. Specificity of peroxidase isoforms in apple leaf extracts according to<br />

relative mobility of bands Rf<br />

Kiekis,<br />

vnt.<br />

Number<br />

Px izoformø Rf vertës/ Rf values<br />

0,<strong>25</strong> 0,43 0,49 0,55 0,60 0,63 0,65 0,67 0,73 0,77 0,84 0,90<br />

3 11 N N N<br />

18 20 N V N V<br />

13 22 N N<br />

4 20 N<br />

22 11 N N N N N N<br />

23 9 N N V N N N N<br />

1 11 N N N N N<br />

Pastaba: V – Px izoforma bûdinga visiems palikuonims, N – izoformos neturëjo në vienas ið<br />

palikuoniø, tuðti langeliai – Px izoformà turëjo kai kurie palikuonys.<br />

Note: V – isoform detected in a whole progeny, N – missing isoform, empty cells – isoform<br />

detected in the part of progeny.<br />

110


4 lentelë. Ðveicarijoje Neolito epochos iðkasenose aptiktø Malus sylvestris<br />

vaisiø forma <strong>ir</strong> vidutiniai matmenys (Klichowska, 1990)<br />

Table 4. Malus sylvestris fruit shape and mean measurements of fruits from<br />

Neolithic Switzerland<br />

Vietovë<br />

Vaisiø forma Vaisiø ilgis, mm Sëklø ilgis, mm<br />

Locality<br />

Fruit shape<br />

Fruit length<br />

Seed length<br />

Auvernier Kriaušiška / Pear-shaped 21,5–<strong>25</strong>,0 7,7–8,0<br />

Burgäschisee-Süd Kriaušiška / Pear-shaped 29,0–34,0 8,2–9,0<br />

Apvali / Globular 22,0–26,0 5,0–6,7<br />

Iðvada. 1. Vaisiø dengiamosios spalvos nebuvimas yra sk<strong>ir</strong>iamasis Malus sylvestris<br />

Mill. poþymis. Tokiu poþymiu taip pat reikëtø laikyti lapø peroksidazës izoformà,<br />

kurios Rf = 0,67.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Aucla<strong>ir</strong> J. J. Peroxydase // http://perso.wanadoo.fr/svt.ronsard/svt.ronsard/exaosite/<br />

peroxydase.htm. Somma<strong>ir</strong>e-Atelier SVT, 2004.<br />

2. Barnes M. F. Leaf peroxidase and catechol oxidase polymorphosm and the identification<br />

of commercial apple varieties // New Zealand J. of Crop and Hort. Scien. 1993.<br />

T. 21(2). P. 207–210.<br />

3. Davis B. J. Disc electrophoresis // Ann. N. Y. Acad. 1964. Vol. 121(2). P. 404–427.<br />

4. Dolatowski J. Historia uprawy sadowniczej dzikich drzew owocowych // Dzikie<br />

drzewa owocowe. Nasze drzewa leúne 18. Polska Akademia Nauk Instytut Dendrologii w<br />

Kórniku. Poznañ, 1990. P. 146–174.<br />

5. Du Preez M. G., Labuschagné I. F., Rees D. J. G. Differential Gene Expression<br />

Patterns for Red and Green Phenotypes of ‘Bon Rouge’ Pear Trees, Pyrus communis L. //<br />

Acta Hort. 2004 (ISHS). 663. P. 337–340.<br />

6. Forte A. V., Dorochov D. B., Savelyev N. I. Phylogeny of wild Malus species<br />

revealed by morphology, RAPD markers, ITS1, 5.8S rRNA, ITS2 and chloroplast gene<br />

matK sequences // Salað P., Yalta B. (Eds.). Proceedings of 9 th International Conference of<br />

Horticulture, September 3 th –6 th 2001. Fruit growing and viticulture I. Mendel University of<br />

Agriculture and Forestry, International Association of Young Scientists, Lednice, Czech<br />

Republic, 2001. P. 60–65.<br />

7. Gelvonauskis B., Ðikðnianienë J. Peroxidase and polyphenoloxidase polymorphism<br />

in apple cultivars of different scab resistance // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. 20(3). P. 37–44.<br />

8. Glemþa A. Fermentai. Vilnius, 1987. P. 168.<br />

9. Hopf M. Äpfel (Malus communis L.), Aprikose (Prunus armeniaca L.) // H. Jankuhn,<br />

K. Ranke, R. Wenskus. Reallexikon der Germanische Altertumskunde. Walter de<br />

Guyter, Berlin, 1973. P. 363–372, 375.<br />

10. Jaaska V. Electrophoretic enzyme studies in the genus Secale L. // Esti NSV Tead.<br />

Akad. Biol. 1972. T. 21. P. 61–69.<br />

111


11. Juniper B. E., Watkins R., Harris S. A. The Origin of the Apple // Proc. of the<br />

Eucarpia Symp. on Fruit Breeding and Genetics. Eds. K. R. Tobutt F. H. Alston. Acta Hort.<br />

484, ISHS. 1999. P. 27–33.<br />

12. Klichowska M. Drzewa owocowe w znaleziskach archeologicznych // Dzikie drzewa<br />

owocowe. Nasze drzewa leúne 18. Polska Akademia Nauk Instytut Dendrologii w<br />

Kórniku. Poznañ, 1990. P. 9–62.<br />

13. Linnaeus C. Species plantarum. Ed. 11. Berlin, 1753. Vol. 1. P. 475–480.<br />

14. Manganaris A. G., Alston F. H. Peroxidase isoenzyme genes in the identification<br />

of apple cultivars and Malus Species // Hort. Sci. 1993. Vol. 68(5). P. 775–781.<br />

15. Petrokas R. Growth Vigorousness of Wild Apple Trees // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2002. 21(2). P. 11–21.<br />

16. Pigliucci M. How organisms respond to env<strong>ir</strong>onmental changes: from phenotypes<br />

to molecules (and vice versa) // Tree. 1996. Vol. 11. No. 4. P. 168–173.<br />

17. Rosby Quiambao, Paul and Rojas, Nina Rosario L. Peroxidase Presentation. http://<br />

www.chem.admu.edu.ph/~nina/rosby/main.htm. March 2000, Ateneo de Manila University.<br />

18. Schweingruber F. H. Wildäpfel und prähistorische Äpfe //. Archaeo-Physik. 1979.<br />

P. 283–294.<br />

19. Tuinyla V., Lukoðevièius A., Bandaravièius A. Lietuvos pomologija: Atlasas.<br />

T. 1. V.: Mokslas, 1990. 333 p.<br />

20. Vinterhalter D. V., James D. J. The use of peroxidase polymorphism in the identification<br />

of apple // Hort. sci. 1982/1983. Vol. 18. P. <strong>25</strong>3–261.<br />

21. Wagner I. Identifikation von Wildapfel (Malus sylvestris (L.) Mill.) und Wildb<strong>ir</strong>ne<br />

(Pyrus pyraster (L.) Burgsd.). Vorausetzung zur Generhaltung des einheimischen Wildobstes<br />

// Forstarchiv. 1995. 66. P. 39–47<br />

22. Zohary D., Hopf M. Domestication of Plants in the Old World. Clarendon Press,<br />

Oxford, 1988.<br />

23. Êîíàðåâ Â. Ã. Áåëêîâûå ìàðêåðû â ñîðòîâîé èäåíòèôèêàöèè è ðåãèñòðàöèè<br />

ãåíåòè÷åñêèõ ðåñóðñîâ êóëüòóðíûõ ðàñòåíèé // Ñáîð. íàó÷. òðóä. ïî ïðèêë. áîò.,<br />

ãåíåò. è ñåëåê. Ëåíèíãðàä, 1987. Ò. 114. C. 3–14.<br />

24. Ëèõîíîñ Ô. Ä. Íåêîòîðûå äàííûå ïî ñèñòåìàòèêå âèäîâ è êóëüòóðíûõ<br />

ñîðòîâ ÿáëîíè // Áþëëåòåíü Ãëàâíîãî Áîòàíè÷åñêîãî Ñàäà, ÀÍ ÑÑÑÐ. Ìîñêâà,<br />

1963. Âûï. 51. C. 61.<br />

<strong>25</strong>. Ìàëû÷åíêî Â. Â., Ãðóøèí À. À. Èñïîëüçîâàíèå èçîïåðîêñèäàçíûõ ñïåêòðîâ<br />

äëÿ èäåíòèôèêàöèè ôîðì ñîðòà ÿáëîíè ÿíäèêîâñêîé // Áèîëîãèÿ, ÂÈÐ. 1986. Ò. 166.<br />

C. 13–16.<br />

26. Íîâèêîâ À. Ë. Îïðåäåëèòåëü äåðåâüåâ è êóñòàðíèêîâ â áåçëèñòíîì<br />

ñîñòîÿíèè. Ìèíñê: Âûñøàÿ Øêîëà, 1965. C. 217–219.<br />

27. Ñàìèãóëëèí Ò. Õ., Ìèðîøíè÷åíêî Ã. Ï., Àíòîíîâ À. Ñ., ßêîâëåâ Ñ. Ï.,<br />

ßíêîâñêàÿ Ì. Á. Ñðàâíèòåëüíîå èçó÷åíèå ðèáîñîìíûõ ïîâòîðîâ ÄÍÊ ïëîäîâûõ<br />

ðàñòåíèé (ñåìåéñòâî Rosaceae Juss.) // Áèîõèìèÿ. 1994. T. 59. Bûï. 9. C. 1349–<br />

1359.<br />

28. Ñêèáèíñêàÿ À. Ì. Èñòîðè÷åñêàÿ ãåîãðàôèÿ ðîäà Malus // Áþëëåòååíü<br />

Ãëàâíîãî Áîòàíè÷åñêîãî Ñàäà. Bûï. 61. ÀÍ ÑÑÑÐ, Ìîñêâà, 1966. C. 52–56.<br />

29. Öåòòåðìàí Í. Î. Malus praecox // Ôëîðà ÁÑÑÐ. T. 3. Ìèíñê: Àêàäåìèÿ Íàóê<br />

Áåëîðóññêîé ÑÑÐ, 1950. C. 38–39.<br />

112


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

DISTINCTIVE CHARACTERISTICS OF MALUS<br />

SYLVESTRIS MILL.<br />

R. Petrokas, P. Duchovskis<br />

Summary<br />

The over colour of wild apple fruit was studied in the context of leaf peroxidase<br />

analysis. The th<strong>ir</strong>d-year progenies of wild apple have been selected for the analysis<br />

according to the phenotypic evaluation of different female-trees at the<strong>ir</strong> natural habitats.<br />

The specificity of peroxidase polymorphism of the progenies was revealed.<br />

Peroxidase band at Rf = 0.43 was not detected at all in the progenies of the femaletrees<br />

without fruit over colour. Hypothetically, peroxidase band at Rf = 0.67 and the<br />

absence of fruit over colour are the identification characteristics of Malus sylvestris<br />

Mill. at the inside and outside of forest cover.<br />

Key words: Malus sylvestris Mill., peroxidase polymorphism, phenotype.<br />

113


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OBELØ LIGØ IR KENKËJØ PLITIMO ÁVERTINIMAS<br />

SKIRTINGOS PRAMONINËS TARÐOS RAJONUOSE<br />

Laisvûnë DUCHOVSKIENË*, Jurga SAKALAUSKAITË*,<br />

Darius KVIKLYS*, Jûratë Bronë ÐIKÐNIANIENË*,<br />

Eugenija KUPÈINSKIENË**<br />

*Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas a.valiuskaite@lsdi.lt<br />

**Lietuvos þemës ûkio universitetas, Studentø g. 11, LT-53361 Akademija,<br />

Kauno r., el. paðtas likup@takas.lt<br />

Rajonø, kuriø pramonës ámoniø tarða yra sk<strong>ir</strong>tinga, apylinkëse – prie naftos<br />

perd<strong>ir</strong>bimo ámonës AB „Maþeikiø nafta“, cemento gamyklos AB „Akmenës cementas“<br />

bei azoto tràðø gamyklos AB „Achema“ – atlikti oro terðalø koncentracijos <strong>ir</strong> ligø<br />

bei kenkëjø paþeistø ‘Paprastojo antaninio’ veislës obelø lapø tyrimai. Prie AB „Akmenës<br />

cementas“ <strong>ir</strong> AB „Achema“ SO 2<br />

<strong>ir</strong> NO 2<br />

koncentracijos buvo maþos <strong>ir</strong> prilygo<br />

Lietuvos neuþterðtø vietø koncentracijoms, tik prie AB „Maþeikiø nafta“ SO 2<br />

koncentracija<br />

buvo ðiek tiek didesnë. 2005–2006 m. daugiausia filostiktozës (Phylosticta<br />

mali Prill et Del.) paþeistø lapø buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse. 2005 m.<br />

lapø chlorozë gausiausiai pas<strong>ir</strong>eiðkë Maþeikiø <strong>ir</strong> Kauno apylinkëse (Babtuose), o kitais<br />

metais ðios ligos paþeistø lapø daugiausia aptikta Maþeikiø, N. Akmenës apylinkëse.<br />

Obelø raupliø (Venturia inaequalis (Cooke) Aderh.) aptikta tik Maþeikiø rajone<br />

<strong>ir</strong> prie N. Akmenës. 2006 m. ligø gausumas <strong>ir</strong> intensyvumas buvo kur kas maþesnis<br />

nei pernai. Ið filostiktozës paþeistø lapø buvo iðsk<strong>ir</strong>ti 4 ðios ligos sukëlëjus lydintieji<br />

grybai. 2005–2006 m. lapus grauþianèiøjø kenkëjø paþeidimø visuose uþterðtuose<br />

rajonuose buvo rasta daug, o lapsukiø paþeistø lapø daugiausia aptikta netoli AB<br />

„Maþeikiø nafta“. 2006 m. rasta fitofaginiø <strong>ir</strong> entomofaginiø erkiø bei tripsø, bet jø<br />

buvo negausu. Susumavus ligø ar kenkëjø paþeistus <strong>ir</strong> sveikus lapus tyrimo metais,<br />

paaiðkëjo, kad visuose regionuose, kur didelë tarða, kenkëjø <strong>ir</strong> ligø paþeistø obelø lapø<br />

buvo þymiai daugiau nei Kauno apylinkëse (Babtuose).<br />

Reikðminiai þodþiai: chlorozë, filostiktozë, obelø rauplës, grauþiantieji kenkëjai,<br />

lapsukiai.<br />

Ávadas. Dël þmogaus intensyvios ûkinës veiklos praëjusiame ðimtmetyje atmosferoje<br />

pagausëjo áva<strong>ir</strong>iø oro priemaiðø – NO, NO 2<br />

, SO 2<br />

, NH 3<br />

, O 3<br />

, dulkiø. Atmosferos<br />

terðalø poveikis sumedëjusiems augalams pradëtas nagrinëti t<strong>ir</strong>iant didelës koncentracijos<br />

dujø sukeltas ûmias augalø ligas – chlorozæ, lapø audiniø apm<strong>ir</strong>imà, lapø<br />

114


numetimà (Welburn, 1988). E. Kupèinskienës (2003) duomenimis, t<strong>ir</strong>tame ruoþe<br />

prie AB „Maþeikiø nafta“, AB „Akmenës cementas“, AB „Achema“ SO 2<br />

<strong>ir</strong> rûgðèiø<br />

dujiniø terðalø NO 2<br />

kiekis nuolat kinta. Mokslininkai pripaþásta, kad oro terðalai gali<br />

neigiamai veikti medþiø augimà. Kai kurie autoriai pastebi, kad atmosferos tarðos<br />

poveikis augalams daþniausiai ats<strong>ir</strong>anda tik esant labai didelëms koncentracijoms <strong>ir</strong><br />

pas<strong>ir</strong>eiðkia nedideliu mastu (Manion, Lachance, 1992). Kiti (Bruch, 1985) ilgalaikæ<br />

atmosferos tarðà laiko veiksniu, silpninanèiu medþiø gyvybingumà <strong>ir</strong> kartu maþinanèiu<br />

jø atsparumà kitiems, biotiniams <strong>ir</strong> abiotiniams, veiksniams. Atlikti tyrimai<br />

rodo, kad miesto, pramonës ámoniø ar transporto sukeliama tarða, veikianti kaip<br />

sudëtingas áva<strong>ir</strong>iø kenksmingø medþiagø miðinys, greièiau ardo augalø vaðkinius<br />

pav<strong>ir</strong>ðius, taip pagreitina jø senëjimà, palengvina oro terðalø patekimà á lapus, sudaro<br />

palankesná mikroklimatà patogeniniams grybams, parazitiniams mikroorganizmams<br />

vystytis (Barnes, Brown, 1990). Per paskutiniuosius deðimtmeèius t<strong>ir</strong>tas<br />

gamyklø rûgðèiø terðalø poveikis spygliuoèiams (Turunen, Huttunen, 1990; Krupa,<br />

2003), o sumedëjæ kultûriniai augalai dar labai maþai t<strong>ir</strong>ti (Titus, Kang, 1982). Lietuvoje,<br />

be intensyviø versliniø sodø, yra dar daug ekstensyviø, be to, veisiami<br />

ekologiniai sodai, kuriems pramonës ámoniø tarða yra labai kenksminga (Duchovskis,<br />

1998, Uselis, Kviklys, 1999). Ir praëjusiame, <strong>ir</strong> ðiame deðimtmetyje dël gamybos<br />

apimties bei technologijø kaitos Lietuvos ámonëse mûsø kraðto pramonës objektø<br />

sukeliama oro tarða labai keièiasi, todël <strong>ir</strong> retrospektyviniu, <strong>ir</strong> perspektyviniu<br />

poþiûriu bûtina nuolat stebëti atmosferos tarðà <strong>ir</strong> jos padarinius gyviems <strong>ir</strong> negyviems<br />

ekosistemos elementams (Kupèinskienë, 2000). Tarðos poveiká augalams<br />

netiesiogiai rodo <strong>ir</strong> ligø bei kenkëjø daroma þala lapijai <strong>ir</strong> vaisiams (Jenks, Ashworth,<br />

1999; Krebs, 2001).<br />

Darbo tikslas – iðt<strong>ir</strong>ti, koká poveiká sk<strong>ir</strong>tingos cheminës prigimties pramonës<br />

ámoniø tarða daro ligø <strong>ir</strong> kenkëjø, paþeidþianèiø ‘Paprastojo antaninio’ obelø (Malus<br />

domestica L.) lapus, gausumui <strong>ir</strong> intensyvumui.<br />

Tyrimo vieta, metodai <strong>ir</strong> sàlygos. Tyrimai atlikti 2005–2006 m. liepos–rugpjûèio<br />

mënesiais netoli Lietuvos pramonës ámoniø – naftos perd<strong>ir</strong>bimo AB „Maþeikiø<br />

nafta“, N. Akmenës cemento gamyklos AB „Akmenës cementas“ bei Jonavos azoto<br />

tràðø gamyklos AB „Achema“. Kauno r. (Babtai) pas<strong>ir</strong>inktas kaip kontrolinis, santykinai<br />

maþiau uþterðtas rajonas. Rûgðèiø dujiniø terðalø NO 2<br />

<strong>ir</strong> SO 2<br />

koncentracijos<br />

buvo nustatomos naudojant Didþiojoje Britanijoje pagamintus standartinius difuzinius<br />

vamzdelius. Eksponuojant terðalus, vamzdeliai tv<strong>ir</strong>tai pritv<strong>ir</strong>tinami prie mediniø kuoleliø<br />

1,6 m aukðtyje (Atkins <strong>ir</strong> kt., 1978). Pasibaigus ekspozicijos laikui, neuþkimðti<br />

vamzdeliø galai uþkemðami. Azoto dvideginiui sugerti naudojamas trietanolaminas.<br />

Absorbuojamo NO 2<br />

kiekis nustatomas spektrofotometriðkai. Analizë atlikta LÞÛU<br />

„Tempus“ laboratorijoje Ashenden <strong>ir</strong> Bell metodu (1989). Sieros dvideginio analizë<br />

atlikta Didþiosios Britanijos Gradko International Ltd. laboratorijoje joninës chromatografijos<br />

bûdu (Atkins <strong>ir</strong> kt., 1978). T<strong>ir</strong>ti ekologiðkai auginamo ‘Paprastojo antaninio’<br />

su sëkliniu poskiepiu obelø lapai. Tyrimo objektø atstumas nuo AB „Maþeikiø<br />

nafta“ buvo vienas kilometras rytø kryptimi, nuo AB „Akmenës cementas“ <strong>ir</strong> AB<br />

„Achema“ – du kilometrai ðiaurës vakarø kryptimi. Kiekvienoje vietoje tyrimams pas<strong>ir</strong>inkta<br />

po 2–3 medþius, iðanalizuota po 100 lapø <strong>ir</strong> jungtinis vaisiø bandinys. Ligø <strong>ir</strong><br />

kenkëjø padarytø paþeidimø intensyvumas apskaièiuotas pagal formulæ:<br />

115


R = Σ(n·b)/N, èia:<br />

Σ(n·b) – vienodai paþeistø lapø skaièius <strong>ir</strong> paþeidimo reikðmës sandaugø suma;<br />

N – tikrintø lapø skaièius.<br />

Mikromicetø gentinei sudëèiai nustatyti buvo imti filostiktozës paþeistø lapø fragmentai<br />

<strong>ir</strong> padëti ant PDA mitybinës terpës. Pagal morfologinius kolonijø augimo poþymius<br />

<strong>ir</strong> mikroskopu nustatytos grybø gentys <strong>ir</strong> rûðys. Mikromicetø rûðies aptikimo<br />

daþnis (proc.) apskaièiuotas pagal formulæ: A = B/C·100 (Mèð÷èíê, 1988) (èia: A –<br />

mikromicetø aptikimo daþnis; B – mëginiø skaièius, kuriuose aptikta rûðis; C – bendras<br />

mëginiø skaièius). Rûðys, kuriø aptikimo daþnis yra maþesnis kaip 30 proc.,<br />

prisk<strong>ir</strong>iamos prie atsitiktiniø, didesnis kaip 30 proc. – prie tipiniø, didesnis kaip<br />

50 proc. – prie dominuojanèiø.<br />

Duomenø statistinë analizë atlikta pagal Dunkano kriterijø.<br />

Rezultatai. Prie AB „Akmenës cementas“ bei AB „Achema“ oro terðalø koncentracijos<br />

buvo maþos <strong>ir</strong> prilygo koncentracijoms neuþterðtose Lietuvos vietose<br />

(Ðopauskienë, 1999; Perkauskas, Mikelinskiene, 1998) bei foninëms Europos koncentracijoms<br />

– 2–5 µg m -3 SO 2<br />

<strong>ir</strong> 5–10 µg m -3 NO 2<br />

(Mylona, 1996), tik prie AB<br />

„Maþeikiø nafta“ SO 2<br />

koncentracija buvo didesnë (9,4 µg m -3 ) (1 lentelë).<br />

1 lentelë. Vidutinës mënesio SO 2<br />

(µg m -3 , vidurkiai) <strong>ir</strong> NO 2<br />

(µg m -3 ) koncentracijos ore<br />

Table 1. Mean of monthly a<strong>ir</strong> SO 2<br />

(µg m -3 , averages) and NO 2<br />

(µg m -3 ) concentrations<br />

Oro<br />

priemaišos<br />

Impurity of a<strong>ir</strong><br />

SO 2<br />

NO 2<br />

Tyrimo<br />

metai<br />

Year of<br />

investigation<br />

2005<br />

2005<br />

AB „Maþeikiø<br />

nafta“ – 2 km<br />

9,4<br />

6,0<br />

Atstumas nuo / Distance from<br />

„Akmenës<br />

cementas“ –<br />

3,5 km<br />

2,0<br />

2,6<br />

„Achema“ –<br />

2,5 km<br />

1,0<br />

5,0<br />

2005 m. daugiausia filostiktozës (Phylosticta mali Prill et Del.) paþeistø lapø<br />

buvo Jonavos (100 proc.) rajone <strong>ir</strong> N. Akmenës apylinkëse. Lapø chlorozë labiausiai<br />

pas<strong>ir</strong>eiðkë Maþeikiø <strong>ir</strong> Babtø apylinkëse. Maþiausiai chlorozës aptikta Jonavos azoto<br />

tràðø gamyklos apylinkëse. Obelø raupliø aptikta tik Maþeikiø rajone <strong>ir</strong> prie N. Akmenës<br />

(2 lentelë). Panaðios tendencijos iðliko <strong>ir</strong> 2006 m. Filostiktozë labiausiai pas<strong>ir</strong>eiðkë<br />

<strong>ir</strong> jos intensyvumas buvo didþiausias Jonavos (39 proc.) rajone <strong>ir</strong> N. Akmenës<br />

(32 proc.) apylinkëse (2 lentelë). Chlorozës paþeistø lapø daugiausia aptikta Maþeikiø,<br />

N. Akmenës apylinkëse, Babtø apylinkëse chlorozë visai nepas<strong>ir</strong>eiðkë, sk<strong>ir</strong>tingai<br />

nei 2005 m. Rauplëmis serganèiø lapø daugiausia aptikta netoli Maþeikiø naftos perd<strong>ir</strong>bimo<br />

ámonës. Ligø gausumas <strong>ir</strong> intensyvumas buvo kur kas maþesnis nei 2005<br />

metais, nes liepos mënuo buvo labai karðtas <strong>ir</strong> sausas, dël to ligos maþiau plito.<br />

116


2 lentelë. Obelø ligø paplitimas <strong>ir</strong> intensyvumas Lietuvos pramonës rajonuose<br />

2005–2006 m.<br />

Table 2. Distribution and intensity of apple diseases at industry districts in Lithuania in<br />

2005 and 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Paþeista lapø<br />

Damaged leaves, %<br />

filostiktozë chlorozë<br />

leaf spot chlorosis<br />

40 b<br />

95 a<br />

100 a<br />

50 b<br />

21 c<br />

32 b<br />

39 a<br />

<strong>25</strong> c<br />

36 a<br />

28 a<br />

19 b<br />

36 a<br />

19 a<br />

21 a<br />

9 b<br />

0 c<br />

Paþeista vaisiø<br />

Damaged fruits, %<br />

obelø rauplës<br />

apple scab<br />

2005 m.<br />

20 a<br />

10 b<br />

0<br />

0<br />

2006 m.<br />

2 a<br />

1 b<br />

0 c<br />

0 c<br />

filostiktozë<br />

leaf spot<br />

0,8 b<br />

1,91 a<br />

2,23 a<br />

0,69 b<br />

0,22 b<br />

0,68 a<br />

0,64 a<br />

0,26 b<br />

Ligø intensyvumas balais<br />

Disease intensity, points<br />

chlorozë<br />

chlorosis<br />

0,56 a<br />

0,46 b<br />

0,29 c<br />

0,45 b<br />

0,39 a<br />

0,36 a<br />

0,19 b<br />

0 c<br />

obelø rauplës<br />

apple scab<br />

0,2 a<br />

0,1 a<br />

0<br />

0<br />

0,02 a<br />

0,01 ab<br />

0 b<br />

0 b<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different<br />

according to Duncan’s multiple range test (P = 0.05)<br />

Tyrimai in vitro parodë, kad daugumà aptiktø mikromicetø galima prisk<strong>ir</strong>ti prie<br />

atsitiktiniø rûðiø, nes jø aptikimo daþnis ne didesnis kaip 30 proc. (3 lentelë). Iðsiskyrë<br />

tik Jonavos r., kur ið paþeistø obelø lapø buvo iðsk<strong>ir</strong>ti mikromicetai, priklausantys<br />

Alternaria genèiai, <strong>ir</strong> pagal aptikimo daþná (50 proc.) juos galima prisk<strong>ir</strong>ti prie tipiniø<br />

rûðiø.<br />

3 lentelë. Filostiktozæ lydinèiøjø mikromicetø aptikimo daþnis (%) in vitro<br />

Table 3. Occurrence frequency of leaf spot attendant micropipetes (%) in vitro<br />

Mikromicetai<br />

Micropipetes<br />

Mikromicetø aptikimo daþnis<br />

Occurrence frequency of micropipetes<br />

Maþeikiø r. N. Akmenës r. Jonavos r. Kauno r.<br />

Alternaria spp. 0 20 50 0<br />

Cladosporium spp. 30 30 30 20<br />

Penicillium spp. 10 0 0 0<br />

Trichothecium spp. 0 0 10 0<br />

Mycelia sterilia 0 0 20 0<br />

2005 m. lapsukiø paþeistø lapø daugiausia aptikta netoli AB „Maþeikiø nafta“.<br />

Lapus grauþianèiø kenkëjø padarytø paþeidimø daug rasta visuose uþterðtuose rajonuose<br />

(4 lentelë). 2006 m. gauti panaðûs lapsukiø <strong>ir</strong> lapgrauþiø padarytø paþeidimø<br />

117


apskaitos rezultatai (5 lentelë). 2006 m. rasta fitofaginiø (Panonychus ulmi Koch.,<br />

Aculus schlechtendali Nal.) <strong>ir</strong> entomofaginiø erkiø bei tripsø, bet jø buvo negausu<br />

(6 lentelë). 2005 m. susumavus ligø <strong>ir</strong> kenkëjø paþeistus lapus, paaiðkëjo, kad netoli<br />

pramoninës tarðos centrø sveikø lapø neaptikta. 2006 m. tarðos zonose sveikø lapø<br />

buvo nuo 37 iki 43 proc. (7 lentelë).<br />

4 lentelë. Obelø kenkëjø paplitimas <strong>ir</strong> jø daromø paþeidimø intensyvumas Lietuvos<br />

pramonës rajonuose 2005 m.<br />

Table 4. Distribution and intensity of damage of apple pests at industry districts in<br />

Lithuania in 2005<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

lapsukiai<br />

leaf rulers<br />

38 a<br />

6 b<br />

7 b<br />

4 b<br />

Pažeista lapø<br />

Damaged leaves, %<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

41 b<br />

50 a<br />

41 b<br />

13 c<br />

Pažeidimo intensyvumas (R)<br />

Intensity of pest damage (R)<br />

1,78 a<br />

1,3 b<br />

1,11 b<br />

0,32 c<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

5 lentelë. Obelø kenkëjø paplitimas <strong>ir</strong> jø daromø paþeidimø intensyvumas<br />

Lietuvos pramonës rajonuose 2006 m.<br />

Table 5. Distribution and intensity of damage of apple pests at industry districts in<br />

Lithuania in 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

lapsukiai<br />

leaf rulers<br />

29 a<br />

16 b<br />

8 c<br />

2 d<br />

Paþeista lapø<br />

Damaged leaves, %<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

18 a<br />

17 a<br />

16 a<br />

3 b<br />

Pažeidimo intensyvumas (R)<br />

Intensity of pest damage (R)<br />

lapsukiai<br />

leaf rulers<br />

0,36 a<br />

0,28 ab<br />

0,19 b<br />

0,02 c<br />

lapus graužiantys<br />

kenkëjai<br />

leaf chewing pests<br />

0,45 a<br />

0,31 b<br />

0,26 b<br />

0,03 c<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

118


6 lentelë. Erkiø <strong>ir</strong> tripsø paplitimas ant obelø lapø sk<strong>ir</strong>tinguose<br />

Lietuvos pramonës rajonuose 2006 m.<br />

Table 6. Distribution of mites and thrips on apple leaves at different industry districts in<br />

Lithuania in 2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

Kenkëjø ant lapo, vnt.<br />

fitofaginiø erkiø<br />

phytophagic mites<br />

0,24 b<br />

0,12 b<br />

0 c<br />

0,6 a<br />

tripsø<br />

by thrips<br />

0 b<br />

0 b<br />

0,16 a<br />

0 b<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

7 lentelë. Sveikø <strong>ir</strong> paþeistø lapø santykis Lietuvos pramonës rajonuose<br />

2005–2006 m.<br />

Table 7. Proportion between healthy and harmful organisms damaged leaves at industry<br />

districts in Lithuania in 2005–2006<br />

Rajonas,<br />

apylinkës<br />

District,<br />

surroundings<br />

Maþeikiø<br />

N. Akmenës<br />

Jonavos<br />

Kauno<br />

sveikø lapø<br />

healthy leaves, %<br />

0 b<br />

0 b<br />

0 b<br />

20 a<br />

Reikðmës, paþymëtos tomis paèiomis raidëmis, pagal Dunkano kriterijø (P = 0,05) ið esmës<br />

nesisk<strong>ir</strong>ia / Means followed by the same letter in a column are not significantly different according<br />

to Duncan’s multiple range test (P = 0.05)<br />

Aptarimas. Mûsø tyrimo duomenimis, daugiausia filostiktozës (Phylosticta mali<br />

Prill et Del.) paþeistø lapø buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse. Kupèinskienës<br />

duomenimis (2003), prie visø mûsø t<strong>ir</strong>tø gamyklø ið esmës padidëja spygliø pav<strong>ir</strong>ðiaus<br />

erozija. Ant paþeistø asimiliaciniø organø labiau vystosi ligos <strong>ir</strong> plinta kenkëjai<br />

(Turunen, Huttunen, 1990; Jenks, Ashworth, 1999). Filostiktozës (Phyllosticta mali<br />

E. et E.) epifitotijos Lietuvoje pasikartoja kas keleri metai (Gelvonauskis, Gelvonauskienë,<br />

2003). Todël galima teigti, kad 2005 m. N. Akmenës <strong>ir</strong> Jonavos apylinkëse<br />

filostiktozë pas<strong>ir</strong>eiðkë kaip epifitotijos metais, nes paþeistø lapø buvo 95–100 proc.<br />

Filostiktozë galëjo sparèiau plisti dël azoto junginiø (NO 2<br />

) gausos Jonavos apylinkëse.<br />

Obelø rauplës (Venturia inaequalis (Cooke) Aderh.) – labiausiai paplitusi obelø<br />

liga Lietuvoje (Raudonis, Valiuðkaitë, 2003), bet ‘Paprastasis antaninis’ yra poligenið-<br />

119<br />

Rasta entomofaginiø erkiø<br />

ant lapø<br />

Entomophagic mites on leaves, %<br />

0 b<br />

0 b<br />

0,36 a<br />

0 b<br />

2005 m. 2006 m.<br />

paþeistø lapø<br />

damaged leaves, %<br />

100 a<br />

100 a<br />

100 a<br />

80 b<br />

sveikø lapø<br />

healhty leaves, %<br />

36 c<br />

39 bc<br />

43 b<br />

74 a<br />

paþeistø lapø<br />

damaged leaves,<br />

%<br />

64 a<br />

61 ab<br />

57 b<br />

26 c


kai atsparus rauplëms (Gelvonauskienë, Stanys, 2002). Fiss <strong>ir</strong> kiti (2000) nustatë,<br />

kad izoliatai: Aureobasidium, Botrytis, Cladosporium, Epicoccum <strong>ir</strong> Fusarium, daugiau<br />

nei 80 proc. slopina V. inaequalis micelio augimà. T<strong>ir</strong>iant mikromicetø ant obelø<br />

lapø sudëtá tuose rajonuose, kur didelë pramonës objektø tarða, raupliø sukëlëjo nebuvo<br />

aptikta, nes daugelyje mëginiø buvo rasta Cladosporium. Sutton <strong>ir</strong> kt. (2000)<br />

nustatë, kad didelis azoto kiekis d<strong>ir</strong>voþemyje raupliø askosporø kieká sumaþina nuo<br />

50 iki 60 proc. Todël galima daryti prielaidà, kad azoto junginiai ant lapø taip pat<br />

sudaro nepalankias sàlygas raupliø askosporoms plisti. Jonavos azoto tràðø gamyklos<br />

apylinkëse obelys nes<strong>ir</strong>go rauplëmis. Tai rodo, kad amoniakas neskatino obelø<br />

raupliø vystymosi, o dulkës – skatino. Brandt <strong>ir</strong> Rhoades (1972) nustatë, kad poskiepiø,<br />

krûmø, sodinukø, medþiø, auganèiø tokioje aplinkoje, kurioje yra daug cemento<br />

dulkiø, struktûra labai keièiasi. Cemento dulkës gali sukelti augalø chlorozæ <strong>ir</strong> augalo<br />

audiniø m<strong>ir</strong>tá. Taèiau maisto elementø trûkumas, perteklius ar nesugebëjimas jø pasiimti<br />

ið d<strong>ir</strong>voþemio taip pat gali sukelti chlorozæ (Pestana <strong>ir</strong> kt., 2003). Mûsø tyrimø<br />

duomenimis, 2005 m. chlorozë ant obelø lapø gausiausiai pas<strong>ir</strong>eiðkë prie AB „Maþeikiø<br />

nafta“, o 2006 m. – prie N. Akmenës cemento gamyklos AB „Akmenës cementas“<br />

<strong>ir</strong> AB „Maþeikiø nafta“. Galima daryti prielaidà, kad prie AB „Akmenës cementas“<br />

lapø chlorozës plitimui didesnës átakos galëjo turëti cemento dulkiø tarða (Kupèinskienë,<br />

2000), o prie AB „Maþeikiø nafta“ – <strong>ir</strong> d<strong>ir</strong>voþemis, <strong>ir</strong> tarða.<br />

Intensyviuose soduose lapsukiø <strong>ir</strong> kitø lapø kenkëjø padaryti paþeidimai retai<br />

v<strong>ir</strong>ðija þalingumo ribà (Raudonis, 2001, 2003), taèiau jei sodai auginami ekstensyviai<br />

<strong>ir</strong> didelë tarða, þala gali bûti didesnë. Mûsø tyrimai parodë, kad tik naftos perd<strong>ir</strong>bimo<br />

pramonës sukeliama tarða ypaè skatina plisti lapsukius. Prie AB „Maþeikiø nafta“<br />

buvo rasta spygliuoèiø, kuriø spygliai buvo labiau paveikti erozijos (Kupèinskienë,<br />

Huttunen, 2005). Galbût paþeisti asimiliaciniai organai <strong>ir</strong> sudarë palankias sàlygas<br />

lapsukiams plisti. Mûsø tyrimu nustatyta, kad visø rûðiø pramonës ámoniø tarða ið<br />

esmës skatina plisti lapus grauþianèius kenkëjus. Fitofaginiø erkiø Lietuvos obelø<br />

soduose negausu (Raudonis, 2001), todël galima daryti prielaidà, kad pramonës ámoniø<br />

tarða fitofaginëms erkëms átakos neturëjo. Svarbu <strong>ir</strong> tai, kad tarða nesutrukdë<br />

ats<strong>ir</strong>asti <strong>ir</strong> natûraliems erkiø prieðams – entomofaginëms erkëms. Susumavus ligø ar<br />

kenkëjø paþeistus <strong>ir</strong> sveikus lapus, paaiðkëjo, kad visuose regionuose, kur didelë<br />

tarða, paþeistø obelø lapø yra þymiai daugiau nei Kauno apylinkëse.<br />

Iðvados. 1. Daugiausia filostiktozës (Phylosticta mali Prill et Del.) paþeistø lapø<br />

buvo Jonavos <strong>ir</strong> N. Akmenës apylinkëse.<br />

2. Lapø chlorozë gausiausiai pas<strong>ir</strong>eiðkë netoli AB „Maþeikiø nafta“.<br />

3. Obelø raupliø (Venturia inaequalis (Cooke) Aderh.) aptikta tik Maþeikiø <strong>ir</strong><br />

N. Akmenës apylinkëse.<br />

4. Lapus grauþianèiø kenkëjø padarytø paþeidimø daug rasta visuose t<strong>ir</strong>tuose<br />

rajonuose, o lapsukiø paþeistø lapø daugiausia aptikta netoli AB „Maþeikiø nafta“.<br />

Pastaba. Ðis darbas yra FIBISTRESS projekto, kurá remia Lietuvos mokslo <strong>ir</strong><br />

studijø fondas, sudedamoji dalis.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

120


Literatûra<br />

1. Ashenden T. W., Bell S. A. Rural concentrations of Nitrogen Dioxide pollution<br />

throughout Wales // Env<strong>ir</strong>onmental Pollution. 1989. 58. P. 179–193.<br />

2. Atkins D. H. F., Healy C., Tarrant J. B. The use of simple diffusion tubes for the<br />

measurement of nitrogen dioxide levels in homes using gas and electricity for cooking.<br />

1978. AERE-R9184. HMSO, London.<br />

3. Barnes J. D., Brown K. A. The influence of ozone acid mist on the amount and<br />

wettability of the surface waxes in Norway spruce (Picea abies (L.) Karst.) // New Phytologist.<br />

1990. 114. P. 531–535.<br />

4. Brandt C. J., Rhoades R. W. Effects of limestone dust accumulation on composition<br />

of a forest community // Env<strong>ir</strong>onmental Pollution. 1972. 3. P. 217–2<strong>25</strong>.<br />

5. Bruch P. J. Boreal mountain ecosystem decline in the southern Appalachain Mountains:<br />

potential role of anthropogenic pollution. A<strong>ir</strong> pollution effects on forest ecosystems.<br />

St. Paul, Minesota, 1985. P. 78–85.<br />

6. Duchovskis P. Problems of resistance to abiotic factors of horticultural plants in<br />

Lithuania and the<strong>ir</strong> solution // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1998. 17(3). P. 3–12.<br />

7. Fiss M., Kucheryava n., Schoenherr J., Kollar A., Arnold G., Auling G. Isolation<br />

and characterization of epiphytic fungi from the phyllosphere of apple as potential biocontrol<br />

agents against apple scab (Venturia inaequalis) // Zeitschrift Fuer Pflanzenkrankheiten<br />

und Pflanzenschutz. 2000. 107(1). P. 1–11.<br />

8. Gelvanauskienë D., Stanys V. Rauplëms atspariø obelø sëjinukø atrankos metodø<br />

palyginimas // Þemës ûkio mokslai. 2002. 4. P. 23–27.<br />

9. Gelvonauskis B., Gelvanauskienë D. Inheritance of resistance to powder mildew<br />

and apple blotch in progenies of scab-resistant apple cultivars // Biologija. 2003. 1.<br />

P. 73–76.<br />

10. Jenks M. A., Ashworth E. N. Plant epicuticular waxes: function, production, and<br />

genetics // Horticultural Reviews. 1999. 23. P. 1–68.<br />

11. Krebs Ch. J. Ekologia. Warszava, 2001. 735 p.<br />

12. Krupa S. V. Effects of atmospheric ammonia (NH 3<br />

) on terrestrial vegetation: a<br />

review // Env<strong>ir</strong>onmental Pollution. 2003. 124(2). P. 179–221.<br />

13. Kupcinskienë E., Huttunen S. Long-term evaluation of the needle surface wax<br />

condition of Pinus sylvestris around different industries in Lithuania // Env<strong>ir</strong>onmental<br />

Pollution. 2005. 137(3). P. 610–618.<br />

14. Kupèinskienë E. Latentiniai paprastosios puðies (Pinus sylvestris L.) <strong>ir</strong> kitø augalø<br />

pakitimai lokalios tarðos aplinkoje: hab. darbas. Kaunas, 2003. 102 p.<br />

15. Kupèinskienë E. Needle chemistry of Pinus sylvestris growing in the vicinity of a<br />

cement factory // Biologija. 2000. 2 (Suppl.). P. 299–302.<br />

16. Manion P. D., Lachance D. Forest decline concepts: an overview // Forest decline<br />

concepts, St. Paul, Minesota, USA, 1992. P. 89–102.<br />

17. Mylona S. Sulphur dioxide emissions in Europe in 1880-1991 and the<strong>ir</strong> effect on<br />

sulphur concentrations and depositions // 1996. Tellus, Ser. B. Chemical and Physical<br />

Meteorology. 48. P. 662–689.<br />

18. Perkauskas D., Mikelinskiene A. Evaluation of SO 2<br />

and NO 2<br />

concentration levels<br />

in Vilnius (Lithuania) using passive diffusion samplers // Env<strong>ir</strong>onmental Pollution. 1998.<br />

102 S1 P. 249–<strong>25</strong>2.<br />

19. Pestana M., Varennes de A., Faria E. A. Diagnosis and correction of <strong>ir</strong>on chlorosis<br />

in fruit trees a review // Food, Agriculture and Env<strong>ir</strong>onment. 2003. 1. P. 46–51.<br />

121


20. Raudonis L. Harmful insect fauna in apple orchards and systems of control<br />

means to reduce its harm // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20(1). P. 55–68.<br />

21. Raudonis L. Integrated pest management in fruit orchards in Lithuania // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtat, 2003. 22(3). P. 145–154.<br />

22. Raudonis L., Valiuðkaitë A. Research on pest and disease control in horticultural<br />

plants and its development in Lithuania // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2003.<br />

22(3). P. 3–15.<br />

23. Sutton D. K., MacHardy W. E., Lord W. G. Effects of shredding or treating apple<br />

leaf litter with urea on ascospores does of Venturia inaequalis and disease buildup //<br />

Plant disease. 2000. 84 (12). P. 1319–1326.<br />

24. Ðopauskienë D. A<strong>ir</strong> pollution and deposition // Ozolinèius R (ed.). Monitoring of<br />

forest ecosystems in Lithuania. Kaunas: Lututë, 1999. P. 181–182.<br />

<strong>25</strong>. Titus J. S., Kang S. Nitrogen metabolism, translocation and recycling in apple<br />

trees // Horticultural Reviews. 1982. 4. P. 204–246.<br />

26. Turunen M., Huttunen S. A review of the response of epicuticular wax of conifer<br />

needles to a<strong>ir</strong> pollution // Env<strong>ir</strong>onmental Quality. 1990. 19. P. 35–45.<br />

27. Uselis N., Kviklys D. Lietuvos sodininkystë ðiandien <strong>ir</strong> jos perspektyvos // Ðiuolaikinës<br />

sodininkystës pasiekimai <strong>ir</strong> plëtros kryptys. Babtai, 1999. P. 7–10.<br />

28. Welburn A. R. A<strong>ir</strong> pollution and Acid Rain: the Biological Impact // Longman<br />

Scientific and Technical, London. 1988.<br />

29. Mèð÷èíê Ò. Ã. Ïî÷âåííàÿ ìèêîëîãèÿ. Ìîñêâà, 1988. 279 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EVALUATION OF APPLE DISEASES AND PEST SPREAD<br />

IN DIFFERENT REGIONS OF INDUSTRIAL EMISSION<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys, J. B. Ðikðnianienë, E. Kupèinskienë<br />

Summary<br />

Leaves of apple tree cv. ‘Antonowka’ (Malus domestica L.) growing near the<br />

different industrial centers – oil refinery “Maþeikiø nafta”, cement factory “Akmenës<br />

cementas” and nitrogen fertilizer factory “Achema” – were examined for diseases<br />

and pests damage. Near AB “Akmenës cementas” and AB “Achema” SO 2<br />

<strong>ir</strong> NO 2<br />

concentrations were small and similar to these in unpolluted places of Lithuania, only<br />

near AB “Maþeikiø nafta” SO 2<br />

concentration was higher. The greatest number of<br />

damaged leaves by leaf spot (Phylosticta mali Prill et Del.) was found in Jonava and<br />

Naujoji Akmenë districts in 2005–2006. Apple scab (Venturia inaequalis (Cooke)<br />

Aderh.) was found in Maþeikiai and N. Akmenë districts only. Leaf chlorosis was<br />

more abundant in Maþeikiai and Kaunas surroundings in 2005, but in the next year<br />

the most damaged leaves of this disease was found in Maþeikiai and Naujoji Akmene<br />

districts. The abundance and intensity of diseases was less in 2006, as compared<br />

with 2005. From leaves damaged by leaf spot 4 species of attendant fungus were<br />

distinguished. The damage of leaf chewing pests was found near the all sources of<br />

122


industrial emissions centers, while the most leaf rulers damaged leaves were near<br />

“Maþeikiø nafta” in 2005–2006. Phytophagic and entomophagic mites and thrips<br />

were found in 2006, but the<strong>ir</strong> populations were not abundant. To summarize the data<br />

of two years, we can assume, that apple-tree leaves under elevated industrial emission<br />

are more damaged by pest and diseases as compared to Kaunas surroundings<br />

(control site).<br />

Key words: apple scab, chlorosis, leaf spot, leaf chewing pests, leaf rulers.<br />

123


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

DRËKINIMO ÁTAKA ‘SENGA SENGANA’ BRAÐKËMS<br />

Laima TAPARAUSKIENË<br />

Lietuvos þemës ûkio universitetas, Universiteto g. 10, LT-53361, Akademija,<br />

Kauno r., el. paðtas ltlaima@hotmail.com<br />

2001–2004 m. Kauno rajone buvo atlikti eksperimentiniai drëkinimo reþimo tyrimai.<br />

T<strong>ir</strong>ta drëkinimo átaka ‘Senga Sengana’ veislës braðkiø ûkiniams <strong>ir</strong> biologiniams<br />

rodikliams. Nustatyta, kad drëkinimas turëjo didelës átakos suminio derliaus priedui,<br />

vidutinei uogos masei, dauginimosi rodikliams bei lapo asimiliacinio pav<strong>ir</strong>ðiaus plotui,<br />

todël Lietuvos klimato sàlygomis braðkes drëkinti yra tikslinga. 2001–2004 m. vidutinis<br />

derlius nedrëkinant buvo 7,8 t/ha, o drëkinant – 8 t/ha (70–100 proc. LDI) <strong>ir</strong><br />

10,8 t/ha (80–100 proc. LDI). Vidutinë vienos uogos masë nedrëkinant buvo 7,3 g,<br />

palaikant d<strong>ir</strong>voþemio drëgmæ nuo 70 iki 100 proc. LDI– 7,9 g, o nuo 80 iki 100 proc.<br />

LDI – 8,2 g. Optimalios d<strong>ir</strong>voþemio drëgmës sàlygomis (80–100 proc. LDI) vieno<br />

braðkiø kero uþaugintø skroteliø skaièius buvo 2,5 karto didesnis nei nedrëkinant.<br />

Reikðminiai þodþiai: d<strong>ir</strong>voþemio drëgmë, derlius, uogø dydis.<br />

Ávadas. Braðkës yra vienos sausrai jautriausiø sodo augalø <strong>ir</strong> iðsisk<strong>ir</strong>ia padidintu<br />

drëkinimo poreikiu, nes turi negilià ðaknø sistemà <strong>ir</strong> didelë dalis vandens sunaudojama<br />

suminiam iðgaravimui (Àôàíàñèê <strong>ir</strong> kt., 2000). Braðkiø veislës savybës, sodinamosios<br />

medþiagos kokybë, d<strong>ir</strong>voþemis, augimo vieta, tinkama agrotechnika, áskaitant<br />

drëkinimà, ûkiø specializacija <strong>ir</strong> koncentracija braðkynø derlingumui padidinti<br />

turi labai svarbià reikðmæ (Strabioli, 1988; Àôàíàñèê <strong>ir</strong> kt., 2000).<br />

Teigiamà drëkinimo poveiká braðkiø augimui, jø ûsø vystymuisi <strong>ir</strong> derliaus dydþiui<br />

Naumanno apraðë jau 1961 m. Tai patv<strong>ir</strong>tinta <strong>ir</strong> vëliau uþsienio ðalyse atliktais<br />

moksliniais tyrimais. Braðkiø drëkinimo reþimo tyrimai buvo atliekami <strong>ir</strong> kaimyninëse<br />

ðalyse. Rusijoje nustatyta, kad dël drëgmës trûkumo þydëjimo <strong>ir</strong> uogø mezgimo laikotarpiu<br />

labai sumaþëja uogø dydis <strong>ir</strong> bendras derlius (Ðû÷êîâ è Îëåôèð, 1972).<br />

Lacgalvis (2003) teigia, kad, norint gauti didþiausià <strong>ir</strong> geros kokybës derliø, ðiauriau<br />

esanèioje kaimyninëje Latvijoje laistyti braðkes bûtina. Lenkijoje, esant vidutinëms<br />

(pagal daugiametes normas) oro sàlygoms, drëkinimas gali padidinti braðkiø derliø<br />

30–50 proc. (Rebandel, 1974). 1992–1995 m. atlikæ tyrimus, Rolbiecki <strong>ir</strong> Rzekanowski<br />

(1997) teigë, kad braðkiø auginimas bus naðus tik árengus drëkinimo sistemà.<br />

Ðiaurinëse ðalyse – Norvegijoje, Ðvedijoje <strong>ir</strong> Suomijoje braðkës taip pat drëkinamos.<br />

Norvegijoje, Kondsrud (1978) duomenimis, lietinamø braðkiø derlius buvo didesnis<br />

32 proc., o taikant laðeliná drëkinimà – 23 proc. nei nedrëkinamø. Suomijoje, kaip <strong>ir</strong><br />

124


Lietuvoje, krituliø kiekis v<strong>ir</strong>ðija suminio iðgaravimo dydá, bet vegetacijos laikotarpiai<br />

taip pat bûna sausringi, tuomet braðkes rekomenduojama drëkinti. Kinnanen <strong>ir</strong><br />

Säkö (1979) tyrimais Suomijoje nustatë, kad lietinamø braðkiø uogos bûna daug<br />

stambesnës.<br />

Lietuvoje plaèiausiai buvo t<strong>ir</strong>iama áva<strong>ir</strong>iø veisliø bei agrotechniniø priemoniø átaka<br />

braðkiø augimui, vystymuisi, derliaus dydþiui, atsparumas ligoms bei kenkëjams,<br />

taèiau braðkiø drëkinimas Lietuvoje iki ðiol t<strong>ir</strong>tas nebuvo. Nors Lietuvos spaudoje<br />

galima rasti informacijos apie braðkëms optimalø d<strong>ir</strong>voþemio drëgmës reþimà, taèiau<br />

tai tik rekomendacijos, pagrástos uþsienio ðalyse atliktais tyrimais.<br />

Lietuva yra periodinës drëgmës pertekliaus zonoje, todël p<strong>ir</strong>miausia yra aktualus<br />

þemiø sausinimas, taèiau moksliniais tyrimais nustatyta, kad vasaros laikotarpiais<br />

drëkinimas yra bûtinas, nes vidutiniðkai kas ketveri metai Lietuvoje bûna sausra, be<br />

to, augalams drëgmës trûksta ne tik sausringais <strong>ir</strong> vidutinio drëgnumo metais, bet <strong>ir</strong><br />

labiau drëgnais metais (D<strong>ir</strong>së <strong>ir</strong> kt. 1984; D<strong>ir</strong>së, 2001).<br />

Darbo tikslas – ávertinti drëkinimo tikslingumà Lietuvos klimato sàlygomis <strong>ir</strong><br />

nustatyti drëkinimo átakà braðkiø ûkiniams <strong>ir</strong> biologiniams rodikliams.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimø objektas. 2001–2004 m. lauko eksperimentiniais<br />

tyrimais buvo t<strong>ir</strong>ta drëkinimo átaka ‘Senga Sengana’ veislës braðkiø derlingumui,<br />

vienos uogos masei, dauginimosi savybëms bei lapo asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotui.<br />

Tyrimø schema. Apskaitinio (derliui apskaièiuoti) bandymø laukelio plotas – 20 m 2<br />

(Ìàðêîâ, 1985). Sodinimo schema – eilëmis, 0,8 × 0,3 m (daigø skaièius 1 ha –<br />

41 666 vnt.). Visi bandymø laukeliai iðdëstyti vienas greta kito viena eile, tarp laukeliø<br />

paliekat sk<strong>ir</strong>iamàsias juostas, kad bûtø iðvengta átakos. P<strong>ir</strong>maisiais <strong>ir</strong> treèiaisiais drëkinimo<br />

reþimo tyrimø metais bandymø laukeliuose augo <strong>ir</strong> derëjo antrøjø <strong>ir</strong> treèiøjø<br />

augimo metø braðkës, o ketv<strong>ir</strong>taisiais tyrimø metais (2004 m.) – p<strong>ir</strong>møjø augimo<br />

metø braðkës (sodinta 2003 m. rugpjûèio 6 d.). Visos agrotechninës priemonës pas<strong>ir</strong>inktos<br />

atsiþvelgiant á braðkiø auginimo technologijas (Uselis <strong>ir</strong> Raðinskienë, 2000;<br />

Intensyvios..., 2002; Darrow, 1966). D<strong>ir</strong>vos cheminiø savybiø analizë atlikta Lietuvos<br />

þemd<strong>ir</strong>bystës instituto Agrocheminiø tyrimø centre. D<strong>ir</strong>voþemis vidutinio humusingumo<br />

– 2,34–2,89 proc. (t<strong>ir</strong>ta Hereus aparatu), pH kinta nuo 6,9 iki 7,1, bendras<br />

azoto kiekis – 0,18–0,22 proc. (nustatytas Kjeldalio metodu), P 2<br />

O 5<br />

– 194–280 mg kg -1 ,<br />

K 2<br />

O – 267–272 mg kg -1 . Prieð áveisiant braðkynà, buvo áterpta 60 t ha -1 mëðlo. Kitais<br />

augimo metais braðkës træðtos bechlorëmis kompleksinëmis tràðomis Kem<strong>ir</strong>a Cropcare<br />

10-10-20 (NPK): pavasará <strong>ir</strong> po derliaus nuëmimo po 30 g m -2 . Piktþolës naikintos<br />

ravint bei purenant tarpueilius. Nuo kekerinio puvinio (Botrytis cinerea) augalai<br />

purkðti 0,2% eupareno skiediniu, p<strong>ir</strong>mà kartà þydint 10 proc. þiedø, antrà<br />

kartà – 50 proc. þiedø.<br />

Tyrimø metodika. Drëkinimo reþimo tyrimø lauko bandymams buvo pas<strong>ir</strong>inkta<br />

literatûroje (D<strong>ir</strong>së <strong>ir</strong> kt., 1984) rekomenduota schema: liejimo norma vegetacijos laikotarpiu<br />

kintanti (atsiþvelgiant á ðaknø vystymosi dinamikà) <strong>ir</strong> visiems bandymo variantams<br />

vienoda. Sodinant braðkes, liejimo norma lygi 10 mm, po vieno mënesio –<br />

15 mm, dar po mënesio – 20 mm. Tokio dydþio (20 mm) liejimo norma taikyta visà<br />

tolesná braðkiø auginimo laikotarpá. Pagal d<strong>ir</strong>voþemio augalinio sluoksnio drëgmæ nustatyti<br />

du liejimo variantai. P<strong>ir</strong>mojo varianto laukeliai buvo liejami pagal teorines for-<br />

1<strong>25</strong>


mules (Êîñòåêîâ, 1960) apskaièiuotu reþimu, kad prieð laistant drëgmë aktyviajame<br />

d<strong>ir</strong>voþemio sluoksnyje (0–30 cm) bûtø artima 70 proc. LDI, antrojo – 80 proc. LDI.<br />

Drëkinimo veiksmingumui nustatyti buvo atlikti kontrolinio varianto – be papildomo<br />

drëkinimo, natûraliomis sàlygomis – tyrimai. Atlikdami drëkinimo reþimo tyrimus,<br />

kiti tyrëjai pas<strong>ir</strong>enka variantà, kai liejama d<strong>ir</strong>voþemio drëgmei sumaþëjus iki 60 proc.<br />

LDI. Atliekant ðiuos bandymus, buvo atsiþvelgta á rekomendacijas (Ìàðêîâ, 1985;<br />

Ãîë÷åíêî <strong>ir</strong> kt., 1985) <strong>ir</strong> prieð liejant braðkes pas<strong>ir</strong>inkta optimali 70 proc. LDI drëgmë.<br />

Maksimali leidþiama d<strong>ir</strong>voþemio drëgmës riba prilyginta v<strong>ir</strong>ðutinei optimalios drëgmës<br />

ribai – LDI. D<strong>ir</strong>voþemio drëgmës atsargos buvo nustatytos termostatiniu metodu.<br />

D<strong>ir</strong>voþemio ëminiai imti Izmailovskio tipo gràþtu kas 10 cm iki 60 cm gylio. Visi<br />

lauko bandymai atlikti trimis pakartojimais. Tyrimø laikotarpiu braðkës buvo drëkinamos<br />

lietinant.<br />

Braðkiø ûsø skaièius nustatytas pagal bendrà kieká kere <strong>ir</strong> skroteliø skaièiø. Lapø<br />

pav<strong>ir</strong>ðiaus plotas yra vienas ið augimo <strong>ir</strong> produktyvumo rodikliø. Atliekant tyrimus<br />

naudota lapø ploto matavimo kompiuterine programa Rootedge (Pranckietis <strong>ir</strong> Lanauskas,<br />

2001).<br />

Braðkiø derlius nustatytas tiesioginiu svorio metodu, sverta elektroninëmis svarstyklëmis<br />

1g tikslumu. Uogos skintos kas 2–3 dienas, tà paèià dienà visø bandymo<br />

variantø laukeliuose. Vienos uogos masë nustatyta kiekvieno skynimo metu sveriant<br />

100 atsitiktinai paimtø uogø. Duomenø patikimumas ávertintas statistiniais metodais.<br />

Variantø sk<strong>ir</strong>tumams ávertinti naudotas 5 proc. LSD (R 05<br />

) kriterijus.<br />

Darbo rezultatai <strong>ir</strong> jø aptarimas. T<strong>ir</strong>iamojo laikotarpio meteorologinës sàlygos.<br />

Augalø aprûpinimas drëgme daþniausiai vertinamas netiesioginiu metodu pagal<br />

G. Seleninovo hidroterminá koeficientà HTK (D<strong>ir</strong>së <strong>ir</strong> kt., 1984). Vertintas geguþës–<br />

rugsëjo mën. laikotarpis. 2001 m. buvo ðilti (vidutinë oro temperatûra T – 15,3°C),<br />

bet lietingi: HTK – 1,67, krituliø kiekis (H) – 378 mm (30 proc. tikimybë), oro drëgmës<br />

deficitas maþas – 4,6 mb. 2002 m. buvo ypaè ðilta (17,3° C) <strong>ir</strong> nepakankamai<br />

drëgna: HTK – 0,91, H – 234 mm (90 proc. tikimybë), oro drëgmës deficitas didelis –<br />

8,3 mb, net 3,4 mb didesnis uþ daugiametæ normà. Ðilta (15,8°C) <strong>ir</strong> pakankamai<br />

drëgna buvo 2003 m.: HTK – 1,3, H – 302 mm (64 proc. tikimybë), oro drëgmës<br />

deficitas vidutinis – 5,4 mb. Pagal daugiametæ vidutinæ oro temperatûrà 2004 m.<br />

metais buvo vësu (14,5°C) <strong>ir</strong> ðlapia: HTK – 1,62, H – 313 mm (60 proc. tikimybë),<br />

oro drëgmës deficitas maþas – 4,4 mb. Apþvelgus meteorologiniø sàlygø kaità t<strong>ir</strong>iamuoju<br />

laikotarpiu galima teigti, kad tyrimø laikotarpiu meteorologiniø sàlygø kaita<br />

atitiko bendràsias Lietuvos teritorijai bûdingas klimato sàlygas bei pasisk<strong>ir</strong>stymo tendencijas<br />

pagal vegetacijos laikotarpio drëgnumà (D<strong>ir</strong>së, 2001), tai leido áva<strong>ir</strong>iapusiðkiau<br />

ávertinti drëkinimo átakà braðkiø vystymuisi.<br />

Drëkinimo átaka braðkiø derliui. Ðlapiais 2001 m. uogos skintos nuo b<strong>ir</strong>þelio<br />

mën. 13 d. iki liepos mën. 13 d. 2000 m. braðkiø þiedø diferenciacijos metu drëkinimo<br />

reþimo tyrimai atlikti nebuvo, tad ðio laikotarpio d<strong>ir</strong>voþemio drëgmës reþimo átaka<br />

2001 m. derliui buvo vienoda visuose bandymø laukuose. Taip pat, atsiþvelgiant á tai,<br />

kad 2001 m. lieti nereikëjo (natûralios d<strong>ir</strong>voþemio drëgmës atsargos buvo optimalios<br />

braðkëms augti), visø variantø vidutinis braðkiø derlius buvo vienodas, bandymø laukeliuose<br />

kito nuo 9,9 iki 10,1 t ha -1 (1 lentelë).<br />

126


Tyrimø metai<br />

Year of<br />

investigation<br />

1 lentelë. Vidutinis braðkiø derlius, t ha -1<br />

Table 1. The average yield of strawberry (t·ha -1 )<br />

nedrëkinta<br />

(kontrolë)<br />

Non <strong>ir</strong>rigated<br />

(control)<br />

derlius<br />

yield<br />

2001 9,9–10,1<br />

derlius<br />

yield<br />

*<br />

p<strong>ir</strong>møjø augimo metø / the f<strong>ir</strong>th growth year; 1 – stebëjimø vidurkis, iðskyrus 2004 <strong>ir</strong> 2003 * m. /<br />

the average without 2004 and 2003 * years; LDI / FC – lauko drëgmës imlumas/ field capacity<br />

127<br />

Variantai<br />

Treatments<br />

drëkinta<br />

<strong>ir</strong>rigated<br />

80–100% LDI / FC 70–100% LDI / FC<br />

± %<br />

derlius<br />

yield<br />

± %<br />

2002 9,9 12,2 2,3 123,2 10,6 0,7 107,1<br />

2003 6,3 12,9 6,6 204,8 7,9 1,6 1<strong>25</strong>,4<br />

Liejimo átaka iðryðkëjo tik 2002 <strong>ir</strong> 2003 m. Sausais <strong>ir</strong> ðiltais 2002 m. dël ankstyvos<br />

vegetacijos pradþios p<strong>ir</strong>mosios uogos sunoko jau geguþës mën. paskutinëmis dienomis.<br />

Derëjimas truko iki b<strong>ir</strong>þelio mën. treèiojo deðimtadienio. Vidutinis kontrolinio varianto<br />

braðkiø derlius buvo 9,9 t ha -1 . Antrojo varianto braðkiø derlius (80–100 proc.<br />

LDI) buvo didesnis 23,2 proc. (2,3 t ha -1 ) uþ kontrolinio (nedrëkinta) varianto derliø,<br />

o p<strong>ir</strong>mojo (70–100 proc. LDI) – 7,1 proc. (0,7 t ha -1 ). Ávertinus 2001 m. d<strong>ir</strong>voþemio<br />

drëgmës sàlygas þiediniø pumpurø diferenciacijos laikotarpiu <strong>ir</strong> þinant, kad palankus<br />

d<strong>ir</strong>voþemio drëgmës reþimas antrojoje vegetacijos pusëje turi didelës átakos kitø metø<br />

derliui (Smith <strong>ir</strong> kt., 1999), galima teigti, kad tai <strong>ir</strong> lëmë nedidelá derliaus priedà 2002 m.<br />

(nes 2001 m. braðkiø laistyti nereikëjo). Vidutinio drëgnumo 2003 metais treèiøjø<br />

derëjimo metø braðkyne uogos skintos nuo b<strong>ir</strong>þelio mën. 13 iki liepos 12 d. Ðiais<br />

metais derliaus sk<strong>ir</strong>tumas tarp variantø buvo didþiausias (nuo 1,6 iki 6,6 t ha -1 ).<br />

Antrojo varianto (80–100 proc. LDI) derlius buvo 12,9 t ha -1 didesnis (5 t ha -1 ) uþ<br />

p<strong>ir</strong>mojo varianto (70–100 proc. LDI) derliø – 7,9 t ha -1 <strong>ir</strong> dvigubai didesnis uþ kon-<br />

2004 16,7 23,3 6,6 139,5 - - -<br />

2003 * 1,0 1,5 0,5 150,0 - - -<br />

2004 * 3,1 4,8 1,7 154,8 3,3 0,2 106,5<br />

Vidutinis visø 7,8 10,8 3,0 137,7 8,0 1 0,2 1 113,0 1<br />

metø<br />

The average of all<br />

(R 05 – 3,04)<br />

(R 05 – 1,05)<br />

years<br />

Vidutinis,<br />

išskyrus 1- p<strong>ir</strong>muosius<br />

augimo 10,7 14,6 3,9 136,1 9,52 1 1,2 1 116,2 1<br />

metus<br />

The average<br />

without the f<strong>ir</strong>st<br />

growth year<br />

(R 05 – 5,1)<br />

(R 05 – 1,76)<br />

Vidutinis 1- p<strong>ir</strong>maisiais<br />

augimo 2,1 3,2 1,1 153,7 - - -<br />

metais<br />

(R 05 – 7,6)<br />

The average of the<br />

f<strong>ir</strong>st growth year


trolinio (nedrëkinta) varianto – 6,3 t ha -1 . P<strong>ir</strong>mojo varianto derlius buvo <strong>25</strong>,4 proc.<br />

(1,6 t ha -1 ) didesnis uþ kontrolinio, bet 39 proc. (5 t ha -1 ) maþesnis uþ antrojo varianto<br />

derliø. Toká derliaus priedà lëmë palankus d<strong>ir</strong>voþemio drëgmës reþimas 2002 m.<br />

rugpjûèio–rugsëjo mën., nes visos kitos agrotechninës sàlygos buvo vienodos visuose<br />

laukeliuose.<br />

2003 m. buvo atliekami p<strong>ir</strong>møjø augimo metø braðkiø fiziologiniai tyrimai, taip pat<br />

palygintas derlius <strong>ir</strong> vidutinë vienos uogos masë. Rekomenduojama braðkes auginti<br />

trejus metus, taèiau gausiausiai jos dera antraisiais <strong>ir</strong> treèiaisiais augimo metais. Bandymø<br />

lauke nedrëkinamø braðkiø derlius buvo 1,0 t ha -1 , o drëkinamø (80–100 proc.<br />

LDI) – 1,5 t ha -1 (didesnis 14,6 proc.). P<strong>ir</strong>møjø metø derlius nustatytas <strong>ir</strong> 2004<br />

metais p<strong>ir</strong>møjø augimo metø braðkyne. P<strong>ir</strong>mosios uogos sunoko b<strong>ir</strong>þelio mën. 11 d.,<br />

o paskutinës uogos nuskintos liepos mën. 16 d. Gautas negausus derlius (1 lentelë):<br />

p<strong>ir</strong>møjø augimo metø braðkiø derlius nedrëkinant (kontrolë) buvo 3,1 t ha -1 , p<strong>ir</strong>mojo<br />

varianto – 3,3 t ha -1 , o antrojo – 4,8 t ha -1 , arba atitinkamai 6,5 <strong>ir</strong> 54,8 proc. didesnis<br />

uþ kontrolinio (nedrëkinta) varianto derliø.<br />

2004 metais antrøjø augimo metø derlius gautas tik fiziologiniø tyrimø laukeliuose,<br />

kuriuose drëkinimo reþimas palaikytas nuo 80 iki 100 proc. LDI. Antraisiais braðkiø<br />

augimo metais nedrëkinant gautas 16,7 t ha -1 derlius, o laistant – 23,3 t ha -1 . Braðkiø<br />

derliaus priedas optimaliomis d<strong>ir</strong>voþemio drëgmës sàlygomis buvo 139,5 proc., palyginti<br />

su nedrëkinamu bandymø variantu.<br />

Apibendrinus visø tyrimø metø (2001–2004 m.) rezultatus, vidutinis kontrolinio<br />

(nedrëkinta) varianto derlius buvo 7,8 t ha -1 , p<strong>ir</strong>mojo (70–100 proc. LDI) varianto<br />

– 8 t ha -1 , o antrojo (80–100 proc. LDI) varianto – 10,8 t ha -1 . Palaikant<br />

d<strong>ir</strong>voþemio drëgmæ 80–100 proc. LDI, braðkiø derliaus priedas, palyginti su kontrole,<br />

gautas didþiausias – 3 t ha -1 (137,7 proc., palyginti su nedrëkinamu bandymø<br />

variantu), antraisiais <strong>ir</strong> treèiaisiais braðkiø derëjimo metais derliaus priedas buvo<br />

3,9 t ha -1 (136,1 proc., palyginti su nedrëkinamu bandymø variantu), o p<strong>ir</strong>maisiais –<br />

1,1 t ha -1 (153,7 proc., palyginti su nedrëkinamu bandymø variantu).<br />

Drëkinimo átaka vienos uogos masei. Auginant braðkes, svarbu ne tik gausus<br />

uogø derlius, bet <strong>ir</strong> jø kokybë. Vienas ið kokybës rodikliø – vidutinë uogos masë,<br />

kurià nulemia agrotechnika, aplinkos sàlygos <strong>ir</strong> veislës savybës (Uselis, 1996). Drëkinimo<br />

átaka vienos uogos masei t<strong>ir</strong>ta visais tyrimø metais. 2001 m. braðkiø þydëjimo<br />

<strong>ir</strong> uogø mezgimo bei derëjimo laikotarpiu braðkës nelaistytos (pakako atmosferos<br />

krituliø). Vidutinë vienos uogos masë 2001 m. buvo 10,9–11,0 g. Gauti variantø<br />

vidurkiø sk<strong>ir</strong>tumai neesminiai (2 lentelë).<br />

2002 m. braðkës lietos þydëjimo <strong>ir</strong> uogø nokimo laikotarpiu, tai turëjo átakos<br />

uogø dydþiui visà derëjimo laikotarpá (1 pav.).<br />

Uogos pagal vidutinæ vienos uogos masæ sk<strong>ir</strong>stomos á smulkias (iki 5 g), vidutinio<br />

stambumo (5–10 g) <strong>ir</strong> stambias (10 g <strong>ir</strong> daugiau) (Intensyvios..., 2002). Kontrolinio<br />

varianto vidutinë vienos uogos masë buvo 7,7 g, p<strong>ir</strong>mojo varianto (70–100 proc.<br />

LDI) – 8,4 g, o antrojo (80–100 proc. LDI) – 9,4 g. Antrojo varianto viena uoga<br />

svërë vidutiniðkai 1,0 g daugiau (2 lentelë) nei p<strong>ir</strong>mojo varianto (palyginti su kontroliniu<br />

– 1,7 g). Nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

tarp kontrolinio <strong>ir</strong> antrojo<br />

(80–100 proc. LDI) variantø buvo 0,73; lyginant kontroliná variantà su p<strong>ir</strong>muoju<br />

(70–100 proc. LDI) variantu R 05<br />

– 0,6, lyginant drëkinamus variantus – 0,58. Drëkinimas<br />

vienos uogos masës dydþiui átakos turëjo, sk<strong>ir</strong>tumai tarp variantø esminiai.<br />

128


1 pav. Vidutinë vienos uogos masë 2002 m.<br />

Fig. 1. The average weight of single berry in 2002 harvesting period of strawberry<br />

Tyrimø<br />

metai<br />

Year of<br />

investigation<br />

Vidurkis<br />

Average<br />

Nedrëkinta<br />

Non <strong>ir</strong>rigated<br />

2 lentelë. Vidutinë uogos masë, g<br />

Table 2. Average berry weight (g)<br />

Sk<strong>ir</strong>tumas tarp<br />

variantø<br />

Difference between<br />

treatments<br />

Drëkinta<br />

Irrigated<br />

70–100%<br />

129<br />

Patikimumas<br />

Signification<br />

± % F fakt . F 05 R 05<br />

LDI / FC<br />

1 2 3 4 5 6 7 8<br />

2001 10,9 11,0 0,1 100,9 0,1 5,12 0,69<br />

2002 7,7 8,4 0,7 109,5 8,22 * 5,59 0,60<br />

2003 4,7 6,2 1,5 131,3 20,55 ** 4,96 0,72<br />

2004* 6,8 7,0 0,1 102,0 0,24 4,6 0,59<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

7,3 7,9 0,60 110,9 11,46 ** 4,07 0,34<br />

Nedrëkinta<br />

Non <strong>ir</strong>rigated<br />

Drëkinta<br />

Irrigated<br />

80–100%<br />

LDI / FC<br />

± % F fakt . F 05 R 05<br />

1 2 3 4 5 6 7 8<br />

2001 10,9 11,0 0,1 100,9 0,1 5,12 0,69<br />

2002 7,7 9,4 1,7 121,9 29,67 ** 5,59 0,73<br />

2003 4,7 6,6 1,9 140,9 21,98 ** 4,96 0,92<br />

2004 8,2 8,7 0,6 106,7 5,38 * 4,6 0,51<br />

2003* 5,2 6,9 1,7 133,3 10,32 ** 5,12 1,22<br />

2004* 6,8 7,5 0,7 109,0 3,49 4,6 0,71<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

7,1 8,2 1,1 118,8 39,1 ** 3,98 0,33


Drëkinta<br />

Irrigated<br />

± % F<br />

70–100% 80–100%<br />

fakt . F 05<br />

R 05<br />

LDI / FC LDI / FC<br />

1 2 3 4 5 6 7 8<br />

2002 8,4 9,4 1,0 111,3 14.81 ** 2,36 0,58<br />

2003 6,2 6,6 0,5 107,3 3,52 4,96 0,54<br />

2004* 7,0 7,5 0,5 106,9 2,49 4,60 0,657<br />

Vid. uogos<br />

masë<br />

Average berry<br />

weight<br />

2 lentelës tæsinys<br />

7,19 7,81 0,6 108,5 12,33 ** 4,14 0,34<br />

*<br />

p<strong>ir</strong>møjø augimo metø / the f<strong>ir</strong>st growth year; LDI / FC – lauko drëgmës imlumas / field capacity<br />

2003 m. braðkës lietos þydëjimo pabaigoje (antrasis variantas 80–100 proc.<br />

LDI) – uogø nokimo (p<strong>ir</strong>masis variantas 70–100 proc. LDI) laikotarpiu. Vidutinis<br />

vienos uogos masës sk<strong>ir</strong>tumas tarp kontrolinio (nedrëkinta) <strong>ir</strong> p<strong>ir</strong>mojo varianto<br />

(70–100 proc. LDI) laukeliø buvo 1,5 g, o tarp kontrolinio <strong>ir</strong> antrojo – 1,9 g<br />

(2 lentelë). Nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

tarp kontrolinio <strong>ir</strong> p<strong>ir</strong>mojo varianto<br />

– 0,72, o tarp kontrolinio <strong>ir</strong> antrojo – 0,92. Drëkinimas turëjo átakos abiem<br />

variantams. Palyginti su ankstesniais metais (2001 <strong>ir</strong> 2002 m.), uogos buvo smulkesnës,<br />

tam átakos turëjo augalø fiziologinis amþius (tretieji augimo metai). Kontrolinio <strong>ir</strong><br />

drëkinamø variantø buvo stambios tik p<strong>ir</strong>mojo skynimo uogos (> 10 g) (2 pav.).<br />

2 pav. Vidutinë vienos uogos masë 2003 m. – treèiaisiais braðkiø augimo metais<br />

Fig. 2. The average weight of single berry in 2003 harvesting period of strawberry<br />

Antrojo rinkimo metu kontrolinio varianto uogos buvo vidutinio stambumo (5–<br />

10 g), o vëliau vidutinë vienos uogos masë buvo maþesnë nei 5 g (smulkios uogos).<br />

Drëkinant vidutinio stambumo uogos skintos iki b<strong>ir</strong>þelio mën. pabaigos. 2003 m. –<br />

p<strong>ir</strong>møjø augimo metø vidutinë vienos uogos masë drëkinant buvo 6,9 g, o nedrëki-<br />

130


nant – 5,2 g. Drëkinamø braðkiø uogos buvo didesnës vidutiniðkai 1,7 g. Drëkinimo<br />

átaka buvo didelë – nustatytas variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

– 1,22.<br />

2004 m. antrojo varianto braðkiø laukeliai lieti uogoms nokstant (80–100 proc.<br />

LDI), p<strong>ir</strong>mojo varianto laukeliai lieti tik po derliaus nuëmimo. P<strong>ir</strong>møjø augimo metø<br />

kontrolinio varianto vidutinë vienos uogos masë buvo 6,8 g, p<strong>ir</strong>mojo varianto –<br />

7,0 g, o antrojo – 7,5 g. Nors antrojo varianto (80–100 proc. LDI) vidutinë vienos<br />

uogos masë buvo didesnë 0,7 g, taèiau ðis sk<strong>ir</strong>tumas, esant 95 proc. tikimybës lygiui,<br />

neesminis. Variantø sk<strong>ir</strong>tumo kriterijus R 05<br />

– 0,71. 2004 m. – antrøjø augimo<br />

metø vidutinë vienos uogos masë nedrëkinant buvo 8,2 g, o drëkinant (80–100 proc.<br />

LDI) – 8,7 g, arba 0,5 g didesnë, taèiau pagal statistiná Fiðerio patikimumo kriterijø<br />

ðis sk<strong>ir</strong>tumas esminis esant 95 proc. tikimybei, R 05<br />

– 0,61.<br />

Apibendrinus visø tyrimø metø duomenis, vidutinë vienos uogos masë nedrëkinant<br />

buvo 7,3 g, p<strong>ir</strong>mojo varianto (70–100 proc. LDI) – 7,9 g, o antrojo (80–100 proc.<br />

LDI) – 8,2 g. Sk<strong>ir</strong>tumas tarp kontrolinio <strong>ir</strong> p<strong>ir</strong>mojo variantø vidutinës vienos uogos<br />

masës buvo 0,6 g (R 05<br />

– 0,34), o tarp kontrolinio <strong>ir</strong> antrojo variantø – 1,1 g (R 05<br />

–<br />

0,33). Palyginus drëkinamø variantø vidutinës vienos uogos masës sk<strong>ir</strong>tumus nustatyta,<br />

kad sk<strong>ir</strong>tumas esminis buvo tik 2002 m. (sk<strong>ir</strong>tumas – 1 g, R 05<br />

– 0,58).<br />

Drëkinimo átaka braðkiø dauginimosi savybëms. Ûsø augimo intensyvumo kitimas<br />

priklauso nuo braðkiø veislës, sodinimo laiko, kerelio amþiaus bei augimo sàlygø.<br />

P<strong>ir</strong>møjø metø derliø lemia sodinimo terminai <strong>ir</strong> daigø kokybë. Pagal privalomuosius<br />

I rûðies reikalavimus versliniams braðkynams veisti liepos–rugpjûèio mën. sodinamoji<br />

medþiaga turi turëti ne maþiau kaip 3 lapus, ðaknys turi bûti ne trumpesnës<br />

kaip 4 cm; rugsëjo-spalio mën. – 4 lapus <strong>ir</strong> 6 cm ilgio ðaknis (Intensyvios..., 2002).<br />

Drëkinimo átaka braðkiø ûsø <strong>ir</strong> skroteliø vystymuisi buvo t<strong>ir</strong>ta 2003 m. natûraliomis<br />

sàlygomis (kontrolë) <strong>ir</strong> palaikant optimalias d<strong>ir</strong>voþemio drëgmës atsargas<br />

(80–100 proc. LDI). Duomenys pateikti 3 lentelëje, vardiklyje pateiktas vidutinis,<br />

skaitiklyje – maþiausias <strong>ir</strong> didþiausias braðkiø ûsø <strong>ir</strong> skroteliø kiekis.<br />

Drëkinto tyrimø varianto visi t<strong>ir</strong>ti rodikliai buvo aukðtesni, palyginti su nedrëkintu.<br />

Rugpjûèio mën. pradþioje abiejuose variantuose nebuvo skroteliø, kurios atitiktø I<br />

rûðies reikalavimus. Po mënesio vidutiniðkai vienas nedrëkinamo varianto braðkiø<br />

keras uþaugino po 1-à I rûðies skrotelæ, o drëkinamo – po 7 skroteles. II rûðies<br />

vidutinis skroteliø skaièius rugpjûèio pradþioje nedrëkinat buvo 3,2, o drëkinant –<br />

7,2. Rugsëjo mën. pradþioje vidutinis vieno kero skroteliø kiekis nedrëkinant buvo<br />

8,5 <strong>ir</strong> 15 drëkinant. Vieno drëkinamo varianto braðkiø kero uþaugintø skroteliø skaièius<br />

buvo 2,5 karto didesnis nei nedrëkinamo varianto. Sk<strong>ir</strong>tumas pagal Stjudento<br />

kriterijø esminis esant 95 proc. tikimybës lygmeniui.<br />

Drëkinimo átaka braðkiø lapø asimiliaciniam pav<strong>ir</strong>ðiui. Lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas – vienas ið braðkiø vystymosi rodikliø. Braðkiø lapai pradeda intensyviai<br />

formuotis <strong>ir</strong> augti, kai oro temperatûra aukðtesnë kaip + 5°C. Kai braðkës þydi, lapai<br />

auga lëèiau, o uogø nokimo laikotarpiu jie beveik neauga. Antroji lapø augimo banga<br />

prasideda po derliaus nuëmimo. Pagal Darrow (1966) lapø plotas tiesiogiai susijæs su<br />

ateinanèiø metø uogø skaièiumi. Átakos turi <strong>ir</strong> lapø skaièius, nes kuo daugiau lapø,<br />

tuo daugiau suformuojama þiedynø. Taigi, kuo didesnis lapø plotas bei jø asimiliacinis<br />

pav<strong>ir</strong>ðius, tuo didesnis uogø kiekis. Braðkiø ragelis, spalio mën. turintis iki dviejø<br />

lapø, pajëgus uþauginti vienà þiedynà su 3–5 uogomis, o 15 lapø turintis augalas gali<br />

131


08 06<br />

09 06<br />

08 06<br />

09 06<br />

3 lentelë. Vidutinis sodinamosios medþiagos kiekis ið braðkiø kero 2003 m.<br />

Table 3. The average of runner production from single strawberry plant 2003<br />

Data<br />

Date<br />

kiekis, vnt.<br />

number, units<br />

9,5<br />

7–12<br />

9,8<br />

6–13<br />

13,2<br />

9–17<br />

17,3<br />

12–24<br />

Braðkiø ûsai<br />

Runner<br />

ilgis, cm<br />

length (cm)<br />

I rûðis<br />

the f<strong>ir</strong>st class<br />

Nedrëkinami<br />

Non <strong>ir</strong>rigated<br />

36,1 0<br />

28,2–49,4 0<br />

36,5 1<br />

26,8–40,9 0–2<br />

Drëkinami (80–100 % LDI)<br />

Irrigated 80–100% FC<br />

40,7 0<br />

34,4–43,2 0<br />

42,5 7<br />

30,1–47,7 5–8<br />

Skrotelës, vnt.<br />

Rosettes<br />

II rûšis<br />

the second class<br />

3,2<br />

1–7<br />

8,5<br />

6–10<br />

7,2<br />

5–9<br />

15<br />

11–24<br />

be ðaknø<br />

no roots<br />

3,2<br />

0–5<br />

4,6<br />

1–6<br />

5,5<br />

3–8<br />

6,7<br />

5–11<br />

Vidutinis sk<strong>ir</strong>tumas tarp variantø<br />

Difference between treatments<br />

08 06 + 3,4 + 4,2 0 + 4 + 2,3<br />

09 06 + 7,8 + 7,1 + 6 + 6,5 + 2,1<br />

Vidurkiø sk<strong>ir</strong>tumo patikimumas R 05<br />

Reliability of difference according LSD 05<br />

08 06 4,13 7,82 - 3,45 3,55<br />

09 06 6,48 9,76 0,94 5,09 2,67<br />

– vardiklyje pateiktas vidutinis, skaitiklyje – maþiausias <strong>ir</strong> didþiausias ûsø <strong>ir</strong> skroteliø skaièius /<br />

in the denominator is given the average, in the numerator – the minimum and the maximum<br />

number of runners and rosettes; LDI / FC – lauko drëgmës imlumas / field capacity<br />

subrandinti iki <strong>25</strong> uogø (Darrow, 1966). Þinoma, tai labai priklauso nuo braðkiø veislës<br />

savybiø. Nepaisant to, vyravo nuomonë, kad drëkinimas lemia spartø lapø augimà,<br />

o intensyviai augantys lapai sumaþina derliø. 1999–2000 m. Pranckietienës <strong>ir</strong><br />

Pranckieèio (2003) LÞÛU atlikti tyrimai nepatv<strong>ir</strong>tino ðio teiginio. Uselis (Intensyvios...,<br />

2002) taip pat teigia, kad vasarà uþaugusiø lapø skaièius <strong>ir</strong> bûklë lemia ateinanèiø<br />

metø derliø.<br />

2003 m. atlikti tyrimai parodë, kad drëkinant asimiliacinis lapø pav<strong>ir</strong>ðius ið esmës<br />

padidëjo (F fak<br />

– 24,04; F 05<br />

– 4,96) nei nedrëkinant (3 pav.): R 05<br />

– 217,752, R 01<br />

–<br />

309,728. Treèiøjø augimo metø braðkiø lapø asimiliacinis pav<strong>ir</strong>ðius nuo pat vegetacijos<br />

pradþios buvo didesnis, palyginti su nedrëkinamu variantu (geguþës 16 d. nedrëkinant<br />

vidutinis lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo 670 cm 2 , o drëkinant – 880 cm 2 ).<br />

Tam átakos turëjo 2002 m. sausringa vasaros pabaiga <strong>ir</strong> rugsëjis. Liejimas 2003 m.<br />

132


geguþës paskutiná <strong>ir</strong> b<strong>ir</strong>þelio p<strong>ir</strong>màjá deðimtadiená bei vëlesniu laikotarpiu taip pat turëjo<br />

átakos lapø skaièiui <strong>ir</strong> jø plotui. Geguþës mën. 26 d. lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas nedrëkinant buvo 1 260 cm 2 , o drëkinant – 1 720 cm 2 (1,37 karto didesnis nei<br />

nedrëkinamø). B<strong>ir</strong>þelio mën. 10 d. lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas nedrëkinant<br />

buvo 2 390 cm 2 , o drëkinant – 2 883 cm 2 (1,21 karto didesnis nei nedrëkinamø).<br />

Uogø derëjimo laikotarpiu (nuo b<strong>ir</strong>þelio mën. 17 d. iki liepos mën. 12 d.) lapai augo<br />

lëèiau. Vëliau intensyviai vystësi <strong>ir</strong> augo nauji vasariniai lapai. Liepos mën. 20 d.<br />

nedrëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo 3 379 cm 2 , o drëkinamø<br />

– 4 001 cm 2 (1,18 karto didesnis nei nedrëkinamø).<br />

3 pav. Vidutinis braðkiø kero lapø asimiliacinio pav<strong>ir</strong>ðiaus plotas 2003 m.: a –<br />

treèiaisiais augimo metais; b – p<strong>ir</strong>maisiais augimo metais<br />

Fig. 3. The average leaf assimilation area of single strawberry plant in 2003: a – the th<strong>ir</strong>d<br />

growth year, b- the f<strong>ir</strong>st growth year<br />

Balandþio 22 d. sodintø daigø asimiliacinio pav<strong>ir</strong>ðius plotas kito sk<strong>ir</strong>tingai, tai<br />

priklausë nuo drëkinimo. Jau paliejus p<strong>ir</strong>muosius kartus (geguþës mën. treèiàjá <strong>ir</strong><br />

b<strong>ir</strong>þelio mën. p<strong>ir</strong>màjá deðimtadiená), drëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas buvo iki 1,4 karto didesnis nei nedrëkinamø. B<strong>ir</strong>þelio mën. 16 d. vidutinis<br />

abiejø variantø vieno kero lapø skaièius buvo 11,5, asimiliacinio lapø pav<strong>ir</strong>ðius plotas<br />

nedrëkinant buvo 5<strong>25</strong>, drëkinant – 670 cm 2 . Kadangi p<strong>ir</strong>maisiais augimo metais braðkës<br />

dera negausiai, derëjimo laikotarpiu lapø augimas sulëtëjo nedaug. Liepos 1 d.<br />

vidutinis vieno kero lapø skaièius nedrëkinant buvo 15, o drëkinant – 17. Lapø asimiliacinio<br />

pav<strong>ir</strong>ðiaus plotas nedrëkinant buvo 757 cm 2 , o drëkinant – 1 190 cm 2 (1,57<br />

karto didesnis nei nedrëkinant). Paliejus liepos <strong>ir</strong> rugpjûèio mën. ðis sk<strong>ir</strong>tumas dar<br />

labiau iðryðkëjo <strong>ir</strong> rugpjûèio mën. 20 d. buvo beveik dvigubai (1,94 karto) didesnis<br />

133


drëkinant (2 805 cm 2 ) nei auganèiø natûraliomis sàlygomis (1 448 cm 2 ). Drëkinamø<br />

braðkiø lapo asimiliacinio pav<strong>ir</strong>ðiaus plotas buvo ið esmës didesnis uþ nedrëkintø:<br />

F fakt<br />

– 10,55, F 05<br />

– 4,67, R 05<br />

– 292,872, o R 01<br />

– 408,361. Vidutinis vieno kero lapø<br />

skaièius drëkinant buvo 41, o nedrëkinant – tik 20. Sk<strong>ir</strong>tumas esminis: F fakt<br />

– 10,95,<br />

F 05<br />

– 5,99, R 05<br />

– 8,133, o R 01<br />

– 12,32. Nedrëkinamø braðkiø lapø asimiliacinio pav<strong>ir</strong>ðiaus<br />

plotas padidëjo tik rugsëjo mën. (2 772 cm 2 ), kai atmosferos krituliai papildë<br />

d<strong>ir</strong>voþemio drëgmës atsargas, taèiau toks vëlyvas lapø augimas nëra teigiamas reiðkinys,<br />

nes sutrumpëjus dienos ilgumui <strong>ir</strong> nukritus oro temperatûrai, prasideda þiediniø<br />

pumpurø diferenciacija. Intensyviai auganti lapija lëtina <strong>ir</strong> atitolina þiedø diferenciacijos<br />

procesà tuo paèiu já sutrumpindama (Intensyvios..., 2002).<br />

Iðvados. Norint gauti gausø geros kokybës konkurencingà braðkiø derliø Lietuvos<br />

klimato sàlygomis, braðkes tikslinga drëkinti <strong>ir</strong> sausais, <strong>ir</strong> vidutinio drëgnumo<br />

metais. Drëkinimas turëjo esminës átakos braðkiø derliaus priedui <strong>ir</strong> fiziologiniams<br />

rodikliams. 2001–2004 m. tyrimø laikotarpiu vidutinis braðkiø derlius nedrëkinant<br />

buvo 7,8 t ha -1 , o drëkinant (80–100 proc. LDI) – 10,8 t ha -1 . Vidutinë vienos uogos<br />

masë nedrëkinant buvo 7,1 g, drëkinant (80–100 proc. LDI) – 8,2 g. Drëkinant<br />

braðkës uþaugino skroteliø 2,5 karto daugiau nei natûraliomis sàlygomis.<br />

Gauta 2006-06-01<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Darrow G. M. The strawberry: History, Breeding and Physiology. San Francisko,<br />

1966. http://www.nal.usda.gov/pgdic/Strawberry/book/bok9teen.htm<br />

2. D<strong>ir</strong>së A., Kusta A., Stanislovaitytë A. Þemës ûkio kultûrø drëkinimo reþimas.<br />

V.: Mokslas, 1984.<br />

3. D<strong>ir</strong>së A. Þemës ûkio augalø vegetacijos laikotarpiø drëgmingumas // Þemës ûkio<br />

mokslai. 2001. Nr. 3. P. 51–56.<br />

4. Intensyvios uoginiø augalø auginimo technologijos (sud. N. Uselis). Babtai, 2002.<br />

5. Kinnanen H. and Säkö J. Irrigation requ<strong>ir</strong>ements for strawberry // Annales Agriculturae<br />

Fenniae. 1979. 18. P. 160–167.<br />

6. Kondsrud K. Vatningsforkk med jordbaer // Forskn. Forsk. Landbr. 1978. 29, 3.<br />

P. 301–312.<br />

7. Lacgalvis E. Evaluation of strawberry growing trends // Agricultural Technique<br />

and Technologies on the light Agenda – 21: Material of the international conference of<br />

science. Akademija, 2003. P. 38–41<br />

8. Naumann W. D. Die W<strong>ir</strong>kung zeitlich begrenzter Wassergaben auf Wuchs und<br />

Ertragsleistung von Erdbeeren // Gartenbauwissenschaft. 1961. 26. P. 441–458.<br />

9. Pranckietis V., Lanauskas M. „Rootedge“ kompiuterinës programos naudojimo<br />

metodiniai patarimai. Akademija, 2001.<br />

10. Pranckietienë I., Pranckietis V. Braðkiø augimo <strong>ir</strong> derëjimo ypatumai taikant ekologinæ<br />

auginimo technologijà // Mokslo darbai. 2003. Nr. 59(12). P. 86–92.<br />

11. Rebandel Z. Truskawki i poziomki. Warszawa, PWRiL.<br />

12. Rolbiecki S., Rzekanowski C. Influence of sprinkler and drip <strong>ir</strong>rigation on the<br />

growth and yield of strawberries grown on sandy soils // Acta Horticulturae. 1997. 439.<br />

P. 669–672.<br />

134


13. Smith B. R., Mahr D. L., McManus P. S. Growing strawberries in Wisconsin.<br />

Madison, 1996.<br />

14. Strabbioli G. A study on strawberry water requ<strong>ir</strong>ements // Acta Horticulturae.<br />

1988. 228. P. 179–186.<br />

15. Uselis N. Braðkiø veisliø ávertinimas // Þemës ûkio mokslai. 1996. Nr. 1. P. 73–78.<br />

16. Uselis N., Raðinskienë A. Braðkës // Ûkininko patarëjas. 2000. Nr. 46.<br />

17. Àôàíàñèê Ã. È., Ãîë÷åíêî Ì. Ã., Ëèõà÷åâè÷ À. Ï., Ìèõàéëîâ Ã. È.<br />

Ñåëüñêîõîçÿéñòâåííûå ãèäðîòåõíè÷åñêèå ìåëèîðàöèé. Ìèíñê: Tåõíîëîãèÿ, 2000.<br />

18. Ãîë÷åíêî Ì. Ã., Äåâÿòîâ À. Ñ., Ëàãóí Ò. Ä. Îðîøåíèå ñàäîâ è ÿãîäíèêîâ.<br />

Mocêâa: Óðàäæàé, 1985.<br />

19. Êîñòåêîâ Í. À. Îñíîâû ìåëèîðàöèé. Ìîñêâà: Ñåëüõîçèçäàò, 1960.<br />

20. Ìàðêîâ Þ. À. Ïðîãðàììà è ìåòîäèêà èññëåäîâàíèé ïî îðîøåíèþ<br />

ïëîäîâûõ è ÿãîäíûõ êóëüòóð: Ìåòîäè÷åñêèå ðåêîìåíäàöèé. Ìè÷óðèíñê, 1985.<br />

21. Ðû÷êîâ Í. È, Îëåôèð Å. Ï. Òåõíèêà îðîøåíèå ñàäîâ è ÿãîäíèêîâ.<br />

Ìîñêâà: Ðîññåëüõîçèçäàò, 1972.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF IRRIGATION ON<br />

STRAWBERRIES ‘SENGA SENGANA’<br />

L. Taparauskienë<br />

Summary<br />

The investigations were carried out in the Middle Lithuania (Kaunas region)<br />

during 2001–2004. In the territory of investigations the soil was calcareus deeper<br />

gleyic leached soil, IDg4-k, (sod podzolic JP lv<br />

), mechanical composition – light loam<br />

on clay loam. Experimental investigations were focused on ‘Senga Sengana’ strawberry<br />

cultivar. The aim of the work was to determine the influence of <strong>ir</strong>rigation on<br />

strawberry yield and others indicators.<br />

Irrigation effect on yield and other strawberry indicators have been analyzed<br />

and it was determined, that <strong>ir</strong>rigation has a significant influence on the increase of<br />

total yield, fruit size, runner production and leaf assimilation area. The differences<br />

between <strong>ir</strong>rigated and non-<strong>ir</strong>rigated versions are essential and statistically significant<br />

(p – 0.05).<br />

In 2001–2004 average yield of non-<strong>ir</strong>rigated strawberry was 7.8 t/ha and this<br />

one of <strong>ir</strong>rigated – 8 t/ha (the f<strong>ir</strong>st treatment 70–100% field capacity (FC)) and 10.8<br />

t/ha (the second treatment 80–100% FC). Maintaining soil moisture conditions within<br />

the limits of 80–100% FC the increase of strawberry yield in comparison with<br />

non<strong>ir</strong>rigated was biggest – 3 t/ha (or 137.7% of non <strong>ir</strong>rigated treatment). Under<br />

natural soil moisture conditions average weight of single berry in the treatment without<br />

<strong>ir</strong>rigation was 7.1 g, and with <strong>ir</strong>rigation (80–100% FC) – 8.2 g. The difference<br />

135


etween the average weight of single berry in control and in the f<strong>ir</strong>st treatment was<br />

0.6 g and between control and the second treatment was 1.1 g. In treatment with<br />

<strong>ir</strong>rigation runner production from one strawberry plant was higher in comparison to<br />

that in non <strong>ir</strong>rigated treatment. The amount of runner production in the treatment<br />

with <strong>ir</strong>rigation was 2.5 times bigger comparing to that in the treatment without <strong>ir</strong>rigation.<br />

Irrigation had a significant influence on the number of strawberry leaves and<br />

assimilation area.<br />

Key words: soil humidity, yield, berry size.<br />

136


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

GELEÞIES TRÀÐØ ÁTAKA ‘BOGOTA’ VEISLËS<br />

BRAÐKIØ MITYBAI, IÐSIVYSTYMUI IR DERLIUI<br />

Loreta BUSKIENË, Nobertas USELIS, Juozas LANAUSKAS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas l.buskiene@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute iðt<strong>ir</strong>ta geleþies<br />

chelato (Fe-EDTA) <strong>ir</strong> sulfato (FeSO 4<br />

) tràðø átaka ‘Bogota’ veislës braðkëms, auginamoms<br />

ðarminëse d<strong>ir</strong>vose. Ávertintas geleþies tràðø poveikis braðkiø lapø cheminei<br />

sudëèiai, kereliø iðsivystymui <strong>ir</strong> derliui. Nustatyta, kad aðtuonis kartus per vegetacijà<br />

braðkes nupurðkus 0,5, 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies chelato t<strong>ir</strong>palais, geleþies<br />

kiekis jø lapuose padidëjo 1,6–1,8 karto, o geleþies sulfato t<strong>ir</strong>palais – 2,3–3,2 karto.<br />

Nupurðkus braðkes 1,5% koncentracijos abiejø formø geleþies tràðomis, augalø lapuose<br />

ið esmës padaugëjo azoto (7,6–11,4 proc.), sumaþëjo kalcio (12,1 proc.) <strong>ir</strong><br />

mangano (23,2–31,3 proc.). Geleþies chelatai pagerino kereliø iðorinæ bûklæ. Geleþies<br />

chelato <strong>ir</strong> sulfato tràðø t<strong>ir</strong>palai neturëjo esminës átakos braðkiø kereliø augimui<br />

<strong>ir</strong> derëjimui.<br />

Reikðminiai þodþiai: augumas, braðkës, derlius, geleþies chelatas, geleþies sulfatas,<br />

uogos masë.<br />

Ávadas. Pagrindinis augalø mitybos elementø ðaltinis yra d<strong>ir</strong>voþemis. Nustatyta,<br />

kad jame geleþies yra gana daug. Geleþis gali bûti nepakankamai pasisavinama dël<br />

net<strong>ir</strong>piø ar sunkiai augalams prieinamø jos formø ðarminës reakcijos d<strong>ir</strong>vose (braðkëms<br />

optimalus pH – 6,0–6,5), dël netinkamo áva<strong>ir</strong>iø elementø santykio d<strong>ir</strong>voþemyje,<br />

dël þemos d<strong>ir</strong>voþemio temperatûros <strong>ir</strong> kitø veiksniø (Íîðìàí, 1960).<br />

Braðkës yra vienos jautriausiø augalø geleþies trûkumui (Íîðìàí, 1960; Öåðëèíã,<br />

1978; Êurawicz, 1997). Trûkstant geleþies, jauni braðkiø lapai suserga tarpgysline<br />

chloroze. Nors geleþis <strong>ir</strong> nëra sudedamoji chlorofilo dalis, ji glaudþiai susijusi su jo<br />

susidarymu <strong>ir</strong> veikia kaip katalizatorius. Chlorofilo kiekis audiniuose priklauso nuo<br />

augalø ið d<strong>ir</strong>vos paimamo geleþies kiekio (Íîðìàí, 1960). Geleþies kiekis augaluose<br />

gana pastovus (Öåðëèíã, 1978). Ðarminës reakcijos d<strong>ir</strong>vose þymiai sumaþëja augalø<br />

sugebëjimas ásiurbti geleþá per ðaknis, todël tikslinga braðkes purkðti tràðø t<strong>ir</strong>palais per<br />

lapus. Lenkijos mokslininkø nuomone, nuo braðkiø chlorozës efektyviau naudoti chelatines<br />

tràðas, nes ið chelatø braðkës pasisavina <strong>ir</strong> perneða geleþá tris kartus greièiau<br />

nei ið sulfatø (Êurawicz, 1997). Kad chelatiniø formø geleþies tràðos daug efektyvesnës<br />

nei sulfatai, paþymi <strong>ir</strong> kiti mokslininkai (Kannan, Wittwer, 1965; Neumann, Prinz,<br />

137


1975). Turkijoje atliktø tyrimø duomenimis, geleþies kieká braðkiø lapuose po trijø<br />

purðkimø labiausiai padidino geleþies sulfatas, nors ið chelatø geleþis buvo paimta<br />

daug greièiau (Erdal <strong>ir</strong> kt., 2004).<br />

Tyrimo tikslas – optimizuoti braðkiø mitybà geleþimi neutralios arba ðarminës<br />

reakcijos d<strong>ir</strong>voþemiuose, ávertinti sk<strong>ir</strong>tingø formø <strong>ir</strong> koncentracijø geleþies tràðø poveiká<br />

geleþies kaupimuisi braðkiø lapuose, jø bûklei, augumui <strong>ir</strong> derëjimui.<br />

Tyrimo metodai <strong>ir</strong> sàlygos. Bandymas darytas 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute su geleþies trûkumui jautria braðkiø veisle ‘Bogota’.<br />

T<strong>ir</strong>tos dvi geleþies tràðos: geleþies chelatas (Fe-EDTA) <strong>ir</strong> geleþies sulfatas<br />

(FeSO 4<br />

). 2003–2004 m. braðkës per lapus purkðtos kas 7 dienos, 8 kartus per vegetacijà<br />

(nuo p<strong>ir</strong>møjø lapeliø iðsiskleidimo iki uogø sunokimo), 0,5; 1,0 <strong>ir</strong> 1,5% vandeniniais<br />

minëtø tràðø t<strong>ir</strong>palais.<br />

Braðkës pasodintos 2003 m. pavasará 0,8 m x 0,3 m atstumais. Apskaitinio<br />

bandymø laukelio ilgis – 2 m, plotis – 1,6 m (dvi augalø eilës), plotas – 3,2 m 2 .<br />

Bandymas darytas keturiais pakartojimais.<br />

D<strong>ir</strong>voþemis – sekliai karbonatingas giliau glëjiðkas rudþemis (RDg4-k1), priemolis.<br />

Pagrindiniai agrocheminiai d<strong>ir</strong>voþemio rodikliai (0–40 cm gylyje): pH – 7,1<br />

(KCL iðtraukoje), humuso – 2,3 proc., P 2<br />

O 5<br />

– 290 mg/kg, K 2<br />

O – 180 mg/kg, Ca –<br />

5 600 mg/kg, Mg – 1 500 mg/kg, Fe – 1 140 mg/kg.<br />

Atliekant tyrimà nustatyta: braðkiø kereliø augumà <strong>ir</strong> iðsivystymà apibûdinantys<br />

rodikliai – lapø, rageliø <strong>ir</strong> þiedynø skaièius (1 m 2 plote); uogø derlius (t/ha); vidutinë<br />

uogos masë (g); braðkiø kereliø bûklë nuskynus uogas (pagal 0–5 balø skalæ: 5 –<br />

labai gera, 0 – kereliai iðnykæ). Nupurðkus geleþies tràðø t<strong>ir</strong>palais, 2003 m. atlikta<br />

braðkiø lapø cheminë analizë <strong>ir</strong> nustatytas azoto, fosforo, kalio, kalcio, magnio, geleþies,<br />

vario, mangano, cinko <strong>ir</strong> boro kiekis sausojoje medþiagoje. Geleþies kiekis nustatytas<br />

visuose bandymo variantuose, kiti elementai – nepurkðtuose laukeliuose <strong>ir</strong><br />

nupurðkus braðkes 1,5% koncentracijos geleþies chelato <strong>ir</strong> sulfato tràðø t<strong>ir</strong>palais.<br />

Tyrimø duomenys statistiðkai ávertinti rendomizuotø blokø dispersinës analizës<br />

metodu. Meteorologinës sàlygos tyrimø metais braðkëms augti buvo gana palankios,<br />

nors vegetacijos metu buvo tarpsniø, kai smarkus lietus suplakdavo d<strong>ir</strong>và <strong>ir</strong> dël to<br />

pablogëdavo jos aeracija. 2004 m. drëgna buvo b<strong>ir</strong>þelio mën. (uogø brendimo <strong>ir</strong><br />

skynimo metu) <strong>ir</strong> ypaè – rugpjûtá, kai krituliø iðkrito 1,6 karto daugiau negu norma.<br />

Braðkës derëjo labai gausiai. 2005 m. b<strong>ir</strong>þelio mën. augalams taip pat pakako ðilumos<br />

<strong>ir</strong> drëgmës, labai sausa buvo tik liepos mën.<br />

Tyrimø rezultatai. Mitybos elementø kiekis braðkiø lapuose <strong>ir</strong> kereliø bûklë.<br />

Nupurðkus braðkes visø t<strong>ir</strong>tø koncentracijø abiejø formø geleþies tràðomis, geleþies<br />

kiekis augalø lapuose ið esmës padidëjo (1 pav.). Daugiau geleþies braðkiø lapuose<br />

susikaupë, purðkiant geleþies sulfatu <strong>ir</strong> ypaè 1,0% koncentracijos t<strong>ir</strong>palu – trigubai<br />

daugiau negu nepurkðtose.<br />

Nupurðkus 0,5–1,5% geleþies sulfato t<strong>ir</strong>palais, geleþies kiekis braðkiø lapuose<br />

padidëjo 2,3–3,2 karto. Panaudojus geleþies chelatà, braðkës sukaupë 1,6–1,8 karto<br />

daugiau geleþies, palyginti su nepurkðtomis. Mûsø tyrimai rodo, kad netikslinga didinti<br />

geleþies chelato arba sulfato t<strong>ir</strong>palo koncentracijà iki 1,5%, nes lapuose sukauptos<br />

geleþies kiekis nebedidëja (pradeda maþëti). Daugiausia geleþies susikaupë 1,0%<br />

koncentracijos geleþies tràðø t<strong>ir</strong>palais nupurkðtø braðkiø lapuose.<br />

138


1 pav. Geleþies kiekis ‘Bogota’ braðkiø lapuose. Babtai, 2003 m.<br />

Fig. 1. Iron content in leaves of strawberry cv. ‘Bogota’. Babtai, 2003<br />

Nupurðkus braðkes didþiausios koncentracijos abiejø formø geleþies tràðomis,<br />

augalø lapuose ið esmës padidëjo azoto, o sumaþëjo kalcio <strong>ir</strong> mangano (1 lentelë).<br />

1 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø lapø agrocheminiams rodikliams.<br />

Babtai, 2003 m.<br />

Table 1. Effect of <strong>ir</strong>on fertilizers on mineral content in the leaves of strawberry cv.<br />

‘Bogota’. Babtai, 2003<br />

Variantai<br />

Treatments<br />

Makroelementø kiekis, % sausojoje<br />

medžiagoje<br />

Macronutrient content (% in dry weight)<br />

Mikroelementø kiekis,<br />

mg/kg sausojoje medžiagoje<br />

Micronutrient content (mg/kg in<br />

dry weight)<br />

N P K Ca Mg Cu Mn Zn B<br />

Nepurkšta<br />

Not fertilized<br />

2,10 0,19 0,64 1,32 0,42 4,50 39,3 13,2 31,3<br />

Fe-EDTA<br />

1,5%<br />

2,34 0,19 0,67 1,16 0,38 4,83 27,0 14,2 32,7<br />

FeSO 4 1,5% 2,26 0,19 0,68 1,16 0,38 5,12 30,2 14,0 32,4<br />

R 05 / LSD 05 0,118 0,026 0,056 0,142 0,067 1,668 11,85 4,08 3,80<br />

Naudojant 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palà, braðkiø lapuose azoto<br />

padaugëjo 7,6 proc., o nupurðkus geleþies chelatu – 11,4 proc. Kalcio kiekis purkðtø<br />

augalø lapuose sumaþëjo 12,1 proc., kad <strong>ir</strong> kokia geleþies tràðø forma buvo purkðta.<br />

Pastebëta tendencija, kad magnio pasisavinimas, naudojant geleþies tràðas, taip pat<br />

pablogëjo. Geleþies tràðos, nelygu jø forma, mangano patekimà á augalà sumaþino<br />

23,2–31,3 proc. Pastebima tendencija, kad geleþies tràðos didino kalio, vario, cinko<br />

<strong>ir</strong> boro kieká braðkiø lapuose.<br />

139


2004 m. ‘Bogota’ braðkiø kereliai buvo geriausios bûklës (4,7–4,8 balo), panaudojus<br />

visø t<strong>ir</strong>tø koncentracijø geleþies chelato t<strong>ir</strong>palus (2 pav.). Braðkiø kereliai buvo<br />

prasèiausios bûklës, panaudojus geleþies sulfato 1,0% <strong>ir</strong> ypaè 1,5% koncentracijos<br />

t<strong>ir</strong>palus. Ðiuose bandymo variantuose lapai buvo apdeginti.<br />

2 pav. Geleþies tràðø átaka ‘Bogota’ braðkiø kereliø bûklei. Babtai, 2004–2005 m.<br />

Fig 2. Effect of <strong>ir</strong>on fertilizers on plant state of strawberry cv. ‘Bogota’. Babtai, 2004-2005<br />

Kereliø bûklës analizë rodo, kad 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato<br />

t<strong>ir</strong>palai braðkëms yra kenksmingi. 2005 m., nenaudojant geleþies tràðø, neigiamas<br />

didesniø koncentracijø geleþies sulfato poveikis braðkiø kereliø bûklei nepas<strong>ir</strong>eiðkë.<br />

Blogiausia kereliø bûklë nustatyta nepurkðtame variante, o geriausia – prieð metus<br />

panaudojus didþiausios koncentracijos geleþies chelato <strong>ir</strong> sulfato t<strong>ir</strong>palus.<br />

Braðkiø kereliø augumà <strong>ir</strong> iðsivystymà apibûdina lapø, rageliø <strong>ir</strong> þiedynø skaièius<br />

ploto vienete (2 lentelë). 2004 m. iðryðkëjo tendencija, kad purðkiant braðkes<br />

0,5 <strong>ir</strong> 1,5% geleþies sulfato t<strong>ir</strong>palais, jos suformavo apie 29 proc. daugiau lapø<br />

negu nepurkðtos.<br />

Pastebëta tendencija, kad 2003–2004 m. ‘Bogota’ braðkës, purðkiamos 0,5<br />

<strong>ir</strong> 1,5% koncentracijø geleþies sulfato tràðomis, suformavo vidutiniðkai apie 13–<br />

14 proc., o purðkiamos 0,5% geleþies chelato t<strong>ir</strong>palu – apie 6 proc. daugiau lapø<br />

negu nenaudojant tràðø (nors esminiø sk<strong>ir</strong>tumø nebuvo). Per dvejus tyrimø metus<br />

augalø purðkimas 1,0% koncentracijos geleþies sulfato t<strong>ir</strong>palu braðkiø rageliø<br />

skaièiø padidino 7,7 proc. Geleþies tràðos esminio poveikio braðkiø þiedynø skaièiui<br />

neturëjo.<br />

Uogø derlius <strong>ir</strong> vidutinë uogos masë. 2004 m. ‘Bogota’ braðkës derëjo gausiai.<br />

Nupurðkus augalus geleþies chelatais, derlius nepadidëjo (3 lentelë).<br />

140


2 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø kereliø augumui <strong>ir</strong> iðsivystymui.<br />

Babtai, 2003–2004 m.<br />

Table 2. Effect of <strong>ir</strong>on fertilizers on the plant growth and development of strawberry cv.<br />

‘Bogota’. Babtai, 2003-2004<br />

Variantai<br />

Treatments<br />

Nepurkšta<br />

Not fertilized<br />

Lapai, vnt./m 2 ,<br />

2003–2004 m.<br />

Leaves, units/m 2 2003–<br />

2004<br />

Rageliai, vnt./m 2 ,<br />

2003–2004 m.<br />

Crowns, units/m 2 2003–<br />

2004<br />

Žiedynai, vnt./m 2 ,<br />

2004 m.<br />

Inflorescences, units/m 2<br />

2004<br />

192,6 36,4 71,0<br />

Fe-EDTA<br />

0,5%<br />

204,6 33,0 70,0<br />

Fe-EDTA<br />

1,0%<br />

183,0 37,0 60,4<br />

Fe-EDTA<br />

1,5%<br />

191,6 35,2 66,4<br />

FeSO 4 0,5% 217,0 34,4 84,0<br />

FeSO 4 1,0% 185,8 39,2 57,0<br />

FeSO 4 1,5% 220,0 33,4 68,0<br />

R 05 / LSD 05 51,38 10,62 31,52<br />

3 lentelë. Geleþies tràðø átaka ‘Bogota’ braðkiø uogø derliui. Babtai, 2004–2005 m.<br />

Table 3. Effect of <strong>ir</strong>on fertilizers on the yield of strawberry cv. ‘Bogota’. Babtai, 2004-2005<br />

Variantai<br />

Treatments<br />

Derlius<br />

Yield, t/ha<br />

2004 m. 2005 m. vidutinis / average<br />

Nepurkšta / Not<br />

fertilized<br />

28,5 7,7 18,1<br />

Fe-EDTA 0,5% 27,8 9,5 18,6<br />

Fe-EDTA 1,0% 28,0 7,8 17,9<br />

Fe-EDTA 1,5% 27,9 7,7 17,8<br />

FeSO 4 0,5% 26,0 7,9 17,0<br />

FeSO 4 1,0% 20,9 8,7 14,8<br />

FeSO 4 1,5% 18,5 8,9 13,7<br />

R 05 / LSD 05 5,66 3,03 3,17<br />

141


Braðkes nupurðkus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palais, dël<br />

lapø apdeginimo derlius sumaþëjo ið esmës. Ðiuose bandymo variantuose ið esmës<br />

(<strong>25</strong>–30 proc.) sumaþëjo <strong>ir</strong> vidutinë uogos masë (4 lentelë).<br />

4 lentelë. Geleþies tràðø átaka vidutinei ‘Bogota’ braðkiø uogos masei 2004–2005 m.<br />

Table 4. Effect of <strong>ir</strong>on fertilizers on berry weight. Babtai, 2004–2005<br />

Variantai<br />

Treatments<br />

Nepurkšta / Not<br />

fertilized<br />

Vidutinë uogos masë<br />

Average berry weight, g<br />

2004 m. 2005 m. vidurkis / average<br />

13,8 15,4 14,6<br />

Fe-EDTA 0,5% 13,4 14,9 14,1<br />

Fe-EDTA 1,0% 12,8 11,8 12,3<br />

Fe-EDTA 1,5% 12,3 16,9 14,6<br />

FeSO 4 0,5% 11,7 15,0 13,4<br />

FeSO 4 1,0% 10,4 13,9 12,2<br />

FeSO 4 1,5% 10,5 15,3 12,9<br />

R 05 / LSD 05 2,39 3,74 2,64<br />

2005 m. didþiausias ‘Bogota’ braðkiø derlius gautas variante, kuriame panaudotas<br />

0,5% koncentracijos geleþies chelato t<strong>ir</strong>palas. Derliaus didëjimo tendencija nustatyta,<br />

panaudojus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palus. Vidutinis dvejø<br />

metø braðkiø derlius, panaudojus 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato t<strong>ir</strong>palus,<br />

buvo apie 20 proc. maþesnis negu netræðtame variante. Braðkiø purðkimas per lapus<br />

geleþies tràðomis neturëjo esminës átakos vidutinei uogos masei.<br />

Aptarimas. Augalø chlorozë, ats<strong>ir</strong>adusi dël geleþies trûkumo, paprastai nëra tiesioginë<br />

ðio elemento trûkumo pasekmë, kaip kitø mikroelementø atveju. Daþnai tai yra<br />

antrinis efektas, ats<strong>ir</strong>andantis dël geleþies kompleksinës sàveikos su kitais elementais <strong>ir</strong><br />

áva<strong>ir</strong>iais d<strong>ir</strong>voþemio bei aplinkos veiksniais. Turkijos mokslininkø atliktuose tyrimuose<br />

‘Camarosa’ braðkës, kurios pagal iðorinius poþymius prisk<strong>ir</strong>iamos jautrioms geleþies<br />

trûkumui, maþai reagavo á panaudotas geleþies tràðas (Erdal <strong>ir</strong> kt., 2004). Tai galima<br />

paaiðkinti tuo, kad net <strong>ir</strong> esant gausiam geleþies kiekiui augalø lapuose, ji gali bûti fiziologiðkai<br />

neaktyvi <strong>ir</strong> nedalyvauti metabolizmo procesuose (Märschner, 1995; Erdal <strong>ir</strong><br />

kt., 1998). Pavyzdþiui, ðarminiame d<strong>ir</strong>voþemyje atliktais tyrimais nustatyta, kad geleþies<br />

koncentracija chloruotuose augalo lapuose gali bûtu panaði ar net didesnë negu<br />

þaliuose. Tai ið dalies siejama su geleþies lokalizacija augalo audiniuose. Geleþies katijonai<br />

gali bûti fiziologiðkai neaktyvûs net<strong>ir</strong>piose nuosëdose lapø apoplazmoje (Mengel <strong>ir</strong><br />

kt., 1988). Atlikdami ðá tyrimà, tikëjomës, kad geleþies tràðø t<strong>ir</strong>palo purðkimas per lapus<br />

þenkliai sumaþins ar paðalins iðorinius ðio mikroelemento trûkumo poþymius. Purðkiant<br />

braðkes geleþies tràðomis, geleþies kiekis jø lapuose padidëjo 1,6–3,2 karto, taèiau aiðkiø<br />

iðoriniø chlorozës sumaþëjimo poþymiø nenustatyta.<br />

142


Beyers <strong>ir</strong> Terblanche (1971) nuomone, geriausias bûdas áveikti geleþies trûkumo<br />

sukeltà lapø chlorozæ yra d<strong>ir</strong>vos laistymas geleþies chelato t<strong>ir</strong>palais. Taèiau ðarminës<br />

d<strong>ir</strong>vos træðimas geleþies tràðomis ar jos laistymas ðiø tràðø t<strong>ir</strong>palais augalø<br />

chlorozës paprastai neiðgydo (Íîðìàí, 1960). Rekomenduojama ðarminëse d<strong>ir</strong>vose<br />

auganèius augalus purkðti per lapus. Kõksal <strong>ir</strong> kiti mokslininkai (1999) nustatë, kad<br />

kriauðiø purðkimas per lapus geleþies amino rûgðèiø druskø t<strong>ir</strong>palais sumaþino geleþies<br />

trûkumo poþymius <strong>ir</strong> padidino jos kieká lapuose iki 120 proc. Turkijos tyrëjø<br />

nuomone, augalø træðimas geleþies tràðomis per lapus ðarminëje d<strong>ir</strong>voje yra efektyvus<br />

bûdas padidinti geleþies kieká braðkiø lapuose, nes atliktø bandymø duomenys<br />

rodo, kad didinant purðkimø skaièiø, geleþies koncentracija laipsniðkai didëjo. Norint<br />

palaikyti optimalià geleþies koncentracijà braðkiø lapuose, reikia purkðti jas per lapus<br />

geleþies tràðomis sk<strong>ir</strong>tingais augimo tarpsniais (Erdal <strong>ir</strong> kt., 2004).<br />

Natûraliomis sàlygomis d<strong>ir</strong>voþemyje <strong>ir</strong> augale yra tam tikras mitybos elementø balansas.<br />

Iðt<strong>ir</strong>ta, kad egzistuoja konkurencija tarp atsk<strong>ir</strong>ø elementø <strong>ir</strong> vieno perteklius gali<br />

apsunkinti kitø elementø patekimà á augalà (Íîðìàí, 1960; Öåðëèíã, 1978; Erdal <strong>ir</strong> kt.,<br />

2004). Pavyzdþiui, Karaman (1997) atliktais tyrimais nustatyta, kad geleþies tràðos padidino<br />

geleþies koncentracijà pupelëse, bet sumaþino jose fosforo <strong>ir</strong> mikroelementø – cinko,<br />

vario <strong>ir</strong> mangano – kiekius. Geleþies trûkumas gali pas<strong>ir</strong>eikðti dël didelës cinko, mangano,<br />

vario, nikelio, kobalto, chromo, fosforo <strong>ir</strong> karbonatø jonø koncentracijos, taip pat<br />

dël kalio trûkumo maitinamajame t<strong>ir</strong>pale (Íîðìàí, 1960; Erdal <strong>ir</strong> kt., 2004).<br />

Mûsø gauti rezultatai patv<strong>ir</strong>tino Baltarusijos bei kitø ðaliø mokslininkø teiginá,<br />

kad mikroelementai pagerina pagrindiniø mitybos elementø – azoto <strong>ir</strong> kalio – patekimà<br />

á augalà (Òîìà <strong>ir</strong> kt., 1980; Áðóéëî, 2005). Pagerëjus mitybai geleþimi, braðkës<br />

pasisavino iki 11,4 proc. daugiau azoto <strong>ir</strong> iki 6,2 proc. daugiau kalio.<br />

Geleþies tràðø átaka augalø derliui nevienareikðmë. Almaliotis <strong>ir</strong> kt. (2002) nustatë<br />

patikimà tiesioginæ koreliacijà tarp geleþies koncentracijos <strong>ir</strong> derliaus. Taèiau Turkijos<br />

mokslininkø tyrimø duomenimis, kai kuriø veisliø braðkës neigiamai reagavo á<br />

træðimà geleþies tràðomis, <strong>ir</strong> jø derlius sumaþëjo (Türemis <strong>ir</strong> kt., 1997). Belgijos <strong>ir</strong><br />

Norvegijos mokslininkai iðtyrë, kad trûkstant geleþies, braðkës maþiau uþmezgë uogø,<br />

sumaþëjo derlius <strong>ir</strong> uogos masë (Lieten, 2000; Nestby, 2003). Mûsø atliktuose<br />

tyrimuose purðkimas per lapus geleþies tràðomis neturëjo esminës átakos braðkiø derlingumui<br />

<strong>ir</strong> vidutinei uogos masei.<br />

Iðvados. 1. Jautrias geleþies trûkumui ‘Bogota’ veislës braðkes aðtuonis kartus per<br />

vegetacijà nupurðkus 0,5–1,5% koncentracijos geleþies chelato t<strong>ir</strong>palais, geleþies kiekis jø<br />

lapuose padidëja 1,6–1,8 karto, o nupurðkus geleþies sulfato t<strong>ir</strong>palais – 2,3–3,2 karto.<br />

2. Nupurðkus braðkes 1,5% koncentracijos abiejø formø geleþies tràðomis,<br />

augalø lapuose ið esmës padaugëja azoto (7,6–11,4 proc.), o sumaþëja kalcio<br />

(12,1 proc.) <strong>ir</strong> mangano (23,2–31,3 proc.).<br />

3. Nors geleþies kiekis braðkiø lapuose padidëja, purðkimas geleþies chelato <strong>ir</strong><br />

geleþies sulfato tràðø t<strong>ir</strong>palais neturi esminës átakos kereliø augumui <strong>ir</strong> iðsivystymui.<br />

4. Geleþies chelatai pagerina ‘Bogota’ braðkiø kereliø iðorinæ bûklæ, taèiau nepadidina<br />

derliaus <strong>ir</strong> vidutinës uogos masës. 1,0 <strong>ir</strong> 1,5% koncentracijos geleþies sulfato<br />

t<strong>ir</strong>palai kartais apdegina braðkiø lapus <strong>ir</strong> pablogina kereliø bûklæ bei sumaþina derliø.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

143


Literatûra<br />

1. Almaliotis D., Velemis D., Bladenopoulou S., Karapetsas N. Leaf nutrient levels of<br />

strawberries (cv. Tudla) in relation to crop yield // ISHS. Acta Horticulture 567. IV International<br />

Strawberry Sympozium. Tempare, Finland, 2002. Vol. 2.<br />

2. Beyers E., Terblanche J. H. Identification and control of trace element deficiencies.<br />

V. Iron deficiency. Decid // Fruit Grower. 1971. 21. P. 265–282.<br />

3. Erdal I., Gürbüz M., Tarakcioðlu C. Effect of foliar acid application on the total and<br />

available Fe concentrations and chlorophyll concentration in tomato plant (Lycopersicum<br />

esculentum L.) grown with nutrient solution. Pamukkale. University Engineering<br />

Faculty. J. of Engineering Sciences. 1998. 4/1–2. P. 481–485.<br />

4. Erdal I., Kepenek K., Kizilgõz I. Effect of foliar <strong>ir</strong>on applications at different growth<br />

stages on <strong>ir</strong>on and some nutrient concentrations in strawberry cultivars // Turk. J. of<br />

Agriculture and Forestry. 2004. 28. P. 421–427.<br />

5. Kannan S., Wittwer S. H. Effects of chelation and urea on <strong>ir</strong>on absorption by intact<br />

leaves and enzymically isolated leaf cells // Plant Physiol. Suppl. 1965. 40. P. 12.<br />

6. Karaman M. R., Brohi A. R., Inal A., Taban S. Effect of <strong>ir</strong>on and zinc applications on<br />

growth and on concentration of mineral nutrients of bean (Phaseolus vulgaris L.) grown<br />

in artificial siltation soils // Tr. J. of Agriculture and Forestry. 1997. 23. P. 341–348.<br />

7. Kõksal I., Dumanoðlu H., Günes N. T., Aktas M. The effects of different amino acid<br />

chalate foliar fertilizers on yield, fruit quality, shoot growth and Fe, Zn, Cu, Mn concentration<br />

of leaves in williams pear cultivar (Pyrunus communis L.). Tr. J. of Agriculture and<br />

Forestry. 1999. 23. P. 651–658.<br />

8. Lieten F. Iron nutrition of strawberries grown in peat bags // Small Fruits Review.<br />

2000. 1(2). P. 103–112.<br />

9. Märschner H. Mineral nutrition of higher plants. 2nd Addition Academic Press<br />

Inc. 1995.<br />

10. Mengel K., Geurtzen G. Relationship between <strong>ir</strong>on chlorosis and alkalinity in zea<br />

mays // Physiol. Plantarum. 1988. 72. P. 460–465.<br />

11. Nestby R., Lieten F., Pivot D., Raynal Lacroix C., Tagliavini M., Evenhuis B.<br />

Influence of mineral nutrient on strawberry fruit quality and the<strong>ir</strong> accumulation in plant<br />

organs. A Review // Proceedings of the Euro Berry Symposium COST 836 Final workshop.<br />

Ancona, Italy, 2003. P. 201–206.<br />

12. Neumann P. M., Prinz R. Foliar <strong>ir</strong>on spray potentiates growth of seedlings on<br />

<strong>ir</strong>on-free media // Plant Physiol. 1975. 55. P. 988–990.<br />

13. Türemis N., Ozguven A. L., Paydas S., Idem G. Effects of sequestrene Fe-138 as<br />

foliar and soil application on yield and earliness of some strawberry cultivars in the<br />

subtropics // ISHS. Acta Horticulture 441, V Temperate Zone Fruit in the Tropics and<br />

Subtropics Adana, Turkey, 1997.<br />

14. Ýurawicz E. Truskawka i poziomka. Warszawa: Pañstwowe wydawnictwo rolnicze<br />

i leúne, 1997. P. 109.<br />

15. Áðóéëî À. Ñ., Ñàìóñü Â. À., Êàìçîëîâà Î. È., Ñîáîëåâ Ñ. Þ. Âëèÿíèå<br />

ìèêðîýëåìåíòîâ (Ìn, Zn, B), èõ êîìáèíàöèé è ñïîñîáîâ âíåñåíèÿ íà<br />

ïðîäóêòèâíîñòü ÿáëîíè â óñëîâèÿõ çàïàäíîé ÷àñòè ðåñïóáëèêè Áåëàðóñü //<br />

Ïëîäîâîäñòâî. Ñàìîõâàëîâè÷è, 2005. Ò. 17(1). Ñ. 159–165.<br />

16. Ìèíåðàëüíîå ïèòàíèå ïëîäîâûõ è ÿãîäíûõ êóëüòóð. Ïîä ðåä. Íîðìàíà<br />

Ô. ×. Ìîñêâà: Ãîñ. èçä–âî ñåëüõîç. ëèòåðàòóðû, 1960. Ñ. 351–375.<br />

17. Òîìà Ñ. È., Ðàáèíîâè÷ È. Ç., Âåëèêñàð Ñ. Ã. Ìèêðîýëåìåíòû è óðîæàé.<br />

Êèøèí¸â: Øòèèíöà, 1980. Ñ. 159–171.<br />

144


18. Öåðëèíã Â. Â. Àãðîõèìè÷åñêèå îñíîâû äèàãíîñòèêè ìèíåðàëüíîãî<br />

ïèòàíèÿ ñåëüñêîõîçÿéñòâåííûõ êóëüòóð. Ìîñêâà: Íàóêà, 1978. 216 ñ.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

EFFECT OF FOLIAR APPLIED IRON FERTILIZERS ON<br />

NUTRITION, DEVELOPMENT AND YIELD OF<br />

STRAWBERRY CV. ‘BOGOTA’<br />

L. Buskienë, N. Uselis, J. Lanauskas<br />

Summary<br />

Effect of <strong>ir</strong>on chelate and <strong>ir</strong>on sulphate on strawberries of cv. ‘Bogota’ was<br />

investigated at the Lithuanian Institute of Horticulture in 2003-2005. Strawberries<br />

grown on alkaline soil were sprayed 8 times during growth season either with <strong>ir</strong>on<br />

chelate (Fe-EDTA) or <strong>ir</strong>on sulphate (Fe 2<br />

SO 4<br />

) solutions at the concentration 0.5,<br />

1.0 and 1.5 proc. Chemical leaf composition, plant development and yield were<br />

evaluated. Iron chelate increased leaf <strong>ir</strong>on content by 1.6–1.8 times, <strong>ir</strong>on sulphate –<br />

by 2.3–3.2 times in comparison with the control treatment where <strong>ir</strong>on fertilizers<br />

were not applied. After application of both fertilizers at 1.5 proc. concentration<br />

solution nitrogen content in strawberry leaves was increased by 7.6–11.4 proc.,<br />

whereas content of leaf calcium and manganese decreased respectively by 12.1<br />

and 23.2–31.3 proc. Iron chelate improved plant state but neither <strong>ir</strong>on chelate nor<br />

sulphate had positive effect on strawberry plant growth and yield.<br />

Key words: growth, strawberries, <strong>ir</strong>on chelate, <strong>ir</strong>on sulphate, berry weight,<br />

yield.<br />

145


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

KOMPLEKSINIS UV-B SPINDULIUOTËS IR<br />

TEMPERATÛROS POVEIKIS BRAÐKIØ<br />

FIZIOLOGINIAMS RODIKLIAMS<br />

Akvilë URBONAVIÈIÛTË 1,2 , Giedrë SAMUOLIENË 1,2 ,<br />

Jurga SAKALAUSKAITË 1 , Pavelas DUCHOVSKIS 1,2 ,<br />

Auðra BRAZAITYTË 1 , Jûratë Bronë ÐIKÐNIANIENË 1 ,<br />

Gintarë ÐABAJEVIENË 1 , Kæstutis BARANAUSKIS 1 ,<br />

Sandra SAKALAUSKIENË 1 , Nobertas USELIS 1 ,<br />

Bronislovas GELVONAUSKIS 1<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas P. Duchovskis@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio universitetas, LT-53067, Noreikiðkës, Kauno r.<br />

2005–2006 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute fitotrono<br />

komplekse atliktø tyrimø tikslas – ávertinti kompleksiná UV-B spinduliuotës <strong>ir</strong> temperatûros<br />

poveiká braðkiø fiziologiniams rodikliams. T<strong>ir</strong>ta, kaip 9 dienø trukmës ðvitinimas<br />

0, 2 <strong>ir</strong> 4 kJ UV-B spinduliuotës dozëmis veikia braðkiø augimà, pigmentø <strong>ir</strong><br />

cukrø biosintezæ esant 21/14°C <strong>ir</strong> <strong>25</strong>/16°C aplinkos temperatûrai. Chlorofilø <strong>ir</strong> karotinoidø<br />

koncentracija nustatyta spektrofotometriniu, cukrø – chromatografiniu metodu.<br />

Trumpalaikis ðvitinimas UV-B spinduliuote didelio poveikio braðkiø – ilgos vegetacijos<br />

augalo – biometriniams rodikliams nedaro. 2 kJ spinduliuotë skatina fotosintezës<br />

pigmentø <strong>ir</strong> cukrø sintezæ tiek esant optimaliai, tiek aukðtesnei temperatûrai.<br />

T<strong>ir</strong>ta aukðtesnë temperatûra savaime sukelia stresiná poveiká, taèiau padidintos temperatûros<br />

sàlygomis braðkiø cukrø metabolizmo sistema maþiau jautriai reaguoja á<br />

sk<strong>ir</strong>tingas UV-B spinduliuotës dozes.<br />

Raktaþodþiai: braðkës, cukrûs, fotosintezës pigmentai, lapø plotas, temperatûra,<br />

UV-B spinduliuotë, þalia masë.<br />

Ávadas. Dël stratosferos ozono sluoksnio plonëjimo didëja UV-B spinduliuotës<br />

srautas, pasiekiantis þemës pav<strong>ir</strong>ðiø <strong>ir</strong> turintis áva<strong>ir</strong>ø esminá fotobiologiná poveiká augalams<br />

(Yang <strong>ir</strong> kt., 2004). Augalai gali toleruoti ar prisitaikyti prie maþo UV-B spinduliuotës<br />

kiekio, taèiau intensyvi radiacija jiems kenkia. Didesnis nei áprasta UV-B<br />

spinduliuotës srautas sukelia DNR, fermentø, membranø, fitohormonø, fotosintezës<br />

sistemø paþeidimus làstelëse (Strid <strong>ir</strong> kt., 1994; Tevini, 1994; Rozema <strong>ir</strong> kt., 1997;<br />

Jansen <strong>ir</strong> kt., 1998; Mackerness, 2000; Hollosy, 2002; Baier <strong>ir</strong> kt., 2005). Pakitimai<br />

<strong>ir</strong> paþeidimai molekuliniame lygmenyje neiðvengiamai veikia daugelá morfologiniø,<br />

146


fiziologiniø <strong>ir</strong> metaboliniø atsakø augaluose: sumaþëjæs lapø plotas <strong>ir</strong> þalios bei sausos<br />

masës kaupimas, padidëjusi UV-B absorbuojanèiø fermentø sintezë, fotosistemos II<br />

efektyvumo sumaþëjimas, padidëjæs cukrø kiekis audiniuose (Heijari <strong>ir</strong> kt., 2006, Mackerness,<br />

1997). Vis dëlto UV-B spinduliuotë savitai veikia rûðá <strong>ir</strong> priklauso nuo genetiniø<br />

augalo savybiø, bendros bûklës bei kitø aplinkos sàlygø poveikio. (Allen <strong>ir</strong> kt., 1999,<br />

Mackerness, 2000). Tai daro átakà svarbiems ekosistemos lygmens veiksniams, pavyzdþiui,<br />

konkurencijai tarp rûðiø, atsparumui ligoms, kenkëjams (Allen <strong>ir</strong> kt., 1999).<br />

Natûralioje aplinkoje abiotiniai stresoriai veikia ne atsk<strong>ir</strong>ai, o kaip kompleksas sàveikaujanèiø<br />

streso veiksniø. Veikiant keletui iðoriniø stresà sukelianèiø veiksniø, susiaurëja<br />

augalø tolerancijos intervalai, nes augalai, iðeikvojæ savo vidinius iðteklius prisitaikyti<br />

prie vieno iðorinio veiksnio, turi maþesnes galimybes prisitaikyti prie kitø nepalankiø<br />

faktoriø poveikio (Rhodes, Nadolska-Orczyk, 2001; Pastori, Foyer, 2002; Mozafar,<br />

Oertli, 1990). UV-B spinduliuotës srauto padidëjimas aplinkoje paprastai sutampa su<br />

pakilusia aplinkos temperatûra. Net keliais laipsniais didesnë nei áprasta temperatûra<br />

veikia daugelio fermentø funkcijà <strong>ir</strong> sukelia ðilumos streso baltymø ekspresijà (Jenkins<br />

<strong>ir</strong> kt., 1997). Taèiau, kaip augalai reaguoja á kompleksiná UV-B spinduliuotës <strong>ir</strong> padidëjusios<br />

aplinkos temperatûros kompleksiná poveiká, nëra iðt<strong>ir</strong>ta.<br />

Darbo tikslas – ávertinti kompleksiná UV-B spinduliuotës <strong>ir</strong> temperatûros poveiká<br />

braðkiø fiziologiniams <strong>ir</strong> biometriniams rodikliams.<br />

Tyrimø objektas <strong>ir</strong> metodai. Tyrimai atlikti Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute fitotrono komplekse 2005–2006 metais. Desertiniø braðkiø (Fragaria<br />

x ananassa Duch. var. ‘Senga Sengana’) daigai buvo auginami po 3 augalus 5<br />

litrø vegetaciniuose induose (trimis pakartojimais), neutralaus rûgðtumo substrate<br />

(6–6,5 pH). Braðkës balandþio–b<strong>ir</strong>þelio mënesiais augintos ðiltnamyje, o likus savaitei<br />

iki veikimo UV-B spinduliais <strong>ir</strong> temperatûra, perkeltos á fitokameras.<br />

Kontrolinëse fitokamerose buvo palaikoma 21°C temperatûra dienà <strong>ir</strong> 14°C temperatûra<br />

naktá. Vadovaujantis klimato kaitos prognostiniais modeliais (IPCC, 2001),<br />

atðilusiam klimatui imituoti fitokamerose buvo palaikoma keturiais laipsniais aukðtesnë<br />

temperatûra dienà (<strong>25</strong>°C) <strong>ir</strong> dviem laipsniais aukðtesnë temperatûra naktá (16°C).<br />

Fotoperiodo trukmë 14 val. UV-B spinduliuotæ skleidë UV-B lempos (TL 40W/12 RS<br />

UV-B Medical, Philips, JAV). Augalai buvo veikiami tokiomis UV-B dozëmis – 0 kJ,<br />

2 kJ <strong>ir</strong> 4 kJ per parà. Ekspozicijos fitokamerose trukmë – 9 dienos. Remiantis ankstesniais<br />

tyrimais, tai trumpiausia veikimo trukmë, kurios efektas augalø fiziologiniams<br />

rodikliams yra esminis.<br />

Tyrimo pabaigoje buvo nustatytas penkiø kiekvieno paveikto derinio augalø lapø<br />

plotas <strong>ir</strong> þalia augalø masë, taip pat fotosintezës pigmentø <strong>ir</strong> cukrø kiekis.<br />

Fotosintezës pigmentø kiekis þalioje masëje buvo nustatytas paruoðus 100% acetono<br />

ekstraktus <strong>ir</strong> atlikus analizæ – iðanalizavus juos spektrofotometriniu Wetshtein metodu<br />

(Ãàâðèëåíêî <strong>ir</strong> kt., 2003). Spektrofotometras – „Genesys 6“ (ThermoSpectronic, JAV).<br />

Cukrø bandiniams paruoðti apie 1 g þaliavos sutrinta keramikinëje grûstuvëlëje <strong>ir</strong><br />

uþpilta 4 ml 60–70°C bidistiliuoto vandens. Po paros ekstraktas nufiltruotas naudojant<br />

celiulioziná filtrà, o prieð analizæ – per 0,2 µm porø skersmens membraniná filtrà.<br />

Chromatografinë analizë atlikta naudojant Shimadzu 10A HPLC sistemà su refrakcijos<br />

indekso detektoriumi (Shimadzu, Japonija) <strong>ir</strong> Adsorbosil NH2- kolonà (150 mm x<br />

4,6 mm). Judrioji fazë – 75% acetonitrilas. Tëkmës greitis – 1 ml/min.<br />

147


Rezultatai apdoroti <strong>ir</strong> statistiniai skaièiavimai atlikti naudojant „MS Excel“ programiná<br />

paketà.<br />

Rezultatai. Kompleksiðkai paveikus UV-B spinduliuote <strong>ir</strong> sk<strong>ir</strong>tinga temperatûra,<br />

cukrø kiekybiniai sk<strong>ir</strong>tumai buvo esminiai (1 pav.). Esant optimaliai temperatûrai,<br />

bendras cukrø kiekis lapuose didesnis, negu esant aukðtai temperatûrai. Paveikus 21/<br />

14°C temperatûra, gliukozës sukaupta apie 1,5 karto daugiau, o maltozës – 2–5 kartus<br />

daugiau negu paveikus <strong>25</strong>/16°C temperatûra. Abiem atvejais daugiausia monocukrø,<br />

kaip <strong>ir</strong> maltozës, sukaupta paveikus 2 kJ spinduliuote (esant optimaliai aplinkos<br />

temperatûrai cukrø lapuose sukaupta beveik dvigubai daugiau negu esant aukðtesnei<br />

temperatûrai). Taèiau optimalios temperatûros sàlygomis cukrø biosintezë buvo<br />

labiausiai slopinama ðvitinant 4 kJ UV-B, o padidintos temperatûros sàlygomis –<br />

kontroliniuose augaluose. Veikiant 4 kJ spinduliuote <strong>ir</strong> <strong>25</strong>/16°C temperatûra buvo<br />

sintetinama <strong>ir</strong> nedaug sacharozës. Labiausiai UV-B spinduliuotë <strong>ir</strong> temperatûra veikia<br />

fruktozës metabolizmà.<br />

1 pav. Angliavandeniø pasisk<strong>ir</strong>stymas braðkiø lapuose augalus paveikus UV-B<br />

spinduliuote esant sk<strong>ir</strong>tingoms aplinkos temperatûros sàlygoms<br />

Fig. 1. Carbohydrate distribution in leaves of strawberry after UV-B <strong>ir</strong>radiation exposure<br />

under different temperature conditions<br />

2 pav. Fotosintezës pigmentø kiekis braðkiø lapuose kompleksiðkai paveikus UV-B<br />

spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 2. Photosynthetic pigment content in strawberry leaves after UV-B and temperature<br />

exposure<br />

148


Fotosintezës pigmentø kaupimàsi braðkiø lapuose temperatûra veikia maþiau. Ið<br />

esmës daugiau chlorofilø a, b <strong>ir</strong> karotinoidø sukaupta ðvitinant 2 kJ tiek esant 21/<br />

14°C, tiek <strong>25</strong>/16°C dienos/nakties aplinkos temperatûrai (2 pav.).<br />

3 pav. Þalia braðkiø lapø <strong>ir</strong> ðaknø masë paveikus UV-B spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 3. Fresh weight of strawberry leaves and roots after UV-B and temperature exposure<br />

Esminiø pokyèiø vertinant devyniø dienø trukmës UV-B <strong>ir</strong> temperatûros poveiká<br />

þalios masës kaupimui lapuose <strong>ir</strong> ðaknyse bei lapø ploto augimui nenustatyta<br />

(3 <strong>ir</strong> 4 pav.)<br />

4 pav. Braðkiø lapø plotas kompleksiðkai paveikus UV-B spinduliuote <strong>ir</strong> temperatûra<br />

Fig. 4. Area of strawberry leaves after UV-B and temperature complex exposure<br />

Aptarimas. Augalai yra iðvystæ unikalius mechanizmus reaguoti á nuolatos kintanèias<br />

aplinkos sàlygas: jauèia supanèià aplinkà <strong>ir</strong> pritaiko savo fiziologinius bei<br />

metabolitinius procesus homeostazei palaikyti. Reakcija á stresà sukelianèius veiksnius<br />

yra nulemta augalo genomo <strong>ir</strong> pakitusiø aplinkos sàlygø sàveikos (Pastori, Foyer,<br />

2002). Augalø morfologiniai <strong>ir</strong> fotomorfogenetiniai poþymiai yra jautresni UV-B<br />

radiacijai negu fotosintezës intensyvumas ar bendra sausos masës produkcija. Taèiau<br />

sumaþëjæs biomasës kaupimas ar fotosintezës pigmentø kiekis gali bûti patikimi<br />

augalo jautrumo UV-B radiacijai rodikliai (Smith <strong>ir</strong> kt, 2000; Liu <strong>ir</strong> kt, 2005). Mûsø<br />

atliktuose bandymuose 9 dienas sk<strong>ir</strong>tingos UV-B spinduliuotës aplinkoje augusiø braðkiø<br />

149


iometriniai rodikliai skyrësi tik paklaidos ribose <strong>ir</strong> nepriklausë nuo aplinkos temperatûros.<br />

Braðkiø vegetacijos laikotarpis ilgas, todël trumpalaikis poveikis augalø augimui<br />

didelës átakos neturi. Bendras chlorofilø kiekis taip pat gali bûti panaudojamas<br />

augalo tolerancijai UV-B spinduliuotei ávertinti: augalai, kuriuose yra daugiau chlorofilo<br />

<strong>ir</strong> jo kiekis iðlieka nesumaþëjæs veikimo metu, yra tolerantiðkesni UV-B spinduliuotei<br />

(Smith <strong>ir</strong> kt., 2000). Vertinant mûsø gautus duomenis, fotosintezës pigmentø<br />

(<strong>ir</strong> chlorofilø, <strong>ir</strong> karotinoidø) sintezë, neatsiþvelgiant á temperatûrà, labiau skatinama<br />

veikiant 2 kJ spinduliuotës doze. Didesnëmis UV-B dozëmis paþeidus fotosistemà II<br />

<strong>ir</strong> Kalvino ciklo fermentø veiklà, pas<strong>ir</strong>eiðkia fotosintezës inhibicija (Mackerness, 1997;<br />

Smith <strong>ir</strong> kt., 2000). Vis dëlto augalai gali prisitaikyti prie ðios pakitusios aplinkos<br />

indukuodami UV-B absorbuojanèiø pigmentø biosintezæ <strong>ir</strong> taip apsaugoti savo fotosintezës<br />

sistemà (Allen <strong>ir</strong> kt., 1999).<br />

Fotosintezës inhibicijos efektas siejamas su padidëjusiu t<strong>ir</strong>piø cukrø kaupimusi<br />

audiniuose (Mackerness, 1997). Keletas reakcijos á stresà mechanizmuose dalyvaujanèiø<br />

genø yra indukuojami gliukozës (Gupta, Kaur, 2005), cukrûs taip pat yra susijæ<br />

su reaktyviø deguonies formø metabolizmu (Couee <strong>ir</strong> kt., 2006), jiems prisk<strong>ir</strong>iamas<br />

svarbus angliavandeniø metabolizmo reguliavimo kintanèiomis aplinkos sàlygomis<br />

vaidmuo veikiant fermentui heksokinazei (Gibson, 2000; Shenn <strong>ir</strong> kt., 1999).<br />

Padidëjusi bendra cukrø koncentracija ðvitinant braðkes 2 kJ UV-B doze abiem temperatûros<br />

reþimais, kaip <strong>ir</strong> intensyvesnë chlorofilø sintezë, indukuoja optimalias augalo<br />

augimo <strong>ir</strong> fotosintezës sistemos veiklos sàlygas. Paveikus didesne spinduliuotës<br />

doze, cukrø, o ypaè fruktozës, kiekis reikðmingai sumaþëja. Atliekant mûsø trumpalaikio<br />

veikimo UV-B <strong>ir</strong> temperatûra tyrimà, esminio fotosintezës sistemos inhibicijos<br />

efekto nepastebëta. Literatûros duomenimis, iki 30 proc. padidëjusi UV-B spinduliuotë<br />

dar nedaro esminio poveikio fotosintezës produktyvumui <strong>ir</strong> pigmentø sintezei<br />

(Allen <strong>ir</strong> kt., 1999).<br />

Aukðtesnë temperatûra savaime pasiþymi stresiniu poveikiu <strong>ir</strong> sukelia cukrø bei<br />

fotosintezës sistemos atsakà. Taèiau, esant aukðtesnei (<strong>25</strong>/16°C) temperatûrai, ðios<br />

augalø reguliavimo sistemos ne taip jautriai reaguoja á sk<strong>ir</strong>tingas UV-B spinduliuotës<br />

dozes, kaip kontrolinës temperatûros variantas (21/14°C). Temperatûra katalizuojanèiai<br />

veikia angliavandeniø apykaitos fermentø aktyvumà (Lafta, Lorenzen, 1995),<br />

todël, esant aukðtesnei nei optimali temperatûrai, tiek monocukrø, tiek dicukrø sukaupta<br />

ið esmës maþiau.<br />

Iðvados. 1. Trumpalaikis UV-B spinduliuotës poveikis esminës átakos braðkiø<br />

augimo biometriniams rodikliams nedaro.<br />

2. 2 kJ UV-B spinduliuotë labiausiai skatino fotosintezës pigmentø <strong>ir</strong> cukrø sintezæ<br />

tiek esant optimaliai, tiek aukðtai temperatûrai.<br />

3. Aukðtesnë aplinkos temperatûra savaime sukelia stresiná poveiká braðkëms,<br />

taèiau, esant aukðtesnei temperatûrai, fotosintezës pigmentø <strong>ir</strong> angliavandeniø sintezë<br />

maþiau jautriai reaguoja á UV-B spinduliuotës poveiká.<br />

Padëka. Autoriai dëkingi Lietuvos valstybiniam mokslo <strong>ir</strong> studijø fondui uþ finansinæ<br />

paramà.<br />

Gauta 2006-11-10<br />

Parengta spausdinti 2006-12-11<br />

150


Literatûra<br />

1. Allen D. J., Nogues S., Morison J. I. L., Greenslade P. D., Mcleod A. R., Baler N. R.<br />

A th<strong>ir</strong>ty percent increase in UV-B has no impact on photosynthesis in well-watered and<br />

droughted pea plants in the field // Global Change Biology. 1999. Vol. 5. P. 235–244.<br />

2. Baier M., Kandlbinder A., Golldack D., Dietz K.-J. Oxidative stress and ozone: perception,<br />

signaling and response // Plant, Cell and Env<strong>ir</strong>onment. 2005. Vol. 28. P. 1012–1020.<br />

3. Couee I., Sulmon C., Gousabet G., Amrani A. Involvement of soluble sugars in<br />

reactive oxygen species balance and responses to oxidative stress in plants // Journal of<br />

Experimental Botany. 2006. Vol. 57. P. 449–459.<br />

4. Gibson S. I. Plant Sugar-Response pathways. Part of a Complex regulatory web //<br />

Plant Physiology. 2000. Vol. 124. P. 1532–1539.<br />

5. Gupta A. K., Kaur N. Sugar signaling and gene expression in relation to carbohydrate<br />

metabolism under abiotic stresses in plants // J.Biosci. 2005. Vol. 30. P. 761–776.<br />

6. Heijari J., Kivima M., Hartikainen H., Julkunen-Tiitto R., Wulff A. Responses of<br />

strawberry (Fragariaxananassa) to supplemental UV-B radiation and selenium under<br />

field conditions // Plant and Soil. 2006. Vol. 282. P. 27–39.<br />

7. Hollosy F. Effects of ultraviolet radiation on plant cell // Micron. 2002. Vol. 33.<br />

P. 179–197.<br />

8. Jenkins M. E., Suzuki T. C., Mount D. W. Evidence that heat and ultraviolet radiation<br />

activate a common stress-response program in plants that is altered in the uvh6<br />

Mutant of Arabidopsis thaliana // Plant Physiology. 1997. Vol. 115. P. 1351–1358.<br />

9. IPCC. An assessment of the intergovernmental Panel on Climate Change: Synthesis<br />

report. 2001. Wembley. 34 p.<br />

10. Jansen M. A. K., Gaba V., Grreeberg B. M. Higher plants and UV-B radiation:<br />

balancing damage, repa<strong>ir</strong> and acclimation // Trends in plant science. 1998. Vol. 3. P. 131–135.<br />

11. Lafta A. M., Lorenzen J. H. Effect of high temperature on plant growth and<br />

carbohydrate metabolism in potato // Plant Physiology. 1995. Vol. 109. P. 637–643.<br />

12. Liu L.-X., Xu S.-M., Woo K. C. Solar UV-B radiation on growth, photosynthesis<br />

and the xanthophyll cycle in tropical acacias and eucalyptus // Env<strong>ir</strong>onmental and Experimental<br />

Botany. 2005. Vol. 54. P. 121–130.<br />

13. Mackerness S.-H. Plant responses to ultraviolet B (UV-B: 280–320 nm) stress:<br />

What are the key regulators // Plant Growth Regulation. 2000. Vol. 32. P. 27–39.<br />

14. Mackerness S. A.-H., Surplus S. L., Jordan B. R., Thomas B. Ultraviolet-B effects<br />

on transcript levels of photosynthetic genes are not mediated through carbohydrate<br />

metabolism // Plant, Cell and Env<strong>ir</strong>onment. 1997. Vol. 20. P. 1431–1437.<br />

15. Mozafar A., Oertli J. J. Multiple stress and growth of barley: effect of salinity and<br />

temperature shock // Plant and Soil. 1990. Vol. 128. P. 153–160.<br />

16. Pastori G. M., Foyer C. H. Common components, networks, and pathways of<br />

cross-tolerance to stress. The central role of “Redox” and Abscisic acid-mediated controls<br />

// Plant Physiology. 2002. Vol. 129. P. 460–468.<br />

17. Rhodes D., Nadolska-Orczyk A. Plant stress physiology. Encyclopedia of life<br />

sciences. 2001. Nature publishing group.<br />

18. Rozema J., Jos van de Staaij, Bjorn L. O., Caldwell M. UV-B as an env<strong>ir</strong>onmental<br />

factor in plant life: stress and regulation // Tree. 1997. Vol.12. P. 22–28.<br />

19. Sheen J., Zhou L., Jang J.-C. Sugars as signaling molecules // Current Opinion in<br />

Plant Biology. 1999. Vol. 2. P. 410–418.<br />

20. Smith J. L., Burritt D. J., Bannister P. Shoot dry weight, chlorophyll and UV-Babsorbing<br />

compounds as indicators of plant’s sensitivity to UV-B radiation // Annals of<br />

Botany. 2000. Vol. 86. P. 1057–1063.<br />

151


21. Strid A., Chow W. S., Anderson J. M. UV-B damage and protection at the molecular<br />

level in plants // Photosynthesis Research. 1994. Vol. 39. P. 475–489.<br />

22. Tevini M. Physiological changes plants related to UVB-radiation: an overview //<br />

Stratospheric Ozone Depletion and UV-B Radiation in the Biosphere. Springer-Verlag,<br />

Berlin, Heidelberg, 1994. P. 37–55.<br />

23. Yang H., Zhao Z., Qiang W., An L., Xu S., Wang X. Effects of enhanced UV-B<br />

radiation on the hormonal content of vegetative and reproductive tissues of two tomato<br />

cultivars and the<strong>ir</strong> relationships with reproductive characteristics // Plant Growth Regulation.<br />

2004. Vol. 42. P. <strong>25</strong>1–<strong>25</strong>8.<br />

24. Ãàâðèëåíêî Â. Ô., Æûãàëîâà Ò. Â., Áîëüøîé ïðàêòèêóì ïî ôîòîñèíòåçó.<br />

Ìîñêâà: Aêaäåìèÿ, 2003. <strong>25</strong>6 c.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE COMPLEX EXPOSURE OF TEMPERATURE AND<br />

UV-B IRRADIATION ON PHYSIOLOGICAL INDICES IN<br />

STRAWBERRY<br />

A. Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë, P. Duchovskis, A. Brazaitytë,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë<br />

Summary<br />

Experiments were performed at the Lithuanian Institute of Horticulture, phytotron<br />

complex in 2005–2006. The object of this study was to evaluate the complex<br />

exposure of temperature and UV-B <strong>ir</strong>radiation on physiological indices in strawberry.<br />

The effect of 0, 2 and 4 kJ <strong>ir</strong>radiation doses on growth parameters, photosynthetic<br />

pigment and carbohydrates contents was investigated when env<strong>ir</strong>onmental temperature<br />

was 21/14°C and <strong>25</strong>/16°C. Chlorophyll and carotenoid content was evaluated<br />

using spectrophotometric method, while carbohydrates – using high performance<br />

liquid chromatography. Short-term UV-B exposure has no significant effect<br />

on strawberry biometric parameters. Though the increase in photosynthetic pigment<br />

and carbohydrate contents, when plants were exposed to 2 kJ <strong>ir</strong>radiation indicate<br />

that these conditions are optimal for growth at optimal and high temperature. Higher<br />

temperature itself is a stress factor, although at higher temperatures, strawberry<br />

carbohydrate system is less sensitive to different UV-B <strong>ir</strong>radiation doses.<br />

Key words: strawberry, carbohydrates, photosynthetic pigments, leaf area, UV-B<br />

<strong>ir</strong>radiation, fresh weight.<br />

152


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

THE EFFECT OF ABAMECTIN ON STRAWBERRY<br />

MITE TARSONEMUS PALLIDUS<br />

(ACARI: TARSONEMIDAE) IN STRAWBERRIES<br />

Laimutis RAUDONIS<br />

Lithuanian Institute of Horticulture, Laboratory of Plant Protection.<br />

LT-54333 Babtai, Kaunas distr., Lithuania.<br />

E-mail l.raudonis@lsdi.lt<br />

The effect on the seasonal abundance of strawberry mite (Tarsonemus pallidus<br />

Banks.) and toxicity of Abamectin 18 g l -1 was studied in strawberries under field<br />

conditions in 2005–2006. Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to<br />

very toxic 3 and 7 days after treatment and slightly toxic 21 days after treatment.<br />

The mortality of strawberry mite ranged from 58.9 to 77.8 proc. 3 and 7 days and<br />

41.9–48.4 proc. 21 days after treatment, respectively. Abamectin 18 g l -1 , 18.0 g<br />

AI ha -1 was only moderately toxic (mortality – 50.5–56.9 proc.) 3 and 7 and slightly<br />

toxic (mortality – 40.9 and 41.6 proc.) 21 days after treatment. The field rate (9.0 g<br />

AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic (mortality – 43.7–45.6 proc.) 3 and<br />

7 and from non to slightly toxic (mortality – 16.3–30.6%) 21 days after treatment.<br />

The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin<br />

18 g l -1 , 9.0 g AI ha -1 , meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1<br />

was similar to the toxicity of Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite.<br />

Key words: Abamectin, rates, strawberry, Tarsonemus pallidus, toxicity.<br />

Introduction. Outbreaks of phytophagous mites have been induced mostly<br />

due to applications of broad-spectrum pesticides that kill predators, which would<br />

control these mites. The widely used synthetic pyrethroids are very effective against<br />

pest insects, but it has not any effect on mites and it causes increasing phytophagous<br />

mite populations that induce severe damage of plants (Edland, 1994; Raudonis<br />

2004). On the other hand, frequent acaricide applications against the increased phytophagous<br />

mite population result in greater resistance (Elzen, Hardee, 2003; Van<br />

Leeuwen et al., 2005). Integrated pest management (IPM), which is based on selective<br />

toxicity to the phytophagous mites and harmless to predatory mite, became the<br />

most relevant strategy of plant protection (Edland, 1994; Leake, 2000; Linquist,<br />

2000; Klassen, 2000).<br />

Strawberry mite is one of the key pests of horticultural plants, causing serious<br />

ind<strong>ir</strong>ect damage to the crop in Lithuania (Raudonis, 2002, 2005). There have not<br />

153


een reported enough data on toxicity of acaricides against phytophagous mites in<br />

strawberries. Variety resistance to two spotted spider mite and diseases was tested<br />

in strawberries in Lithuania (Raðinskienë, 1995, 1997; Uselis, Raðinskienë, 1995,<br />

2001). Some pesticides were tested against spider mites in other crops (Nauen et al.,<br />

2001; Choi et al., 2003; Hardman et al., 2003; Bostanian et al., 2004; Raudonis et al.,<br />

2004; Martínez-Villar et al., 2005).<br />

Experiments performed in 2005–2006 were designed to clarify how Abamectin<br />

affects strawberry mite in strawberries.<br />

Materials and methods. The field trials were carried out in the open field of<br />

strawberries of Lithuanian Institute of Horticulture in 2005–2006. The strawberries (variety<br />

‘Senga Sengana’) were planted in 2004. 62 500 seedlings per hectare were planted.<br />

The soil was fertilized with N – 40 kg ha -1 before flowering. Euparen M 500WG 3.0 kg<br />

ha -1 at 61 growth stage was treated for disease control during flowering.<br />

The trial was carried out according trial plan as presented in Table 1.<br />

Treatment<br />

Variantas<br />

Untreated / nepurkšta<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Lambdacihalotrin 50 g l -1<br />

Table 1. Trial plan<br />

1 lentelë. Bandymo planas<br />

Trade name<br />

Preparato registracijos pavadinimas<br />

A Rate (g AI ha -1 )<br />

Norma, g v.m. ha -1<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 Envidor SC 240 g l -1 96.0<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Karate EC 50 g l -1<br />

-<br />

21.6<br />

18.0<br />

9.0<br />

<strong>25</strong>.0<br />

A<br />

AI – active ingredient / veiklioji medþiaga<br />

Table 2. Weather c<strong>ir</strong>cumstances at application in 2005–2006<br />

2 lentelë. Oro sàlygos purðkimo metu 2005–2006 m.<br />

Date of application / Purškimo data 2005-06-29 2006-07-20<br />

Temperature on the date of application<br />

Temperatûra, °C<br />

154<br />

15.0 19.0<br />

Wind speed on the date of application<br />

Vëjo greitis, m s -1 2.0 2.0<br />

Relative a<strong>ir</strong> humidity on the date of application<br />

Santykinë oro drëgmë, %<br />

74 60<br />

Rain after treatment, hours<br />

Laikotarpis po purškimo iki lietaus, val.<br />

17 70


Plot size at least 12m 2 , the trial was repeated 4 times at random plot distribution.<br />

Sprayer Hardi 4110-12 was used for spraying, water volume – 1 000 l ha -1 . Weather<br />

conditions at 91 growth stage according BBCH scale (Meier, 1997) during application<br />

presented in Table 2.<br />

Assessments in 2005 and 2006 were made as follows: before application (VI.27<br />

and VII.20), 3–4 (VII.02 and VII.24), 7 (VII.06 and VII.27) and 21 days (VII.20<br />

and VIII.10) after application. Assessments were made on 20 leaflets for assessment<br />

the number of strawberry mites per leaf in each plot. Meteorological data (a<strong>ir</strong><br />

temperature and amount of precipitation) were recorded using scab warning equipment<br />

Metos D (Table 3).<br />

Mortality of mites was calculated: x = 100 (1–Ab/Ba) (x – mortality, %, A –<br />

number of mites, before spraying in untreated plot, B – number of mites, before<br />

spraying in treated plot, a – number of mites, after spraying in untreated plot, b –<br />

number of mites, after spraying in treated plot).<br />

We applied quantitative toxicity categories those employed by the International<br />

Organization for Biological Control for assessment of pesticide toxicity to predatory<br />

and phytophagous mites in field trials: non-toxic (< <strong>25</strong>% mortality), slightly toxic<br />

(<strong>25</strong>–50%), moderately toxic (51–75%), very toxic (> 75%) (Hassan et al., 1985).<br />

The number of strawberry mites was compared among treatments in this study<br />

with a single factor analysis of variance (ANOVA). Differences were identified with<br />

Duncan’s multiple range test.<br />

Month<br />

Mënuo<br />

Table 3. Meteorological conditions in 2005–2006<br />

3 lentelë. Meteorologinës sàlygos 2005–2006 m.<br />

A<strong>ir</strong> temperature<br />

Precipitation<br />

Oro temperatûra, °C<br />

2005 m. 2006 m.<br />

average of<br />

1924–2000<br />

1924–2000 m.<br />

vidurkis<br />

Results. There were found on average 9.<strong>25</strong>, 10.5 and 5.75 strawberry mites<br />

per leaflet in unsprayed plots 3, 7 and 21 days after treatment in 2005 (Table 4).<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 reduced to 2.<strong>25</strong>, 2.75 and 3.<strong>25</strong> the number of mites<br />

per leaf 3, 7 and 21 days after treatment, respectively. Abamectin 18 g l -1 , 21.6 g AI<br />

ha -1 was very toxic (mortality - 77.8 and 76.1%) to strawberry mite 3 and 7 days and<br />

slightly toxic (mortality – 48.4%) 21 days after treatment, respectively (Table 5).<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 was moderately toxic (mortality – 56.9 and 52.0%)<br />

3 and 7 days and slightly toxic (mortality – 41.6%) 21 days after treatment. The<br />

lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 was slightly toxic 3 and 7 days and<br />

non-toxic 21 after treatment. The mortality ranged from 16.3 to 45.6%. The toxicity<br />

of Abamectin was compared with the toxicity of Lambdacihalotrin and Sp<strong>ir</strong>odiclofen<br />

to strawberry mite. There were found any statistical differences of number of<br />

155<br />

Krituliai, mm<br />

2005 m. 2006 m.<br />

average of<br />

1924–2000<br />

1924–2000 m.<br />

vidurkis<br />

June / B<strong>ir</strong>želis 14.8 16.3 16.6 66,6 13.8 50.4<br />

July / Liepa 19.4 19.3 17.6 3,8 30.2 71.8<br />

August / Rugpjûtis 14.7 17.5 16.3 109.4 173.4 75.8


strawberry mites after treatments with Abamectin 18 g l -1 , 21.6 g AI ha -1 and Sp<strong>ir</strong>odiclofen<br />

240 g l -1 , 96.0 g AI ha -1 . Abamectin 18 g l -1 , 18.0 g AI ha -1 and Abamectin 18<br />

g l -1 , 9.0 g AI ha -1 gave statistically lower toxicity to strawberry mite in comparison<br />

with Abamectin 18 g l -1 , 21.6 g AI ha -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 in<br />

2005 (Table 4). The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar<br />

to the lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 in 2005 (Table 5).<br />

Table 4. Effects of Abamectin against strawberry mite (Tarsonemus pallidus) in<br />

strawberry. Babtai, 2005<br />

4 lentelë. Abamectino poveikis þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2005 m.<br />

Number of mites per leaflet<br />

Erkiø ant lapelio, vnt.<br />

3 days 7 days 21 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

3 d. po 7 d. po 21 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 5.<strong>25</strong> ab 9.<strong>25</strong> d 10.5 e 5.75 b<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 5.75 ab 2.<strong>25</strong> a 2.75 a 3.<strong>25</strong> a<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. ha -1 6.<strong>25</strong> ab 4.75 b 6.0 b 4.0 ab<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 6.0 ab 5.75 b 6.75 bc 5.50 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 7.0 b 7.<strong>25</strong> cd 8.75 cde 11.2 c<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 5.50 ab 2.00 a 2.50 a 2.0 a<br />

Table 5. Toxicity of Abamectin to strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2005<br />

5 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2005 m.<br />

Treatment<br />

Variantas<br />

3 days after<br />

treatment<br />

3 d. po<br />

purškimo<br />

Toxicty<br />

Toksiškumas, %<br />

7 days after<br />

treatment<br />

7 d. po<br />

purškimo<br />

21 days<br />

after<br />

treatment<br />

21 d. po<br />

purškimo<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 77.8 76.1 48.4<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 56.9 52.0 41.6<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 45.6 43.7 16.3<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 41.2 37.5 0.00<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 79.4 77.3 66.8<br />

In 2006 Abamectin 18 g l -1 , 21.6 g AI ha -1 and Abamectin 18 g l -1 , 18.0 g AI ha -1<br />

were moderately toxic to strawberry mite (mortality ranged from 50.5 till 63.5%) 3<br />

and 7 days and slightly toxic (mortality – 40.9 - 41.9%) 21 days after treatment<br />

(Table 7). The lowest rate 9.0 g AI ha -1 of Abamectin 18 g l -1 was only slightly toxic<br />

156


to strawberry mite 3, 7 and 21 days after treatment. Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0<br />

g AI ha -1 was non-toxic, meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI<br />

ha -1 was moderately toxic and gave statistically highest effect 21 days after treatment,<br />

comparing with the highest rate 21.6 g AI ha -1 of Abamectin 18 g l -1 .<br />

Table 6. Effects of Abamectin against strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2006<br />

6 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2006 m.<br />

Number of mites per leaflet<br />

Erkiø ant lapelio, vnt.<br />

3 days 7 days 21 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

3 d. po 7 d. po 21 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 4.52 ab 4.65 c 4.80 c 2.32 d<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 5.20 ab 1.95 ab 2.27 b 1.55 b<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 4.95 ab 2.50 b 2.60 b 1.50 b<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 4.55 ab 2.60 b 2.65 b 1.62 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 5.40 b 5.85 d 5.97 d 2.80 d<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 4.75 ab 1.35 a 1.30 a 0.75 a<br />

Note: means within columns followed by the same letter are not different significantly (P = 0.05)<br />

according to Duncan’s multiple range test<br />

Pastaba: tarp reikðmiø, lentelës skiltyse paþymëtø tomis paèiomis raidëmis, pagal Dunkano kriterijø<br />

(P = 0,05) esminiø sk<strong>ir</strong>tumø nëra<br />

Table 7. Toxicity of Abamectin to strawberry mite (Tarsonemus pallidus)<br />

in strawberry. Babtai, 2006<br />

7 lentelë. Abamectino toksiðkumas þemuoginëms erkëms (Tarsonemus pallidus) braðkëse.<br />

Babtai, 2006 m.<br />

Treatment<br />

Variantas<br />

3 days after<br />

treatment<br />

3 d. po<br />

purškimo<br />

Toxicity<br />

Toksiškumas, %<br />

7 days after<br />

treatment<br />

7 d. po<br />

purškimo<br />

21 days<br />

after<br />

treatment<br />

21 d. po<br />

purškimo<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 / v.m. g ha -1 63.5 58.9 41.9<br />

Abamectin 18 g l -1 , 18.0 g AI ha -1 / v.m. g ha -1 50.9 50.5 40.9<br />

Abamectin 18 g l -1 , 9.0 g AI ha -1 / v.m. g ha -1 44.4 45.2 30.6<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 / v.m. g ha -1 0 0 0<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 / v.m. g ha -1 72.4 74.2 69.2<br />

157


Discussion. Meteorological conditions for strawberry mite development were<br />

favorable in 2005 and averagely favorable in 2006. High a<strong>ir</strong> temperature and dry<br />

weather resulted higher infestation of strawberries by mites in 2005.<br />

The effect of the lower rate of Abamectin on strawberry mites was weaker.<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to very toxic 3 and 7 and<br />

slightly toxic 21 days after treatment, meanwhile Abamectin 18 g l -1 , 18.0 g AI ha -1<br />

was only moderately toxic 3 and 7 and slightly toxic 21 days after treatment. The<br />

field rate (9.0 g AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic 3, 7 and from nontoxic<br />

to slightly toxic 21 days after treatment. The toxic effects of pesticides to<br />

mites depends on the chemistry of pesticides, the<strong>ir</strong> rates, microclimatic conditions<br />

and the development stages of the mites (Edland, 1994; Auger et al, 2003; Hardman<br />

et al., 2003; Bostanian et al., 2004; Martînez-Villar et al., 2005). Similar toxicity<br />

patterns of different rates of Sp<strong>ir</strong>odiclofen to strawberry and two spotted spider<br />

mites were recorded in strawberries (Raudonis, 2005, 2006). This study shows that<br />

the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was similar to the toxicity of<br />

Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite, except that Sp<strong>ir</strong>odiclofen had<br />

longer term of action.<br />

The toxicity of Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin<br />

18 g l -1 , 9.0 g AI ha -1 . Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was slightly toxic<br />

to strawberry mites after 3 and 7 days, meanwhile it was non-toxic 21 days after<br />

treatment in 2005. Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 did not affected strawberry<br />

mite in 2006, on the contrary, it was observed that the number of mites was<br />

statistically higher after Lambdacihalotrin treatment in comparison with unsprayed<br />

plots. The toxic effect of Lambdacihalotrin on the predatory mites Amblyseius andersoni<br />

Chant, which is a natural predator of strawberry mite, was recorded (Raudonis,<br />

2006). Similar results have been recorded in apple-trees (Raudonis et. al.,<br />

2004). The control of Phytophagous mites using Phytoseiid mites, has been demonstrated<br />

in different crops (Roy et al., 1999; Prischmann et al., 2001; Osakabe,<br />

2002; Pratt et al., 2002; Badii et al., 2004; Harmon, Andow, 2004).<br />

Conclusions. Abamectin 18 g l -1 , 21.6 g AI ha -1 was from moderately to very<br />

toxic 3 and 7 days and slightly toxic 21 days after treatment. Abamectin 18 g l -1 , 18.0<br />

g AI ha -1 was only moderately toxic 3 and 7 days and slightly toxic 21 days after<br />

treatment. The field rate (9.0 g AI ha -1 ) of Abamectin 18 g l -1 was slightly toxic 3 and<br />

7 days and from non-toxic to slightly toxic 21 days after treatment. The toxicity of<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g AI ha -1 was similar to Abamectin 18 g l -1 , 9.0 g AI<br />

ha -1 , meanwhile the toxicity of Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was similar to<br />

the toxicity of Abamectin 18 g l -1 , 21.6 g AI ha -1 to strawberry mite.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Auger P., Guichou S., Kreiter S. Variations in acaricidal effect of wettable sulfur on<br />

Tetranychus urticae (Acari: Tetranychidae): effect of temperature, humidity and life stage //<br />

Pest Management Science. 2003. 59(5). P. 559–565.<br />

158


2. Badii M. H., Hernández–Ortiz E., Floros A. E., Landeros J. Prey stage preference and<br />

functional response of Euseius hibisci to Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)<br />

// Experimental and Applied Acarology. 2004. 34(3–4). P. 263–273.<br />

3. Bostanian N. J., Vincent C., Hareman J. M., Larocque N. Toxicity of indoxacarb to<br />

two species of predacious mites and a predacious M<strong>ir</strong>id // Pest Management Science.<br />

2004. 60(5). P. 483–486.<br />

4. Choi W., Lee S. G., Park H. M., Ahn Y. J. Toxicity of plant essential oils to Tetranychus<br />

urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) // Journal<br />

of Economic Entomology. 2003. 97(2). P. 553–558.<br />

5. Edland T. Integrated pest management (IPM) in orchards, with reference to benefits<br />

and risk of introducing biocontrol agents. Norway, 1994. P. 44.<br />

6. Elzen G. W., Hardee D. D. United States Department of Agriculture – agricultural<br />

research service research on managing insect resistance to insecticides // Pest Management<br />

Science. 2003. 59(6–7). P. 770–776.<br />

7. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian N. J. An index for selective<br />

toxicity of miticides to phytophagous mites and the<strong>ir</strong> predators based on orchard trials //<br />

Pest Management Science. 2003. 59. P. 1324–1332.<br />

8. Harmon J., Andow D. A. Ind<strong>ir</strong>ect effects between shared prey: Predictions for //<br />

BioControl. 2004. 49(6). P. 605–626.<br />

9. Hassan S. A., Albert R., Bigler F., Blaisinger P., Bogenschutz H., Boller E., Brun F.,<br />

Chiverton P., Edwards P., Englert W. D., Huang P., Inglesfield C., Naton E., Oomen P. A.,<br />

Overmeer W. P. J., Rieckmann W., Samsoe–Petersen L., Staubli A., Tuset J. J., Viggiani G.,<br />

Vanwetswinkel G. Results of the th<strong>ir</strong>d joint pesticide testing programme by the IOBC/<br />

WPRS working group ‘Pesticides and beneficial organisms’ // Z Angew Entomol. 1987.<br />

103. P. 92–107.<br />

10. Klassen W. Area–wide approaches to insect pest interventions: history and<br />

lessons. In: Tan K. H. (ed.) Area–Wide Control of Fruit Flies and Other Insect Pests.<br />

Penerbit University Sains Malaysia, Penang, Malaysia, 2000. P. 21–38.<br />

11. Leake A. The development of integrated crop management in agricultural crops:<br />

comparisons with conventional methods // Pest Management Science. 2000. 56(11).<br />

P. 950–953.<br />

12. Linquist D. A. Pest management strategies: area-wide and conventional. In: Tan<br />

K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit University Sains<br />

Malaysia, Penang, Malaysia, 2000. P. 13–20.<br />

13. Martînez–Villar E., Sáenz–De–Cabezón F. J., Moreno–Grijalba F., Marco V., Pérez–<br />

Moreno I. Effects of azad<strong>ir</strong>achtin on the two-spotted spider mite, Tetranychus urticae<br />

(Acari: Tetranychidae) // Experimental and Applied Acarology. 2005. 35(3). P. 215–222.<br />

14. Meier U. Growth stages of mono- and dicotyledonous plants. BBCH Monograph.<br />

Berlin: Blackwell Wissenschafts–Verlag, 1997. 622 p.<br />

15. Nauen R., Stumpf N., Elbert A., Zebitz C. P. W., Kraus W. Acaricide toxicity and<br />

resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(3). P. <strong>25</strong>3–261.<br />

16. Osakabe Mh. Which predatory mite can control both a dominant mite pest, Tetranychus<br />

urticae, and a latent mite pest, Eotetranychus asiaticus, on strawberry // Experimental<br />

and Applied Acarology. 2002. 26(3–4). P. 219–230.<br />

17. Pratt P. D., Rosetta R., Croft B. A. Plant-related factors influence the effectiveness<br />

of Neoseiulus fallacis (Acari: Phytoseiidae), a biological control agent of spider mites on<br />

landscape ornamental plants // Journal of Economic Entomology. 2002. 95(6). P. 1135–<br />

1141.<br />

159


18. Prischmann D. A., Croft B. A., Luh H.–K. Biological control of spider mites on<br />

grape by Phytoseiid mites (Acari: Tetranychidae, Phytoseiidae): Emphasis on Regional<br />

Aspects // Journal of Economic Entomology. 2001. 95(2). P. 340–347.<br />

19. Raðinskienë A. Braðkiø ligø sukëlëjai <strong>ir</strong> kai kurios apsaugos priemonës // Þemës<br />

ûkio mokslai. 1997. 4. P. 53–56.<br />

20. Raðinskienë A. Braðkiø paðaknio ligos <strong>ir</strong> apsaugos priemonës nuo jø // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1995. 14. P. 54–62.<br />

21. Raudonis L. Comparative toxicity of sp<strong>ir</strong>odiclofen and lambdacihalotrin to Tetranychus<br />

urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry<br />

site under field conditions // Agronomy Research. 2006. 4. P. 317–322.<br />

22. Raudonis L. Effects of sp<strong>ir</strong>odiclofen on the strawberry mite, Tarsonemus pallidus<br />

(Acari: Tarsonemidae) in strawberries // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2005. 24(2).<br />

P. 64–72.<br />

23. Raudonis L., Survilienë E., Valiuðkaitë A. Toxicity of pesticides to predatory mites<br />

and insects in apple-tree site under field conditions // Env<strong>ir</strong>onmental Toxicology. 2004.<br />

19(4). P. 291–295.<br />

24. Raudonis L. Þalingø vabzdþiø <strong>ir</strong> erkiø stebësena <strong>ir</strong> tyrimas braðkyne // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2002. 21(4). P. 102–110.<br />

<strong>25</strong>. Roy M., Broduer J., Cloutier C. Seasonal abundance of spider mites and the<strong>ir</strong><br />

predators on red raspberry in Quebec, Canada // Env<strong>ir</strong>onmental Entomology. 1999. 28(4).<br />

P. 735–747.<br />

26. Uselis N., Raðinskienë A. Braðkiø biologiniø <strong>ir</strong> ûkiniø savybiø ávertinimas // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. 20(2). P. 18–31.<br />

26. Uselis N., Raðinskienë A. Braðkiø veisliø gamybinis ávertinimas // Sodininkystë <strong>ir</strong><br />

darþininkystë. Babtai, 1995. 14. P. 44–53.<br />

28. Van Leeuwen T., Van Pottelberge S., T<strong>ir</strong>ry L. Comparative acaricide susceptibility<br />

and detoxifying enzyme activities in field-collected resistant and susceptible strains of<br />

Tetranychus urticae // Pest Management Science. 2005. 61(5). P. 499–507.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ABAMECTINO POVEIKIS ÞEMUOGINËMS ERKËMS<br />

TARSONEMUS PALLIDUS (ACARI: TARSONEMIDAE)<br />

BRAÐKËSE<br />

L. Raudonis<br />

Santrauka<br />

2005–2006 m. t<strong>ir</strong>tas abamectino 18 g l -1 poveikis þemuoginiø erkiø (Tarsonemus<br />

pallidus Banks.) gausumui lauko sàlygomis braðkëse. Abamectino 18 g l -1<br />

21,6 g v.m. ha -1 norma buvo vidutiniðkai toksiðka <strong>ir</strong> labai toksiðka þemuoginëms<br />

erkëms, praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong> maþai toksiðka, praëjus 21 d. po purðkimo. Toksiðkumas<br />

þemuoginëms erkëms buvo atitinkamai nuo 58,9 iki 77,8 proc., praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong><br />

41,9–48,4 proc., praëjus 21 d. po purðkimo. Abamectino 18 g l -1 18,0 g v.m. ha -1<br />

norma buvo tiktai vidutiniðkai toksiðka (50,5–56,9 proc.), praëjus 3 <strong>ir</strong> 7 d., <strong>ir</strong> maþai<br />

160


toksiðka (40,9–41,6 proc.), praëjus 21 d. po purðkimo. Maþiausia (9,0 g v.m. ha -1 )<br />

abamectino 18 g l -1 norma buvo maþai toksiðka (43,7–45,6 proc.), praëjus 3 <strong>ir</strong> 7 d.,<br />

<strong>ir</strong> netoksiðka ar maþai toksiðka (16,3–30,6 proc.), praëjus 21 d. po purðkimo. Akaricido<br />

lambdacihalotrino 50 g l -1 <strong>25</strong>,0 g v.m. ha -1 normos toksiðkumas þemuoginëms<br />

erkëms buvo panaðus á abamectino 18 g l -1 9,0 g v.m. ha -1 normos toksiðkumà.<br />

Taèiau sp<strong>ir</strong>odiclofeno 240 g l -1 96,0 g AI ha -1 normos tokiðkumas þemuoginëms<br />

erkëms buvo artimas abamectino 18 g l -1 21,6 g v.m. ha -1 normos toksiðkumui.<br />

Reikðminiai þodþiai: abamectinas, braðkës, normos, Tarsonemus pallidus, toksiðkumas.<br />

161


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

TOXICITY OF ABAMECTIN TO FRUIT TREE<br />

RED SPIDER MITE, PANONYCHUS ULMI<br />

(ACARI: TETRANYCHIDAE) IN APPLE TREE SITE<br />

Laimutis RAUDONIS<br />

Lithuanian Institute of Horticulture, Laboratory of Plant Protection,<br />

LT-54333 Babtai, Kaunas distr., Lithuania.<br />

E-mail l.raudonis@lsdi.lt<br />

The effect and toxicity of Abamectin 18 g l -1 to the fruit tree red spider mite (Panonychus<br />

ulmi Koch) was studied in apple tree under field conditions in 2005–2006. Abamectin<br />

18 g l -1 at the rates 27 g AI ha -1 and 18 g AI ha -1 was very toxic (mortality ranged<br />

from 92.9 to 99.0%) to the mites 2–5 and 7 days after treatment and from moderately<br />

to very toxic (mortality – 54.4–89.7%) 31 days after treatment. Abamectin 18 g l -1 ,<br />

13.5 g AI ha -1 was rated as very toxic (mortality – 89.0–91.4%) 2–5 and 7 days after<br />

treatment and only moderately toxic (mortality – 51.1–62.4%) 31 days after treatment.<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 days and 31 days<br />

after treatment and showed long term of action, meanwhile Lambdacihalotrin 50 g l -1 ,<br />

<strong>25</strong>.0 g AI ha -1 was very toxic to the mites 2–5 and 7 days after treatment, but from<br />

non-toxic to moderately toxic 31 days after treatment.<br />

Key words: Abamectin, apple tree, rates, Panonychus ulmi, toxicity.<br />

Introduction. Fruit tree red spider mite is the key pest of apple tree in many<br />

countries (Edland, 1994; Raudonis, 2001; Hardman et al., 2003). Though tree red<br />

spider mites are sensitive to the low temperature during hibernation, warm and dry<br />

climate stimulates mite development in high numbers (Raudonis, 2001). The toxicity<br />

of pesticides on mites and insects has been widely studied in many countries, using<br />

a range of different pesticides at different rates on various developmental stages<br />

(Zon, Geest, 1980; Tuovinen, 1992; Sterk et al., 1999; Nauen et al., 2001; Kim, Yoo,<br />

2002; Choi et al., 2003; Hardman et al., 2003; Cuthbertson, Murchie, 2003, Marcic,<br />

2003; Bostanian et al., 2004; Raudonis et al., 2004; Martînez-Villar et al., 2005).<br />

There is data that most organophosphates are very detrimental to predatory mites,<br />

except strains, which have developed resistance to organophosphates (Cranham,<br />

1979). The widely used synthetic pyrethroids are very effective against pest insects,<br />

but it has not any effect on mites and it causes increasing phytophagous mite populations<br />

that induce severe damage of plants (Edland, 1994; Raudonis 2004). On the<br />

other hand, frequent acaricide applications against the increased phytophagous mite<br />

162


population result in greater resistance (Devine et al., 2001; Elzen, Hardee, 2003; Van<br />

Leeuwen et al., 2005). Therefore, the European guidelines for integrated fruit production<br />

requ<strong>ir</strong>e restrictions in pesticide use (Dickler, Schaefermeyer, 1991). The<br />

reduction of the use of pesticides stimulates to look for the development of new plan<br />

protection products. The Integrated pest management (IPM), which is based on<br />

selective toxicity to the phytophagous mites and harmless to predatory mite, became<br />

the most relevant strategy of plant protection (Edland, 1994; Leake, 2000; Linquist,<br />

2000; Klassen, 2000).<br />

The aim of the work was to clarify how Abamectin, which is based on selective<br />

toxicity, affects fruit tree red spider mite in apple trees.<br />

Materials and methods. The field trials were carried out in the apple tree orchard<br />

of the Lithuanian Institute of Horticulture in 2005–2006. The apple trees (variety<br />

‘Lobo’) were planted in 1995. 1 <strong>25</strong>0 seedlings per hectare were planted. The soil was<br />

fertilized with N – 70 kg ha -1 before flowering. Efector 700 WG 1.0 kg ha -1 at 09, 57<br />

and 73 growth stages was treated for control of apple scab.<br />

The trial was carried out according to trial plan as presented in Table 1.<br />

Treatment<br />

Variantas<br />

Table 1. Trial plan<br />

1 lentelë. Bandymo planas<br />

Trade name<br />

Preparato registracijos<br />

pavadinimas<br />

A Rate (g AI ha -1 )<br />

Norma, g v.m. ha -1<br />

-<br />

Untreated / kontrolë (nepurkšta)<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Abamectin 18 g l -1<br />

Lambdacihalotrin 50 g l -1<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Vertimec EC 18 g l -1<br />

Karate EC 50 g l -1<br />

Envidor SC 240 g l -1 27<br />

18<br />

13.5<br />

<strong>25</strong><br />

96<br />

A<br />

AI – active ingredient / veiklioji medþiaga.<br />

Plot size at least 5 trees, 4 replications at random plot distribution. Motor sprayer<br />

STIHL SR400 was used for spraying, water volume – 500 l ha -1 . Weather conditions<br />

at 73 growth stage according BBCH scale (Meier, 1997) during application<br />

presented in Table 2.<br />

Assessments in 2005 and 2006 were made as follows: before application (VII.13<br />

and VII.12), 2–5 (VII.18 and VII.14), 7 (VII.23 and VII.21) and 31 day (VIII.15<br />

and VIII.14) after application. Assessments were made on <strong>25</strong> leaves for assessment<br />

the number of fruit tree red spider mites per leaf in each plot.<br />

Meteorological data (a<strong>ir</strong> temperature and amount of precipitation) were recorded<br />

using scab warning equipment Metos D (Table 3).<br />

163


Table 2. Weather conditions at application in 2005-2006<br />

2 lentelë. Oro sàlygos purðkimo metu 2005–2006 m.<br />

Date of application<br />

Purškimo data<br />

2005-07-13 2006-07-12<br />

Temperature on the date of application<br />

23.0 19.0<br />

Temperatûra, °C<br />

Wind speed on the date of application<br />

2.0 1.5<br />

Vëjo greitis, m/s<br />

Relative a<strong>ir</strong> humidity on the date of application 65 70<br />

Santykinë oro drëgmë, %<br />

Rainless period, hours<br />

Laikotarpis po purškimo iki lietaus, val.<br />

66 136<br />

Table 3. Meteorological conditions in 2005–2006<br />

3 lentelë. Meteorologinës sàlygos 2005–2006 m.<br />

A<strong>ir</strong> temperature<br />

Oro temperatûra, °C<br />

Precipitation<br />

Krituliai, mm<br />

Month<br />

average of<br />

average of<br />

Mënuo<br />

2005 m. 2006 m. 1924-2000 2005 m. 2006 m. 1924-2000<br />

1924–2000 m.<br />

1924–2000 m.<br />

vidurkis<br />

vidurkis<br />

June / B<strong>ir</strong>želis 14.8 16.3 16.6 66.6 13.8 50.4<br />

July / Liepa 19.4 19.3 17.6 3.8 30.2 71.8<br />

August / Rugpjûtis 14.7 17.5 16.3 109.4 173.4 75.8<br />

Mortality of mites was calculated: x = 100 (1 – Ab/Ba) (x – mortality, %, A –<br />

number of mites, before spraying in untreated plot, B – number of mites, before<br />

spraying in treated plot, a – number of mites, after spraying in untreated plot, b –<br />

number of mites, after spraying in treated plot).<br />

We applied quantitative toxicity categories those employed by the International<br />

Organization for Biological Control for assessment of pesticide toxicity to predatory<br />

and phytophagous mites in field trials: non-toxic (< <strong>25</strong>% mortality), slightly toxic<br />

(<strong>25</strong>–50%), moderately toxic (51–75%), very toxic (> 75%) (Hassan et al., 1985).<br />

The number of fruit tree red spider mites was compared among treatments in<br />

this study with a single factor analysis of variance (ANOVA). Specific differences<br />

were identified with Duncan’s multiple range test.<br />

Results. Tables 4 to 7 describe the effect and toxicity of Abamectin 18 g l -1 to<br />

fruit tree red spider mite in apple trees. Abamectin 18 g l -1 , 27 g AI ha -1 reduced to<br />

0.12, 0.22 and 0.3 the mean number of mites per leaf 5, 7 and 31 days after treatment,<br />

respectively. Meanwhile the number of mites reached on the average 12.0,<br />

11.7 and 2.5 per leaf in unsprayed plots 5, 7 and 31 days after treatment in 2005<br />

(Table 4). Mite mortality in 5 and 7 and 31 days after treatment with Abamectin 18<br />

g l -1 , 27 g AI ha -1 was 99.1, 98.4 and 89.7%, respectively, what indicates it to be very<br />

toxic to fruit tree red spider mite (Table 5). Similar results showed lower rate (18 g<br />

AI ha - 1) of Abamectin 18 g l -1 . There were not found any statistical differences of<br />

164


the number of fruit tree red spider mites after Abamectin 18 g l -1 , 27 g AI ha -1 and<br />

Abamectin 18 g l -1 , 18 g AI ha -1 treatments. Abamectin 18 g l -1 , 13.5 g AI ha -1 was<br />

very toxic (mortality – 98.7 and 97.1%) 5 and 7 days and moderately toxic (mortality<br />

– 62.4%) after 31 days after treatment.<br />

Table 4. Effects of Abamectin against fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2005<br />

4 lentelë. Abamectino poveikis raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2005 m.<br />

Mean number of mites per leaf<br />

Erkës ant lapo, vnt.<br />

5 days 7 days 31 days<br />

Treatment<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

5 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 6.20 abc 12.0 b 11.7 b 2.50 c<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 7.30 c 0.12 a 0.22 a 0.30 a<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 5.0 abc 0.12 a 0.27 a 0.47 a<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 4.32 a 0.15 a 0.32 a 0.65 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI g ha -1 / v.m. ha -1 3.95 a 0.65 a 0.97 a 1.75 c<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 4.02 a 0.15 a 0.15 a 0.12 a<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1<br />

Note: means within columns followed by the same letter are not different significantly (P=0.05)<br />

according to Duncan’s multiple range test<br />

Pastaba: tarp reikðmiø, skiltyse paþymëtø tomis paèiomis raidëmis, pagal Dunkano kriterijø<br />

(P = 0,05) esminiø sk<strong>ir</strong>tumø nëra.<br />

Table 5. Toxicity of Abamectin to fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2005<br />

5 lentelë. Abamectino toksiðkumas raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2005 m.<br />

Mortality<br />

Toksiškumas, %<br />

Treatment<br />

5 days after 7 days after 31 days after<br />

Variantas<br />

treatment treatment treatment<br />

5 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 99.1 98.4 89.7<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 98.7 97.1 76.2<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 98.2 96.1 62.4<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 91.4 86.9 0.0<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 98.1 98.0 92.2<br />

There were found any statistical differences of the number of fruit tree red<br />

spider mites after treatments with Abamectin 18 g l -1 , 27 g AI ha -1 , Abamectin 18 g l -1 ,<br />

18 g AI ha -1 and Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 . Lambdacihalotrin 50 g l -1 , <strong>25</strong>.0 g<br />

165


AI ha -1 was rated as very toxic to the mites 5 and 7 days after treatment, but nontoxic<br />

31 days after treatment.<br />

Table 6. Effects of Abamectin against fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2006<br />

6 lentelë. Abamectino poveikis raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2006 m.<br />

Mean number of mites per leaf<br />

Erkës ant lapo, vnt.<br />

2 days 7 days 31 days<br />

Treatments<br />

before<br />

Variantas<br />

after after after<br />

treatment<br />

treatment treatment treatment<br />

prieš<br />

purškim¹<br />

2 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Untreated / Nepurkšta 5.60 c 5.78 b 5.63 b 5.78 c<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 4.90 abc 0.21 a 0.22 a 2.10 b<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 4.95 abc 0.30 a 0.35 a 2.33 b<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 5.35 bc 0.54 a 0.59 a 2.70 b<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 5.50 bc 0.46 a 0.54 a 2.90 b<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 3.70 a 0.23 a 0.20 a 0.50 a<br />

Table 7. Toxicity of Abamectin to fruit tree red spider mite (Panonychus ulmi)<br />

in apple tree site in 2006<br />

7 lentelë. Abamectino toksiðkumas raudonosioms sodinëms erkëms (Panonychus ulmi)<br />

obelyse 2006 m.<br />

Mortality<br />

Toksiškumas, %<br />

Treatment<br />

2 days after 7 days after 31 days after<br />

Variantas<br />

treatment treatment treatment<br />

2 d. po 7 d. po 31 d. po<br />

purškimo purškimo purškimo<br />

Abamectin 18 g l -1 , 27 g AI ha -1 / v.m. g ha -1 95.8 95.5 58.5<br />

Abamectin 18 g l -1 , 18 g AI ha -1 / v.m. g ha -1 94.1 92.9 54.4<br />

Abamectin 18 g l -1 , 13.5 g AI ha -1 / v.m. g ha -1 90.2 89.0 51.1<br />

Lambdacihalotrin 50 g l -1 , <strong>25</strong> g AI ha -1 / v.m. g ha -1 91.9 90.2 48.9<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96 g AI ha -1 / v.m. g ha -1 94.0 94.6 86.9<br />

There were found any statistical differences of the number of strawberry mites<br />

after treatments with different rates of Abamectin 18 g l -1 (Table 6). In contrast to<br />

2005, Abamectin 18 g l -1 , 27 g AI ha -1 and Abamectin 18 g l -1 , 27 g AI ha -1 had lower<br />

affect to the mites 31 days after treatment in 2006. The results show that Abamectin<br />

18 g l -1 , 27 g AI ha -1 was very toxic (mortality – 95.5 and 95.8%) to fruit tree red<br />

spider mite 2 and 7 days after treatment, but only moderately toxic (mortality –<br />

58.5%) 31 days after treatment in 2006 (Table 7). The same toxicity showed Abamectin<br />

18 g l -1 , 18 g AI ha -1 and Abamectin 18 g l -1 , 13.5 g AI ha -1 . Lambdacihalotrin<br />

50 g l -1 , <strong>25</strong>.0 g AI ha -1 was very toxic to the mites 2 and 7 days after treatment, but<br />

166


it showed lower toxicity (mortality – 48.9%) 31 days after treatment in 2006. Sp<strong>ir</strong>odiclofen<br />

240 g l -1 , 96.0 g AI ha -1 was rated as very toxic to fruit tree red spider mite<br />

2, 7 and 31 days after treatment.<br />

Discussion. Meteorological conditions for fruit tree red spider mite were favorable<br />

in 2005 and medium favorable in 2006. High a<strong>ir</strong> temperature and dry weather<br />

resulted higher infestation of apple trees by mites in 2005. Leaf samples collected<br />

from untreated plots showed an abundance of fruit tree red spider mites and its<br />

distribution during the season. All rates of Abamectin 18 g l -1 were rated as very<br />

toxic to fruit tree red spider mite 2–5 and 7 days after treatment. Similar results were<br />

demonstrated in Canada (Hardman et al., 2003). Meanwhile Abamectin 18 g l -1 showed<br />

lower toxicity in 2006. It have been reported, that the toxic effects of pesticides<br />

to mites depend on the chemistry of pesticides, the<strong>ir</strong> rates, microclimatic conditions<br />

and the development stages of the mites (Edland, 1994; Auger et al, 2003; Bostanian<br />

et al., 2004; Martînez-Villar et al., 2005). The toxicity of Abamectin was compared<br />

with the toxicity of Lambdacihalotrin and Sp<strong>ir</strong>odiclofen to fruit tree red spider mite.<br />

Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 and 31 days<br />

after treatment and showed long term of action. Similar toxicity patterns of different<br />

rates of Sp<strong>ir</strong>odiclofen to strawberry and two spotted spider mites were recorded in<br />

strawberries (Raudonis et al., 2005; Raudonis, 2006). Lambdacihalotrin 50 g l -1 ,<br />

<strong>25</strong>.0 g AI ha -1 was very toxic 2–5 and 7 days, but from non-toxic to moderately<br />

toxic 31 days after treatment. The lower term of action of Lambdacihalotrin was<br />

reported in other crops and mites (Raudonis 2005 et al., Raudonis, 2006).<br />

Conclusions. 1. Abamectin 18 g l -1 , 27 g AI ha -1 and Abamectin 18 g l -1 , 18 g AI<br />

ha -1 were rated as very toxic (mortality ranged from 92.9 to 99.0%) to fruit tree red<br />

spider mite (Panonychus ulmi Koch) 2-5 and 7 days and from moderately to very<br />

toxic (mortality – 54.4–89.7%) 31 days after treatment.<br />

2. Abamectin 18 g l -1 , 13.5 g AI ha -1 was very toxic (mortality – 89.0–91.4%) 2–<br />

5 and 7 and only moderately toxic (mortality – 51.1–62.4%) 31 days after treatment.<br />

3. Sp<strong>ir</strong>odiclofen 240 g l -1 , 96.0 g AI ha -1 was rated as very toxic 2–5, 7 and 31<br />

days after treatment and showed long term of action, meanwhile Lambdacihalotrin<br />

50 g l -1 , <strong>25</strong>.0 g AI ha -1 was very toxic 2–5 and 7 days after treatment, but from nontoxic<br />

to moderately toxic 31 days after treatment.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Auger P., Guichou S., Kreiter S. Variations in acaricidal effect of wettable sulfur on<br />

Tetranychus urticae (Acari: Tetranychidae): effect of temperature, humidity and life stage //<br />

Pest Management Science. 2003. 59(5). P. 559–565.<br />

2. Bostanian N. J., Vincent C., Hareman J. M., Larocque N. Toxicity of indoxacarb to<br />

two species of predacious mites and a predacious M<strong>ir</strong>id // Pest Management Science.<br />

2004. 60(5). P. 483–486.<br />

3. Choi W., Lee S. G., Park H. M., Ahn Y. J. Toxicity of Plant Essential Oils to Tetranychus<br />

urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) //<br />

Journal of Economic Entomology. 2003. 97(2). P. 553–558.<br />

167


4. Cuthbertson A. G. S., Murchie A. K. The impact of fungicides to control apple<br />

scab (Venturia inaequalis) on the predatory mite Anystis baccarum and its prey Aculus<br />

schlechtendali (apple rust mite) in Northern Ireland Bramley orchards // Crop protection.<br />

2003. 22. P. 11<strong>25</strong>–1130.<br />

5. Cranham J. E. Managing spider mites on fruit trees // Span, 1979. 22. P. 28–30.<br />

6. Devine G. J., Barber M., Denholm J. Incidence and inheritance of resistance to<br />

METI–acaricides in European strains of the two–spotted spider mite (Tetranychus urticae)<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(5). P. 443–448.<br />

7. Dickler E, Schafermeyer S. General principles, guidelines and standards for integrated<br />

production of pome fruits in Europe, and procedures for endorsement of national or<br />

regional guidelines and standards // IOBC/WPRS Bulletin. 1991. 14(3). P. 1–67.<br />

8. Edland T. Integrated pest management (IPM) in orchards, with reference to benefits<br />

and risk of introducing biocontrol agents. Norway, 1994. 44 p.<br />

9. Elzen G. W., Hardee D. D. United States Department of Agriculture–Agricultural<br />

Research Service research on managing insect resistance to insecticides // Pest Management<br />

Science. 2003. 59(6–7). P. 770–776.<br />

10. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian NJ. An index for selective<br />

toxicity of miticides to phytophagous mites and the<strong>ir</strong> predators based on orchard trials //<br />

Pest Management Science. 2003. 59. P. 1324–1332.<br />

11. Hassan S. A., Albert R., Bigler F., Blaisinger P., Bogenschutz H., Boller E., Brun F.,<br />

Chiverton P., Edwards P., Englert W. D., Huang P., Inglesfield C., Naton E., Oomen P. A.,<br />

Overmeer W. P. J., Rieckmann W., Samsoe–Petersen L., Staubli A., Tuset J. J., Viggiani G.,<br />

Vanwetswinkel G. Results of the th<strong>ir</strong>d joint pesticide testing programme by the IOBC/<br />

WPRS working group ‘Pesticides and beneficial organisms’ // Z Angew Entomol 1987.<br />

103. P. 92–107.<br />

12. Kim S. S., Yoo S. S. Comparative toxicity of some acaricides to the predatory mite,<br />

Phytoseiulus persimilis and the two spotted spider mite, Tetranychus urticae // BioControl.<br />

2002. 47(5). P. 563–573.<br />

13. Klassen W. Area-wide approaches to insect pest interventions: history and lessons.<br />

In: Tan, K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit<br />

University Sains Malaysia, Penang, Malaysia. 2000. P. 21–38.<br />

14. Leake A. The development of integrated crop management in agricultural crops:<br />

comparisons with conventional methods // Pest Management Science. 2000. 56(11).<br />

P. 950–953.<br />

15. Linquist D. A. Pest Management Strategies: Area-wide and Conventional. In:<br />

Tan, K. H. (ed.) Area-wide control of fruit flies and other insect pests. Penerbit University<br />

Sains Malaysia, Penang, Malaysia, 2000. P. 13–20.<br />

16. Marcic D. The effects of clofentezine on life-table parameters in two-spotted<br />

spider mite Tetranychus urticae // Experimental and Applied Acarology. 2003. 30(4).<br />

P. 249–263.<br />

17. Martînez-Villar E., Sáenz-De-Cabezón F. J., Moreno-Grijalba F., Marco V., Pérez-<br />

Moreno I. Effects of azad<strong>ir</strong>achtin on the two-spotted spider mite, Tetranychus urticae<br />

(Acari: Tetranychidae) // Experimental and Applied Acarology. 2005. 35(3). P. 215–222.<br />

18. Meier U. Growth stages of mono- and dicotyledonous plants. BBCH Monograph.<br />

Berlin: Blackwell Wissenschafts–Verlag. 1997. 622 p.<br />

19. Nauen R., Stumpf N., Elbert A., Zebitz C. P. W., Kraus W. Acaricide toxicity and<br />

resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi<br />

(Acari: Tetranychidae) // Pest Management Science. 2001. 57(3). P. <strong>25</strong>3–261.<br />

20. Raudonis L. Comparative toxicity of sp<strong>ir</strong>odiclofen and lambdacihalotrin to Tetranychus<br />

urticae, Tarsonemus pallidus and predatory mite Amblyseius andersoni in a strawberry<br />

site under field conditions // Agronomy Research. 2006. 4. P. 317–322.<br />

168


21. Raudonis L. Harmful insect fauna in apple orchards and systems of control<br />

means to reduce its harm // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. 20. P. 55–68.<br />

22. Raudonis L., Survilienë E., Valiuðkaitë A. Toxicity of pesticides to predatory mites<br />

and insects in apple tree site under field conditions // Env<strong>ir</strong>onmental Toxicology. 2004.<br />

19(4). P. 291–295.<br />

23. Raudonis L., Valiuðkaitë A., Survilienë E. Effects of sp<strong>ir</strong>odiclofen on the twospotted<br />

spider mite, Tetranychus urticae (Acari: Tetranychidae) in strawberries // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2005. 24(2). P. 43–53.<br />

24. Sterk G., Hassan S. A., Baillod M., Bakker F., Bigler F., Blumel S., Bogenschutz H.,<br />

Boller E., Bromand B., Brun J., Calis J. N. M., Coremans-Pelseneer J., Duso C., Garrido A.,<br />

Grove A., Heimbach U., Hokkanen H., Jacas J., Lewis G., Moreth L., Polgar L., Roversti L.,<br />

Samsoe Petersen L. Sauphanor B., Schaub L., Staubli A., Tuset J. J., Vainio A., Van de Ve<strong>ir</strong>e<br />

M., Viggiani G., Vinuela E., Vogt H. Results of the seventh joint testing programme carried<br />

out by the IOBC/WPRS – working group “Pesticides and Beneficial Organisms” // Bio-<br />

Control 1999. 44. P. 99–117.<br />

<strong>25</strong>. Tuovinen T. Predatory mites in finish apple orchards // Acta Phyt. Ent. Hungarica<br />

1992. 27(2). P. 609–613.<br />

26. Van Leeuwen T., Van Pottelberge S., T<strong>ir</strong>ry L. Comparative acaricide susceptibility<br />

and detoxifying enzyme activities in field-collected resistant and susceptible strains of<br />

Tetranychus urticae // Pest Management Science. 2005. 61(5). P. 499–507.<br />

27. Zon A. Q., Geest L. P. S. Effects of pesticides on predacious mites. In: Minks AK,<br />

Gruys P. editors. Integrated control of insect pests in the Netherlands. Wageningen:<br />

Pudoc. 1980. P. 227–23.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ABAMECTINO TOKSIÐKUMAS RAUDONOSIOMS<br />

SODINËMS ERKËMS PANONYCHUS ULMI<br />

(ACARI: TETRANYCHIDAE) OBELYSE<br />

L. Raudonis<br />

Santrauka<br />

2005–2006 m. t<strong>ir</strong>tas abamectino 18 g l -1 poveikis <strong>ir</strong> toksiðkumas raudonosioms sodinëms<br />

erkëms (Panonychus ulmi Koch) obelyse. Abamectino 18 g l -1 27 g v.m. ha -1 <strong>ir</strong><br />

18 g v.m. ha -1 normos buvo labai toksiðkos (toksiðkumas – nuo 92,9 iki 99,0 proc.)<br />

þemuoginëms erkëms, praëjus 2–5 <strong>ir</strong> 7 d., bei vidutiniðkai <strong>ir</strong> labai toksiðkos (toksiðkumas<br />

– nuo 54,4 iki 89,7 proc.), praëjus 31 d. po purðkimo. Abamectino 18 g l -1<br />

13,5 g v.m. ha -1 norma buvo labai toksiðka (toksiðkumas – 89,0–91,4 proc.) erkëms,<br />

praëjus 2–5 <strong>ir</strong> 7 d., <strong>ir</strong> tik vidutiniðkai toksiðka (toksiðkumas – 51,1–62,4 proc.), praëjus<br />

31 d. po purðkimo. Sp<strong>ir</strong>odiclofeno 240 g l -1 96,0 g v.m. ha -1 norma buvo labai toksiðka,<br />

praëjus 2–5, 7 <strong>ir</strong> 31 d. po purðkimo, <strong>ir</strong> ilgai apsaugojo obelis nuo erkiø. Lambdacihalotrino<br />

50 g l -1 <strong>25</strong>,0 g v.m. ha -1 norma buvo labai toksiðka erkëms, praëjus 2–5 <strong>ir</strong><br />

7 d., taèiau netoksiðka ar tik vidutiniðkai toksiðka, praëjus 31 d. po purðkimo.<br />

Reikðminiai þodþiai: abamectinas, normos, obelys, Panonychus ulmi, toksiðkumas.<br />

169


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

STONE FRUIT ROOTSTOK RESEARCH IN LITHUANIA<br />

Juozas LANAUSKAS, Darius KVIKLYS<br />

Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas<br />

distr., Lithuania.<br />

E-mail j.lanauskas@lsdi.lt<br />

Sour cherries and plums are the most important stone fruit crops in Lithuania.<br />

This paper presents information about rootstock researches for mentioned crops.<br />

The experiments were carried out in the central part of Lithuania, where prevail<br />

Epicalcari-Endohypogleic clay loam soils medium rich or rich with phosphorus and<br />

potassium, containing 1.5-3% of humus, pH – 7.0-7.2.<br />

Seedlings derived from accidental Prunus mahaleb, P. avium, P. cerasus and<br />

P. cerasifera seeds were used for tree propagation for many years. Rootstock investigations<br />

were started from the search of seedling forms with better adaptability to<br />

local soils and climate, positive effect on productivity and fruit quality. As a result of<br />

f<strong>ir</strong>st trials seedlings of sweet cherry cv. ‘Zolotaja Losickaja’ and selection form No.<br />

2 and two forms of P. mahaleb (No. 817 and No. 805) were recommended as<br />

rootstocks for sour cherries. Cherry trees on mentioned seedlings were of uniform<br />

growth in the orchard, bore higher yields of good quality fruits.<br />

In later experiments clonal rootstocks PN (P. cerasus), P3, P7 (both P. padus x<br />

(P. cerasus x P. avium)) and Þ1 (P. cerasus) were tested for both sour and sweet<br />

cherries. None of tested rootstocks showed better than P. mahaleb seedlings with<br />

sour cherries, whereas sweet cherry yield per tree and yield efficiency on this rootstock<br />

was the lowest. The highest yield efficiency of sweet cherry trees was on<br />

rootstock P3, but it suckered profusely. PN was established as the most promising<br />

rootstock for sweet cherries. Trees on this rootstock were of medium yield efficiency,<br />

fruits were of good size, rootstock practically did not sucker.<br />

Seedlings of P. tomentosa and clonal rootstocks St. Julien A, St. Julien GF655-<br />

2 and Marianna GF8-1 were tested as possible rootstocks for plums. None of the<br />

tested rootstocks was better than the standard one (P. cerasifera seedlings). Scionrootstock<br />

incompatibility was frequent with P. tomentosa seedlings.<br />

In recent field experiments 24 clonal rootstocks are under investigations with<br />

sweet cherry cv. ‘Lapins’. The most promising of them seem to be Gisela 4, Gi–<br />

497/8 and Gi–154/7.<br />

The further investigations should be d<strong>ir</strong>ected towards search of more dwarf<br />

and yield efficient rootstocks for sweet cherries and plums.<br />

170


Key words: cherries, clonal rootstocks, plums, seedlings.<br />

Introduction. Importance of rootstock for fruit tree has been changing with<br />

development of fruit growing. Good rootstock compatibility with scion cultivars<br />

and adaptation to local soil and climate conditions was satisfactory for a long time.<br />

Common rootstocks for cherries were seedlings of Prunus avium, P. mahaleb or P.<br />

cerasus, for plums – these of P. cerasifera or P. domestica. Trees on accidental<br />

seedling rootstocks usually grow vigorously, often are of unequal size, late come<br />

into bearing. When fruit growing become commercially important and competition<br />

among growers increased requ<strong>ir</strong>ements for rootstocks had risen. Numerous attempts<br />

appeared to improve existing rootstocks by selection of valuable seedling forms or<br />

creating clonal ones. Perfect rootstock should provide adequate tree growth control,<br />

increase precocity and yield efficiency, should be cold and disease resistant, well<br />

adapted to certain soil conditions, easy propagated, not suckering. Good compatibility<br />

with wide range of scion cultivars and long life of grafted trees is of great<br />

importance as well (Wertheim, 1998).<br />

Many promising rootstocks recently were released as a result of different breeding<br />

programs. Gisela, MaxMa, P-HL, Pi-Ku, Gm, We<strong>ir</strong>oot series rootstocks for<br />

sweet cherries should be mentioned (Callesen, 1998). Seedlings of selected P. avium<br />

and especially P. mahaleb forms are still important for sour cherries (Mika, 2000;<br />

Ercisli et al., 2006). Both seedling and clonal rootstocks are important for plums.<br />

Seedlings of selected of myrobalan (P. cerasifera) and P. domestica forms are usually<br />

used. Clonal rootstocks available in Europe include St. Julien and Marianna series,<br />

‘Ackerman’, ‘Brompton’, ‘Pixy’, Myrobalan B, etc. (Okie, 1987). Promising<br />

and relatively new clonal rootstocks are ‘Ferlenain’, ‘Ferciana’, ‘Fereley’ (Wertheim,<br />

1998).<br />

In different countries different rootstocks are used. The main stone fruit crops<br />

in Lithuania are sour cherries and plums. Seedlings of P. mahaleb, P. avium, or P.<br />

cerasus for cherries and these of P. cerasifera for plums were important rootstocks<br />

for a long time, but changing situation in modern fruit growing promoted search of<br />

better ones. Lithuania had close contact with Russia where some perspective clonal<br />

rootstocks for cherries were bread. P. padus and P. cerasus were used in this breeding<br />

program (Kolesnikova et al., 1985). Rootstocks P3, P7 and PN were tested in<br />

the Ukraine (Øàðêî et al., 2000). P3 and P7 are characterized as vigorous, PN – as<br />

dwarf one (Áàðàáàø, 1995). Very poor information is available about mentioned<br />

rootstocks.<br />

In this paper the main stone fruit rootstock investigations carried out in Lithuania<br />

are overviewed. Rootstocks bread in former Soviet Union and in some countries<br />

of Western Europe were included into our research program.<br />

Materials and methods. Experiments were carried out at the Lithuanian Institute<br />

of Horticulture (LIH) in the central part of Lithuania in the latitude of 55° North<br />

and longitude 23° East. Average annual temperature of the terrene is 6.4°C, total<br />

amount of the precipitation – 630 mm (in April–September – 380 mm). Prevailing<br />

soils – Epicalcari-Endohypogleic clay loams medium rich or rich with phosphorus<br />

and potassium, containing 1.5–3% of humus, pH – 7.0–7.2.<br />

171


Rootstock field trials were established in three-four replications with 4 trees in<br />

each experimental plot. Tree planting distances were 5 x 2.5–3 m. Orchard floor<br />

management combined herbicide strips in the rows and frequent mown sward between<br />

the rows. In the f<strong>ir</strong>st experiments tree canopies were trained close to the<br />

natural, in recent ones – as spindles.<br />

Tree growth vigour in the f<strong>ir</strong>st year of growth was assessed by total shoot<br />

length or tree height, latter – by trunk diameter. Yield was recorded for the whole<br />

experimental plot and recalculated to the yield per tree or per hectare. Annual yield<br />

efficiency was calculated as a ratio of tree yield with trunk cross-section area (TCSA).<br />

Final yield efficiency is a sum of annual efficiencies. Average fruit weight was determined<br />

on a representative sample of 100 fruits per each experimental plot. Rootstock<br />

suckering was evaluated in scores (0–5 scale, where 0 – no suckers; 5 –<br />

abundant suckering) or number of suckers per tree was calculated. Tree mortality<br />

was expressed as a percent of dead trees at the end of experiment.<br />

For data statistical evaluation LSD 05<br />

or Duncan test was used.<br />

Results. Cherry rootstocks. Seedlings derived from accidental P. mahaleb, P.<br />

avium or P. cerasus seeds were used as rootstocks for sour and sweet cherries.<br />

After the experiments carried out by A. ðumskis in 1984–1998 seedlings of sweet<br />

cherry cv. ‘Zolotaja Losickaja’, selection form No. 2 and two forms of P. mahaleb<br />

(No. 817 and No. 805) were recommended as rootstocks for sour cherries (Ðumskis,<br />

2001). Cherry trees on seedlings of mentioned forms ensured more uniform tree<br />

growth and higher yields of good quality fruits. Tree survival on these rootstocks<br />

was better. They withstand well cold winter of 1986–1987 and other unfavorable<br />

conditions during the years of the experiment.<br />

Parallel search of clonal rootstocks was started in the nursery. There were<br />

selected some winter hardy, disease resistant and easy propagating by green cuttings<br />

clonal rootstocks: PN (P. cerasus), P3, P7 (both P. padus x (P. cerasus x P. avium)<br />

all bread at the Nonchernoziom Institute of Horticulture in Russia (Åâñòðàòîâ, 1986)<br />

and Þ1 (P. cerasus) selected at the LIH (Ðumskis, 1997). The<strong>ir</strong> testing in the orchard<br />

was started in 1999. Mentioned rootstocks were tested with both sour and sweet<br />

cherries. P. mahaleb seedlings served as a control.<br />

The most vigorous sour cherry trees in the young age were on rootstock P7<br />

(Table 1). With the rest of rootstocks tree growth was similar. Yield per tree, yield<br />

efficiency and average fruit weight was not significantly affected by the rootstock<br />

(Lanauskas, 2005 a). The most suckering rootstocks were P3 and P7. The highest<br />

tree mortality was on rootstocks P7 and PN. None of tested rootstocks showed<br />

better than standard one – P. mahaleb seedlings.<br />

The least growth of sweet cherries was on rootstocks Þ1 and P7 (Table 2).<br />

Tree mortality on these rootstocks was the highest (Lanauskas, 2005 b). The most<br />

vigorous trees were on rootstock PN, but the<strong>ir</strong> trunk diameter was close to the one<br />

of trees on P3 and P. mahaleb seedlings. The highest yield and yield efficiency was<br />

of trees on rootstock P3, but this rootstock suckered profusely. The lowest yield<br />

and yield efficiency was recorded for trees on P. mahaleb seedlings.<br />

172


Table 1. Rootstock effect on the performance in the orchard of six-year-old sour<br />

cherry trees of cv. ‘Vytënø þvaigþdë’ (Lanauskas, 2005 a)<br />

1 lentelë. Poskiepiø átaka ‘Vytënø þvaigþdës’ veislës vyðnioms p<strong>ir</strong>maisiais–ðeðtaisiais<br />

augimo sode metais (Lanauskas, 2005 a)<br />

Rootstock<br />

Poskiepis<br />

Trunk diameter<br />

Kamieno skersmuo,<br />

cm<br />

Suckering<br />

(0-5 scores)<br />

Atþalø kiekis<br />

(0–5 balai)<br />

Cumulative yield<br />

(kg tree -1 )<br />

Suminis derlius,<br />

kg vaism. -1<br />

Yield efficiency<br />

(kg cm -2 of<br />

TCSA*)<br />

Produktyvumas,<br />

kg cm -2 KSP*<br />

P. mahaleb 8.2 a** 0.3 a 12.4 a 0.32 a<br />

PN 8.1 a 0.4 a 12.7 a 0.34 a<br />

P3 8.2 a 3.3 b 11.6 a 0.32 a<br />

P7 8.7 b 2.8 b 10.2 a 0.23 a<br />

Ž1 8.2 a 0.8 a 11.1 a 0.28 a<br />

* Trunk cross section area / Kamieno skerspjûvio plotas<br />

** In this and further tables means within the columns marked with the same letter do not differ<br />

statistically at the probability level p = 0.05 / Ðioje <strong>ir</strong> kitose lentelëse tarp skiltyse ta paèia raide<br />

paþymëtø skaièiø esminiø sk<strong>ir</strong>tumø nëra (tikimybës lygis p = 0,05).<br />

Table 2. Rootstock effect on the performance in the orchard of six-year-old sweet<br />

cherry trees of cv. ‘Vytënø roþinë’ (Lanauskas, 2005 b)<br />

2 lentelë. Poskiepiø átaka ‘Vytënø roþinës’ veislës treðnëms p<strong>ir</strong>maisiais–ðeðtaisiais<br />

augimo sode metais (Lanauskas, 2005 b)<br />

Trunk diameter Suckering Cumulative yield Yield efficiency<br />

Rootstock<br />

Kamieno skersmuo, (0-5 scores) (kg tree -1 ) (kg cm -2 of TCSA)<br />

Poskiepis<br />

Atþalø kiekis Suminis derlius, Produktyvumas,<br />

cm<br />

(0–5 balai)<br />

kg vaism. -1<br />

kg cm -2 KSP<br />

P. mahaleb 11.4 ab 0.1 a 3.5 a 0.040 a<br />

PN 12.0 b 0.3 a 5.7 ab 0.064 a<br />

P3 11.6 ab 3.1 c 12.0 c 0.134 b<br />

P7 10.6 a 1.9 b 5.0 a 0.064 a<br />

Ž1 10.3 a 0.3 a 9.0 bc 0.130 b<br />

Since 1999 the following rootstocks are under investigation with sweet cherry<br />

cv. ‘Lapins’: Edabriz, PHL-A, Damil, Gisela 4, Gi-497/8, Gisela 5, Gi-209/1, Gi-148/8,<br />

Gi-195/20, Gi-154/7, Gi-523/02, We<strong>ir</strong>oot 53, We<strong>ir</strong>oot 158, Colt, MaxMa 14, MaxMa<br />

97, MaxMa 60, Hexaploid Colt, Gi-318/17, Gi-195/1, Gi-107/1, Gi-148/13, Gi-148/1,<br />

We<strong>ir</strong>oot 10. According to our investigations the most promising of them are Gisela<br />

4, Gi-497/8 and Gi-154/7.<br />

Interstocks for sweet cherries. In order to decrease tree growth the following<br />

interstocks were investigated: ‘Vladim<strong>ir</strong>skaye’, ‘Poliovka’, ‘Þagarvyðnë’ (all P. cerasus),<br />

‘Severianka’ (P. avium), Colt (P. avium x P. pseudocerasus) and P. fruticosa<br />

(Ðumskis, 1998). The most of interstocks decreased tree TCSA and canopy projection<br />

area. The highest decrease of TCSA was with P. fruticosa interstock. Trees<br />

with interstocks requ<strong>ir</strong>ed less pruning. Interstocks decreased fruit yield per tree.<br />

173


Plum rootstocks. P. cerasifera seedlings still are the main rootstocks for plum<br />

cultivars grown in Lithuania. Searching for more yield efficient and dwarf rootstocks<br />

seedlings of P. tomentosa were evaluated with 11 plum cultivars (Kviklys,<br />

1999). Control trees were on P. cerasifera seedlings. Seedlings of P. tomentosa<br />

decreased tree height, canopy diameter and TCSA of all tested cultivars. Average<br />

yield on P. tomentosa seedlings was about twice less than on P. cerasifera ones<br />

(Table 3). Yield efficiency was similar on both rootstocks. Scion-rootstock incompatibility<br />

and silver leaf infections were more frequent with P. tomentosa seedlings.<br />

It was established that P. tomentosa seedlings could be used only with cvs. ‘Rausvë’<br />

and ‘Niagara’ if planted more densely (1666 trees per hectare).<br />

Table 3. Rootstock effect on the performance in the orchard of nine-year-old plum<br />

trees (average data of 11 cultivars) (Kviklys, 1999)<br />

3 lentelë. Poskiepiø átaka slyvoms p<strong>ir</strong>maisiais–devintaisiais augimo sode metais<br />

(11 veisliø vidutiniai duomenys) (Kviklys, 1999)<br />

Rootstock TCSA Cumulative yield (kg tree -1 ) Yield efficiency (kg cm -2 of TCSA)<br />

Poskiepis KSP, cm -2 Suminis derlius, kg vaism. -1<br />

Produktyvumas, kg cm -2 KSP<br />

P. cerasifera 132 b 68.5 b 0.5 a<br />

P. tomentosa 54 a 32.4 a 0.6 a<br />

Since 1999 clonal rootstocks St. Julien A, St. Julien GF655-2 and Marianna<br />

GF8-1 are under investigation with plum cvs. ‘Stanley’ and ‘Kauno vengrinë’. After<br />

7 years the least tree growth was on rootstock GF655-2 (Table 4). Trees on rootstock<br />

GF8-1 were of the same growth vigour as on standard rootstock – P. cerasifera<br />

seedlings. The highest cumulative yield and yield efficiency was on P. cerasifera<br />

seedlings. The most suckering rootstock was GF655-2.<br />

Table 4. Rootstock effect on the performance in the orchard of seven-year-old plum<br />

trees (average data of cvs. ‘Stanley’ and ‘Kauno vengrinë’) (Lanauskas, 2006)<br />

4 lentelë. Poskiepiø átaka slyvoms p<strong>ir</strong>maisiais–septintaisiais augimo sode metais (‘Stanley’<br />

<strong>ir</strong> ‘Kauno vengrinës’ veisliø vidutiniai duomenys) (Lanauskas, 2006)<br />

Suckering Cumulative yield Yield efficiency<br />

Rootstock Trunk diameter<br />

(0-5 scores) (kg tree -1 ) (kg cm -2 of TCSA)<br />

Kamieno<br />

Poskiepis<br />

skersmuo, cm<br />

Atþalø kiekis Suminis derlius, Produktyvumas,<br />

(0-5 balai)<br />

kg vaism. -1<br />

kg cm -2 KSP<br />

P.cerasifera 9.8 c 1.2 b 14.4 b 0.32 b<br />

St. Julien A 9.2 b 0.5 a 9.2 a 0.23 a<br />

GF655-2 8.8 a 2.4 c 10.2 a 0.28 ab<br />

GF8-1 9.9 c 0.4 a 12.4 ab 0.27 ab<br />

Discussion. Investigations carried out at the Lithuanian Institute of Horticulture<br />

showed that P. mahaleb seedlings were enough good rootstocks for sour cherries<br />

if grown on neutral and not too wet soils. Sour cherry trees on P. mahaleb seedlings<br />

were yield efficient and not too vigorous. P. mahaleb seedlings or clonal rootstocks<br />

are important for sour cherry propagation in Poland (Mika, 2000), Hungary (Hrotkó,<br />

174


Magyar, 2004), Turkey (Ercisli et al., 2006) and some other countries too (Perry,<br />

1987).<br />

More complicated situation is with sweet cherry rootstocks. P. mahaleb, P.<br />

avium or P. cerasus seedlings tested in Lithuania did not provide adequate tree growth<br />

control, yield efficiency on those rootstocks was not satisfactory. Our attempts to<br />

decrease tree size with interstocks gave certain results. Tree growth was reduced<br />

by most used interstocks but positive effect on the yield was not achieved. The most<br />

dwarfing was interstock of P. fruiticosa. This is in coincidence with the results<br />

obtained in the other countries (Rozpara et al., 1998; Hrotkó et al., 1998). As interstock<br />

positive effect was slight and tree production with interstocks is more expensive<br />

researches in this d<strong>ir</strong>ection were stopped.<br />

Search for dwarfing sweet cherry rootstocks was started by testing Russian<br />

clones PN, P3, P7 and local Þ1. There were not found dwarfing among them. Existing<br />

information about dwarfing effect of PN (Áàðàáàø, 1995) was not conf<strong>ir</strong>med<br />

by our experiments. Trees on this rootstock in the young age were of the same<br />

growth vigour like on P. mahaleb seedlings. Sometimes tree growth reduces when it<br />

comes into full bearing (Ystaas, Fr∅ynes, 1991). Further results of this rootstock<br />

effect will be available in some years. Tree yield efficiency on PN was slightly higher<br />

than on P. mahaleb. By our observations made in 2006 (data not presented in this<br />

paper) this tendency became more evident. PN probably is the most interesting rootstock<br />

for sweet cherries in this experiment. The most yield efficient rootstock was<br />

P3, but it suckered profusely complicating orchard floor management. It is reported<br />

that suckering is strongly related to the rootstocks belonging to the species P. cerasus<br />

(Toribio et al., 1998). Franken-Bembenek and Gruppe (1985) reported that the<br />

most severe suckering is observed in progenies with P. cerasus and P. fruticosa. In<br />

our experiment PN and Þ1 rootstocks from P. cerasus almost did not sucker. The<br />

most suckering rootstocks were P3 and P7 originated using P. padus.<br />

Sweet cherry rootstocks from Western Europe and USA being under tests at<br />

the LIH now provide better growth control. More exhaustive investigations of the<br />

best of them are necessary with the most important cultivars in future. Until now<br />

Gisela 4, Gi-497/8 and Gi-154/7 performed well, whereas the most popular in many<br />

countries Gisela 5 showed worse. Gisela 4 and Gisela 5 as promising sweet cherry<br />

rootstocks were mentioned in neighbouring Latvia (Ruisa, Rubauskis, 2004). Cmelik<br />

et al. (2004) recognized Gisela 4 as dwarfing, precocious and productive rootstock<br />

as well.<br />

In our experiments the most dwarfing rootstocks for plums were seedlings of<br />

P. tomentosa but they were discarded for frequent incompatibility with scion cultivars<br />

and negative effect on yield. P. tomentosa got similar evaluation in the experiments<br />

carried out by Oosten (1997).<br />

The rest of tested plum rootstocks had a slight influence on tree growth. From<br />

the f<strong>ir</strong>st year plum trees on rootstock St. Julien A grew somewhat less vigorously<br />

and at the end of the experiment the<strong>ir</strong> trunk diameter was by 6% less in comparison<br />

with the one on P. cerasifera seedlings. The young plum trees on rootstock GF655/<br />

2 grew more vigorously but in the bearing age growth slightly decreased and finally<br />

the<strong>ir</strong> trunk diameter was by 10% thinner in comparison with the one on P. cerasife-<br />

175


a. Fruit trees on rootstock GF8/1 were of the same growth vigour as control ones.<br />

Our observations in most cases are in consistence with the results obtained in other<br />

countries (Hrotkó et al., 1998; Sosna, 2002).<br />

The highest yield and yield efficiency of plum trees in our experiments was on<br />

P. cerasifera seedlings. In most foreign experiments clonal rootstocks improve plum<br />

tree productivity (Grzyb et al., 1998a; Hrotkó et al., 2002), but there are cases when<br />

trees on P. cerasifera seedlings were the most prolific (Grzyb et al., 1998b). Growth<br />

and yield of different scion-rootstock combinations depends on soil and climate<br />

conditions and the results may vary (Sitarek et al., 2004).<br />

The most suckering rootstock was GF655/2. Similar information on it is presented<br />

by the other researches (Kosina et al., 2000; Sosna, 2002). St. Julien A and<br />

GF8/1 practically did not sucker. Trees on P. cerasifera seedlings produced few<br />

suckers, mostly from rootstock stem part, when trees planted to shallow.<br />

According to the data of our experiment none of the tested plum rootstocks<br />

was better than standard P. cerasifera. In recent years scientists from neighbouring<br />

Poland revealed advantages of ‘Wangenheim Prune’ seedling rootstocks. Scion cultivars<br />

on this rootstock often are of superior characteristics in comparison with P.<br />

cerasifera seedlings or clonal rootstocks (Grzyb et al., 1998a; Rozpara, Grzyb, 1998;<br />

Sitarek et al., 2004). In the nearest future ‘Wangenheim Prune’ seedlings should be<br />

introduced into rootstock tests in Lithuania.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Callesen O. Recent developments in cherry rootstock research // Acta Hort. 1998.<br />

Vol. 468. P. 219–228.<br />

2. Cmelik Z., Druzic J., Duralija B., Bencic D. Influence of clonal rootstocks on growth<br />

and cropping of ‘Lapins’ sweet cherry // Acta Hort. 2004. Vol. 658. P. 1<strong>25</strong>–128.<br />

3. Ercisli S., Esitken A., Orhan E., Ozdem<strong>ir</strong> O. Rootstocks used for temperate fruit trees<br />

in Turkey: an overview // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. 27–33.<br />

4. Franken-Bembenek S., Gruppe W. Genetic differences in suckering of cherry hybrids<br />

(Prunus x spp.) // Acta Hort. 1985. Vol. 169. P. 263–268.<br />

5. Grzyb Z. S., Sitarek M., Kolodziejczak P. Growth and yield of three plum cultivars<br />

grafted on four rootstocks in piedmont area // Acta Hort. 1998 a. Vol. 478. P. 87–90.<br />

6. Grzyb Z. S., Sitarek M., Kozinski B. Effect of different rootstocks on growth, yield<br />

and fruit quality of four plum cultivars (in centre of Poland) // Acta Hort. 1998b. Vol. 478.<br />

P. 239–242.<br />

7. Hrotkó K., Magyar L., Klenyãn T., Simon G. Effect of rootstocks on growth and<br />

yield efficiency of plum cultivars // Acta Hort. 2002. Vol. 577. P. 105–110.<br />

8. Hrotkó K., Magyar L. Mahaleb rootstocks from the department of fruit science,<br />

Budapest // Acta Hort. 2004. Vol. 658. P. 497–499.<br />

9. Hrotkó K., Magyar L., Simon G. Growth and productivity of sweet cherry interstem<br />

trees // Acta Hort. 1998. Vol. 468. P. 353–362.<br />

10. Kolesnikova A. F., Ossipov Y. V., Kolesnikov A I. New hybrid rootstock for<br />

cherries. Acta Hort. 1985. Vol. 169. P. 159–162.<br />

176


11. Kosina J. Evaluation of some new plum rootstocks in the orchard // Acta Hort.<br />

2000. Vol. 538. P. 757–760.<br />

12. Kviklys D. Slyvø veisliø <strong>ir</strong> poskiepiø tyrimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1999. T. 18(4). P. 38–45.<br />

13. Lanauskas J. Effect of rootstock on growth and yield of plum tree cvs. ‘Stanley’<br />

and ‘Kauno Vengrinë’ // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(3). P. 243–249.<br />

14. Lanauskas J. Evaluation of rootstocks for sour cherry cv. ‘Vytenø Þvaigþdë’ //<br />

Fruit growing. Samochvalovici, 2005a. Vol. 17(2). P. 217–220.<br />

15. Lanauskas J. Vyðniø <strong>ir</strong> treðniø poskiepiø tyrimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Ataskaitinës mokslinës konferencijos medþiaga. Babtai, 2005b. Nr.18. P. 3–8.<br />

16. Mika A. Nowy sposób uprawy wiúni. Warszawa, 2000. 124 p.<br />

17. Okie W. R. Plum rootstocks. In: Rootstocks for fruit crops. Edited by Rom R.C.<br />

and Carlson R.F. USA, 1987. P. 321–360.<br />

18.Oosten H. I. Research on culture in fruit nurseries // Annual reports. Wilhelminadorp,<br />

1979. P. 21.<br />

19. Perry R. L. Cherry rootstocks. In: Rootstocks for fruit crops. Edited by Rom R.C.<br />

and Carlson R. F. USA, 1987. P. 217–264.<br />

20. Rozpara E., Grzyb Z. S. Growth and yielding of some plum cultivars grafted on<br />

‘Wangenheim Prune’ seedlings // Acta Hort. 1998. Vol. 478. P. 87–90.<br />

21. Rozpara E., Grzyb Z. S., Zdyb H. Growth and fruiting of two sweet cherry cultivars<br />

with different interstems // Acta Hort. 1998. Vol. 468. P. 345–352.<br />

22. Ruisa S., Rubauskis E. Preliminary results of testing new sweet cherry rootstocks //<br />

Acta Hort. 2004. Vol. 658 P. 541–546.<br />

23. Sitarek M., Grzyb Z. S., Guzowska-Spaleniak B., Lis J. Performance of three rootstocks<br />

for plums in two different soils and climatic conditions // Acta Hort. 2004. Vol. 658.<br />

P. 273–277.<br />

24. Sosna I. Growth and cropping of four plum cultivars on different rootstocks in<br />

South Western Poland // Journal of fruit and ornamental plant research. 2002. Vol. 10.<br />

P. 95–103.<br />

<strong>25</strong>. Ðumskis A. Poskiepiø vyðnioms parinkimas // Sodininkystës <strong>ir</strong> darþininkystës<br />

rekomendacijos. Babtai, 2001. P. 23–24.<br />

26. Ðumskis A. Vegetatyviniai poskiepiai vyðnioms <strong>ir</strong> treðnëms skiepyti // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 1997. T. 16. P. 22–28.<br />

27. Ðumskis A. Þemaûgiø intarpø treðnëms ávertinimas sode // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1998. 17(1). P. 47–52.<br />

28. Toribio F., Moreno J., Manzano M. A. Evaluation of rootstocks for cherry trees //<br />

Acta Hort. 1998. Vol. 468. P. 339–344.<br />

29. Wertheim S. J. Rootstock guide. Wilhelminadorp. 1998. 144 p.<br />

30. Ystaas J. and Fr∅ynes O. Effects of Colt and F12/1 rootstocks on growth, cropping<br />

and fruit quality of ‘Ulster’, ‘Van’ and ‘Sam’ sweet cherries // Norwegian Journal of<br />

Agricultural Science. 1991. Vol. 5. P. 269–276.<br />

31. Áàðàáàø Ò. Í. Êëîíîâûå ïîäâîè âèøíè è ÷åðåøíè // Ñîâðåìåííûå<br />

ïðîáëåìû ïëîäîâîäñòâà. Òåçèñû äîêëàäîâ íàó÷íîé êîíôåðåíöèè, Ñàìîõâàëîâè÷è,<br />

9–13 îêòÿáðÿ 1995 ãîäà. Ñàìîõâàëîâè÷è, 1995. Ñ. 163.<br />

32. Åâñòðàòîâ À. È. Âèøíÿ è ñëèâà. Ìîñêâà. 1986. 40 ñ.<br />

33. Øàðêî Ë. Â., Áàðàáàø Ò. Í., Êèíàø Ã. À. Ïðîäóêòèâíîñòü ìàòî÷íûõ<br />

íàñàæäåíèé êëîíîâûõ ïîäâîåâ ïëîäîâûõ ïîðîä íà þãå ñòåïè Óêðàèíû //<br />

Ïëîäîâîäñòâî íà ðóáåæå ÕÕI âåêà. Ìàòåðèàëû ìåæäóíàðîäíîé íàó÷íîé<br />

êîíôåðåíöèè, Áåëàðóñü, ïîñ. Ñàìîõâàëîâè÷è, 9–13 îêòÿáðÿ 2000 ãîäà.<br />

Ìèíñê, 2000. Ñ. 112–113.<br />

177


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

KAULAVAISIØ POSKIEPIØ TYRIMAI LIETUVOJE<br />

J. Lanauskas, D. Kviklys<br />

Santrauka<br />

Vyðnios <strong>ir</strong> slyvos yra daþniausiai Lietuvoje auginami kaulavaisiai. Ðiame straipsnyje<br />

supaþindinama su svarbiausiais vyðniø, treðniø <strong>ir</strong> slyvø poskiepiø tyrimø rezultatais.<br />

Tyrimai buvo atlikti centrinëje Lietuvos dalyje, kur vyrauja sekliai karbonatingi<br />

giliau glëjiðki rudþemiai, granuliometrinë sudëtis – vidutinio sunkumo arba<br />

sunkûs priemoliai. Juose vidutiniðkai gausu arba gausu fosforo <strong>ir</strong> kalio, humuso –<br />

1,5–3 proc., pH KCl<br />

– 7,0–7,2.<br />

Daugelá metø vyðnios <strong>ir</strong> treðnës buvo skiepijamos á atsitiktinius treðnës (Prunus<br />

avium), kvapiosios (P. mahaleb) arba paprastosios (P. cerasus) vyðnios sëjinukus, o<br />

slyvos – á skëstaðakës slyvos (P. cerasifera) sëjinukus. P<strong>ir</strong>maisiais tyrimais buvo<br />

stengiamasi atrinkti vaismedþiø, kuriø sëjinukai gerai prisitaikæ prie mûsø agroklimato<br />

sàlygø, teigiamai veikia áskiepiø derëjimà <strong>ir</strong> vaisiø kokybæ, formas. Vyðnioms skiepyti<br />

tinkamais buvo pripaþinti treðniø veislës ‘Zolotaja Losickaja’ <strong>ir</strong> selekcinio Nr. 2<br />

bei dviejø kvapiosios vyðnios formø – Nr. 817 <strong>ir</strong> Nr. 805 – sëjinukai. Vaismedþiai su<br />

ðiais poskiepiais sode augo vienodi, gausiai derëjo, vaisiai buvo geros kokybës.<br />

Vëlesniais tyrimais ávertintas kloniniø poskiepiø PN (P. cerasus), P3, P7 (abu<br />

P.padus x (P. cerasus x P. avium)) <strong>ir</strong> Þ1 (P. cerasus) tinkamumas vyðnioms <strong>ir</strong> treðnëms.<br />

Në vienas ið minëtø poskiepiø vyðnioms nebuvo geresnis uþ standartinius –<br />

kvapiosios vyðnios sëjinukus, o treðnës, skiepytos á kvapiosios vyðnios sëjinukus,<br />

derëjo prasèiausiai. Produktyviausios treðnës buvo su P3 poskiepiu, taèiau jis augino<br />

daug ðaknø atþalø. Perspektyviausias ið t<strong>ir</strong>tø poskiepiø treðnëms gali bûti PN. Vaismedþiai<br />

su ðiuo poskiepiu yra ðiek tiek produktyvesni negu skiepyti á kvapiosios vyðnios<br />

sëjinukus, poskiepis neformuoja atþalø, vaisiai yra tinkamo dydþio.<br />

Slyvoms buvo t<strong>ir</strong>iami ðie poskiepiai: veltininës vyðnios (P. tomentosa) sëjinukai<br />

<strong>ir</strong> kloniniai – St. Julien A, St. Julien GF655-2 bei Marianna GF8-1. Në vienas ið t<strong>ir</strong>tø<br />

poskiepiø nepas<strong>ir</strong>odë esàs geresnis uþ standartinius – skëstaðakës slyvos sëjinukus.<br />

Nustatyti daþni fiziologinio neatitikimo atvejai tarp veltininës vyðnios sëjinukø <strong>ir</strong> á juos<br />

áskiepytø slyvø veisliø.<br />

Ðiuo metu t<strong>ir</strong>iami 24 kloniniai treðniø poskiepiai su ‘Lapins’ veisle. Iki ðiol ið jø<br />

perspektyviausi atrodo Gisela 4, Gi–497/8 <strong>ir</strong> Gi–154/7.<br />

Ateityje turëtø bûti t<strong>ir</strong>iami nauji slyvø <strong>ir</strong> treðniø þemaûgiai poskiepiai su perspektyviausiomis<br />

ðiø augalø veislëmis.<br />

Reikðminiai þodþiai: kloniniai poskiepiai, sëjinukai, slyvos, treðnës, vyðnios.<br />

178


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

PERFORMANCE OF FIVE PLUM ROOTSTOCKS TO<br />

THE PLUM CULTIVARS ‘OPAL’ AND<br />

‘REINE CLAUDE GF 1119’ GROWING IN NORWAY<br />

Mekjell MELAND, Oddmund FR∅YNES<br />

Bioforsk Ullensvang, N-5781 Lofthus, Norway.<br />

E-mail mekjell.meland@bioforsk.no<br />

The performances of the plum rootstocks Plumina® Ferlenain, Ishtara® Ferciana,<br />

Jaspi® Fereley and the pentaploid open pollinated seedling of Mariana P 8-13<br />

was compared with St. Julien. A as a standard, the cultivars ‘Opal’ and ‘Reine<br />

Claude GF 1119’ were assessed in a field trial in western Norway at 60° North. This<br />

trial was one part of an international plum rootstock trial located in seven European<br />

countries and organized from INRA Bordeaux. Trees were planted in the spring of<br />

1994; spaced 2.0 x 4.0 m and formed with a central leader as free spindles. Soil<br />

management was grass in the alleyways and herbicide strips 1 m wide along the tree<br />

rows. Tree vigour, yield, fruit size and yield efficiency were evaluated for seven<br />

subsequent years. Tree size was significantly affected by the rootstocks. P 8–13<br />

produced the largest trees for both cultivars as measured by trunk cross-sectional<br />

area. The smallest trees were produced on Plumina® Ferlenain for the cultivar ‘Opal’<br />

and on Jaspi® Fereley for ‘Reine Claude’. The cultivar ‘Opal’ was the most productive<br />

and gave three times larger crop than ‘Reine Claude’ on the average for the six<br />

cropping years. The ‘Reine Claude’ trees came two years later into production than<br />

‘Opal’. There were small differences between the different rootstocks in productivity.<br />

However, the rootstock Plumina® Ferlenain produced significant lower crop<br />

than the other rootstocks for ‘Opal’. Trees on Jaspi® Fereley were the most yield<br />

efficient for ‘Opal’ and Plumina® Ferlenain for ‘Reine Claude’. The fruit sizes were<br />

in general medium to small for both cultivars and became little affected by the different<br />

rootstocks. The average fruit size was about 29 g for ‘Opal’ and 22 g for ‘Reine<br />

Claude’. Fruit quality characterized by the content of soluble solids was high for<br />

‘Reine Claude’ with average 20 proc. and 15 proc. for ‘Opal’ and did not differ<br />

much between trees on the various rootstocks.<br />

Key words: Prunus domestica L., rootstock, cultivar, high density, tree size,<br />

yield, fruit quality, yield efficiency.<br />

Introduction: With European plum (P. domestica. L.) most of the currently<br />

available rootstocks belong to one of the three Prunus species; P. domestica, P.<br />

179


insititia (St. Julien) and P. cerasifera (Myrobalan). These species are all rather vigorous.<br />

During the last decades the rootstock St. Julien A has been recommended as a<br />

reliable semi-dwarf rootstock with favourable influences on fruit size and fruit quality<br />

(Ystaas and Frøynes, 1993) for European plums in Norway. However, trees on<br />

St. Julien A are considered to be too vigorous to meet the demand for high density<br />

plantings together with early and high crops and a more dwarfing and precocious<br />

rootstock is wanted.<br />

In the 1980s and 1990s increasing research activities have been conducted on<br />

plums (Grzyb et al., 1998; Hartman, 1994). Several new plum rootstocks were<br />

introduced (Grzyb et al., 1984; Renaud & Salesses, 1991; Webster, 1980) and some<br />

of these claim to be dwarfing.<br />

A rootstock-breeding programme at INRA Bordeaux in France has produced<br />

many hybrid rootstocks for stone fruits and several of the vegetatively propagated<br />

clones from this programme have shown potential as rootstocks for prunes and<br />

plums (Renaud et al., 1991).<br />

Ishtara® Ferciana is an interspecific hybrid, P. salicina ‘Belsiana’ x (P. cerasifera<br />

x P. persica) released in 1986 under the trade name Ishtara®. It is moderately<br />

vigorous with good effect on fruit size and with no suckers (Wertheim, 1998).<br />

Jaspi® Fereley is a hybrid from a cross between P. salicina ‘Methley’ x P. spinosa<br />

and was released in 1989. The vigour of Fereley is rather similar to Ferciana, good<br />

root anchorage and suitable for wet soil. Plumina® Ferlenain is a cross of P. bessey<br />

and diploid Prunus species, probably ‘Myrobalan’.<br />

P 8–13 is a pentaploid open pollinated seedling of the rootstock Mariana and<br />

was selected in France. It is a semi vigorous rootstock similar to St. Julien A (Wertheim,<br />

1998).<br />

At the international ISHS congress in F<strong>ir</strong>enze, Italy in 1990 it was organized<br />

two joint trials with several European countries as participants organized from INRA<br />

Bordeaux, France. There was one trial with table fruit cultivars included a common<br />

cultivar, Greengage GF 1119 and one other cultivar and one trial with prune cultivars<br />

(Renaud, 1998).<br />

The main objective of this trial was to seek ways to improve the early and large<br />

yields with high quality fruits of two plum cultivars by testing five rootstocks of<br />

different vigour levels.<br />

Materials and methods. Trees of the European plum cultivars ‘Opal’ and<br />

‘Reine Claude GF 1119’ (Prunus domestica L.) growing on five different rootstocks<br />

were assessed in a field trial at Bioforsk Ullensvang (60° North). The trees<br />

were planted in the spring of 1994 and evaluated for seven subsequent years. The<br />

five rootstocks included 4 rootstocks from INRA Bordeaux (Ishtara® Ferciana,<br />

Jaspi® Fereley, Plumina® Ferlenain and the pentaploid P. Marianna (8–13)) compared<br />

to St. Julien A as the standard. The trees were spaced 2.0 x 4.0 m and<br />

formed with a central leader as free spindles. The leader was cut back at planting<br />

and annually until the final tree height was about 2.5 m and the branches were tied<br />

down to the horizontal. The experimental design was a randomised complete block<br />

with six replications. Each plot had two trees of similar cultivar/rootstock combination.<br />

180


Soil management consisted of frequently mowed grass in the alleyways and<br />

herbicide strips 1-m wide along the tree rows. The experiment was carried out on a<br />

loamy sand soil high in organic matter and with good fertility. The trees were <strong>ir</strong>rigated<br />

with trickle <strong>ir</strong>rigation when water deficits, based on evapotransp<strong>ir</strong>ation measurements,<br />

were recorded. The trees each received the same amounts of fertilizer, based<br />

on soil and leaf analysis.<br />

Fruit thinning was done by hand whenever necessary with the aim of spacing<br />

the fruitlets to about 5 cm apart. Trunk c<strong>ir</strong>cumference, <strong>25</strong> cm above the graft union,<br />

was recorded each fall. Total yield was measured yearly. Individual fruit weights<br />

were determined on random samples of 50 fruits per plot. Samples of 10 fruits were<br />

taken to the laboratory for determination of soluble solids by an Atago digital refractometer<br />

at 20°C.<br />

The statistical analyses were carried out using the software Minitab.<br />

Results. Growth and Flowering. In the f<strong>ir</strong>st growing season the trees had<br />

minor shoot growth due to some root drying during the transport. However, in the<br />

second growing season (1995) the trees grew normally. The amounts of flower<br />

clusters were registered by giving scores to each cultivar/rootstock combination in<br />

the th<strong>ir</strong>d leaf and the following three years (Tables 1 and 2).<br />

Table 1. Effect of five rootstocks on the amount of flower clusters during the f<strong>ir</strong>st four<br />

cropping years of ‘Opal’. Scores 1–9, where 1 – zero flower clusters and 9 – many<br />

1 lentelë. Slyvø veislës ‘Opal’ þiedynø skaièiaus priklausomumas nuo penkiø poskiepiø<br />

per p<strong>ir</strong>muosius ketverius derëjimo metus (1–9 balai, kur 1 – nëra þiedynø,<br />

9 – daug þiedynø)<br />

Rootstock<br />

Poskiepis<br />

Flower index, scores<br />

Þiedø rodiklis balais<br />

1996 1997 1998 1999<br />

Ferlenain 2.8 3.5 7.0 4.5<br />

Ferciana 3.9 1.9 6.1 3.3<br />

Fereley 5.5 1.8 6.8 1.9<br />

P 8–13 4.6 1.8 7.1 3.0<br />

St. Julien A 2.3 1.4 5.7 2.8<br />

LSD / P = 0.05% NS NS NS NS<br />

181


Table 2. Effect of five rootstocks on the amount of flower clusters during<br />

the f<strong>ir</strong>st four cropping years of ‘Reine Claude’. Scores 1–9, where 1 – zero<br />

flower clusters and 9 – many<br />

2 lentelë. Slyvø veislës ‘Reine Claude’ þiedynø skaièiaus priklausomumas nuo penkiø<br />

poskiepiø per p<strong>ir</strong>muosius ketverius derëjimo metus (1–9 balai, kur 1 – nëra þiedynø,<br />

9 – daug þiedynø)<br />

Flower index, scores<br />

Rootstock<br />

Þiedø rodiklis balais<br />

Poskiepis 1996 1997 1998 1999<br />

Ferlenain 1.0 1.0 7.8 7.5<br />

Ferciana 1.8 1.0 3.7 6.8<br />

Fereley 2.8 1.0 4.2 6.2<br />

P 8–13 2.0 1.0 3.8 6.9<br />

St. Julien A 2.9 1.0 3.3 6.6<br />

LSD. P = 0.05% NS NS 1.4 0.8<br />

For ‘Opal’ no significant differences were found between the different rootstocks.<br />

The amount of flower clusters per tree varied between years, which are<br />

common for the ‘Opal’ cultivar. However, for the rootstock Ferlenain higher amounts<br />

were registered in the fifth and sixth leaf. No clear differences were found between<br />

the dates for flowering between the different rootstocks.<br />

Table 3. Effect of rootstocks on trunk cross sectional area, cumulative yield, cumulative<br />

yield efficiency, average fruit weight, soluble solids and tree survival for the cultivar<br />

‘Opal’ at the end of the eight growing season<br />

3 lentelë. Poskiepiø átaka slyvø veislës ‘Opal’ kamieno skerspjûvio plotui, suminiam<br />

derliui, suminiam produktyvumui, vidutinei vaisiaus masei, t<strong>ir</strong>pioms sausosioms<br />

medþiagoms <strong>ir</strong> vaismedþio iðlikimui aðtuntojo augimo sezono pabaigoje<br />

Rootstock<br />

Poskiepis<br />

Trunk<br />

crosssectional<br />

area<br />

Kamieno<br />

skerspjûvio<br />

plotas, cm 2<br />

Cumulative<br />

yield (kg<br />

per tree)<br />

Suminis<br />

derlius,<br />

kg medis -1<br />

Cumulative<br />

yield<br />

efficiency<br />

Suminis<br />

produktyvumas,<br />

kg cm -2<br />

Mean<br />

fruit<br />

weight<br />

Vidutinë<br />

vaisiaus<br />

masë, g<br />

Soluble<br />

solids<br />

T<strong>ir</strong>pios<br />

sausosios<br />

medžiagos,<br />

%<br />

Tree<br />

survival<br />

Vaismedžio<br />

išlikimas, %<br />

Ferlenain 39.8 16.2 0.521 28.7 17.5 50<br />

Ferciana 58.4 30.9 0.762 29.1 15.3 91<br />

Fereley 64.3 36.6 0.829 29.5 15.5 100<br />

P 8–13 71.9 34.0 0.695 29.9 15.1 87<br />

St. Julien A 57.5 29.9 0.657 29.4 15.4 100<br />

LSD. P = 0.05% 12.6 5.8 NS NS 2.1 -<br />

182


Tree vigour. Tree vigour as measured by trunk cross-sectional area at the end<br />

of the eight growing season was significantly affected by rootstocks. P 8–13 produced<br />

the largest trees for both cultivars and was <strong>25</strong>% larger than St. Julien A on<br />

‘Opal’ and 7% larger on ‘Reine Claude’. The smallest trees were produced on Ferlenain<br />

for the cultivar ‘Opal’ and on Fereley for ‘Reine Claude’ (Tables 3 and 4).<br />

These rootstocks gave significant smaller trees on both cultivars compared with the<br />

standard St. Julien A.<br />

Table 4. Effect of rootstocks on trunk cross sectional area, cumulative yield, cumulative<br />

yield efficiency, average fruit weight, soluble solids and tree survival for the cultivar<br />

‘Reine Claude GF 1119’ at the end of the eight growing season<br />

4 lentelë. Poskiepiø átaka slyvø veislës ‘Reine Claude GF 1119’ kamieno skerspjûvio<br />

plotui, suminiam derliui, suminiam produktyvumui, vidutinei vaisiaus masei, t<strong>ir</strong>pioms<br />

sausosioms medþiagoms <strong>ir</strong> vaismedþio iðlikimui aðtuntojo augimo sezono pabaigoje<br />

Rootstock<br />

Poskiepis<br />

Trunk<br />

crosssectional<br />

area<br />

Kamieno<br />

skerspjûvio<br />

plotas,<br />

cm 2<br />

Cumulative<br />

yield (kg<br />

per tree)<br />

Suminis<br />

derlius,<br />

kg medis -1<br />

Cumulative<br />

yield<br />

efficiency<br />

Suminis<br />

produktyvumas<br />

, kg cm -2<br />

Mean<br />

fruit<br />

weight<br />

Vidutinë<br />

vaisiaus<br />

masë, g<br />

Soluble<br />

solids<br />

T<strong>ir</strong>pios<br />

sausosios<br />

medžiagos,<br />

%<br />

Tree<br />

survival<br />

Vaismedžio<br />

išlikimas, %<br />

Ferlenain 63.7 14.2 0.276 23.1 22.3 80<br />

Ferciana 84.6 10.1 0.155 22.8 20.1 100<br />

Fereley 60.5 10.1 0.211 20.3 19.3 100<br />

P 8-13 85.8 9.8 0.156 21.5 18.7 83<br />

St. Julien A 80.3 9.1 0.143 20.8 20.5 100<br />

LSD. P = 0.05% 14.5 2.0 0.037 NS 2.9 -<br />

Yield. The f<strong>ir</strong>st minor crop was harvested in the th<strong>ir</strong>d leaf for the cultivar ‘Opal’,<br />

which was the most productive cultivar. It gave three times larger crop than ‘Reine<br />

Claude’ on the average for the six cropping years. The ‘Reine Claude’ trees came<br />

two years later into production than ‘Opal’. The harvest time for ‘Opal’ was the<br />

second half of August depending on the years and ‘Reine Claude’ one month later.<br />

For ‘Opal’ the rootstock St. Julien A came slower into production than the other<br />

rootstocks. There were rather small differences between the different rootstocks in<br />

productivity: However, the rootstock Ferlenain produced significant larger crop than<br />

the other rootstocks for ‘Reine Claude’ and lower for ‘Opal’.<br />

Yield efficiency. Yield efficiency was calculated for each rootstock on the basis<br />

of yield and trunk cross sectional area. Trees on Fereley were the most yield efficient<br />

for ‘Opal’ and Ferlenain for ‘Reine Claude’. The Ferlenain rootstock was the<br />

least efficient for ‘Opal’ and St. Julien A for ‘Reine Claude’. In general the efficiency<br />

reflected the yields obtained.<br />

Fruit quality. Important quality components like fruit weight and soluble solids<br />

were not much influenced by the different rootstocks. The rootstocks did not have<br />

183


any significant effect on fruit sizes and were in general medium to small for both<br />

cultivars. Smallest fruit size was recorded on the ‘Reine Claude’ (Tables 3 and 4).<br />

For all cultivars the fruit weight decreased with increasing crop (data not shown).<br />

Similar pattern was found for the content of soluble solids (Table 4). Fruit quality<br />

characterized by the content of soluble solids was high for ‘Reine Claude’ with<br />

average 20% and 15% for ‘Opal’ However, plums from trees on Ferlenain had significant<br />

higher content of soluble solids for both cultivars.<br />

Tree survival. The winter of 1995/96 was special in the way that it came frost<br />

from the end of November until the end of March without any snow cover. Under<br />

these climatic conditions the root systems became partly damaged on some of the<br />

rootstock and cultivar combinations. The rootstocks Ferlenain was the least frost<br />

tolerance with 50% and 20% of the trees lost on the two cultivars ‘Opal’ and ‘Reine<br />

Claude’, respectively. The rootstocks Fereley and St. Julien A were the most winter<br />

tolerant with all trees surviving the test period of 8 years.<br />

Discussion: The objectives of the breeding programme at INRA Bordeaux<br />

was reducing the vigour of the rootstocks, early bearing, heavy and regular production<br />

and type of branching and fructification leading to faster pruning and<br />

lower production costs (Renaud and Salesses, 1994). The f<strong>ir</strong>st minor yield was<br />

not achieved until the th<strong>ir</strong>d leaf for ‘Opal and fifth leaf for ‘Reine Claude’. The<br />

trees suffered some the f<strong>ir</strong>st growing season likely due to root drying under transport.<br />

However, from the second leaf and the rest of the test period, normal annual<br />

growth was achieved.<br />

Plum trees are generally slow to come into bearing. However, the ‘Opal’ trees<br />

started to crop earlier than ‘Reine Claude’ independent of rootstock choice. The<br />

dwarfing rootstock showing most promise in this trial was Ferlenain for ‘Reine<br />

Claude’. Mature trees on this rootstock were significant smaller than the other rootstocks<br />

except Fereley. Total cumulative yield and yield efficiency from these trees<br />

on Ferlenain was significant better than on the other rootstocks. Similar effect by<br />

this rootstock on the cultivars ‘Victoria’ and ‘Czar’ is reported by Webster and<br />

Wertheim (1993). Trials in France have shown similar results as well with prune and<br />

gage trees on Ferlenain dwarfing the trees and to yield good size fruits with no<br />

incompatibility problems for ‘Green Gage’ (Bernard and Renaud, 1990). At bloom<br />

time in the th<strong>ir</strong>d – sixth leaf the amount of flowering were judged. Across all cultivar<br />

and rootstock combinations the Ferlenain rootstock got the highest scores and this<br />

effect was clearly demonstrated for the cultivar ‘Reine Claude’.<br />

However, half of the Ferlenain trees did not survive in the ‘Opal’ trial and they<br />

yielded less than the other rootstocks.<br />

The rootstocks Ferciana, P 8–13 and the standard St. Julien A did not dwarf the<br />

two cultivars significantly and the cumulative yields during the experiment per tree<br />

were in the same area. No significant differences in the average fruit size where<br />

found for the different cultivar/rootstock combinations. Fruit size is linked to the<br />

cultivar and the crop load on the trees. These trees had moderate large yields and<br />

likely got no fruit size reductions.<br />

The content of soluble solids are important components of plum quality. This<br />

component was not strongly influenced by the rootstocks and only minor differen-<br />

184


ces were found. The ‘Reine Claude’ is considered to be a premium quality plum and<br />

had the highest content of soluble solids of these two plum cultivars independent of<br />

rootstock choice.<br />

Conclusions. The rootstocks tested produced tree vigour from semi-dwarf to<br />

semi-vigorous. Ferlenain was the most reliable semi-dwarf rootstock to the cultivar<br />

‘Reine Claude’ with high yield efficiency and with favourable influence on fruit<br />

quality. Ferciana, P 8–13 and St. Julien A were all semi vigorous with similar crops<br />

and fruit quality for both cultivars. The ‘Opal’ cultivar yielded three times more than<br />

the ‘Reine Claude’ cultivar.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Bernard. R., Renaud. R. Le pont sur les porte greffes du prunier. L’Arboriculture<br />

Fruitere. 1990. 432. P. 28–36.<br />

2. Grzyb Z. S., Jackiewicz A., Czynczyk A. Results of 18-year evaluation of rootstocks<br />

for Italian Prune cultivar. Fruit Sci. Rep. 1984. 11(3). P. 99–104.<br />

3. Grzyb Z.S., Zmarlicki K., Sitarek, M. (eds) Proceedings of the VI th international<br />

symposium on plum and prune genetics, breeding and pomology. Acta Hort. 1998. 478,<br />

350 pp.<br />

4. Hartman W. (ed.) Fifth international symposium on plum and prune genetic, breeding<br />

and pomology. Acta Hort. 1994. 359, 296 pp.<br />

5. Renaud R. Report on ”International trials on plum rootstocks”.- Acta Hort. 1998.<br />

478. P. 99–100.<br />

6. Renaud R., Salesses G. Interspecific hybridization and rootstocks breeding for<br />

European plums. Acta Hort. 1994. 359. P. 97–100.<br />

7. Renaud R., Salesses G., Roy M., Bonnet A. Development and selection of new<br />

rootstocks of Prunus domestica. Acta Hort. 1991. 283. P. <strong>25</strong>3–<strong>25</strong>9.<br />

8. Webster A. D. Pixy, a new dwarfing rootstock for plums, Prunus domestica L. J.<br />

Hort. Sci. 1980. 55(4). P. 4<strong>25</strong>–431.<br />

9. Webster A. D., Wertheim S. J. Comparisons of species and hybrid rootstocks for<br />

European plum cultivars. J. Hort. Sci. 1993. 68(6). P. 861–869.<br />

10. Wertheim S. J. Rootstock Guide. Apple, pear, cherry, European plum. Publication<br />

nr. <strong>25</strong>. Fruit Research Station Wilhelminadorp. The Netherlands. 1998. 144 pp.<br />

11. Ystaas J., Fr∅ynes O. Performance of five rootstock over 17 years to five commercial<br />

important plum cultivars in Norway. Norwegian J. Ag. Sci. 1993. 7. P. 267–274.<br />

185


SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

SLYVØ VEISLIØ ‘OPAL’ IR ‘REINE CLAUDE GF 1119’,<br />

AUGINAMØ NORVEGIJOJE, PENKIØ POSKIEPIØ<br />

CHARAKTERISTIKA<br />

M. Meland, O. Fr∅ynes<br />

Santrauka<br />

Slyvø poskiepiø Plumina® Ferlenain, Ishtara® Ferciana, Jaspi® Fereley <strong>ir</strong> pentaploidinio<br />

atv<strong>ir</strong>ai apdulkinamo Mariana P 8-13 sodinuko charakteristikos palygintos<br />

su St. Julien A kaip standartu. Veislës ‘Opal’ <strong>ir</strong> ‘Reine Claude GF 1119’ ávertintos<br />

lauko bandymais Vakarø Norvegijoje (60° á ðiauræ). Ðis bandymas buvo tarptautiniø<br />

poskiepiø tyrimø, atliktø septyniose Europos ðalyse <strong>ir</strong> suorganizuoto INRA Bordeaux,<br />

dalis. Vaismedþiai buvo pasodinti 1994 metø pavasará 2,0 x 4,0 m atstumais <strong>ir</strong><br />

suformuoti kaip laisvai auganèios verpstës su centrine pagrindine ðaka. D<strong>ir</strong>va alëjose<br />

apþeldinta þole, o vaismedþiø eilëse 1 m ploèio juostos buvo purðkiamos herbicidais.<br />

Septynerius metus vertintas vaismedþiø augumas, vaisiø dydis <strong>ir</strong> produktyvumas.<br />

Poskiepiai darë reikðmingà átakà vaismedþiø dydþiui. Lyginant kamienø skerspjûvio<br />

plotus, nustatyta, kad aukðèiausi abiejø veisliø vaismedþiai iðaugo ið sodinukø Mariana<br />

P 8–13. Maþiausi veislës ‘Opal’ vaismedþiai iðaugo su poskiepiu Plumina® Ferlenain,<br />

o veislës ‘Reine Claude’ – su poskiepiu Jaspi® Fereley. Veislë ‘Opal’ buvo<br />

produktyviausia <strong>ir</strong> per ðeðerius metus davë vidutiniðkai trigubai didesná derliø negu<br />

‘Reine Claude’. ‘Reine Claude’ vaismedþiai pradëjo vesti vaisius dvejais metais vëliau<br />

negu ‘Opal’. Produktyvumo atþvilgiu sk<strong>ir</strong>tingi poskiepiai skyrësi maþai, iðskyrus veislës‘Opal’poskiepá<br />

Plumina® Ferlenain, kurio derlius buvo daug maþesnis negu kitø<br />

poskiepiø. Didþiausias veislës ‘Opal’ slyvø derlius gautas vaismedþiams augant su<br />

poskiepiu Jaspi® Fereley, o veislës ‘Reine Claude’ – su poskiepiu Plumina® Ferlenain.<br />

Abiejø veisliø vaisiai ið esmës buvo vidutinio dydþio arba maþi – nuo sk<strong>ir</strong>tingø<br />

poskiepiø dydis beveik nepriklausë. Veislës ‘Opal’ vaisiai vidutiniðkai svërë 29 g, o<br />

‘Reine Claude’ – 22 g. Veislës ‘Reine Claude’ t<strong>ir</strong>piø sausøjø medþiagø kiekis, apibûdinantis<br />

vaisiø kokybæ, siekë vidutiniðkai 20 proc., o ‘Opal’ – 15 proc. <strong>ir</strong> sk<strong>ir</strong>tingi<br />

poskiepiai jam didelës átakos nedarë.<br />

Reikðminiai þodþiai: Prunus domestica L., poskiepis, veislë, tankumas, vaismedþio<br />

dydis, derlius, vaisiø kokybë, produktyvumas.<br />

186


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

VARIABILITY OF UV-ABSORBING COMPOUNDS IN<br />

PLANT LEAVES UNDER UV-B EXPOSURE<br />

Kæstutis BARANAUSKIS, Jurga SAKALAUSKAITË,<br />

Auðra BRAZAITYTË, Akvilë URBONAVIÈIÛTË,<br />

Giedrë SAMUOLIENË, Gintarë ÐABAJEVIENË,<br />

Sandra SAKALAUSKIENË, Jûratë Bronë ÐIKÐNIANIENË,<br />

Pavelas DUCHOVSKIS<br />

Lithuanian Institute of Horticulture, LT–54333 Babtai, Kauno 30,<br />

Kaunas distr., Lithuania.<br />

E-mail k.baranauskis@lsdi.lt<br />

Variability of UV-absorbing compounds in leaves of Daucus sativus Röhl., Fragaria<br />

ananassa Duch. Malus domestica and Raphanus sativus L. under different UV-<br />

B exposure was examined. Effect of an additional stress including increased temperature<br />

(<strong>25</strong>°C-day/16°C-night) and CO 2<br />

level (700 ppm) on UV-screening compound in<br />

Malus domestica and Raphanus sativus L. leaves was identified as well. In general,<br />

this study revealed that plant response to UV-B exposure intensity is very speciesspecific<br />

only under non-stressful conditions; i. e. favorable temperature and ambient<br />

CO 2<br />

level, though a linear relationship between concentration of UV-absorbing compounds<br />

and UV-B daily doses has not been determined. Content of UV-screening<br />

compounds appeared to be more determined by stressors including an increased<br />

temperature and CO 2<br />

level rather than an intensity of exposure to UV-B radiation.<br />

Key words: Daucus sativus Röhl., Fragaria ananassa Duch. Malus domestica,<br />

Raphanus sativus L., UV-absorbing compounds, UV-B radiation.<br />

Introduction. Plants use sunlight for photosynthesis and, as a consequence,<br />

are exposed to the ultraviolet (UV) radiation that is present in d<strong>ir</strong>ect sunlight. All<br />

types of UV radiation, especially the higher energy wavelengths are known to disorder<br />

various plant processes. Such disturbances include DNA damage (Harm, 1980),<br />

inhibition of photosynthetic primary productivity (Tevini and Teramura, 1989), inhibition<br />

of nitrogenase activity (Sinha et al., 1996), and a diversity of other responses<br />

that have been reviewed elsewhere (Tevini, 1993; Vincent and Roy, 1993). However,<br />

it is wrong to consider UV radiation as only damaging factor. It has certain beneficial<br />

roles in the biosphere. As an example, various growth and photomorphogenetic effects<br />

in plants, mediated through blue/UV-A receptors, involve UV-A radiation (Salisbury<br />

and Ross, 1992). Even UV-A reflected from petal anthocyanins is essential<br />

for flower recognition by pollinating insects (Flint and Caldwell, 1983).<br />

187


Phenylpropanoids including flavones, flavonols, cinnamoyl esters and anthocyanins<br />

provide a UV-A and UV-B screen. The flavonoids are today the most widely<br />

occurred phenolic derivatives in the biosphere (Harborne, 1964). Flavonoids provide<br />

an effective UV screen that reduces UV radiation transmittance through epidermis,<br />

but allow through visible radiation for photosynthesis (Tevini et al., 1991), prevents<br />

DNA damage and UV-B-induced damage of the photosynthetic apparatus (Regner et<br />

al., 1989). A number of authors proposed, that flavonoids are UV-B-inducible (Mohle<br />

and Wellman, 1982; Barnes et al., 1988; Tevini et al., 1991) and in some cases a<br />

linear relationship between flavonoid concentration and UV-B flux has been observed<br />

(Wellman, 1975). The flavonoids response for UV screening may vary from<br />

species to species and could be developmental stage and tissue-dependent (Cockell<br />

and Knowland, 1999).<br />

As well as flavonoids, other aromatic-containing pigments in higher plants such<br />

as alkaloids absorb in the UV range and may provide additional UV protection in<br />

some species (Cockell and Knowland, 1999).<br />

However, the UV-B-dependent variability of total amount of UV-screening compounds<br />

in higher plants is not yet established. Therefore, this study aims to survey a<br />

relationship between UV-B radiation and total amount of UV absorbing compounds<br />

in few plant species including Raphanus sativus L., Malus domestica, Daucus sativus<br />

Röhl., Fragaria ananassa Duch.<br />

Materials and methods. Research was carried out in the phytotron complex<br />

at the Lithuanian Institute of Horticulture in 2006. Raphanus sativus L., Malus domestica,<br />

Daucus sativus Röhl. and Fragaria ananassa Duch. were grown in 5 L<br />

pots of peat substrate (pH 5.85–6) during the experiment. A photoperiod of 16 h<br />

was maintained. All plants were exposed to 0 (reference), 2 and 4 kJ daily UV-B<br />

doses for 5 days under two climatic modes:<br />

(a) non-stressful conditions, where temperature of 21/14°C (day/night) and<br />

ambient CO 2<br />

level was maintained throughout the experiment (all plant species were<br />

examined);<br />

(b) stressful conditions, where temperature of <strong>25</strong>/16°C (day/night) and CO 2<br />

level at 700 ppm was maintained throughout the experiment (only Raphanus sativus<br />

L. and Malus domestica were examined).<br />

Samples from fully developed plant leaves were at random taken immediately<br />

after the end of UV-B exposure.<br />

UV-absorbing compounds were analyzed in acidified methanol extracts according<br />

modified method of M<strong>ir</strong>ecki and Teramura (1984), recording and integrating<br />

absorption spectra in the range of 280–400 nm. Relative amount of UV-absorbing<br />

pigments was calculated according the formula as follows:<br />

RA UVpigm<br />

=<br />

∫<br />

Abs<br />

m<br />

where ∫ A – area of absorption spectra, defined as an integral of the absorption<br />

spectra in the range of 280–400 nm i = 1 → 121 ;m – weight of the sample<br />

(g).<br />

188


Statistical calculations were performed by ANOVA for MS Excel vers. 3.43<br />

(Duncan’s Multiple Range t-test procedure (P ≤ 0.05 and P ≤ 0.01)).<br />

Results. Plant response to UV-B radiation doses under non-stressful conditions<br />

(21/14°C, ambient CO 2<br />

) was very plant species-specific. Significantly lower<br />

amount of UV-absorbing compounds was determined in reference Raphanus sativus<br />

plants, than in those exposed to 2 kJ UV-B doses, but no significant differences<br />

were observed under 4 kJ UV-B doses (Fig. 1 A).<br />

Exposure of Daucus carota plants to 4 kJ UV-B doses resulted in greatest amounts<br />

of UV-screening compound, while 2 kJ doses – in lowest amounts. Hence, the<br />

amount of UV pigments in reference plants remained greater than in plants exposed<br />

to 2 kJ UV-B doses (Fig. 1 B).<br />

Fig. 1. Amount of UV pigments in (A) Raphanus sativus L., (B) Daucus sativus<br />

Röhl., (C) Fragaria ananassa Duch. and (D) Malus domestica leaves under different<br />

UV-B exposure. Means indicated by the different letters are significantly<br />

different (n = 3; P ≥ 0.05)<br />

1 pav. Santykiniai UV sugerianèiø pigmentø kiekiai (A) Raphanus sativus L., (B)<br />

Daucus sativus Röhl., (C) Fragaria ananassa Duch. and (D) Malus domestica<br />

lapuose paveikus sk<strong>ir</strong>tingomis UV-B dozëmis. Sk<strong>ir</strong>tingos raidës rodo<br />

esminá sk<strong>ir</strong>tumà tarp vidurkiø (n = 3; P ≥ 0,05)<br />

In general, UV-B radiation reduced the amount of UV-absorbing pigments in<br />

Fragaria ananassa Duch. leaves, as the amount of those pigments was significantly<br />

greater in the leaves of reference plants than in those treated by 2 or 4 kJ UV-B<br />

doses. The most reduced amount of UV-screening compound was observed under 2<br />

kJ UV-B doses (Fig. 1 C).<br />

189


Amount of UV-screening compounds in the leaves of Malus domestica decreased<br />

as UV-B doses increased. 4 kJ daily UV-B doses resulted in lowest amount of<br />

those pigments, while the greatest amounts of UV pigments were determined in<br />

leaves of reference Malus domestica plants (Fig. 1 D).<br />

Table 1. Relative amounts of UV-absorbing compounds under various stress conditions.<br />

Means indicated by the different letters are significantly different within the<br />

column of each UV treatment (n = 3; P ≥ 0.01)<br />

1 lentelë. Santykiniai UV sugerinèiø pigmentø kiekiai augalø lapuose sk<strong>ir</strong>tingomis<br />

streso sàlygomis. Sk<strong>ir</strong>tingos raidës rodo esminá sk<strong>ir</strong>tumà tarp vidurkiø reikðmiø<br />

stulpeliuose kiekvienam UV poveikiui atsk<strong>ir</strong>ai (n = 3; P ≥ 0,01)<br />

UV treatment<br />

UV poveikis<br />

Increased t° and CO 2<br />

Padidinta t° <strong>ir</strong> CO 2 kiekis<br />

Object<br />

Objektas<br />

Raphanus sativus Röhl.<br />

Malus domestica<br />

Control<br />

– 48.6 a 569.3 a<br />

Kontrolë + 104.8 b 723.3 b<br />

2 kJ<br />

– 68.7 a 530.8 a<br />

+ 121.85 b 775.4 b<br />

4 kJ<br />

– 59.2 a 478.7 a<br />

+ 97.7 b 710.8 b<br />

An additional stress including increased temperature (<strong>25</strong>/16°C) and CO 2<br />

level<br />

(700 ppm) together with UV-B radiation resulted in significantly increased amount<br />

of UV-screening compounds in all inspected plant species in comparison to plants<br />

exposure solely to UV-B radiation or reference plants (Table 1). Though no significant<br />

variation of UV pigments were determined in Raphanus sativus L. and Malus<br />

domestica under different UV-B treatment whenever additional stress (temperature,<br />

CO 2<br />

) was applied (Figs. 2 A, B).<br />

Fig. 2. Amount of UV pigments in (A) Raphanus sativus L. and (B) Malus domestica<br />

leaves under different UV-B exposure, increased temperature and increased CO 2<br />

level.<br />

Means indicated by the different letters are significantly different (n = 3; P ≥ 0.05)<br />

2 pav. Santykiniai UV sugerianèiø pigmentø kiekiai (A) ridikëliø <strong>ir</strong> (B) obelø lapuose<br />

veikiant sk<strong>ir</strong>tingomis UV-B dozëmis, esant aukðtai temperatûrai <strong>ir</strong> padidintam CO 2<br />

kiekiui. Sk<strong>ir</strong>tingos raidës rodo esminá sk<strong>ir</strong>tumà tarp vidurkiø (n = 3; P ≥ 0,05)<br />

190


Discussion. Plants in equatorial and high-altitude regions of the earth, where<br />

UV-B flux is generally higher, demonstrate the capacity of increased UV-B tolerance<br />

by inducible flavonoid production. The species found at low latitudes also include<br />

temperate latitude species that have been introduced into these regions such as Pisum<br />

sativum further demonstrating the capacity for photobiological adaptation (Cockell<br />

and Knowland, 1999). As the UV-B doses in low-latitude are greater by an order of<br />

magnitude than those existing in high-latitude areas, these ranges provide certain<br />

evidence of the plant acclimation capacity due to change of UV screening compounds<br />

composition. However, a linear relationship between concentration of UV<br />

absorbing compounds and UV-B daily doses has not been observed in this study.<br />

Moreover, content of UV screening compounds appeared to be more determined by<br />

stressors such as an increased temperature and CO 2<br />

level rather than an intensity of<br />

exposure to UV-B radiation. Therefore, it is most likely that certain plant systems<br />

identify increased temperature and CO 2<br />

level as the fact of a latitude lowering. According<br />

to Urbonavièiûtë et al. (2006) content of certain flavonoids is determined<br />

even by a spatial plant leaf orientation. Such data proposes an idea of interaction<br />

between photomorphological and photosynthetic system in order to foresee and prevent<br />

probable UV-B damage.<br />

Conclusions. In general, plant’s response to UV-B exposure intensity is very<br />

species-specific under UV-B stress. However, content of UV screening compounds<br />

appeared to be more determined by the stressors such as an increased temperature<br />

and CO 2<br />

level rather than an intensity of exposure to UV-B radiation.<br />

Acknowledgement. Authors are grateful to Lithuanian State Science and Studies<br />

Foundation for research support.<br />

Gauta 2006-11-10<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Barnes P. W., Jordan P. W., Gold W. G., Flint S. D., Caldwell M. M. Competition,<br />

morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena<br />

fatua L.) exposed to enhanced ultraviolet-B radiation // Functional Ecology. 1988. Vol. 2.<br />

P. 319–330.<br />

2. Cockell C. S., Knowland J. Ultraviolet radiation screening compounds // Biology<br />

Reviews. 1999. Vol. 74. P. 311–345.<br />

3. Flint S. D., Caldwell M. M. Influence of floral properties on the ultraviolet radiation<br />

env<strong>ir</strong>onment of pollen // American Journal of Botany. 1983. Vol. 70. P. 1416–1419.<br />

4. Harborne J. B. Biochemistry of phenolic compounds. Academic Press,<br />

London, 1964.<br />

5. Harm W. Biological effect of ultraviolet radiation. IUPAB biophysics series I.<br />

Cambridge University Press, Cambridge, 1980.<br />

6. M<strong>ir</strong>ecki R. M., Teramura A. H. Effects of ultraviolet-B <strong>ir</strong>radiance on soybean. V.<br />

The dependence of plant sensitivity on the photosynthetic photon flux density during<br />

and after leaf expansion // Plant Physiology. Vol. 74. 1984. P. 475–480.<br />

7. Mohle B., Wellman E. Introduction of phenylpropanoid compounds by UV-B<br />

<strong>ir</strong>radiation in roots of seedlings and cell cultures from Dill (Anethum gaveolens L.) // Plant<br />

Cell Reports. 1982. Vol. 1. P. 183–185.<br />

191


8. Regner G., Volker M., Eckerts H. J., Fromme R., Hohmveit S., Graber P. On the<br />

mechanism of photosystem II deterioration by UV-B radiation // Photochemistry and<br />

Photobiology. Vol. 49. P. 97–105.<br />

9. Salisbury F. B., Ross C. W. Plant physiology. Wadsworth, Belmont, 1992.<br />

10. Sinha R. P., Singh N., Kumar A., Kumar H. D., Häder M., Häder D. P. Effects of UV<br />

<strong>ir</strong>radiation on certain physiological and biochemical processes in cyanobacteria // Journal<br />

of Photochemistry and Photobiology. 1996. Vol. 32. P. 107–113.<br />

11. Tevini M. UV-B radiation and ozone depletion. Effects on humans, animals, plants,<br />

micro-organisms and materials. Lewis Publishers, Boca Raton, Florida, 1993.<br />

12. Tevini M., Braun J., Fieser G. The protective function of the epidermal layer of rye<br />

seedlings against ultraviolet-B radiation // Photochemistry and Photobiology. 1991.<br />

Vol. 53. P. 329–333.<br />

13. Tevini M., Teramura A. H. UV-B effects on terrestrial plants // Photochemistry<br />

and Photobiology. 1989. Vol. 50. P. 479–487.<br />

14. Urbonavièiûtë A., Jakðtas V., Kornyðova O., Janulis V., Maruðka A. Capillary<br />

electrophoretic analysis of flavonoids in single-styled hawthorn (Crataegus monogyna<br />

Jacq.) ethanolic extracts // Journal of Chromatography A. 2006. Vol. 1112. P. 339–344.<br />

15. Vincent W. F., Roy S. Solar ultraviolet-B radiation and aquatic primary production:<br />

damage, protection and recovery // Env<strong>ir</strong>onmental Reviews. 1993. Vol. 1. P. 1–12.<br />

16. Wellman E. UV dose-dependent induction of enzymes related to flavonoid biosynthesis<br />

in cell suspension cultures of parsley // FEBS Letters. 1975. Vol. 51. P. 105–107.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

UV SUGERIANÈIØ PIGMENTØ POKYÈIAI AUGALØ<br />

LAPUOSE VEIKIANT UV-B SPINDULIUOTEI<br />

K. Baranauskis, J. Sakalauskaitë, A. Brazaitytë, A. Urbonavièiûtë, G. Samuolienë,<br />

G. Ðabajevienë, J. B. Ðikðnianienë, P. Duchovskis<br />

Santrauka<br />

Tyrimo metu buvo stebimi UV sugerianèiø pigmentø pokyèiai Daucus sativus<br />

Röhl., Fragaria ananassa Duch. Malus domestica <strong>ir</strong> Raphanus sativus L. augalø<br />

lapuose, veikiant 2 <strong>ir</strong> 4 kJ UV-B dienos dozëmis. Taip pat nustatyta UV sugerianèiø<br />

pigmentø kaita Malus domestica <strong>ir</strong> Raphanus sativus L. augalø lapuose, veikiant<br />

UV-B, aukðtai temperatûrai (+ <strong>25</strong>°C dienà <strong>ir</strong> + 16°C naktá) <strong>ir</strong> padidintai CO 2<br />

koncentracijai<br />

(700 ppm). Nustatyta, kad augalo atsakas á UV-B spinduliuotæ itin priklauso<br />

nuo augalo rûðies tik tada, kai nëra papildomo streso poveikio, t. y. kai yra palanki<br />

augalams augti temperatûra (+ 21°C dienà <strong>ir</strong> + 14°C naktá) bei natûrali CO 2<br />

koncentracija.<br />

Taèiau tokiomis sàlygomis nepavyko nustatyti tiesioginio priklausomumo tarp<br />

UV sugerianèiø pigmentø kiekio <strong>ir</strong> UV-B spinduliuotës poveikio intensyvumo. Ávertinus<br />

tyrimø rezultatus, galima teigti, jog UV sugerianèiø pigmentø kiekis augalø lapuose<br />

labiau priklauso nuo tokiø veiksniø kaip aukðta temperatûra ar padidëjusi CO 2<br />

koncentracija nei tiesioginis UV-B spinduliuotës poveikis.<br />

Reikðminiai þodþiai: Daucus sativus Röhl., Fragaria ananassa Duch. Malus<br />

domestica, Raphanus sativus L., UV sugeriantys pigmentai, UV-B spinduliuotë.<br />

192


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

MORKØ IR BUROKËLIØ LIETUVIÐKØ VEISLIØ BEI<br />

HIBRIDØ YPATUMAI EKOLOGINËJE IR<br />

INTENSYVIOJE DARÞININKYSTËJE<br />

Rasa KARKLELIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas R.Karkleliene@lsdi.lt<br />

2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute t<strong>ir</strong>ta <strong>ir</strong> ávertinta<br />

valgomosios morkos (Daucus sativus Röhl.) <strong>ir</strong> raudonojo burokëlio (Beta<br />

vulgaris L. subsp. vulgaris convar. vulgaris var. vulgaris) lietuviðkos veislës bei<br />

hibridai. T<strong>ir</strong>tos ðios morkø veislës: ‘Garduolës’, ‘Ðatrija’, ‘Vytënø nanto’, ‘Vaiguva’,<br />

bei hibridai – ‘Svalia’ <strong>ir</strong> ‘Skalsa’. Burokëliø tyrimams pas<strong>ir</strong>inktos labiausiai<br />

Lietuvoje paplitusios apvaliø formø ðakniavaisius iðauginanèios veislës – ‘Kamuoliai<br />

2’<strong>ir</strong> ‘Joniai’ bei pailgø formø ðakniavaisius – ‘Ilgiai’. T<strong>ir</strong>ta morkø <strong>ir</strong> burokëliø<br />

suminis <strong>ir</strong> prekinis derlius <strong>ir</strong> morfologiniai poþymiai (ðakniavaisio ilgis, skersmuo <strong>ir</strong><br />

masë). Morkos <strong>ir</strong> burokëliai auginti intensyvaus auginimo (træðta sintetinëmis tràðomis,<br />

augalø apsaugai naudotos cheminës augalø apsaugos priemonës) <strong>ir</strong> ekologinëmis<br />

auginimo sàlygomis (træðta natûraliomis tràðomis, augalø apsaugai naudoti<br />

biologiniai preparatai). Tyrimais nustatyta, kad ekologiðkai auginant morkas <strong>ir</strong> burokëlius,<br />

reikëtø parinkti derlingesnes, maþiau á aplinkos sàlygas reaguojanèias veisles.<br />

Intensyvaus auginimo sàlygomis labiau tiktø auginti morkø hibridus, o ekologiðkai –<br />

veisles. Ekologiðkai auginant burokëlius, reikëtø parinkti burokëlius apvalios formos<br />

ðakniavaisiais, o pailgos formos burokëlius labiau tiktø auginti pagal intensyvià<br />

auginimo technologijà.<br />

Reikðminiai þodþiai: burokëliai, hibridai, derlius, morfologiniai poþymiai, morkos,<br />

veislës.<br />

Ávadas. Lietuvoje morkos <strong>ir</strong> burokëliai yra vienos pagrindiniø darþoviø. Lietuvos<br />

klimato sàlygomis sukurtos burokëliø <strong>ir</strong> morkø veislës bei hibridai yra derlingi<br />

(Armolaitienë, 1998; Gauèienë, 1997; Gauèienë, Viðkelis, 2001; Petronienë, 2000;<br />

Petronienë, 2001). Lietuvoje <strong>ir</strong> pasaulyje atliktais tyrimais nustatyta, kad morkø <strong>ir</strong><br />

burokëliø ðakniavaisiø kokybë labai priklauso nuo augalo genotipo (Gauèienë, 2001;<br />

Petronienë, 2000, 2001; Rosenfeld <strong>ir</strong> kt., 1997, Wiebe, 1987). Morkø <strong>ir</strong> burokëliø<br />

derliui ypatingos reikðmës turi d<strong>ir</strong>vos fizinë sudëtis, todël jø derlius sk<strong>ir</strong>tingomis d<strong>ir</strong>vos<br />

<strong>ir</strong> klimato sàlygomis labai kinta (Äüÿ÷åíêî, 1979; Ïðèìàê, Ëèòâèíåíêî, 1981;<br />

Ìåòîäû ñåëåêöèè ñåìåíîâîäñòâà îâîùíûõ êîðíåïëîäíûõ êóëüòóð, 2003).<br />

193


Darbo tikslas – iðt<strong>ir</strong>ti <strong>ir</strong> palyginti pagal sk<strong>ir</strong>tingas technologijas auginamø morkø<br />

<strong>ir</strong> burokëliø lietuviðkø veisliø bei hibridø derliø <strong>ir</strong> ávertinti ðakniavaisiø morfologinius<br />

poþymius.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. 2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute t<strong>ir</strong>ta lietuviðkos morkø <strong>ir</strong> burokëliø veislës <strong>ir</strong> hibridai. Kontroliniu<br />

variantu pas<strong>ir</strong>inktas morkø hibridas ‘Svalia’ <strong>ir</strong> burokëliø veislë ‘Kamuoliai 2’.<br />

Tyrimai atlikti bandymø lauko sëjomainoje velëniniame glëjiðkame pajaurëjusiame<br />

d<strong>ir</strong>voþemyje, kurio granuliometrinë sudëtis – lengvas priemolis ant priemolio,<br />

reakcija artima neutraliai (ekologinë auginimo technologija) <strong>ir</strong> vidutinio<br />

sunkumo priemolis ant priemolio, reakcija artima neutraliai (intensyvi auginimo<br />

technologija). Morkos <strong>ir</strong> burokëliai kasmet sëti geguþës antràjà dekadà rankine<br />

sëjamàja 70 cm tarpueiliais dviem eilutëmis. Morkos sëtos profiliuotame, o burokëliai<br />

– lygiame pav<strong>ir</strong>ðiuje. Morkø <strong>ir</strong> burokëliø derlius tyrimo metais nuimtas spalio<br />

mën. p<strong>ir</strong>màjá–antràjá deðimtadiená. Suminis <strong>ir</strong> prekinis derlius bei morkø <strong>ir</strong> burokëliø<br />

ðakniavaisiø masë buvo vertinta dvejus metus (kiekvienø metø rodikliai<br />

pateikti atsk<strong>ir</strong>ai). Tos paèios morkø <strong>ir</strong> burokëliø veislës buvo augintos pagal sk<strong>ir</strong>tingas<br />

auginimo technologijas:<br />

1) Ekologiðkai auginant darþoves, naudotos natûralios tràðos: „Biokal 01“ <strong>ir</strong> kalio<br />

magnezija (træðta vienà kartà) bei biojodis (træðta tris kartus). Burokëliai purkðti<br />

nuo amarø biologiniu preparatu nimezaliu du kartus.<br />

2) Auginant darþoves pagal intensyvià technologijà, naudotos sintetinës tràðos:<br />

„Skalsa“, amonio salietra, „Kem<strong>ir</strong>a Fertikare“ <strong>ir</strong> t<strong>ir</strong>piø tràðø miðinys laistant per lapus.<br />

Piktþolës morkø <strong>ir</strong> burokëliø pasëliuose naikintos stompu. Burokëliø <strong>ir</strong> morkø apsaugai<br />

nuo kenkëjø naudotas decis <strong>ir</strong> aktara (tik burokëliams).<br />

Apskaitinio laukelio plotas – 5,6 m 2 . Bandymas atliktas trimis pakartojimais.<br />

Morkø <strong>ir</strong> burokëliø ðakniavaisiø morfologiniai poþymiai (ðakniavaisio ilgis, skersmuo)<br />

<strong>ir</strong> derliaus duomenys apdoroti dispersinës analizës metodu (Tarakanovas, Raudonis,<br />

2003).<br />

Meteorologinës sàlygos tyrimo metais buvo nevienodos. 2005 m. pavasará vyravo<br />

sausesnis <strong>ir</strong> ðaltesnis oras. Morkos <strong>ir</strong> burokëliai dygo nevienodai, taèiau vegetacijos<br />

viduryje <strong>ir</strong> iki derliaus nuëmimo augo gana gerai. Gausesni krituliai iðkrito rugpjûèio<br />

mënesá – 109,4 mm, taèiau oras buvo vësesnis, <strong>ir</strong> tai turëjo átakos morkø <strong>ir</strong><br />

burokëliø ðakniavaisiø kokybei bei derliui.<br />

2006 m. geguþës mën. pradþioje iðkritæ krituliai <strong>ir</strong> ðiltas oras turëjo átakos darþoviø<br />

dygimui, jos sudygo gana tolygiai. Vëliau morkoms <strong>ir</strong> burokëliams augti trûko<br />

drëgmës, ypaè b<strong>ir</strong>þelio mënesá, kai krituliø iðkrito vos 13,8 mm. Darþovës sparèiau<br />

pradëjo augti rugpjûèio mën. Meteorologinës sàlygos tais metais didesnës átakos turëjo<br />

sunkesnëje d<strong>ir</strong>voje augintoms darþovëms (darþovës augintos áprastinëmis sàlygomis).<br />

Rezultatai. Visos t<strong>ir</strong>tos morkø bei burokëliø veislës <strong>ir</strong> hibridai yra derlingi <strong>ir</strong><br />

geros iðorinës kokybës. Derliaus sk<strong>ir</strong>tumas <strong>ir</strong> iðorinë ðakniavaisiø kokybë priklauso<br />

nuo veislës ar hibrido genetinës prigimties, d<strong>ir</strong>vos, darþoviø auginimo bûdø bei meteorologiniø<br />

sàlygø. 2005 m., auginant morkas ekologiðkai <strong>ir</strong> intensyviai, buvo nustatyta,<br />

kad maþiausiai á auginimo sàlygas (sk<strong>ir</strong>tingø tràðø <strong>ir</strong> augalø apsaugos priemoniø<br />

naudojimà) reagavo ‘Garduolës’ <strong>ir</strong> ‘Ðatrija’ veisliø morkos (1 lentelë). Ðiais tyrimo<br />

194


metais ðiø veisliø morkø suminis derlius buvo 62,1–66,8 t/ha. Didesnæ átakà auginimo<br />

sàlygos <strong>ir</strong> d<strong>ir</strong>va turëjo morkø hibridams. Auginant ‘Svalia’ F 1<br />

<strong>ir</strong> ‘Skalsa’ F 1<br />

morkas<br />

intensyvaus auginimo sàlygomis, suminis derlius buvo didesnis atitinkamai 19–<br />

6,3 t negu ekologiðkai augintø morkø. ‘Ðatrija’ veislës morkø suminis derlius buvo<br />

stabilus tiek jas auginant ekologiðkai, tiek intensyviai.<br />

Ávertinus burokëliø suminá <strong>ir</strong> prekiná derliø matyti, kad veislës ‘Ilgiai’ pailgos<br />

formos burokëliø derlius buvo daug didesnis auginant juos pagal intensyvias auginimo<br />

technologijas (1 lentelë). 2005 metais ekologiðkø burokëliø suminis derlius siekë<br />

tik 26,5 t/ha.<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

1 lentelë. Morkø <strong>ir</strong> burokëliø derliaus ávertinimas. Babtai, 2005 m.<br />

Table 1. Estimation of carrot and red beet yield. Babtai, 2005<br />

Ekologinis auginimas<br />

Ecological growing<br />

suminis derlius prekinis derlius<br />

total yield, t/ha marketable yield, t/ha<br />

Morkos / Carrot<br />

suminis derlius<br />

total yield, t/ha<br />

Intensyvus auginimas<br />

Convenient growing<br />

prekinis derlius<br />

marketable yield, t/ha<br />

‘Svalia’ F 1 41,8 33,6 60,8 48,3<br />

‘Skalsa’ F 1 50,5 33,8 56,8 45,1<br />

‘Garduolës’ 62,1 48,9 63,6 39,0<br />

‘Šatrija’ 66,8 55,5 66,4 42,3<br />

‘Vytënø nanto’ 66,6 52,5 56,0 37,0<br />

‘Vaiguva’ 65,0 56,0 53,1 40,2<br />

R 05 / LSD 05 10,15 8,98 7,62 4,20<br />

Burokëliai / Red beet<br />

‘Kamuoliai 2’ 40,4 35,4 48,4 37,7<br />

‘Joniai’ 47,3 34,2 48,7 40,7<br />

‘Ilgiai’ 26,5 23,1 52,4 40,1<br />

R 05 / LSD 05 8,14 9,15 8,46 5,42<br />

2006 m. atlikti tyrimai parodë, kad morkø derliui átakos turëjo meteorologinës<br />

sàlygos. Ðie metai buvo sausingi, ypaè drëgmës trûko b<strong>ir</strong>þelio–liepos mënesiais,<br />

todël sumaþëjo darþoviø derlingumas. Remdamiesi atliktais tyrimais galime daryti<br />

prielaidà, kad sausringesniais metais lengvesnëje d<strong>ir</strong>voje (ekologinis auginimas) augintos<br />

darþovës geriau naudoja maisto medþiagas nei auginamos sunkesnëje, tai<br />

rodo 2 lentelëje pateikti duomenys. Didþiausiu derliumi iðsiskyrë ekologiðkai augintas<br />

morkø hibridas ‘Svalia’. Ðio hibrido suminis derlius buvo ið esmës didesnis<br />

negu beveik visø augintø morkø. Iðtyrus lietuviðkø veisliø burokëlius, nustatyta,<br />

kad apvalios formos burokëliai á auginimo sàlygas reaguoja maþiau negu pailgos<br />

formos.<br />

195


Veislës <strong>ir</strong><br />

hibridai<br />

Variety and hybrid<br />

2 lentelë. Morkø <strong>ir</strong> burokëliø derliaus ávertinimas. Babtai, 2006 m.<br />

Table 2. Estimation of carrot and red beet yield. Babtai, 2006<br />

Ekologinis auginimas<br />

Ecological growing<br />

suminis derlius prekinis derlius<br />

total yield, t/ha marketable yield, t/ha<br />

Morkos / Carrot<br />

Intensyvus auginimas<br />

Convenient growing<br />

suminis derlius<br />

total yield, t/ha<br />

prekinis derlius<br />

marketable yield, t/ha<br />

‘Svalia’ F 1 60,4 52,1 45,0 34,4<br />

‘Skalsa’ F 1 41,9 36,2 35,1 27,1<br />

‘Garduolës’ 53,9 46,8 43,2 33,1<br />

‘Šatrija’ 43,4 36,3 32,4 22,0<br />

‘Vytënø nanto’ 58,0 50,1 41,8 31,8<br />

‘Vaiguva’ 46,2 38,0 38,3 28,5<br />

R 05 / LSD 05 6,42 9,75 9,52 7,58<br />

Burokëliai / Red beet<br />

‘Kamuoliai 2’ 50,4 41,8 43,3 31,5<br />

‘Joniai’ 48,4 38,6 47,0 36,4<br />

‘Ilgiai’ 35,3 29,8 51,0 43,4<br />

R 05 / LSD 05 6,02 6,62 6,18 2,89<br />

3 lentelë. Morkø morfologiniø poþymiø rodikliai. Babtai, 2005–2006 m.<br />

Table 3. Evaluation of carrot morphological parameters. Babtai, 2005-2006<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

Šakniavaisio<br />

Root<br />

skersmuo<br />

ilgis<br />

length, cm<br />

diameter, cm<br />

1 2 3 4<br />

Ekologinis auginimas<br />

Ecological growing<br />

masë<br />

weight, g<br />

‘Svalia’ F 1 18,2 3,6 121,3<br />

‘Skalsa’ F 1 15,5 4,2 171,3<br />

‘Garduolës’ 18,6 3,5 160,3<br />

‘Šatrija’ 19,7 3,6 170,7<br />

‘Vytënø nanto’ 18,8 3,5 160,3<br />

‘Vaiguva’ 16,2 4,5 176,7<br />

R 05 / LSD 05 1,82 0,34 18,87<br />

1 2 3 4<br />

196


1 2 3 4<br />

Intensyvus auginimas<br />

Lietuvoje labiausiai paplitæ Nantes tipo morkø veislës <strong>ir</strong> hibridai, kuriø ðakniavaisiai<br />

yra cilindriniai, vienodos formos, apie 18–20 cm ilgio <strong>ir</strong> 3,6–4,0 cm skersmens.<br />

Ávertinus lietuviðkos selekcijos morkas matyti, kad jø ðakniavaisio ilgis áva<strong>ir</strong>uoja nuo<br />

15,5 iki 20,8 cm (3 lentelë). Ilgiausius ðakniavaisius iðaugino ‘Ðatrija’ veislës morkos<br />

(19,7–20,8 cm). Didþiausia buvo ‘Vaiguva’ veislës morkø ðakniavaisio masë: ekologiðkai<br />

augintø – 176,7 g, augintø intensyviu auginimo bûdu – 179,4 g. Smulkiausi<br />

ðakniavaisiai buvo ‘Svalia’ F 1<br />

morkø.<br />

Ekologiðkai auginti ‘Ilgiai’ veislës burokëliai iðaugino trumpesná ðakniavaisá negu<br />

auginant juos intensyviai (4 lentelë). Auginant burokëliø veisles <strong>ir</strong> ekologinëmis, <strong>ir</strong> áprastinëmis<br />

auginimo sàlygomis, esminiø ðakniavaisio masës sk<strong>ir</strong>tumø tarp veisliø nebuvo.<br />

4 lentelë. Burokëliø morfologiniø poþymiø rodikliai. Babtai, 2005–2006 m.<br />

Table 1. Evaluation of red beet morphological parameters. Babtai, 2005-2006<br />

Veislës <strong>ir</strong><br />

hibridai<br />

Variety and<br />

hybrid<br />

Convenient growing<br />

‘Svalia’ F 1 19,2 3,6 122,9<br />

‘Skalsa’ F 1 16,0 4,1 170,7<br />

‘Garduolës’ 19,4 3,6 168,8<br />

‘Šatrija’ 20,8 3,6 169,8<br />

‘Vytënø nanto’ 19,3 3,8 163,6<br />

‘Vaiguva’ 16,5 4,6 179,4<br />

R 05 / LSD 05 2,43 0,36 24,40<br />

Šakniavaisio<br />

Root<br />

ilgis<br />

skersmuo<br />

length, cm<br />

diameter, cm<br />

Ekologinis auginimas / Ecological growing<br />

3 lentelës tæsinys<br />

masë<br />

weight, g<br />

‘Kamuoliai 2’ 8,0 7,7 312,5<br />

‘Joniai’ 7,2 7,0 302,6<br />

‘Ilgiai’ 12,4 5,7 301,3<br />

R 05 / LSD 05 - 1,35 58,18<br />

Intensyvus auginimas / Convenient growing<br />

‘Kamuoliai 2’ 6,8 7,2 302,3<br />

‘Joniai’ 6,6 7,0 300,0<br />

‘Ilgiai’ 13,2 4,8 310,2<br />

R 05 / LSD 05 - 0,76 54,54<br />

197


Aptarimas. Morkø <strong>ir</strong> burokëliø iðorinë kokybë priklauso ne tik nuo atsk<strong>ir</strong>o genotipo,<br />

bet <strong>ir</strong> nuo d<strong>ir</strong>voþemio (Áóðåíèí <strong>ir</strong> kt., 1989; Áîîñ <strong>ir</strong> kt.,1990; Óãàðîâà,<br />

2003). Lietuvoje buvo atlikti intensyviomis auginimo sàlygomis tinkamiausiø auginti<br />

morkø <strong>ir</strong> burokëliø derliaus <strong>ir</strong> ðakniavaisiø morfologiniø poþymiø tyrimai, kurie parodë,<br />

kad sk<strong>ir</strong>tingo genotipo augalai á aplinkos sàlygas reaguoja nevienodai (Gauèienë,<br />

Viðkelis, 2001; Áóðåíèí <strong>ir</strong> kt., 1989; Áóðûé, 2005). Mûsø atlikti tyrimai ekologinëmis<br />

auginimo sàlygomis taip pat parodë, kad aplinkos sàlygos turi didelæ reikðmæ<br />

darþoviø auginimui. Ekologiðkai auginant darþoves, labai svarbus jø træðimas. Jei trûksta<br />

kalio tràðø, morkø derlius maþëja (Salo <strong>ir</strong> kt., 2001). Kacko (2001) nustatë, kad<br />

auginant morkas ekologiðkai, biocheminei sudëèiai <strong>ir</strong> derliui didelæ átakà turi prieðsëliai.<br />

Lenkijoje <strong>ir</strong> Rusijoje atlikti tyrimai rodo, kad morkø <strong>ir</strong> burokëliø derliui átaka daro<br />

d<strong>ir</strong>va <strong>ir</strong> meteorologinës sàlygos (Michalik <strong>ir</strong> kt., 1997; Ïðèìàê, Ëèòâèíåíêî, 1981).<br />

Tai patv<strong>ir</strong>tina <strong>ir</strong> mûsø tyrimai.<br />

Iðvados. 1. Didþiausias <strong>ir</strong> stabiliausias yra ekologiðkai augintø ‘Vytënø nanto’ <strong>ir</strong><br />

‘Garduolës’ veisliø morkø derlius (vid. atitinkamai 62,3 <strong>ir</strong> 58,0 t/ha).<br />

2. Burokëliø veislë ‘Ilgiai’ tinkamesnë auginti pagal intensyvias auginimo technologijas.<br />

3. Ilgiausi ðakniavaisiai (vid. 20,3 cm) yra ‘Ðatrija’ veislës morkø, o trumpiausi<br />

(vid. 15,8 cm) – ‘Skalsa’ F 1<br />

morkø.<br />

4. Ekologiðkai auginti tinkamesni apvalios formos burokëliai, jø derlius yra stabilesnis.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Armolaitienë J. Burokëliø <strong>ir</strong> morkø selekcija Lietuvoje // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1998. T. 17(2). P. 28–32.<br />

2. Gauèienë O. Morkos. Babtai, 2001. 67 p.<br />

3. Gauèienë O. Morkø hibridas ‘Svalia’ F 1<br />

// Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 1997. T. 16. P. 57–62.<br />

4. Gauèienë O., Viðkelis P. Morkø (Daucus carota L.) hibridas ‘Skalsa’ // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(1). P. 69–75.<br />

5. Gauèienë O., Viðkelis P. Tinkamiausiø Lietuvoje auginti morkø (Daucus carota L.)<br />

derlius <strong>ir</strong> kokybë // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2001. T. 20(4)–1. P. 17–24.<br />

6. Kack K., V. Nielsen, L. P. et al. Nutritionally important chemical constituents and<br />

yield of carrot (Daucus carota L.) roots grown organically using ten levels of green<br />

manure // Acta Agriculturae Scandinavica. 2001. Vol. 51. No. 3. P. 1<strong>25</strong>–136.<br />

7. Michalik B. et al. Effect of harvest data on carrot yield and root splitting // Journal<br />

of applied genetic. 1997. Vol. 38 A. P. 163–171.<br />

8. Petronienë D. ‘Ilgiai’ – nauja raudonøjø burokëliø veislë // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2001. T. 20(2). P. 42–47.<br />

9. Petronienë O. D. ‘Joniai’ – nauja burokëliø veislë // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2000. T. 19(1). P. 81–86.<br />

10. Rosenfeld H. et al. Sensory profiling of carrot from northern latitudes // Food<br />

research international. 1997. Vol. 30. No. 8. P. 593–601.<br />

198


11. Salo T., Suojala T., Kallela M. The effect of fertigation on yield nutrient uptake<br />

of cabbage, carrot and onion // Acta Agriculturae Scandinavica. 2001. Vol. 51. No. 3.<br />

P. 137–142.<br />

12. Tarakanovas P., Raudonis S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT–PLOT ið paketo SELEKCIJA IR<br />

IRRISTAT. Akademija, 2003. 56 p.<br />

13. Wiebe H. J. Effects of plant densities and nitrogen supply on yield harvest date<br />

and quality of carrots. Acta horticulturae. 1987. No. 198. P. 191–198.<br />

14. Áîîñ Ã. Â., Áàäèíà Ã. Á., Áóðåíèí Â. È. Ãåòåðîçèñ îâîùíûõ êóëüòóð.<br />

Ëåíèíãðàä, 1990. 218 c<br />

15. Áóðåíèí Â. È., Þäàåâà Â.Å. Îöåíêà êîë–õ îáðàçöîâ ñòîëîâîé ñâåêëû â<br />

óñëîâèÿõ Ìîñêîâñêîé îáëàñòè // Íàó÷íî–òåõ. Áþë. 1989. Âûï. 192.<br />

16. Áóðûé Ñ. Â. Îöåíêà êîëëåêöèîííûõ ñîðòîîáðàçöîâ ìîðêîâè ïî<br />

ìîðôîëîãè÷åñêèì õîçÿéñòâåíî–öåííûì ïðèçíàêàì. Ýôôåêòèâíîå îâîùåâîäñòâî<br />

â ñîâðåìåííûõ óñëîâèÿõ. Ìèíñê, 2005. Ñ. 33–35.<br />

17. Äüÿ÷åíêî Â. Ñ. Ïèùåâàÿ öåííîñòü ñâåêëû // Îâîùè è ïèùåâàÿ öåííîñòü.<br />

Ìîñêâà, 1979. Ñ. 50–54.<br />

18. Ìåòîäû ñåëåêöèè è ñåìåíîâîäñòâà îâîùíûõ êîðíåïëîäíûõ ðàñòåíèé /<br />

Ïîä. ðåä. Ïèâîâàðîâà Â.Ô. è Áóíèíà Ì.Ñ. Ìîñêâà, 2003. 284 ñ.<br />

19. Óãàðîâà Ñ. Â. Ãåíåòè÷åñêàÿ îáóñëîâëåííîñòü ïðèçíàêîâ ìîðêîâè ïðè<br />

ñåëåêöèè íà ãåòåðîçèñ â óñëîâèÿõ Çàïàäíîé Ñèáèðè. Áàðíàóë, 2003. 156 ñ.<br />

20. Ïðèìàê À. Ï., Ëèòâèíåíêî Ì. Â. Âëèÿíèå óñëîâèé ïðîèçðàñòàíèÿ íà<br />

êà÷åñòâåííûé ñîñòàâ íåêîòîðûõ îâîùåé // Êà÷åñòâî îâîùíûõ è áàõ÷èåâûõ<br />

êóëüòóð. Ìîñêâà, 1981. Ñ. 132–138.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

FEATURES OF LITHUANIAN CARROT AND RED BEET<br />

VARIETIES AND HYBRIDS IN ECOLOGICAL AND<br />

INTENSIVE VEGETABLE GROWING<br />

R. Karklelienë<br />

Summary<br />

Lithuanian varieties and hybrids of edible carrot (Daucus sativus Röhl.) and red<br />

beet (Beta vulgaris L. subsp. vulgaris convar. vulgaris var. vulgaris) were investigated<br />

and evaluated at the Lithuanian Institute of Horticulture in 2005-2006. There<br />

were investigated these carrot varieties: ‘Garduolës’, ‘Ðatrija’, ‘Vytënø nanto’, ‘Vaiguva’<br />

and hybrids – ‘Svalia’ and ‘Skalsa’. The most prevalent in Lithuania varieties<br />

‘Kamuoliai 2’ and ‘Joniai’, which produce round root crops, and ‘Ilgiai’, which<br />

produce oblong root crops, were chosen for red beet investigations. There was<br />

investigated carrot and red beet total and marketable yield and morphological features<br />

(root length, diameter and weight). Carrot and red beet were grown under the<br />

intensive growing conditions (they were fertilized with synthetic fertilizers, chemical<br />

plant protection means were applied for plant protection) and under ecological<br />

199


growing conditions (they were fertilized with natural fertilizers, biological preparations<br />

were applied for plant protection). Investigations showed that when growing<br />

carrot and red beet ecologically it would be necessary to choose more productive<br />

varieties, which less react to env<strong>ir</strong>onmental conditions. Under the conditions of intensive<br />

growing, carrot hybrids would be more suitable for growing, and ecologically<br />

– varieties. When growing red beet ecologically it would be necessary to choose<br />

the beets of round form roots, and oblong beets would be more suitable to grow<br />

according to the intensive growing technology.<br />

Key words:yield, hybrids, carrots, cultivars, morphological characteristics, red<br />

beet.<br />

200


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

OPTIMALAUS SËJOS IR NUËMIMO LAIKO ÁTAKA<br />

MORKØ ‘SVALIA’ F 1<br />

DERLIUI IR KOKYBEI<br />

Vytautas ZALATORIUS, Auksë ZALATORIÛTË, Pranas VIÐKELIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas v.zalatorius@lsdi.lt<br />

2000–2002 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto bandymø<br />

laukuose t<strong>ir</strong>tas morkø ‘Svalia’ F 1<br />

optimalus sëjos <strong>ir</strong> derliaus nuëmimo laikas. Morkos<br />

sëtos vagotame pav<strong>ir</strong>ðiuje keturiais sëjos laikais. Kiekvieno sëjos laiko varianto derlius<br />

nuimtas septyniais sk<strong>ir</strong>tingais terminais. Nustatyta, kad standartiniam morkø derliui<br />

sëjos laikas turi esminës átakos. Balandþio mënesio paskutinio deðimtadienio sëjos<br />

morkø derlius yra vidutiniðkai 39 t ha -1 , o vëlyvesnës – b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio<br />

sëjos – tolygiai maþëja iki 26 t ha -1 . Nuëmimo laikas standartiniam derliui átakos neturi.<br />

Geriausia biocheminë sudëtis nustatyta ðakniavaisiø, sëtø balandþio 20–30 dienomis<br />

<strong>ir</strong> nuimtø spalio 9 dienà. Vëlinant sëjos laikà nuo balandþio treèio iki b<strong>ir</strong>þelio<br />

p<strong>ir</strong>mo deðimtadienio, morkø savikaina didëja 1,7 karto, o pelnas sumaþëja 4,7 karto.<br />

Reikðminiai þodþiai: derlius, kokybë, nuëmimo laikas, sëjos laikas.<br />

Ávadas. Lietuvoje ûkininkø, bendroviø <strong>ir</strong> darþininkø mëgëjø uþaugintas morkø<br />

derlius kasmet labai sk<strong>ir</strong>iasi. Tam turi átakos daug veiksniø, kuriø pagrindinis – agroklimato<br />

sàlygos (Gauèienë, Viðkelis, 1996). Taèiau yra labai daug áva<strong>ir</strong>iø nuomoniø<br />

dël sëjos <strong>ir</strong> nuëmimo laiko átakos morkø derliui <strong>ir</strong> kokybei. Ávertinus turimà informacijà,<br />

pat<strong>ir</strong>tá, preliminariniø bandymø duomenis, galima daryti prielaidà, kad agroklimatas,<br />

sëjos bei nuëmimo laikas, augimo sàlygos bei kiti technologiniai elementai yra<br />

labai glaudþiai susijæ.<br />

Siekiant sukurti morkø auginimo profiliuotame pav<strong>ir</strong>ðiuje mechanizuotas technologijas,<br />

uþtikrinanèias maþesnes energijos <strong>ir</strong> rankø darbo sànaudas bei leidþianèias<br />

gauti gausø geros kokybës <strong>ir</strong> konkurencingà derliø, vienas svarbesniø technologijos<br />

elementø yra optimalaus sëjos <strong>ir</strong> nuëmimo laikas (Zalatorius, 1998–1999; Gauèienë;<br />

2000; Fritz, 1949).<br />

Patys svarbiausi morkø kokybës rodikliai yra forma, vienodumas, spalva, sandara<br />

<strong>ir</strong> vidinë kokybë (maisto medþiagos, karotino kiekis <strong>ir</strong> t. t.) (Suojala, 2000).<br />

Darbo tikslas – nustatyti tinkamiausià ‘Svalia’ F 1<br />

morkø sëjos <strong>ir</strong> derliaus nuëmimo<br />

laikà.<br />

Tyrimo objektas, sàlygos <strong>ir</strong> metodai. Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

instituto bandymø laukuose atlikti tyrimai pagal schemà:<br />

201


Bandymo faktoriai: a – sëjos laikas, b – nuëmimo laikas.<br />

Variantai:<br />

a – sëjos laikas: 1 – balandþio 20–30 d.; 2 – geguþës 5–15 d.;<br />

3 – geguþës 20–30 d.; 4 – b<strong>ir</strong>þelio 5 – 15 d.;<br />

b – nuëmimo laikas: 1 – rugsëjo 18 d.; 2 – rugsëjo <strong>25</strong> d.; 3 – spalio 2 d.;<br />

4 – spalio 9 d.; 5 – spalio 16 d.; 6 – spalio 23 d.; 7 – spalio 30 d.<br />

Tyrimo variantai pakartoti keturis kartus. Apskaitinio laukelio plotas – 8,4 m 2 .<br />

Bandymas atliktas pagal Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute sukurtà<br />

morkø auginimo profiliuotame pav<strong>ir</strong>ðiuje mechanizuotà technologijà (Zalatorius<br />

<strong>ir</strong> kt., 1998; Zinkevièiûtë <strong>ir</strong> kt., 1997; Sakalauskas, Zalatorius, 1998; Zalatorius<br />

<strong>ir</strong> kt., 1998).<br />

D<strong>ir</strong>voþemis. Bandymas darytas velëniniame glëjiðkame pajaurëjusiame (VG 1j<br />

)<br />

pagal granuliometrinæ sudëtá priesmëlio ant lengvo priemolio d<strong>ir</strong>voþemyje (pagal naujàjà<br />

Lietuvos d<strong>ir</strong>voþemiø klasifikacijà – karbonatingieji sekliai glëjiðki iðplauþemiai –<br />

IDg8 – k / Calc(ar)i – Epihypogleyc Luvisols – LVg – p – w – cc).<br />

D<strong>ir</strong>voþemio armuo – 22–<strong>25</strong> cm storio. Prieðsëlis – kopûstai. D<strong>ir</strong>vos d<strong>ir</strong>bimo<br />

darbai atlikti pagal Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute priimtus agrotechnikos<br />

reikalavimus (Gauèienë, 2001).<br />

Vidutinis mitybos elementø kiekis d<strong>ir</strong>voþemyje: judriøjø P 2<br />

O 5<br />

– 223 mg kg -1 ,<br />

kalio K 2<br />

O – 156 mg kg -1 , mineralinio azoto 0–60 cm gylio sluoksnyje – 40,5 kg ha -1 .<br />

Træðta N 60<br />

P 60<br />

K 120<br />

(Staugaitis, 1998).<br />

Piktþolës naikintos po sëjos herbicidu stompu 3,5 l ha -1 (Zinkevièiûtë <strong>ir</strong> kt.,<br />

1997). Preparatai nuo ligø <strong>ir</strong> kenkëjø naudoti esant reikalui (Sady <strong>ir</strong> kt., 2000).<br />

Duomenys statistiðkai ávertinti dispersinës analizës metodu (Tarakanovas, 1999).<br />

Meteorologinës sàlygos. 2000 m. <strong>ir</strong> ypaè 2002 m. krituliø kiekis buvo gerokai<br />

maþesnis uþ daugiametá vidurká. Tai neigiamai paveikë pagrindinio træðimo maisto<br />

medþiagø pasisavinimà. 2001 m. nuo b<strong>ir</strong>þelio iki rugpjûèio vyravo labai lietingi orai,<br />

netgi liûtys (iðkrito 2–3 kartus daugiau krituliø negu vidutinë daugiametë norma)<br />

(Gauèienë, Viðkelis, 1996) (1 pav.).<br />

1 pav. Krituliø kiekis (mm) morkø vegetacijos metu 2000–2002 m.<br />

Fig. 1. Amount of precipitation (mm) during carrot vegetation in 2000–2002<br />

202


Vidutinë 2001 <strong>ir</strong> 2002 m. temperatûra buvo aukðtesnë uþ daugiametæ atitinkamai<br />

1,4 <strong>ir</strong> 2,6°C (2 pav.).<br />

2 pav. Temperatûros °C svyravimai morkø vegetacijos metu 2000–2002m.<br />

Fig. 2. Fluctuations of temperature (°C) during carrot vegetation in 2000–2002<br />

Tyrimø metodika pagrásta statistiniais matematiniais tyrimo metodais <strong>ir</strong> matavimais.<br />

Remtasi matavimø metodika, kuri patv<strong>ir</strong>tinta Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute. Skaièiavimai atlikti STAT ENG, ANOVA for EXEL kompiuterinëmis<br />

programomis. Morkø biocheminës analizës atliktos Lietuvos sodininkystës <strong>ir</strong><br />

darþininkystës instituto Biochemijos <strong>ir</strong> technologijos laboratorijoje.<br />

Tyrimø rezultatai. Morkø fenologiniai stebëjimai. Morkø pasëliui sudygti <strong>ir</strong><br />

augti daugiausia átakos turi d<strong>ir</strong>vos temperatûra <strong>ir</strong> drëgmë (Gauèienë, 2001). Todël<br />

neatsitiktinai anksèiau pasëtos morkos dygsta ilgiau, o vëliau, ðylant d<strong>ir</strong>vai, dygimo<br />

laikas trumpëja.<br />

Normaliai drëgnais 2001 m. balandþio mënesá pasëtos morkos (1 variantas)<br />

sudygo praëjus 20 dienø nuo sëjos, kituose variantuose dygimo laikas tolygiai trumpëjo<br />

iki 12 dienø. Taèiau p<strong>ir</strong>mojo varianto morkos dviejø lapeliø tarpsná pasiekë apie<br />

b<strong>ir</strong>þelio 6 dienà, o paskutiniame variante jos buvo dar tik pradëtos sëti. Analogiðkas<br />

mënesio sk<strong>ir</strong>tumas buvo <strong>ir</strong> kitø vegetacijos tarpsniø iki pat techninës brandos pradþios.<br />

Sausringais 2000 <strong>ir</strong> 2002 metais dygimo periodas 1,5–1,7 karto pailgëjo <strong>ir</strong> 1<br />

varianto laukeliuose buvo net 35 dienos, o vëlyvesnës sëjos – sutrumpëjo iki dviejø<br />

kartø. Prasidëjus b<strong>ir</strong>þelio <strong>ir</strong> liepos mën. sausroms, 1 <strong>ir</strong> 2 variantø laukeliuose morkos<br />

jau buvo su dviem lapeliais, o 3 <strong>ir</strong> 4 variantø – tik pradëjo dygti <strong>ir</strong> nemaþai jø sunyko.<br />

Sausringais metais morkø vegetacija pailgëjo dviem savaitëmis. Tada ypatingà reikðmæ<br />

turëjo drëgmës kiekis rugpjûèio <strong>ir</strong> rugsëjo mënesiais.<br />

Morkø biometriniai rodikliai. Morkø ðakniavaisiø biometriniai matavimai buvo<br />

atlikti derliaus nuëmimo metu, tai yra spalio 9 dienà. Toks ëminiø ëmimo laikas pas<strong>ir</strong>inktas<br />

todël, kad vëliausio sëjos termino morkos jau buvo pasiekusios techninæ brandà<br />

203


(120 dienø). Matuotas ðakniavaisiø ilgis, skersmuo, nustatyta masë. Ðakniavaisio<br />

skersmuo matuotas 2 cm atstumu nuo morkos v<strong>ir</strong>ðutinës dalies (skrotelës). Matuota<br />

0,1 mm paklaidos antros tikslumo klasës techniniu slankmaèiu. Vidutinis morkø ðakniavaisio<br />

skersmuo tolygiai maþëjo vëlinant sëjos terminus – nuo 4,3 cm (sëta balandþio<br />

mën. paskutiná deðimtadiená) iki 3,07 cm (sëta b<strong>ir</strong>þelio mënesio p<strong>ir</strong>mà deðimtadiená).<br />

Ilgis matuotas technine liniuote GOST 427–75, kurios tikslumo paklaida – 0,1 mm.<br />

Morkø ðakniavaisiai tolygiai, bet neþymiai trumpëjo vëlesniais terminais sëtame pasëlyje<br />

(nuo 19,5 cm balandþio mën. iki 18,4 cm b<strong>ir</strong>þelio mën.). Ðakniavaisio masë<br />

tiesiogiai priklauso nuo skersmens <strong>ir</strong> ilgio. Morkø masei nustatyti naudotos elektroninës<br />

svarstyklës. Svërimo paklaida – 0,02 g. Morkø, sëtø balandþio mënesá, vidutinë<br />

ðakniavaisio masë buvo 188,1 g, o vëliau sëtø tolygiai maþëjo – iki 135,0 g (1 lentelë).<br />

1 lentelë. Sëjos laiko átaka morkø ‘Svalia’ F 1<br />

biometriniams rodikliams.<br />

Babtai, 2000–2002 m.<br />

Table 1. Influence of sowing time on biometrical indices of carrot ‘Svalia’ F 1<br />

.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Ðakniavaisio vidutinë<br />

masë<br />

Average root-crop weight,<br />

g<br />

Šakniavaisio vidutinis<br />

ilgis<br />

Average root-crop length,<br />

cm<br />

Šakniavaisio vidutinis<br />

skersmuo<br />

Average root-crop<br />

diameter, cm<br />

188,1 19,5 4,3<br />

178,3 19,2 4,1<br />

145,5 18,7 3,8<br />

135,0 18,7 3,7<br />

R 05 / LSD 05 2,36 1,45 0,95<br />

Morkø ðakniavaisiai tyrimø metais atitiko privalomuosius kokybës reikalavimus<br />

(Aðmontas <strong>ir</strong> kt., 2001).<br />

Nitratø kiekio <strong>ir</strong> biocheminës morkø sudëties nustatymas. Derliaus nuëmimo<br />

metu (spalio 9 d) visuose variantuose imti produkcijos mëginiai. Nustatytas karotino,<br />

cukraus, sausøjø, sausøjø t<strong>ir</strong>piø medþiagø <strong>ir</strong> nitratø kiekis ðakniavaisiuose.<br />

Karotino kiekis (mg proc.) kito nuosekliai: balandþio pabaigoje sëtose morkose<br />

buvo vidutiniðkai 13,71 mg proc., o 2–4 sëjos variantuose sumaþëjo iki 11–13 mg<br />

proc., arba vidutiniðkai 17 proc. maþiau (2 lentelë).<br />

Morkos yra vertinamos kaip provitamino A ðaltinis. Jo kieká lemia karotinas<br />

(Simon, 1987). Koks yra karotino kiekio priklausomumas nuo sëjos laiko, matyti<br />

2 lentelëje. Daugiausia karotino ðakniavaisiai sukaupë, pasëjus morkas balandþio treèià<br />

deðimtadiená (1 variantas). Sukaupto karotino kiekis tolygiai maþëjo vëlinant sëjos<br />

laikà. Pasëtø balandþio mënesá morkø ðakniavaisiai karotino sukaupë 13,71 mg proc.,<br />

o pasëtø b<strong>ir</strong>þelio mënesá – tik 11,33 mg proc.<br />

204


2 lentelë. Sëjos laiko átaka morkø ‘Svalia’ F 1<br />

biocheminei sudëèiai.<br />

Babtai, 2000–2002 m.<br />

Table 2. Influence of sowing time on biochemical composition of carrot ‘Svalia’ F 1<br />

.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Cukrus<br />

Sugars, %<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Karotinas<br />

Carotene,<br />

mg %<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

7,19 9,83 13,71 12,26<br />

6,89 9,59 12,91 11,83<br />

6,72 9,57 11,17 11,85<br />

6,57 9,45 11,83 11,33<br />

R 05 / LSD 05 0,91 0,37 1,18 0,654<br />

3 lentelë. Derliaus nuëmimo laiko átaka morkø biocheminei sudëèiai.<br />

Babtai, 2000–2002 m.<br />

Table 3. Influence of harvesting time on biochemical composition of carrot.<br />

Babtai, 2000–2002<br />

Derliaus nuëmimo<br />

laikas<br />

Harvesting time<br />

1. Rugsëjo 18 d.<br />

September 18<br />

2. Rugsëjo <strong>25</strong> d.<br />

September <strong>25</strong><br />

3. Spalio 2 d.<br />

October 2<br />

4. Spalio 9 d.<br />

October 9<br />

5. Spalio 16 d.<br />

October 16<br />

6. Spalio 23 d.<br />

October 23<br />

7. Spalio 30 d.<br />

October 30<br />

Cukrus<br />

Sugars,<br />

%<br />

T<strong>ir</strong>pios sausosios<br />

medžiagos<br />

Dry soluble solids, %<br />

Karotinas<br />

Carotene,<br />

mg%<br />

Nitratai<br />

Nitrates,<br />

mg kg -1<br />

Sausosios<br />

medžiagos<br />

Dry matter, %<br />

5,93 9,52 10,01 236,70 11,93<br />

8,00 9,60 12,73 315,40 11,98<br />

6,35 9,63 13,24 240,30 12,00<br />

7,91 9,76 14,37 246,80 12,13<br />

6,21 10,12 12,90 285,10 12,10<br />

7,03 9,33 11,23 398,30 11,23<br />

6,41 9,30 11,75 226,50 11,73<br />

R 05 / LSD 05 0,68 0,28 0,88 0,58 0,48<br />

205


Sausøjø medþiagø kiekis priklausë nuo sëjos laiko: balandþio mën. (12,26 proc.) –<br />

b<strong>ir</strong>þelio mën. (11,33 proc.) jø ðakniavaisiuose tolygiai sumaþëjo vidutiniðkai 7,2 proc.<br />

(2 lentelë). Atsk<strong>ir</strong>uose nuëmimo terminø variantuose sausøjø medþiagø kiekis buvo<br />

panaðus <strong>ir</strong> tik neþymiai svyravo (apie 5 proc.).<br />

T<strong>ir</strong>piø sausøjø medþiagø kiekiui nei sëjos laikas, nei derliaus nuëmimo laikas<br />

átakos neturi. Rudená ðakniavaisiuose jø buvo vidutiniðkai 9,7 proc.<br />

Cukraus kiekis áva<strong>ir</strong>iuose sëjos laiko variantuose yra panaðus <strong>ir</strong> kinta nuo 7,19 iki<br />

6,57 proc. – kuo vëliau sëta, tuo cukraus kiekis maþesnis (2 lentelë). Nuëmimo terminai<br />

cukraus kiekiui átakos turëjo (8,0–5,93 proc.), taèiau dësningumo nepastebëta (3 lentelë).<br />

Nitratø kiekis morkose neturi aiðkaus priklausomumo nuo nuëmimo laiko, taèiau<br />

atsk<strong>ir</strong>uose variantuose jis áva<strong>ir</strong>uoja nuo 398,30 mg kg -1 iki 236,7 mg kg -1 .<br />

Derlius <strong>ir</strong> jo kokybë. Atlikta standartinio derliaus apskaita. Sausringais 2000 <strong>ir</strong><br />

2002 m. labai didelës átakos prekiniam derliui turëjo sëjos laikas – juo anksèiau pasëta,<br />

tuo didesnis derlius. 2000 m. nustatyti labai dideli sk<strong>ir</strong>tumai – nuo 39,9 t ha -1<br />

balandþio mën. sëtø iki 10,4 t ha -1 , arba 3,8 karto daugiau nei b<strong>ir</strong>þelio mën. sëtø<br />

morkø. 2002 m. balandþio mën. sëtø morkø derlius buvo 52,2 t ha -1 , b<strong>ir</strong>þelio mën. –<br />

19,0 t ha -1 , arba 2,7 karto maþesnis.<br />

Analizuojant vidutiná standartiná derliø, nustatytas jo priklausomumas nuo sëjos<br />

laiko. Juo anksèiau pasëtos morkos, tuo didesnis jø derlius.<br />

T<strong>ir</strong>iant derliaus nuëmimo laiko átakà standartinio derliaus iðeigos, esminio sk<strong>ir</strong>tumo<br />

tarp variantø nepastebëta. Sëjos laikas darë kur kas didesnæ átakà standartiniam<br />

derliui nei derliaus nuëmimo laikas. Analizuota ne tik sëjos laiko átaka standartiniam<br />

derliui, bet <strong>ir</strong> kokià bendro derliaus dalá jis sudaro. Tyrimams naudotas septintojo<br />

varianto morkø ðakniavaisiø derlius. Tuo metu morkø ðakniavaisiai pasiekë fiziologinæ<br />

brandà. 4 lentelëje pateikta, kad sëjant morkas balandþio 20–30 d., standartiniai<br />

morkø ðakniavaisiai sudarë apie 70 procentø bendro derliaus, o tai yra daugiau nei<br />

pasëjus vëlesniais sëjos terminais.<br />

4 lentelë. Sk<strong>ir</strong>tingais terminais pasëtø morkø ðakniavaisiø derlius.<br />

Babtai, 2000–2002 m.<br />

Table 4. Root-crop yield of carrot sown at different terms. Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–15 d.<br />

June 5–15<br />

Vidutinis bendras<br />

derlius<br />

Average total yield,<br />

t ha -1<br />

206<br />

Vidutinis standartinis<br />

derlius<br />

Average standard yield,<br />

t ha -1<br />

Vidutinis<br />

standartinis derlius<br />

Average standard yield,<br />

%<br />

55,8 39,0 69,9<br />

53,1 34,2 64,4<br />

43,4 26,80 61,8<br />

35,7 23,0 64,4<br />

R 05 / LSD 05 1,494 1,767


Vëlinant sëjà, standartinis derlius maþëja. Ði koreliacija pavaizduota 3 paveiksle.<br />

3 pav. Standartinio derliaus priklausomumas nuo sëjos laiko<br />

Fig. 3. Sowing time influence on standard yield<br />

Derliaus savikaina. Ir bendro, <strong>ir</strong> standartinio derliaus savikaina yra maþiausia<br />

morkas sëjant balandþio 20–30 dienomis. Sëjant morkas vëliau, savikaina didëja. Toks<br />

priklausomumas ats<strong>ir</strong>anda dël maþëjanèio derliaus <strong>ir</strong> papildomo d<strong>ir</strong>vos d<strong>ir</strong>bimo. Skaièiuojama<br />

tik standartinio derliaus savikaina, nes nestandartinis derlius neparduodamas.<br />

Derliø nuimant sk<strong>ir</strong>tingu laiku, standartinis derlius kinta neþymiai <strong>ir</strong> neturi didelës<br />

átakos savikainai (4 pav.).<br />

4 pav. Auginimo sànaudø priklausomumas nuo sëjos laiko<br />

Fig. 4. Sowing time influence on growing expenditure<br />

Atlikus lauko bandymus <strong>ir</strong> apskaièiavus savikainà (Zalatorius <strong>ir</strong> kt. 1998), galima<br />

ávertinti preliminarø pelnà. 5 lentelëje pateiktas pelnas neávertinus saugojimo <strong>ir</strong><br />

realizavimo iðlaidø. Jos sudarytø nuo 10 iki 20 procentø. Pelnas apskaièiuotas pagal<br />

minimalià tø metø realizavimo kainà, kuri yra nuo 0,30 Lt kg -1 .<br />

Didþiausias pelnas gaunamas, kai morkos sëjamos balandþio 20–30 dienomis.<br />

Derliaus nuëmimas sk<strong>ir</strong>tingu laiku pelnui didesnës átakos neturëjo.<br />

207


5 lentelë. Teorinis pelnas neatskaièius realizavimo <strong>ir</strong> saugojimo iðlaidø.<br />

Babtai, 2000–2002 m.<br />

Table 5. Theoretical profit including expenditure of realization and storage.<br />

Babtai, 2000–2002<br />

Sëjos laikas<br />

Sowing time<br />

1. Balandžio 20–30 d.<br />

April 20–30<br />

2. Geguþës 5–15 d.<br />

May 5–15<br />

3. Geguþës 20–30 d.<br />

May 20–30<br />

4. B<strong>ir</strong>želio 5–10 d.<br />

June 5–10<br />

Standartinis<br />

derlius<br />

Standard yield, t<br />

ha -1<br />

Savikaina<br />

Cost price, Lt kg -1<br />

Realizavimo<br />

kaina<br />

Realization price,<br />

Lt kg -1<br />

Pelnas, tûkst. Lt<br />

Profit, thousand Lt<br />

39,0 0,139 0,30 6,28<br />

34,2 0,158 0,30 4,86<br />

26,80 0,206 0,30 2,52<br />

23,0 0,242 0,30 1,33<br />

Palyginus balandþio treèio deðimtadienio <strong>ir</strong> b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio sëjà, nustatyta,<br />

kad pasëjus anksèiau, gaunamas net 31 proc. derliaus priedas, o tai yra 4 950<br />

litø priedas auginant vienà hektarà morkø. Taigi morkø sëjos laikas ypaè svarbus.<br />

Aptarimas. Lietuvoje nebuvo t<strong>ir</strong>ta morkø sëjos laiko <strong>ir</strong> nuëmimo terminø átaka<br />

derliui, standartinio derliaus iðeigai, ðakniavaisiø iðorinei (prekinei) <strong>ir</strong> vidinei kokybei.<br />

Taèiau bûtina atkreipti dëmesá, kad atsk<strong>ir</strong>ose ðalyse – kaimyninëse <strong>ir</strong> tolimesnëse –<br />

yra labai sk<strong>ir</strong>tingos agroklimato sàlygos, o tai turi átakos sëjos <strong>ir</strong> nuëmimo laikui. Taip<br />

pat <strong>ir</strong> paèioje Lietuvoje yra sk<strong>ir</strong>tingi regionai su savitu, tik tam regionui bûdingu<br />

klimatu bei d<strong>ir</strong>voþemiu. Vienas svarbesniø veiksniø, turintis átakos pas<strong>ir</strong>inktos morkø<br />

veislës ar hibrido sëjos ar nuëmimo terminams, yra augimo vegetacijos trukmë (augimo<br />

iki techninës brandos). Bandymo metu sëta Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute sukurto hibrido ‘Svalia’ F 1<br />

sëkla. Hibridas yra vidutinio ankstyvumo,<br />

taèiau ðakniavaisiai tinka ilgai saugoti, labai geros jø vidinës kokybës savybës. Remiantis<br />

ðiuo tyrimu, galima nustatyti pagrindines auginimo technologijos ga<strong>ir</strong>es <strong>ir</strong><br />

pas<strong>ir</strong>inkti tinkamiausius jos elementus kiekviename atsk<strong>ir</strong>ame regione ar visoje ðalyje.<br />

Iðvados. 1. Standartinio morkø derliaus iðeigai didelës átakos turi sëjos laikas.<br />

Balandþio mën. sëjos derlius – vidutiniðkai 39 t ha -1 , vëlyvesnës sëjos – tolygiai maþëja<br />

iki 26 t ha -1 .<br />

2. Nuëmimo laikas standartinio derliaus iðeigai átakos neturi.<br />

3. Geriausia biocheminë sudëtis tø morkø ðakniavaisiø, kurie buvo sëti balandþio<br />

20–30 dienomis, o derlius nuimtas spalio 9 dienà.<br />

4. Vëlinant sëjos laikà nuo balandþio treèio deðimtadienio iki b<strong>ir</strong>þelio p<strong>ir</strong>mo deðimtadienio,<br />

morkø savikaina didëja 1,7 karto, o preliminarus pelnas sumaþëja 4,7<br />

karto.<br />

Gauta 2006-10-<strong>25</strong><br />

Parengta spausdinti 2006-12-11<br />

208


Literatûra<br />

1. Aðmontas V., Masiulienë R., Kviklys D., Barkauskienë Z. Privalomieji kokybiniai<br />

reikalavimai ðvieþiems vaisiams <strong>ir</strong> darþovëms. Babtai, 2001. P. 59–62.<br />

2. Fritz D., Weichmann J. Influence of the harvesting date of carrots on quality and<br />

quality preservation // Acta Horticulturae. 1979. Vol. 93. P. 91–100.<br />

3. Gauèienë O. Morkos. Babtai, 2001. P. 18–22.<br />

4. Gauèienë O., Viðkelis P. Morkø veisliø produktyvumo <strong>ir</strong> kokybës formavimasis<br />

veikiant sk<strong>ir</strong>tingiems abiotiniams faktoriams // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000.<br />

T. 19. P. 21.<br />

5. Sady W., Robak J., Wiech K. Uprawa marchwi. Krakaw, 2000. P. 43–66.<br />

6. Sakalauskas A., Zalatorius V. Morkø auginimo technologijø tyrimas // Þemës ûkio<br />

inþinerija.1996. T. 28(2). P. 111–120.<br />

7. Simon P. W., Wolf X. Y. Carotene in typical and dark orange carrots // Journal of<br />

Agricultural Food Chemistry. 1987. P. 35, 1017–1022.<br />

8. Staugaitis G. Lauko <strong>ir</strong> ðiltnaminiø darþoviø træðimas azoto tràðomis: habilitacinis<br />

darbas. Babtai, 1998. P. 78–81.<br />

9. Suojala T. Effect of harvest time on the storage performance of carrot // J. Hort. Sci.<br />

Biotechnol. 1999. Vol 74(4). P. 484–492.<br />

10. Suojala T. Pre-and Postharvest Development Of Carrot Yield and Qality.<br />

Helsinky, 2000.<br />

11. Tarakanovas P. Statistiniø duomenø apdorojimo paketas. Akademija, 1999. P. 57.<br />

12. Zalatorius V., Baleliûnas P., Zinkevièiûtë D. Morkø auginimo technologijø lygioje<br />

<strong>ir</strong> vagotoje d<strong>ir</strong>voje palyginimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1998. T. 17(4).<br />

P. 89–94.<br />

13. Zalatorius V., Baleliûnas P., Zinkevièiûtë D. Morkø auginimo vagotame pav<strong>ir</strong>ðiuje<br />

agroekonominis efektyvumas // Þemës ûkio mokslai. 1998. Nr. 2. P. 45–49.<br />

14. Zinkevièiûtë D., Baleliûnas P. Zalatorius V. Agrotechniniø <strong>ir</strong> cheminiø priemoniø<br />

átaka morkø piktþolëtumui <strong>ir</strong> derliui // Integruota augalø apsauga: pasiekimai <strong>ir</strong> problemos.<br />

Dotnuva – Akademija, 1997. P. <strong>25</strong>6–<strong>25</strong>8.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF THE OPTIMAL SOWING AND<br />

HARVESTING TIME ON THE YIELD AND QUALITY OF<br />

CARROT ‘SVALIA’ F 1<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis<br />

Summary<br />

The optimal sowing and harvesting time of carrot ‘Svalia’ F 1<br />

was investigated in<br />

the experimental fields of the Lithuanian Institute of Horticulture in 2000–2002. Carrots<br />

were sown in furrowed surface during four periods of sowing. The yield of<br />

every sowing period variant was gathered at seven different terms. It was established<br />

that the sowing time significantly influences the standard carrot yield. Carrot<br />

209


yield of the last decade of April on the average is 39 t ha -1 , and the yield of more late<br />

sowing – the f<strong>ir</strong>st decade of April – evenly decreases up to 26 t ha -1 . The time of<br />

harvesting doesn’t influence the standard yield. It was established that the rootcrops<br />

sown on April 20-30 and gathered on October 9 had the best biochemical<br />

composition. When the sowing time was delayed from the th<strong>ir</strong>d decade of April up<br />

to the f<strong>ir</strong>st decade of July, carrot cost price increased 1.7 times and profit decreased<br />

4.7 times.<br />

Key words: yield, quality, harvesting time, sowing time.<br />

210


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

ÁVAIRIØ AZOTO TRÀÐØ IR CEOLITO ÁTAKA<br />

VALGOMOSIOS MORKOS PRODUKTYVUMUI IR<br />

MORFOMETRINIAMS RODIKLIAMS<br />

Ona BUNDINIENË, Èeslovas BOBINAS, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas O.Bundiniene@lsdi.lt<br />

2004–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute atliktø tyrimø<br />

tikslas – ávertinti kalcio amonio salietros (KAN 27), azoto tràðos su ceolitu (KAN 27<br />

su ceolitu) bei ceolito (prekinis þenklas ZeoVit EcoAgro) <strong>ir</strong> amonio salietros átakà<br />

valgomøjø morkø ‘Samson’ produktyvumui <strong>ir</strong> morfometriniams rodikliams (ðakniavaisio<br />

masë, skersmuo, ilgis) bei jø tarpusavio ryðius <strong>ir</strong> átakà vieni kitiems. Bandymai<br />

atlikti priesmëlio ant lengvo priemolio karbonatingajame sekliai glëjiðkame iðplautþemyje.<br />

Didþiausias valgomøjø morkø prekinis derlius (56,4 t ha -1 ) <strong>ir</strong> jo iðeiga (72,7 proc.)<br />

gauti træðiant azoto tràða su ceolitu (N 90<br />

+N 30<br />

). Træðiant ceolitu (<strong>25</strong> t ha -1 ) <strong>ir</strong> amonio<br />

salietra (N 90<br />

+N 30<br />

), gautas 55,0 t ha -1 prekiniø morkø derlius, jo iðeiga buvo 71,4 proc.,<br />

o auginant be azoto tràðø, gautas 44,9 t ha -1 prekinis derlius, jo iðeiga – 65,9 proc.<br />

Didþiausia (142,8 g) ðakniavaisio masë <strong>ir</strong> jo ilgis (175,4 mm) buvo træðiant morkas<br />

amonio salietra <strong>ir</strong> ceolitu, o didþiausias skersmuo (35,2 mm) – træðiant azoto tràða su<br />

ceolitu. Morkø derliaus didëjimui tiesioginës teigiamos átakos turëjo ðakniavaisio masës<br />

(suminio derliaus r = 0,42, prekinio – r = 0,64) <strong>ir</strong> jo ilgio (atitinkamai r = 0,67 <strong>ir</strong><br />

r = 0,63) didëjimas. Ðakniavaisio skersmuo neturëjo átakos suminio morkø derliaus<br />

didëjimui (r = 0,22), bet vidutiniðkai stipriai veikë prekiná derliø (r = 0,54). Didëjant<br />

ðakniavaisio masei, didëja jo ilgis (r = 0,63) <strong>ir</strong> skersmuo (r = 0,81).<br />

Reikðminiai þodþiai: azoto tràða su ceolitu, ceolitas, kalcio amonio salietra,<br />

prekinis derlius, ðakniavaisio ilgis, ðakniavaisio masë, ðakniavaisio skersmuo, valgomoji<br />

morka.<br />

Ávadas. Optimaliam derliui yra keliami reikalavimai: 1) didelis suminis derlius, 2)<br />

didelë standartinio derliaus iðeiga, 3) maþi laikymo nuostoliai <strong>ir</strong> 4) laikymo metu iðlaikyta<br />

vidinë <strong>ir</strong> iðorinë produkcijos kokybë (Sakalauskas <strong>ir</strong> kt., 2005). Morkø derlingumas,<br />

jø prekinë vertë bei kokybë priklauso nuo naudojamø tràðø <strong>ir</strong> jø formø bei normø<br />

(Gauèienë, 2001; Liet. d<strong>ir</strong>voþemiø ..., 1998, Staugaitis, 1998). Vienai tonai morkø<br />

ðakniavaisiø su atitinkamu kiekiu lapø iðauginti sunaudojama 3,2 kg azoto, 1,2 kg<br />

fosforo (P 2<br />

O 5<br />

), 5,0 kg kalio (K 2<br />

O), 1,9 kg kalcio (CaO) <strong>ir</strong> 0,9 kg magnio (MgO)<br />

(Äåðþãèí, Êóëþêèí, 1988). Auganèiai lapijai reikia daug azoto, o ðakniavaisiams<br />

211


formuotis – kalio <strong>ir</strong> fosforo. Gavusi kalio <strong>ir</strong> kalcio, produkcija geriau iðsilaiko. Be to,<br />

kalcis stabdo d<strong>ir</strong>voþemio rûgðtëjimo procesus (Liet. d<strong>ir</strong>voþemiø ..., 1998). Kalcio<br />

poreiká ið dalies galima patenkinti <strong>ir</strong> d<strong>ir</strong>voþemiø rûgðtëjimà sustabdyti træðiant fiziologiðkai<br />

nerûgðèiomis tràðomis. Viena jø yra kalcio amonio salietra (KAN 27), kurios<br />

sudëtyje yra 27 proc. N (amoniakinis N-NH 4<br />

+<br />

– 13,5 proc. <strong>ir</strong> nitratinis – N-NO 3<br />

-<br />

–<br />

13,5 proc.), 6 proc. kalcio (CaO) <strong>ir</strong> 4 proc. magnio (MgO). Papildomi maisto elementai<br />

– kalcis <strong>ir</strong> magnis – yra ið gamtinio dolomito, kurie sumaþina amonio nitrato<br />

fiziologiná rûgðtumà <strong>ir</strong> tokiu bûdu subalansuoja d<strong>ir</strong>voþemio rûgðtumà bei gerina jo<br />

biologiná aktyvumà. Augalai patræðiami ne tik azotu, bet <strong>ir</strong> kalciu bei magniu, kuriø<br />

trûksta lengvuose <strong>ir</strong> rûgðèiuose d<strong>ir</strong>voþemiuose.<br />

2003 m. pradëta gaminti azoto tràða su ceolitu, kurioje yra 26–27 proc. azoto,<br />

o dalis dolomito (nuo 3 iki 6 proc.) pakeista ceolitu. Tràðos sudëtyje taip pat yra<br />

4,5–5,4 proc. kalcio oksido (CaO) <strong>ir</strong> 3,1–3,5 proc. magnio oksido (MgO). Ceolitas,<br />

esantis kalcio amonio salietros granulëje, pagerina tràðos fizikines savybes (b<strong>ir</strong>umà,<br />

susigulëjimà <strong>ir</strong> laikymàsi) <strong>ir</strong> pailgina maisto medþiagø veikimo laikà.<br />

Ceolitai yra kristaliniai, ðarminiai ar þemës ðarminiai hidratuoti aliumosilikatai,<br />

pasiþymintys didele katijonø mainø geba <strong>ir</strong> gebëjimu absorbuoti amonio jonus bei<br />

judriuosius maisto elementus (Watanabe, 1962; Ilsidar, 1999; Mumpton, 1999) <strong>ir</strong><br />

veikiantys kaip lëtinimo agentas (Ming, Dixon, 1986). Ceolituose beveik nebûna azoto<br />

<strong>ir</strong> fosforo. Jie yra neutralios reakcijos (Ïîñòíèêîâ, 1991). Ceolitai gali bûti naudojami<br />

kaip ekologinës tràðos <strong>ir</strong> d<strong>ir</strong>voþemio rûgðtëjimà maþinanti priemonë. Lietuvoje<br />

parduodamuose ceolituose yra 5,03 proc. kalio <strong>ir</strong> natrio (K 2<br />

O + Na 2<br />

O), 1,07 proc.<br />

magnio (MgO), 2,10 proc. CaO bei mikroelementø (Mn, Zn <strong>ir</strong> kiti).<br />

Tyrimø tikslas – ávertinti kalcio amonio salietros (KAN 27), azoto tràðos su<br />

ceolitu (KAN 27 su ceolitu) bei ceolito (prekinis þenklas ZeoVit EcoAgro) <strong>ir</strong> amonio<br />

salietros átakà valgomøjø morkø derlingumui, prekinio derliaus iðeigai bei ðakniavaisiø<br />

morfometriniams rodikliams <strong>ir</strong> ðiø rodikliø reikðmæ derliaus formavimui.<br />

Tyrimø sàlygos, objektas <strong>ir</strong> metodai. Bandymai atlikti Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës institute 2004–2005 m. D<strong>ir</strong>voþemis – priesmëlis ant lengvo priemolio<br />

karbonatingasis sekliai glëjiðkas iðplautþemis (IDg 8-k, /Calc(ar)i – Epihypogleyc<br />

Luvisols – LVg-p-w-cc). D<strong>ir</strong>voþemio armuo 22–<strong>25</strong> cm storio, neutralios reakcijos<br />

(pH KCl<br />

7,0), jame yra 1,58 proc. humuso, pakankamai gausu judriøjø fosforo <strong>ir</strong> kalio<br />

(atitinkamai 354 <strong>ir</strong> 146 mg kg -1 d<strong>ir</strong>voþemio) bei kalcio (4 500 mg kg -1 ), taèiau maþai<br />

azotingas (0–60 cm sluoksnyje – 56,6 kg ha -1 N-NH 4<br />

+ N-NO 3<br />

).<br />

D<strong>ir</strong>voþemio ëminiuose nustatyta: pH KCl<br />

(potenciometriniu (ISO 10390:2005) metodu),<br />

humusas, % (sauso deginimo (ISO 10694:1995) metodu), judrieji P 2<br />

O 5<br />

<strong>ir</strong><br />

K 2<br />

O, mg kg -1 (Egnerio-Rimo-Domingo (A-L, Gost 26208-84) metodu), mineralinis<br />

azotas, mg kg -1 (jonometriniu metodu), kalcis <strong>ir</strong> magnis, mg kg -1 (atominës absorbcijos<br />

spektrometriniu (SVP D-06) metodu). Analizës atliktos LÞI Agrocheminiø tyrimø<br />

centre.<br />

Augalø prieðsëlis – juodasis pûdymas. D<strong>ir</strong>vos d<strong>ir</strong>bimo <strong>ir</strong> darþoviø prieþiûros<br />

darbai atlikti pagal LSDI priimtas intensyvaus darþoviø auginimo technologijas.<br />

Morkos augintos vagotame pav<strong>ir</strong>ðiuje 70 cm tarpueiliais. Á hektarà tikslaus iðsëjimo<br />

sëjamàja iðberta 0,8 mln. vnt. daigiø valgomøjø morkø sëklø. Morkos sëtos<br />

2004 05 12 <strong>ir</strong> 2005 05 09.<br />

212


Pagrindinio (fono) træðimo prieð sëjà fosforo <strong>ir</strong> kalio tràðomis normos buvo<br />

nustatytos remiantis d<strong>ir</strong>voþemio agrocheminiø tyrimø duomenimis, azoto iðberta<br />

90 kg ha -1 . Træðta kalio magnezija (30% K 2<br />

O), granuliuotu superfosfatu (19,8% P 2<br />

O 5<br />

).<br />

Azotu træðta prieð sëjà (90 kg ha -1 ) <strong>ir</strong> papildomai (N 30<br />

) augalams esant 4–6 lapeliø<br />

tarpsnio, naudojant schemoje nurodytas tràðas.<br />

Bandymo schema:<br />

1. Be azoto – Fonas – F (P 60<br />

K 120<br />

).<br />

2. F + KAN 27 N 90<br />

+ N 30<br />

. Træðta kalcio amonio salietra.<br />

3. F + KAN 27 su ceolitu N 90<br />

+ N 30<br />

. Træðta azoto tràða su ceolitu.<br />

4. F + 2,5 kg m -2 ceolito + AS N 90<br />

+ N 30<br />

. Træðta ceolitu (<strong>25</strong> t ha -1 ceolito Zeovit<br />

Eco Agro) <strong>ir</strong> amonio salietra.<br />

Bandymai kasmet daryti 4 pakartojimais. Laukeliai iðdëstyti rendomizuotai. Apskaitinio<br />

laukelio plotas – 6,2 m 2 .<br />

Valgomøjø morkø derlius nuimtas darþovëms pasiekus techninæ brandà. Imant<br />

derliø kiekviename laukelyje buvo iðmatuota <strong>ir</strong> pasverta po 10 morkø ðakniavaisiø.<br />

Duomenø patikimumas ávertintas vienfaktorinës dispersinës analizës metodu,<br />

naudojant programà ANOVA, ryðys tarp atsk<strong>ir</strong>ø rodikliø – koreliacinës regresinës<br />

analizës, tarpusavio ryðiø pobûdis <strong>ir</strong> stiprumas – statistinës takø koeficientø analizës<br />

metodais, naudojant programà STAT_ENG (Tarakanovas, Raudonis, 2003).<br />

Meteorologinës sàlygos atsk<strong>ir</strong>ais bandymo vykdymo metais skyrësi: 2004 m.<br />

visais vegetacijos mënesiais, iðskyrus rugpjûtá, oro temperatûra buvo þemesnë, o<br />

2005 m. – ðiek tiek aukðtesnë nei daugiametë vidutinë (1a pav.). Ypaè karðtas buvo<br />

2005 m. liepos mënuo: oro temperatûra buvo 1,4°C aukðtesnë uþ vidutinæ daugiametæ<br />

liepos mënesio temperatûrà.<br />

1 pav. Oro temperatûra (°C) (a) <strong>ir</strong> krituliai (mm) (b).<br />

Kauno meteorologijos stoties duomenys<br />

Fig. 1. A<strong>ir</strong> temperature (°C) (a) and precipitation (mm) (b).<br />

The data of Kaunas Meteorological Station<br />

2004 m. krituliø per vegetacijos laikotarpá iðkrito vidutiniðkai daugiau, 2005 m. –<br />

maþiau uþ vidutinius daugiameèius rodiklius (1 b pav.). Abiejø bandymo vykdymo<br />

metø geguþës mënesiai buvo gan drëgni, taèiau 2005 m. geguþës mënesio pabaigoje<br />

praëjæ gausûs trumpalaikiai lietûs sutrukdë pasëliui normaliai sudygti. Dël susidariusios<br />

plutos morkø pasëlis ðiek tiek praretëjo, bet kadangi b<strong>ir</strong>þelio mënesá buvo pakankamai<br />

drëgmës <strong>ir</strong> ðilumos, augo gerai. Drëgmës trûkumas liepos mënesá (iðkrito tik<br />

213


5,9 proc. daugiametës krituliø normos) pristabdë morkø ðakniavaisiø augimà <strong>ir</strong>, be<br />

abejo, turëjo átakos derlingumui: jis buvo 30,7 proc. maþesnis nei 2004 m., o standartinio<br />

derliaus iðeiga sumaþëjo 5 proc. Didelis drëgmës perteklius buvo abiejø bandymo<br />

vykdymo metø rugpjûèio mënesiais.<br />

Tyrimø rezultatai. Azotas turëjo lemiamos átakos morkø ðakniavaisiø derliui.<br />

Visos tyrimuose naudotos azoto tràðos teigiamai veikë <strong>ir</strong> ið esmës didino suminá (1) <strong>ir</strong><br />

prekiná (2) morkø ðakniavaisiø derliø.<br />

Y = 68,12 + 0,07, r = 0,83 ± 0,15, t = 3,54, F t<br />

= 30,84** (1)<br />

Y = 44,88 + 0,08, r = 0,89 ± 0,12, t = 5,00, F t<br />

= 56,<strong>25</strong>** (2)<br />

Sutartiniai þenklai / Used symbols:<br />

r– koreliacijos koeficientas / coefficient of correlation,<br />

t – Stjudento t-testo kriterijus (sk<strong>ir</strong>tumo patikimumo kriterijus) / statistic derived<br />

in Student's t-test,<br />

F t<br />

– Fiðerio kriterijus / variant ratio (F test<br />

),<br />

R 05<br />

– maþiausias esminis sk<strong>ir</strong>tumas / LSD – the least significant difference,<br />

* – patikimumas, esant 95% tikimybës lygiui / data significant at P = 0.05<br />

probability level,<br />

** – esant 99% tikimybës lygiui/ at P = 0.01 probability level.<br />

Tyrimø duomenys parodë, kad valgomøjø morkø suminis derlius nuo azoto<br />

tràðø (N 90<br />

+ N 30<br />

) padidëjo vidutiniðkai 8,4 t/ha, arba 12,3 proc., palyginti su azotu<br />

netræðtu pasëliu. Vidutiniais 2004–2005 m. duomenimis, nuo kalcio amonio salietros<br />

azoto (KAN 27) valgomøjø morkø suminis derlius padidëjo 6,8 t ha -1 , arba 10,0 proc.<br />

(2 pav.). Træðiant azoto tràða su ceolitu (N 90+30<br />

), suminis derlius padidëjo 9,5 t ha -1 ,<br />

arba 14,0 proc., palyginti su be azoto augintomis morkomis, <strong>ir</strong> 2,7 t ha -1 , arba 3,6 proc.,<br />

palyginti su kalcio amonio salietra træðtø morkø derliumi. Træðiant amonio salietra <strong>ir</strong><br />

prieð morkø sëjà áterpiant <strong>25</strong> t ha -1 ceolito, suminis derlius padidëjo 9,0 t ha -1 , arba<br />

13,2 proc., palyginti su azotu netræðtomis morkomis. Esminio suminio morkø derliaus<br />

sk<strong>ir</strong>tumo, palyginti su azoto tràða su ceolitu træðtomis morkomis, negauta.<br />

Prekinis valgomøjø morkø derlius nuo azoto tràðø (N 90<br />

+ N 30<br />

) padidëjo vidutiniðkai<br />

9,5 t ha -1 , arba 21,2 proc., palyginti su be azoto tràðø augintø morkø derliumi, o<br />

prekinio derliaus iðeiga buvo 5,2 proc. Træðiant morkas kalcio amonio salietra (N 90<br />

+N 30<br />

),<br />

prekinis derlius padidëjo 6,9 t ha -1 , arba 15,5 proc., palyginti su be azoto tràðø augintomis<br />

morkomis, o derliaus iðeiga buvo 3,3 proc. Prekinio derliaus savikaina sumaþëjo<br />

nuo 0,169 Lt kg -1 iki 0,154 Lt kg -1 , arba 15 Lt t -1 . Tas pats azoto kiekis, iðbertas<br />

azoto tràðos su ceolitu forma, prekiná morkø derliø, palyginti su kalcio amonio salietra<br />

træðtø morkø derliumi, padidino 4,6 t ha -1 , arba 8,9 proc., prekinio derliaus iðeigà –<br />

3,5 proc., o savikaina sumaþëjo iki 0,142 Lt kg -1 , arba dar 12 Lt t -1 (palyginti su be<br />

azoto augintomis morkomis, prekinio derliaus savikaina sumaþëjo 27 Lt t -1 ).<br />

Áterpus prieð sëjà ceolità (<strong>25</strong> t ha -1 ) <strong>ir</strong> træðiant amonio salietra (N 90 + 30<br />

), prekinis<br />

morkø ðakniavaisiø derlius, palyginti su azoto tràða su ceolitu træðtø morkø derliumi,<br />

sumaþëjo 1,4 t ha -1 , arba 2,5 proc., iðeiga – 1,3 proc., taèiau buvo 3,2 t ha -1 ,<br />

arba 6,2 proc. didesnis negu træðiant morkas kalcio amonio salietra. Prekinio derliaus<br />

savikaina, palyginti su be azoto tràðø augintomis morkomis, iðaugo 38,5 proc. (iki<br />

214


0,234 Lt kg -1 , arba 65 Lt t -1 ). Rusø tyrëjø duomenys (ßêîâëåâà, 2004; Ïîñòíèêîâ<br />

<strong>ir</strong> kt., 1991a) parodë, kad ceolitas gali veikti 5–7 metus, dël to manoma, kad áterpus<br />

ceolità, kuris stabilizuoja d<strong>ir</strong>voþemio rûgðtumà, savikaina sumaþës.<br />

2 pav. Kalcio amonio salietros, azoto tràðos su ceolitu <strong>ir</strong> ceolito bei amonio salietros<br />

átaka valgomøjø morkø derliui <strong>ir</strong> prekinio derliaus iðeigai<br />

Babtai, vidutiniai 2004–2005 m. duomenys<br />

Fig. 2. Influence of calcium ammonium nitre, nitrogen fertilizers with zeolite and<br />

zeolite and ammonium nitre on yield of carrots and output of marketable yield<br />

Babtai, average of 2004–2005<br />

Azoto tràðos teigiamai veikë valgomosios morkos ðakniavaisio morfometrinius<br />

rodiklius (1 lentelë). Maþiausiai átakos jos turëjo ðakniavaisio skersmeniui (r = 0,36),<br />

didþiausios – ðakniavaisio ilgiui (r = 0,59). Taip pat buvo nustatyta, kad didëjant<br />

ðakniavaisio masei, didëja <strong>ir</strong> jo ilgis (3) bei skersmuo (4).<br />

1 lentelë. Azoto átaka valgomosios morkos ðakniavaisio morfometriniams rodikliams.<br />

Babtai, 2005 m.<br />

Table 1. Influence of nitrogen on morphometrical indices of carrot root-crop. Babtai, 2005<br />

Rodikliai / Indicators (y) Lygtis / Equation r ± S r t F t<br />

Ðakniavaisio masë<br />

Weight of root-crop, g<br />

Šakniavaisio skersmuo<br />

Diameter of root-crop, mm<br />

Šakniavaisio ilgis<br />

Length of root-crop, cm<br />

azotas / nitrogen (N) kg ha -1 – x<br />

114,52 + 0,17 0,45 ± 0,24 0,77 3,53<br />

32,2 + 0,013 0,36 ± 0,<strong>25</strong> 0,48 2,05<br />

163,92 + 0,09 0,59 ± 0,22 1,39 7,46*<br />

Y = 139,76 + 0,<strong>25</strong>, r = 0,63 ± 0,21, t = 1,62, F t<br />

= 9,27** (3)<br />

Y = 22,94 + 0,08, r = 0,81 ± 0,16, t = 5,00, F t<br />

= 26,1** (4)<br />

215


Morkø dydis nustatomas pagal maksimalø ðakniavaisio skersmená arba svorá be<br />

lapø. Subrendusiø morkø ðakniavaisiai, atitinkantys I klasæ, turi bûti ne maþesni kaip<br />

20 mm, atitinkantys ekstra klasæ – ne didesni kaip 45 mm (rûðiuojant pagal skersmená)<br />

<strong>ir</strong> sverti daugiau nei 50 g (I klasë), bet ne daugiau kaip 200 g (ekstra klasë)<br />

(rûðiuojant pagal svorá), tipingi veislei, neáskilæ <strong>ir</strong> neátrûkæ (Privalomieji kokybës reikalavimai,<br />

2003). Tyrimø metais iðaugintos morkos atitiko ekstra klasës reikalavimus.<br />

Ðakniavaisis svërë vidutiniðkai 129,7 g, o jo skersmuo buvo 33,7 mm.<br />

Nuo azoto tràðø morkos ðakniavaisis pailgëjo vidutiniðkai 10,4 mm, arba 6,4 proc.<br />

Ilgiausi ðakniavaisiai buvo prieð sëjà áterpiant ceolità <strong>ir</strong> træðiant amonio salietra<br />

(3 pav.). Palyginti su be azoto tràðø augintomis morkomis, ðakniavaisis pailgëjo 11,5 mm,<br />

arba 7,0 proc. Træðiant morkas kalcio amonio salietra <strong>ir</strong> azoto tràða su ceolitu, ðakniavaisiai<br />

buvo panaðaus ilgio (174,6 <strong>ir</strong> 173,1 mm) <strong>ir</strong> atitinkamai 0,8 <strong>ir</strong> 2,3 mm trumpesni<br />

nei træðiant amonio salietra <strong>ir</strong> prieð sëjà áterpiant ceolità.<br />

3 pav. Kalcio amonio salietros, azoto tràðos su ceolitu <strong>ir</strong> ceolito bei amonio salietros<br />

átaka valgomosios morkos ðakniavaisio morfometriniams rodikliams<br />

Babtai, vidutiniai 2004–2005 m. duomenys<br />

Fig. 3. Influence of calcium ammonium nitre, nitrogen fertilize with zeolite and zeolite<br />

and ammonium nitre on morphometric indices of carrot root-crop<br />

Babtai, average of 2004–2005<br />

Valgomosios morkos ðakniavaisio masë buvo didþiausia taip pat træðiant minëtomis<br />

tràðomis, t. y. 28,3 g, arba 24,7 proc. didesnë nei be azoto tràðø iðauginto ðakniavaisio,<br />

21,7 g, arba 17,9 proc. didesnë nei kalcio amonio salietra træðto <strong>ir</strong> tik 2,3 g,<br />

arba 1,6 proc. nei azoto tràða su ceolitu træðto ðakniavaisio.<br />

Maþiausiai (vidutiniðkai 0,6 mm, arba 1,8 proc.) nuo azoto tràðø didëjo <strong>ir</strong> áva<strong>ir</strong>avo<br />

morkø ðakniavaisio skersmuo. Didþiausio skersmens (35,2 mm) buvo azoto tràða<br />

su ceolitu træðtø morkø ðakniavaisiai.<br />

Morkø ðakniavaisiø morfometriniai rodikliai turëjo átakos derliui. Atlikus statistinæ<br />

analizæ paaiðkëjo, kad morkø suminá derliø vidutiniðkai stipriai (r = 0,67) veikë<br />

ðakniavaisio ilgio, silpnai (r = 0,42) – ðakniavaisio masës didëjimas, o ðakniavaisio<br />

216


skersmens kitimai átakos neturëjo (2 lentelë). Prekiniam morkø ðakniavaisiø derliø<br />

minëti rodikliai turëjo daug didesnës átakos.<br />

2 lentelë. Morfometriniø valgomosios morkos ðakniavaisio rodikliø átaka<br />

derlingumui. Babtai, 2005 m.<br />

Table 2. The influence morphometrical indices of carrot root-crop on the yield.<br />

Babtai, 2005<br />

Rodikliai / Indicators (y) Lygtis / Equation r ± S r t F t<br />

Valgomosios morkos ðakniavaisio masë<br />

Weight of carrot root-crop, g – x<br />

Suminis derlius<br />

Total yield, t ha -1 62,51 + 0,09 0,42 ± 0,24 0,66 2,92<br />

Prekinis derlius<br />

Marketable yield, t ha -1 32,70 + 0,15 0,64 ± 0,21 1,64 9,36**<br />

Valgomosios morkos šakniavaisio skersmuo<br />

Diameter of carrot root-crop, mm – x<br />

Suminis derlius<br />

Total yield, t ha -1 58,53 + 0,47 0,22 ± 0,26 0,18 0,69<br />

Prekinis derlius<br />

Marketable yield, t ha -1 9,65 + 1,27 0,54 ± 0,22 1,14 5,75*<br />

Valgomosios morkos šakniavaisio ilgis<br />

Length of carrot root-crop, mm – x<br />

Suminis derlius<br />

Total yield, t ha -1 10,05 + 0,37 0,67 ± 0,20 1,88 11,44**<br />

Prekinis derlius<br />

Marketable yield, t ha -1 13,15 + 0,38 0,63 ± 0,21 1,62 9,21**<br />

Morkos ðakniavaisio masës (r = 0,64), skersmens (r = 0,54) <strong>ir</strong> ilgio (r = 0,63)<br />

didëjimas vidutiniðkai stipriai veikë prekinio morkø derliaus didëjimà.<br />

Takø analizës rezultatai parodë, kad suminá morkø ðakniavaisiø derliø daugiau<br />

nei ketv<strong>ir</strong>tadaliu (36 proc.) didino morkos ðakniavaisio ilgio, maþiau nei penktadaliu<br />

(20 proc.) – masës didëjimas (4a pav.). Pastebëta, kad ðakniavaisio ilgio didëjimui<br />

tiesioginá dominuojantá efektà turëjo ilgis (0,68), o masës didëjimas turëjo netgi neigiamà,<br />

nors <strong>ir</strong> labai silpnà efektà (-0,01). Skersmens pokyèiai jokio pastebimo efekto<br />

nedarë <strong>ir</strong> jø átaka suminio derliaus didëjimui siekë tik 11 proc. Prekinio derliaus<br />

didëjimui didesnës átakos nei suminiam derliui turëjo ðakniavaisio masës (<strong>25</strong> proc.) <strong>ir</strong><br />

skersmens (22 proc.) didëjimas (4b pav.). Pastebëta, kad nebuvo tiesioginio domi-<br />

217


nuojanèio masës efekto masei (0,06), bet netiesiogiai ðakniavaisio masæ veikë ilgis<br />

(0,30) <strong>ir</strong> skersmuo (0,26). Ðakniavaisio ilgiui <strong>ir</strong> skersmeniui tiesioginá teigiamà dominuojantá<br />

efektà turëjo ilgis <strong>ir</strong> skersmuo (atitinkamai 0,4803 <strong>ir</strong> 0,3280).<br />

Nemaþai átakos suminiam <strong>ir</strong> prekiniam derliui turëjo <strong>ir</strong> kiti veiksniai (d<strong>ir</strong>voþemio<br />

derlingumas, meteorologinës sàlygos <strong>ir</strong> kt.).<br />

4 pav. Suminio <strong>ir</strong> prekinio valgomøjø morkø derliaus priklausomumo<br />

nuo ðakniavaisio masës, skersmens <strong>ir</strong> ilgio átakos pasisk<strong>ir</strong>stymas<br />

Fig. 4. The influence of root-crop weight, diameter and length on total and<br />

marketable carrot yield<br />

Diskusija. D<strong>ir</strong>va morkoms træðiama tik mineralinëmis tràðomis. Atsiþvelgiant á<br />

maisto medþiagø kieká d<strong>ir</strong>voþemyje, morkoms duodama 60–90 kg ha -1 N, 90–120 kg ha -1 P<br />

<strong>ir</strong> 160–200 kg ha -1 K (Gauèienë, 2001). Kitø autoriø Lietuvoje (Staugaitis <strong>ir</strong> kt.,<br />

1993, Staugaitis, 1998) <strong>ir</strong> Baltarusijoje (Perednevas, 1987;) atliktø tyrimø duomenimis,<br />

morkoms azoto tràðos maþai efektyvios, o kai kuriais metais træðti azotu netgi<br />

nereikia. Nuo azoto pertekliaus morkø derlius maþëja (Autko, 2004). Italijoje atliktø<br />

tyrimø duomenimis (morkø veislës ‘Bolero’ <strong>ir</strong> ‘Tini’), træðiant morkas 200 kg/ha -1 N,<br />

33 kg ha -1 P <strong>ir</strong> 123 kg ha -1 K <strong>ir</strong> azotà atiduodant per 2 kartus, padidëjo derlius <strong>ir</strong><br />

pagerëjo kokybë (Beni C. <strong>ir</strong> kt., 2001). Vokietijoje (Gutezeit, 1999) atliktø tyrimø<br />

duomenimis, vidutinio mineralizacijos lygio smëlio d<strong>ir</strong>voþemiuose ankstyvàsias morkas<br />

træðti azotu nebûtina, vëlyvesniø veisliø morkoms reikia 75 kg ha -1 azoto. JAV atliktø<br />

tyrimø duomenimis, tinkamiausias morkø træðimo normos – 60, 30, 1<strong>25</strong> kg ha -1 NPK<br />

(Rubatzky <strong>ir</strong> kt., 1999). Per gausiai træðiant azotu, ðakniavaisiuose susikaupia daug<br />

vandens <strong>ir</strong> nitratø, dël to jie labiau serga, juos labiau paþeidþia kenkëjai, prasèiau<br />

laikosi (Raynal-Lacroix, 1994). Ðiaurës Ukrainoje maþai humusingame iðplautajame<br />

juodþemyje, kuriame gausu judriøjø P 2<br />

O 5<br />

<strong>ir</strong> K 2<br />

O, morkas tikslinga træðti lokaliai nedidelëmis<br />

tràðø normomis (Áîéêî, Âàêóëåíêî, 1999). Træðiant lokaliai, galima perpus<br />

sumaþinti tràðø normas, palyginti su træðimu ant d<strong>ir</strong>vos pav<strong>ir</strong>ðiaus (Ãóìàíþê <strong>ir</strong><br />

kt., 2005).<br />

2004–2005 m. LSDI atliktø tyrimø duomenimis, valgomøjø morkø suminis derlius<br />

nuo azoto tràðø, nepriklausomai nuo jø formos, padidëjo vidutiniðkai 8,4 t ha -1 ,<br />

arba 12,3 proc., prekinis – 9,5 t ha -1 , arba 21,2 proc., palyginti su vien tik fosforo <strong>ir</strong><br />

kalio (fonas P 90<br />

K 120<br />

) træðtø morkø derliumi. Prekinio morkø ðakniavaisiø derliaus iðeiga,<br />

palyginti su be azoto augintomis morkomis, padidëjo vidutiniðkai 5,5 proc. (nuo<br />

65,9 proc., auginant be azoto tràðø, iki vidutiniðkai 71,1 proc., træðiant áva<strong>ir</strong>iomis<br />

218


azoto tràðø formomis). Morkø ðakniavaisiø masë nuo azoto tràðø padidëjo 6,6–28,3 g,<br />

ilgis – 10,7–11,5 mm, o skersmens padidëjimas buvo neþymus. Masës átaka suminiam<br />

<strong>ir</strong> prekiniam morkø derliui buvo atitinkamai 20 <strong>ir</strong> <strong>25</strong> proc., ilgiui – atitinkamai<br />

33 <strong>ir</strong> <strong>25</strong> proc., skersmeniui – 11 <strong>ir</strong> 22 proc.<br />

Zdravkovic <strong>ir</strong> kitø (Zdravkovic <strong>ir</strong> kt., 1997) tyrimø duomenimis, mëðlu træðtos<br />

morkos iðaugino 48,4 t ha -1 , kalcio amonio nitratu – 41,5 t ha -1 <strong>ir</strong> NPK 15 15 15<br />

miðiniu – 41,5 t ha -1 derliø. 2004–2005 m. LSDI gautais vidutiniais duomenimis,<br />

træðiant morkas kalcio amonio salietra, prekinis morkø ðakniavaisiø derlius sumaþëjo<br />

3,2 t ha -1 , arba 6,2 proc., o jo iðeiga – 2,2 proc., palyginti su amonio salietra <strong>ir</strong> ceolitu<br />

træðtais ðakniavaisiais, <strong>ir</strong> atitinkamai 4,6 t ha -1 , arba 8,9 proc. <strong>ir</strong> 3,5 proc., palyginti su<br />

azoto tràða su ceolitu træðtais ðakniavaisiais.<br />

Ceolito panaudojimas substrate pailgina substrato naudojimo laikà <strong>ir</strong> uþtikrina<br />

didesná <strong>ir</strong> stabilø biomasës derliø bei maþesná nitratø kieká jame (Geodakian, Erofeeva,<br />

1996). Daugelio tyrëjø duomenimis (ßêîâëåâà, 2004; Ïîñòíèêîâ <strong>ir</strong> kt., 1991a;<br />

Challinor <strong>ir</strong> kt.,1995; Ilsildar, 1999; Li Z. <strong>ir</strong> kt., 2002; Polat <strong>ir</strong> kt., 2004) duomenimis,<br />

ceolito sorbcinës savybës uþtikrina 15–30 proc. ekonomiðkesná azoto naudojimà,<br />

pailgina maisto medþiagø veikimo trukmæ <strong>ir</strong> sumaþina daþno træðimo bûtinumà. JAV<br />

atliktø tyrimø duomenimis, á akrà (0,405 ha) áterpiant 4–8 t ceolito, kvieèiø derlius<br />

padidëjo 14 proc., baklaþanø – 19–55 proc., morkø – 63 proc., obuoliø – 13–38 proc.<br />

(Mumpton, 1999). Sib<strong>ir</strong>o durpiø mokslinio tyrimo instituto tyrimø duomenys rodo,<br />

kad træðiant pakrikai, granulëje esantis ceolitas nedavë papildomo derliaus, o træðiant<br />

lokaliai, derlius padidëjo 9–13 proc., palyginti su derliumi, gautu træðiant vien durpiø<br />

<strong>ir</strong> mineraliniø tràðø granuliuotu miðiniu (Àëåêñååâà <strong>ir</strong> kt., 1999). 1997–1998 m.<br />

Tailande su cukranendrëmis atliktø tyrimø duomenys (Junrungreang <strong>ir</strong> kt., 2002)<br />

parodë, kad ceolitas, mineralinës tràðos kartu su ceolitu <strong>ir</strong> vien tik mineralinës tràðos<br />

turëjo átakos maisto medþiagø kiekio didëjimui d<strong>ir</strong>voþemyje, taèiau derliø didino tik<br />

træðimas mineralinëmis tràðomis bei mineralinëmis tràðomis <strong>ir</strong> ceolitu. Grupë Graikijos<br />

tyrëjø (Samartzidis <strong>ir</strong> kt., 2005) teigia, kad ceolitas neturi teigiamos átakos roþiø<br />

produktyvumui. Mûsø tyrimuose ceolito áterpimas neturëjo esminës átakos, palyginti<br />

su træðimu azoto tràða su ceolitu.<br />

Iðvados. 1. Didþiausias valgomøjø morkø prekinis derlius (56,4 t ha -1 ) gautas<br />

træðiant azoto tràða su ceolitu (N 90<br />

+ N 30<br />

). Prekinio derliaus iðeiga, træðiant minëta<br />

tràða, buvo 72,7 proc. Træðiant ceolitu (<strong>25</strong> t ha -1 ) <strong>ir</strong> amonio salietra (N 90<br />

+ N 30<br />

),<br />

gautas 55,0 t ha -1 prekiniø morkø derlius, jo iðeiga – 71,4 proc. Auginant be azoto<br />

tràðø, gauta 44,9 t ha -1 prekinio derliaus, o jo iðeiga buvo 65,9 proc.<br />

2. Valgomosios morkos ðakniavaisio masë (142,8 g) <strong>ir</strong> ilgis (175,4 mm)<br />

buvo didþiausi, træðiant morkas amonio salietra <strong>ir</strong> ceolitu, o didþiausias skersmuo<br />

(35,2 mm) – azoto tràða su ceolitu.<br />

3. Morkø derliaus didëjimui tiesioginës teigiamos átakos turëjo ðakniavaisio masës<br />

(suminio derliaus r = 0,42, prekinio – r = 0,64) <strong>ir</strong> jo ilgio (atitinkamai r = 0,67 <strong>ir</strong><br />

r = 0,63) didëjimas. Ðakniavaisio skersmuo neturëjo átakos suminio morkø derliaus<br />

didëjimui (r = 0,22), bet vidutiniðkai stipriai veikë prekiná derliø (r = 0,54).<br />

Padëka. Autoriai dëkoja Lietuvos valstybiniam mokslø <strong>ir</strong> studijø fondui <strong>ir</strong> UAB<br />

„Elega“ uþ finansinæ paramà atliekant tyrimus.<br />

Gauta 2006-10-09<br />

Parengta spausdinti 2006-12-11<br />

219


Literatûra<br />

1. Beni C., Neri U., Felici B., M<strong>ir</strong>aglia R. Fertilizer use in carrots in Central Italy //<br />

Informatore Agrario. 2001. 57(18). P. 71–74.<br />

2. Challinor P. F., Le Pivert J. M., Fuller M. P. The production of standard carnations<br />

of nutrient loaded<br />

3. Gauèienë O. Morkos. Babtai, 2001. 64 p.<br />

4. Geodakian R. O., Erofeeva T. V. The effectiveness of using bio-humus for growing<br />

plants under autonomous conditions // Aviakos. Ekolog. Med. 1996. Vol. 30(3). P. 39–43.<br />

5. Gutezeit B. Yield and nitrate content of carrots (Daucus carota L.) as affected by<br />

nitrogen supply. Acta Horticulture. 1999. Vol. 506. P. 87–92.<br />

6. Ilsildar A. A. Effect of the addition of zeolite to the soil on nutrification // Tr. J. of<br />

Agriculture and forestry. 1999. T. 23. P. 363–368.<br />

7. Junrungreang S., Limtong P., Wattanaprapat K., Patsarayeangyong T. Effect of<br />

zeolite and chemical fertilizer on the change of physical and chemical properties on Lat Ya<br />

soil series for sugar cane / 17 -th WCSS, 14–21 August, 2002. P. 1897-1–1897-7.<br />

8. Li Z., Alessi D., Allen L. Influence of quaternary ammonium on sorption of selected<br />

metal cations onto cilnoptilolite zeolite // Journal of env<strong>ir</strong>onmental quality. 2002.<br />

Vol. 31. P. 1106–1114.<br />

9. Lietuvos d<strong>ir</strong>voþemiø agrocheminës savybës <strong>ir</strong> jø kaita (sudarytojas J. Maþvila)<br />

Kaunas, 1998. 195 p.<br />

10. Ming D. W., Dixon J. B. Clinoptilolite in South Texas soils // Soil Sci. Soc. Amer.<br />

J. 1986. 50. P. 1618–1622.<br />

11. Mumpton F. A. La rosa magica: Uses of natural zeolites in agriculture and industry<br />

//Proc. Natl. Acad. Sci. USA, 1999. Vol. 96. P. 3463–3470.<br />

12. Polat E., Dem<strong>ir</strong> H., Onus N. The usage of natural zeolite (clinoptilolite) in plant<br />

growing // Orchard management in sustainable fruit production. Skierniewice, 2004. 37 p.<br />

13. Privalomieji reikalavimai ðvieþiems vaisiams <strong>ir</strong> darþovëms (sudarytojas P.Viðkelis).<br />

Babtai, 2003. 241 p.<br />

14. Raynal-Lacroix C., Bohec J. and Dily F. 1994. La nutrition azotee de la carotte //<br />

Acta Horticulture. 1994. Vol. 354. P. 119–124.<br />

15. Rubatzky V. E., Qu<strong>ir</strong>os C. F., Simon P. W. Carrots and related vegetable umbelliferae.<br />

USA, University of California, Davis, University of Viskonsin, Madison, 1999. P. 245–<strong>25</strong>6.<br />

16. Sakalauskas A., Zalatorius V., Malinauskaitë S. Biometriniø matmenø átaka morkø<br />

prekiniam paruoðimui // Sodininkystë <strong>ir</strong> darþininkystë, Babtai, 2005. 24(1). P. 72–79<br />

17. Samartzidis C., Awada T., Maloupa E., Radaglou K. And Constantinidou H.-I.A. Rose<br />

productivity and physiological response to different substrates for soil-less culture // Scientia.<br />

2005. Vol. 106(2). P. 203–212.<br />

18. Staugaitis G. Lauko <strong>ir</strong> ðiltnamiø darþoviø træðimo azoto tràðomis optimizavimas:<br />

habilitacinis darbas. Babtai, 1998. 110 p.<br />

19. Staugaitis G., Putelis J., Autukevièius J. Azoto tràðø rûðiø átaka darþoviø derliui <strong>ir</strong><br />

kokybei // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 1993. 12. P. 45–53.<br />

20. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë,<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT ið paketo SELEKCIJA ÝR<br />

IRRISTAT. Akademija, 2003. 56 p.<br />

21. Zdravkovic M., Damjanovic M., Corokalo D. The influence of fertilization on<br />

yield of different carrot varieties // Acta Horticulturae. 1997. 462. P. 93–96.<br />

22. Watanabe Y. Effect of natural zeolite as soil amendment in special reference to<br />

the<strong>ir</strong> cation exchange capacities / Memorandum the 4 th committee. Research association<br />

of zeolite. December 11, 1967.<br />

220


23. Àëåêñååâà Ò. Ï., Ïåðôèëüåâà Â. Ä., Êðèíèöûí Ã. Ã. Êîìïëåêñíîå îðãàííî-ìèíåðàëüíoe<br />

óäîáðåíèe ïðîëîíãèðîâàííîãî äåéñòâèÿ íà îñíîâå òîðôà //<br />

Õèìèÿ ðàñòèòåëüíîãî ñûðüÿ. 1999. ¹ 4. Ñ. 53–59.<br />

24. Àóòêî À. À. Â ìèðå îâîùåé. Ìèíñê, 2004. Ñ. 207–231.<br />

<strong>25</strong>. Áîéêî Ã., Âàêóëåíêî Ð. Äîçû è ñïîñîáû âíåñåíèÿ ìèíåðàëüíûõ óäîáðåíèé<br />

íà óðîæàéíîñòü ìîðêîâè // Sodininkystë <strong>ir</strong> darþininkystë. 1999. 18(3). P. 101–106.<br />

26. Ãóìàíþê À. Â., Ãàìàþí È. Ì., Êîðîâàé Â. È, Àíäðèåø À. Í.,<br />

Áîæàêîâñêàÿ Ë. Å. Âëèÿíèå âèäîâ, äîç óäîáðåíèé è ñïîñîáîâ èõ âíåñåíèÿ íà<br />

ïðîäóêòèâíîñòü îâîùíûõ êóëüòóð // Ìàò. êîíô. ïîñâ. 80-ëåòèþ ‚ÐÓÏ Èíñòèòóò<br />

îâîùåâîäñòâà ÍÀÈ Áåëîðóñè‘. Ýôôåêòèâíîå îâîùåâîäñòâî â ñîâðåìåííûõ<br />

óñëîâèÿõ. Ìèíñê, 2005. 2<strong>25</strong>–227.<br />

27. Äåðþãèí È. Ï., Êóëþêèí À. Í. Àãðîõèìè÷åñêèå îñíîâû ñèñòåìû<br />

óäîáðåíèÿ îâîùíûõ è ïëîäîâûõ êóëüòóð. 1988. 269 c.<br />

28. Ïåðåäíåâ Â. Ï. Óäîáðåíèå îâîùíûõ êóëüòóð. Ìèíñê, 1987. C. 144.<br />

29. Ïîñòíèêîâ À. Â., Ðÿáûõ Ð. Ñ., Áàéêîâà Ñ.È. è äð. Îñîáåííîñòè<br />

âîçäåëûâàíèÿ îâîùíûõ êóëüòóð íà öåîëèòîâûõ ñóáñòðàòàõ â òåïëèöàõ // Ñá.<br />

Èñïîëüçîâàíèe ïðèðîäíûõ öåîëèòîâ â íàðîäíîì õîçÿéñòâå. ÑÎ ÐÀÍ.<br />

Íîâîñèáèðñê, 1991a. Ñ. 162–168.<br />

30. Ïîñòíèêîâ À. Â., Çåêóíîâ Ô. Â., Åëèñååâà Í. À. Îâîùíûå êóëüòóðû ïðè<br />

âûðàùèâàíèè íà öåîëèòå // Õèìèçàöèÿ ñåëüñêîãî õîçÿéñòâà. 1991b. ¹ 11. Ñ. 22–<strong>25</strong>.<br />

31. ßêîâëåâà Í. Í. Ýôôåêòèâíîñòü ðåñóðñîñáåðåãàþùèõ òåõíîëîãèé<br />

âûðàùèâàíèÿ îâîùíûõ êóëüòóð íà öåîëèòñîäåðæàùèõ òåïëè÷íûõ ñóáñòðàòàõ //<br />

Ãàâðèø, 2004. ¹ 3. Ñ. 6–8.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE EFFICACY OF DIFFERENT NITROGEN<br />

FERTILIZERS AND ZEOLITE ON PRODUCTIVITY AND<br />

MORPHOMETRICS INDICES OF CARROT<br />

O. Bundiniene, C. Bobinas, P. Duchovskis<br />

Summary<br />

The possibilities of different nitrogen fertilizers have been investigated at the<br />

Lithuanian Institute of Horticulture in 2004–2005. The experiments were carried out<br />

on the sandy or sandy-loam Calc(ar)i – Epihypogleyc Luvisols (LVg-p-w-cc). The<br />

aims of investigation were to assess the efficacy influence of calcium ammonium<br />

nitre (CAN 27), nitrogen fertilizer with zeolite (CAN 27 with zeolite) and zeolite<br />

(commercial sign ZeoVit EcoAgro) and ammonium nitre (AN) on productivity and<br />

morphometrical indices (weight of root-crop, diameter of root-crop and length of<br />

root-crop) of edible carrot. The highest marketable yield (56.4 t ha -1 ) and output of<br />

marketable yield (72.7%) were obtained, when nitrogen fertilizer with zeolite (CAN<br />

27 with zeolite, N 90<br />

+ N 30<br />

) were used. Using ceolite (<strong>25</strong> t ha -1 ) and ammonium nitre<br />

(N 90<br />

+ N 30<br />

) there was obtained 55.0 t ha -1 of marketable yield, respectively, and<br />

output of marketable yield made 71.4% of total yield. The highest weight of carrot<br />

221


oot-crop (142.8 g) and its length (175.4 mm) were obtained, when zeolite and<br />

ammonium nitre were used. The biggest diameter of root-crop (35.2 mm) was obtained,<br />

when nitrogen fertilizer with zeolite was used. The increase of weight and<br />

length of carrot root-crop d<strong>ir</strong>ectly and positively influenced the increase of the total<br />

(r = 0.42, weak and 0.67, averagely strong, respectively) and marketable (r = 0.64<br />

and 0.63, both averagely strong) yield. The diameter of carrot root-crop did not<br />

impact (r = 0.22) the increase of total, but averagely strongly influenced the increase<br />

of marketable yield (r = 0.54). The increase of root-crop weight increased the<br />

length (r = 0.63) and diameter (r = 0.81) of carrot.<br />

Key words: calcium ammonium nitre, diameter of root-crop, length of rootcrop,<br />

marketable yield, nitrogen fertilizer with zeolite, zeolite, weight of root-crop,<br />

carrot.<br />

222


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

UV-B SPINDULIUOTËS POVEIKIS MORKØ<br />

BIOMETRINIAMS RODIKLIAMS<br />

Sandra SAKALAUSKIENË, Auðra BRAZAITYTË,<br />

Jurga SAKALAUSKAITË, Jûratë Bronë ÐIKÐNIANIENË,<br />

Giedrë SAMUOLIENË, Pavelas DUCHOVSKIS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas S.Sakalauskiene@lsdi.lt<br />

2005 metais Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute fitotrono komplekse<br />

buvo atlikti tyrimai siekiant nustatyti UV-B spinduliuotës poveiká morkø biometriniams<br />

rodikliams. Po sudygimo praëjus trims savaitëms, morkos septynias dienas<br />

buvo ðvitinamos atitinkama UV-B spinduliuotës doze. T<strong>ir</strong>tas tokiø UV-B spinduliuotës<br />

doziø poveikis morkø biometriniams rodikliams: 0 (kontrolë), 1, 3, 5, 7 <strong>ir</strong> 9 kJ<br />

m -2 d -1 . Bandymo metu buvo 16 val. fotoperiodas, temperatûra dienà +21°C, naktá –<br />

+17°C. Pasibaigus UV-B poveikiui, kas dvi savaites buvo atliekami augalø biometriniai<br />

matavimai. 1 kJ m 2 d -1 UV-B spinduliuotës dozë stimuliavo morkø fiziologinius<br />

procesus. Ðia doze paveiktø morkø ðakniavaisiuose buvo sukaupta daugiausiai sausøjø<br />

medþiagø. Morkose, paveiktose 5 <strong>ir</strong> 7 kJ m -2 d -1 UV-B spinduliuotës dozëmis,<br />

pas<strong>ir</strong>eiðkë kompensaciniai reiðkiniai, suaktyvëjo adaptaciniai procesai.<br />

Reikðminiai þodþiai: biometriniai rodikliai, Daucus sativus Röhl., UV-B spinduliuotë.<br />

Ávadas. Pastaraisiais deðimtmeèiais vis aktualesnës tampa aplinkos problemos,<br />

susijusios su ozono kiekio pokyèiais stratosferoje <strong>ir</strong> troposferoje. Stratosferos ozono<br />

sluoksnio plonëjimas turi átakos ultravioletinës spinduliuotës srauto, pasiekianèio þemës<br />

pav<strong>ir</strong>ðiø <strong>ir</strong> daranèio daug reikðmingø fotobiologiniø efektø augalams, didëjimui<br />

(Carletti <strong>ir</strong> kt., 2003; Wei <strong>ir</strong> kt., 2003; Yang <strong>ir</strong> kt., 2004).<br />

Ultravioletinë spinduliuotë pagal bangø ilgá sk<strong>ir</strong>stoma á: UV-A (315–400 nm),<br />

UV-B (280–315 nm) <strong>ir</strong> UV-C (100–280 nm) spektro ruoþus. Kuo trumpesnës ðiø<br />

spinduliø bangos, tuo stipresnis poveikis gyviems organizmams. Pavojingiausius UV-C<br />

spindulius stratosferos ozono sluoksnis sugeria beveik visus, o UV-A spinduliø beveik<br />

nesulaiko. Kai kuriø mokslininkø tyrimai parodë, kad pastarieji taip pat daro<br />

neigiamà poveiká augalø fiziologiniams procesams (Helsper <strong>ir</strong> kt., 2003; Krizek, 2004;<br />

Ranèelienë <strong>ir</strong> kt., 2005). UV-B spinduliuotës poveikis augalams yra gan áva<strong>ir</strong>iapusiðkas.<br />

Didesnë negu áprasta spinduliuotë sukelia sk<strong>ir</strong>tingus augalo làsteliø paþeidimus<br />

(Rozema <strong>ir</strong> kt., 1997; Jansen <strong>ir</strong> kt., 1998; Hollosy, 2002). Pakitimai <strong>ir</strong> paþeidimai<br />

223


molekuliniame lygmenyje neabejotinai keièia augimo <strong>ir</strong> vystimosi procesus. (Wei <strong>ir</strong><br />

kt., 2003; Julkunen-Tiitto <strong>ir</strong> kt., 2005). Dël UV-B spinduliuotës poveikio sumaþëja<br />

daugelio augalø rûðiø augimas <strong>ir</strong> biomasë (Correia <strong>ir</strong> kt., 1999; Mazza <strong>ir</strong> kt., 1999).<br />

Taèiau daugelis tyrëjø (Liu <strong>ir</strong> kt., 1995; Stephen <strong>ir</strong> kt., 1999; Schmitz-Hoerner, 2003;<br />

Valkama <strong>ir</strong> kt., 2003) teigia, kad UV-B spinduliuotë nesumaþina biomasës, fotosintetiniø<br />

pigmentø kiekio arba ðis sumaþëjimas yra nedidelis. Tai galima paaiðkinti tuo,<br />

kad sk<strong>ir</strong>tingø genotipø augalai per evoliucijà suformavo sk<strong>ir</strong>tingas morfologines, fiziologines<br />

<strong>ir</strong> biochemines saugos sistemas (Hollosy, 2002), todël nevienodai toleruoja<br />

UV-B spinduliø poveiká.<br />

Augalø atsparumo UV-B spinduliuotei, kaip prisitaikymo prie besikeièianèiø klimato<br />

<strong>ir</strong> kitø aplinkos sàlygø, tyrimai tampa aktualiu moksliniu uþdaviniu <strong>ir</strong> turi neabejotinà<br />

praktinæ reikðmæ. Literatûroje nurodoma sk<strong>ir</strong>tinga áva<strong>ir</strong>iø augalø reakcija á didëjanèià<br />

UV-B spinduliuotæ (Mazza <strong>ir</strong> kt., 1999, Valkama <strong>ir</strong> kt., 2003), todël bûtinas<br />

atsk<strong>ir</strong>ø augalø rûðiø atsparumo tyrimas.<br />

Tyrimo tikslas – kontroliuojamomis sàlygomis ávertinti sk<strong>ir</strong>tingø UV-B doziø<br />

poveiká valgomosios morkos biometriniø rodikliø kitimui.<br />

Tyrimo objektas <strong>ir</strong> metodai. UV-B spinduliuotës poveikio valgomosioms morkoms<br />

(Daucus sativus Röhl.) ‘Garduolës 2’ bandymai buvo daromi Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto fitokamerose.<br />

Morkos augintos artimo neutraliam rûgðtumo (6,0–6,<strong>25</strong> pH) durpiø substrate, 5<br />

litrø vegetaciniuose induose, trimis pakartojimais, ðeðiais variantais. Iki sudygimo <strong>ir</strong><br />

tris savaites po sudygimo jos augintos ðiltnamyje, po to perneðtos dviem dienoms á<br />

fitokameras, kad prisitaikytø prie pasikeitusiø sàlygø, <strong>ir</strong> tada 7 dienas buvo ðvitinamos<br />

atitinkama UV-B spinduliuotës doze. T<strong>ir</strong>tos tokios UV-B spinduliuotës dozës: 0<br />

(kontrolë), 1, 3, 5, 7 <strong>ir</strong> 9 kJ m -2 d -1 .<br />

Bandymo metu buvo palaikomas 16 val. fotoperiodas, temperatûra dienà +21°C,<br />

o naktá +17°C. Kamerose buvo árengtos UV-B lempos (Philips TL 40W/12 RS UV-B<br />

Medical). Augalai kasdien tam tikrà laikà buvo veikiami UV-B spinduliuote, kad gautø<br />

atitinkamà p<strong>ir</strong>miau nurodytà UV-B spinduliuotës paros dozæ. Po ðio poveikio augalai<br />

dar 4 savaites auginti fitotrono kamerose.<br />

Ið karto, pasibaigus UV-B poveikiui, atlikti augalø biometriniai matavimai, kurie<br />

kartoti kas dvi savaites. Atliekant biometrinæ analizæ, iðmatuotas kiekvieno varianto<br />

atsitiktinai pas<strong>ir</strong>inktø penkiø augalø antþeminës dalies aukðtis <strong>ir</strong> lapø skaièius. Po to<br />

lapø ploto matuokliu CI-202, CID iðmatuotas tø paèiø augalø asimiliacinis plotas.<br />

Sausøjø medþiagø kiekis lapuose <strong>ir</strong> ðakniavaisiuose nustatytas gravimetriðkai, iðdþiovinus<br />

105°C temperatûroje iki nekintamos masës.<br />

Atliekant statistinæ analizæ, vidurkiai <strong>ir</strong> standartiniai nuokrypiai apskaièiuoti naudojant<br />

MS EXCEL statistinæ programà. Duomenø patikimumas ávertintas statistine<br />

programa ANOVA (ANOVA for Excel v 3.43), UV-B spinduliuotës poveikio morkø<br />

biometriniams rodikliams sk<strong>ir</strong>tumø nuo kontrolës reikðmingumas nustatytas Fisher‘s<br />

LSD testu (p ≤ 0,05).<br />

Rezultatai. Sk<strong>ir</strong>tinga UV-B spinduliuotës dozë lapø skaièiui esminës átakos neturëjo.<br />

Po 7 dienø poveikio UV-B spinduliuote daugiausia lapø iðaugino 1 m -2 d -1 kJ<br />

doze ðvitintos morkos. Praëjus dviem savaitëms po poveikio, daugiausia lapø turëjo<br />

kontroliniai augalai. Po keturiø savaièiø 0 (kontrolë), 1 <strong>ir</strong> 3 kJ m -2 d -1 spinduliuotës<br />

224


dozëmis ðvitintø morkø lapø skaièius sumaþëjo, o 5 <strong>ir</strong> 7 kJ m -2 d -1 dozëmis paveiktø<br />

augalø lapø skaièius turëjo tendencijà didëti (1 pav.).<br />

Didþiausià lapø plotà formavo 1 kJ m -2 d -1 UV-B spinduliuotës doze paveikti<br />

augalai. Po poveikio praëjus dviem savaitëms, 1 <strong>ir</strong> 3 kJ m -2 d -1 spinduliuotëmis paveiktø<br />

augalø lapø plotas pradëjo maþëti, o paveiktø 7 <strong>ir</strong> 9 kJ m -2 d -1 – didëjo (2 pav.).<br />

1 pav. Morkø ‘Garduolës 2’ lapø skaièiaus kitimo priklausomumas<br />

nuo sk<strong>ir</strong>tingos UV-B dozës<br />

Fig. 1. The number of carrot ‘Garduolës 2’ leaves at different UV-B dozes<br />

2 pav. Sk<strong>ir</strong>tingos UV–B spinduliuotës poveikis morkø ‘Garduolës 2’ lapø plotui<br />

Fig. 2. The area of carrot ‘Garduolës 2’ leaves at different UV-B doses<br />

UV-B spinduliuotës dozës nuo 1 iki 9 kJ m -2 d -1 morkø antþeminës dalies aukðèiui<br />

esminës átakos neturëjo, taèiau buvo matomos tam tikros didëjimo <strong>ir</strong> maþëjimo tendencijos.<br />

Praëjus dviem savaitëms po poveikio, 7 kJ m -2 d -1 doze veiktø augalø aukðtis,<br />

palyginti su kontrole, padidëjo 3 proc., o po keturiø savaièiø – 10,2 proc. (3 pav.).<br />

Morkos, paveiktos 1 kJ m -2 d -1 doze, sukaupë daugiausia sausøjø medþiagø<br />

antþeminëje dalyje (4 pav.), taèiau esminiø sk<strong>ir</strong>tumø nuo kontroliniø augalø nebuvo.<br />

Sk<strong>ir</strong>tingos UV-B spinduliuotës dozës turëjo átakos sausøjø medþiagø kaupimuisi ðakniavaisiuose.<br />

Daugiausia sausøjø medþiagø ðakniavaisiuose buvo po poveikio praëjus<br />

keturioms savaitëms. Augalai, paveikti 1 kJ m -2 d -1 doze, sausøjø medþiagø ðaknia-<br />

2<strong>25</strong>


vaisiuose sukaupë daugiausia <strong>ir</strong> ið esmës (p < 0,05) skyrësi nuo kontroliniø augalø<br />

(5 pav.).<br />

3 pav. Sk<strong>ir</strong>tingos UV-B spinduliuotës poveikis morkø ‘Garduolës 2’<br />

antþeminës dalies aukðèiui<br />

Fig. 3. The overground height of carrot ‘Garduolës 2’ at different UV-B doses<br />

4 pav. Sausøjø medþiagø kaupimosi morkø ‘Garduolës 2’ antþeminëje dalyje<br />

priklausomumas nuo UV-B dozës<br />

Fig. 4. The accumulation of dry matter in the overground part of carrot ‘Garduolës 2’<br />

at different UV-B doses<br />

5 pav. Sausøjø medþiagø kaupimosi morkø ‘Garduolës 2’ ðakniavaisyje<br />

priklausomumas nuo UV-B dozës<br />

Fig. 5. The accumulation of dry matter in the carrot ‘Garduolës 2’ rhizocarp at different<br />

UV-B doses<br />

226


Aptarimas. Ultravioletinës spinduliuotës poveikis augalams yra áva<strong>ir</strong>iapusis: nedidelës<br />

dozës skatina fiziologinius procesus, taèiau didesnës jos dozës silpnina gyvø<br />

organizmø savisaugos galimybes (Janavièienë, 2005). Sk<strong>ir</strong>tingø genotipø augalai per<br />

evoliucijà suformavo sk<strong>ir</strong>tingas morfologines, fiziologines <strong>ir</strong> biochemines saugos sistemas,<br />

todël nevienodai toleruoja UV-B spinduliuotæ (Hollosy, 2002).<br />

T<strong>ir</strong>tiems morkø biometriniams rodikliams sk<strong>ir</strong>tingos UV-B dozës didelës átakos<br />

neturëjo, taèiau buvo matomos ðiø rodikliø didëjimo <strong>ir</strong> maþëjimo tendencijos.<br />

1 kJ m -2 d -1 UV-B spinduliuotës dozë turëjo stimuliuojantá poveiká lapø skaièiui, lapø<br />

plotui, antþeminës dalies aukðèiui bei sausosioms medþiagoms lapuose <strong>ir</strong> ðakniavaisiuose.<br />

Ir tai natûralu, nes vidutinë paros dozë saulëtomis vasaros dienomis siekia<br />

2,1 kJ m -2 d -1 (Jonavièienë, 2005). Mûsø tyrimø duomenimis, UV-B spinduliuotës<br />

3 kJ m -2 d -1 dozë ðiek tiek prislopino fiziologinius procesus, o 5 <strong>ir</strong> 7 kJ m -2 d -1 dozës<br />

ðiek tiek suaktyvino ðiuos procesus. Manoma, kad taip yra dël to, jog didesnë nei<br />

3 kJ m -2 d -1 dozë stipriau suþadino morkø adaptacinius mechanizmus. Augalai yra<br />

iðvystæ unikalias reagavimo á nuolat kintanèias aplinkos sàlygas sistemas: jauèia supanèià<br />

aplinkà <strong>ir</strong> pritaiko savo fiziologinius bei metabolitinius procesus homeostazei<br />

palaikyti. Veikiant didelëmis UV-B dozëmis, sutrikdþius fermentø veiklà, pas<strong>ir</strong>eiðkia<br />

fotosintezës inhibicija. Visgi kiekvienos rûðies ðie procesai yra specifiniai <strong>ir</strong> augalai<br />

gali aklimatizuotis, indukuodami UV-B absorbuojanèiø flavonoidø biosintezæ <strong>ir</strong> taip<br />

apsaugoti savo fotosintezës sistemà (Allen <strong>ir</strong> kt., 1998).<br />

Iðvados. 1. 1 kJ m 2 d -1 UV-B spinduliuotës dozë stimuliavo morkø fiziologinius<br />

procesus. Ðia doze paveiktø morkø ðakniavaisiuose buvo sukaupta daugiausia sausøjø<br />

medþiagø.<br />

2. Morkose, paveiktose 5 <strong>ir</strong> 7 kJ m -2 d -1 UV-B spinduliuotës dozëmis, pas<strong>ir</strong>eiðkë<br />

kompensaciniai reiðkiniai, suaktyvëjo adaptaciniai procesai.<br />

Padëka. Autoriai dëkingi VMSF uþ finansinæ paramà.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Allen D. J., Nogues S., Baker N. R. Ozone depletion and increased UV-B radiation:<br />

is there a real threat to photosynthesis // Journal of Experimental Botany. 1998. Vol. 49.<br />

P. 1775–1788.<br />

2. Carletti P., Masi A., Wonish A., Grill D., Tausz M., Ferretti M. Changes in antioxidant<br />

and pigment pool dimensions in UV-B <strong>ir</strong>radiated maize seedlings // Env<strong>ir</strong>onmental<br />

and Experimental Botany. 2003. Vol. 50. P. 149–157.<br />

3. Correia C. M., Torres-Pere<strong>ir</strong>a M. S., Torres-Pere<strong>ir</strong>a J. M. G. Growth, photosynthesis<br />

and UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B<br />

radiation // Env<strong>ir</strong>onmental Pollution. 1999. Vol.104. P. 383–388.<br />

4. Helsper J. P. F.G., Ric de Vos C. H., Mass F. M., Jonker H. H., van der Broeck H. C.,<br />

Jordi W., Pot C. S., Keizer L. C. P., Schapendonk A. H. C. M. Response of selected antioxidants<br />

and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A<br />

exposure // Physiologia Plantarum. 2003. Vol. 117. P. 171–178.<br />

5. Hollosy F. Effects of ultraviolet radiation on plant cell // Micron. 2002. 33.<br />

P. 179–197.<br />

227


6. Yang H., Zhao Z., Qiang W., An L., Xu S., Wang X. Effects of enhanced UV-B<br />

radiation on the hormonal content of vegetative and reproductive tissues of two tomato<br />

cultivars and the<strong>ir</strong> relationships with reproductive characteristics // Plant Growth Regulation.<br />

2004. Vol. 42. P. <strong>25</strong>1–<strong>25</strong>8.<br />

7. Jansen M. A. K., Gaba V., Grreeberg B.M. Higher plants and UV-B radiation:<br />

balancing damage, repa<strong>ir</strong> and acclimation // Trends in plant science. 1998. Vol. 3.<br />

P. 131–135.<br />

8. Julkunen-Tiitto R., Haggman H., Aphalo P. J., Lavola A., Tegelberg R., Veteli T.<br />

Growth and defense in deciduous tress and shrubs under UV-B // Env<strong>ir</strong>onmental Pollution.<br />

2005. Vol. 137. P. 404–414.<br />

9. Jonavièienë R. Ultravioletinës Saulës spinduliuotës matavimai Lietuvos hidrometeorologijos<br />

tarnyboje // Meteorologija <strong>ir</strong> hidrologija Lietuvoje: raida <strong>ir</strong> perspektyvos //<br />

Respublikinë mokslinë konferencija. 2005 03 23. P. 48–49.<br />

10. Krizek T. D. Influence of PAR and UV-A in determining plant sensitivity and<br />

photomorphogenic responses to UV-B radiation // Photochemistry and Photobiology.<br />

2004. Vol. 79. P. 307–315.<br />

11. Liu L., Gitz D. C., McClure J. W. Effects of UV-B on flavonoids, ferulic acid,<br />

growth and photosynthesis in barely primary leaves // Physologia Plantarum. 1995.<br />

Vol. 93. P. 7<strong>25</strong>–733.<br />

12. Mazza C. A., Battista D., Zima A. M., Szwarcberg-Bracchitta M., Giordano C. V.,<br />

Acevedo A., Scopel A. L., Scopel A. L., Ballare C. L. The effects of solar ultraviolet-B<br />

radiation on the growth and yield of barley are accompanied by increased DNA damage<br />

and antioxidant responses // Plant, Cell and Env<strong>ir</strong>onment. 1999. Vol. 22. P. 61–70.<br />

13. Ranèelienë V., Vyðniauskienë R., Janèys Z., Ðlekytë K. Action of UV-B on Crepis<br />

capillaries (L.) Wallr. Plants in controlled env<strong>ir</strong>onmental conditions // Biologija. 2005. Nr. 3.<br />

P. 74–80.<br />

14. Rozema J., Jos van de Staaij, Bjorn L. O., Caldwell M. UV-B as an env<strong>ir</strong>onmental<br />

factor in plant life: stress and regulation // Tree. 1997. Vol. 12. P. 22–28.<br />

15. Schmitz-Hoerner R., Weissenbock G. Contribution of phenolic compounds to the<br />

UV-B screening capacity of developing barley primary leaves in relation to DNA damage<br />

and repa<strong>ir</strong> under elevated UV-B levels // Phytochemistry. 2003. Vol. 64. P. 243–<strong>25</strong>5.<br />

16. Stephen J., Woodfin R., Corlett J. E., Paul N. D., Jones H. G. Response of barley<br />

and pea crops to supplementary UV-B radiation // Journal of Agricultural Science, Cambridge,<br />

1999. Vol. 132. P. <strong>25</strong>3–261.<br />

17. Valkama E., Kivimaenpaa M., Hartikainen H., Wulff A. The combined effects of<br />

enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure<br />

in strawberry (Fragaria X ananassa) and barley (Hordeum vulgare) treated in the<br />

field // Agricultural and Forest Meteorology. 2003. Vol. 120. P. 267–278.<br />

18. Wei G., Zheng Y., Slusser J. R., Heisler G. M. Impact of enhanced ultraviolet-B<br />

<strong>ir</strong>radiance on cotton growth, development, yield, and qualities under field conditions //<br />

Agricultural and Forest Meteorology. 2003. Vol. 120. P. 241–248.<br />

228


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

BIOMETRIC INDEXES OF CARROT IN RESPONSE<br />

TO DIFFERENT UV-B RADIATION<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë, J. B. Ðikðnianienë,<br />

G. Samuolienë, P. Duchovskis<br />

Summary<br />

Vegetative experiments were carried out in Laboratory of Plant Physiology at<br />

the Lithuanian Institute of Horticulture under phytotron conditions in 2005. The aim<br />

of the study was to establish the impact of different UV-B doses on biometric indexes<br />

of carrots. Plants were treated with different UV-B doses: 0 (reference), 1, 3, 5,<br />

7 <strong>ir</strong> 9 kJ m -2 d -1 . A photoperiod of 16 h was used and a<strong>ir</strong> temperature of 21/17°C<br />

(day/night) was maintained throughout the experiment. Biometric measurements of<br />

plants and photosynthesis productivity were determined at the end of treatment, two<br />

weeks and four weeks after the treatment. The UV-B dose of 1kJ m 2 d -1 stimulated the<br />

physiological processes in the plants. The greatest content of dry weight in carrots<br />

rhizocarp was accumulated applying this dose. The UV-B doses of 5and 7 kJ m -2 d -1<br />

induced the adaptive mechanisms in carrots.<br />

Key words: biometry, Daucus sativus Röhl., UV-B radiation.<br />

229


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POMIDORØ (LYCOPERSICON ESCULENTUM MILL.)<br />

VIRUSØ DIAGNOSTIKA ELEKTRONOMIKROSKOPINIU<br />

IR MOLEKULINIU METODAIS<br />

Irena ZITIKAITË 1 , Elena SURVILIENË 2 Gerda BÛTAITË1<br />

,<br />

1<br />

Botanikos institutas, Þaliøjø Eþerø g. 49, LT-08406, Vilnius.<br />

El. paðtas izitika@botanika.lt; gerda_butaite@yahoo.com<br />

2<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas e.surviliene@lsdi.lt<br />

Straipsnyje pateikiami pomidorus (Lycopersicon esculentum Mill.) paþeidþianèiø<br />

kai kuriø v<strong>ir</strong>usiniø ligø sukëlëjø diagnostikos perðvieèiamosios elektroninës mikroskopijos<br />

<strong>ir</strong> molekulinës biologijos metodais tyrimø rezultatai. V<strong>ir</strong>usø paþeistø pomidorø<br />

ëminiai buvo renkami privaèiuose darþuose <strong>ir</strong> ûkiuose, bandymø laukuose, botanikos<br />

sodø darþoviø kolekcijose áva<strong>ir</strong>iose Lietuvos vietovëse. V<strong>ir</strong>usiniai paþeidimai<br />

pas<strong>ir</strong>eiðkë pomidorø augimo sutrikimu: buvo sutrumpëjæ tarpubambliai, iðryðkëjusios<br />

lapø gyslos, lapai <strong>ir</strong> vaisiai chlorotiðki, margi, deformuoti, jø pav<strong>ir</strong>ðiuje buvo þiediðkø<br />

dëmiø. Siekiant tiksliai nustatyti patogenà, v<strong>ir</strong>usø paþeistø pomidorø mëginiai buvo<br />

atrinkti preliminariai nustaèius v<strong>ir</strong>usus tradiciniais metodais. Atlikus pomidorø lapø<br />

ar vaisiø nevalytø ekstraktø elektronomikroskopinius tyrimus, nustatyta v<strong>ir</strong>ionø morfologija<br />

(izometrinës dalelës). Ið v<strong>ir</strong>usais uþsikrëtusiø augalø audiniø buvo ekstrahuota<br />

<strong>ir</strong> iðvalyta ribonukleininë rûgðtis (RNR). Pagal tiksliai þinomas v<strong>ir</strong>uso baltymo geno<br />

sekas buvo parinktos konkreèiam v<strong>ir</strong>usui specifinës oligonukleotidø (pradmenø) poros.<br />

Su polimerazës grandininës reakcijos (PGR) technika pagal gautø kopijinës dezoks<strong>ir</strong>ibonukleininës<br />

rûgðties (cDNR) amplifikacijos produktø dydþius <strong>ir</strong> lokalizacijos vietà<br />

elektroforezës 5% poliakrilamidiniame gelyje t<strong>ir</strong>tø pomidorø mëginiuose buvo patv<strong>ir</strong>tinti<br />

v<strong>ir</strong>usø identifikavimo rezultatai, gauti t<strong>ir</strong>iant v<strong>ir</strong>usø biologines <strong>ir</strong> morfologines<br />

savybes. Mûsø t<strong>ir</strong>tø pomidorø mëginiuose buvo identifikuoti agurkø mozaikos (Cucumber<br />

mosaic cucumov<strong>ir</strong>us, CMV), pomidorø þiediðkosios dëmëtligës (Tomato ringspot<br />

nepov<strong>ir</strong>us, ToRSV) <strong>ir</strong> vaistuèio mozaikos (Arabis mosaic nepov<strong>ir</strong>us, ArMV) v<strong>ir</strong>usai.<br />

Pastarieji du v<strong>ir</strong>usai yra áraðyti á kenksmingø organizmø sàraðà.<br />

Reikðminiai þodþiai: diagnostika, EM, pomidorai, RT-PGR, v<strong>ir</strong>usai.<br />

Ávadas. Pomidoruose (Lycopersicon esculentum Mill.) parazituoja apie dvi deðimtys<br />

v<strong>ir</strong>usø, sukelianèiø didelius produktyvumo bei derliaus nuostolius <strong>ir</strong> susilpninanèiø<br />

atsparumà kitiems patogenams (grybams, bakterijoms), netinkamai agrotechnikai<br />

<strong>ir</strong> nepalankiems aplinkos veiksniams. Be to, pomidorai yra <strong>ir</strong> daugelio v<strong>ir</strong>usø<br />

230


alternatyvûs augalai ðeimininkai (Brunt <strong>ir</strong> kt., 1996; Edwardson, Chistie, 1997; Ðutic<br />

<strong>ir</strong> kt., 1999). Plaèiai paplitæ pomidoruose yra ðie v<strong>ir</strong>usai: pomidorø mozaikos (Tomato<br />

mosaic tobamov<strong>ir</strong>us), tabako mozaikos (Tobacco mosaic tobamov<strong>ir</strong>us), agurkø mozaikos<br />

(Cucumber mosaic cucumov<strong>ir</strong>us), bulviø X (Potato X potexv<strong>ir</strong>us) <strong>ir</strong> bulviø Y<br />

(Potato Y potyv<strong>ir</strong>us), o pietinëse Europos <strong>ir</strong> Amerikos ðalyse – pomidorø dëmëtojo<br />

vytulio (Tomato spotted wilt tospov<strong>ir</strong>us), pomidorø geltonø lapø garbanës (Tomato<br />

yellow leaf curl begomov<strong>ir</strong>us) <strong>ir</strong> pepino mozaikos (Pepino mosaic potexv<strong>ir</strong>us) v<strong>ir</strong>usai<br />

(Ðutic <strong>ir</strong> kt., 1999). Ypaè neigiamai pomidorø derliø veikia labai juose daþnos<br />

v<strong>ir</strong>usø kompleksinës infekcijos. Pagal pastebëtus pomidorø v<strong>ir</strong>usinës kilmës paþeidimus<br />

tiksliai nusakyti v<strong>ir</strong>uso rûðá yra sunku, nes simptomø iðraiðka gali bûti labai áva<strong>ir</strong>i.<br />

Áva<strong>ir</strong>ûs v<strong>ir</strong>usai tuose paèiuose augaluose gali sukelti vienodus simptomus. Tas pats<br />

v<strong>ir</strong>usas áva<strong>ir</strong>iø veisliø pomidoruose sk<strong>ir</strong>tingu nuo uþsikrëtimo pradþios metu gali pas<strong>ir</strong>eikðti<br />

sk<strong>ir</strong>tingais poþymiais. Gali klaidinti <strong>ir</strong> v<strong>ir</strong>usø miðinys. Todël sukëlëjams tiksliai<br />

identifikuoti naudotini tikslûs <strong>ir</strong> jautrûs metodai.<br />

P<strong>ir</strong>minë pomidoruose aptiktø kai kuriø v<strong>ir</strong>usø identifikacija atlikta mechaniðkai<br />

inokuliuojant augalus – indikatorius infekuotø pomidorø ekstraktais. Uþsikrëtusiø augalø<br />

spektras <strong>ir</strong> iðryðkëjæ simptomai juose leido preliminariai identifikuoti pomidorus<br />

paþeidusius v<strong>ir</strong>usus (Zitikaitë, 1999). Minëtas metodas yra labai imlus laiko <strong>ir</strong> darbo<br />

sànaudoms <strong>ir</strong> nelabai tikslus. Norint greièiau <strong>ir</strong> tiksliau nustatyti pomidorø v<strong>ir</strong>usiniø<br />

ligø sukëlëjus, yra atliekami v<strong>ir</strong>ionø morfologijos tyrimai perðvieèiamuoju elektroniniu<br />

mikroskopu <strong>ir</strong> v<strong>ir</strong>uso RNR fragmentø padauginimai atv<strong>ir</strong>kðtinës transkripcijospolimerazës<br />

grandininëse reakcijose, kombinuojant specifiniø oligonukleotidø poras,<br />

termostabilià DNR polimerazæ, taikant fragmentø denatûravimo, transkripcijos <strong>ir</strong> DNR<br />

sintezës besikartojanèius ciklus aukðtoje temperatûroje (Saiki <strong>ir</strong> kt., 1988).<br />

Darbo tikslas – patikimai identifikuoti pomidoruose aptiktus <strong>ir</strong> klasikiniais metodais<br />

preliminariai ávardytus kai kuriuos v<strong>ir</strong>usus, esant maþam jø titrui ar kompleksinei<br />

v<strong>ir</strong>usinei infekcijai, naudojant tikslius <strong>ir</strong> jautrius elektroninës mikroskopijos (EM)<br />

<strong>ir</strong> molekuliná polimerazës grandininës reakcijos (PGR) metodus.<br />

Tyrimo objektas <strong>ir</strong> metodai. V<strong>ir</strong>usiniø ligø paþeisti pomidorø ëminiai laboratoriniams<br />

tyrimams buvo surinkti privaèiuose darþuose <strong>ir</strong> ûkiuose, bandymø laukuose,<br />

botanikos sodø darþoviø kolekcijose áva<strong>ir</strong>iose Lietuvos vietovëse. Tyrimai buvo atliekami<br />

Fitov<strong>ir</strong>usø laboratorijoje <strong>ir</strong> jai priklausanèiame ðiltnamyje.<br />

Siekiant preliminariai nustatyti sukëlëjø gentá, iðlaikyti <strong>ir</strong> padauginti v<strong>ir</strong>usà, infekcijos<br />

buvo perneðtos á atitinkamus diagnostiniø augalø rinkinius mechaninës inokuliacijos<br />

bûdu.<br />

Kad bûtø nustatyta v<strong>ir</strong>usiniø ligø sukëlëjø daleliø morfologija (v<strong>ir</strong>ionø forma <strong>ir</strong><br />

dydis), t<strong>ir</strong>iant natûraliai infekuotø pomidorø ar d<strong>ir</strong>btinai v<strong>ir</strong>usais uþkrëstø diagnostiniø<br />

augalø lapø ar vaisiø nevalytus ekstraktus, naudotas perðvieèiamasis elektroninis<br />

mikroskopas (EM) JEOL JEM-100S. Instrumentinis didinimas – <strong>25</strong> 000 x (Dijkstra,<br />

de Jager, 1998). Preparatai EM buvo ruoðiami ant specialiø 2–3 mm skersmens tinkleliø,<br />

padengtø koloidine plëvele, kuri tv<strong>ir</strong>tinama anglimi. T<strong>ir</strong>iamoji medþiaga buvo<br />

ruoðiama ágramzdinimo bûdu <strong>ir</strong> kontrastuojama 2% uranilo acetato vandens t<strong>ir</strong>palu.<br />

Kad bûtø nustatyta molekulinë v<strong>ir</strong>uso rûðis, su PGR technika ið infekuotø pomidorø<br />

mëginiø buvo ekstrahuota <strong>ir</strong> iðvalyta ribonukleininë rûgðtis (RNR). Ið infekuotø<br />

pomidorø audiniø ji buvo iðsk<strong>ir</strong>iama pagal Y. Zhango <strong>ir</strong> kitø (Zhang <strong>ir</strong> kt., 1998)<br />

231


metodikà su neþymiomis modifikacijomis <strong>ir</strong> rinkinio “Quick Prep total RNA extraction<br />

kit for the d<strong>ir</strong>ect isolation of total RNA from most eukaryotic tissues or cells“<br />

(Amersham Pharmacia Biotechsciences, UK) instrukcijà bei rekomendacijas. Uþðaldyta<br />

-20°C temperatûroje v<strong>ir</strong>usu uþsikrëtusi augalinë medþiaga (apie <strong>25</strong> mg/g) uþpilama<br />

skystu azotu <strong>ir</strong> homogenizuojama steriliame grûstuvëlyje. Dalis medþiagos atðaldytu<br />

ðpateliu perkeliama á Ependorf mëgintuvëlius. Augalinë medþiaga uþpilama<br />

1 x STE (0,1 M NaCl, 0,05 M TRIS, 0,001 M EDTA) buferiu pH 6,8 <strong>ir</strong> 10% SDS,<br />

pridedant 2 x STE buferyje paruoðto fenolo. Po to centrifuguojama <strong>ir</strong> v<strong>ir</strong>ðutinë fazë<br />

perkeliama á naujà mëgintuvëlá. T<strong>ir</strong>palas uþpilamas 30% etanoliu <strong>ir</strong> pridedama celiuliozës<br />

Whatman CF-11 milteliø. Celiuliozë iðplaunama maiðant <strong>ir</strong> centrifuguojant 3<br />

kartus su 1 x STE buferiu, esant 16,5% etanolio. RNR nusodinama su 3 M natrio<br />

acetatu <strong>ir</strong> etanoliu, inkubuojama esant -20°C temperatûrai. Perplaunama 80% etanoliu,<br />

po to resuspenduojama PGR vandenyje.<br />

Naudojant p<strong>ir</strong>miau minëtà totalinës RNR ekstrakcijos rinkiná, t<strong>ir</strong>iamosios medþiagos<br />

milteliai po homogenizacijos skystame azote uþpilami 150 μl ekstrakcijos<br />

buferio <strong>ir</strong> 3 μl 14,3 M β-merkaptoetanolio. Pridedama 350 μl LiCl <strong>ir</strong> 500 μl CsTFA.<br />

Mëgintuvëliai 10 min. palaikomi lede, po to centrifuguojami 15 min./14 000 g. Nusiurbiami<br />

susidaræ baltymø <strong>ir</strong> DNR sluoksniai. Gautos RNR nuosëdos plaunamos trimis<br />

rinkinio komponentais, kad bûtø paðalintas baltymø <strong>ir</strong> DNR uþterðtumo perv<strong>ir</strong>ðis,<br />

esantis ant nuosëdø ar mëgintuvëliø sieneliø. Po to centrifuguojama 5 min./14 000 g.<br />

Nusiurbiamas supernatantas. Precipitatai uþpilami 70% etanoliu, paruoðtu PGR vandenyje.<br />

Po to medþiaga inkubuojama paliekant ilgesná laikà -20°C temperatûroje. Po<br />

inkubacijos centrifuguojama 5 min./14 000 g. Nusiurbiamas etanolis. Nuosëdos uþpilamos<br />

dejonizuotu H 2<br />

O, paveiktu dietilp<strong>ir</strong>okarbonatu (DEPC), <strong>ir</strong> pridedama ribonukleaziø<br />

inhibitoriaus. Nuosëdos suardomos <strong>ir</strong> t<strong>ir</strong>pinamos maiðant. Mëgintuvëliai<br />

paðildomi 10 min. +65°C temperatûros vandens termostate. Iðt<strong>ir</strong>pinta totalinë RNR<br />

buvo naudojama PGR.<br />

Siekiant atlikti ið pomidorø iðsk<strong>ir</strong>tø v<strong>ir</strong>usø detekcijà atv<strong>ir</strong>kðtinës transkriptazës<br />

(AT) PGR metodu (Dijkstra de Jager, 1998; Forster, Taylor, 1998), naudotasi specifiniais<br />

oligonukleotidø pradmenimis, kurie buvo parinkti pagal tiksliai þinomas v<strong>ir</strong>uso<br />

baltymo geno sekas. Pradmenø poros ið pomidorø iðsk<strong>ir</strong>tø v<strong>ir</strong>usø biologinei diagnostikai<br />

patv<strong>ir</strong>tinti buvo ðios: CMV: U (5’ – GTA GAC ATC TGT GAC GCG GA-3’) nt<br />

114-132 <strong>ir</strong> D ( 5’ – GCG CGA AAC AAG CTT CTT ATC – 3’) nt 633-653 (De Blas<br />

<strong>ir</strong> kt., 1994); ToRSV: U1 (5’ – GAC GAA GTT ATC AAT GGC AGC – 3’) (nt 1.078-<br />

1.098) <strong>ir</strong> D1 (5’ – TCC GTC CAA TCA CGC GAA T – 3’) nt 1.506-1.527) (Griesbach,<br />

1995); ArMV: AP1 2 (5’ – AAT ACC CCG GGT GTT ACA TCG – 3’) <strong>ir</strong> AP2 2<br />

(5’ – CAT TAA CTT AAG ATC AAG GAT TC – 3’) (Pantaleo <strong>ir</strong> kt., 2001). DNR<br />

fragmentø dydþio standartas buvo þymuo Nr. 9: Ôx174DNA/BsuRI(HaeIII) (AB<br />

„Fermentas“, Vilnius, Lietuva). Dydþiai ið v<strong>ir</strong>ðaus á apaèià: 1353, 1078, 872, 603,<br />

310, 281, 271, 234, 194, 118, 72 bp.<br />

AT-PGR trumpa schema: á valytos totalinës RNR t<strong>ir</strong>palà jai denatûruoti pridëta<br />

1% ribonukleaziø inhibitoriaus <strong>ir</strong> reversinio pradmens. Miðinys inkubuojamas 5 min.<br />

+70°C <strong>ir</strong> atðaldomas 5 min. +4°C temperatûroje. Vienvijës cDNR sintezë atliekama á<br />

denatûruotos RNR t<strong>ir</strong>palà pridëjus 5 x reakcijos buferio, ribonukleaziø inhibitoriaus,<br />

dNTP miðinio <strong>ir</strong> AT (RevertAid TM M-MuLV Reverse Transcriptase). Sintezuojama<br />

232


1 pav. CMV paþeisti pomidorø lapai<br />

Fig. 1. Cucumber leaves affected with CMV<br />

233<br />

termocikleryje „Ependorf Mastercycler Personal“ +37°C temperatûroje 60 min. <strong>ir</strong><br />

+70°C temperatûroje 10 min. DNR amplifikacija buvo atliekama á paruoðtà PGR<br />

miðiná (PGR vanduo, abu pradmenys: „Forward“ <strong>ir</strong> „Reverse“, dNTP miðinys, 10 x<br />

PGR buferis su MgCl 2<br />

<strong>ir</strong> rekombinantinë Taq polimerazë) (AB „Fermentas“, Lietuva)<br />

pridëjus t<strong>ir</strong>iamø mëginiø cDNR. AT-PGR buvo atliekama tokiu reþimu: +94°C –<br />

4 min., po to 40 ciklø (+94°C – 1 min., +52 arba +55°C – 2 min., +72°C – 2 min.)<br />

<strong>ir</strong> +72°C – 10 min. Gauti PGR produktai buvo analizuojami elektroforetiðkai (EF)<br />

naudojant 5% poliakrilamidiná gelá 1 x TBE buferyje, daþomi etidþio bromidu. Gautø<br />

cDNR amplifikuotø fragmentø juostelës EF gelyje buvo ryðkinamos <strong>ir</strong> fotografuojamos<br />

UV ðviesoje.<br />

Rezultatai. Pomidorus paþeidusiø kai kuriø v<strong>ir</strong>usø preliminariam biologiniam<br />

identifikavimui patv<strong>ir</strong>tinti buvo atrinkta per 10 v<strong>ir</strong>usiniø izoliatø ið lauko <strong>ir</strong> ðiltnaminiø<br />

pomidorø lapø ar vaisiø mëginiø. Stebëtø pomidorø v<strong>ir</strong>usiniai paþeidimai buvo labai<br />

áva<strong>ir</strong>ûs: margligës, mozaikos, þiediðkosios dëmëtligës, lapø iðaugos, lapalakðèiø <strong>ir</strong><br />

vaisiø deformacijos, áva<strong>ir</strong>aus pobûdþio augimo sutrikimai. Pomidorø mëginiai pagal<br />

v<strong>ir</strong>usiniø paþeidimø tipiðkiausius simptomus buvo iðt<strong>ir</strong>ti EM metodu. Visuose mëginiuose<br />

nustatyti sk<strong>ir</strong>tingos struktûros izometriniai v<strong>ir</strong>ionai.<br />

Agurkø mozaikos v<strong>ir</strong>usas (Cucumber mosaic cucumov<strong>ir</strong>us, CMV) buvo iðsk<strong>ir</strong>tas<br />

ið pomidorø ‘Ryèiai’ <strong>ir</strong> ‘Viltis’, augintø Këdainiø rajono laukuose. V<strong>ir</strong>usø paþeisti<br />

pomidorai buvo aptikti nedideliais þidiniais. Pomidorø lapalakðèiai buvo margi, susmulkëjæ,<br />

parudavusiomis gyslomis, labai deformuoti (1 pav.). Kai kuriø pomidorø<br />

lapai buvo siûliðki, nulinkusiomis þemyn v<strong>ir</strong>ðûnëmis. Tyrimo metu po diagnostiniø<br />

augalø inokuliacijos pas<strong>ir</strong>odë, kad v<strong>ir</strong>usas uþkrëtë Datura L., Gomphrena L., Nicotiana<br />

L., Cucumis L., Lycopersicon Mill, Tetragonia L. genèiø augalus, sukeldamas<br />

juose CMV bûdingus simptomus.<br />

Minëtø augalø nevalytø ekstraktø<br />

EM preparatuose nustatëme izometrinius<br />

(sferinius) su ryðkiu centru,<br />

apie 28 nm skersmens v<strong>ir</strong>ionus<br />

(2 pav.), bûdingus tik Cucumov<strong>ir</strong>us<br />

genties v<strong>ir</strong>usams. Remiantis<br />

augaluose indikatoriuose<br />

v<strong>ir</strong>uso sukeltø simptomø pobûdþiu,<br />

ypaè EM tyrimø v<strong>ir</strong>usiniø daleliø<br />

morfologiniø savybiø duomenimis,<br />

buvo nustatyta, kad t<strong>ir</strong>tuose pomidoruose<br />

v<strong>ir</strong>usinius paþeidimus sukëlë<br />

CMV (Francki <strong>ir</strong> kt., 1979).<br />

V<strong>ir</strong>uso identifikavimui patv<strong>ir</strong>tinti<br />

buvo panaudota AT-PGR. Totalinei<br />

RNR iðsk<strong>ir</strong>ti naudoti 2-jø pomidorø<br />

izoliatø CMV uþsikrëtæ Nicotiana<br />

glutinosa L. <strong>ir</strong> D. stramonium<br />

L. augalø uþðaldyti audiniai.<br />

Rezultatai elektroforezës akrilami-


diniame gelyje parodë, kad AT-PGR buvo gauti numatyti pagal panaudotà oligonukleotidø<br />

porà apie 400 bp (baziø porø) dydþio PGR produktai (3 pav.). Panaudoti pradmenys<br />

tiko CMV izoliatø ið pomidorø cDNR fragmentø amplifikacijai <strong>ir</strong> patv<strong>ir</strong>tino<br />

CMV, iðsk<strong>ir</strong>to ið pomidorø, identifikavimo biologiniu metodu rezultatus.<br />

2 pav. CMV dalelës infekuotø pomidorø ekstraktuose. Brûkðnys – 100 nm<br />

Fig. 2. Particles of CMV in tomato extracts. Bar represents 100 nm<br />

3 pav. AT-PGR amplifikuoti DNR produktai (~400 bp) ið CMV uþsikrëtusiø<br />

agurkø <strong>ir</strong> pomidorø: 1 takelis – DNR þymuo; 2 <strong>ir</strong> 3 takeliai – agurkø izoliatai;<br />

4 <strong>ir</strong> 5 takeliai – CMV, iðsk<strong>ir</strong>tas ið pomidorø; 6 takelis – sveiko augalo audiniai;<br />

7 takelis – neigiama kontrolë<br />

Fig. 3. RT-PCR products of CMV (about 400 bp): lane l - DNA ladder; lanes 2 and<br />

3 - cucumber samples; lanes 4 and 5 - CMV isolated from tomato samples;<br />

lane 6 - tissues of healthy plant; lane 7 - negative control<br />

Pomidorø þiediðkosios dëmëtligës v<strong>ir</strong>usas (Tomato ringspot nepov<strong>ir</strong>us, ToRSV)<br />

mechaninës inokuliacijos bûdu buvo izoliuotas ið ‘Olan’, ‘Sonata’, ‘Dombello’ <strong>ir</strong><br />

‘Raissa’ pomidorø, augintø Këdainiø, Kauno <strong>ir</strong> Vilniaus rajonuose. V<strong>ir</strong>usinæ simptomø<br />

kilmæ rodë lapalakðèiø chlorotinë þiediðkoji dëmëtligë <strong>ir</strong> jø raukðlëtumas, o vaisiø<br />

pav<strong>ir</strong>ðiuje – iðryðkëjæ þiedai baltais apvadais (4 pav.). EM tyrimui atrinktø pomidorø<br />

mëginiø preparatuose matëme daug neapibrëþtais kontûrais izometriniø v<strong>ir</strong>ionø<br />

(5 pav.), charakteringø ToRSV, perneðamam d<strong>ir</strong>vos nematodø (Stace-Smith, 1984;<br />

Brunt <strong>ir</strong> kt., 1996).<br />

234


4 pav. ToRSV paþeistas pomidoro vaisius<br />

Fig. 4. Tomato fruit affected by ToRSV<br />

5 pav. ToRSV dalelës paþeistø augalø<br />

ekstraktuose. Brûkðnys – 100 nm<br />

Fig. 5. The particles of ToRSV in plant<br />

extracts. Bar represents 100 nm<br />

AT-PGR, atliktos su ToRSV izoliatu ið pomidorø, panaudojant publikuotø nukleotidiniø<br />

sekø pagrindu parinktus pradmenis, elektroforezës 5% poliakrilamidiniame<br />

gelyje iðryðkëjæ cDNR amplifikacijos produktai (499 bp) <strong>ir</strong> jø lokalizacijos vieta<br />

(6 pav.) patv<strong>ir</strong>tino ToRSV identifikavimo rezultatus, gautus t<strong>ir</strong>iant v<strong>ir</strong>uso morfologines<br />

savybes <strong>ir</strong> analizuojant ligos pas<strong>ir</strong>eiðkimo simptomus pomidoruose.<br />

6 pav. PGR amplifikuoti DNR produktai (499 bp) ið ToRSV inokuliuotø augalø:<br />

1 <strong>ir</strong> 6 takeliai – DNR dydþio þymuo; 2 takelis – agurkø izoliatas;<br />

3 takelis – ToRSV, izoliuotas ið pomidorø <strong>ir</strong> perneðtas á N. rustica augalus;<br />

4 takelis – vilkdalgiø izoliatas; takelis 5 – neigiama kontrolë<br />

Fig. 6. Gel electrophoresis of PCR product (499 bp) of amplified ToRSV tomato sample:<br />

lanes 1 and 6 – DNA ladder; lane 2 – cucumber isolate; lane 3 – ToRSV isolated from<br />

tomato and infected N. rustica tissue; lane 4 – <strong>ir</strong>is isolate; lane 5 – negative control<br />

Vaistuèio mozaikos v<strong>ir</strong>usas (Arabis mosaic nepov<strong>ir</strong>us). Vilniaus <strong>ir</strong> Ð<strong>ir</strong>vintø<br />

rajonuose augintø ðiltnamio <strong>ir</strong> lauko pomidorø lapø tarpgysliniai audiniai buvo numargëjæ,<br />

gyslos ryðkios, lapalakðèiai raukðlëti <strong>ir</strong> ties pagrindinëmis gyslomis iðlinkæ.<br />

Kituose pomidorø mëginiuose buvo galima matyti tipiðkà lapø mozaikà <strong>ir</strong> gana<br />

ryðkià lapalakðèiø deformacijà (7 pav.). Buvo iðsk<strong>ir</strong>ti 2 izoliatai. T<strong>ir</strong>iant v<strong>ir</strong>uso paþeidþiamø<br />

augalø spektrà <strong>ir</strong> simptomø pas<strong>ir</strong>eiðkimà bei vystymàsi inokuliuotuose<br />

diagnostiniuose augaluose, nustatyta, kad ðis v<strong>ir</strong>usas daugelyje t<strong>ir</strong>tø augalø indikatoriø<br />

sukelia tiek vietinæ (daugiausia nekrotines þaizdas), tiek sisteminæ (margliges,<br />

dëmëtliges, v<strong>ir</strong>ðûniø deformacijà <strong>ir</strong> þemaûgæ) reakcijas. Ði iðsk<strong>ir</strong>tinë sukëlëjo biologinë<br />

savybë leido já preliminariai identifikuoti kaip ArMV ið Nepov<strong>ir</strong>us genties (Murant,<br />

1970; 1981).<br />

235


Ið infekcijos ðaltiniø <strong>ir</strong> tyrimo metu uþkrëstø augalø ágramzdinimo bûdu paruoðtuose<br />

EM preparatuose buvo aptikta daugybë nepov<strong>ir</strong>usams charakteringø izometriniø<br />

v<strong>ir</strong>ionø. V<strong>ir</strong>usinës dalelës buvo apie 28 nm skersmens, netaisyklingø kontûrø (8 pav.).<br />

7 pav. ArMV paþeistas pomidoro lapas<br />

Fig. 7. Tomato leaf affected by ArMV<br />

8 pav. ArMV dalelës pomidorø<br />

ekstraktuose. Brûkðnys – 100 nm.<br />

Fig. 8. Particles of ArMV in tomato<br />

extracts. Bar represents 100 nm<br />

Patogeno identifikavimui patikslinti buvo iðsk<strong>ir</strong>ta uþkrëstø N. glutinosa L. <strong>ir</strong><br />

N. debneyi Domin. augalø lapø audiniø totalinë RNR <strong>ir</strong> panaudota cDNR amplifikacijai<br />

AT-PGR. Po cDNR amplifikacijos termocikleryje, taikant atitinkamà temperatûros reþimà,<br />

v<strong>ir</strong>uso PGR produktai buvo apie 421 bp dydþio (9 pav.), o tai atitinka parinktà<br />

oligonukleotidø porà. Ðie duomenys galutinai árodë, kad ið pomidorø iðsk<strong>ir</strong>ta ArMV.<br />

Visuose bandymuose PGR produktø negauta kontroliniuose mëginiuose: sveiko<br />

N. debneyi augalo audiniai; neigiama kontrolë – PGR buferis + PGR H 2<br />

O.<br />

9 pav. AT-PGR amplifikuoti DNR produktai (420 bp) ið ArMV inokuliuotø augalø:<br />

1 <strong>ir</strong> 8 takeliai – DNR dydþio þymuo; 2 takelis – N. glutinosa; 3 takelis – G. globosa;<br />

4 <strong>ir</strong> 6 takeliai – N. debneyi; 5 takelis – sveikas augalas; 7 takelis – neigiama kontrolë<br />

Fig. 9. Gel electrophoresis of RT-PCR produts of amplified ArMV from tomato samples:<br />

lanes 1 and 8 – DNA fragment size standard; lane 2 – N. glutinosa; lane 3 – G. globosa,<br />

lanes 4 and 6 – N. debneyi; lane 5 –healthy plant; lane 7 – negative control<br />

Aptarimas. Atliekant pomidorø v<strong>ir</strong>usø identifikavimà, taikyti ðiuolaikiniai tikslûs<br />

<strong>ir</strong> jautrûs metodai, kurie leido nustatyti <strong>ir</strong> apibûdinti plaèiai paplitusius ekonomiðkai<br />

reikðmingus v<strong>ir</strong>usus. CMV yra ypaè daug augalø ðeimininkø turintis v<strong>ir</strong>usas. CMV<br />

paþeidþia per 700 rûðiø ið 85 augalø ðeimø. Gamtoje já perneða per 60 rûðiø amarø<br />

(Francki <strong>ir</strong> kt., 1979). CMV patenka ant pomidorø augalø dël to, kad ðio v<strong>ir</strong>uso<br />

236


ðaltiniø gausu gamtoje. CMV rezervatoriai yra ne tik ekonomiðkai vertingi augalai<br />

(darþovës, dekoratyviniai augalai <strong>ir</strong> kt.), bet <strong>ir</strong> dauguma piktþoliø, auganèiø aplink<br />

pomidorø augavietes. Kai kuriø veisliø pomidorø derliaus nuostoliai dël CMV infekcijos<br />

siekia nuo 60 iki 95 proc. (Spaar, Kleinhempel, 1986; Ðutic <strong>ir</strong> kt., 1999).<br />

ToRSV yra vienas þalingiausiø Nepov<strong>ir</strong>us grupëje, paplitæs <strong>ir</strong> Europos ðalyse, <strong>ir</strong><br />

Amerikos þemyne. Já perneða nematodai, kurie uþsikreèia v<strong>ir</strong>usu kelias valandas besimaitindami<br />

uþkrësto augalo sultimis. Ðiuo v<strong>ir</strong>usu uþsikrëtusiø augalø ligos poþymiai<br />

daþnai yra labai specifiniai, ypaè augalø vegetacijos pradþioje. Natûraliomis sàlygomis<br />

ToRSV uþkreèia 285 augalø rûðis ið 159 genèiø <strong>ir</strong> 55 ðeimø (Edwardson, Christie,<br />

1997). Tyrimais paþeidþiamø augalø spektras apima 35 botanines ðeimas (Stace-<br />

Smith, 1984). ToRSV yra kenksmingø organizmø, kuriuos draudþiama áveþti <strong>ir</strong> platinti,<br />

sàraðe.<br />

Kitas nepov<strong>ir</strong>usas – ArMV – yra identifikuotas daugelyje pasaulio ðaliø (Brown,<br />

1986), paþeidþia labai daug augalø. ArMV ðeimininkai ið darþoviø, be pomidorø, yra<br />

<strong>ir</strong> agurkai, morkos, cukriniai runkeliai, salierai, salotos. V<strong>ir</strong>usà platina d<strong>ir</strong>voþemio<br />

Xiphinema genties nematodai, o perneða su sëkla 20 rûðiø augalai ið 14 ðeimø. V<strong>ir</strong>usà<br />

galima perduoti mechanine inokuliacija <strong>ir</strong> vegetatyviðkai dauginant augalus. Ðis patogenas<br />

yra taip pat áraðytas á augalams kenksmingø organizmø sàraðà.<br />

Iðvados. 1. Panaudojus jautrø <strong>ir</strong> tikslø atv<strong>ir</strong>kðtinës transkripcijos polimerazës<br />

grandininës reakcijos (AT-PGR) testà <strong>ir</strong> v<strong>ir</strong>usams specifines oligonukleotidø poras,<br />

pomidoruose buvo identifikuoti trys v<strong>ir</strong>usai: agurkø mozaikos (Cucumber mosaic<br />

cucumov<strong>ir</strong>us), pomidorø þiediðkosios dëmëtligës (Tomato ringspot nepov<strong>ir</strong>us) <strong>ir</strong> vaistuèio<br />

mozaikos (Arabis mosaic nepov<strong>ir</strong>us).<br />

2. Infekuotø pomidorø nevalytø ekstraktø elektronomikroskopiniai tyrimai <strong>ir</strong> tik<br />

izometriniø v<strong>ir</strong>ionø aptikimas visuose preparatuose leido pritaikyti molekulinës biologijos<br />

metodà konkreèiam v<strong>ir</strong>usui pomidoruose nustatyti.<br />

Padëka. Autoriai dëkoja LVMSF uþ finansinæ paramà vykdant ðá darbà (sutarties<br />

Nr. T-85/05, 2005 m.)<br />

Gauta 2006-03-30<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Brown D. J. F. The transmission of two strains of arabis mosaic v<strong>ir</strong>us from England<br />

by populations of Xiphinema diversicaudatum (Nematoda: Dorylaimoidea) from ten countries<br />

// Revue Nematol. 1986. 9(1). P. 83–87.<br />

2. Brunt A. A., Crabtree K., Dallwitz M. J., Gibbs A. J., Watson L. Arabis mosaic<br />

nepov<strong>ir</strong>us; Cucumber mosaic cucumov<strong>ir</strong>us; Tomato ringspot nepov<strong>ir</strong>us // V<strong>ir</strong>uses of Plants.<br />

Descriptions and Lists from the VIDE Database. Cambridge, 1996. P. 112–115, 477–483,<br />

1309–1312.<br />

3. De Blas C., Borja M. J., Saiz M., Romero J. Broad spectrum Detection of Cucumber<br />

Mosaic V<strong>ir</strong>us (CMV) using The Polymerase Chain Reaction // J. Phytopathology. 1994.<br />

Vol. 143. P. 323–329.<br />

4. Dijkstra J., de Jager C. P., Practical Plant V<strong>ir</strong>ology. Protocols and Exercises. Berlin-<br />

Heidelberg, 1998. 459 p.<br />

237


5. Edwardson J. R., Christie R. G. V<strong>ir</strong>uses infecting peppers and other solanaceous<br />

crops. University of Florida. 1997.<br />

6. Forster G. D., Taylor S. C. Plant V<strong>ir</strong>ology Protocols from v<strong>ir</strong>us isolation to transgenic<br />

resistance // Methods in Molecular Biology. Humana Press Totowa, New Jersey, 1998.<br />

Vol. 81. 571 p.<br />

7. Francki R. I. B., Mossop D. W., Hatta T. Cucumber mosaic v<strong>ir</strong>us // C.M.I./A.A.B.<br />

Descriptions of plant v<strong>ir</strong>uses. Association of Applied Biologists, Wellesbourne, UK,<br />

1979. N 213. P. 1–4.<br />

8. Griesbach J. A. Detection of Tomato ringspot v<strong>ir</strong>us by Polymerase Chain Reaction<br />

// Plant Disease. 1995. Vol. 79. N 10. P. 1054–1056.<br />

9. Murant A. F. Arabis mosaic v<strong>ir</strong>us // CMI/AAB Descriptions of plant v<strong>ir</strong>uses.<br />

Association of Applied Biologists, Wellesbourne, UK, 1970. N 16. P. 1–5.<br />

10. Murant A. F. Nepov<strong>ir</strong>uses // In E. Kurstak (ed.). Handbook of Plant V<strong>ir</strong>us infections<br />

and comparative diagnosis: Elsevier/North-Holland Biomedical Press, Amsterdam,<br />

Netherlands, 1981. P. 198–238.<br />

11. Pantaleo V., Saponari M., Gallitelli D. Development of a Nested PCR protocol for<br />

detection of olive-infecting v<strong>ir</strong>uses in crude extracts // Journal of Plant Pathology. 2001.<br />

Vol. 83. N 2. P. 143–146.<br />

12. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K.<br />

B., Erlich H. A. Primer-d<strong>ir</strong>ected enzymatic amplification of DNA with a thermostabile DNA<br />

polymerase // Science. 1988. Vol. 239. P. 487–491.<br />

13. Spaar D., Kleinhempel H. Borba s v<strong>ir</strong>usnymi boleznjami rastenij. Moskva, 1986.<br />

P. 248–3<strong>25</strong>.<br />

14. Stace-Smith R. Tomato ringspot v<strong>ir</strong>us // C.M.I./A.A.B. Descriptions of Plant<br />

v<strong>ir</strong>uses. Association of Applied Biologists, Wellesbourne, UK, 1984. N 290 (no. 18 revised)<br />

1–4 p.<br />

15. Ðutic D. D., Ford R. E., Toðic M. T. Handbook of plant v<strong>ir</strong>us diseases. CRC Press<br />

Washington, 1999. 553 p.<br />

16. Zhang Y. -P., Uyemoto J. K., K<strong>ir</strong>kpatrick B. C. A small-scale procedure for extracting<br />

nucleic acids from woody plants infected with various phytopathogens for PCR<br />

assay // Journal of V<strong>ir</strong>ological Methods. 1998. N 71. P. 45–50.<br />

17. Zitikaitë I. Vozbuditeli v<strong>ir</strong>usnych boleznej tomata i ich identifikacija // Biologija.<br />

1999. Nr. 4. P. 52–61.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE DIAGNOSTIC OF VIRUSES IN TOMATO<br />

(LYCOPERSICON ESCULENTUM MILL.) BY<br />

ELECTRONMICROSCOPIC AND MOLECULAR METHODS<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë<br />

Summary<br />

For detection of v<strong>ir</strong>al disease agents tomato (Lycopersicon esculentum Mill.)<br />

samples of leaves and fruits affected by v<strong>ir</strong>al diseases were collected and investiga-<br />

238


ted. Samples of tomatoes exhibiting v<strong>ir</strong>al symptoms were found in various growing<br />

places. Symptoms associated with v<strong>ir</strong>uses inhibited growth, it became evident shoots<br />

with short internodes, leaf chlorosis, ringspots, mottling, vein clearing and distortion.<br />

The presences of different isometric v<strong>ir</strong>ions were detected in extracts of<br />

tomato samples using transmission electron microscopic (EM) method. Three different<br />

v<strong>ir</strong>uses of two genera have been identified in L. esculentum crop on the basis of<br />

host plant symptoms and morphology of v<strong>ir</strong>ions. A number of the tomato samples<br />

that were found preliminary positive for Cucuber mosaic cucumov<strong>ir</strong>us (CMV), Tomato<br />

ringspot nepov<strong>ir</strong>us (ToRSV), and Arabis mosaic nepov<strong>ir</strong>us (ArMV) in biological<br />

tests were tested by reverse transcription-polymerase chain reaction (RT-PCR)<br />

technique using previously described v<strong>ir</strong>us-specific primers. The PCR reactions resulted<br />

in the specifically amplification of a 400 bp fragment of CMV RNA, 499 bp<br />

fragment of ToRSV RNA and 420 bp fragment of ArMV RNA.<br />

Key words: diagnostic, EM, RT-PCR, tomato, v<strong>ir</strong>us.<br />

239


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

POMIDORØ (LYCOPERSICON ESCULENTUM MILL.)<br />

AUGIMO BEI BIOCHEMINIØ RODIKLIØ<br />

PRIKLAUSOMUMAS NUO UV-B SPINDULIUOTËS<br />

Regina VYÐNIAUSKIENË, Vida RANÈELIENË,<br />

Danguolë RAKLEVIÈIENË, Danguolë ÐVEGÞDIENË,<br />

Zenonas JANÈYS, Kazimiera ÐLEKYTË<br />

Botanikos institutas, Þaliøjø eþerø g. 49, LT-08406 Vilnius.<br />

El. paðtas regina.v@botanika.lt<br />

Pavelas DUCHOVSKIS, Auðra BRAZAITYTË,<br />

Jûratë ÐIKÐNIANIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

UV-B spinduliuotës sukeliamas stresas <strong>ir</strong> atsako á já indukcija pomidorams turi<br />

ypatingos reikðmës – reguliuoja jø augimà <strong>ir</strong> áva<strong>ir</strong>iø biologiðkai aktyviø medþiagø<br />

sintezæ. Ðio darbo tikslas buvo nustatyti UV-B spinduliuotës poveiká áva<strong>ir</strong>iems pomidorø<br />

‘Svara’ augimo <strong>ir</strong> biocheminiams rodikliams: augalø augimui, þaliai masei,<br />

sausosioms medþiagoms, lapø masei <strong>ir</strong> plotui, karotinoidø, a <strong>ir</strong> b chlorofilø, baltymø<br />

kiekiui lapuose, superoksido dismutazës (SOD) aktyvumui <strong>ir</strong> frakcijø spektrui<br />

lapuose. Dviem atsk<strong>ir</strong>ais bandymais iðbandytos sk<strong>ir</strong>tingos UV-B spinduliuotës dozës<br />

– 5 <strong>ir</strong> 10 kJ m -2 para -1 . Tyrimais nustatyta, kad manipuliuojant UV-B spinduliuotës<br />

dozëmis galima gauti sk<strong>ir</strong>tingà efektà <strong>ir</strong> taip reguliuoti pomidorø augimo <strong>ir</strong><br />

t<strong>ir</strong>tø medþiagø sintezæ. Áva<strong>ir</strong>ûs augimo <strong>ir</strong> biocheminiai rodikliai yra nevienodai jautrûs<br />

UV-B spinduliuotei. UV-B poveikis lapø plotui priklausë nuo lapo padëties ant<br />

augalo. Kaip atsakas á augimà skatinanèià 5 kJ m -2 para -1 UV-B dozæ keièiasi SOD<br />

spektras.<br />

Reikðminiai þodþiai: UV-B spinduliuotës stresas, dozës, pomidorai, augimas,<br />

SOD (superoksido dismutazës) izozimø spektrai<br />

Ávadas. Pastaruoju metu susidomëjimas Lycopersicon esculentum Mill. yra labai<br />

padidëjæs. Manoma, kad juose esantis likopenas yra labai veiksminga medþiaga,<br />

sauganti þmogaus organizmà nuo vëþio (Examinating.., 2003; Levy, Sharoni, 2004).<br />

UV-B spinduliuotë kaip veiksnys, skatinantis antriniø metabolitø sintezæ, gali padidinti<br />

<strong>ir</strong> ðios biologiðkai aktyvios medþiagos sintezæ (Drumm-Herrel, Mohr, 1982; Sponga<br />

<strong>ir</strong> kt., 1986; Yang <strong>ir</strong> kt., 1999; Verhoeyen <strong>ir</strong> kt., 2002; Guidi <strong>ir</strong> kt., 2005). Kita<br />

vertus, pomidorø apðvita UV-B spinduliais vertinama <strong>ir</strong> kaip priemonë kitos apsaugi-<br />

240


nës medþiagos – provitamino D sintezei padidinti (Björn, Wang, 2000; Björn <strong>ir</strong> kt.,<br />

2002). Ðiø medþiagø sintezës suaktyvëjimas yra augalø atsakas á stresà.<br />

Reaguodamas á stresus sukelianèius veiksnius, augalas mobilizuoja áva<strong>ir</strong>ias já sauganèias<br />

medþiagas: antioksidacinius (Mittler, 2002; Krupa, 2003) <strong>ir</strong> DNR reparacijos<br />

(Hada <strong>ir</strong> kt., 2001) fermentus, signalinius (Booker <strong>ir</strong> kt., 2004; Kacperska, 2004) <strong>ir</strong><br />

PR-baltymus (Thalma<strong>ir</strong> <strong>ir</strong> kt., 1996), flavonoidus <strong>ir</strong> fenilpropanoidus (Tattini <strong>ir</strong> kt.,<br />

2005), hormonus (Baier <strong>ir</strong> kt., 2005). Ði ypatybë gali bûti pritaikyta augalo produkuojamø<br />

biologiðkai vertingø medþiagø sintezei padidinti. Atsakas á spinduliuotæ <strong>ir</strong> stresø<br />

sukeliami efektai priklauso nuo augalo rûðies <strong>ir</strong> jo vidurûðinës áva<strong>ir</strong>ovës, genotipo ypatumø<br />

(Jordan, 1996; Cativelli <strong>ir</strong> kt., 2002; Kakani <strong>ir</strong> kt., 2003); ne iðimtis – <strong>ir</strong> pomidorai<br />

(Srinivas <strong>ir</strong> kt., 2004). Stresus sukelianèiø veiksniø, tarp jø <strong>ir</strong> ultravioletiniø spinduliø<br />

(UV), kurie yra <strong>ir</strong> Saulës spinduliø, pasiekianèiø Þemës pav<strong>ir</strong>ðiø, sudedamoji spektro<br />

dalis, poveikis þemës ûkio augalams yra iðt<strong>ir</strong>tas labai nevienodai. Daugiau turima duomenø<br />

apie javus (Krupa, Jäger, 1996; Marcel, 2002; Kakani <strong>ir</strong> kt., 2003).<br />

Gan ribotai iðt<strong>ir</strong>tas ultravioletiniø spinduliø poveikis <strong>ir</strong> pomidorams, nors þinoma,<br />

kad jiems UV-B sukelia gilius genomo pokyèius – endoreduplikacijà, keièia chromatino<br />

struktûrà (Cavallini <strong>ir</strong> kt., 2001). UV spinduliuotës poveikis pomidorams,<br />

kaip <strong>ir</strong> kitiems augalams, pas<strong>ir</strong>eiðkia per sistemas, reguliuojanèias atsakà á stresà<br />

sukeliantá veiksná (Johannes <strong>ir</strong> kt., 2000; Holley <strong>ir</strong> kt., 2003) <strong>ir</strong> raidà (Hashimoto,<br />

1994; Bertrani, Lercari, 2000; Gitz, Liu-Gitz, 2003; Appenroth <strong>ir</strong> kt., 2006). Tai<br />

tiesiogiai stimuliuoja apsauginiø medþiagø sintezæ (Sponga <strong>ir</strong> kt., 1986), tarp jø –<br />

antioksidantø (Balakumar <strong>ir</strong> kt., 1997), flavonoidø (Verhoeyen <strong>ir</strong> kt., 2002), fenilpropanoidø<br />

(Yang <strong>ir</strong> kt., 1999; Guidi <strong>ir</strong> kt., 2005), antocianinø (Drumm-Herrel, Mohr,<br />

1982). UV pomidoruose taip pat suaktyvina PR-baltymø sintezæ, o tai gali turëti tiesioginës<br />

átakos didesniam atsparumui patogenams (Barka <strong>ir</strong> kt., 2000; Stratmann <strong>ir</strong><br />

kt., 2000), amarams <strong>ir</strong> kitiems vabzdþiams (Johannes <strong>ir</strong> kt., 2000; Stratmann, 2003;<br />

Holley <strong>ir</strong> kt., 2003). Aptarti tyrimai yra vyraujantys, o UV-B spinduliuotës poveikis<br />

pomidorø augimui maþai t<strong>ir</strong>tas. Ypaè neiðt<strong>ir</strong>tas augimo bei biocheminiø rodikliø priklausomumas<br />

nuo apðvitinamø augalø iðsivystymo tarpsnio, taip pat svarbu iðaiðkinti<br />

jautriausius (labiausiai reaguojanèius á spinduliuotæ) augimo <strong>ir</strong> biocheminius rodiklius,<br />

pagal kuriuos galima vertinti pomidorø jautrumà UV-B.<br />

Darbo tikslas – nustatyti UV-B poveiká áva<strong>ir</strong>iems pomidorø ‘Svara’ augimo <strong>ir</strong><br />

biocheminiams rodikliams, augalø augimui, þaliai masei, sausosioms medþiagoms,<br />

lapø masei <strong>ir</strong> plotui, karotinoidø, chlorofilø a <strong>ir</strong> b, baltymø kiekiui lapuose, superoksido<br />

dismutazës (SOD) aktyvumui <strong>ir</strong> frakcijø spektrui lapuose.<br />

Tyrimo objektas <strong>ir</strong> metodai. Pomidorø (Lycopersicon esculentum Mill.) ‘Svara’<br />

daigai iðauginti Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto Augalø fiziologijos<br />

laboratorijos fitotroninio komplekso ðiltnamiuose. Daigai buvo auginami durpinio<br />

substrato su tràðomis PG MIX (NPK 14–16–18; 1,3 kg/m 3 ) pripildytuose plastikiniuose<br />

puodeliuose. Vëliau pomidorai auginti Botanikos institute (Vilnius) auginimo<br />

kameroje „Tulpë“, apðvietimas – liuminescencinëmis lempomis (75 µmol/ 2 ), fotoperiodas<br />

– 16/8 val.; temperatûra +<strong>25</strong>° ± 1°C. Kai dauguma daigø turëjo 6 lapus (vid.<br />

5,7), augalai buvo padalyti á dvi grupes: viena jø toliau auginta be UV-B spinduliuotës<br />

poveikio, kita dalis apðvitinta 10 kJ m -2 p -1 UV-B doze (naudotos UV-B lempos „Philips<br />

TL” 40W/12).<br />

241


Po 10 dienø augalai padalyti á dvi grupes <strong>ir</strong> vienoje ið jø iðt<strong>ir</strong>tas augalø augimas<br />

(þalia biomasë <strong>ir</strong> sausosios medþiagos, lapo plotas, lapø skaièius) <strong>ir</strong> biocheminiai poþymiai<br />

(chlorofilø a <strong>ir</strong> b, karotinoidø, baltymø kiekis lapuose). Tuo metu augalai turëjo<br />

vidutiniðkai 7,5 lapo. Kita dalis augalø toliau buvo ðvitinama ta paèia 10 kJ m -2 p -1 UV-B<br />

doze. Kai augalai buvo ðvitinami 10 ar 14 dienø 10 kJ m -2 p -1 UV-B doze, poveikis<br />

augalams buvo per daug stiprus (1 pav.), todël UV-B spinduliø dozë sumaþinta iki<br />

5 kJ m -2 p -1 . Dalis augalø nebuvo ðvitinami UV-B. Jie naudoti palyginti kaip kontroliniai<br />

arba, jiems uþauginus 9 lapus, vël buvo dalijama á dvi grupes: viena neðvitinta<br />

(kontrolinë), o kita – ðvitinta 5 kJ m -2 p -1 UV-B doze. Visais kartais ðvitinta vidurdiená,<br />

kol pasiekta reikalinga 5 arba 10 kJ m -2 p -1 UV-B spinduliuotës dozë.<br />

Lapø plotui nustatyti augalai skenuoti <strong>ir</strong> naudota „SigmaScan Pro-4“ („Jandel<br />

Scientific Software“) programa. Tø paèiø augalø nustatyta þalia masë <strong>ir</strong> sausosios<br />

medþiagos, ketv<strong>ir</strong>tojo nuo augalo apaèios lapo masë <strong>ir</strong> plotas. Karotinoidø <strong>ir</strong> chlorofilø<br />

a <strong>ir</strong> b kiekis nustatytas treèiajame <strong>ir</strong> ketv<strong>ir</strong>tajame lapuose nuo apaèios. Siekiant<br />

nustatyti SOD aktyvumà <strong>ir</strong> izofermentinæ sudëtá, lapai homogenizuoti ðaltyje (panaudotas<br />

Na-K fosfatinis buferis, pH 7,8). SOD elektroforezë atlikta 4–10% PAAG pagal<br />

V. K. Laemmlá (1970). Bendras SOD aktyvumas nustatytas spektrofotometru.<br />

Metodas paremtas SOD savybe inhibuoti NBT fotocheminæ reakcijà (Beauchamp,<br />

Fridovich 1971). Baltymø kiekis lapuose nustatytas pagal M. N. Bradfordà (1976), o<br />

karotinoidø <strong>ir</strong> chlorofilø a <strong>ir</strong> b kiekis – 100% acetono ekstrakte spektrofotometru,<br />

bangos ilgiai – 662,0, 644,0 <strong>ir</strong> 440,5 nm pagal D. Vetðteinà (Wettstein, 1957). Statistinë<br />

analizë atlikta pagal „MS Exel 2003“ („Microsoft Corporation“) programà.<br />

Rezultatai. Kaip <strong>ir</strong> buvo tikëtasi, periodinë apðvita 10 kJ m -2 p -1 UV-B doze<br />

(10–14 parø) slopino pomidorø augimà <strong>ir</strong> tai buvo pastebima netgi vizualiai (1 pav.).<br />

1 pav. 14 parø ðvitintø 10 kJ m -2 p -1 UV-B (a) <strong>ir</strong> kontroliniø, neðvitintø (b) to paties<br />

amþiaus pomidorø augalø palyginimas<br />

Fig. 1. Comparison of tomato plants exposed (a) for 14 days to 10 kJ m -2 d -1 UV-B with<br />

untreated control (b) plants of the same age<br />

242


Taèiau detalesnis augalø ávertinimas vaizdþiai rodo, kad efektas priklauso ne tiek<br />

nuo spinduliuotës poveikio trukmës, kiek nuo t<strong>ir</strong>to rodiklio: vienus veikia stipriau,<br />

kitus – silpniau (1 lentelë).<br />

1 lentelë. Apðvitos 10 kJ m -2 p -1 UV-B poveikis áva<strong>ir</strong>iems pomidorø augimo <strong>ir</strong><br />

biocheminiams rodikliams<br />

Table 1. Effect of 10 kJ m -2 p -1 UV-B <strong>ir</strong>radiation on different characters of tomato plants<br />

Augalo rodiklis<br />

Plant character<br />

Lapø skaièius<br />

Number of leaves<br />

Augalo aukštis<br />

Plant height, cm<br />

Augalo þalia masë<br />

Fresh weight, g<br />

Augalo sausosios medžiagos<br />

Dry weight, g<br />

Lapo svoris<br />

Weight of leaf, g<br />

UV-B poveikis / UV-B exposure<br />

10 parø / 10 days 14 parø / 14 days<br />

kontrolë / control UV-B<br />

kontrolë /<br />

UV-B<br />

control<br />

7,8 ± 0,2 7,8 ± 0,3 9,2 ± 0,2 9,5 ± 0,5<br />

26,1 ± 1,2 23,4 ± 1, 2 28,1 ± 1,7 21,3 ± 1,9 2<br />

10,7 ± 0,8 7,0 ± 0,6 2 12,4 ± 1,3 5,9 ± 0,9 3<br />

0,49 ± 0,04 0,35 ± 0,04 1 0,63 ± 0,08 0,32 ± 0,06 1<br />

1,59 ± 0,14 0,67 ± 0,09 3 1,93 ± 0,17 0,56 ± 0,12 3<br />

Cha*, mg g -1 1,04 ± 0,02 0,85 ± 0,02 3 0,93 ± 0,02 0,72 ± 0,04 3<br />

Chb*, mg g -1 0,29 ± 0,01 0,26 ± 0,01 1 0,28 ± 0,01 0,<strong>25</strong> ± 0,02<br />

Karotinoidai<br />

Carotenoids, mg g -1<br />

0,48 ± 0,01 0,41 ± 0,02 3 0,43 ± 0,03 0,37 ± 0,02<br />

1 – P < 0,05; 2 – P < 0,01; 3 – P < 0,001<br />

* Cha – chlorofilas a / Chlorophyll a; Chb – chlorofilas b / Chlorophyll b<br />

Lapø skaièius po apðvitos UV-B ið esmës nepasikeitë, todël ðis rodiklis <strong>ir</strong> naudotas<br />

augalø raidai ávertinti. Ið 1 lentelëje pateiktø 8 rodikliø neigiamas UV-B poveikis<br />

labiausiai pas<strong>ir</strong>eiðkë lapø biomasei, kuri po 10 parø apðvitos 10 kJ m -2 p -1 UV-B sumaþëjo<br />

2,37 karto, o po 14 parø – net 3,45 karto. UV-B efektas labai priklausë nuo<br />

pas<strong>ir</strong>inkto rodiklio. Tuo buvo galima ásitikinti, UV-B efektà iðreiðkus procentais <strong>ir</strong><br />

apðvitintus augalus palyginus su kontroliniais augalais (2 pav.).<br />

Akivaizdu, kad gerokai sumaþëjo <strong>ir</strong> augalo sausøjø medþiagø kiekis, tad, reikia<br />

manyti, slopinama fotosintezë. Apie tai galima spræsti <strong>ir</strong> pagal sumaþëjusá pigmentø<br />

kieká lapuose po 10 parø apðvitos. Po 14 parø labiau sumaþëjo tik chlorofilo a kiekis<br />

lapuose (1 lentelë <strong>ir</strong> 2 pav.).<br />

243


2 pav. Apðvitos 10 kJ m -2 p -1 UV-B efektyvumas áva<strong>ir</strong>iems pomidorø rodikliams.<br />

Palyginimas % su kontroliniais neðvitintais augalais<br />

Fig. 2. Effect of 10 kJ m -2 d -1 UV-B radiation on different plant characters of tomato.<br />

Comparison (%) with the level to of control plants without <strong>ir</strong>radiation<br />

Sumaþëjo <strong>ir</strong> lapo plotas (3 pav.), taèiau 10 kJ m -2 p -1 UV-B poveikis labai pastebimai<br />

priklausë nuo t<strong>ir</strong>iamojo lapo padëties ant augalo <strong>ir</strong> apðvitos UV-B trukmës. Kai<br />

apðvita truko 10 parø, treèiojo lapo nuo apaèios plotas sumaþëjo labai neþymiai, taèiau<br />

juo lapai buvo aukðèiau ant stiebo, tuo UV-B efektas lapø plotui buvo stipresnis<br />

(3 pav., a). Kai apðvita 10 kJ m -2 p -1 UV-B truko ilgiau – 14 dienø, lapø plotas dar<br />

labiau sumaþëjo (3 pav., b), netgi to paties treèiojo nuo apaèios lapo, kuriam prieð tai<br />

poveikis buvo paklaidos ribose (palyg. 3 pav., a <strong>ir</strong> b).<br />

3 pav. Sumaþëjæs lapø plotas po pomidorø apðvitos 10 kJ m -2 p -1 UV-B.<br />

Efekto priklausomumas nuo apðvitos trukmës <strong>ir</strong> lapo padëties ant augalo:<br />

a – apðvita 10 parø; b – apðvita 14 parø; 3-L; 4-L; 5-L – lapo padëtis ant<br />

augalo nuo apaèios á v<strong>ir</strong>ðø<br />

Fig. 3. Decrease of leaf area after <strong>ir</strong>radiation of tomato plants with 10 kJ m -2 d -1 UV-B.<br />

Dependence from prolongation of treatment and of leaf position on plant:<br />

a- treatment for 10 days; b – treatment for 14 days; 3-L; 4-L;<br />

5-L – leaf position from bottom to upwards<br />

244


Ádomus buvo 5 kJ m -2 p -1 UV-B spinduliuotës dozës poveikis pomidorams<br />

(2 lentelë). Ðià bandymo dalá reikia vertinti kaip atsk<strong>ir</strong>à bandymà, nes apðvita pradëta<br />

po 14 dienø pertraukos <strong>ir</strong> augalai per tà laiko tarpà ûgtelëjo, nors paèios auginimo<br />

sàlygos nesikeitë. Apðvitinti augalai pagal daugumà t<strong>ir</strong>tø rodikliø lenkë kontrolinius<br />

augalus. Po apðvitinimo 5 kJ m -2 p -1 UV-B doze sumaþëjo tik lapo masë <strong>ir</strong> beveik<br />

nepasikeitë pigmentø (karotinoidø <strong>ir</strong> chlorofilø a <strong>ir</strong> b) kiekis lapuose (2 lentelë ).<br />

2 lentelë. Apðvitos 5 kJ m -2 p -1 UV-B poveikis áva<strong>ir</strong>iems pomidorø rodikliams<br />

Table 2. Effect of 5 kJ m -2 d -1 UV-B on different characters of tomato plants<br />

Augalo rodiklis<br />

Plant character<br />

Lapø skaièius, vnt.<br />

Number of leaves<br />

Augalo aukštis<br />

Plant height, cm<br />

Augalo þalia masë<br />

Fresh weight, g<br />

Augalo sausosios medžiagos<br />

Dry weight, g<br />

Lapo svoris<br />

Weight of leaf, g<br />

Control<br />

Kontrolë<br />

UV-B 5 kJ m - ²<br />

12 ± 0,2 13,1 ± 0,3 2<br />

69,2 ± 2,7 77,1 ± 2,7 1<br />

21,6 ± 1,9 27,4 ± 2,1 1<br />

1,12 ± 0,13 1,72 ± 0,22 1<br />

1,30 ± 0,09 1,02 ± 0,08 1<br />

Cha*, mg g -1 1,48 ± 0,13 1,33 ± 0,02<br />

Chb*, mg g -1 0,56 ± 0,07 0,58 ± 0,05<br />

Karotinoidai<br />

Carotenoids, mg g -1 0,39 ± 0,12 0,50 ± 0,02<br />

1 – P < 0,05; 2 – P < 0,01<br />

* Cha – chlorofilas a / chlorophyll a; Chb – chlorofilas b / chlorophyll b.<br />

4 pav. Apðvitos 5 kJ m -2 p -1 UV-B poveikis pomidorø lapø plotui: 6-L;<br />

5-L – lapo padëtis nuo augalo v<strong>ir</strong>ðûnës<br />

Fig. 4. Effect of <strong>ir</strong>radiation with 5 kJ m -2 d -1 UV-B on leaf area tomato plants: 6-l;<br />

5-L – leaf area from apex<br />

245


Kadangi UV-B apðvitinti augalai turëjo vienu lapu daugiau (kontrolë – 12, o<br />

UV-B – 13), kad bûtø suvienodintos tyrimø sàlygos, antrajame bandyme lapai tyrimams<br />

buvo imami skaièiuojant ne nuo apaèios, bet nuo v<strong>ir</strong>ðûnës, konkreèiai – ðeðtasis<br />

<strong>ir</strong> penktasis (4 pav.). Tai atitiktø kontrolinio augalo septintàjá <strong>ir</strong> aðtuntàjá lapà, o<br />

5 kJ m -2 p -1 UV-B – aðtuntàjá <strong>ir</strong> devintàjá lapà nuo apaèios. Netgi pagal lapø plotà<br />

ryðkaus UV-B poveikio nepastebëta, nors neþymiai lapø plotas sumaþëjo tik jaunesniøjø,<br />

5-tø nuo v<strong>ir</strong>ðûnës lapø, taèiau tarp t<strong>ir</strong>tøjø augalø buvo dideli svyravimai.<br />

Apðvita 5 kJ m -2 p -1 UV-B doze neslopino <strong>ir</strong> baltymø kiekio bei superoksido<br />

dismutazës (SOD) aktyvumo pomidorø lapuose (5 pav.).<br />

5 pav. Superoksido dismutazës (SOD) aktyvumas <strong>ir</strong> baltymø kiekis kontroliniø<br />

(neðvitintø) <strong>ir</strong> 14 parø ðvitintø 5 kJ m -2 p -1 UV-B pomidorø lapuose<br />

Fig. 5. Superoxide dismutase (SOD) activity and protein content in tomato leaves of<br />

unexposed (control – K) or exposed for 14 days with 5 kJ m -2 p -1 UV-B plants<br />

Ðioks toks abiejø ðiø biocheminiø rodikliø padidëjimas yra paklaidos ribose. Taèiau<br />

5 kJ m -2 p -1 UV-B poveikis yra neabejotinas SOD elektroforetiniø frakcijø spektro<br />

pokyèiams. Keturios naujos SOD frakcijos iðryðkëja pomidorø lapuose po poveikio<br />

ðia 5 kJ m -2 p -1 UV-B doze (6 pav.).<br />

6 pav. Superoksido dismutazës spektrø palyginimas ðvitintø 14 parø 5 kJ m -2 p -1 UV-B<br />

<strong>ir</strong> neðvitintø (kontroliniø – K, tokio pat amþiaus) pomidorø lapuose. Papildomos SOD<br />

frakcijos, ats<strong>ir</strong>adusios dël UV-B poveikio, parodytos rodyklëmis. K – kontroliniø<br />

augalø, neðvitintø UV-B, lapai; UVB – SOD ið ðvitintø augalø lapø<br />

Fig. 6. Comparison of superoxide dismutase (SOD) spectra in leaves of tomato. Plants<br />

exposed for 14 days to 5 kJ m -2 d -1 UV-B or in leaves unexposed (control) plants of the<br />

same age. K – SOD in leaves of control plants; UVB – SOD in leaves exposed to UV-B<br />

plants. The new SOD fractions are showen with arrows<br />

246


Aptarimas. Negalima garantuoti dël kitø pomidorø genotipø, bet pomidorø ‘Svara’<br />

tyrimai parodë, kad manipuliuojant UV-B dozëmis <strong>ir</strong> augalø iðsivystymo tarpsniu,<br />

galima valdyti áva<strong>ir</strong>ius augalo augimo <strong>ir</strong> biocheminius rodiklius. Taèiau bûtini konkretûs<br />

kiekvieno genotipo tyrimai, nes UV-B poveikis áva<strong>ir</strong>iems kiekybiniams pomidorø<br />

‘Svara’ rodikliams pas<strong>ir</strong>eiðkë labai nevienodai, o pagal ðiuos poþymius, nulemtus<br />

adityviøjø genø, daþniausiai sk<strong>ir</strong>iasi augalø, tarp jø <strong>ir</strong> pomidorø, veislës. Ryðys tarp<br />

atsako á UV-B poveiká <strong>ir</strong> augalo genotipo pomidorams yra nustatytas (Srinivas <strong>ir</strong> kt.,<br />

2004). Kita vertus, mûsø tyrimai patv<strong>ir</strong>tino, kad, keièiant UV-B dozæ <strong>ir</strong> apðvitos sàlygas,<br />

galima suaktyvinti augalui svarbiø fermentø (Thalma<strong>ir</strong> <strong>ir</strong> kt., 1996; Hada <strong>ir</strong> kt.,<br />

2001) <strong>ir</strong> antriniø metabolitø (Björn, Wang, 2000; Björn <strong>ir</strong> kt., 2002), antocianinø<br />

(Drumm-Herrel, Mohr, 1982; Bertrani, Lercari, 2000), fenilpropanoidø (Yang <strong>ir</strong> kt.,<br />

1999; Guidi <strong>ir</strong> kt., 2005), flavonoidø (Verhoeyen <strong>ir</strong> kt., 2002) sintezæ. Be to, ðios<br />

medþiagos yra apsauginës augalo medþiagos, todël jø sintezës suaktyvinimu galima<br />

bûtø aiðkinti <strong>ir</strong> stimuliuojantá 5 kJ m -2 p -1 UV-B poveiká pomidorams, nustatytà mûsø<br />

darbe. Ði UV dozë stimuliavo netgi chlorofilo a sintezæ, nors 10 kJ m -2 p -1 dozë labai<br />

sumaþino chlorofilo a kieká lapuose.<br />

Ádomûs gauti SOD izozimø spektro pokyèiø, nustatytø elektroforezës metodu,<br />

rezultatai. Ðiame darbe nustatytas bendras SOD aktyvumas, ðvitinant stimuliuojanèia<br />

5 kJ m -2 p -1 UV-B doze, pakito labai neþymiai, bet UV-B poveikis SOD izozimø spektrui<br />

labai akivaizdus. Oksidacinis „sprogimas“ <strong>ir</strong> kaip atsakas á antioksidaciniø fermentø<br />

sintezës suaktyvinimà yra þinomi UV-B streso poþymiai (Mittler, 2002; Krupa,<br />

2003; Kakani <strong>ir</strong> kt., 2003). Tai nustatyta <strong>ir</strong> pomidorams (Balakumar <strong>ir</strong> kt., 1997),<br />

taèiau ðie tyrimai atlikti su tokiomis UV-B dozëmis, kurios augalà veikia slopinanèiai.<br />

SOD izozimø spektro pokyèiai, veikiant stimuliuojanèia UV-B doze, gali bûti viena ið<br />

preadaptacijos prieþasèiø, kai vienas paskui kità naudojami du toksiðki agentai arba<br />

pradþioje ðvitinama maþesne UV-B doze, o po to didesne (Krupa, 2003).<br />

Iðvados. 1. Manipuliuojant UV-B dozëmis <strong>ir</strong> apðvitos sàlygomis, galima reguliuoti<br />

pomidorø augimà.<br />

2. UV-B spinduliuotës poveikis áva<strong>ir</strong>iai pas<strong>ir</strong>eiðkia sk<strong>ir</strong>tingiems pomidorø rodikliams.<br />

Jautriausi UV-B spinduliuotei buvo ðie augimo poþymiai: augalo masë <strong>ir</strong> lapo<br />

plotas, maþiau keitësi karotinoidø, chlorofilø a <strong>ir</strong> b, baltymø kiekis.<br />

3. Stimuliuojanti UV-B dozë labai veikia SOD izozimø spektrà <strong>ir</strong> jø aktyvumà.<br />

Pastaba: Ðis darbas buvo remiamas Lietuvos valstybinio mokslo <strong>ir</strong> studijø fondo<br />

programos APLIKOM.<br />

Gauta 2006-05-31<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Appenroth K. J., Lenk G., Goldau L., Sharma R. Tomato seed germination: regulation<br />

of different response modes by phytochrome B2 and phytochrome A // Plant, Cell<br />

and Env<strong>ir</strong>onment. 2006. Vol. 29. N 4. P.701–709.<br />

2. Baier M., Kandlbinder A., Golldack D., Dietz K.-J. Oxidative stress and ozone:<br />

perception, signalling and response // Plant, Cell and Env<strong>ir</strong>onment. 2005. Vol. 28.<br />

P. 1012–1020.<br />

247


3.Balakumar T., Gayathri B., Anbudurai P. R. Oxidative stress injury in tomato plants<br />

induced by supplemental UV-B radiation // Biologia Plantarum. 1997. Vol. 39. P. 215–221.<br />

4. Barka E. A., Kalantari S., Makhlouf J. Arul J. Impact of UV-C <strong>ir</strong>radiation on the cellwall<br />

degrading enzymes, during ripening of tomato (Lycopersicon esculentum L.) fruit //<br />

Journal of Agricultural and Food Chemistry. 2000. Vol. 48. N 3. P. 667–671.<br />

5. Beauchamp C. O, Fridovich, I. Superoxide dismutase: improved assays and an<br />

assay applicable to acrylamide gels // Analytical Biochemistry. 1971. Vol. 44. P. 276–287.<br />

6. Bertrani L., Lercari B. Evidence against the involment of phytochrome in UV-Binduced<br />

inhibition of stem growth in green tomato plants // Photosynthesis Research.<br />

2000. Vol. 64. N 2–3. P. 107–117.<br />

7. Björn L., Wang T. Vitamin D in an ecological context // International Journal of<br />

C<strong>ir</strong>cumpolar Health. 2000. Vol. 59. P. 26–32.<br />

8. Björn L. O., Widell S., Wang T. Evoliution of UVB regulation and protection in<br />

plants // Advance in Space Research. 2002. Vol. 30. N 6. P. 1557–1562.<br />

9. Booker F. L., Burkey K. O., Overmyer K., Jones A. M. Differential responses of G-<br />

protein Arabidopsis thaliana mutants to ozone // New Phytologist. 2004. Vol. 162. P. 633–641.<br />

10. Bradford M. N. A rapid and sensitive method for the quantification of microgram<br />

quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry.<br />

1976. Vol. 72. P. 248–<strong>25</strong>7.<br />

11. Cativelli L., Baldi P., Crosatti C., DiFonzo N., Faccioli P., Grossi M., Mastrangelo<br />

A.M., Pecchioni N., Stanca A.M. Chromosome regions and stress-related sequences involved<br />

in resistance abiotic stress in Triticacae // Plant Molecular Biology. 2002. Vol. 48.<br />

P. 649–665.<br />

12. Cavallini A., Natali L., Tontoni R., Cionini G., Lercari B. White and UV light effects<br />

on cell nuclei in the aurea genotype of Lycopersicum esculentum L. // Cytobios. 2001.<br />

Vol. 104. N 406. P. 83–98.<br />

13. Drumm-Herrel H., Mohr H. Effect of blue/UV light on anthocyanin synthesis in<br />

tomato seedlings in the absence of bulk carotinoids // Photochemistry and Photobiology.<br />

1982. Vol. 35. P. 229–233.<br />

14. Examining the health benefits of lycopene from tomatoes. Nutritional News. 2003.<br />

April. P. 1–2.<br />

15. Gitz D. C., Liu-Gitz L. How do UV phytomorphogenic responses confer water<br />

stress tolerance // Photochemistry and Photobiology. 2003. Vol. 78. N 6. P. 529–534.<br />

16. Guidi L., Innocenti E. D., Genovesi S., Soldatini G. F. Photosynthesis process and<br />

activities of enzymes involved in the phenylpropanoid patway in resistant and sensitive<br />

genotypes of Lycopersicon esculentum L. exposed to ozone // Plant Science. 2005.<br />

Vol. 168. P. 153–160.<br />

17. Hada M., Hino K., Takeuchi Y. Development of UV defense mechanisms during<br />

growth spinach seedlings // Plant and Cell Physiology. 2001. Vol. 42. N 7. P. 784–787.<br />

18. Hashimoto T. Requ<strong>ir</strong>ements of blue, UV-A, and UV-B light for normal growth of<br />

higher plants, as assessed by action spectra for growth and related phenomena // In:<br />

Lighting in Controlled Env<strong>ir</strong>onments. Workshop. Eds. T.W Tibbitts. NASA-CR Univ.Wisconsin.<br />

1994. P. 95–3309.<br />

19. Holley S. R., Yalamanchili R. D., Ryan C. A., Stratmann J. W. Convergence of<br />

signaling pathways induced by systemin oligosaccharide elicitors, and ultraviolet-B radiation<br />

at the level of mitogen – activated protein kinases in wild tomato suspension –<br />

cultured cells // Plant Physiology. 2003. Vol. 132. P. 1728–1738.<br />

20. Johannes W., Stelmach B. S., Weiler E. W., Rvan C. A. UVB and UVA radiation<br />

activates a 48 KDA myelin basic protein kinase and potentiates wound signaling in tomato<br />

leaves // Photochemistry and Photobiology. 2000. Vol. 71. N 2. P. 116–123.<br />

248


21. Jordan B. R. The effects of ultraviolet-B-radiation on plants // Advances in Botanical<br />

Research. 1996. Vol. 22. P. 97–162.<br />

22. Kacperska A. Sensor types in signal transduction pathways in plant cell responding<br />

to abiotic stressors: do they depend on the stress intensity // Physiologia Plantarum.<br />

2004. Vol. 22. P. 159–168.<br />

23. Kakani V. G., Reddy K. R., Zhao D., Sailaja K. Field crop response to ultraviolet-<br />

B radiation: a review // Agricultural and Forest Meteorology. 2003. Vol. 120. P. 191–218.<br />

24. Krupa S. V., Jäger H.-J. Adverse effect of elevated levels of ultraviolet (UV-B)<br />

radiation and ozone (O 3<br />

) on crop growth and productivity // In: Global Climate Change<br />

and Agricultural Production. J.Willey and Son. Roma. 1996. 7–th part. P. 141–169.<br />

<strong>25</strong>. Krupa S. V. Joint effect of elevated levels of ultraviolet-B radiation, carbon dioxide<br />

and ozone on plants // Photochemistry and Photobiology. 2003. Vol. 78. N 6. P. 535–54.<br />

26. Laemmli V. K. Cleavage of structural proteins during the assembly of the head of<br />

bacteriophage T4 // Nature. 1970. Vol. 227. P. 680–685.<br />

27. Levy J., Sharoni Y. The functions of tomato lycopene and its role in human health.<br />

Herbal Gram. 2004. Vol. 62. P. 49–56.<br />

28. Marcel J. A. K. Ultraviolet-B radiation effects on plants: induction of morphogenetic<br />

responses // Physiologia Plantarum. 2002. Vol. 116. P. 423–429.<br />

29. Mittler R. Oxidative stress, antioxidants and stress tolerance // Trends in Plant<br />

Science. 2002. Vol. 7. P. 405–410.<br />

30. Sponga F., Deitzer G. F., Mancinelli A. L. Cryptochrome, phytochrome and the<br />

phytoregulation of anthocyanin production under blue light // Plant Physiology. 1986.<br />

Vol. 82. N4. P. 952–955.<br />

31. Srinivas A., Behera R. K., Kagawa T., Wada M., Sharma R. High pigment 1<br />

mutation negatively regulates phototropic signal tranduction in tomato seedlings // Plant<br />

Physiology. 2004. Vol. 134. P. 790–800.<br />

32. Stratmann J. W., Stelmach B. A, Weiler E. W. Ryan C. A. UVB/UVA radiation<br />

activities a 48 kDa myelin basic proteinkinase and potentiates wound signaling in tomato<br />

leaves // Photochemistry and Photobiology. 2000. Vol. 71. P. 116–123.<br />

33. Stratmann J.W. Ultraviolet-B-radiation co-opts defense signaling pathways //<br />

Trends in Plant Science. 2003. Vol. 8. P. 526–533.<br />

34. Tattini M., Guidi L., Morassi-Bonzi L., Pinelli P., Remorini D., Degl’Innocenti E.,<br />

Giordano C., Massai R., Agati G. On the role of flavonoids in the integrated mechanisms<br />

of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation // New<br />

Phytologist. 2005. Vol. 167. P. 457–470.<br />

35. Thalma<strong>ir</strong> M., Bauw G., Thiel S., Döhring T., Langebartels C., Sandermann H.<br />

Ozone and ultraviolet B effects on defence-related proteins ß-1,3 glucanase and chitinase<br />

in tobacco // Journal of Plant Physiology. 1996. Vol. 148. P. 222–228.<br />

36. Verhoeyen M. E., Bovy A., Collins G., Mu<strong>ir</strong> S., Robinson S., de Vos C. H. R.,<br />

Colliver S. Increasing antioxidant levels in tomatoes throught modifications in the flavonoid<br />

biosynthetic pathway // Journal of Experimental Botany. 2002. Vol. 53 N 377.<br />

P. 2099–2106.<br />

37. Wettstein, D. Chlorophyll Letale und der submikroskopishe Formweschsel der<br />

Plastiden // Experimental cell research. 1957. Vol. 12. p. 427.<br />

38. Yang X. X., Choi H. W., Yang S. F., Li N. A UV-light activated cinnamic acid isomer<br />

regulates plant growth and gravitropism via and ethylene receptor-independent pathway //<br />

Australian Journal of Plant Physiology. 1999. Vol. 26 N 4. P. 3<strong>25</strong>–335.<br />

249


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

GROWTH PARAMETERS DEPENDENCE OF TOMATO<br />

(LYCOPERSICON ESCULENTUM MILL.) FROM UV-B<br />

IRRADIATION<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë, D. Ðvegþdienë, Z. Janèys,<br />

K. Ðlekytë, P. Duchovskis, A. Brazaitytë, J. Ðikðnianienë<br />

Summary<br />

UV-B stress response induction in tomato may have significance as means for<br />

regulation of plant growth and synthesis of the biological active substances. The<br />

goal of this study was to compare UV-B effect on variuos parameters of tomato cv.<br />

Svara: plant height, fresh and dry weight; weight and area of leaves; concentration<br />

of carotenoids, chlorophylls a and b and protein, superoxside dismutase (SOD) activity<br />

and isozyme spectra in leaves. In two experiments on the same material the<br />

two diferrent UV-B doses 10 and 5 kJ m -2 p -1 UV-B were examinated and it was<br />

showen that manipulation in UV-B doses gives different effect on the same plant<br />

parameter. That effect of UV-B can be used for regulation of tomato growth and<br />

synthesis of various substances. The effect of UV-B on variuos parameters tested in<br />

this work was different. As a tomato response to UV-B, the significant alteration of<br />

SOD spectra has been observed even after treatment with 5 kJ m -2 p -1 UV-B dose<br />

which shows stimulation effect on plant growth parameters.<br />

Key words: UV-B stress, dose differences, tomato, effect on growth, SOD<br />

isozyme spectra.<br />

<strong>25</strong>0


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RAUDONØJØ BUROKËLIØ ‘KAMUOLIAI’ KAI KURIØ<br />

ORGANINIØ MEDÞIAGØ DINAMIKA ÞYDËJIMO<br />

INDUKCIJOS IR EVOKACIJOS TARPSNIAIS<br />

Jûratë Bronë ÐIKÐNIANIENË, Pavelas DUCHOVSKIS,<br />

Pranas VIÐKELIS, Ona Danutë PETRONIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas J.Siksnianiene@lsdi.lt<br />

T<strong>ir</strong>ta organiniø medþiagø kaita raudonøjø burokëliø (Beta vulgaris L. var.<br />

Conditiva Alef.) ‘Kamuoliai’ pasoduose jø laikymo metu bei pasodinus á laukà<br />

þydëjimo indukcijos bei evokacijos tarpsniais. Burokëliø pasodai auginti Lietuvos<br />

sodininkystës <strong>ir</strong> darþininkystës instituto darþoviø bandymo laukuose pagal institute<br />

taikomas technologijas. Burokëliø ðakniavaisiai laikyti saugykloje +1 - +4°C temperatûroje.<br />

Ëminiai analizëms imti kas mënesá (nuo spalio iki balandþio). Pasodai á<br />

laukà pasodinti geguþës mën., ëminiai analizëms imti kas 10 dienø. Burokëliø þydëjimo<br />

indukcijos procesai tæsiasi per visà laikymo laikà, o pasodinus jø pasodus á<br />

laukà, prasideda evokacijos procesai. Pereinant ið þydëjimo indukcijos á evokacijos<br />

tarpsná, burokëliø ðakniavaisiuose vyksta atsarginiø medþiagø hidrolizë – sacharozës<br />

<strong>ir</strong> bendrojo cukraus bei invertuoto cukraus <strong>ir</strong> azoto medþiagø sintezë. Bendrojo<br />

cukraus <strong>ir</strong> azoto santykis, pereinant ið þydëjimo indukcijos á evokacijos tarpsná,<br />

sumaþëja.<br />

Reikðminiai þodþiai: azoto medþiagos, cukrûs, evokacijos tarpsniai, raudonieji<br />

burokëliai, þydëjimo indukcija.<br />

Ávadas. Þiemojanèiø dvimeèiø <strong>ir</strong> daugiameèiø augalø þydëjimo iniciacijoje iðsk<strong>ir</strong>iami<br />

tokie pagrindiniai etapai: þydëjimo indukcija, evokacija, þiedø iniciacija, gametø<br />

iniciacija <strong>ir</strong> þydëjimo stimulo komplekso destrukcija. Þydëjimo indukcija – etapas,<br />

kai dël iðoriniø <strong>ir</strong> vidiniø veiksniø átakos formuojasi þydëjimo stimulas. Evokacija –<br />

generatyvinës organogenezës genø ekspresija <strong>ir</strong> tolesni procesai iki morfologiðkai<br />

iðreikðto þiedyno pradmens susiformavimo. Tai vienas sudëtingiausiø þydëjimo iniciacijos<br />

etapø, nes vyksta augalo ontogenezës posûkis nuo vegetatyvinës morfogenezës<br />

iki generatyviniø struktûrø formavimo (Duchovskis, 1996, 2000). Evokacijos<br />

procesuose, be hormoniniø <strong>ir</strong> fermentiniø sistemø, dalyvauja <strong>ir</strong> trofinës medþiagos.<br />

Kol kas visai neaiðkûs baltymø metabolizmo pokyèiai áva<strong>ir</strong>iais þydëjimo iniciacijos<br />

etapais. Tai ypaè aktualu evokacijos tarpsnyje, kai vyksta p<strong>ir</strong>møjø reproduktyviø<br />

baltymø sintezë (Wiebe, 1989). Bandoma árodyti, kad þydëjimo iniciacijos procesus<br />

<strong>25</strong>1


lemia <strong>ir</strong> C/N (bendrojo cukraus/azoto) santykis augaluose arba kiti trofiniai veiksniai<br />

(Tran Thanh Van, Trink, 1978; Öûáóëüêî, 1979).<br />

Burokëliø ðakniavaisiuose yra apie 14–16 proc. t<strong>ir</strong>piø sausøjø medþiagø, 8–<br />

12 proc. cukrø, tarp kuriø dominuoja sacharozë. Burokëliø lapuose yra daugiau azoto<br />

junginiø negu ðakniavaisiuose, didþiàjà jø dalá sudaro baltymai (albuminai, globulinai).<br />

Lapuose <strong>ir</strong> ðakniavaisiuose yra daug askorbo rûgðties (20–21 mg 100 g -1 ), vitaminø<br />

B 1<br />

, B 2<br />

, P <strong>ir</strong> PP (Êðàñî÷êèí, 1971).<br />

Angliavandeniø <strong>ir</strong> azoto medþiagø metabolizmas evokacijos metu maþai tyrinëtas.<br />

Tuomet þydëjimo stimulas nestabilus, gali vykti jo destrukcija (Wiebe, 1989).<br />

Dël þydëjimo stimulo destrukcijos apikalinë meristema gali gráþti á vegetatyvinæ bûsenà<br />

(II organogenezës etapas) (Äóõîâñêèé, 1983, Duchovskis, 1998). Neaiðku, kokie angliavandeniø<br />

<strong>ir</strong> azoto medþiagø metaboliniai pasikeitimai gali ávykti dël tokiø pakitimø.<br />

Darbo tikslas – iðt<strong>ir</strong>ti ‘Kamuoliø’ veislës raudonøjø burokëliø angliavandeniø <strong>ir</strong><br />

azoto medþiagø dinamikà þydëjimo indukcijos bei evokacijos metu.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. Tyrimai atlikti 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto (LSDI) Augalø fiziologijos laboratorijoje. Raudonøjø<br />

burokëliø (Beta vulgaris L. var. Conditiva Alef.) ‘Kamuoliai’ pasodai auginti LSDI<br />

darþoviø bandymø laukuose pagal institute taikomas technologijas. Nuimti burokëliø<br />

pasodai laikyti saugykloje +1 – +4°C temperatûroje. Ëminiai analizëms imti kas mënesá<br />

(nuo spalio iki balandþio) per visà laikymo laikà <strong>ir</strong> kas 10 dienø, pasodus pasodinus<br />

á laukà (geguþës mën.). Kiekvienà kartà analizuota po tris kiekvienos dydþio<br />

frakcijos pasodus (1 lentelë). Nustatytas augalø organogenezës etapas, þydëjimo iniciacijos<br />

tarpsnis, cukrø <strong>ir</strong> azoto medþiagø kiekis. Organogenezës etapai nustatyti<br />

pagal F. Kupermano mokyklos sukurtà raidos periodizacijà bei metodologijà (Êóïåðìàí<br />

<strong>ir</strong> kt., 1982), þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniai – pagal P. Duchovská (Duchovskis,<br />

2004).<br />

1 lentelë. Raudonøjø burokëliø ðakniavaisio skersmuo, cm<br />

Table 1. Diameter of red beet root- crop (cm)<br />

Veislë<br />

I frakcija / I faction<br />

II frakcija / II faction<br />

Cultivar 2003–2004 m. 2004–2005 m. 2003–2004 m. 2004–2005 m.<br />

‘Kamuoliai’ 9,86 ± 0,451 9,44 ± 0,370 7,16 ± 0,367 5,80 ± 0,181<br />

2003 m. balandþio <strong>ir</strong> geguþës mënesiø vidutinë paros oro temperatûra buvo ðiek<br />

tiek aukðtesnë uþ daugiametá vidurká (2 lentelë). Vasara buvo ðilta, drëgmës pakako.<br />

Burokëliams dygti <strong>ir</strong> augti sàlygos buvo geros. 2004 m. geguþës <strong>ir</strong> b<strong>ir</strong>þelio vidutinë<br />

paros oro temperatûra buvo þemesnë uþ daugiametá vidurká, o krituliø iðkrito daugiau.<br />

Liepos mënuo buvo kiek vësesnis <strong>ir</strong> sausesnis, rugpjûtá iðkrito gerokai daugiau<br />

krituliø negu daugiametis vidurkis. Burokëliams augti tai buvo gan geri metai.<br />

Cheminës analizës atliktos LSDI Biochemijos <strong>ir</strong> technologijos laboratorijoje taikomais<br />

tyrimø metodais: t<strong>ir</strong>pios sausosios medþiagos nustatytos refraktometru (Ìåòîäû...,<br />

1987), (skaitmeninis refraktometras ATAGO), cukrûs – AOAC metodu (AOAC, 1990),<br />

sausosios medþiagos – gravimetriðkai, iðþiovinus +105°C temperatûroje iki nekintamos<br />

masës (Manuals, 1986), baltymø kiekis – Kjeldalio metodu (N x 6,<strong>25</strong>).<br />

<strong>25</strong>2


2 lentelë. Meteorologinës sàlygos raudonøjø burokëliø vegetacijos metu<br />

Table 2. Meteorological conditions during red beet vegetation<br />

Oro temperatûra / A<strong>ir</strong> temperature, °C Krituliai / Precipitation, mm<br />

Mënuo<br />

1924–2000 m.<br />

1924–2000 m.<br />

Month 2003 m. 2004 m.<br />

2003 m. 2004 m.<br />

vidurkis / average<br />

vidurkis / average<br />

Balandis / April 7,5 9,6 5,8 32,3 32,3 42,0<br />

Geguþë / May 15,7 10,7 11,9 45,1 46,2 43,7<br />

B<strong>ir</strong>želis / June 15,4 13,7 16,6 57,1 77,4 50,4<br />

Liepa / July 20,1 16,1 17,6 118,0 50,4 71,8<br />

Rugpjûtis / August 17,5 16,7 16,3 52,4 123,4 75,8<br />

Rugsëjis / September 12,8 11,6 12,0 27,9 36,2 30,0<br />

Kauno meteorologijos stotis, 2003–2004 m. / Kaunas Meteorological Station, 2003–2004<br />

Cheminës sudëties duomenys matematiðkai apdoroti „Microsoft Excel“ programa.<br />

Apskaièiuota standartinë paklaida.<br />

Rezultatai. Raudonøjø burokëliø augimo kûgeliai laikymo metu buvo II organogenezës<br />

etapo. Prasidëjus burokëliø pasodø vegetacijai, kai jie buvo pasodinti á<br />

laukà, augimo kûgeliai perëjo á I evokacijos tarpsná. Raudonøjø burokëliø augimo<br />

kûgelio skersmuo II organogenezës etape kito nuo 0,13 iki 0,17 mm, III etape –<br />

nuo 0,26 iki 0,33 mm, IV etape – nuo 0,48 iki 0,87 mm (3 lentelë). Pasodinus<br />

pasodus á laukà, II frakcijos burokëliai augo sparèiau <strong>ir</strong> jø augimo kûgeliai buvo<br />

didesni.<br />

3 lentelë. ‘Kamuoliø’ veislës raudonøjø burokëliø augimo kûgeliø skersmuo<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais, mm<br />

Table 3. Apex diameter of red beet cultivar ‘Kamuoliai’ during flowering<br />

induction and evocation stages, mm<br />

Metai<br />

Year<br />

Þydëjimo indukcija,<br />

II organogenezës etapas<br />

Flowering induction,<br />

organogenesis stage II<br />

I evokacijos tarpsnis,<br />

III organogenezës etapas<br />

Evocation stage I,<br />

organogenesis stage III<br />

II evokacijos tarpsnis,<br />

IV organogenezës etapas<br />

Evocation stage II,<br />

organogenesis stage IV<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

I frakcija<br />

faction I<br />

II frakcija<br />

faction II<br />

2003–2004 m. 0,17 ± 0,0<strong>25</strong> 0,15 ± 0,018 0,27 ± 0,017 0,33 ± 0,076 0,48 ± 0,0<strong>25</strong> 0,87 ± 0,067<br />

2004–2005 m. 0,15 ± 0,015 0,13 ± 0,012 0,26 ± 0,021 0,30 ± 0,072 0,55 ± 0,151 0,70 ± 0,050<br />

2003–2004 m. raudoniesiems burokëliams pereinant ið þydëjimo indukcijos<br />

(II organogenezës etapo) á evokacijos (III – IV organogenezës etapà) tarpsná, sausøjø<br />

medþiagø kiekis sumaþëjo daugiau kaip 3 proc. (4 lentelë). 2004–2005 m. burokëliø<br />

ðakniavaisiuose rasta maþiau sausøjø medþiagø. Tam átakos galëjo turëti didelis<br />

krituliø kiekis vasaros pabaigoje <strong>ir</strong> rudená. Tais metais, burokëliams pereinant ið þydëjimo<br />

indukcijos á evokacijos tarpsná, sausøjø medþiagø kiekis sumaþëjo iki 2,8 proc.<br />

(I frakcijos pasodø) <strong>ir</strong> 4,1 proc. (II frakcijos pasodø).<br />

<strong>25</strong>3


4 lentelë. Sausøjø medþiagø dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose, %<br />

Table 4. The dynamics of dry matter in red beet ‘Kamuoliai’ root crop (%)<br />

Metai<br />

Year<br />

I frakcija / I faction<br />

organogenezës etapas<br />

organogenesis stage<br />

II frakcija / II faction<br />

organogenezës etapas<br />

organogenesis stage<br />

II III – IV II III – IV<br />

2003–2004 m. 18,8 ± 0,45 14,9 ± 0,68 19,4 ± 0,64 15,6 ± 0,73<br />

2004–2005 m. 15,5 ± 0,41 12,7 ± 0,18 17,1 ± 0,4 13,0 ± 0,37<br />

Vidurkis / Average 17,1 ± 0,98 13,8 ± 0,91 18,1 ± 0,77 14,3 ± 1,07<br />

2003–2004 m. I frakcijos burokëliø ðakniavaisiuose þydëjimo indukcijos metu iki<br />

kovo mënesio invertuoto cukraus kiekis kito nuo 0,23 iki 0,65 proc. (1 A pav.). Kovo<br />

mënesá, baigiantis þydëjimo indukcijos tarpsniui, invertuoto cukraus kiekis padidëjo iki<br />

1 proc. <strong>ir</strong> panaðus iðliko visà evokacijos tarpsná. 2004–2005 m. invertuoto cukraus<br />

kiekis burokëliø ðakniavaisiuose kito panaðiai: iki balandþio mën. – nuo 0,<strong>25</strong> iki<br />

0,52 proc., balandþio mën. padidëjo iki 0,65 proc., o geguþës mën. (II evokacijos<br />

tarpsnis) – iki 0,99 proc. (1 B pav.). II frakcijos burokëliø ðakniavaisiuose invertuoto<br />

cukraus kiekis þydëjimo indukcijos <strong>ir</strong> evokacijos metu kito taip: 2003–2004 m. – nuo<br />

0,27 iki 0,71 proc. (1 C pav.), o 2004–2005 m. – nuo 0,32 iki 0,71 proc. (1 D pav.).<br />

1 pav. Invertuoto cukraus dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 1. The dynamics of inverted sugar in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

Sacharozës kiekis, pereinant ið þydëjimo indukcijos á evokacijos tarpsná, sumaþëjo<br />

(2 pav.). 2003–2004 m. þydëjimo indukcijos tarpsniu sacharozës kiekis I frakcijos<br />

burokëliø ðakniavaisiuose kito nuo 7,5 iki 12,6 proc. (2 A pav.), II frakcijos<br />

ðakniavaisiuose – nuo 8,2 iki 11,8 proc. (2 C pav.), 2004–2005 m. I frakcijos ðaknia-<br />

<strong>25</strong>4


vaisiuose – nuo 8,2 iki 10,1proc. (2 B pav.), II frakcijos ðakniavaisiuose – nuo 7,3 iki<br />

11,1 proc. (2 D pav.). Evokacijos tarpsniu sacharozës kiekis sumaþëjo (2 pav). Antru<br />

evokacijos tarpsniu 2003–2004 m. I frakcijos pasoduose buvo 7,2 proc. sacharozës<br />

(2 A pav.), II frakcijos – 7,3 proc. (2 C pav.), o 2004–2005 m. I frakcijos –<br />

6,4 proc. (2 B pav.), II frakcijos – 6,1 proc. (2 D pav.)<br />

2 pav. Sacharozës dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 2. The dynamics of saccharose in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

3 pav. Bendrojo cukraus dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 3. The dynamics of total sugar in red beet ‘Kamuoliai’ root crop during<br />

flowering induction and evocation<br />

<strong>25</strong>5


Bendrojo cukraus kitimo dinamika burokëliø ðakniavaisiuose tokia pati kaip <strong>ir</strong><br />

sacharozës (3 pav.). 2003–2004 m. þydëjimo indukcijos tarpsniu I frakcijos pasoduose<br />

bendrojo cukraus nustatyta 8,1–13,4 proc. (3 A pav.), II frakcijos – 8,7–<br />

12,1 proc. (3 C pav.), o 2004–2005 m. I frakcijos – 8,5–10,4 proc. (3 B pav.),<br />

II frakcijos – 11,3 proc. (3 D pav.). Antru evokacijos tarpsniu bendrojo cukraus<br />

kiekis sumaþëjo I frakcijos pasoduose atitinkamai iki 8,2 proc. (3 A pav.) <strong>ir</strong> 6,9 proc.<br />

(3 B pav.), II frakcijos – atitinkamai 7,9 proc. (3 C pav.) <strong>ir</strong> 6,5 proc. (3 D pav.).<br />

2003–2004 m., burokëliams pereinant ið þydëjimo indukcijos á evokacijos tarpsná,<br />

bendrojo azoto kiekis gerokai padidëjo (4 A, C pav.), o 2004–2005 m. iðliko<br />

nepakitæs (4 B, D pav.). I frakcijos burokëliø ðakniavaisiuose þydëjimo indukcijos<br />

metu bendrojo azoto kiekis kito nuo 1,12 iki 1,43 proc., o II frakcijos – nuo 1,11<br />

iki 1,76 proc. (2003–2004 m.). Evokacijos metu I frakcijos burokëliø ðakniavaisiuose<br />

bendrojo azoto kiekis kito nuo 1,55 iki 1,88 proc., o II frakcijos – nuo 1,79 iki<br />

2,04 proc. (4 A, C pav.). 2004–2005 m. I frakcijos burokëliø ðakniavaisiuose bendrojo<br />

azoto kiekis kito nuo 1,02 iki 1,29 proc., o II frakcijos – nuo 0,98 iki 1,55 proc.<br />

(4 B, D pav.).<br />

Burokëliams ið þydëjimo indukcijos perëjus á evokacijos tarpsná, t<strong>ir</strong>piø sausøjø<br />

medþiagø kiekis sumaþëjo (5 pav). 2003–2004 m. þydëjimo indukcijos tarpsniu burokëliø<br />

ðakniavaisiuose ðios medþiagos kiekis áva<strong>ir</strong>avo nuo 14,6 iki 18,4 proc.<br />

(5 A, C pav.), 2004–2005 m. – nuo 10,0 iki 16,3 proc. (5 B, D pav.). Evokacijos<br />

tarpsniu t<strong>ir</strong>piø sausøjø medþiagø sumaþëjo iki 10,7 proc. (5 pav.).<br />

4 pav. Bendrojo azoto dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 4. The dynamics of total sugar in red beet ‘Kamuoliai’ root crop during flowering<br />

induction and evocation<br />

2003–2004 m. I frakcijos burokëliø ðakniavaisiuose bendrojo cukraus <strong>ir</strong> azoto<br />

santykis þydëjimo indukcijos tarpsniu áva<strong>ir</strong>avo nuo 6,0 iki 10,7, o II frakcijos – nuo<br />

5,2 iki 9,9 (6 A, C pav.). Evokacijos tarpsniu ðis santykis sumaþëjo: I frakcijos – iki<br />

5,0–5,3, o II frakcijos – iki 4,2–4,5. 2004–2005 m. I frakcijos burokëliø ðakniavaisiø<br />

<strong>25</strong>6


endrojo cukraus <strong>ir</strong> azoto santykis þydëjimo indukcijos tarpsniu áva<strong>ir</strong>avo nuo 7,0 iki<br />

9,9, o II frakcijos – nuo 5,2 iki 11,8 (6 B, D pav.). Taèiau pereinant á evokacijos<br />

tarpsná tokio ryðkaus sumaþëjimo kaip 2003–2004 m. nebuvo. I frakcijos burokëliø<br />

ðakniavaisiuose evokacijos tarpsniu ðis santykis áva<strong>ir</strong>avo nuo 6,3 iki 7,4, o II frakcijos<br />

– nuo 5,8–6,0.<br />

Aptarimas. Burokëliai, kaip <strong>ir</strong> kiti dvimeèiai augalai, p<strong>ir</strong>maisiais metais suformuoja<br />

lapø skrotelæ, o kitais metais, po foto- <strong>ir</strong> termoindukcijos procesø rudená bei<br />

þiemà, vystosi þiedynstiebiai. Rudená, trumpëjanèio fotoperiodo sàlygomis, veikiant<br />

fitochromo sistemai, lapuose formuojasi fotoindukcijos stimulas, kuris transportuojamas<br />

á apikalines meristemas <strong>ir</strong> deblokuoja þiedyno aðies formavimosi genus. Saugykloje<br />

dël þemø teigiamø temperatûrø þydëjimo indukcijos tarpsnio stimulas formuojasi<br />

augimo kûgeliuose, vyksta þiedyno elementø formavimosi genø raiðka (Duchovskis,<br />

2000). Ðis procesas tæsiasi visà laikymo laikotarpá (Ðikðnianienë <strong>ir</strong> kt.,<br />

2006). Kitø darþoviø (kopûstø, morkø) augimo kûgelio þiedyno aðies diferenciacija<br />

prasideda saugykloje (Duchovskis <strong>ir</strong> kt., 2000; Ðikðnianienë <strong>ir</strong> kt., 2004). Tik pasibaigus<br />

termoindukcijos tarpsniui, prasideda burokëliø þiedyno aðies diferenciacija,<br />

t. y. vyksta evokacijos procesai (3 lentelë).<br />

5 pav. T<strong>ir</strong>piø sausøjø medþiagø dinamika raudonøjø burokëliø ‘Kamuoliai’ ðakniavaisiuose<br />

þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 5. The dynamics of soluble dry matter in red beet cultivar ‘Kamuoliai’ root crop<br />

during flowering induction and evocation<br />

Raudonøjø burokëliø ðakniavaisiams pereinant ið þydëjimo indukcijos (II organogenezës<br />

etapas) á evokacijos (III – IV organogenezës etapas) tarpsná, sumaþëja<br />

sausøjø medþiagø (4 lentelë), sacharozës (2 pav.) <strong>ir</strong> bendrojo cukraus (3 pav.) bei<br />

t<strong>ir</strong>piø sausøjø medþiagø kiekis (5 pav.). Tai ið dalies galima paaiðkinti tuo, kad tamsoje<br />

augalai nepasipildo medþiagø, o kvëpuoja ið sukauptø atsargø. Kita vertus, vyksta polimeriniø<br />

medþiagø hidrolizës procesai. Panaðûs reiðkiniai pastebëti <strong>ir</strong> kituose dvimeèiuose<br />

augaluose evokacijos tarpsniu (Duchovskis <strong>ir</strong> kt.; 2000, Ðikðnianianë <strong>ir</strong> kt.; 2004,<br />

<strong>25</strong>7


Ðikðnianianë <strong>ir</strong> kt., 2006). Sacharozës sumaþëjo <strong>ir</strong> pereinant ið p<strong>ir</strong>mojo evokacijos<br />

tarpsnio á antràjá. Manoma, kad sacharozë labai reikðminga evokacijos procesuose,<br />

nes, veikiama b-fruktofuranozidazës, skyla á gliukozæ <strong>ir</strong> fruktozæ, kurios yra svarbios<br />

làsteliø energinës medþiagos, pagrindiniai kvëpavimo substratai (Kulka, Rejowski,<br />

1998). Pereinant ið þydëjimo indukcijos á evokacijos tarpsná, sintetinami baltyminiai<br />

metabolitai, reikalingi evokacijos tarpsniui, todël padidëja bendrojo azoto kiekis<br />

(4 pav.). Burokëliams pereinant ið þydëjimo indukcijos á evokacijos tarpsná, bendrojo<br />

cukraus <strong>ir</strong> azoto santykis sumaþëja (6 pav.), nes ðakniavaisiuose sparèiai vyksta evokacijos<br />

tarpsnio metaboliniai bei morfogenetiniai procesai (Kulka, Rejowski, 1998).<br />

6 pav. Bendrojo cukraus <strong>ir</strong> azoto santykio dinamika raudonøjø burokëliø ‘Kamuoliai’<br />

ðakniavaisiuose þydëjimo indukcijos <strong>ir</strong> evokacijos metu<br />

Fig. 6. The dynamics of total sugar and nitrogen ratio in red beet cultivar ‘Kamuoliai’<br />

root crop during flowering induction and evocation<br />

Iðvados. Burokëliø pasodø augimo kûgeliuose termoindukcijos procesai vyksta<br />

dël þemø teigiamø temperatûrø saugykloje, o evokacijos procesai prasideda, kai pasodai<br />

pasodinami á laukà.<br />

Pereinant ið þydëjimo indukcijos á evokacijos tarpsná, burokëliø ðakniavaisiuose<br />

vyksta atsarginiø medþiagø hidrolizë, invertuoto cukraus <strong>ir</strong> azoto medþiagø sintezë,<br />

sumaþëja sacharozës <strong>ir</strong> bendrojo cukraus kiekis.<br />

Raudoniesiems burokëliams ‘Kamuoliai’ ið þydëjimo indukcijos perëjus á evokacijos<br />

tarpsná, bendrojo cukraus <strong>ir</strong> azoto santykis sumaþëja.<br />

Gauta 2006-10-24<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. AOAC. Sucrose in fruits and fruit products // Official Methods of Analysis. Arlington:<br />

VA, 1990. 922 p.<br />

<strong>25</strong>8


2. Duchovskis P. Model of Flowering Initiation in Perennial Plants // Theoretical and<br />

practical Problems in modern Physiology of Cultured Plants. Collection of Scientific Articles.<br />

Babtai, LIH. 1996. P. 15–<strong>25</strong>.<br />

3. Duchovskis P. Photomorphogenetic effects in flowering initiation within perennial<br />

plants // Biologija. 1998. No. 3. P. 42–44.<br />

4. Duchovskis P., Ðikðnianienë J., Bobinas È., Viðkelis P. Baltagûþiø kopûstø peroksidazës<br />

<strong>ir</strong> orto-difenoloksidazës izofermentø bei kai kuriø organiniø medþiagø dinamika evokacijos<br />

etape // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(3)-1. P. 309–316.<br />

5. Duchovskis P. Þiemojanèiø augalø þydëjimo indukcijos bei evokacijos dviejø tarpsniø<br />

koncepsija // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(3)-1. P. 3–10.<br />

6. Duchovskis P. Þiemojanèiø augalø þydëjimo iniciacija // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2004. T.23(2). P. 3–11.<br />

7. Kulka K., Rejowski A. Biochemia. Olsztyn: Wydawnictwo ART, 1998. 609 p.<br />

8. Manuals of food quality control // Food analysis: general techniques, additives,<br />

contaminants, and composition. Rome: FAO, 1986. 205 p.<br />

9. Ðikðnianienë J. B., Duchovskis P., Viðkelis P., Karklelienë R., Samuolienë G. Valgomøjø<br />

morkø (Daucus sativus Röhl.) angliavandeniø <strong>ir</strong> azotiniø medþiagø dinamika evokacijos<br />

metu // Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2004. T. 23(2). P. 137–142.<br />

10. Ðikðnianienë J. B., Duchovskis P., Viðkelis P., Petronienë D. Raudonøjø burokëliø<br />

Ilgiai angliavandeniø <strong>ir</strong> azoto medþiagø dinamika þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais<br />

// Sodininkystë <strong>ir</strong> darþininkystë. Babtai, 2006. T. <strong>25</strong>(1). P. 100–109.<br />

11. Tran Thanh Van M., Trink H. Morphogenesis in thin cell layers: concept, methodology<br />

and results. Calgary (Canada), 1978. P. 37–48.<br />

12. Wiebe H.-J. Vernalisation von wichtigen Gemûsearten–Ein Ûberblick // Gartenbauwissenchaft.<br />

1989. 54. P. 97–104.<br />

13. Äóõîâñêèé Ï., Ðæàíîâà Å. È. Òåìïû è îñîáåííîñòè îðãàíîãåíåçà ðàéãðàñà<br />

ïàñòáèùíîãî (Llium perenne L.) â åñòåñâåííûõ è èñêóñòâåííûõ óñëîâèÿõ<br />

âûðàùèâàíèÿ // Ñåëüñêîõîçÿéñâåííàÿ áèîëîãèÿ. 1983. ¹ 9. Ñ. 52–55.<br />

14. Êðàñî÷êèí Â. Ò. Õàðàêòåðèñòèêà ñåìåéñòâà Ìàðåâûõ èëè Ñîëÿíêîâûõ,<br />

- Chenopodiaceae Less. // Êóëüòóðíàÿ ôëîðà ÑÑÑÐ / Êîðíåïëîäíûå ðàñòåíèÿ.<br />

Ëåíèíãðàä, 1971. Ò. ÕIX. C. 7–266.<br />

15. Êóïåðìàí Ô. Ì., Ðæàíîâà Å. È., Ìóðàøåâ Â. Â. è äð. Áèîëîãèÿ ðàçâèòèÿ<br />

êóëüòóðíûõ ðàñòåíèé. Ìîñêâà, 1982. 343 c.<br />

16. Ìåòîäû áèîõèìè÷åñêîãî èññëåäîâàíèÿ ðàñòåíèé / Ïîä ðåä. À. È.<br />

Åðìàêîâà. Ëåíèíãðàä, 1987. 431 c.<br />

17. Öûáóëüêî Â. Ñ. Àíàëèç ýêñïåðèìåíòàëüíîé îáîñíîâàííîñòè îñíîâíûõ<br />

òåîðèé è ãèïîòåç áèîëîãè÷åñêîé ïðèðîäû ôîòîïåðèîäèçìà // Ôèçèîëîãèÿ è<br />

áèîõèìèÿ êóëüòóðíûõ ðàñòåíèé. 1979. Ò. 29, ¹ 4. Ñ. <strong>25</strong>8–264.<br />

<strong>25</strong>9


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

THE DYNAMICS OF SOME ORGANIC SUBSTANCES OF<br />

RED BEET ‘KAMUOLIAI’ AT FLOWERING INDUCTION<br />

AND EVOCATION STAGES<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis, O. D. Petronienë<br />

Summary<br />

The variation of organic substances of red beet (Beta vulgaris L. var. Conditiva<br />

Alef.) ‘Kamuoliai’ at flowering induction and evocation stages were investigated<br />

during storage and after planting in a field. Beet plantings were grown in experimental<br />

fields of LIH according to the technologies applied at the Institute. Beet root<br />

crops were stored in storage at the temperature of +1 – +4°C. The samples for<br />

analyses were taken each month (from October up till April). Plantings were planted<br />

in field in May and the samples for analyses were taken every 10 days. The processes<br />

of beet flowering induction continue during all the period of watering, and when<br />

beet plantings are planted in field evocation processes start up. During transitional<br />

period from flowering induction to evocation, hydrolysis of reserve substances,<br />

decrease of the amount of saccharose and total sugar and synthesis of inverted<br />

sugar and nitric substances occur. The ratio of the total sugar and nitrogen during<br />

transition from flowering induction to evocation decreases.<br />

Key words: nitric substances, evocation periods, flowering induction, nitric<br />

substances, red beet, sugars.<br />

260


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

AUGALØ, AUGINAMØ ÞALIAJAI TRÀÐAI,<br />

AGROBIOLOGINIS ÁVERTINIMAS IR ÁTAKA<br />

SVOGÛNØ DERLIUI<br />

Roma STARKUTË, Laisvûnë DUCHOVSKIENË,<br />

Vytautas ZALATORIUS<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas vytas@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës darþininkystës institute ekologiðkai darþovëms<br />

auginti sk<strong>ir</strong>tame bandymø lauke t<strong>ir</strong>ti <strong>ir</strong> ávertinti þaliajai tràðai tinkamiausi augalai<br />

<strong>ir</strong> nustatyta jø átaka ekologiðkai auginamø svogûnø derliui. T<strong>ir</strong>ti augalai þaliajai<br />

tràðai: mieþiai, mieþiai su dobilø ásëliu, vasariniai kvieèiai, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys,<br />

aliejiniai ridikai. Kontrolinis variantas – juodasis pûdymas.<br />

Nustatyta, kad þaliajai tràðai auginamø augalø biomasë armenyje paliko nevienodà<br />

organinës medþiagos kieká. Daugiausia sausøjø medþiagø – 7,3 t ha -1 buvo áterpta<br />

su vasariniø kvieèiø þalia mase.<br />

Daugiausia þalios masës (43,2 t ha -1 ) uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys, vasariniai<br />

kvieèiai – 32,5 t ha -1 , mieþiai su dobilø ásëliu – 30,2 t ha -1 , maþiausiai – mieþiai <strong>ir</strong><br />

aliejiniai ridikai (atitinkamai 24,5 <strong>ir</strong> 27,0 t ha -1 ).<br />

Ávertintas tabakiniø tripsø Thrips tabaci gausumas visuose variantuose, esminiø<br />

sk<strong>ir</strong>tumø tarp variantø nenustatyta.<br />

Þaliajai tràðai auginamas þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys svogûnø prekiná derliø padidino<br />

3,1 proc., vasariniai kvieèiai – 5,7 proc., mieþiai su dobilø ásëliu – 7,3 proc. Maþiausiai<br />

átakos svogûnø derliui turëjo þaliajai tràðai auginami mieþiai <strong>ir</strong> aliejiniai ridikai.<br />

Daugiausia piktþoliø (191 vnt. m -2 ) rasta svogûnø, augintø po mieþiø su dobilø<br />

ásëliu, pasëlyje, maþiausiai – 29 vnt. m 2 – po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio augintø svogûnø<br />

pasëlyje.<br />

Reikðminiai þodþiai: augalai þaliajai tràðai, biomasë, piktþolës, sausosios medþiagos,<br />

svogûnai, tabakiniai tripsai.<br />

Ávadas. Auginant darþoves ekologiðkai, viena veiksmingiausiø priemoniø, palaikanèiø<br />

d<strong>ir</strong>voþemio derlingumà, yra træðimas organinëmis tràðomis. Sistemingai træðiant<br />

organinëmis tràðomis – mëðlu, padidëja d<strong>ir</strong>voþemio biologinis aktyvumas, pagerëja<br />

fizikinës <strong>ir</strong> cheminës savybës, vandens <strong>ir</strong> oro reþimas (Tripolskaja, 1994). Organinëse<br />

tràðose yra visø augalams reikalingø maisto medþiagø – azoto, fosforo, kalio,<br />

kalcio bei mikroelementø – boro, mangano, kobalto, vario, cinko, molibdeno, sieros.<br />

261


Organinës tràðos yra daugumos d<strong>ir</strong>voþemio mikroorganizmø maisto ðaltinis. Jos skatina<br />

saprofitiniø mikroorganizmø vystymàsi <strong>ir</strong> taip sumaþina patogeniniø mikroorganizmø<br />

kieká (Þekonienë, Bakutis, Jankauskas <strong>ir</strong> kt. 1997; Äîâáàí, 1991; Íîâîñ¸ëîâ,<br />

Øëàïóíîâ <strong>ir</strong> kt., 1987). Kadangi mëðlo sukaupiama palyginti maþai, reikia auginti<br />

daugiau augalø þaliajai tràðai. Þalioji tràða gerokai pigesnë, o jos poveikis p<strong>ir</strong>maisiais<br />

metais jà áterpus daþnai geresnis negu mëðlo (Àëåêñååâ, 1996).<br />

Þaliajai tràðai labiausiai tinka ankðtiniai augalai: paðariniai <strong>ir</strong> siauralapiai sideratiniai<br />

lubinai, paðarinës pupos, seradëlës, vikiai, þ<strong>ir</strong>niai <strong>ir</strong> dobilai, nes jø nereikia træðti<br />

azoto tràðomis, jie patys aps<strong>ir</strong>ûpina azotu, nemaþai jo sukaupia þalioje masëje <strong>ir</strong> ðaknyse.<br />

Ankðtiniai augalai turi tv<strong>ir</strong>tà ðaknø sistemà, todël ið gilesniø d<strong>ir</strong>vos sluoksniø<br />

paima maisto medþiagas <strong>ir</strong> kitiems augalams neprieinamus junginius. Pastaruoju metu<br />

daþnai auginami <strong>ir</strong> posëliniai augalai, kuriø vegetacijos laikotarpis trumpas: garstyèios,<br />

aliejiniai ridikai, vasariniai rapsai. Aparus augalus þaliajai tràðai, á d<strong>ir</strong>voþemá áterpiama<br />

daug organiniø medþiagø, pagerëja biologinës d<strong>ir</strong>voþemio savybës, o dël kryþmaþiedþiuose<br />

augaluose esanèiø fitoncidø pagerëja d<strong>ir</strong>voþemio fitosanitarinë bûklë<br />

(Lazauskas, 1992; Velièka, 2002; Íîâîñ¸ëîâ, Ðóäîìèí, Øëàïóíîâ <strong>ir</strong> kt., 1987;<br />

Wallgren and Lindon; I994, Cheng and Coleman, 1990). Tinkamas prieðsëlis <strong>ir</strong> gilus<br />

arimas sumaþina tabakiniø tripsø populiacijà svogûnø pasëlyje (Brewster, 1994).<br />

Ekologiðkai auginant didesnius ðvariø darþoviø plotus sëjomainoje be tràðø <strong>ir</strong><br />

pesticidø, træðiant tik þaliàja tràða, svarbu nenualinti d<strong>ir</strong>vø, iðlaikyti reikiamà pasëliø<br />

ðvarumo lygá bei derlingumà, kad darþoviø auginimo bûdas bûtø pelningas. Iðlaikyti<br />

d<strong>ir</strong>voþemio derlingumà <strong>ir</strong> já didinti – pagrindinis ekologinio ûkininkavimo uþdavinys.<br />

Darbo tikslas – parinkti tinkamiausius augalus þaliajai tràðai <strong>ir</strong> nustatyti jø átakà<br />

ekologiðkai auginamø svogûnø derliui.<br />

Tyrimo sàlygos <strong>ir</strong> metodai. Tyrimai atlikti Lietuvos sodininkystës <strong>ir</strong> darþininkystës<br />

institute ekologiðkai darþovëms auginti paruoðtame bandymø lauke. D<strong>ir</strong>voþemis<br />

– priesmëlis ant lengvo priemolio, karbonatingasis sekliai glëjiðkas iðplautþemis<br />

(IDg 8-k, /Calc(ar)i – Epihypogleyc Luvisols LVg-p-w-cc) (Buivydaitë <strong>ir</strong> kt., 2001).<br />

Ariamojo sluoksnio pH KCL<br />

7,4 – 7,7, judriøjø P 2<br />

O 5<br />

– 370–211 mg kg -1 , K 2<br />

O – 151–<br />

249 mg kg -1 , humuso –1,64–1,69 proc. 2003 m. prieð árengiant bandymà mineralinio<br />

azoto 0–60 cm gylyje buvo 92 kg ha -1 .<br />

Tyrimø schema. Tyrimai atlikti dviejø laukø sëjomainoje. 2003 m. þaliajai tràðai<br />

augalai auginti viename lauke, 2004 m. tame paèiame lauke auginti svogûnai, o antrajame<br />

lauke auginti tie patys augalai þaliajai tràðai, po kuriø 2005 m. auginti svogûnai.<br />

P<strong>ir</strong>maisiais metais þaliajai tràðai auginti augalai:<br />

1. Juodasis pûdymas<br />

2. Mieþiai<br />

3. Mieþiai su dobilø ásëliu<br />

4. Vasariniai kvieèiai<br />

5. Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

6. Aliejiniai ridikai<br />

Antraisiais metais augintos darþovës – svogûnai.<br />

Tyrimø variantai kartoti po keturis kartus. Sideratø varianto (visø laukeliø) plotas<br />

– 264 m 2 . Darþoviø apskaitiniø laukeliø plotas – 14 m 2 .<br />

Augalø þaliajai tràðai prieðsëlis – juodasis pûdymas.<br />

262


Anksti pavasará, pradþiûvus d<strong>ir</strong>vai, ji kultivuojama <strong>ir</strong> akëjama.<br />

Geguþës antràjá deðimtadiená þaliajai tràðai pasëti aliejiniai ridikai (<strong>25</strong> kg ha -1 ),<br />

þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys (1<strong>25</strong> : 1<strong>25</strong> kg ha -1 ), vasariniai kvieèiai (180 kg ha -1 ), mieþiai be<br />

ásëlio (170 kg ha -1 ) <strong>ir</strong> mieþiai su dobilø ásëliu (170 kg ha -1 ). Mieþiams sudygus á juos<br />

ásëti dobilai (14 kg ha -1 ). Sëklos norma apskaièiuota 100% ûkine verte.<br />

Aliejiniø ridikø þalia masë nupjauta þydëjimo pabaigoje, kai pradeda formuotis<br />

apatinës ankðtaros. Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys nupjautas augalams masiðkai þydint, vasariniai<br />

kvieèiai <strong>ir</strong> mieþiai – plaukëjant. Þalia masë buvo susmulkinta <strong>ir</strong> aparta. Nuo<br />

laukelio, kuriame buvo ásëti dobilai, ðiaudai nugrëbti, o vëlai rudená dobilai uþarti.<br />

Juodasis pûdymas ád<strong>ir</strong>btas sluoksniniu bûdu, artas du kartus, kultivuotas tris<br />

kartus.<br />

Sideratiniai augalai <strong>ir</strong> po jø augintos darþovës træðti nebuvo.<br />

Ið kiekvieno laukelio paimtas augalø þalios masës 1 kg ëminys <strong>ir</strong> nustatytas<br />

sausøjø medþiagø procentas bei atliktos cheminës analizës. Atsiþvelgiant á sausøjø<br />

medþiagø procentà <strong>ir</strong> þalios masës kieká, apskaièiuotas sausøjø medþiagø kiekis. Antraisiais<br />

<strong>ir</strong> treèiaisiais metais nustatytas azoto, fosforo <strong>ir</strong> kalio kiekis augalø antþeminëje<br />

masëje. Þalioje antþeminëje masëje azotas <strong>ir</strong> fosforas nustatyti kolorimetriniu<br />

bûdu, o kalis – liepsnos fotometru. 2004–2005 m. nustatytas augalø tankumas, piktþolëtumas,<br />

kenkëjø paplitimas svogûnø pasëlyje. Tripsø gausumas nustatytas apþiûrint<br />

po 4 svogûnø augalus kiekviename apskaitiniame laukelyje.<br />

Tyrimø duomenys statistiðkai apdoroti ANOVA programa (Tarakanovas, Raudonius,<br />

2003). Pateikiama maþiausio esminio sk<strong>ir</strong>tumo tarp variantø riba – R 05<br />

.<br />

Mënuo<br />

Month 2003<br />

m.<br />

Balandis<br />

April<br />

Geguþë<br />

May<br />

B<strong>ir</strong>želis<br />

June<br />

Liepa<br />

July<br />

Rugpjûtis<br />

August<br />

Rugsëjis<br />

September<br />

1 lentelë. Meteorologinës sàlygos<br />

Table 1. Meteorological conditions<br />

Vidutinë oro temperatûra<br />

Mean a<strong>ir</strong> temperature, °C<br />

263<br />

Krituliai<br />

Precipitation, mm<br />

1924–2000 m.<br />

2004 2005 vidurkis 2003 2004 2005<br />

m. m. average of 1924– m. m. m.<br />

2000<br />

7,5 9,6 8,9 7,2 32,3 32,3 33,5 42,0<br />

1924–2000 m.<br />

vidurkis<br />

average of 1924–<br />

2000<br />

15,7 10,7 11,5 12,0 45,1 46,2 65,4 43,7<br />

15,4 13,7 14,8 16,5 57,1 77,4 66,6 51,2<br />

20,1 16,1 19,1 17,7 118,0 50,4 3,8 71,3<br />

17,5 16,7 14,7 16,4 52,4 123,4 109,4 74,6<br />

12,8 11,6 12,8 12,0 27,9 36,2 19,9 29,7


2003 metø pavasaris buvo sausesnis, taèiau ðiltesnis palyginti su daugiameèiu<br />

vidurkiu (1 lentelë). Augalams sudygti sàlygos buvo vidutiniðkos. Vasara <strong>ir</strong> rugsëjo<br />

mënuo ðiek tiek ðiltesni, krituliø kiekis artimas daugiameèiam vidurkiui. 2004 m. oras<br />

buvo vësesnis <strong>ir</strong> drëgnesnis, taèiau sàlygos augti visiems augalams buvo palankios.<br />

2005 m. geguþës <strong>ir</strong> b<strong>ir</strong>þelio mën. krituliø iðkrito daugiau negu vidutiniðkai. Liepa buvo<br />

karðta <strong>ir</strong> sausa. Rugpjûtis buvo gerokai drëgnesnis negu áprasta. Svogûnams sudygti<br />

<strong>ir</strong> augti sàlygos buvo nepalankios. Gautas maþesnis svogûnø prekinis derlius.<br />

Rezultatai. Vidutiniais dvejø metø duomenimis, daugiausiai (43,2 t ha -1 ) þalios<br />

masës uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys (2 lentelë). Mieþiai uþaugino maþiausiai þalios<br />

masës – 24,5 t ha -1 , arba 18,7 t ha -1 maþiau negu þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys. Mieþiai su<br />

dobilø ásëliu, vasariniai kvieèiai bei aliejiniai ridikai þalios masës uþaugino maþiau –<br />

atitinkamai 13,0; 10,7 <strong>ir</strong> 16,2 t ha -1 .<br />

2 lentelë. Maisto medþiagø kiekio sideratiniø augalø antþeminëje biomasëje vidutiniai<br />

duomenys. Babtai, 2003–2004 m.<br />

Table 2. Amount of nutrition value of biomass of terraneus part of plants grown for green<br />

manure, mean date. Babtai, 2003–2004<br />

Variantas<br />

Treatments<br />

Juod. pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

natûrali iðraiðka<br />

natural expression<br />

-<br />

Organinës tràðos<br />

Organic fertilizer, t ha-1<br />

sausosios medžiagos<br />

dry matter<br />

R 05 / LSD 05 3,0 0,5<br />

Maisto medžiagos<br />

Nutrition value, kg ha-1<br />

-1 -1<br />

N P 2 O 5 K 2 O<br />

24,5 4,1 62 14 79<br />

30,2 5,9 87 21 121<br />

32,5 7,3 98 19 1<strong>25</strong><br />

43,2 6,5 104 20 150<br />

27,0 3,1 35 15 91<br />

Daugiausia sausøjø medþiagø (7,3 t ha -1 ) buvo uþarta su vasariniø kvieèiø<br />

þalia mase. Mieþiø, mieþiø su dobilø ásëliu, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio bei aliejiniø ridikø<br />

þalioje masëje sausøjø medþiagø kiekis buvo maþesnis – atitinkamai 1,8;1,4; 0,8;<br />

4,2 karto.<br />

Atlikus uþartos þalios masës cheminius tyrimus, apskaièiuotas á d<strong>ir</strong>và patekusiø<br />

maisto medþiagø kiekis. Azoto þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio þalioje masëje buvo 104 kg ha -1 –<br />

tai 42 kg ha -1 daugiau negu mieþiø, 17 kg ha -1 daugiau negu mieþiø su dobilø ásëliu,<br />

6 kg ha -1 daugiau negu vasariniø kvieèiø <strong>ir</strong> 69 kg ha -1 daugiau negu aliejiniø ridikø<br />

þalioje masëje.<br />

264


Daugiausia fosforo uþarta su mieþiø su dobilø ásëliu, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio <strong>ir</strong><br />

vasariniø kvieèiø þalia mase (atitinkamai 21, 20 <strong>ir</strong> 19 kg ha -1 ). Maþiausiai fosforo<br />

buvo mieþiø <strong>ir</strong> aliejiniø ridikø þalioje masëje (atitinkamai 14 <strong>ir</strong> 15 kg ha -1 ).<br />

Daugiausia kalio (atitinkamai 150, 1<strong>25</strong> <strong>ir</strong> 121 kg ha -1 ) su þaliàja tràða áterpta uþarus<br />

þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðiná, vasarinius kvieèius <strong>ir</strong> mieþius su dobilø ásëliu, maþiausiai – áterpus<br />

aliejinius ridikus bei mieþius (atitinkamai 91 <strong>ir</strong> 79 kg ha -1 ).<br />

3 lentelë. Tabakiniø tripsø gausumas po sk<strong>ir</strong>tingø prieðsëliø augintø<br />

svogûnø pasëlyje. Babtai, 2004 m.<br />

Table 3. Amount of onion thrips in onions growing after different preceding crop.<br />

Babtai, 2004<br />

Variantas<br />

Treatments<br />

Juod.pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

Tripsø gausumas, vnt./augalo<br />

Amount of thrips, unit/plant<br />

07-30 08-11 08-27 09-02<br />

1,50 4,37 2,81 1,12<br />

1,56 3,50 2,62 1,0<br />

1,44 4,31 2,87 1,06<br />

1,69 4,19 2,44 1,06<br />

1,37 3,69 2,<strong>25</strong> 1,19<br />

1,50 4,19 2,56 1,31<br />

R 05 / LSD 05 0,08 0,502 0,477 0,244<br />

4 lentelë. Tabakiniø tripsø gausumas po sk<strong>ir</strong>tingø prieðsëliø augintø svogûnø<br />

pasëlyje. Babtai, 2005 m.<br />

Table 4. Amount of onion thrips in onions growing after different preceding crop.<br />

Babtai, 2005<br />

Variantas<br />

Treatments<br />

Tripsø gausumas, vnt./augalo<br />

Amount of thrips, unit/plant<br />

07-12 07-<strong>25</strong> 08-01 08-18<br />

1 2 3 4 5<br />

Juod. pûdymas, kontrolë 3,69 12,56 22,69 2,87<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

4,19 13,62 23,19 1,50<br />

3,50 12,81 23,0 2,87<br />

4,19 12,69 21,94 2,69<br />

265


4 lentelës tæsinys<br />

1 2 3 4 5<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys 4,50 13,19 23,44 2,06<br />

Peas and outs<br />

Aliejiniai ridikai<br />

4,12 13,69 23,12 2,37<br />

Rape<br />

R 05 / LSD 05 0,548 0,451 1,00 0,172<br />

2004 m. tabakiniø tripsø buvo negausu <strong>ir</strong> esminiø sk<strong>ir</strong>tumø tarp variantø nebuvo.<br />

2005 m. tripsø ið esmës maþiau buvo kontroliniame variante (08–18) <strong>ir</strong> svogûnø,<br />

augintø po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio bei po mieþiø, pasëlyje.<br />

2004–2005 m. vidutiniais duomenimis suminio svogûnø derliaus esminis priedas<br />

(atitinkamai 3,3–3,4 t ha -1 ) gautas auginant juos po mieþiø su dobilø ásëliu, vasariniø<br />

kvieèiø, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (1 pav.).<br />

1 pav. Þaliosios tràðos átaka svogûnø suminiam derliui<br />

Gig. 1. Influence of green manure on yield of onions<br />

Svogûnø prekinis derlius 2004 m. buvo didþiausias auginant juos po vasariniø<br />

kvieèiø bei þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (atitinkamai 21,5 <strong>ir</strong> 21,8 t ha -1 ). Palyginti su<br />

kontrole, gautas esminis derliaus priedas (atitinkamai 1,6 <strong>ir</strong> 1,9 t ha -1 ). Auginat<br />

svogûnus po mieþiø <strong>ir</strong> aliejiniø ridikø, gautas esminis derliaus nuostolis (atitinkamai<br />

1,7 <strong>ir</strong> 1,9 t ha -1 ). Mieþiai su dobilø ásëliu davë neesminá svogûnø derliaus<br />

priedà (1,0 t ha -1 ).<br />

2005 m. esminis prekinio svogûnø derliaus priedas (1,6 t ha -1 ) gautas tik auginant<br />

svogûnus po mieþiø su dobilø ásëliu. Kituose variantuose derliaus priedo negauta.<br />

Visais tyrimø metais didþiausias svogûnø prekinis derlius gautas auginant juos<br />

po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio, vasariniø kvieèiø <strong>ir</strong> mieþiø su dobilø ásëliu (5 lentelë).<br />

Palyginti su kontrole, gautas esminis derliaus priedas (atitinkamai 3,1; 5,2 <strong>ir</strong><br />

7,3 proc.). Auginant svogûnus po mieþiø bei aliejiniø ridikø, derlius, palyginti su<br />

kontrole, gautas maþesnis (atitinkamai 5,7 <strong>ir</strong> 6,8 proc.).<br />

266


5 lentelë. Þaliosios tràðos átaka svogûnø prekiniam derliui, t ha -1 .<br />

Babtai, 2004–2005 m.<br />

Table 5. Influence of green manure for onion marketable yield t ha-1. Babtai, 2004–2005<br />

Variantas<br />

Treatments<br />

Juod. pûdymas, kontrolë<br />

Black fallow (control)<br />

Miežiai<br />

Barley<br />

Mieþiai su dobilø ásëliu<br />

Barely with undersown clover<br />

Vasariniai kvieèiai<br />

Summer wheat<br />

Þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys<br />

Peas and outs<br />

Aliejiniai ridikai<br />

Rape<br />

2004 m. 2005 m.<br />

Vidurkis<br />

Average<br />

t ha-1<br />

sant. sk.<br />

t ha-1<br />

sant. sk.<br />

t ha-1<br />

sant.sk.<br />

relative numbers relative numbers relative numbers<br />

19,9 100 18,6 100 19,2 100<br />

18,2 91,4 18,0 96,8 18,1 94,3<br />

20,9 105,0 20,2 108,6 20,6 107,3<br />

21,8 109,5 18,6 100 20,2 105,2<br />

21,6 108,5 18,0 96,8 19,8 103,1<br />

18,0 90,4 17,8 95,7 17,9 93,2<br />

R 05 / LSD 05 1,7 0,9 1,4<br />

Træðimas þaliàja tràða svogûnø tankumui átakos neturëjo. Viename ilginiame metre<br />

sudygo vidutiniðkai 35 augalai.<br />

Svogûnø pasëlyje vyravo trumpaamþës dviskiltës piktþolës. Daugiausia piktþoliø<br />

(191 vnt. m -2 ) rasta svogûnuose, augintuose po mieþiø su dobilø ásëliu, maþiausiai –<br />

29 vnt. m -2 – svogûnuose, augintuose po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio. Svogûnuose, augintuose<br />

po mieþiø bei vasariniø kvieèiø, juodajame pûdyme bei po aliejiniø ridikø, rasta<br />

atitinkamai 66, 80, 40 <strong>ir</strong> 43 vnt. m -2 piktþoliø.<br />

Aptarimas. Auginant darþoves ekologiðkai, vienas ið ðaltiniø, pagausinanèiø maisto<br />

medþiagø d<strong>ir</strong>voje <strong>ir</strong> didinanèiø darþoviø derlingumà, yra þalioji tràða. Þaliajai tràðai<br />

auginant ankðtinius augalus, apariama 40–50 t ha -1 , javus – 30 t ha -1 þalios masës.<br />

Áterpus þaliàjà tràðà á d<strong>ir</strong>và, azoto á jà patenka nuo 74 iki 180,0 kg ha -1 , fosforo – nuo<br />

16,4 iki 108 kg ha -1 , kalio – nuo 24 iki 270 kg ha -1 . Augalø, sk<strong>ir</strong>tø þaliajai tràðai,<br />

biomasës sausosios medþiagos <strong>ir</strong> azotas nulemia, koks biologinio azoto kiekis susikaups<br />

augaluose (Rudokas, 2003; Maikðtienë, 2005; Cherr, Scholberg and McSorley,<br />

2006). Tabakiniai tripsai maitinasi organiniu azotu, bet po prieðsëlio auginama<br />

kultûra nevisiðkai pasisavina prieðsëlio sukauptas maisto medþiagas. Tripsø gausumà<br />

daþnai lemia ne tik maisto kiekybë <strong>ir</strong> kokybë, bet <strong>ir</strong> meteorologinës sàlygos (Brewster,<br />

1994). Todël tripsø gausumu, jø skaièiaus sumaþëjimu ar padidëjimu ið esmës<br />

neiðsiskyrë në vienas variantas. Áva<strong>ir</strong>iø mokslininkø atliktø tyrimø duomenimis nustatyta,<br />

kad þalioji tràða didina posëliø derliø (Rudokas, 2003; Ìàèñååíêî, 1996;<br />

Starkutë; Kmitas, 2000). Atlikus tyrimus LSD institute <strong>ir</strong> iðanalizavus þaliosios tràðos<br />

átakà ekologiðkai auginamø svogûnø derliui, nustatyta, kad gauti duomenys analogiðki<br />

kitø mokslininkø atliktø tyrimø rezultatams.<br />

267


Iðvados. 1. Daugiausia þalios masës (43,2 t ha -1 ) uþaugino þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys.<br />

2. Tarp t<strong>ir</strong>tø variantø esminiø tabakiniø tripsø gausumo sk<strong>ir</strong>tumø nebuvo.<br />

3. Svogûnø suminio derliaus esminis priedas gautas auginant juos po mieþiø su<br />

dobilø ásëliu, vasariniø kvieèiø, þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio (atitinkamai 3,3; 3,3; 3,4 t ha -1 ).<br />

4. Þaliajai tràðai auginamas þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinys svogûnø prekiná derliø padidino<br />

3,1 proc., vasariniai kvieèiai – 5,7 proc.; mieþiai su dobilø ásëliu – 7,3 proc. Maþiausià<br />

átakà svogûnø derliui turëjo þaliajai tràðai auginami mieþiai <strong>ir</strong> aliejiniai ridikai.<br />

5. Daugiausia piktþoliø (691 vnt. m 2 ) rasta svogûnø, augintø po mieþiø su dobilø<br />

ásëliu, pasëlyje, maþiausiai – (109 vnt. m 2 ) – po þ<strong>ir</strong>niø <strong>ir</strong> aviþø miðinio augintø svogûnø<br />

pasëlyje.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Brewster J. L. Onions and other vegetables alliums. Wallingford: CAB International.<br />

1994. P. 178–183.<br />

2. Buivydaitë V., Motuzas A., Vaièys M. Naujoji Lietuvos d<strong>ir</strong>voþemiø klasifikacija<br />

1999. Akademija, 2001. P. 84.<br />

3. Cheng W., Coleman D. C. Effect of living roots soil organic matter decomposition //<br />

Soil. Biol. Biochem. 1990.Vol. 22. N 6. P. 781–787.<br />

4. Cherr C. M., Scholberg J. M., and McSorley R. Green manure as nitrogen source for<br />

sweet corn in a warm-temperate env<strong>ir</strong>onment // American society of agronomy. 2006.<br />

Vol. 98(5). P. 1173–1180.<br />

5. Lazauskas J. Þalioji tràða. Vilnius, 1992. P. 4–36.<br />

6. Maikðtienë S. Áva<strong>ir</strong>iø organiniø tràðø <strong>ir</strong> tarpiniø pasëliø poveikis limnoglacialinës<br />

kilmës priemoliø agrocheminëms savybëms // Þemës ûkio mokslai. 2005. Nr. 1. P. 1–11.<br />

7. Rudokas V. Sideraciniai augalai <strong>ir</strong> jø átaka bulvëms // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2003. T. 22(1). P. 121–134.<br />

8. Starkutë R., Kmitas A. Sideratø tyrimas lauko darþoviø sëjomainoje // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2000. T. 19(4). P. 84–92.<br />

9. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT – PLOT <strong>ir</strong> paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Akademija, 2003. P. 56.<br />

10. Tripolskaja L. Organiniø <strong>ir</strong> mineraliniø tràðø naudojimo paðarø sëjomainoje velëniniame<br />

jauriniame priesmëlio d<strong>ir</strong>voþemyje mokslinis pagrindimas: habilituoto darbo disertacija<br />

Dotnuva, 1994. P. 61–64.<br />

11. Velièka R. Rapsai. Kaunas, 2002. P. 320.<br />

12. Þekonienë V., Bakutis B., Jankauskas B. <strong>ir</strong> kt. Ekologinë þemd<strong>ir</strong>bystë.<br />

Vilnius, 1997. P. 95.<br />

13. Wallgren B., Linden B. Influence of different catch crops and ploughing times on<br />

soil mineral nitrogen // Proceedings of 13th International Conference. Denmark. 1994.<br />

P. 215–220.<br />

14. Àëåêñååâ Ã. Ê. Âëèÿíèå ñèäåðàòîâ íà ïëîäîðîäèå ïî÷âû è óðîæàéíîñòü<br />

ñåëüñêîõîçÿéñòâåííûõ êóëüòóð // Èíòåíñèâíîå çåìëåäåëèÿ â óñëîâèÿõ ðûíî÷íîé<br />

268


ýêîíîìèêè: Ìàòåðèàëû ×óâàøñêîé ðåñïóáëèêàíñêîé àãðàðíîé íàó÷íî –<br />

ïðîèçâîäñòâåííîé êîíôåðåíöèè. ×åáîêñàðû, 1996. Ñ. 42–45.<br />

15. Äîâáàí Ê. È. Çåë¸íîå óäîáðåíèå – âàæíûé ðåçåðâ ïëîäîðîäèÿ è óëó÷øåíèÿ<br />

ýêîíîìè÷åñêîé îáñòàíîâêè // Áþëëåòåíü ÂÍÈÈ. 1991. ¹ 107.Ñ. 56–59.<br />

16. Ìàèñååíêî Â. Ô., Áåëîóñ Í. Ì. Äåéñòâèå çåë¸íûõ óäîáðåíèé íà<br />

ïëîäîðîäèå ïî÷âû, óðîæàé îçèìîé ðæè è åãî êà÷åñòâî // Õèìèÿ â ñåëüñêîì<br />

õîçÿéñòâå.1996. ¹ 3. Ñ. 24–<strong>25</strong>.<br />

17. Íîâîñ¸ëîâ Þ. Ê., Ðóäîìèí Â. Â., Øëàïóíîâ Â. Í. è äð. Òåõíîëîãèÿ<br />

âîçäåëûâàíèÿ êîðìîâûõ êóëüòóð â ïðîìåæóòî÷íûõ ïîñåâàõ â Íå÷åðíîç¸ìíîé<br />

çîíå åâðîïåéñêîé ÷àñòè ÐÑÔÑÐ, Áåëîðóññèè è Ïðèáàëòèêå. Ìîñêâà, 1987.<br />

Ñ. 12–15.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

AGROBIOLOGICAL EVALUATION OF PLANTS FOR<br />

GREEN MANURE AND IT’S INFFLUENCE ON YIELD<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius<br />

Summary<br />

In 2003–2005 in Lithuanian Institute of Horticulture in trial field for ecologically<br />

grown vegetables there were investigated and evaluated plant availability for green<br />

manure and estimated it’s influence on ecologically grown onions yield. Investigated<br />

plants: barely, barely with undesown clover, summer wheat, peas and outs, rape.<br />

Control treatment – black fallow.<br />

Was estimated that biomass of plants for green manure leaves in the soil different<br />

amount of organic matter.<br />

The highest amount of green matter – 43.2 t ha -1 was get from peas and outs,<br />

summer wheat -32.5 t ha -1 , barely with undesown clover – 30.2 t ha -1 , lowest –<br />

barely and rape (24.5 and 27.0 t ha -1 ).<br />

There were not found any significant differences of amount of Thrips tabaci<br />

between treatments.<br />

Green manure from peas and outs increase onions yield by 3.1%; green manure<br />

from summer wheat – 5.7%, green manure from barely with undersown clover –<br />

7.3%. The lowest impact for onion yield has had green manure from barely and<br />

rape.<br />

The highest number of weeds (191 unit/m 2 ) was found in onions grown after<br />

barely with undersown clover, lowest number – 29 unit/m 2 in onions grown after<br />

peas and outs.<br />

Key words: biomass, dry matter, onions, plants for green manure, onion thrips,<br />

weeds.<br />

269


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

HERBICIDO BOXER 800 EC (V. M. PROSULFOCARB<br />

800 G L -1 ) ÁTAKA VALGOMØJØ SVOGÛNØ PASËLIO<br />

DERLINGUMUI IR PIKTÞOLËTUMUI<br />

Danguolë KAVALIAUSKAITË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El.paðtas d.kavaliauskaitë@lsdi.lt<br />

2005–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute buvo atlikti<br />

herbicido boxer (v.m. prosulfocarb 800 g l -1 ) veiksmingumo bandymai valgomøjø<br />

svogûnø pasëlyje.<br />

Tyrimø metais herbicidas boxer veiksmingai maþino <strong>ir</strong> suminá piktþoliø skaièiø,<br />

<strong>ir</strong> jø orasausæ masæ. 2005 m. herbicidà boxer panaudojus po svogûnø sëjos, veiksmingiausia<br />

buvo 5,0 l ha -1 norma – ji suminá piktþoliø skaièiø sumaþino 92,7 proc.,<br />

4,0 l ha -1 – 79,3 proc., 3,0 l ha -1 – 73,7 proc.. 2006 m. herbicidà boxer panaudojus<br />

svogûnams esant 1–3 lapeliø tarpsnio, jo veiksmingumas buvo maþesnis. Didþiausia<br />

herbicido boxer norma – 5,0 l ha -1 suminá piktþoliø skaièiø sumaþino 64,9 proc.,<br />

4,0 l ha -1 – 44,5 proc., 3,0 l ha -1 – 47,5 proc.<br />

Reikðminiai þodþiai: derlius, herbicidai, naudojimo laikas, svogûnai, piktþolës.<br />

Ávadas. Valgomieji svogûnai yra labai jautrûs piktþolëms visà vegetacijà. Intensyvios<br />

þemd<strong>ir</strong>bystës sàlygomis neámanoma iðauginti gausaus valgomøjø svogûnø<br />

derliaus nenaudojant herbicidø. Tai pats veiksmingiausias piktþoliø naikinimo bûdas.<br />

Profesionalaus naudojimo augalø apsaugos priemoniø sàraðe (2005) Lietuvoje registruotø<br />

herbicidø, tinkamø svogûnø pasëliams, yra nedaug <strong>ir</strong> jø veiksmingumas<br />

nepakankamas, todël nuolat ieðkoma naujø, veiksmingesniø herbicidø. Naikinti piktþoles<br />

herbicidais valgomøjø svogûnø pasëliuose bûtina pradëti ið karto po sëjos.<br />

Pagrindiniai veiksniai, kurie lemia herbicidø naudojimo veiksmingumà, yra tinkamo<br />

preparato <strong>ir</strong> purðkimo laiko parinkimas, todël ypaè svarbu turëti galimybæ naudoti<br />

veiksmingus <strong>ir</strong> saugius herbicidus.<br />

Herbicidas boxer (v.m. prosulfocarb 800 g l -1 ) áva<strong>ir</strong>iose ðalyse naudojamas kvieèiø,<br />

rugiø, mieþiø <strong>ir</strong> bulviø pasëliuose. Ðis herbicidas sk<strong>ir</strong>tas maþinti <strong>ir</strong> vienaskilèiø, <strong>ir</strong><br />

dviskilèiø piktþoliø skaièiø pasëlyje. Ðiam herbicidui jautrios daugelis piktþoliø: kibieji<br />

lipikai (Galium aparine), veronikos, varpinës piktþolës, ið jø – smilguolës (Apera),<br />

paðiauðëliai (Alopecurus), svidrës (Lolium), vienametës miglës (Poa annua). Her-<br />

270


icido boxer veiksmingumas t<strong>ir</strong>tas Europos <strong>ir</strong> Azijos ðalyse, daugiausia þieminiø javø<br />

pasëliuose (Glasgow <strong>ir</strong> kt., 1987; Khan <strong>ir</strong> kt., 2003; Vera <strong>ir</strong> kt., 2001). Prancûzijoje <strong>ir</strong><br />

Didþiojoje Britanijoje t<strong>ir</strong>ta, kaip veiksmingai herbicidas boxer naikina kibiuosius lipikus<br />

(Galium aparine), varpines piktþoles po sëjos <strong>ir</strong> piktþolëms esant 1–2 lapeliø<br />

tarpsnio (Anonymuos, 2000; Glasgow <strong>ir</strong> kt., 1987). Tai pat t<strong>ir</strong>ta, kaip padidinti herbicido<br />

boxer prasiskverbimà per lapus, naudojant jo miðinius su kitais herbicidais<br />

(Cabane <strong>ir</strong> kt., 1999; Schott <strong>ir</strong> kt., 1991). Moksliniø tyrimø duomenys rodo, kad<br />

herbicidas boxer á piktþoles daugiausia patenka per d<strong>ir</strong>voþemá, taèiau negalima tv<strong>ir</strong>tinti,<br />

kad herbicidas negali patekti <strong>ir</strong> per lapus (Vera <strong>ir</strong> kt., 2001).<br />

Lietuvoje herbicidas boxer darþoviø pasëliuose t<strong>ir</strong>tas nebuvo.<br />

Darbo tikslas – iðt<strong>ir</strong>ti herbicido boxer poveiká piktþolëms svogûnø pasëlyje <strong>ir</strong> jo<br />

átakà svogûnø derlingumui <strong>ir</strong> kokybei.<br />

Tyrimo objektas <strong>ir</strong> metodai. Bandymas atliktas 2005–2006 m. velëniniame glëjiðkame<br />

pajaurëjusiame d<strong>ir</strong>voþemyje, kurio granuliometrinë sudëtis – lengvas priemolis<br />

ant priemolio, reakcija artima neutraliai. Pavasará prieð sëjà iðbarstyta 600 kg ha -1 kompleksiniø<br />

tràðø Hydrokomplex 120-11-18. ‘Babtø didþiøjø’ veislës svogûnai pasëti<br />

2005 m. balandþio 29 d., o 2006 m. – geguþës 4 d. Sëklos iðbertos pakrikai 8 cm<br />

ploèio juostoje, sëjos schema 4 x (62 + 8) cm.<br />

Herbicidai purkðti pagal schemà:<br />

1) Kontrolë (be herbicidø, ravëta)<br />

2) Boxer 5,0 l ha -1<br />

3) Boxer 4,0 l ha -1<br />

4) Boxer 3,0 l ha -1<br />

5) Stompas 3,0 l ha -1 .<br />

Herbicidai purkðti nugariniu purkðtuvu. Vandens norma – 300 l ha -1 . 2005 m.<br />

herbicidai purkðti po svogûnø sëjos, o 2006 m. – svogûnams esant 1–3 lapeliø tarpsnio.<br />

Piktþolës ravëtos vienà kartà. Piktþolës suskaièiuotos keturiose kiekvieno laukelio<br />

vietose, 0,<strong>25</strong> m 2 dydþio ploteliuose, einant per laukelá ástriþai, vienà kartà praëjus<br />

mënesiui po paskutinio purðkimo.<br />

Valgomøjø svogûnø piktþolëtumo <strong>ir</strong> derliaus duomenys apskaièiuoti dispersinës<br />

analizës bûdu (Dospechov, 1979).<br />

Tyrimø rezultatai. Valgomøjø svogûnø pasëlio piktþolëtumas tyrimø metais<br />

skyrësi. Tam turëjo átakos <strong>ir</strong> t<strong>ir</strong>tø herbicidø naudojimo laikas, <strong>ir</strong> sk<strong>ir</strong>tingos metø meteorologinës<br />

sàlygos. 2005 m. vasarà visos t<strong>ir</strong>tos herbicido boxer normos buvo labai<br />

veiksmingos – piktþoliø skaièius visuose purkðtuose laukeliuose buvo ið esmës maþesnis<br />

palyginti su nepurkðtais.<br />

Palyginus visø t<strong>ir</strong>tø herbicido boxer normø veiksmingumà su standartiniu herbicidu<br />

stompu (3,0 l ha -1 ), esminio sk<strong>ir</strong>tumo nenustatyta tik purðkiant 3,0 l ha -1 herbicido<br />

boxer norma. Visø t<strong>ir</strong>tø herbicido boxer normø veiksmingumas buvo sk<strong>ir</strong>tingas:<br />

didþiausios herbicido boxer normos – 5,0 l ha -1 veiksmingumas, palyginti su standartinio<br />

herbicido stompo 3,0 l ha -1 norma, buvo net 41,8 proc. didesnis, maþiausios<br />

herbicido boxer normos – 3,0 l ha -1 veiksmingumas, palyginti su didþiausia 5,0 l ha -1<br />

norma, buvo perpus maþesnis – ji buvo tik 22,8 proc. veiksmingesnë uþ standartiná<br />

herbicidà stompà (1 lentelë).<br />

271


1 lentelë. Herbicido boxer, purkðto po sëjos, átaka piktþoliø skaièiui svogûnø pasëlyje.<br />

Babtai, 2005 m.<br />

Table 1. Influence of herbicide boxer applied after onion sowing on the number of weeds<br />

in onion crop. Babtai, 2005<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Suminis piktþoliø<br />

skaièius, vnt. m -2<br />

Total weed number,<br />

(pcs. m -2 )<br />

Suminio piktþoliø<br />

skaièiaus sumaþëjimas<br />

(%), palyginti su<br />

nepurkštais laukeliais<br />

The reduction of total weed<br />

number (%) in comparison with<br />

untreated<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

)<br />

2 lentelë. Herbicido boxer, purkðto svogûnams esant 1–3 lapeliø tarpsnio, átaka<br />

piktþoliø skaièiui svogûnø pasëlyje. Babtai, 2006 m.<br />

Table 2. Number of weeds in onion crop after herbicide boxer spraying at<br />

onion 1-3 leaf stage. Babtai, 2006<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

).<br />

** – ið esmës maþiau negu herbicidu stompu nupurkðtame variante (R 05<br />

) / Essentially less than in<br />

Stomp treated (LSD 05<br />

).<br />

272<br />

Suminio piktþoliø<br />

skaièiaus sumaþëjimas<br />

(%), palyginti su stompu<br />

purkštais laukeliais<br />

The reduction of total weed<br />

number (%) in comparison with<br />

Stomp treated<br />

133,0 - -<br />

Boxer 5,0 l ha -1 9,7* 92,7 41,8<br />

Boxer 4,0 l ha -1 27,5* 79,3 28,4<br />

Boxer 3,0 l ha -1 35,0* 73,7 22,8<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

65,2* 50,9 -<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Suminis<br />

piktþoliø<br />

skaièius,<br />

vnt. m -2<br />

Total weed<br />

number (pcs. m -2 )<br />

Vienametës<br />

dviskiltës<br />

piktþolës,<br />

vnt. m -2<br />

Annual<br />

dicotyledonous<br />

weeds (pcs. m -2 )<br />

Vienameèiø<br />

dviskilèiø piktþoliø<br />

sumaþëjimas (%),<br />

palyginti su<br />

nepurkštais laukeliais<br />

Annual dicotyledonous<br />

weeds reduction (%) in<br />

comparison with untreated<br />

Vienameèiø dviskilèiø<br />

piktþoliø sumaþëjimas<br />

(%), palyginti su<br />

stompu purkštais<br />

laukeliais<br />

Annual dicotyledonous<br />

weeds reduction (%) in<br />

comparison with Stomp<br />

treated<br />

24,4 18,1 - -<br />

Boxer 5,0 l ha -1 8,5* 5,6** 69,1 11,6<br />

Boxer 4,0 l ha -1 13,5* 6,6* 63,7 6,2<br />

Boxer 3,0 l ha -1 12,8* 7,2* 60,5 2,9<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

17,4 7,7* 57,5 -


2006 m. herbicidu boxer nupurðkus pasëlá svogûnams esant 1–3 lapeliø tarpsnio,<br />

suminis piktþoliø skaièius sk<strong>ir</strong>tinguose variantuose sumaþëjo 44,5–64,9 proc., o<br />

vienameèiø dviskilèiø – 60,5–69,1 proc. Suminis piktþoliø skaièius ið esmës sumaþëjo<br />

visuose herbicidu boxer nupurkðtuose laukeliuose, palyginti su nepurkðtais <strong>ir</strong> standartiniu<br />

herbicidu stompu (3,0 l ha -1 ) nupurkðtais laukeliais (2 lentelë). Vienameèiø<br />

dviskilèiø piktþoliø skaièius ið esmës sumaþëjo visuose herbicidais nupurkðtuose laukeliuose.<br />

Didþiausia herbicido boxer 5,0 l ha -1 norma buvo ið esmës veiksmingesnë<br />

uþ standartinio herbicido stomp 3,0 l ha -1 normà. Ði norma buvo 11,6 proc. veiksmingesnë<br />

uþ standartinio herbicido stompo 3,0 l ha -1 normà, o maþiausia herbicido<br />

boxer norma – 3,0 l ha -1 buvo tik 2,9 proc. veiksmingesnë uþ standartiná herbicidà<br />

stompà (2 lentelë). Nupurðkus herbicidu boxer 1–3 lapeliø tarpsnio svogûnø pasëlá<br />

sk<strong>ir</strong>tingomis normomis, jø veiksmingumas buvo nevienodas <strong>ir</strong> kur kas maþesnis nei<br />

purðkiant po sëjos.<br />

Tyrimø metais visuose laukeliuose, purkðtuose áva<strong>ir</strong>iomis herbicido boxer normomis,<br />

bendra piktþoliø orasausë masë ið esmës buvo maþesnë, palyginti su nepurkðtais<br />

laukeliais, <strong>ir</strong> purðkiant po sëjos, <strong>ir</strong> svogûnams esant 1–3 lapeliø tarpsnio,<br />

nors nupurðkus vëliau, piktþoliø orasausë masë sumaþëjo maþiau negu nupurðkus po<br />

sëjos (3 lentelë).<br />

3 lentelë. Piktþoliø orasausë masë (g m -2 ) svogûnø pasëlyje. Babtai, 2005–2006 m.<br />

Table 3. Weed a<strong>ir</strong>-dry weight (g m -2 ) in onion crop. Babtai, 2005–2006<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

2005 m. purkðta po sëjos<br />

sprayed after sowing<br />

Piktþoliø orasausë masë, g m -2<br />

Weed a<strong>ir</strong>-dry weight (g m -2 )<br />

2006 m. purkðta svogûnams esant<br />

1–3 lapeliø tarpsnio<br />

sprayed at onion 1–3 leaf stage<br />

149,5 180,4<br />

Boxer 5,0 l ha -1 1,2* 15,3*<br />

Boxer 4,0 l ha -1 6,0* 14,1*<br />

Boxer 3,0 l ha -1 6,5* 15,2*<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 , standard<br />

12,0* 17,2*<br />

* – ið esmës maþiau negu nepurkðtame variante (R 05<br />

) / Essentially less than in the untreated (LSD 05<br />

).<br />

Tyrimø metais bandomajame svogûnø pasëlyje vyravo ðios piktþolës: baltoji balanda<br />

(Chenopodium album L.), trikertë þvaginë (Capsella bursa-pastoris L.), bekvapis<br />

ðunramunis (Tripleurospermum perforatum L.), darþinë þliûgë (Stellaria media<br />

(L.) Vill.), paprastoji þilë (Senecio vulgaris L.), paprastoji rietmenë (Echinochloa<br />

crus-galli L.).<br />

2005 m. visos herbicido boxer normos vienodai sumaþino pagrindiniø vienameèiø<br />

dviskilèiø piktþoliø skaièiø svogûnø pasëlyje. Purðkiant visomis t<strong>ir</strong>tomis normomis,<br />

baltosios balandos, trikertës þvaginës, bekvapiai ðunramuniai, darþinës þliûgës <strong>ir</strong><br />

273


paprastosios þilës buvo visai sunaikintos. Paprastosios rietmenës buvo jautriausios<br />

didþiausiai herbicido boxer normai – 5,0 l ha -1 , ðiø piktþoliø skaièius pasëlyje sumaþëjo<br />

84,7 proc. 4,0 l ha -1 <strong>ir</strong> 3,0 l ha -1 herbicido boxer normos paprastøjø rietmeniø skaièiø<br />

svogûnø pasëlyje sumaþino atitinkamai 56,0 <strong>ir</strong> 45,1 proc. Visos t<strong>ir</strong>tos herbicido boxer<br />

normos buvo 6,8–46,4 proc. veiksmingesnës uþ herbicidà stompà (3 lentelë).<br />

4 lentelë. Pagrindiniø piktþoliø rûðiø sumaþëjimas (%) svogûnø pasëlyje.<br />

Babtai, 2005–2006 m.<br />

Table 4. Reduction of main weed species (%) in onion crop. Babtai, 2005–2006<br />

Variantai<br />

Treatment<br />

Nepurkðta (ravëta)<br />

Untreated<br />

Baltoji<br />

balanda<br />

(Chenopodium<br />

album L.)<br />

Lamb'squarters<br />

Trikertë<br />

þvaginë<br />

(Capsella<br />

bursapastoris<br />

L.)<br />

Shepherd’s<br />

purse<br />

Bekvapis<br />

šunramunis<br />

(Matricaria<br />

inodora<br />

L.)<br />

Scentless<br />

mayweed<br />

Darþinë<br />

þliûgë<br />

(Stellaria<br />

media (L.)<br />

Vill.)<br />

Common<br />

chickweed<br />

Paprastoji<br />

þilë<br />

(Senecio<br />

vulgaris<br />

L.)<br />

Common<br />

groundsel<br />

2005 m. herbicidas boxer purkðtas po sëjos<br />

2005 herbicide boxer sprayed after sowing<br />

Paprastoji<br />

rietmenë<br />

(Echinochloa<br />

crusgalli<br />

(L.))<br />

Barnyardgras<br />

s<br />

- - - - - -<br />

Boxer 5,0 l ha -1 100 100 100 100 100 84,7<br />

Boxer 4,0 l ha -1 100 100 100 100 100 56,0<br />

Boxer 3,0 l ha -1 100 100 100 100 100 45,1<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

100 100 64 100 100 38,3<br />

Variantai<br />

Treatment<br />

Nepurkšta (ravëta)<br />

Untreated<br />

2006 m. herbicidas boxer purkðtas svogûnams esant 1–3 lapeliø tarpsnio<br />

herbicide boxer sprayed at 1-3 leaf onion stage in 2006<br />

Baltoji<br />

balanda<br />

(Chenopodium<br />

album<br />

L.)<br />

Lamb's-quarters<br />

Trikertë<br />

þvaginë<br />

(Capsella<br />

bursapastoris<br />

L.)<br />

Shepherd’s<br />

purse<br />

Bekvapis<br />

šunramunis<br />

(Matricaria<br />

inodora L.)<br />

Scentless<br />

mayweed<br />

Darþinë<br />

þliûgë<br />

(Stellaria<br />

media (L.)<br />

Vill.)<br />

Common<br />

chickweed<br />

Paprastoji þilë<br />

(Senecio<br />

vulgaris L.)<br />

Common<br />

groundsel<br />

- - - - -<br />

Boxer 5,0 l ha -1 43,2 94,2 31,2 100 66,0<br />

Boxer 4,0 l ha -1 42,0 100 27,2 100 38,4<br />

Boxer 3,0 l ha -1 32,5 100 9,8 100 42,2<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

0,3 100 13,3 100 34,0<br />

274


2006 m. visos herbicido boxer normos, iðpurkðtos svogûnams esant 1–3 lapeliø<br />

tarpsnio, sumaþino pagrindiniø vienameèiø dviskilèiø piktþoliø skaièiø svogûnø pasëlyje.<br />

Trikertës þvaginës <strong>ir</strong> darþinës þliûgës buvo visai sunaikintos. Baltosios balandos<br />

buvo jautriausios 5,0 l ha -1 <strong>ir</strong> 4,0 l ha -1 herbicido boxer normoms, ðiø piktþoliø<br />

pasëlyje sumaþëjo atitinkamai 43,2 <strong>ir</strong> 42,0 proc. Bekvapiai ðunramuniai taip pat buvo<br />

jautriausi 5,0 l ha -1 <strong>ir</strong> 4,0 l ha -1 herbicido boxer normoms, ðiø piktþoliø sumaþëjo<br />

atitinkamai 31,2 <strong>ir</strong> 27,2 proc. Paprastosios þilës buvo jautriausios didþiausiai 5,0 l ha -1<br />

herbicido boxer normai, ðiø piktþoliø pasëlyje sumaþëjo 66,0 proc. Standartiniu herbicidu<br />

stompu (3,0 l ha -1 ) nupurkðtuose laukeliuose visai sunaikintos buvo tik trikertës<br />

þvaginës <strong>ir</strong> darþinës þliûgës, maþiausiai jautrios buvo baltosios balandos – jø sumaþëjo<br />

tik 0,3 proc. (3 lentelë). Dvejø metø tyrimø duomenimis, dauguma pagrindiniø<br />

piktþoliø daug jautresnës herbicidui boxer já panaudojus po sëjos.<br />

2005 m. svogûnø ropeliø derlius buvo ið esmës maþesnis visuose herbicidu<br />

boxer po sëjos nupurkðtuose laukeliuose, palyginti su herbicidu stompu (3,0 l ha -1 )<br />

purkðtø laukeliø svogûnø ropeliø derliumi (5 lentelë). 2006 m. svogûnø ropeliø derlius<br />

buvo ið esmës maþesnis visuose herbicidu boxer nupurkðtuose laukeliuose, palyginti<br />

su svogûnø ropeliø derliumi herbicidais nepurkðtuose laukeliuose. Standartiniu<br />

herbicidu stompu (3,0 l ha -1 ) nupurkðtuose laukeliuose svogûnø ropeliø derliaus nebuvo<br />

gauta, nes dël gausiø liûèiø antroje vasaros pusëje laukeliai ilgà laikà buvo uþm<strong>ir</strong>kæ<br />

(5 lentelë). Herbicido boxer fitotoksiðkumas svogûnams iðryðkëjo <strong>ir</strong> p<strong>ir</strong>maisiais<br />

tyrimo metais, purðkiant já po sëjos, <strong>ir</strong> dar labiau antraisiais tyrimø metais, kai<br />

herbicidu boxer buvo nupurkðti jau sudygæ svogûnai. Kad <strong>ir</strong> kokia norma buvo panaudota,<br />

ðis herbicidas labai fitotoksiðkai veikë <strong>ir</strong> patá pasëlá (jis labai iðretëjo), <strong>ir</strong><br />

svogûnø ropeliø derliø bei kokybæ.<br />

Variantai<br />

Treatments<br />

Nepurkðta (ravëta)<br />

Untreated<br />

5 lentelë. Svogûnø ropeliø derlius, t ha -1 . Babtai, 2005–2006 m.<br />

Table 5. Marketable onion yield, t ha -1 . Babtai, 2005–2006<br />

Prekinis derlius<br />

Prekinio derliaus % nuo bendro<br />

Marketable yield, t ha -1<br />

derliaus<br />

Marketable yield (%) from general yield<br />

2005 m. 2006 m. 2005 m. 2006 m.<br />

10,7 7,9 73,8 84,9<br />

Boxer 5,0 l ha -1 10,0 1,8 90,1 62,0<br />

Boxer 4,0 l ha -1 10,8 1,4 90,7 58,3<br />

Boxer 3,0 l ha -1 16,1 1,1 86,1 55,0<br />

Stompas 3,0 l ha -1 ,<br />

standartas<br />

Stomp 3,0 l ha -1 ,<br />

standard<br />

23,0 0 85,2 0<br />

R 05 / LSD 05 2,5 0,84 - -<br />

Diskusija. T<strong>ir</strong>iamos herbicido boxer normos veiksmingai naikino pagrindines<br />

piktþoles valgomøjø svogûnø pasëliuose. Kad herbicidas boxer veiksmingai naikina<br />

275


vienametes dviskiltes <strong>ir</strong> daugelá vienaskilèiø piktþoliø, patv<strong>ir</strong>tina <strong>ir</strong> kitø autoriø duomenys,<br />

gauti javø pasëliuose (Anonymus, 2000; Glasgow <strong>ir</strong> kt., 1987; Khan <strong>ir</strong> kt.,<br />

2003; Streibig <strong>ir</strong> kt., 1984; Vera <strong>ir</strong> kt., 2001). Herbicidas boxer veiksmingiau maþino<br />

piktþoliø kieká <strong>ir</strong> daug geriau naikino atsk<strong>ir</strong>as pagrindiniø piktþoliø rûðis purðkiant juo<br />

po sëjos, o ne svogûnams esant 1–3 lapeliø tarpsnio. Glasgow tyrimø duomenys taip<br />

pat parodë, kad herbicidas boxer geriausiai naikina piktþoles, naudojant já po sëjos<br />

arba kai piktþolës yra ne didesnës nei 1–2 lapeliø tarpsnio (Glasgow <strong>ir</strong> kt., 1987).<br />

Nupurðkus herbicidu boxer, kai piktþolës yra didesnës negu 1–2 lapeliø, jis yra ne<br />

toks veiksmingas, nes iðgaruoja nuo lapø pav<strong>ir</strong>ðiaus (Anonymus, 2000). Daugeliu<br />

atveju yra pastebimas ðio herbicido veiksmingumo priklausomumas nuo jo prasiskverbimo<br />

per lapus (Cabann <strong>ir</strong> kt., 1999; Schott <strong>ir</strong> kt., 1991), bet kitø autoriø duomenys<br />

rodo, kad tai susijæ ne visuomet (van Toor <strong>ir</strong> kt., 1994; van Toor <strong>ir</strong> kt., 1995).<br />

Atlikti tyrimai rodo, kad purðkiant herbicidu boxer, galima veiksmingai sumaþinti<br />

pasëliø piktþolëtumà vegetacijos metu. Deja, naudoti herbicidà boxer valgomøjø<br />

svogûnø pasëliuose dël jo didelio fitotoksiðkumo svogûnams nerekomenduojama.<br />

Iðvados. 1. Tyrimø metais herbicidas boxer labai veiksmingai (44,5–92,7 proc.)<br />

maþino suminá piktþoliø skaièiø svogûnø pasëliuose.<br />

2. Vienametës dviskiltës piktþolës: baltoji balanda (Chenopodium album L.), bekvapis<br />

ðunramunis (Matricaria inodora L.), paprastoji þilë (Senecio vulgaris L.),<br />

buvo jautriausios herbicidui boxer purðkiant juo po sëjos, o trikertë þvaginë (Capsella<br />

bursa-pastoris L.) <strong>ir</strong> darþinë þliûgë (Stellaria media (L.) Vill.) – <strong>ir</strong> purðkiant po sëjos,<br />

<strong>ir</strong> svogûnams esant 1–3 lapeliø tarpsnio.<br />

3. Tyrimø metais herbicidas boxer svogûnø pasëlá veikë fitotoksiðkai, todël jis<br />

iðretëjo, labai sumaþëjo derlius <strong>ir</strong> pablogëjo svogûnø ropeliø kokybë.<br />

Gauta 2006-11-15<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Anonymous. Prosulfocarbe, in: Cluzeau S., Paternelle M. C., Lhoutellier C. (Eds.),<br />

Index Phytosanita<strong>ir</strong>e, ACTA. Paris, 2000. P. 358–359.<br />

2. Cabbanne F., Gaudry J. C., Streibig J. C. Influence of alkyl oleates on efficacy of<br />

phenmedipham applied as an acetone: water solution on Galium aparine // Weed Research.<br />

1999. 39. P. 57–67.<br />

3. Dospechov B. A. Metodika polevogo opyta. M., 1979. 335 s. (Russ.).<br />

4. Glasgow J. L., Mojica E., Bacer D. R., Tillis H., Gore N. R., Kurtz P. J. SC-0574-A new<br />

selective herbicide for use in winter cereals // In: Proceeding of the 1987 British Crop<br />

Protection Conference –Weeds. Brighton, 1987. P. 27–33.<br />

5. Khan M. H., Hassan G., Khan N., Khan M. A. Efficacy of Different Herbicides for<br />

Controlling Broadleaf Weed in Wheat // Asian Journal of Plant Sciences. 2003. 2(3).<br />

P. <strong>25</strong>4–<strong>25</strong>6.<br />

6. Profesionalaus naudojimo augalø apsaugos priemoniø sàraðas. Vilnius, 2005. P. 81.<br />

7. Schott J. J., Dufour J. L., Gauvrit C. Effects of adjuvants on herbicidal action. III.<br />

Effects of petroleum and rapeseed oils on diclofop-methyl action on ryegrass // Agronomie.<br />

1991. 11. P. 27–34.<br />

276


8. Streibig J. C. Measurement of phytotoxicity of commercial and unformulated soilapplied<br />

herbicides // Weed Research. 1984. 24. P. 327–331.<br />

9. van Toor R. F., Hayes A. L., Cooke B. K., Holloway P. J. Relationships between the<br />

herbicidal activity and foliar uptake of surfactant-containing solutions of glyphosate<br />

applied to foliage of oats and field beans // Crop protection. 1994. 13. P. 260–270.<br />

10. van Toor R. F., Hayes A. L., Holloway P. J. Relationships between activity and<br />

foliar uptake of surfactant-containing solutions of diclofop-methyl on oats // In Fourth<br />

International Symposium on Adjuvants for Agrochemicals, Melbourne, 1995. P. 279–284.<br />

11. Vera V., Gauvrit C., Cabanne F. Efficacy and foliar absorption of flupyrsulfuronmethyl<br />

and prosulfocarb applied alone or in mixture on Lolium multiflorum and wheat //<br />

Agronomie. 2001. 21. P. 33–43.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

INFLUENCE OF HERBICIDE BOXER 800 EC<br />

(PROSULFOCARB 800 G L -1 ) ON EDIBLE ONION<br />

CROP WEEDING AND HARVEST<br />

D. Kavaliauskaitë<br />

Summary<br />

Field experiments in edible onion crop to investigate herbicide boxer (a.i. prosulfocarb<br />

800 g l -1 ) were carried out at the Lithuanian Institute of Horticulture in<br />

2005–2006.<br />

Herbicide boxer very effectively decreased total number and a<strong>ir</strong>-dry mass of<br />

weeds in both years of investigation. In 2005 herbicide boxer was sprayed after<br />

onion sowing. Most effective the biggest norm – 5.0 l ha -1 of boxer decreased total<br />

number of weeds by 92.7%; 4.0 l ha -1 – 79.3%, 3.0 l ha -1 – 73.7%. The efficacy of<br />

herbicide boxer treated at onion 1-3 leaf stage in 2006 was lower. The biggest norm –<br />

5.0 l ha -1 of boxer decreased total number of weeds by 64.9%; 4,0 l ha -1 – 44.5%,<br />

3.0 l ha -1 – 47.5%.<br />

Key words: herbicide, onion, spraying time, yield, weeds.<br />

277


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

FITOHORMONØ DINAMIKA IR VAIDMUO PO<br />

PAPRASTOJO KMYNO ÞYDËJIMO INDUKCIJOS<br />

Giedrë SAMUOLIENË 1,2 , Pavelas DUCHOVSKIS 1,2<br />

1<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333 Babtai, Kauno r.<br />

El. paðtas g.samuoliene@lsdi.lt<br />

2<br />

Lietuvos þemës ûkio univers<strong>ir</strong>etas, LT-53067 Noreikiðkës, Kauno r.<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto fitotroniniame komplekse modeliuojamomis<br />

sàlygomis atlikti paprastojo kmyno (Carum carvi L.) fitohormonø dinamikos<br />

<strong>ir</strong> vaidmens tyrimai sk<strong>ir</strong>tingais þydëjimo iniciacijos tarpsniais. Tyrimo tikslas –<br />

nustatyti fitohormonø veiklos sàsajas su þydëjimo iniciacijos procesais. Giberelo,<br />

indolil-3 acto <strong>ir</strong> abscizo rûgðtims bei zeatinui sk<strong>ir</strong>styti <strong>ir</strong> nustatyti naudotas efektyviosios<br />

skysèiø chromatografijos metodas (HPLC) su diodø matricos detektoriumi. Fotoperiodo<br />

<strong>ir</strong> temperatûros sàlygos þydëjimo indukcijos metu: EXP1 – 0 val. <strong>ir</strong> 4°C,<br />

EXP2 – 8 val. <strong>ir</strong> 4°C, EXP3 – 16 val. <strong>ir</strong> 4°C, EXP4 – 8 val. <strong>ir</strong> 21(16)°C, EXP5 –<br />

16 val. <strong>ir</strong> 21 (16)°C (dienos (nakties) temperatûra). Tyrimai parodë, kaip áva<strong>ir</strong>iais<br />

evokacijos bei þiedø iniciacijos tarpsniais kinta fitohormonø koncentracijos bei jø<br />

santykis. Augalø þydëjimo iniciacijos procesai susijæ su juvenalinio periodo trukme.<br />

Paprastojo kmyno juvenalinio tarpsnio pabaiga siejama su tuo momentu, kai augalas<br />

skrotelëje suformuoja 9 asimiliuojanèius lapus.<br />

Rezultatai parodë, kad tamsoje kmynai <strong>ir</strong> su 7, <strong>ir</strong> su 9 lapais skrotelëje visai<br />

nesivystë <strong>ir</strong> sunyko. Geriausiai floralinis vystymasis pas<strong>ir</strong>eiðkë augalus veikiant þema<br />

teigiama temperatûra <strong>ir</strong> ilgos dienos fotoperiodu. Ðiomis sàlygomis GA 3<br />

<strong>ir</strong> ABA santykis<br />

I <strong>ir</strong> II evokacijos tarpsnio metu yra didelis, o po þiedø iniciacijos þiedø diferenciacijos<br />

metu ðis santykis sumaþëjo perpus. Zeatino <strong>ir</strong> IAA santykis II evokacijos<br />

tarpsnio metu buvo artimas 0. Tai gali reikðti, kad dingsta apikalinis dominavimas.<br />

Ilgos dienos fotoperiodo sàlygomis augalus veikiant aukðta temperatûra (EXP5), ðis<br />

santykis neatkuriamas <strong>ir</strong> þiedø iniciacijos metu, taèiau ðiuo momentu pas<strong>ir</strong>eiðkia antagonistinë<br />

ABA <strong>ir</strong> IAA sàveika. Tokia fitohormonø veikla galëjo sulëtinti kmynø vystymosi<br />

procesus.<br />

Apibendrinant galima teigti, kad juvenalinio periodo pabaiga paprastojo kmyno<br />

ontogenezëje sietina su tuo momentu, kai augalai suformuoja 9 asimiliuojanèius lapus<br />

<strong>ir</strong> visiðkai pas<strong>ir</strong>uoðia priimti foto- <strong>ir</strong> termoindukcijos procesus. Paprastojo kmyno<br />

floraliniam vystymuisi svarbesni yra termoindukcijos nei fotoindukcijos procesai.<br />

Stabilø visø fitohormonø sintezës maþëjimà iki paprastojo kmyno þiedø diferenciaci-<br />

278


jos bei geriausià floraliná vystymàsi lemia þemos teigiamos temperatûros bei ilgos<br />

dienos fotoperiodo derinys.<br />

Reikðminiai þodþiai: evokacija, fitohormonai, paprastasis kmynas, þiedø iniciacija.<br />

Ávadas. Augalø pas<strong>ir</strong>uoðimas þydëti labai priklauso nuo tinkamo þydëjimo indukcijos<br />

laiko. Dël ðios prieþasties þydëjimo iniciacija yra reguliuojama kintanèiø aplinkos<br />

veiksniø, tokiø kaip fotoperiodas <strong>ir</strong> temperatûra, ji taip pat labai priklauso <strong>ir</strong><br />

nuo augalø iðsivystymo lygio (Bernier <strong>ir</strong> kt., 1993). Ðviesa <strong>ir</strong> temperatûra turi didelës<br />

átakos augalø morfogenezës procesams. Aplinkos veiksniø kaità jauèia sk<strong>ir</strong>tingi augalø<br />

organai. Suþadindami vidiná stimulà, jie siunèia signalà á apikalines meristemas.<br />

Egzistuoja keletas hipoteziø, koncepcijø bei teorijø, aiðkinanèiø augalo perëjimo ið<br />

vegetatyvinio augimo á generatyviná vystymàsi mechanizmus. Daugelyje ðiø teorijø,<br />

be kitø veiksniø, analizuojami áva<strong>ir</strong>ûs fitohormonø veiklos þydëjimo reguliavimo aspektai<br />

(Sachs <strong>ir</strong> Hackett, 1983). Manoma, kad fitohormonai dalyvauja reguliuojant<br />

metabolizmo transdukcijà. Tai pas<strong>ir</strong>eiðkia priëmus ðviesos signalà <strong>ir</strong> po transdukcijos<br />

á fiziologiná atsakà (Krapiel <strong>ir</strong> Miginiac, 1997). Fitohormonø santykis <strong>ir</strong> sàveika þydëjimo<br />

iniciacijos metu yra labai svarbus <strong>ir</strong> ne iki galo iðt<strong>ir</strong>tas klausimas. Dvimeèiai<br />

augalai þydi po vernalizacijos, t. y. þiedø iniciacijai reikalingos þemos temperatûros<br />

(Glãucia <strong>ir</strong> kt., 1994). Yra du þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniai. P<strong>ir</strong>masis<br />

þydëjimo indukcijos periodas yra fotoindukcija. Fotomorfogenetinës sistemos metabolitai<br />

ið lapø transportuojami á apikalines meristemas, kur pas<strong>ir</strong>eiðkia þiedyno aðies<br />

formavimo genø ekspresija. Nuo ðio momento prasideda I evokacijos tarpsnis, kuris<br />

baigiasi þiedyno aðies suformavimu. Antrasis þiemojanèiø augalø þydëjimo indukcijos<br />

tarpsnis yra termoindukcija. Termoindukcijos proceso metabolitai lemia þiedyno<br />

aðies struktûrø formavimà (II evokacijos tarpsnis). Ðiø morfogenetiniø procesø pabaigoje<br />

vyksta <strong>ir</strong> þiedø iniciacija (Duchovskis, 2004).<br />

Darbo tikslas – iðt<strong>ir</strong>ti fitohormonø vaidmená <strong>ir</strong> dinamikà sk<strong>ir</strong>tingais paprastojo<br />

kmyno þydëjimo iniciacijos tarpsniais.<br />

Tyrimo objektas <strong>ir</strong> metodai. Paprastasis kmynas Carum carvi L., var. ‘Gintaras’<br />

sëtas á vegetacinius indus (54 x 34 x 15 cm) su artimos neutraliai pH reakcijos<br />

durpiø substratu. Kmynams sudygus, ðiltnamyje buvo 20 ± 50°C temperatûra bei<br />

16 val. fotoperiodas (ðvitinta Son-T Agro lempomis). Kiekvienà savaitæ augalai træðti<br />

„Kem<strong>ir</strong>a Combi“ tràðø (NPK-14:11:15 <strong>ir</strong> mikroelementai) t<strong>ir</strong>palu, kenkëjai naikinti<br />

standartiniais augalø apsaugos bûdais. Kmynams pasiekus 7 <strong>ir</strong> 9 lapø skrotelëje iðsivystymo<br />

lygá, vegetaciniai indai su augalais perkelti 120 paroms á fitotrono kameras,<br />

kad pereitø foto- <strong>ir</strong> termoindukcijos procesus. Fotoperiodo <strong>ir</strong> temperatûros sàlygos<br />

þydëjimo indukcijos metu: EXP1 – 0 val. <strong>ir</strong> 4°C, EXP2 – 8 val. <strong>ir</strong> 4°C, EXP3 –<br />

16 val. <strong>ir</strong> 4°C, EXP4 – 8 val. <strong>ir</strong> 21 (16)°C, EXP5 – 16 val. <strong>ir</strong> 21 (16)°C (dienos<br />

(nakties) temperatûra). Evokacijos, þiedø iniciacijos bei diferenciacijos procesai (Duchowski,<br />

1995) bei organogenezës etapai (Êóïåðìàí <strong>ir</strong> kt., 1982) stebëti mënesá,<br />

esant 16 val. fotoperiodui <strong>ir</strong> 21 (16) ± 2°C dienos (nakties) temperatûrai.<br />

Fitohormonø bandiniai efektyviajai skysèiø chromatografijai (HPLC) atlikti ruoðiami<br />

sutrinant 1– 2 g þalios masës su skystu azotu, ekstakcija atliekama uþpilant<br />

10 ml izopropanolio. Bandinys centrifuguojamas 2 500 apsisukimø per minutæ greièiu<br />

5 min., nupylus ekstraktà, centrifuguojama dar tris kartus kaskart uþpilant po<br />

279


2 ml izopropanolio. Surinktas bandinys garinamas rotaciniu garintuvu, gryninamas<br />

kietafazës ekstrakcijos metodu, naudojant NH2-kartridþus, <strong>ir</strong> vël garinamas. Paruoðti<br />

bandiniai saugomi mëgintuvëliuose 4°C temperatûroje (Wang, 2003).<br />

Giberelo rûgðties (GA3), indolil-3-acto rûgðties (IAA), abscizo rûgðties (ABA) <strong>ir</strong><br />

zeatino analizës atliktos Shimadzu 10A HPLC modelio chromatografu su diodø matricos<br />

detektoriumi (SPD-M 10A VP, Japonija), kolona termostatuota 35°C temperatûroje.<br />

Sk<strong>ir</strong>stymas atliktas Intersil ODS-2 kolonële (150 x 4,6 mm). Judriosios fazës<br />

gradientas: 40% metanolis su 1% acto rûgðties GA3, 45% metanolis su 1% acto<br />

rûgðties IAA, 50% metanolis su 1% acto rûgðties zeatinui <strong>ir</strong> 55% metanolis su 1%<br />

acto rûgðties ABA sk<strong>ir</strong>styti. Detekcija: <strong>25</strong>4, 280, 270 <strong>ir</strong> <strong>25</strong>4 nm atitinkamai GA3,<br />

IAA, zeatinui <strong>ir</strong> ABA. Tëkmës greitis – 1 ml/min.<br />

Standartiniam nuokrypiui nuo vidurkio apskaièiuoti naudota „MS Exel“ programa.<br />

Rezultatai. Kmynai, iðsivystæ iki 7 lapø skrotelëje bei sudëti á fitotrono kameras<br />

foto- bei termoindukcijos procesams praeiti, vëliau visuose t<strong>ir</strong>tuose veiksniø<br />

deriniuose liko vegetatyvinës bûsenos (II organogenezës etape). Tamsoje kmynai<br />

<strong>ir</strong> su 7, <strong>ir</strong> su 9 lapais skrotelëje visai nesivystë <strong>ir</strong> sunyko (1 lentelë). Kmynai su 9<br />

lapais skrotelëje vystësi nevienodai. Geriausiai kmynai vystësi veikiant 16 val. fotoperiodu<br />

bei 4°C temperatûra (EXP 3). Palaikant 21 (16)°C dienos (nakties) temperatûrà,<br />

paprastasis kmynas <strong>ir</strong> trumpos (EXP 4), <strong>ir</strong> ilgos (EXP 5) dienos fotoperiodo<br />

sàlygomis vystësi vienodai <strong>ir</strong> lëèiau nei EXP 3. Sunkiausiai paprastasis kmynas<br />

vystësi veikiant ilgos dienos fotoperiodu bei þema temperatûra (EXP 2)<br />

(1 lentelë).<br />

1 lentelë. Paprastojo kmyno sk<strong>ir</strong>tingø þydëjimo iniciacijos tarpsniø intensyvumo lygis<br />

Table 1. The intensity level of different flowering initiation stages in common caraway<br />

Veiksniø<br />

deriniai<br />

Treatment<br />

II evokacijos<br />

Þiedø diferenciacija<br />

Þiedø iniciacija (Va<br />

tarpsnis (IV<br />

(Vb, Vc<br />

organogenezës<br />

organogenezës<br />

organogenezës<br />

etapas)<br />

etapas)<br />

etapas)<br />

Flower initiation<br />

Evocation stage II (organogenesis stage<br />

Flower differentiation<br />

(organogenesis stage IV) Va)<br />

(organogenesis stage<br />

Vb, Vc)<br />

7 9 7 9 7 9 7 9<br />

I evokacijos tarpsnis<br />

(III organogenezës<br />

etapas)<br />

Evocation stage I<br />

(organogenesis stage III)<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

lapai skrotelëje<br />

leaves in rosette<br />

EXP1 - - - - - - - -<br />

EXP2 - + - + - + - +<br />

EXP3 - + + + - + + + - + + + - + + +<br />

EXP4 - + + - + + - + + - + +<br />

EXP5 - + + - + + - + + - + +<br />

„+/-„ – vystymosi intensyvumo lygis / development intensity level.<br />

EXP1 – 0 val. <strong>ir</strong>/and 4°C, EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val. <strong>ir</strong>/<br />

and 21 (16)°C, EXP5 – 16 val. <strong>ir</strong>/and 21/ (16)°C.<br />

280


Po þydëjimo indukcijos giberelo rûgðties koncentracija sumaþëjo visuose poveikio<br />

deriniuose, ypaè trumpos dienos bei aukðtos temperatûros sàlygomis (EXP4)<br />

(1 pav.). II evokacijos tarpsnio metu EXP4 poveikio derinyje ðio fitohormono koncentracija<br />

iðaugo beveik 16 kartø, palyginti su I evokacijos tarpsniu, o kituose poveikio<br />

deriniuose GA3 sintezë sumaþëjo. Þiedø iniciacijos metu visuose poveikio deriniuose<br />

giberelo rûgðties biosintezë vyko neaktyviai (Va organogenezës etapas), o þiedø<br />

diferenciacijos metu labai suaktyvëjo. Labiausiai GA 3<br />

sintezë svyravo trumpos<br />

dienos bei aukðtos temperatûros sàlygomis (EXP4) (1A pav.). Po þydëjimo indukcijos<br />

indolil-3-acto rûgðties, abscizo rûgðties bei zeatino koncentracijos sumaþëjo EXP3<br />

<strong>ir</strong> EXP4 poveikio deriniuose <strong>ir</strong> beveik du kartus padidëjo EXP2 <strong>ir</strong> EXP5 poveikio<br />

deriniuose (1B pav.).<br />

Zeatinas IAA ABA<br />

1 pav. Fitohormonø kiekio kitimas sk<strong>ir</strong>tingais paprastojo kmyno þydëjimo iniciacijos<br />

tarpsniais. I – prieð þydëjimo indukcijà; 1 <strong>ir</strong> 2 – I <strong>ir</strong> II evokacijos tarpsniai, 3 – þiedø<br />

iniciacija, 4 – þiedø diferenciacija<br />

Fig. 1. Variation of phytohormones contents in common caraway during various flowering<br />

initiation stages. I – before flowering induction; 1 and 2 – evocation stages I and II, 3 –<br />

flower initiation, 4 – flower differentiation<br />

EXP1 – 0 val. <strong>ir</strong>/and 4°C, EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val.<br />

<strong>ir</strong>/and 21 (16)°C, EXP5 – 16 val. <strong>ir</strong>/and 21 (16)°C.<br />

Trumpos dienos <strong>ir</strong> þemos temperatûros sàlygomis (EXP2) ABA <strong>ir</strong> IAA santykis<br />

iðaugo II evokacijos tarpsnio metu, o kmynams pasiekus V organogenezës etapà,<br />

t. y. prasidëjus þiedø iniciacijos bei diferenciacijos procesams, ðis santykis sumaþëjo.<br />

Zeatino <strong>ir</strong> IAA santykis buvo lygus 1 visais þydëjimo iniciacijos tarpsniais, o GA3 <strong>ir</strong><br />

ABA santykis þiedø iniciacijos bei diferenciacijos metu padidëjo dvigubai, palyginti<br />

su II evokacijos tarpsniu. Geriausiai augalai vystësi ilgos dienos bei þemø temperatûrø<br />

sàlygomis (EXP3), GA 3<br />

<strong>ir</strong> ABA santykis kito nedaug <strong>ir</strong> iðliko didelis visais þydëjimo<br />

iniciacijos tarpsniais, tik þiedø diferenciacijos metu sumaþëjo maþdaug perpus.<br />

ABA <strong>ir</strong> IAA santykis sumaþëjo þiedø iniciacijos metu. Augalus veikiant trumpos dienos<br />

fotoperiodu bei aukðta temperatûra (EXP4), ABA <strong>ir</strong> IAA bei zeatino <strong>ir</strong> IAA santykis<br />

buvo lygus 1 visais þydëjimo iniciacijos tarpsniais. Esant toms paèioms sàlygoms,<br />

GA 3<br />

<strong>ir</strong> ABA santykis po I evokacijos tarpsnio padidëjo apie 5 kartus <strong>ir</strong> vël tiek<br />

pat sumaþëjo þiedø diferenciacijos metu (2 lentelë). Augalus veikiant taip pat aukðta<br />

temperatûra, bet ilgos dienos fotoperiodu (EXP5), ABA <strong>ir</strong> IAA santykis I <strong>ir</strong> II evokacijos<br />

bei þiedø iniciacijos tarpsniais sumaþëjo perpus, taèiau padidëjo þiedø diferenciacijos<br />

metu.<br />

281


2 lentelë. Fitohormonø santykis sk<strong>ir</strong>tingais paprastojo kmyno þydëjimo iniciacijos<br />

tarpsniais<br />

Table 2. The ratio of ohytohormones during different flowering initiation stages in<br />

common caraway<br />

Poveikio<br />

variantas<br />

Treatment<br />

GA3/ABA<br />

I evokacijos<br />

tarpsnis<br />

evocation stage I<br />

ABA/IAA<br />

Zeatinas/IAA<br />

Þydëjimo iniciacijos tarpsniai<br />

Flowering initiation stage<br />

II evokacijos<br />

tarpsnis<br />

evocation stage II<br />

GA3/ABA<br />

ABA/IAA<br />

Zeatinas/IAA<br />

GA3/ABA<br />

Þiedø iniciacija<br />

flower initiation<br />

ABA/IAA<br />

Zeatinas/IAA<br />

Þiedø<br />

diferenciacija<br />

flower differentiation<br />

EXP2 278 0 1 85 2 1 158 0 1 160 1 1<br />

EXP3 219 1 1 301 1 0 297 0 1 149 1 2<br />

EXP4 66 1 1 343 1 1 246 1 1 58 1 1<br />

EXP5 80 1 1 40 1 0 <strong>25</strong> 0 0 230 18 15<br />

GA3/ABA<br />

ABA/IAA<br />

Zeatinas/IAA<br />

EXP2 – 8 val. <strong>ir</strong>/and 4°C, EXP3 – 16 val. <strong>ir</strong>/and 4°C, EXP4 – 8 val. <strong>ir</strong>/and 21 (16)°C, EXP5 –<br />

16 val. <strong>ir</strong>/and 21 (16)°C.<br />

Diskusija. Paprastasis kmynas (Carum carvi L.), kaip <strong>ir</strong> petraþolës, morkos,<br />

krapai <strong>ir</strong> kt., priklauso Apiaceae ðeimai. Paprastasis kmynas, kaip <strong>ir</strong> kiti dvimeèiai<br />

augalai, sëjos metais formuoja vien tik skrotelæ <strong>ir</strong> tik po foto- <strong>ir</strong> termoindukcijos<br />

rudená <strong>ir</strong> þiemà suformuoja þiedynstiebá. Labai svarbu nustatyti kiekvienos rûðies<br />

minimalø iðsivystymo lygá, kai tinkamu fotoperiodu <strong>ir</strong> þema temperatûra gali bûti<br />

indukuojamas þydëjimas. Ankstesni mûsø tyrimai rodo, kad juvenalinio tarpsnio pabaiga<br />

foto- <strong>ir</strong> termoindukcijai yra sk<strong>ir</strong>tinga (Duchovskis <strong>ir</strong> kt, 2003). Yra du þydëjimo<br />

indukcijos <strong>ir</strong> evokacijos tarpsniai. P<strong>ir</strong>masis þydëjimo indukcijos tarpsnis yra fotoindukcija<br />

(morkoms – turint 5 lapus skrotelëje). Fotomorfogenetinës sistemos metabolitai<br />

ið lapø transportuojami á apikalines meristemas, kur pas<strong>ir</strong>eiðkia þiedyno aðies<br />

formavimo genø ekspresija (tikëtina per SOC1, FT genus) (Duchovskis, 2004). Nuo<br />

ðio momento prasideda I evokacijos tarpsnis, kuris baigiasi þiedyno aðies suformavimu.<br />

Antrasis þiemojanèiø augalø þydëjimo indukcijos tarpsnis yra termoindukcija<br />

(morkoms – kai iðsivystymo lygis pasiekia 9 lapus skrotelëje). Termoindukcijos proceso<br />

metabolitai lemia þiedyno aðies struktûrø formavimà (II evokacijos tarpsnis).<br />

Labiausiai tikëtina, kad FLC, FRI genai yra atsakingi uþ II evokacijos tarpsná. Ðiø<br />

procesø pabaigoje taip pat vyksta þiedø iniciacija (Duchovskis, 2004). Paprastasis<br />

kmynas, pasiekæs iðsivystymo lygá iki 7 <strong>ir</strong> 9 lapø skrotelëje, dedamas á fitotrono<br />

kameras þydëjimo indukcijai sukelti. Po ðio poveikio kmynø su 7 lapais skrotelëje,<br />

vëliau veikiant sk<strong>ir</strong>tingais foto- <strong>ir</strong> termoperiodais, augimas buvo vien tik vegetatyvinis<br />

(1 lentelë). Juvenalinio periodo pabaiga sietina su visiðku augalo pas<strong>ir</strong>uoðimu priimti<br />

foto- <strong>ir</strong> termoindukcijos procesus. Paprastojo kmyno ontogenezëje tuo momentu<br />

augalai suformuoja 9 asimiliuojanèius lapus. Fotoperiodas apribojo þydëjimà, ta-<br />

282


èiau ðie apribojimai gali iðnykti veikiant þemomis ar aukðtomis temperatûromis (Zeevaart,<br />

1976). Pagal Zeevaart teiginá <strong>ir</strong> mûsø bandymuose paprastasis kmynas su 9<br />

lapais skrotelëje þydëjo visuose poveikiø variantuose, tik nevienodai intensyviai. Geriausiai<br />

floralinis vystymasis pas<strong>ir</strong>eiðkë augalus veikiant þema teigiama temperatûra <strong>ir</strong><br />

ilgos dienos fotoperiodu (1 lentelë).<br />

Reguliuojant daugelio augalø rûðiø þydëjimà giberelinas vaidina svarbø vaidmená<br />

(Michaels <strong>ir</strong> Amasino, 2000). Ar gali bûti taip, kad GA 3<br />

kiekio padidëjimas arba ðio<br />

hormono metabolizmo pakitimas veiktø kaip þydëjimui átakos turintis mechanizmas<br />

neveikiant þydëjimo indukcijà skatinanèiu fotoperiodu arba ðalèiu Remiantis mûsø<br />

duomenis, galima teigti, kad giberelo rûgðties koncentracijos sumaþëjimas po evokacijos<br />

procesø nulemia greitesnæ þiedstiebio elongacijà <strong>ir</strong> þiedø formavimà. Yra þinoma,<br />

kad hormonø veikla pas<strong>ir</strong>eiðkia <strong>ir</strong> antagonistiðkai, <strong>ir</strong> stimuliuojanèiai <strong>ir</strong> ðiø veiklø<br />

balansas nulemia kiekvieno fitohormono átakà þydëjimo iniciacijai (Johri <strong>ir</strong> Mitra,<br />

2001). Nustatyta, kad kmynus veikiant ilgos dienos fotoperiodu <strong>ir</strong> þema temperatûra,<br />

augalai vystësi geriausiai, GA 3<br />

<strong>ir</strong> ABA santykis I <strong>ir</strong> II evokacijos tarpsnio metu<br />

buvo didelis, o po þiedø iniciacijos þiedø diferenciacijos metu sumaþëjo perpus. Tai<br />

gali bûti susijæ su greitesniais þydëjimo indukcijos procesais. Kitomis sàlygomis<br />

augalai vystësi prasèiau <strong>ir</strong> tai atsispindi GA 3<br />

<strong>ir</strong> ABA santykio antagonistinës veiklos<br />

balanse, ypaè kmynus veikiant ilgos dienos fotoperiodu bei aukðta temperatûra. Ið<br />

gautø duomenø matyti, kad fotoperiodo bei temperatûros poveikis fitohormonø<br />

santykiui kmynø þydëjimo iniciacijos procesø metu yra didelis. Taèiau paprastojo<br />

kmyno vystymuisi svarbesnë termoindukcijos nei fotoindukcijos átaka: blogiausiai<br />

kmynai vystësi esant trumpai dienai <strong>ir</strong> þemoms temperatûroms (EXP2), nors þiedø<br />

iniciacijos bei diferenciacijos procesø metu GA 3<br />

<strong>ir</strong> ABA santykis buvo didelis <strong>ir</strong><br />

þiedo elementø formavimàsi ðis balansas veikë stimuliuojanèiai. Esant aukðtai temperatûrai,<br />

nesvarbu, kokia buvo fotoperiodo trukmë, kmynai vystësi geriau (EXP4<br />

<strong>ir</strong> EXP5), nors GA 3<br />

<strong>ir</strong> ABA santykis (ypaè ilgos dienos sàlygomis) buvo itin maþas<br />

(EXP5).<br />

Auksinai paprastai siejami su làsteliø tásimo procesais, auksinø <strong>ir</strong> citokininø bendra<br />

veikla làsteliø dalijimosi procesuose pas<strong>ir</strong>eiðkia stimuliojanèiai (Johri <strong>ir</strong> Mitra,<br />

2001). Taip pat zeatino bei indolil-3-acto rûgðties santykis labai svarbus morfogenezës<br />

iniciacijos procesuose. Þinoma, kad auksinai atsakingi uþ apikaliná dominavimà,<br />

o kinetino sintezë vyksta ðaknyje <strong>ir</strong> skatina ûgliø morfogenezæ. Vykstant ðiø fitohormonø<br />

perneðimui ið jø sintezës vietos, keièiasi <strong>ir</strong> santykis. Mûsø duomenimis kmynus<br />

veikiant ilgos dienos fotoperiodu, neatsiþvelgiant á temperatûros poveiká (EXP3<br />

<strong>ir</strong> EXP5), zeatino <strong>ir</strong> IAA santykis II evokacijos tarpsnio metu buvo artimas 0. Todël<br />

zeatino bei IAA veikla prieð þiedø iniciacijos procesus pas<strong>ir</strong>eiðkia antagonistiðkai. Tai<br />

gali turëti átakos apikalinio dominavimo iðnykimui bei pradmeninio þiedyno ðoniniø<br />

elementø formavimuisi. Taèiau ðoniniø þiedo aðies elementø formavimasis gali bûti<br />

nulemtas dar I evokacijos tarpsnio pabaigoje. Þiedø diferenciacijos procesø metu,<br />

aktyviai formuojantis þiedo aðies elementø struktûroms, pas<strong>ir</strong>eiðkia stimuoliuojanti<br />

citokininø bei auksinø saveika. Ilgos dienos fotoperiodo sàlygomis augalus veikiant<br />

aukðta temperatûra (EXP5), ðis santykis neatkuriamas <strong>ir</strong> þiedø iniciacijos metu, taèiau<br />

ðiuo momentu pas<strong>ir</strong>eiðkia antagonistinë ABA <strong>ir</strong> IAA sàveika. Tokia fitohormonø<br />

veikla galëjo lëtinti kmynø vystymosi procesus.<br />

283


Iðvados. 1. Juvenalinio periodo pabaiga paprastojo kmyno ontogenezëje sietina<br />

su tuo momentu, kai augalai suformuoja 9 asimiliuojanèius lapus <strong>ir</strong> visiðkai pas<strong>ir</strong>uoðia<br />

priimti foto- <strong>ir</strong> termoindukcijos procesus.<br />

2. Paprastojo kmyno floraliniam vystymuisi svarbesni termoindukcijos nei fotoindukcijos<br />

procesai.<br />

3. Stabilø visø fitohormonø sintezës maþëjimà iki paprastojo kmyno þiedø diferenciacijos<br />

bei geriausià floraliná vystymàsi lemia þemos teigiamos temperatûros bei<br />

ilgos dienos fotoperiodo derinys.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bernier G., Havelange A., Housa C., Petitjean A., Lejeune P. Physiological signals<br />

that induce flowering // Plant Cell. 1993. Vol. 5. P. 1147–1155.<br />

2. Duchovskis P. Flowering initiation of wintering plants // Sodininkystë <strong>ir</strong> darþininkystë.<br />

Babtai, 2004. T. 23(2). P. 3–11.<br />

3. Duchovskis P., N. Þukauskas, Ðikðnianienë J. B., Samuolienë G. Valgomøjø morkø<br />

juvenalinio periodo, þydëjimo indukcijos <strong>ir</strong> evokacijos procesø ypatumai // Sodininkystë<br />

<strong>ir</strong> darþininkystë. Babtai, 2003. T. 22(1). P. 86–93.<br />

4. Duchowski P. Acta Academiae Agriculturae ac Technicae Olstenensis Agricultura //<br />

Supplementum. 1995. 61.<br />

5. Glãucia M., Dias-Tagliacozzo, Válio F.M. Ivany. Effect of vernalization on fowering<br />

of Daucus carota. // R. Bras. Fisiol. Veg. 1994. Vol. 6. P. 71–73.<br />

6. Johri M. M., Mitra D. Current Science 2001. Vol. 80(2). P. 199–205.<br />

7. Kraepiel Y., Miginiac E. Photomorphogenesis and phytohormones // Plant, Cell<br />

and Env<strong>ir</strong>onment. 1997. 20. P. 807–812.<br />

8. Michaels S. D., Amasino R. M. Plant, cell and env<strong>ir</strong>onment. 2000. 23. P. 1145–1153.<br />

9. Sachs R. M., Hackett W. P. Source-sink relationships in flowering // W. J. Meudt.<br />

Strategies of plant reproduction. Allenheld, Osmun, Granada, 1983. P. 263–272.<br />

10. Zeevaart Jan A. D. Ann. Rev. Plant Physiol. 1976. 27. P. 321–347.<br />

11. Wang Y., Mopper S., Hasenstein K. H. Effects of salinity on endogenous ABA,<br />

IAA, JA and SA in Iris hexagona // Journal of Chemical Ecology. 2003. 27. P. 327–342.<br />

12. Êóïåðìàí Ô. Ì., Ðæàíîâà Å. È., Ìóðàøåâ Â. Â., Ëüâîâà È. Í., Ñåäîâà Å. À.,<br />

Àõóíäîâà Â.À., Ùåðáèíà È.Ï. Áèîëîãèÿ ðàçâèòèÿ êóëüòóðíûõ ðàñòåíèé.<br />

Ìîñêâà: Âûñøàÿ øêîëà, 1982. 343 c.<br />

284


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

DYNAMICS AND ROLE OF PHYTOHORMONES IN<br />

COMMON CARAWAY AFTER FLOWERING INDUCTION<br />

G. Samuolienë, P. Duchovskis<br />

Summary<br />

This study was aimed on investigation of phytohormones dynamic and role in<br />

common caraway (Carum carvi L.) during different flowering initiation stages. The<br />

process of common caraway flowering initiation and morphogenesis was studied in<br />

a phytotron facility. Different level of development is needed for photo- and thermoinduction<br />

of caraway. 9 leaves in rosette are needed to complete the juvenile<br />

period. High-performance liquid chromatography (HPLC) with diode array detection<br />

was used for separation and determination of gibberellic, indol-3-acetic and abscisic<br />

acids, and zeatin. Conditions of photo and thermoperiod during flowering induction:<br />

EXP2 – 8 hr and 4°C, EXP3 – 16 hr and 4°C, EXP4 – 8 hr and 21/16°C, EXP5 –<br />

16 hr and 21/16°C.<br />

Our results showed that under dark treatment both in caraway with 7 and 9<br />

leaves in rosette did not develop at all and rotted away. The best floral development<br />

was observed when plants were treated under low positive temperature and long day<br />

photoperiod (EXP3). Under these conditions the GA3/IAA ratio during evocation<br />

stages I and II was high, but it decreased twice after flower initiation. During evocation<br />

stage II zeatin/IAA ratio was equal to 0. This could mean that the apical dominance<br />

disappeared. Under treatment with long day photoperiod and high temperature<br />

(EXP5) this ratio did not increase even during flower initiation. Otherwise during<br />

this moment an antagonistic interaction between ABA and IAA occurs. This phytohormones<br />

action could influence slower developmental processes of common caraway.<br />

In summary, for development of common caraway thermoinduction is more<br />

important than influence of photoinduction. The best generative development was<br />

noticed when plants were treated under low temperature and long day photoperiod.<br />

For common caraway floral development thermoinduction processes are more important<br />

than photoinduction. The stabile decrease of all phytohormones synthesis till<br />

flower differentiation and the best floral development is determined by low positive<br />

temperatures and long day photoperiod.<br />

Key words: caraway, evocation, flowering initiation, phytohormones.<br />

285


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(3).<br />

SODINIMO TANKUMO ÁTAKA PAVASARINIØ AGURKØ<br />

PRODUKTYVUMUI<br />

Julë JANKAUSKIENË, Auðra BRAZAITYTË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas j.jankauskiene@lsdi.lt<br />

2003–2005 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës institute dviguba polimerine<br />

plëvele dengtuose ðiltnamiuose (ðonai dengti plastiko lakðtais) mineralinëje<br />

vatoje auginti du agurkø hibridai <strong>ir</strong> t<strong>ir</strong>ta sodinimo tankumo átaka agurkø hibridø fotosintezës<br />

sistemai, derliui bei kokybei. Auginti agurkø hibridai ‘Mandy’, ‘Componist’.<br />

Agurkai sodinti sk<strong>ir</strong>tingais tankumais: 2,0; 2,3; 2,6 augalo/m 2 . Vegetacijos metu nustatytas<br />

sausøjø medþiagø bei pigmentø kiekis augalø lapuose, matuotas fotosintezës<br />

intensyvumas. Pigmentø bei sausøjø medþiagø kiekis, fotosintezës intensyvumas agurkø<br />

lapuose priklauso <strong>ir</strong> nuo hibrido, <strong>ir</strong> nuo sodinimo tankumo. Sodinimo tankumas<br />

turi átakos t<strong>ir</strong>tø agurkø hibridø ankstyvumui, taip pat veikia derliaus dydá. Agurkø<br />

hibridø, augintø 2,6 aug./m 2 tankumu, derlius esti didesnis negu augintø 2,0 <strong>ir</strong><br />

2,3 aug./m 2 tankumu. Vidutinë vaisiaus masë visuose variantuose vienoda.<br />

Reikðminiai þodþiai: agurkai, derlius, fotosintezës intensyvumas, hibridai, pigmentai,<br />

sausosios medþiagos, sodinimo tankumas.<br />

Ávadas. Siekiant ið ploto vieneto gauti kuo daugiau produkcijos, labai svarbu<br />

tinkamai iðnaudoti ðiltnamio plotà (Papadopoulos, 1994). Vienas svarbiausiø darþoviø<br />

auginimo ðiltnamiuose technologijos elementø, kuriø dëka galima reguliuoti derliaus<br />

kieká, yra maitinamasis plotas. Optimalus plotas vienam agurko augalui yra<br />

0,7–0,8 m 2 . Idealu, kai tarp eiliø bei augalø eilëje yra tas pats atstumas. Taèiau ðiltnamiuose<br />

augalø tankumui átakos turi atramø, ðildymo vamzdþiø iðdëstymas <strong>ir</strong> kt. Augalø<br />

maitinamasis plotas priklauso nuo veislës, hibrido, auginimo laiko (t. y. apðvietimo),<br />

auginimo bûdo, taip pat nuo mineralinës mitybos (Papadopoulos, 1994). Atstumas<br />

tarp augalø eilëje gali bûti 45–60 cm. Didelæ lapijà turintys agurkai sodinami<br />

reèiau. Vëlyvà pavasará <strong>ir</strong> ankstyvà rudená, kai apðvietimo sàlygos yra geros, augalai<br />

gali bûti sodinami tankiau, taèiau pasodinus per tankiai, gali sumaþëti derlingumas,<br />

nes augalai gauna maþiau ðviesos, gelsta jø lapai, tarp augalø laikosi drëgnas oras, jie<br />

blogiau vëdinami <strong>ir</strong> greièiau suserga (Îâîùåâîäñòâî..., 1995).<br />

Fotosintezë yra pagrindinis fiziologinis procesas, kuriuo augalai reaguoja á pasikeitusias<br />

aplinkos sàlygas. Jos intensyvumas daþnai t<strong>ir</strong>iamas sudarant áva<strong>ir</strong>ias augimo<br />

sàlygas ðiltnamiuose (Hand <strong>ir</strong> kt., 1992; Tornley <strong>ir</strong> kt., 1992). Pigmentai yra<br />

286


fotosintezës sistemos dalis, jø pokyèiai yra svarbus sàlygø tinkamumo ðiltnamio augalams<br />

rodiklis. Sausøjø medþiagø kiekis agurkuose priklauso nuo maisto medþiagø<br />

kiekio d<strong>ir</strong>voþemyje (Espinola <strong>ir</strong> kt., 2001). Taip pat tam átakos turi <strong>ir</strong> kiti veiksniai:<br />

auginimo laikotarpis, vaisiø kiekis ant augalo, tankis <strong>ir</strong> kt. (Heuvelink <strong>ir</strong> kt., 1989;<br />

Gomez <strong>ir</strong> kt., 2003; Peil, Lopez-Galvez, 2005). Nustatyta, kad sk<strong>ir</strong>tingos polimerinës<br />

ðiltnamio dangos neturi átakos sausøjø medþiagø kiekiui agurkuose, taèiau jø<br />

susikaupia daugiau tuose augaluose, kurie auga stikliniuose ðiltnamiuose (Papadopoulos,<br />

Hao, 1999).<br />

Darbo tikslas – nustatyti pavasará auginamø trumpavaisiø agurkø sodinimo<br />

tankumo átakà fotosintezës pigmentams, jos intensyvumui, derëjimo ankstyvumui <strong>ir</strong><br />

suminiam derliui.<br />

Tyrimo objektas <strong>ir</strong> metodai. Tyrimai atlikti 2003–2005 m. Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto dviguba polimerine plëvele dengtuose ðiltnamiuose<br />

(ðonai dengti plastiko lakðtais). Agurkai auginti mineralinëje vatoje. Sëjos laikas 2003<br />

metais – kovo mën. 3 diena, 2004 metais – vasario mën. 27 diena, 2005 metais –<br />

vasario mën. 28 diena. Agurkø daigai auginti daigyne ant stelaþø, papildomai ðvytinti.<br />

Á ðiltnamá sodinti 2003 04 02, 2004 03 31, 2005 04 08. Agurkai træðti „Nutrifol“<br />

(þalias <strong>ir</strong> rudas) tràðomis, magnio sulfatu, kalcio bei amonio salietra atsiþvelgiant á<br />

augimo tarpsná. Vandeniui rûgðtinti naudota azoto rûgðtis. Druskø koncentracija maitinamajame<br />

t<strong>ir</strong>pale – EC 2,5–2,8, rûgðtumas – pH 5,5–5,8. Tyrimo objektas (A faktorius)<br />

– a 0 – hibridas ‘Mandy’, a 1 – hibridas ‘Componist’. T<strong>ir</strong>tas sodinimo tankumas<br />

(B faktorius): b 0 – 2,0 aug./m 2 , b 1 – 2,3 aug./m 2 , b 2 – 2,6 aug./m 2 . Laukelio<br />

plotas – 8,8 m 2 . Variantai kartoti po keturis kartus. Laukeliai iðdëstyti atsitiktine tvarka.<br />

Bandymo metu atlikti biometriniai stebëjimai (praëjus 1, 2, 3 savaitëms po sodinimo,<br />

matuotas augalø aukðtis, skaièiuoti lapai), nustatytas pigmentø <strong>ir</strong> sausøjø medþiagø<br />

kiekis lapuose (kas mënesá vegetacijos metu), fotosintezës intensyvumas matuotas<br />

neðiojama fotosintezës sistema CI-310 (CID Inc., USA). Sausosios medþiagos<br />

nustatytos iðdþiovinus lapus 105 ± 20°C temperatûroje iki nekintamos masës.<br />

Pigmentø kiekis nustatytas sprektrofotometru (pagal Vetðteinà) (Wettstein, 1957).<br />

T<strong>ir</strong>ti visai susiformavæ lapai. Atlikta agurkø derliaus apskaita. Agurkai buvo skinami<br />

tris kartus per savaitæ <strong>ir</strong> rûðiuojami á standartinius <strong>ir</strong> nestandartinius. Derliaus duomenys<br />

apdoroti statistiniais metodais (Tarakanovas, Raudonius, 2003).<br />

Tyrimø rezultatai. Vegetacijos metu augalai augo nevienodai, jø aukðtis priklausë<br />

nuo hibrido <strong>ir</strong> nuo augalø sodinimo tankio. ‘Mandy’ hibrido augalai buvo<br />

aukðtesni <strong>ir</strong> turëjo daugiau lapø, pasodinus 2,3 aug./m 2 , negu augalai, sodinti 2 <strong>ir</strong><br />

2,6 aug./m 2 tankumais (1 lentelë). ‘Componist’ hibrido aukðèiausi buvo reèiausiai,<br />

t. y. 2 aug./m 2 tankumu, pasodinti augalai. Ðie agurkai taip pat iðaugino daugiau lapø.<br />

Matuojant p<strong>ir</strong>màjá kartà, jie buvo atitinkamai 17,1 <strong>ir</strong> 18 proc. aukðtesni negu augalai,<br />

pasodinti 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumais, matuojant antràjá kartà – atitinkamai 11,1 <strong>ir</strong><br />

13,9 proc. aukðtesni, treèiàjá – atitinkamai 7,30 <strong>ir</strong> 8,8 proc. aukðtesni.<br />

Vegetacijos metu daugiausia sausøjø medþiagø lapuose sukaupë reèiausiai, t. y.<br />

2,0 aug./m 2 , pasodinti agurkai (abu hibridai), nors esminio sk<strong>ir</strong>tumo tarp variantø<br />

nebuvo (1 pav.). Matuojant p<strong>ir</strong>màjá kartà, sausøjø medþiagø buvo atitinkamai 1,8 <strong>ir</strong><br />

7,5 proc. daugiau negu lapuose agurkø, augusiø 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumu, matuojant<br />

antràjá kartà – atitinkamai 1,6 <strong>ir</strong> 5,1 proc. daugiau, treèiàjá – 5,6 <strong>ir</strong> 14,3 proc.<br />

287


daugiau. Agurkai, auginti 2,3 <strong>ir</strong> 2,6 aug./m 2 tankumu, lapuose sukaupë beveik vienodà<br />

sausøjø medþiagø kieká.<br />

1 lentelë. Sk<strong>ir</strong>tingu tankumu augintø agurkø aukðtis <strong>ir</strong> lapø skaièius vegetacijos metu.<br />

Babtai, 2003–2005 m.<br />

Table 1. Plant height and the number of leaves of cucumbers grown at different density.<br />

Babtai, 2003-2005<br />

Variantas<br />

Variants<br />

2 augalai<br />

augalo<br />

aukštis<br />

plant<br />

height, cm<br />

I matavimas<br />

Measure<br />

lapø<br />

skaièius,<br />

vnt.<br />

number of<br />

leaves (unit)<br />

augalo<br />

aukštis<br />

plant height,<br />

cm<br />

‘Mandy’ F 1<br />

II matavimas<br />

Measure<br />

lapø<br />

skaièius, vnt.<br />

number of<br />

leaves (unit)<br />

III matavimas<br />

Measure<br />

augalo<br />

aukštis<br />

plant height,<br />

cm<br />

lapø<br />

skaièius,<br />

vnt.<br />

number of<br />

leaves (unit)<br />

2 plants, m 2 28,0 5,8 48,6 7,7 76,8 10,9<br />

2,3 augalo<br />

2.3 of plant, m 2 29,5 6,1 52,5 8,4 83,9 11,6<br />

2,6 augalo<br />

2.6 of plant, m 2 28,3 5,9 51,7 8,1 79,2 11,3<br />

2 augalai<br />

‘Componist’ F 1<br />

2 plants, m 2 31,5 5,9 53,1 8,1 83,9 11,2<br />

2,3 augalo<br />

2.3 of plant, m 2 26,9 5,3 46,6 7,6 77,1 10,7<br />

2,6 augalo<br />

2.6 of plant, m 2 26,7 5,5 47,8 7,7 78,2 10,9<br />

1 pav. Sausøjø medþiagø kiekis sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu<br />

Fig. 1. The amount of dry matter in the leaves of cucumbers grown at different density<br />

during vegetation<br />

288


2 lentelë. Fotosintetiniø pigmentø kiekis sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu (mg/1 g þalios masës). Babtai, 2003–2005 m.<br />

Table 2. The amount of photosynthetic pigments in the leaves of cucumbers grown at<br />

different density during vegetation (mg/1g fresh mass). Babtai, 2003-2005<br />

Variantas<br />

Variants<br />

I matavimas / measure II matavimas / measure III matavimas / measure<br />

chlorofilas<br />

chlorofilas<br />

karoti- chlorofilas<br />

chlorofilas<br />

karotinoidafilas<br />

chloro-<br />

chlorofilas<br />

karotinoidai<br />

noidai<br />

chloro-<br />

chlorophyll<br />

chlorophyll<br />

chlorophyll<br />

a<br />

noids phyll<br />

phyll<br />

carote-<br />

chloro-<br />

carotenoidphyll<br />

chloro-<br />

carotenoids<br />

a + b<br />

a<br />

a + b<br />

a<br />

a + b<br />

‘Mandy’ F 1<br />

2 augalai<br />

1,16 a 1,56 a 0,36 a 1,66 b 2,26 b 0,54 b 1,76 ab 2,44 ab 0,55 ab<br />

plant, m 2<br />

2,3 augalo<br />

plant, m 2 1,34 b 1,80 c 0,44 c 1,57 ab 2,12 ab 0,49 ab 1,78 ab 2,46 ab 0,54 ab<br />

2,6 augalo<br />

plant, m 2 1,43 c 1,94 c 0,46 c 1,62 ab 2,21 ab 0,52 ab 1,97 b 2,72 b 0,60 b<br />

2 augalai<br />

‘Componist’ F 1<br />

plant, m 2 1,29 b 1,74 b 0,41 b 1,42 ab 1,92 ab 0,46 ab 1,54 ab 2,12 ab 0,49 ab<br />

2,3 augalo<br />

plant, m 2 1,26 ab 1,70 ab 0,40 ab 1,46 ab 1,98 ab 0,48 ab 1,68 b 2,26 b 0,52 b<br />

2,6 augalo<br />

plant, m 2 1,26 ab 1,69 ab 0,40 ab 1,59 b 2,16 b 0,51 b 1,60 ab 2,21 ab 0,50 ab<br />

Tomis paèiomis raidëmis stulpeliuose paþymëti skaièiai ið esmës nesisk<strong>ir</strong>ia, kai P ≤ 0,05.<br />

Values indicated by the same letters within the columns are not statistically different at P ≤ 0.05<br />

Chlorofilø kiekis þaliuose agurkø lapuose vegetacijos metu kito (2 lentelë). Hibrido<br />

‘Mandy’ augalø, pasodintø tankiausiai, lapuose vaisiø derëjimo pradþioje nustatyta<br />

daugiau pigmentø negu reèiau pasodintø augalø lapuose. Sk<strong>ir</strong>tumai tarp áva<strong>ir</strong>iu<br />

tankumu augusiø augalø buvo ryðkesni negu kitu vegetacijos metu. Matuojant antràjá<br />

kartà (kada apðvietimas buvo didþiausias), sk<strong>ir</strong>tumai tarp variantø buvo nedideli. Treèiojo<br />

matavimo metu ðiek tiek daugiau pigmentø sintetino tankiau pasodinti agurkai.<br />

Reèiausiai augusiø hibrido ‘Componist’ augalø lapuose vaisiø derëjimo pradþioje aptikta<br />

daugiau pigmentø. Taèiau kitais vegetacijos laikotarpiais jø kiekis buvo didesnis<br />

tankiau augusiø agurkø lapuose.<br />

Fotosintezë matuota vaisiø derëjimo pradþioje, 10–12 valandomis, kai apðvietimas<br />

didþiausias. Agurkø hibridø, augusiø 2,3 aug./m 2 tankumu, lapuose ji vyko intensyviau.<br />

Fotosintezë ðiek tiek intensyviau vyko ‘Mandy’ hibrido lapuose (2 pav.).<br />

289


2 pav. Fotosintezës intensyvumas sk<strong>ir</strong>tingu tankumu augintø agurkø lapuose<br />

vegetacijos metu<br />

Fig. 2. Photosynthesis intensity in the leaves of cucumbers grown at different<br />

density during vegetation<br />

3 pav. Sk<strong>ir</strong>tingu tankumu augintø agurkø ankstyvasis <strong>ir</strong> suminis derlius<br />

Fig. 3. Early and total yield of cucumbers grown at different density<br />

4 pav. Sk<strong>ir</strong>tingu tankumu augintø agurkø vidutinë vaisiaus masë<br />

Fig. 4. The average fruit mass of cucumbers grown at different density<br />

Sodinimo tankumas (B faktorius) turëjo átakos agurkø derliaus ankstyvumui <strong>ir</strong><br />

suminiam derliui (3 pav.). Didëjant augalø sodinimo tankumui, didëjo agurkø derlius.<br />

Didþiausià ankstyvàjá derliø davë tankiausiai sodinti agurkai: p<strong>ir</strong>màjá derëjimo<br />

mënesá jis siekë 5,8–5,9 kg/m 2 (priklausomai nuo hibrido) <strong>ir</strong> sudarë atitinkamai<br />

24,9 <strong>ir</strong> <strong>25</strong>,7 proc. viso derliaus. Didþiausias gautas 2,6 aug./m 2 tankumu pasodintø<br />

290


abiejø hibridø suminis derlius: jis buvo atitinkamai 17,5 <strong>ir</strong> 20,4 proc. (priklausomai<br />

nuo hibrido) didesnis (esminis sk<strong>ir</strong>tumas) negu augalø, augintø 2,0 aug./m 2 tankumu.<br />

Hibridai, sodinti 2,3 aug./m 2 tankumu, davë 10,4–14,2 proc. didesná derliø (neesminis<br />

sk<strong>ir</strong>tumas) negu agurkai, sodinti 2,0 aug./m 2 tankumu.<br />

Sodinimo tankumas neturëjo átakos vidutinei vaisiaus masei (4 pav.). ‘Mandy’<br />

hibrido vidutinë vaisiaus masë buvo ðiek tiek maþesnë negu ‘Componist’ hibrido:<br />

vidutinë ‘Mandy’ hibrido vaisiaus masë áva<strong>ir</strong>avo nuo 84,4 g iki 85,7 g, ‘Componist’<br />

hibrido – nuo 91,4 g iki 91,9 g.<br />

Aptarimas. Sodinimo tankumas – vienas veiksniø, lemianèiø ne tik derliaus<br />

dydá, bet <strong>ir</strong> jo kokybæ. Agurkø derlius priklauso nuo sodinimo laiko bei tankumo.<br />

Auginant agurkus þiemà, nustatyta, kad juos geriausia sodinti 2 <strong>ir</strong> 2,5 aug./m 2 tankumu<br />

(El-Aidy, 1991). Auginant juos kaip antrà kultûrà, tinkamiausias sodinimo tankis<br />

yra 100 x 50 cm. Tada gautas didþiausias agurkø derlius – 5,5 kg/m 2 (Yilmaz, Gebologlu,<br />

2002). Didþiausias efektas, tankiausiai sodinant agurkus, gautas, kai jie auginti<br />

vasarà, esant didþiausiam apðvietimui. Ekonominiu poþiûriu rekomenduojama á kvadratiná<br />

metrà sodinti 2 augalus (Liebig, 1981). Ðvedijos ðiltnamiuose atliktø tyrimø<br />

duomenimis, didesnis derlius gautas sodinant 3 augalus negu 2 <strong>ir</strong> 2,5 augalo á kvadratiná<br />

metrà (Ottosson, Hansson, 1981). T<strong>ir</strong>ta agurkø sodinimo tankumo átaka (0,7–<br />

3,1 aug./m 2 ) augalø produktyvumui <strong>ir</strong> vidutinei vaisiaus masei. Sodinimo tankis turëjo<br />

teigiamos átakos augalø produktyvumui bei vidutinei vaisiaus masei <strong>ir</strong> kito priklausomai<br />

nuo auginimo laiko (Bakker, van de Vooren, 1985). Mûsø tyrimo duomenimis,<br />

sodinimo tankumas neturëjo átakos vidutinei vaisiaus masei, taèiau didëjant augalø<br />

skaièiui kvadratiniame metre, didëjo <strong>ir</strong> augalø derlius. Kitø tyrimø duomenimis, augalø<br />

tankis neturëjo átakos ankstyvajam derliui bei vaisiø kokybei. Reèiau sodinamø<br />

augalø derlius maþëjo, bet didëjo vieno augalo derlius (Echevarrîa, Castro, 2002).<br />

Kaip rodo ðio tyrimo duomenys, didþiausià derliø davë tankiausiai sodinti augalai,<br />

taèiau skaièiuojant vieno augalo derliø, didþiausià já iðaugino reèiausiai sodintø abiejø<br />

hibridø augalai: ‘Componist’ F 1<br />

– 9,7 kg/aug., ‘Mandy’ F 1<br />

– 9,6 kg/aug.<br />

De Resende <strong>ir</strong> Flori (2004) tyrë agurkø augalø tankinimo eilutëje (kas 20 <strong>ir</strong> 40 cm)<br />

átakà jø derliui. Didesnë augalø vegetatyvinë masë buvo juos sodinant kas 40 cm, o<br />

didesnis derlius gautas, sodinant kas 20 cm eilutëje, taèiau derliaus sk<strong>ir</strong>tumas buvo<br />

neesminis (El-Aidy, Moustafa, 1978).<br />

Kad augalai bûtø produktyvûs, svarbu uþtikrinti optimalià fotosintezës eigà. Esant<br />

dideliam apðvietimui, fotosintezës intensyvumas priklausë nuo tankumo (Tornley <strong>ir</strong><br />

kt., 1992). Atliekant ðá bandymà, didelio apðvietimo sàlygomis fotosintezë vyko intensyviausiai,<br />

kai kvadratiniame metre augo 2,3 augalo. Taèiau suminiam derliui tai<br />

átakos neturëjo – didþiausias jis buvo tankiausiai augusiø agurkø. Toká neatitikimà<br />

galëjo lemti tai, kad fotosintezë buvo matuota tuo vegetacijos metu, kai apðvietimas<br />

buvo didþiausias. Taèiau apðvietimo sàlygos vegetacijos metu ne visuomet bûna palankios<br />

agurkams augti. Chlorofilø kiekis – svarbus veiksnys, nulemiantis fotosintezës<br />

efektyvumà. Jø kiekis keièiasi, kintant aplinkos sàlygoms, vystantis augalams<br />

(Ñåìè÷åâ, 1970). Nors augalø tankumas neturëjo didelës átakos pigmentø kiekiui<br />

agurkø lapuose, taèiau tankiau augæ agurkai áva<strong>ir</strong>iais vegetacijos tarpsniais kaupë<br />

lapuose daugiau chlorofilø. Todël galima daryti prielaidà, kad palankesnës sàlygos<br />

fotosintezei vykti buvo agurkams augant tankiau.<br />

291


T<strong>ir</strong>ta agurkø sodinimo tankumo átaka sausøjø medþiagø kiekiui juose <strong>ir</strong> pasisk<strong>ir</strong>stymui<br />

vegetatyvinëje dalyje bei vaisiuose (Schvambach <strong>ir</strong> kt., 2002). Sausøjø<br />

medþiagø kiekis vaisiuose bei vegetatyvinëje augalo dalyje maþëjo, kai augalai buvo<br />

auginti 2,3 aug./m 2 tankumu, palyginti su augalais, auganèiais 1,8 aug./m 2 tankumu<br />

(Peil, López-Gãlvez, 2002). Mûsø tyrimø duomenimis, didþiausias sausøjø medþiagø<br />

kiekis buvo reèiausiai sodintø augalø lapuose. Gauta stipri neigiama koreliacija<br />

tarp augalø skaièiaus kvadratiniame metre <strong>ir</strong> sausøjø medþiagø kiekio agurkø lapuose<br />

(r = - 0,87 (‘Mandy’ F 1<br />

), r = - 0,98 (‘Componist’ F 1<br />

). Taip pat stipri neigiama<br />

koreliacija gauta tarp sausøjø medþiagø kiekio agurkø lapuose <strong>ir</strong> derliaus (r = - 0,96<br />

abiejø hibridø). Didëjant augalø skaièiui kvadratiniame metre <strong>ir</strong> augalø derliui, maþëja<br />

sausøjø medþiagø kiekis augalø lapuose. Taèiau gauta stipri teigiama koreliacija tarp<br />

augalø skaièiaus kvadratiniame metre <strong>ir</strong> derliaus (r = 0,97 (‘Mandy’ F 1<br />

), r = 0,99<br />

(‘Componist’ F 1<br />

), t. y. agurkø derlius priklauso nuo augalø skaièiaus kvadratiniame<br />

metre.<br />

Tyrimø duomenimis, didinant augalø skaièiø kvadratiniame metre, didëja suminis<br />

agurkø derlius bei fotosintezës intensyvumas augalø lapuose. Fotosintezës pigmentø<br />

kiekis augalø lapuose kinta neþymiai, taèiau sausøjø medþiagø kiekis juose<br />

maþëja.<br />

Iðvados. 1. Pavasará auginamø agurkø sodinimo tankumas turi átakos derliaus<br />

ankstyvumui <strong>ir</strong> suminiam derliui. Agurkai, pasodinti 2,6 aug./m 2 tankumu, duoda<br />

didþiausià ankstyvàjá derliø, jø suminis derlius taip pat didþiausias.<br />

2. Agurkø sodinimo tankumas neturi didelës átakos fotosintezës pigmentams<br />

augalø lapuose.<br />

3. Agurkø, pasodintø 2,3 aug./m 2 tankumu, lapuose fotosintezë vyko intensyviausiai.<br />

4. Reèiausiai pasodinti agurkai – 2 aug./m 2 – lapuose sukaupia daugiausia sausøjø<br />

medþiagø. Didëjant augalø skaièiui kvadratiniame metre, maþëja sausøjø medþiagø<br />

kiekis augalø lapuose (r = - 0,87 (‘Mandy’ F 1<br />

), r = - 0,98 (‘Componist’ F 1<br />

).<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Bakker J. C., van de Vooren J. Plant densities and training systems at greenhouse<br />

cucumber // Acta Hort. 1985. N 156. P. 43–48.<br />

2. Echevarrîa P. H., Castro A. R. Influence of different plant densities on the yield<br />

and quality of greenhouse-grown cucumbers grafted on shintoza (CUCURBITA MAXIMA<br />

X CUCURBITA MOSCHATA) // Acta Hort. 2002. N 588. P. 63–67.<br />

3. El-Aidy F. The effect of planting date, density, variety and shade on production of<br />

cucumber under tunnels // Acta Hort. 1991. N 287. P. 281–288.<br />

4. El-Aidy F., Moustafa S. A. Effect of plant density and fertilizer ratio on growth and<br />

yield of cucumber grown under plastic tunnels // Acta Hort. 1978. N 84. P. 73–78.<br />

5. Espinola H. N. R., Andriolo J. L., Bartz H. R. Dry matter accumulation and distribution<br />

of pickling cucumber plants under three mineral nutrient levels // Cienc. Rural. 2001.<br />

Vol. 31. N 3. P. 387–392.<br />

292


6. De Resende G. M, Flori J. E. Effect of plant spacing on the yield and quality of<br />

pickling cucumber cultivars // Hortic. Bras. 2004. Vol. 22. N 1. P. 117–120.<br />

7. Gomez M. D., Baille A., Gonzalez-Real M. M., Mercader J. M. Dry matter partitioning<br />

of greenhouse cucumber crops as affected by fruit load // Acta Hort. 2003. N 614.<br />

P. 573–578.<br />

8. Hand D. W., Clark G., Hannah M. A., Tornley J. H. M., Wilson J. W. Measuring the<br />

canopy net photosynthesis of glasshouse crops // Journal of Experimental Botany. 1992.<br />

Vol. 43. N 3. P. 375–381.<br />

9. Heuvelink E., Marcelis L. F. M. Dry matter distribution in tomato and cucumber //<br />

Acta Hort. 1989. N 260. P. 149–180.<br />

10. Yilmaz E., Gebologlu N. A Research on growing of cucumber (CUCUMIS SATI-<br />

VUS L.) and squash (CUCURBITA PEPO L.) as second crop // Acta Hort. 2002. N 579.<br />

P. 307–312.<br />

11. Liebig H.-.P. Physiological and economical aspects of cucumber crop density //<br />

Acta Hort. 1981. N 118. P. 149–164.<br />

12. Ottosson L., Hansson T. Cultivation of greenhouse cucumber in Sweden // Acta<br />

Hort. 1981. N 118. P. 31–40.<br />

13. Papadopoulos A. P., Hao. X Effects of supplemental lighting and cover materials<br />

on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse<br />

cucumber // Scientia Horticulturae. 1999. N 80. P. 1–18.<br />

14. Papadopoulos A. P. Growing greenhouse seedless cucumbers in soil and in<br />

soilless media. Agriculture and Agri-Food Publication 1902E. 1994. 126 pp.<br />

15. Peil R. M., López-Gãlvez J. Dry-matter partitioning as a determinant of greenhouse<br />

fruit vegetable crops production // R.bras. Agrociência. 2005. Vol. 11. N 1. P. 5–11.<br />

16. Peil R. M., López-Gãlvez J. Fruit growth and biomass allocation to the fruits in<br />

cucumber: effect of plant density and arrangement // Acta Hort. 2002. N 588. P. 75–80<br />

17. Schvambach J. L., Andriolo J. L., Helwein A. B. Dry matter accumulation and<br />

partitioning of picling cucumber plants under different plant densities // Ciencia Rural.<br />

2002. Vol. 32. N1. P. 35–41.<br />

18. Tarakanovas P., Raudonius S. Agronominiø tyrimø duomenø statistinë analizë<br />

taikant kompiuterines programas ANOVA, STAT, SPLIT-PLOT ið paketo SELEKCIJA <strong>ir</strong><br />

IRRISTAT. Akademija, 2003. 56 p.<br />

19. Tornley J. H. M., Hand D. W., Wilson J. W. Modelling light absorption and<br />

canopy net photosynthesis of glasshouse row crops and application to cucumber //<br />

Journal of Experimental Botany. 1992. Vol. 43. N 3. P. 383–391.<br />

20. Wettstein D. Chlorophyll Letale und der submikroskopishe Formweschsel der<br />

Plastiden // Experimental cell research. 1957. Vol. 12. 427 p.<br />

21. Îâîùåâîäñòâî çàùèùåííîãî ãðóíòà / Ïîä ðåä. Â. À. Áðûçãàëîâà. Ìîñêâà:<br />

Êîëîñ, 1995. 351 ñ.<br />

22. Ñåìè÷åâ Â. Í. Ñîäåðæàíèå ïèãìåíòîâ â ëèñòüÿõ îãóðöîâ è òîìàòîâ ïðè<br />

âûðàùèâàíèè â ðàçëè÷íûõ êóëüòèâàöèîííûõ ñîîðóæåíèÿõ // Òð. ïî ïðèêë.<br />

áîòàíèêå, ãåíåòèêå è ñåëåêöèè. 1970. 42(3).Ñ. 149–156.<br />

293


SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(3).<br />

PHYSIOLOGICAL ASPECTS OF CUCUMBER<br />

CROP DENSITY<br />

J. Jankauskienë, A. Brazaitytë<br />

Summary<br />

In 2003-2005 two cucumber hybrids were grown in mineral rockwool in greenhouses<br />

covered with double polymeric film (sides covered with plastics sheets) at<br />

the Lithuanian Horticulture Institute and the influence of plant density on cucumber<br />

hybrid photosynthesis system, yield and quality was investigated. There were grown<br />

cucumber hybrids ‘Mandy’and ‘Componist’. Cucumbers were planted at different<br />

densities: 2.0, 2.3, 2.6 plant/m 2 . During vegetation it was established the amount of<br />

dry matter and pigments in plant leaves, the intensity of photosynthesis was measured.<br />

The amount of pigments and dry matter, photosynthesis intensity in cucumber<br />

leaves depends both on hybrid and plant density. Plant density influences the earliness<br />

of the investigated cucumber hybrids, also affects the volume of yield. The<br />

yield of cucumber hybrids grown at a density 2.6 plant/m 2 is bigger that this of<br />

cucumber hybrids grown at a density 2.0 and 2.3 plant/m 2 . The average fruit mass in<br />

all variants was the same.<br />

Key words: cucumber, dry matter, hybrid, yield, photosynthesis intensity, pigments,<br />

plant density.<br />

294


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF HORTICULTURE<br />

AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RESPONSE OF SEVERAL CULTIVARS OF SOWING PEA<br />

TO FUNGICIDE-INSECTICIDE DRESSINGS AND<br />

HERBICIDES<br />

Beata SZWEJKOWSKA*, Pavelas DUCHOVSKIS**<br />

*Cha<strong>ir</strong> of Plant Production, University of Warmia and Mazury,<br />

Oczapowskiego 8, 10-719 Olsztyn, Poland. E-mail b-szw@gazeta.pl<br />

**Lithuanian Institute of Horticulture, Kauno 30 LT-54333 Babtai, Kaunas<br />

distr., Lithuania. E-mail p.duchovskis@lsdi.ly<br />

The effect of fungicide-insecticide dressings and herbicides on the development<br />

of plants, degree of injury caused by diseases and pests, as well as susceptibility<br />

to weed infestation were estimated in three-year experiment carried out in the<br />

years 2004–2006. In addition, it was estimated to what degree the chemical protection<br />

effected the number of pods on the plant, which is the main component of the<br />

crop. The investigation has shown a positive response of cultivars to the dressings<br />

applied as no negative effects on germination, emergence and development were<br />

observed during the whole vegetation period. The effectiveness of dressings against<br />

diseases and pests was high. The Super Homai insecticide dressing protected plants<br />

against diseases and pests most effectively. Good results were also recorded for<br />

herbicides, the application of which was justifiable because it efficiently reduced the<br />

level of weed infestation, and this allowed obtaining the highest number of pods both<br />

per fruit-bearing node and per plant.<br />

Key words: diseases, dressings, growing technology, pea, pests, cultivar.<br />

Introduction. The pea yield is determined not only by genetic properties of<br />

cultivars, climatic conditions or fertilization, but also by other agrotechnical factors,<br />

such as complex protection against diseases, pests or weeds, since the specific<br />

developmental rhythm of leguminous plants, including pea, causes a lot of problems<br />

during cultivation. The period of a slow rate of growth in the phase of seedling and<br />

leaf rosette is particularly unfavourable because plants in this time not only get weedy<br />

easily but they are more susceptible and exposed to diseases and pests, as well<br />

(Szwejda, 1992; Cantot et. al., 1993; Mrówczyñski and Wachowiak, 2000; Wnuk<br />

and Poboýniak, 2000; Borowiecki and Ksiæýak, 2001). Some authors, for example,<br />

Fiedorow and Weber (1996), Horoszkiewicz and Filoda (2000), stress a high influence<br />

of the course of inoculation by Rhizobium bacteria, therefore, they claim that<br />

an application of simple plant dressing measure is very important. Podleúny et al.<br />

295


(1993), Adamczewski (1988), Rychcik (2005) also indicate that leguminous plants,<br />

including pea, are characterized by high susceptibility to severe weed infestation,<br />

which is connected with the<strong>ir</strong> slow growth and development in the initial period<br />

following sowing and emergence. Traditional methods of weed control, consisting<br />

mainly in harrowing, are not always effective, therefore herbicides, which protect<br />

plants against excessive weed infestation more effectively, are in common use.<br />

The aim of this study was to determine to what degree applied seed dressings<br />

protect plants against injury by diseases and pests, and applied herbicides against<br />

weeds. In addition, the effect of chemical agents on the development of plants and<br />

formation of pods in the fruit-bearing node and plant was estimated.<br />

Methods. The investigation was carried out within the framework of 3-year<br />

field experiment established in the fields of the experimental centre at Ba³cyny near<br />

Ostróda in the years 2004–2006.<br />

The following seed dressings were used, including fungicides:<br />

– Funaben T,<br />

– Sarfun T 450 FS<br />

and insecticides:<br />

– Super Homai 70 DS (+ with action against pathogens),<br />

– Gaucho 350 FS.<br />

The f<strong>ir</strong>st three dressings were used in a dose of 4 g per 1 kg of seeds, while<br />

Gaucho 350 FS dressing – in the amount of 4 ml per 1 kg of seeds. They were put<br />

onto pea seeds of 14% moisture just before sowing.<br />

Basagran 600 SL (in a dose of 2 kg/ha) and Afalon 50 WP (1.5 l/ha) were used<br />

against weeds after emergence. The weed infestation of plants was estimated with<br />

the botanical-frame method, determining the number and botanical composition of<br />

weeds per 1 m 2 in each plot.<br />

The phytopathological evaluation of plants for damages by pests was carried<br />

out in the phase of a filled pod according to the methodology of cultivar economic<br />

value (CEV) study utilized by the Main Research Centre for Cultivars of Cultivated<br />

Plants (MRCCCP) in S³upia Wielka in 9-degree scale (9 – the best, most favourable<br />

state, and 1 – the worst, least favourable state).<br />

The phytopathological evaluation of the degree of plant injury with diseases<br />

was carried out in the phase of filled pod using a 5-degree Hillstrand and Auld scale,<br />

where: 1° means below 2% of the injured area, 2° – 3–10% of the injured area, 3° –<br />

11–30% of the injured area, 4° – 31–50% of the injured area, 5° – over 50% of the<br />

injured area.<br />

Four sowing pea cultivars were involved in the experiment: ‘Brylant’, ‘Wenus’,<br />

‘Marych’ and ‘Eureka’.<br />

The field trial was performed in a split-plot design, in four replications. The<br />

experimental plot area was 14.4 m 2 .<br />

Results. It has been found out that the dynamics of germination and emergence<br />

of the seeds of treated pea was similar to the dynamics of plants grown in control<br />

plots. Emergences were good and steady and no harmful effects of the application<br />

of dressings on the course of germination and intensity and punctuality of emergence<br />

were recorded in any of the cultivars. It was only in the objects treated with<br />

296


Gaucho 350 FS preparation that a slight delay of emergence was recorded in ‘Wenus’<br />

cultivar. In the subsequent phases of development, plants in treated objects<br />

developed faster and better than those grown in control plots (the latter were generally<br />

lower in particular phases).<br />

The phytopathological evaluation of plant health (injuries by diseases and pests)<br />

during the whole period of vegetation has shown that the most effective protection<br />

against injury by both pests and diseases was provided by Super Homai seed dressing<br />

(Tables 1 and 2). Thus, the effectiveness of the dressing and its additional<br />

function of protection against diseases were conf<strong>ir</strong>med.<br />

In the objects protected with seed dressings, the state of injury by diseases –<br />

mainly ascochyta leaf spot, root rot, pea rust and mildew, did not exceed the scale of<br />

2°, while in the objects without seed dressing injury by diseases ranged in the scale<br />

from 4° to 5°.<br />

The degree of injuries caused by pests (pea moth, pea weevil, striped pea leaf<br />

weevil and pea aphid) ranged in the scale 6.5°–8.9°, and in the control objects – in<br />

the scale 1°–4.5.<br />

Table 1. Insect infestation of pea edible cultivars (in 9° scale)<br />

1 lentelë. Kenkëjø paplitimas þ<strong>ir</strong>niø pasëlyje (pagal 9 balø skalæ).<br />

Baùcyny, 2004–2006 m.<br />

A. Pulse cultivars / Valgomøjø þ<strong>ir</strong>niø veislës<br />

‘Brylant’<br />

‘Wenus’<br />

agrophages / kenkëjai<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Acyrthosiphon<br />

pisum<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Acyrthosiphon<br />

pisum<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

2.0 3.0 2.5 1.5 2.0 3.0 3.0 2.0 2.4<br />

Sëklos neapdorotos<br />

Funaben T 6.3 6.1 6.2 6.1 6.0 6.2 6.0 6.1 6.1<br />

Sarfun T 6.9 6.7 7.0 7.0 6.5 6.9 6.9 7.0 6.9<br />

Gaucho FS 6.2 6.3 6.0 6.2 6.1 6.2 6.0 6.2 6.2<br />

Super Homai 8.0 7.7 7.8 8.0 7.2 7.5 7.7 7.8 7.7<br />

Mean / Vidurkis 5.9 6.0 5.9 5.8 5.6 6.0 5.9 5.8<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences)<br />

R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

297


Seed dressings chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

B. Fodder cultivars / Paðariniø þ<strong>ir</strong>niø veislës<br />

Laspeyresia<br />

Nigricana<br />

‘Marych’<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

agrophages / kenkëjai<br />

‘Eureka’<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

Aphidina<br />

Laspeyresia<br />

Nigricana<br />

Burchidae<br />

Sitona<br />

Lineatus<br />

Table. 2. Occurrence of diseases (5°)<br />

2 lentelë. Ligø paplitimas þ<strong>ir</strong>niø pasëlyje (pagal 5 balø skalæ)<br />

A. Pulse cultivars / Valgomøjø þ<strong>ir</strong>niø veislës<br />

Aphidina<br />

Mean<br />

Vidurkis<br />

4.0 4.5 4.0 4.5 4.0 4.5 4.0 3.0 4.1<br />

Funaben T 6.4 6.3 6.5 6.3 6.5 6.2 6.2 6.3 6.3<br />

Sarfun T 6.6 6.4 6.5 6.5 6.5 6.2 6.4 6.5 6.5<br />

Gaucho FS 6.0 6.4 6.4 6.0 6.0 6.2 6.0 6.3 6.2<br />

Super Homai 7.9 8.0 8.1 8.0 8.0 7.9 7.9 7.8 7.9<br />

Mean / Vidurkis 6.2 6.3 5.9 6.3 6.2 6.2 6.1 6.0<br />

‘Brylant’<br />

‘Wenus’<br />

Seed dressings chemicals<br />

Sëklø Sëklø apdorojimas cheminiais<br />

preparatais preparatais<br />

Ascochyta<br />

Fusarium<br />

Uromyces<br />

pisi<br />

Diseases / Ligos<br />

Erysiphe<br />

pisi<br />

Askochytoza<br />

Fuzarioza<br />

Uromyces<br />

pisi<br />

Erysiphe<br />

pisi<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

4.1 5.0 3.0 3.0 5.0 4.3 3.0 3.0 3.8<br />

Funaben T 1.0 1.0 0 1.0 1.0 0.6 0 0 0.6<br />

Sarfun T 1.2 0.5 0 1.0 1.4 1.0 0 0 0.6<br />

Gaucho FS 1.5 1.0 0 1.3 1.2 1.3 0 0 0.8<br />

Super Homai 1.0 0 0 0 0.5 0.7 0 0 0.3<br />

Mean / Vidurkis 1.8 1.5 0.6 1.3 1.8 1.7 0.6 0.6<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

298


B. Fodder cultivars / Paðariniø þ<strong>ir</strong>niø veislës<br />

‘Brylant’<br />

‘Wenus’<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Ascochyta<br />

Fusarium<br />

Uromyces<br />

pisi<br />

Diseases / Ligos<br />

Erysiphe<br />

pisi<br />

Askochytoza<br />

Fuzarioza<br />

Uromyces<br />

pisi<br />

Erysiphe<br />

pisi<br />

Mean<br />

Vidurkis<br />

No seed dressing<br />

chemicals<br />

Sëklos neapdorotos<br />

4.1 5.0 3.0 3.0 5.0 4.3 3.0 3.0 3.8<br />

Funaben T 1.0 1.0 0 1.0 1.0 0.6 0 0 0.6<br />

Sarfun T 1.2 0.5 0 1.0 1.4 1.0 0 0 0.6<br />

Gaucho FS 1.5 1.0 0 1.3 1.2 1.3 0 0 0.8<br />

Super Homai 1.0 0 0 0 0.5 0.7 0 0 0.3<br />

Mean / Vidurkis 1.8 1.5 0.6 1.3 1.8 1.7 0.6 0.6<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant differences) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

The highest intensity of diseases and pests was recorded in the f<strong>ir</strong>st year of<br />

investigation (2004). According to the phytopathological evaluation, the harmfulness<br />

threshold was exceeded in the control objects in every year of the investigation,<br />

and the intensification of the occurrence of pests amounted to over 50%. On the<br />

other hand, in the chemically protected objects the degree of injury was relatively<br />

low apart from edible cultivars (‘Wenus’, ‘Brylant’), which were more exposed to<br />

injury by Laspeyresia nigricana and Sitona lineatus than fodder cultivars. This fact<br />

could also be observed in the control objects (Table 1 and 2).<br />

The application of seed dressings protected plants efficiently not only in the<br />

f<strong>ir</strong>st weeks of growth and development but also during the whole period of vegetation<br />

and effectively contributed to a larger number of pods in a fruit-bearing node<br />

and thus on a plant.<br />

Positive results were also obtained by applying herbicides, which had a positive<br />

effect on the growth and development of plants and the number of pods per plant.<br />

Research has shown that the largest number of pods per fruit-bearing node and the<br />

whole plant was recorded in the objects were Basagran and Afalon herbicides were<br />

used. Herbicides reduced the development of weeds effectively as they were not<br />

recorded in any of the pea cultivars after the emergence. On the other hand, a repeated<br />

weed classification before harvest showed that the highest density of weeds in<br />

all pea cultivars occurred in the control objects without herbicides and was on average<br />

13 times higher in comparison with the objects protected with herbicides (Tables<br />

3 and 4).<br />

299


Cultivar ‘Brylant’, where the occurrence of 0.7 weed items per 1 m 2 of plot<br />

area was recorded, proved to be the most competitive cultivar in relation to weeds,<br />

and ‘Eureka’ turned out to be the least competitive one (on the average 1.5 items of<br />

weeds/1m 2 ).<br />

Table 3. Number of weeds (units m -2 ). Baùcyny, 2003–2006<br />

3 lentelë. Piktþoliø skaièius þ<strong>ir</strong>niø pasëlyje, vnt. m –2 . Baùcyny, 2003–2006 m.<br />

Number of weeds,units m -2<br />

Piktþoliø skaièius, vnt. m. -2<br />

mechanical protection of chemical protection of<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

plants from weeds<br />

mechaninë augalø apsauga<br />

nuo piktþoliø<br />

plants from weeds<br />

cheminë augalø apsauga nuo<br />

piktþoliø<br />

Mean<br />

Vidurkis<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

No seed dressing chemicals<br />

(after germination)<br />

Sëklos po sudygimo neapdorotos<br />

Afalon + Basagran (before<br />

harvesting)<br />

(iki derliaus nuëmimo)<br />

No seed dressing chemical (after<br />

germination)<br />

Sëklos po sudygimo neapdorotos<br />

Afalon + Basagran (before<br />

harvesting)<br />

(iki derliaus nuëmimo)<br />

6 8 7 9 - - - - 7.5<br />

- - - - 0 0 0 0 0<br />

18 19 20 21 - - - - 19.5<br />

- - - - 0.7 1.0 1.3 1.5 1.1<br />

LSD (p = 0.05) for: sort of protection of plants c. to w. 9.8; cultivar – n.s., interaction of the sort<br />

of plant protection c. to w.: cultivar r.n. – n.s. (not significant differences) / R 05<br />

: ryðys tarp augalø<br />

apsaugos bûdø – 9,8, tarp veisliø – neesminis, tarp augalø apsaugos bûdø <strong>ir</strong> veisliø sàveikos –<br />

neesminis<br />

300


Table. 4. Number of pods per plant,units m -2 . Baùcyny, 2003–2006<br />

4 lentelë. Ankðèiø skaièius ant augalo, vnt. m -2 . Baùcyny, 2003–2006 m.<br />

Number of weeds, units m -2<br />

Piktþoliø skaièius, vnt m -2<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

mechanical protection of<br />

plants from weeds<br />

mechaninë augalø apsauga<br />

nuo piktþoliø<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

chemical protection of<br />

plants from weeds<br />

cheminë augalø apsauga nuo<br />

piktþoliø<br />

‘Brylant’<br />

‘Wenus’<br />

‘Marych’<br />

‘Eureka’<br />

Mean<br />

Vidurkis<br />

No seed dressing chemicals<br />

Sëklos neapdorotos<br />

7 7 10 8 - - - - 8.0<br />

Funaben T - - - - 12 12 13 12 12.0<br />

Sarfun T - - - - 12 12 13 12 12.0<br />

Gaucho FS - - - - 12 12 13 11 12.0<br />

Super Homai - - - - 13 13 16 14 14.0<br />

Mean / Vidurkis 7 7 9 8 12.3 12.3 13.8 12.3<br />

LSD (p = 0.05) for: seed dressing chemicals – n.s.; cultivar – n.s.; interaction of seed dressing<br />

chemicals and cultivar – n.s. (not significant difference) / R 05<br />

: ryðys tarp beicø, tarp veisliø, tarp<br />

beicø <strong>ir</strong> veisliø sàveikos neesminis<br />

Discussion. Nowacki and Bujalski (1996), Cantot (1986), Cantot et al. (1993),<br />

Tylkowska (2000), Wiatr (2003–2006), Jasiñska and Kotecki (1999) estimated in<br />

the<strong>ir</strong> investigations concerning pea protection that loss caused by diseases and pests<br />

during the vegetation period – particularly with unfavourable climatic conditions –<br />

may amount even to 50% of seed yield and more. This is conf<strong>ir</strong>med by research by<br />

Chodulska-Filipowicz (1997) on broad bean cropping, which showed that the loss in<br />

the yield resulting from no plant protection against pests amounted to as much as<br />

70%.<br />

This investigation also conf<strong>ir</strong>ms this thesis because in the objects not protected<br />

chemically the phytopathological estimation of total injuries by diseases and pests<br />

amounted to over 70%. In addition, the lowest number of pods per plant was recorded<br />

in all cultivars in every year of the study, which determined the amount of the<br />

yields obtained.<br />

Jædryczka et al. (1991), Horoszkiewicz and Filoda (2000), Mrówczyñski and<br />

Wachowiak (2000), Mrówczyñski and Sobkowiak (1998), Matùosz and Kaniuczak<br />

(2003), Majchrzak et al. (1998) indicate that pea is very sensitive to diseases and<br />

pests occurring during plant vegetation, and a treatment of seeds with chemical<br />

agents before sowing is one of the simplest measures, which should be obligatorily<br />

used in modern agrotechnique of this plant. However, Kotliñski (1999) claims that<br />

under certain conditions some dressings can show phytotoxic action in relation to<br />

seeds. This author stresses the fact that this occurs most often in the case of com-<br />

301


ined application of dressings, which then may show synergistic action. Fungicideinsecticide<br />

dressings used in this experiment reduced the development of pathogens<br />

and pests effectively both during germination and emergence and at further stages<br />

of growth and development. Contrary to the findings of Kotliñski (1999), who indicated<br />

a number of dressings, including Funaben T and Gaucho 350 FS, as those,<br />

which negatively affect germination and emergence, the present investigation has<br />

not conf<strong>ir</strong>med this fact. Apart from a slight delay of emergence only in cultivar<br />

‘Wenus’ in the plots, in which Gaucho 350 FS dressing was used, no negative<br />

impact was observed in other cases. In the objects with dressings, plants developed<br />

properly and set more pods in the fruit-bearing node and, at the same time, on a<br />

plant.<br />

There are varied opinions in the literature about the effects caused by feeding<br />

pests (striped pea leaf weevil, pea moth, pea weevil or aphids) and the involved loss.<br />

Most authors stress the fact that an intensification of negative effects of pests’<br />

feeding depends on vegetation conditions in particular years of cultivation, and the<br />

loss caused by them amounts to 15–80% of potential yields. According to the research<br />

of Cantot et al. (1993) the loss in seeds caused only by striped pea leaf weevil<br />

amounted to over 0.1 t/ha. However, in Nelsen’s (1990) investigation, due to an<br />

intensification of striped pea leaf weevil, the loss in yields reached 28% and was the<br />

effect of a reduced number of pods per plant. In this research, the total loss caused<br />

by diseases and pests in control objects amounted on the average to over 70%. The<br />

number of pods in these objects was the lowest, and 30–35% lower than in the<br />

protected objects.<br />

Ciesielski and Wachowiak (1993), while studying the effectiveness of 26 insecticides<br />

used for protecting pea and faba bean, found out that the<strong>ir</strong> effectiveness was<br />

high and amounted to over 90% of possible loss. This investigation indicates that the<br />

effectiveness of insecticides, including Super Homai dressings in particular, in protecting<br />

against pests amounted to over 95% in all the years of investigation.<br />

Pea is characterized by its susceptibility to intense weed infestation. Podleúny<br />

et al. (1993), Adamczewski et al. (1988), Rychcik (2005) stress the fact that the<br />

effectiveness of weed-killing action of herbicides, although dependent on soil and<br />

climatic conditions and the technique and time of the treatment, is very high and<br />

necessary in pea agrotechnique. In the study by Anyszka et al. (1999), the effectiveness<br />

of applied herbicides (Basagran 600 SL, Barox 460 SL) was high, the weed<br />

reduction being estimated within the range 93.4–100%. In this investigation, the<br />

effectiveness of applied herbicides (Basagran 600 SL and Afalon 50 WP) was evaluated<br />

at 100% after the emergence and over 90% before harvest. It is noteworthy<br />

that the effectiveness of herbicides used in weed control in the experiment was very<br />

high particularly in the last two years because drought also contributed to the reduction<br />

of the development of weeds.<br />

To sum up, it should be emphasized that all above-mentioned authors stress the<br />

fact that modern protection consists in taking advantage of all available methods and<br />

ways of disease, pest and weed control, starting with an introduction of resistant<br />

cultivars to cultivation, treatment of sowing material, and ending with biological and<br />

chemical methods of plant protection.<br />

302


Conclusions. 1. The analysis of the effect of fungicide and insecticide dressing<br />

application on the growth and development of sowing pea allowed drawing the<br />

following conclusions:<br />

2. The application of both fungicide and insecticide dressings reduced the occurrence<br />

of diseases and pests effectively. Super Homai insecticide dressing protected<br />

plants against diseases and pests most effectively.<br />

3. The application of herbicides, which enabled even a 100% elimination of<br />

weeds appearing in the pea emergence phase, and a 90–95% elimination of weeds in<br />

the phase before harvest, was particularly effective.<br />

4. The application of dressings and herbicides did not cause any noticeable side<br />

effects in the growth and development of plants, but contributed effectively to the<br />

increase in the number of pods per plant, which is the main element of the seed yield.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Adamczewski K. Zalety i wady chemicznego zwalczania chwastów / Mat. XXVIII<br />

Sesji Nauk. IOR. Cz. I. Poznañ. 1988. S. 56–69.<br />

2. Anyszka Z. Zastosowanie herbicydów Barox 460 SL i Basagran 600 SL metodà dawek<br />

dzielonych w uprawie grochu zielonego // Post. w Ochr. Roúl. 1999. T. 39(2). S. 665–667.<br />

3. Borowiecki J., Ksiæýak J. Stan badañ nad oprzædzikiem prægowanym (Sitona lineatus)<br />

– szkodnikiem grochu // Post. Nauk Roln. 2001. T. 3. S. 99–110.<br />

4. Cantot P. Quantification des populations de Sitona lineatus L. Et de leurs attaques<br />

sur pois proteagineux (Pisum sativum L.) // Agronomie. 1986. Vol. 6(5). P. 481–486.<br />

5. Cantot P., Taupin P., Hacquet J. Maitriser le sitone du pois // Bulletin semences.<br />

1993. Vol. 122. P. 34–37.<br />

6. Ciesielski F., Wachowiak H. Badania nad ocenà przydatnoúci nowych preparatów<br />

w zwalczaniu szkodników bobiku w latach 1989–1991 // Biul. Nauk ART. 1993. T. 1(12).<br />

S. 267–272.<br />

7. Chodulska – Filipowicz L. Wartoúã siewna nasion i plonowanie kilku odmian bobu<br />

(Vicia faba L. var. Major) uprawianych bez ochrony chemicznej // Zesz. Prob. Pos. Nauk<br />

Roln. 1997. Z. 446. S. 463–466.<br />

8. Fiedorow Z., Weber Z. Choroby roúlin uprawnych. W-Wa, 1996. S. 110–133.<br />

9. Horoszkiewicz J., Filoda G. Choroby grzybowe roúlin stràczkowych – objawy i<br />

etiologia. IOR, Poznañ, 2000.<br />

10. Jasiñska Z., Kotecki A. Szczegóùowa Uprawa Roúlin. Tom II, Roúliny stràczkowe.<br />

Wrocùaw, 1999. S. 46–62.<br />

11. Jædryczka M., Lenartowska E., Frence l I. Evaluation of pea (Pisum sativum L)<br />

resistance to fusarioses // Phytopath. Polonoca. 1991. Vol. 2(XIV). S. 95–101.<br />

12. Kotliñski S. Porównanie kilku zestawów zapraw insektycydowo-fungicydowych<br />

na wschody i masæ siewek grochu w zaleýnoúci od wilgotnoúcizaprawianych nasion,<br />

terminu wysiewu oraz temperatury w czsie wschodów // Progr. In Protec. / Post. w Ochr.<br />

Roúl. 1999. Vol. 39(2). S. 906–914.<br />

13. Majchrzak B., Kurowski T. P., Czajka W. Reakcja grochu na grzyby chorobotwórcze<br />

w zróýnicowanych warunkach agrotechnicznych // Zesz. Nauk. AR Kraków, 1998. T. 333.<br />

S. 191–195.<br />

303


14. Matùosz I., Kaniuczak Z. Wraýliwoúã róýnych odmian grochu na uszkodzenia<br />

powodowane przez pachówkæ stràkóweczkæ // Post. w Ochr. Roúl. 2003. T. 43(2).<br />

S. 803–805.<br />

15. Mrówczyñski M., Sobkowiak M. Integrowane programy ochrony grochu przed<br />

szkodnikami // Ochr. Roúl. 1998. T. 42(8). S. 15–19.<br />

16. Mrówczyñski M., Wachowiak H. Szkodniki roúlin stràczkowych wystæpujàce w<br />

Polsce – ich rozpoznanie i zwalczanie. Ins. Ochr. Roúlin, Poznañ, 2000.<br />

17. Nelsen B. Yield response of Vicia faba In relation to infestation levels of Sitona<br />

lineatus L. // J. Appl. Ent. 1990. Vol. 110. P. 398–407.<br />

18. Nowacki J., Bujalski M. Szkodniki Roúlin Uprawnych. 1996. S. 52–62.<br />

19. Podleúny J., Lenartowicz W., Ksiæýak J. Przydatnoúã niektórych herbicydów do<br />

zwalczania chwastów w zasiewach grochu // Fragm. Agron.1993. T. 4(40). S. 77–179.<br />

20. Rychcik B. Wpùyw nastæpstwa roúlin i herbicydu na zachwaszczenie grochu<br />

siewnego // Frag. Agron. 2005. T. 2(86). S. 190–196.<br />

21. Szwejda J. Atrakcyjnoúã odmian i zwalczanie szkodników wystæpujàcych w grochu<br />

(Pisum sativum L) // Biul. Warz.1992. T. 39. S. 129–137.<br />

22. Wiatr K. Roúliny stràczkowe (Synteza wyników doúwiadczeñ odmianowych rejestru<br />

COBORU). Sùupia Wielka, 2003–2006, Z. 5 i 7.<br />

23. Wnuk A., Poboýniak M. Szkodliwoúã pachówki stràkóweczki (Laspeyresianigricana<br />

Steph.) i stràkowca grochowego (Bruchus pisorum L.) na róýnych odmianach grochu<br />

// Zesz. Nauk. AR Kraków, 2000. T. 71. S. 367–371.<br />

24. Wyniki PDO (porejestrowych doúwiadczeñ odmianowych) COBORU (Centralny<br />

Oúrodek Badania Odmian Roúlin Uprawnych). Sùupia Wielka, 2003–2006.<br />

<strong>25</strong>. Zalecenia Ochrony Roúlin na lata 2003–2006. Instytut Ochrony Roúlin w Poznaniu.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

ÁVAIRIØ VEISLIØ ÞIRNIØ REAKCIJA Á BEICAVIMÀ<br />

FUNGICIDAIS IR INSEKTICIDAIS BEI Á HERBICIDUS<br />

B. Szwejkowska, P. Duchovskis<br />

Santrauka<br />

2004–2006 m. atlikti áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø beicavimo insekticidais <strong>ir</strong> fungicidais<br />

efektyvumo ligø <strong>ir</strong> kenkëjø paplitimui bei herbicidø poveikio piktþolëms lauko bandymai.<br />

Nustatyta, kad cheminiai augalø apsaugos preparatai veikia ankðèiø formavimàsi<br />

ant augalø, kurie yra esminë derliaus sudedamoji dalis. T<strong>ir</strong>tø veisliø þ<strong>ir</strong>niai teigiamai<br />

reagavo á apdorojimà cheminiais apreparatais vegetacijos metu, nenustatyta esminio<br />

neigiamo poveikio augalø dygimui, augimui <strong>ir</strong> vystymuisi. Pesticidø panaudojimas<br />

buvo labai efektyvus.<br />

Reikðminiai þodþiai: auginimo technologija, beicavimas, kenkëjai, ligos, veislës,<br />

þ<strong>ir</strong>niai.<br />

304


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

EFFECT OF CARBOXYLIC ACID HYDRAZID<br />

DERIVATIVES ON THE ADVENTITIOUS ROOTS<br />

FORMATION AND PHOTOSYNTHETIC ELECTRON<br />

TRANSPORT IN PHASEOLUS VULGARIS<br />

V. A. ÐLAPAKAUSKAS, E. KAZLAUSKAS AND S. GLIOÞERIS<br />

Lithuanian University of Agriculture, Department of Botany, Studentø str. 11,<br />

LT-53067, Akademija, Kaunas distr.<br />

The influence of carboxylic acid hydrazid derivatives (CAHD) on bean (Phaseolus<br />

vulgaris L.) adventitious root formation and photosynthetic electron transport<br />

was investigated. These plant growth regulators were applied on bean hypocotyls<br />

cuttings and the dynamics of adventitious root formation was observed. CAHD influence<br />

on photosynthetic apparatus was examined by measuring changes of chlorophyll<br />

fluorescence yield. Results of experiment revealed that chlorophyll fluorescence<br />

parameters qP (photochemical quenching) and ETR (photosynthetic electron<br />

transport rate) at 310 µmol·m -2·s -1 PAR (photosynthetic active radiation) correlated<br />

with adventitious root number (r = 0.77) and was significantly increased after application<br />

of 0.05 mg·l -1 and 0.075 mg·l -1 of st-120 as well as st-119 at 0.10 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 concentrations. Bean cuttings, treated with 0.05 mg·l -1 st-120 showed<br />

the biggest number of adventitious root followed by highest root mass. Growth<br />

regulator st-119 in 0.10 mg·l -1 and 0.<strong>25</strong> mg·l -1 concentrations demonstrated lower<br />

effect than 0.05 mg·l -1 of st-120 but also significantly induced adventitious root<br />

formation. Both CAHD significantly raised qP which represents the actual fraction<br />

of open PSII (II photosystem) reaction centers and ETR that reflects efficiency of<br />

photosynthetic energy conversion and it is closely related with quantum yield of CO 2<br />

fixation. Investigative growth regulators did not markedly increase chlorophyll concentration<br />

in bean leaves.<br />

Key words: growth regulators, chlorophyll fluorescence, common bean, adventitious<br />

roots.<br />

Introduction. Plant growth regulators as well as endogenously synthesized<br />

phytohormones are responsible for many physiological and developmental processes<br />

in plant. Carboxylic acid hydrazid derivatives (CAHD) are synthetic growth regulators,<br />

which are synthesized from b-alanine and hypothetically have a similar<br />

mode of operation as auxins. Results from experiments with Caladium (accomplis-<br />

305


hed in Lithuanian University of Agriculture, Department of Botany) demonstrate that<br />

CAHD had physiological effect like NAA (naphthalene acetic acid) and stimulated<br />

tubercle formation in vitro.<br />

During the recent decade the modes of operation of growth regulating substances<br />

are of the big interest. Accordingly, there were made number of experiments<br />

proving the importance of phytohormones on root formation. At present, it is well<br />

known that lateral and adventitious root initiation is mostly promoted by auxin group<br />

phytohormones as NAA or IAA (Indole-3-acetic acid) (Weigel et al., 1984; Moncousin<br />

et al., 1989). For example, the induction of soybean adventitious roots could be<br />

stimulated by exogenously applied auxins and polyamines (Zin-Huang et al., 1998;<br />

Sagee et al., 1992; Hausman, 1993). There were published also some interesting<br />

studies suggesting that other phytohormones can play an important role in altering<br />

root growth and development (Weathers et al., 2005). As it has been proposed by<br />

Ohkawa et al. (1989), gibberellins can promote growth of ha<strong>ir</strong>y roots in some species,<br />

including Datura innoxia and Artemisia annua (Weathers et al., 2005). Some<br />

authors demonstrated that brassinosteroids participate in the initiation of Arabidopsis<br />

lateral roots and synergistically interact with auxins by affecting its polar transport<br />

and in this hormonal cross-talk mechanism promotes initiation of lateral root<br />

primordial (Fang et al., 2004).<br />

There are numerous reports describing the promoting effect of different phytohormones<br />

on photosynthetic process. Pandey et al. (2000) proposed that in cotton<br />

exogenously applied IAA enhanced RuBPCO (Ribulose-1.5-bisphosphate carboxylase/oxygenase)<br />

activity. BAP (Benzyl amino purine) increased RuBPCO activity under<br />

water logging and draught stresses. Cytokinins together with light promote deetiolation<br />

and play the most important role in plastid development (Parthier, 1979).<br />

Exogenously applied BA (benzyl adenine) or kinetin promotes grana formation and<br />

stacking, chloroplast differentiation and plastid multiplication (Chory et al., 1994;<br />

Synkova et al., 2003). All these changes in photosynthetic apparatus regulated by<br />

phytohormones should be sensitively reflected by measuring chlorophyll fluorescence.<br />

Hence, the fluorometry might be a useful tool in the assessment of the physiological<br />

plant response to different conditions, including exogenously applied plant<br />

growth regulators. For instance, chlorophyll fluorescence parameter as actual efficiency<br />

of PSII photochemistry (ΔF/Fm’) can give a measure of the linear electron<br />

transport rate (ETR) and thus the indication of overall photosynthesis (Maxwell and<br />

Johnson, 2000; Juneau et al., 2005). In addition, this parameter correlates with the<br />

quantum yield of carbon fixation (Φ CO2<br />

). Thus, the chlorophyll fluorescence technique<br />

potentially has many applications in plant production and development programs<br />

as well as assessment of env<strong>ir</strong>onmental stresses. The current understanding of how<br />

changes in chlorophyll fluorescence characteristics pertain to plant physiological<br />

performance have led to a widespread use of chlorophyll measurements in plant<br />

physiological studies (Baker and Rosenqvist, 2004).<br />

The aim of the present study is to investigate the effect of CAHD on Phaseolus<br />

vulgaris adventitious root formation and the leaf photosynthetic performance by<br />

means of the chlorophyll fluorescence technique. Furthermore, we are attempting to<br />

determine if the CAHD have a similar effect as auxin group phytohormones.<br />

306


Materials and methods. Plants. Common beans cv. ‘Vytautas’ (Phaseolus<br />

vulgaris) were grown in soil-vermiculite substratum for two weeks. Before the<br />

treatments with growth regulators (CAHD – st-120 and st-119), 14 days bean hypocotyls<br />

were cut at the upper side of root neck. Prepared cuttings consisted of 8 cm<br />

hypocotyl, cotyledons, epicotyl and two primary leaves. After removing roots, cuttings<br />

were immediately immersed to glasses with solution, containing distilled water<br />

and particular concentration of CAHD. Each variant contained 8 cuttings, experiment<br />

was repeated three times. After 24 hours, cuttings were transferred to distilled<br />

water and kept there till the end of experiment. Water in glass was changed every 24<br />

hours.<br />

Treatments. To discover the most effective concentration of CAHD, there were<br />

made two experimental sets. During the f<strong>ir</strong>st experiment, the widest range of<br />

concentrations was chosen – 5 × 10 -5 , 5 × 10 -4 , 5 × 10 -3 , 0.05, 0.1, 1.0 and 5.0 mg·l -1 of<br />

each CAHD (data not shown). Second experiment was made with the reference to<br />

f<strong>ir</strong>st one by selecting the most effective concentrations, which were split up in smaller<br />

gradient. St-120 were tested in 0.01, 0.02, 0.03, 0.04, 0.05 and 0.075 mg·l -1 , whereas<br />

st-119 in 0.05mg/l, 0.075 mg/l, 0.1 mg/l, 0.<strong>25</strong> mg/l, 0.5 mg/l and 1.0 mg/l concentrations.<br />

Fluorescence measurements. Chlorophyll fluorescence was recorded with portable<br />

fluorometer (PAM-210, Walz, Germany). Chlorophyll fluorescence measurements were<br />

performed on the light adapted beans. For each plant of a variant repetition, two fluorescence<br />

measurements on both leaves in different four places were done. Actinic<br />

PAR was 310 µmol photons·m -2·s -1 , <strong>ir</strong>radiance of day light lamps was 200 µmol photons·m -2·s -1 .<br />

Saturation pulse – red light emitting diode with 3 500 µmol photons·m -2·s -1 PAR density was<br />

applied after 3 min. of actinic illumination.<br />

In this article, we evaluated the photochemical quenching (qP) and relative<br />

electron transport rate (ETR). Parameter qP represents capacity of PSII RCs to<br />

execute charge separation and it is ind<strong>ir</strong>ectly proportional to a redox state of primary<br />

electron acceptor Q A<br />

(Roháèek, 2002). ETR indicates the efficiency of photosynthetic<br />

energy conversion and/or photosynthetic carbon fixation at given PAR. According<br />

to Genty et al. (1989) ETR can be correlated with quantum yield of CO 2<br />

assimilation.<br />

The definitions of both parameters are as follows:<br />

qP = (Fm’ – Ft) / (Fm’ – Fo’); (1)<br />

ETR = (Fm’ – Ft) / Fm’ × PAR × 0.5 × 0.84 (2)<br />

In Eq. 2, (Fm’ – Ft) / Fm’ = ΔF / Fm’ means the actual efficiency of PSII<br />

photochemistry, PAR – photosynthetically active radiation, 0.5 is a multiplication<br />

factor indicating that according to light-driven electron flow, transport of a single<br />

electron needs the absorption of 2 quanta. Coefficient 0.84 indicates the specific<br />

fraction of incident quanta absorbed by the leaf. (White and Critchley, 1999). In<br />

both equations, Fm’ is the maximum chlorophyll fluorescence yield measured on a<br />

light adapted sample with closed PSII RCs and all active non-photochemical processes<br />

in a thylakoid membrane optimized. Fo’ is the minimum chlorophyll fluorescence<br />

yield measured on a light adapted sample with open PSII RC, measured after<br />

turning off actinic light and application of short flash of infrared light. Ft – actual<br />

307


chlorophyll fluorescence yield at any time of induction by an actinic light (Rohãèek<br />

and Bartãk, 1999).<br />

Concentration of chlorophylls. Chlorophylls (a + b) content in fresh bean leaves<br />

was determined by spectrophotometer (Beckman DU-40, UK), using solvent<br />

90% acetone. According to Wetshtein methodic, the equations (3) and (4) were<br />

employed to determine concentration of chlorophyll a (C a<br />

) and chlorophyll b (C b<br />

)<br />

(Ãàâðèëåíêî, 1975).<br />

C a<br />

= 9.78D 662<br />

– 0.99D 644<br />

(3)<br />

C b<br />

= 21.43D 645<br />

– 4.65D 662<br />

(4)<br />

Absorbance of chlorophyll extraction was measured at wavelength of 643 and<br />

660 nm.<br />

Statistical analysis. Statistical significance among the means of particular values<br />

was estimated by one-way ANOVA (Tukey test) using program “Statistica 6”<br />

(StatSoft 2001). Reciprocity among fluorescence parameters and adventitious root<br />

formation was demonstrated using correlation coefficient and regression equations.<br />

Results and discussion. Experimental growth regulators – st-119 and st-120 –<br />

affected adventitious root formation on bean hypocotyls cuttings at relatively small<br />

concentrations. In both experimental sets, the most effective was 0.05 mg·l -1 st-120<br />

solution which significantly (p = 0.00014) induced initiation of adventitious roots<br />

(Fig.1). In comparison with control plants, st-120 at 0.04 mg·l -1 (p = 0.04) and<br />

0.075 mg·l -1 (p = 0.002) concentrations had significantly higher number of roots per<br />

plant, but less than 0.05 mg·l -1 of the same growth regulator. Application of st-119 at<br />

0.1 mg·l -1 (p = 0.044) and 0.<strong>25</strong> mg·l -1 (p = 0.00015) concentration also considerably<br />

promoted adventitious root initiation (Fig.1) and root growth (Fig. 6), but was less<br />

effective than st-120. The pronounced effect was seen on fifth day after treatment<br />

with abovementioned effective concentrations of growth regulators. The rest experimental<br />

concentrations had no significant effect on root formation and showed no<br />

difference from control plants, which were treated with distilled water.<br />

Fig. 1. Adventitious root number per bean hypocotyl cutting treated with<br />

CAHD – st-120 (mg·l -1 ) and st-119 (mg·l -1 ). Measurements were done after 6,<br />

10 and 14 days respectively after treatment. (Significance level p = 0.05)<br />

1 pav. Augimo reguliatoriais st-120 (mg·l -1 ) <strong>ir</strong> st-119 (mg·l -1 ) apipurkðtø nupjautø pupeliø<br />

hipokotiliø pridëtiniø ðaknø skaièius. Matavimai atlikti praëjus 6, 10 <strong>ir</strong> 14 dienø po<br />

purðkimo (patikimumo lygis p = 0,05)<br />

308


Effect like induction of adventitious root formation is typical for auxin group<br />

phytohormones as it was found in experiments of Jun Chen et al. (1995) with soybeans<br />

cuttings, treated with NAA. Adventitious root formation was induced by NAA<br />

between 10 and 500 µM showed the optimum root number at 500 µM followed by<br />

inhibition at 1 000 µM and higher concentrations of NAA. Similar results were also<br />

reported by Zin-Huang et al. (1998), when adventitious root formation was particularly<br />

enhanced by exogenously applied auxins and polyamines. IBA promoted the<br />

soybean hypocotyls rooting in vitro more than NAA did. It could be explained as the<br />

exogenously applied auxin (IBA or NAA) acts on polyamine synthase and IAA oxidase<br />

at the gene level or through enzyme regulation (Zin-Huang et al., 1998).<br />

Chlorophyll fluorescence, emitted from PSII responds to large number of different<br />

env<strong>ir</strong>onmental factors and reflects the physiological state of higher plants and<br />

algae. Fluorescence measurements are based on the principle by which light quantum,<br />

captured by chlorophyll of light-harvesting complex is transferred to chlorophyll<br />

P680 in PSII RC and via electron transport chain between both photosystems<br />

produces photochemical work. Otherwise it can be dissipated non-photochemically<br />

as heat or fluorescence. As described by Kitajima and Butler (1975) these processes<br />

can be considered as competing f<strong>ir</strong>st order reactions with rate constants for fluorescence,<br />

thermal dissipation and photochemistry. Increased flow of the excitation energy<br />

into a photochemical pathway leads to a decrease (quenching) of the chlorophyll<br />

fluorescence yield. In this way chlorophyll fluorescence reflects changes in the efficiency<br />

of photosynthetic processes (Schreiber et al., 1995; Weis and Lechtenberg,<br />

1989; Govindjee, 1995). Exploring the influence of phytohormones on photosynthesis<br />

the most reported effect is stomata regulation, also protective mechanism in the<br />

stress conditions. However, the scientific literature contains more evidence that phytohormones<br />

can regulate other processes of photosynthesis. For instance, Pandey et<br />

al. (2000) reported in the experiment of hormonal regulation of photosynthetic enzymes<br />

in cotton under water stress reported that all investigative hormones (IAA,<br />

GA3, BAP, ABA and ETH) enhanced RuBPCO activity and IAA was most stimulatory.<br />

Various experiments show that phytohormones positively affect photosynthetic<br />

processes under stress conditions. Soybeans exogenously treated with different plant<br />

growth regulators under water stress had a noticeable effect on the chlorophyll<br />

content, photosynthetic rate and PSII photochemical efficiency whereas under normal<br />

conditions no significant difference between control and plants affected with<br />

growth regulators was found (Mingcai et al., 2004). Analyzing the effect of ABA<br />

and cytokinins on bean stomatal conductance, rates of transp<strong>ir</strong>ation and photosynthesis,<br />

Pospiðilova J. (2003) reported that both growth regulators decreased net photosynthetic<br />

rate, transp<strong>ir</strong>ation rate and stomatal conductance in sufficiently watered<br />

plants when they were immersed to the solution with phytohormones (Pospiðilova,<br />

2003).<br />

Results of the present study demonstrated that particular CAHD concentrations,<br />

which stimulated adventitious root formation, also increase bean photosynthetic<br />

activity. As it is seen in Fig. 4, st-120 (0.05 mg·l -1 ) enhanced photochemical<br />

quenching and was by 11% higher than in control plants. This parameter shows<br />

the actual fraction of PSII reaction centers that are in open state (with re-oxidised<br />

309


Q A<br />

) and indicates the photochemical capacity of PSII in light adapted state (Roháèek,<br />

2002; Oxborough and Baker, 1997). Increased values of qP maintain a higher<br />

proportion of oxidized Q A<br />

and indicate effective electron transport between both<br />

photosystems as well as efficient energy utilization by Calvin cycle activity. Reduction<br />

rate of the PSII primary electron acceptor Q A<br />

is predominantly controlled<br />

by the rate of reduction of intersystem electron carrier pool (PQ pool) and the<br />

distribution of excitation energy within both photosystems (PSII and PSI) (Yordanov<br />

et al., 1995).<br />

In all bean plants, affected with CAHD, qP mean was about 0.8 which characterizes<br />

that almost all PSII are functionally almost intact. But as seen from Fig. 4,<br />

0.05 mg·l -1 and 0.075 mg·l -1 of st-120 (p = 0.00013 and p = 0.003) as well as<br />

0.10 mg·l -1 and 0.<strong>25</strong> mg·l -1 of st-119 (p = 0.027 and p = 0.00014) showed much<br />

higher qP values than in control plants. In addition, qP and number of adventitious<br />

root per bean hypocotyl cutting had a strong correlation (Fig. 5). We suppose that<br />

abovementioned experimental growth regulators by significantly increasing qP, performed<br />

potentially higher reoxidation rate of Q A<br />

and also improved activity of Calvin<br />

cycle, which is partially represented by relatively higher ETR values (Fig. 2).<br />

Fig. 2. Photosynthetic electron transport rate (ETR) at 310 µmol·m -2·s-1 PFD in bean<br />

leaves treated with different CAHD (st-120 and st-119) concentrations<br />

(Significance level 0.05)<br />

2 pav. Pupeliø hipokotiliø lapø fotosintetinio elektronø transporto greitis<br />

-1<br />

(ETR) panaudojus augimo reguliatorius st-120 <strong>ir</strong> st-119. Apðviestumas – 310 µmol·m-2·s (patikimumo lygis p = 0,05)<br />

Fig. 3. Reciprocity between photosynthetic electron transport rate (ETR) at 310<br />

µmol·m -2·s -1 PFD and root number per bean hypocotyl cutting. (R-regresion coefficient)<br />

3 pav. Pupeliø hipokotiliø pridëtiniø ðaknø skaièiaus priklausomumas nuo fotosintetinio<br />

elektronø transporto greièio (esant 310 µmol·m -2·s -1 apðviestumui)<br />

(R – regresijos koeficientas)<br />

310


Fig. 4. Photochemical fluorescence quenching (qP) in bean leaves treated with different<br />

CAHD (st-120 and st-119) concentrations. (Significance level 0.05)<br />

4 pav. Pupeliø hipokotiliø fotocheminis fluorescencijos slopinimas apipurðkus augimo<br />

reguliatoriais st-120 <strong>ir</strong> st-119 (patikimumo lygis p = 0,05)<br />

Fig. 5. Reciprocity between photochemical fluorescence quenching (qP) and root<br />

number per bean hypocotyl cutting (R-regresion coefficient)<br />

5 pav. Pupeliø hipokotiliø pridëtiniø ðaknø skaièiaus priklausomumas nuo fotocheminio<br />

fluorescencijos slopinimo (qP) (R – regresijos koeficientas)<br />

Considering the finding that adventitious root initiation could be regulated by<br />

the level of endogenous phytohormone levels (Zin-Huang et al., 1998) or exogenously<br />

applied growth regulators, its growth is either dependant on carbon allocation<br />

in roots and CO 2<br />

assimilation rate (Katrina et al., 1999). Under sufficient light<br />

intensity CO 2<br />

assimilation rate is usually evaluated by the quantum yield of photosynthesis<br />

and might be linearly related to ETR. According to Michito et al. (2003),<br />

gross photosynthesis rate and ETR has a linear relationship under PFD of<br />

400 µmol photons·m -2·s -1 . Nevertheless, relationship between ETR and rate of electron<br />

transport depending on CO2 assimilation (J CO2<br />

) varies in different plant species with<br />

particular leaf anatomy. Results by Michito et al. (2003) indicate that symmetric<br />

leaves of Acacia with high chlorophyll content had a high correlation between J CO2<br />

and ΔF/Fm’ at all PFDs. Asymmetric Cucumis leaves with low chlorophyll concentration<br />

showed the same result, whereas Ternstroemia asymmetric leaves with high<br />

content of chlorophyll pigments had the linear relationship between mentioned parameters<br />

only at low PFDs.<br />

In the present study we found that 0.05 mg·l -1 st-120 at 310 µmol/m -2 s -1 PFD<br />

intensity raised ETR to 76.7 µmol·m -2·s -1 and compared to control, it was by <strong>25</strong>%<br />

higher (p = 0.00014) (Fig. 2). In addition, ETR was also significantly increased in<br />

beans treated with 0.075 mg·l -1 of st-120 (p = 0.001) likewise as 0.1 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 of st-119 (p = 0.006 and p = 0.00016). In the rest of experimental<br />

variants, photosynthetic electron transport rate was slightly reduced by smaller<br />

311


ΔF/Fm’, which could be associated with partially blocked photosynthetic energy<br />

conversion and electron transport. (Lichtenthaler and Burkart, 2003). Moreover, high<br />

ETR values of beans treated with 0.05 mg·l -1 , 0.075 mg·l -1 of st-120, 0.1 mg·l -1 and<br />

0.<strong>25</strong> mg·l -1 of st-119 showed a high correlation (r = 0.77) with adventitious root biomass<br />

as well as root number per plant (Fig. 3). As follows from our results, the<br />

experimental growth regulators increased the efficiency of PSII photochemistry as<br />

well as ETR and on this basis raised efficiency of photosynthetic energy conversion,<br />

J CO2<br />

and gross photosynthetic rate by supplying more assimilates to adventitious roots.<br />

Auxin group phytohormones activity on photosynthetic efficiency of Brassica<br />

juncea was reported by Ahmad et al. (2001). In the experiments with Brassica juncea<br />

plants, chlorosubstituted auxins were tested on photosynthesis and some related<br />

processes. Monochloroindole acetic acids as 4-Cl-IAA either 7-Cl-IAA and dichloroindole<br />

acetic acid 4.7-Cl2-IAA stimulated the activity of photosynthetic carbohylases,<br />

which are the most abundant soluble proteins in chloroplasts of C3 plants after<br />

RuBPCO. Chlorosubstituted auxins enhanced the net photosynthetic rate, which has<br />

a linear relationship with ETR (Ahmed et al., 2001).<br />

Fig. 6. Adventitious root weight (mg per plant) of beans cuttings affected with growth<br />

regulators (CAHD) st-120 and st-119<br />

6 pav. Augimo reguliatoriø paveiktø pupeliø hipokotiliø pridëtiniø ðaknø masë, mg<br />

augale<br />

Fig. 7. Chlorophyll (a + b) concentration (mg·g- 1 ) in bean fresh leaves after 14 days<br />

when CAHD were applied on bean cuttings<br />

7 pav. Chlorofilo (a + b) koncentracija (mg·g- 1 ) augimo reguliatoriø paveiktuose pupeliø<br />

hipokotiliø lapuose<br />

Chlorophyll content in bean leaves after application of different concentrations of<br />

CAHD had a similar dynamic trend as changes in chlorophyll fluorescence (Fig. 7).<br />

312


Correlation coefficient (r) between total chlorophyll content in bean leaves and ETR<br />

was about 0.6. The content of chlorophyll was not markedly increased by examined<br />

growth regulators<br />

Conclusions. Experimental growth regulators, Carboxylic acid hydrazid derivatives<br />

(CAHD) – st-120 and st-119, applied on bean hypocotyl cuttings had<br />

the auxin like effect. The CAHD st-120 at 0.05 mg·l -1 and 0.075 mg·l -1 as well as<br />

st-119 at 0.1 mg·l -1 and 0.<strong>25</strong> mg·l -1 concentrations significantly induced been<br />

adventitious root initiation. Abovementioned experimental growth regulators also<br />

positively affected bean photosynthetic performance by increasing ETR, which<br />

represents photosynthetic energy conversion and can be correlated with quantum<br />

yield of CO 2<br />

assimilation. Photochemical quenching of chlorophyll fluorescence<br />

(qP) was also increased in beans, treated with physiologically effective<br />

CAHD concentrations. Raised value of qP was associated with higher proportion<br />

of oxidized Q A<br />

(fraction of open PS II reaction centers) and improved activity<br />

of Calvin cycle.<br />

Gauta 2006-11-06<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Ahmad A., Hayat S., Fariduddin Q., Ahmad I. Photosynthetic efficiency of plants<br />

of Brassica juncea, treated with chlorosubstituted auxins // Photosynthetica. 2001.<br />

Vol. 39(4). P. 565–568.<br />

2. Baker N. R., Rosenqvist E. Applications of chlorophyll fluorescence can improve<br />

crop production strategies: an examination of future possibilities // J Exp Bot. 2004.<br />

Vol. 55(44). P. 1607–1621.<br />

3. Chen J., Witham F. H., Heuser C. W. Inhibition of NAA - induced adventitious<br />

roots in mung bean cuttings by kinetin, zeatin, ethidium bromide and other DNA intercalators<br />

// The World Wide Web Journal of Biology. 1995. Vol. 1.<br />

4. Chory J., Reinecke D., Sim S., Washbum T., Brenner M. A role for cytokinins in deetiolation<br />

in Arabidopsis det mutants have an altered response to cytokinins // Plant<br />

Physiol. 1994. Vol. 104. P. 339–347.<br />

5. Fang B., Junjiang S., Shari R. B., Gloria K. M., Tadao A., Zhenbiao Y. Brassinosteroids<br />

interact with auxin to promote lateral root development in Arabidopsis // Plant<br />

Physiology. 2004. Vol. 134. P. 1624–1631.<br />

6. Genty B., Briantais J. M., Baker N. R. The relationship between the quantum yield<br />

of photosynthetic electron transport and quenching of chlorophyll fluorescence // Biochim<br />

Biophys Acta. 1989. Vol. 990. P. 87–92.<br />

7. Govindjee. Sixty-three years since Kautsky: chlorophyll a fluorescence // Aust J<br />

Plant Physiol. 1995. Vol. 22. P. 20–90.<br />

8. Hausman J. F. Changes in peroxidase activity, auxin level and ethylene production<br />

during root formation by poplar shoots raised in vitro // Plant Growth Regul. 1993. Vol. 13.<br />

P. 263–268.<br />

9. Husen J. I. A., Dequan L. I. Relationship between photosystem II electron transport<br />

and photosynthetic CO 2<br />

assimilation responses to <strong>ir</strong>radiance in young apple tree<br />

leaves // Photosynthetica. 2002. Vol. 40(1). P. 139–144.<br />

313


10. Juneau P., Green B. R., Harrison P. J. Simulation of Pulse-Amplitude-Modulated<br />

(PAM) fluorescence: Limitation of some PAM-parameters in studying env<strong>ir</strong>onmental stress<br />

effects // Photosynthetica. Vol. 43(1). P. 75–83.<br />

11. Katrina J. S., Jordan D. N., Smith S. D., Neuman D. S. Effect of atmospheric CO 2<br />

enrichment on root growth and carbohydrate allocation of Phaseolus spp. // Int. J. Plant<br />

Sci. 1999. Vol. 160(6). P. 1075–1081.<br />

12. Kitajima M., Butler W. L. Quenching of chlorophyll fluorescence and primary<br />

photochemistry in chloroplast by dibromothymoquinone // Biochim Biophys Acta. 1975.<br />

Vol. 376. P. 105–115.<br />

13. Lichtenthaler H. K., Burkart S. Photosynthesis and high light stress // Bulg. J.<br />

Plant Physiol. 1999. Vol. <strong>25</strong>. P. 3–1.<br />

14. Maxwell K., Johnson G. N. Chlorophyll fluorescence – a practical guide // J Exp<br />

Bot. 2000. Vol. 51. P. 659–668.<br />

15. Michito T., Masaru S., Yoshichika K. Leaf factors affecting the relationship between<br />

chlorophyll fluorescence and the rate of photosynthetic electron transport as determined<br />

from CO 2<br />

uptake // J. Plant Physiol. 2003. Vol. 160. P. 1131–1139.<br />

16. Mingcai Z., Liusheng D., Zhixi Z., Jianming L., Xiaoli T., Baomin W., Zhongpei H.,<br />

Zhaohu L. Effects of plant growth regulators on water deficit-induced yield loss in soybean.<br />

Proceedings for the 4th International Crop Science Congress. 2004 26 September – 1 October.<br />

17. Moncousin C., Favre J., Gaspar T. Early changes in auxin and ethylene production<br />

in vine cuttings before adventitious rooting // Plant Cell Tiss. Org. Cult. 1989. Vol. 19.<br />

P. 235–242.<br />

18. Ohkawa H., Kamada H., Sudo H., Harada H. Effects of gibberellic acid on ha<strong>ir</strong>y<br />

root growth in the Datura innoxia // J. Plant Physiol. 1989. Vol. 134. P. 633–636.<br />

19. Oxborough K., Baker N. R. Resolving chlorophyll a fluorescence images of photosynthetic<br />

efficiency into photochemical and non-photochemical components – calculation<br />

of qP and Fv’/Fm’ without Fo’ // Photosynth. Res. 1997. Vol. 54. P. 135–142.<br />

20. Pandey D. M., Goswami C. L., Kumar B., Sudha J. Hormonal regulation of photosynthetic<br />

enzymes in cotton under water stress // Photosynthetica. 2000. Vol. 38(3).<br />

P. 403–407.<br />

21. Parthier B. The equivocal of phytohormones (cytokinins) in chloroplast development<br />

// Biochem. Physiol. Pflanz. 1979. Vol. 174. P. 173–214.<br />

22. Pospiðilova J. Interaction of cytokinins and abscisic acid during regulation of<br />

stomatal opening in bean leaves // Photosynthetica. 2003. Vol. 41(1). P. 49–56.<br />

23. Rohãèek K., Bartãk M. Technique of the modulated chlorophyll fluorescence:<br />

basic concepts, useful parameters and some applications // Photosynthetica. 1999.<br />

Vol. 37(3). P. 339–363.<br />

24. Rohãèek K. Chlorophyll fluorescence parameters: the definitions, photosynthetic<br />

meaning and mutual relationships // Photosynthetica. 2002. Vol. 40(1). P. 13–29.<br />

<strong>25</strong>. Sagee O., Raviv M., Medina S., Becker D., Cosse A. Involvement of rooting<br />

factors and free IAA in the rootability of citrus species stem cuttings // Sci. Hort. 1992.<br />

Vol. 51. P. 187–195.<br />

26. Schreiber U., Hormann H., Neubauer C., Klughammer C. Assessment of photosystem<br />

II photochemical quantum yield by chlorophyll fluorescence quenching analysis<br />

// Aust. J. Plant Physiol. 1995. Vol. 22. P. 209–220.<br />

27. Synkova H., Pechova R., Valce R. Changes in chloroplast ultrastructure in Pssuipt<br />

tobacco during plant ontogeny // Photosynthetica. 2003. Vol. 41(1). P. 117–126.<br />

28. Weathers P. J., Bunk G., McCoy M. C. The effect of phytohormones on growth<br />

and artemisin production in Artemisia annua ha<strong>ir</strong>y roots // In Vitro Cell. Dev. Biol. 2005.<br />

Vol. 41. P. 47–53.<br />

314


29. Weigel U., Horn W., Hock B. Endogenous auxin levels in terminal stem cuttings of<br />

Chrysanthemum morifolium during adventitious rooting // Physiol. Plant. 1984. Vol. 61.<br />

P. 422–428.<br />

30. Weis E., Lechtenberg D. Fluorescence analysis during steady-state photosynthesis<br />

// Phil. Trans R London 1989. Vol. 323. P. <strong>25</strong>3–268.<br />

31. White A. J., Critchley C. Rapid light curves: A new fluorescence method to<br />

assess the state of the photosynthetic apparatus // Photosynth. Res. 1999. Vol. 59.<br />

P. 63–72.<br />

32. Yordanov I. Responses of photosynthesis to stress and plant growth regulators //<br />

Bulg. J. Plant Physiol. 1995. Vol. 21(2–3). P. 51–70.<br />

33. Zin-Huang L., Wei-Chang W., Yan-Sin Yen. Effect of hormone treatment on root<br />

formation and endogenous indole-3-acetic acid and polyamine levels of Glycine max<br />

cultivated in vitro // Bot. Bull. Acad. Sin. 1998. Vol. 39. P. 113–118.<br />

34. Ãàâðèëåíêî Â. Ô. Ëàäûãèíà Ì. Å. Õàíäîáèíà Ë. Ì. Áîëüøîé ïðàêòèêóì<br />

ïî ôèçèîëîãèé ðîñòåíèé. Ìîñêâà, 1975.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

KARBOKSIRÛGÐÈIØ HIDRAZIDØ DARINIØ ÁTAKA<br />

PUPELIØ PRIDËTINIØ ÐAKNØ FORMAVIMUISI IR<br />

FOTOSINTETINIAM ELEKTRONØ JUDËJIMUI<br />

V. A. Ðlapakauskas, E. Kazlauskas <strong>ir</strong> S. Glioþeris<br />

Santrauka<br />

Tyrimø tikslas – nustatyti, koká poveiká turi augimo reguliatoriai – karboks<strong>ir</strong>ûgðèiø<br />

hidrazidø dariniai st-120 <strong>ir</strong> st-119 – pupeliø hipokotiliø pridëtiniø ðaknø<br />

formavimuisi <strong>ir</strong> fotosintetinio elektronø judëjimo greièiui (ETR). Panaudojus augimo<br />

reguliatorius, buvo stebima pupeliø hipokotiliø pridëtiniø ðaknø augimo dinamika.<br />

Fotosintetinio elektronø judëjimo greièiui (esant 310 µmol m -2 s -1 aktininës ðviesos<br />

intensyvumui) <strong>ir</strong> fotocheminiam fluorescencijos slopinimui (qP) nustatyti buvo<br />

pritaikytas fluorometrijos metodas, matuojant chlorofilo fluorescencijà ðviesoje<br />

adaptuotose pupelëse. Ðiais tyrimais nustatyta, kad st-120 augimo reguliatoriaus<br />

0,05 mg·l -1 <strong>ir</strong> 0,075 mg·l -1 koncentracijos bei st-119 augimo reguliatoriaus 0,1 mg·l -1 <strong>ir</strong><br />

0,<strong>25</strong> mg·l -1 koncentracijos darë esminæ átakà pupeliø hipokotiliø pridëtiniø ðaknø formavimuisi,<br />

ðviesos energijos v<strong>ir</strong>smo á fotosintetinæ energijà naðumui (ETR) <strong>ir</strong><br />

II fotosistemos reakciniø centrø oksredo bûklei (qP). Tarp pupeliø pridëtiniø ðaknø<br />

skaièiaus <strong>ir</strong> chlorofilo fluorescencijos rodikliø ETR bei qP nustatytas stiprus koreliacinis<br />

ryðys. Didþiausià efektà analizuojamiems rodikliams turëjo st-120 augimo reguliatoriaus<br />

0,05 mg·l -1 koncentracija. Nuo t<strong>ir</strong>iamø augimo reguliatoriø gerokai padidëjo<br />

chlorofilo (a + b) koncentracija.<br />

Reikðminiai þodþiai: augimo reguliatoriai, chlorofilo fluorescencija, fotosintetinis<br />

elektronø judëjimo greitis, pupelës, pridëtinës ðaknys.<br />

315


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

RAUSVAÞIEDËS EÞIUOLËS (ECHINACEA PURPUREA<br />

(L.) MOENCH) PRODUKTYVUMAS, TAIKANT<br />

INTENSYVIAS AUGINIMO TECHNOLOGIJAS<br />

Edita DAMBRAUSKIENË<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, LT-54333, Babtai, Kauno r.<br />

El. paðtas e.dambrauskiene@lsdi.lt<br />

Pramoninio rausvaþiedës eþiuolës auginimo tyrimai Lietuvoje atlikti p<strong>ir</strong>mà kartà.<br />

2003–2006 m. Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto bazëje daryti lauko<br />

bandymai <strong>ir</strong> laboratoriniai tyrimai. Taikant intensyvias vaistaþoliø auginimo technologijas,<br />

parinkti elementai, kurie uþtikrina pastovø, gausø geros kokybës rausvaþiedës<br />

eþiuolës þaliavos derliø. Keleriø metø tyrimais ávertintos biologinës rausvaþiedës eþiuolës<br />

savybës, kuriomis remiantis galima planuoti pramoniná ðiø vaistaþoliø auginimà. Nustatytas<br />

augalø þolës <strong>ir</strong> ðaknø derlius bei orasausës þaliavos iðeiga. Numatytos priemonës,<br />

kurios galëtø padidinti rausvaþiedës eþiuolës produktyvumà.<br />

Reikðminiai þodþiai: biologija, Echinacea purpurea (L.) Moench, intensyvus<br />

auginimas, produktyvumas, rausvaþiedë eþiuolë, vaistaþolës.<br />

Ávadas. Vaistaþoliø auginimas – viena ið netradiciniø Lietuvos þemës ûkio ðakø,<br />

turinti puikias tolesnës plëtros perspektyvas. Daugelis stambesniø <strong>ir</strong> smulkiø vaistaþoliø<br />

augintojø turi nedaug teoriniø þiniø bei praktinës pat<strong>ir</strong>ties. Besikurianèios stambios<br />

bendrovës, pleèianèios vaistaþoliø plotus, orientuojasi á intensyvias, maksimaliai<br />

mechanizuotas vaistaþoliø auginimo technologijas, pagrástas mokslo tyrimø rezultatais.<br />

Atsiþvelgdami á tai, Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto mokslo<br />

darbuotojai atlieka nemaþai moksliniø tyrimø, kuriø objektas – vaistiniai augalai.<br />

Rausvaþiedë eþiuolë (Echinacea purpurea (L.) Moench) dël savo antimikrobiniø<br />

bei imunitetà stiprinanèiø savybiø – viena populiariausiø ðiø dienø vaistaþoliø. Ji kilusi<br />

ið Ðiaurës Amerikos, iki ðiol Lietuvoje daþniau auginta kaip dekoratyvinis augalas.<br />

Mûsø kraðte net<strong>ir</strong>tos agrotechninës rausvaþiedþiø eþiuoliø auginimo sàlygos, ypaè<br />

intensyvaus auginimo ypatumai. Apie dekoratyvines bei vaistines ðio augalo savybes<br />

yra sukaupta daug þiniø. VDU Kauno botanikos sode atliktais tyrimais iðnagrinëtos<br />

biologinës <strong>ir</strong> fitocheminës rausvaþiedës eþiuolës savybës (Ragaþinskienë, 1999). Taèiau<br />

pasigendama duomenø apie eþiuolei tinkamà d<strong>ir</strong>voþemá, kiek maisto medþiagø<br />

ðie augalai turi gauti <strong>ir</strong> kaip turi bûti træðiami, kad iðaugintø gerà derliø. Daugelyje<br />

ðaltiniø nurodoma, kad eþiuoliø sëklos yra maþo lauko daigumo, todël ðiuos augalus<br />

geriau sodinti daigais (Juknevièienë, Ragaþinskienë, 1995; Prazna <strong>ir</strong> kt., 1993). Vais-<br />

316


tinei þaliavai tinka rausvaþiedës eþiuolës þolë (<strong>25</strong>–40 cm ûgliai), ji pjaunama masinio<br />

þydëjimo metu, <strong>ir</strong> ðaknys, jos kasamos rudená, spalio mënesá, arba pavasará, prieð<br />

suþeliant augalams, balandþio pradþioje (Lapinskienë <strong>ir</strong> kt., 1999). Eþiuolës produktyvumà<br />

lemia ne tik auginimo sàlygos, bet <strong>ir</strong> augalø amþius. Nustatyta, kad gausiausias<br />

þolës derlius gaunamas ketv<strong>ir</strong>taisiais <strong>ir</strong> penktaisiais, o ðaknys tinkamiausios antraisiais<br />

<strong>ir</strong> treèiaisiais auginimo metais (Lapinskienë <strong>ir</strong> kt., 1998; Samorodov, Pospelov,<br />

2004). Ketv<strong>ir</strong>taisiais auginimo metais ðaknys sveria daugiau, taèiau pusë jø –<br />

apm<strong>ir</strong>usios <strong>ir</strong> kaip vaistinë þaliava yra maþai vertingos (Parmentei, Littlejhn, 1996).<br />

Pleèiant rausvaþiedës eþiuolës pramoniná auginimà <strong>ir</strong> taikant intensyvias auginimo<br />

technologijas, svarbu atsiþvelgti á biologiná augalo potencialà esant tam tikroms<br />

auginimo sàlygoms. Sk<strong>ir</strong>tingose ðalyse atlikti tyrimai leidþia manyti, kad eþiuolë yra<br />

tinkama masiðkai auginti (Galambosi <strong>ir</strong> kt., 1994; Hobbs, 1989; Muntean, Tamas,<br />

1989; Êóïåíêî, Îñòàïêî, 1997). Atliekant selekciná darbà, jau ats<strong>ir</strong>anda áva<strong>ir</strong>iø rausvaþiedës<br />

eþiuolës formø <strong>ir</strong> veisliø, kurios sk<strong>ir</strong>iasi ne tik produktyvumu, bet <strong>ir</strong> biocheminëmis<br />

savybëmis (Getko <strong>ir</strong> kt., 2006; Hodisan, Tamas, 1984).<br />

Darbo tikslas – iðt<strong>ir</strong>ti <strong>ir</strong> ávertinti intensyvaus auginimo poveiká rausvaþiedës<br />

eþiuolës vaistinës þaliavos produktyvumui.<br />

Tyrimo sàlygos <strong>ir</strong> metodika. Tyrimai atlikti 2003–2006 metais Lietuvos sodininkystës<br />

<strong>ir</strong> darþininkystës instituto ðiltnamiuose, bandymø laukuose <strong>ir</strong> Biochemijos<br />

<strong>ir</strong> technologijos laboratorijoje. P<strong>ir</strong>maisiais tyrimø metais, geguþës pabaigoje, eþiuolë<br />

buvo sëta tiesiai á laukà, taèiau sëklos labai blogai dygo, todël tolesniais tyrimø metais<br />

ðio auginimo bûdo buvo atsisakyta. Daigams rausvaþiedë eþiuolë auginta ðildomuose<br />

dviguba polimerine plëvele dengtuose ðiltnamiuose, kur buvo pasëta p<strong>ir</strong>màjà balandþio<br />

dekadà. Ðiltnamyje daigai auginti 50–60 dienø. 2–3 tikrøjø lapeliø tarpsnio eþiuolës<br />

daigai pasodinti lauke p<strong>ir</strong>mosiomis b<strong>ir</strong>þelio dienomis. Laikantis mechanizuoto auginimo<br />

technologijos, pas<strong>ir</strong>inktas 70 cm tarpueiliø plotis, o atstumas tarp augalø –<br />

50 cm. Pavasará, prieð vegetacijà, laukas patræðtas kompleksinëmis tràðomis „Kem<strong>ir</strong>a<br />

Skalsa 8–12–23“. Vegetacijos metu, b<strong>ir</strong>þelio mënesá, augalai vienà kartà papildomai<br />

træðti amonio salietra – 30 kg ha -1 N. Per vasarà tarpueiliai 3 kartus purenti traktoriniu<br />

purentuvu, 2 kartus ravëta rankomis. Rausvaþiedës eþiuolës þolës <strong>ir</strong> ðaknø derlius<br />

buvo imtas antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais. Þolë (40 cm ûgliai)<br />

pjauta masinio þydëjimo metu, ðaknys nukastos rugsëjo pabaigoje. Darbo metu<br />

atlikti fenologiniai stebëjimai, ávertintas augalø þiemojimas. Vaistinë þaliava (eþiuoliø<br />

þolë <strong>ir</strong> ðaknys) dþiovinta ðildomoje dþiovykloje 40°C temperatûroje. Derliaus duomenys<br />

apdoroti statistine programa ANOVA.<br />

Tyrimø metais meteorologinës sàlygos buvo palankios rausvaþiedës eþiuolës<br />

vegetacijai. 2003-øjø, p<strong>ir</strong>møjø auginimo metø, vasara buvo sausa <strong>ir</strong> karðta, taèiau<br />

pasodinti eþiuolës daigai gerai prigijo. 2004 m. pavasaris buvo ankstyvas <strong>ir</strong> ðiltas,<br />

todël antrameèiø eþiuoliø vegetacija prasidëjo anksèiau, balandþio pabaigoje, o 2005<br />

<strong>ir</strong> 2006 m. áprastu metu – geguþës pradþioje. Tyrimø metais liepos <strong>ir</strong> rugpjûèio mënesiais<br />

buvo labai sausa, todël eþiuolës produktyvumas buvo maþesnis. Þiemojimo sàlygos<br />

visais tyrimø metais buvo panaðios: gan ðalti þiemos mënesiai <strong>ir</strong> permainingi<br />

orai kovo mënesá. Esant tokioms sàlygoms nedidelë dalis rausvaþiedës eþiuolës augalø<br />

þuvo.<br />

317


Rezultatai. Fenologinis rausvaþiedës eþiuolës, kaip <strong>ir</strong> daugelio daugiameèiø augalø,<br />

vystymasis prasideda vidutinei paros temperatûrai pakilus iki +5°C. Vegetacijos<br />

pradþia priklauso nuo meteorologiniø sàlygø, todël kasmet augalai gali pradëti vegetuoti<br />

ne tuo paèiu laiku. Tyrimø metais rausvaþiedës eþiuolës augalai po þiemos<br />

vegetuoti pradëjo paskutinæ balandþio arba p<strong>ir</strong>màjà geguþës dekadà (1 lentelë). Butonizacijos<br />

pradþia – b<strong>ir</strong>þelio mënesá, o masiðkai þydëti ðie augalai pradeda po dviejø<br />

dekadø – nuo antrosios liepos iki p<strong>ir</strong>mosios rugpjûèio dekados, nelygu metai. Rugpjûèio<br />

pabaigoje–rugsëjo mënesá augalas brandina lukðtavaisius (1 lentelë). Fenologiniai<br />

stebëjimai rodo, kad Lietuvos klimato sàlygos yra tinkamos rausvaþiedei eþiuolei<br />

vegetuoti, nes augalai pereina visà vystymosi ciklà iki sëklø brandos.<br />

Augimo tarpsnis<br />

Growth stage<br />

Vegetacijos pradžia<br />

Beginning of vegetation<br />

Butonizacijos pradžia<br />

Beginning of buttonization<br />

Þydëjimo pradþia<br />

Beginning of flowering<br />

Masinis žydëjimas<br />

Mass flowering<br />

Vaisiø brandinimas<br />

Ripening of fruits<br />

1 lentelë. Rausvaþiedës eþiuolës fenologija<br />

Table 1. Phenology of eastern purple coneflower<br />

2004 m. 2005 m. 2006 m.<br />

04 20 05 10 05 01<br />

06 01 06 20 06 10<br />

06 20 07 10 07 01<br />

07 10 08 01 07 20<br />

08 20 09 10 09 01<br />

Tyrimø metais nustatyta, kad neperþiemoja tik nedidelë dalis rausvaþiedës eþiuolës<br />

augalø (2 lentelë). Daugiausia þuvo p<strong>ir</strong>mameèiø (4 proc.) <strong>ir</strong> antrameèiø (5 proc.)<br />

augalø. Vyresni augalai sutv<strong>ir</strong>tëja <strong>ir</strong> þiemoja geriau. Po treèios þiemos nunyko 2 proc.<br />

eþiuolës augalø.<br />

2 lentelë. Perþiemojusiø rausvaþiedës eþiuolës augalø skaièius, %<br />

Table 2. Number of eastern purple coneflower plants after wintering (%)<br />

Po 2004–2005 m. žiemos<br />

After winter of 2004–2005<br />

96 ± 0,7 95 ± 0,6 98 ± 0,8<br />

Po 2003–2004 m. žiemos<br />

After winter of 2003–2004<br />

Po 2005–2006 m. žiemos<br />

After winter of 2005–2006<br />

Rausvaþiedës eþiuolës þolë vaistinei þaliavai pjauta masinio þydëjimo metu, o<br />

ðaknys kasamos vegetacijos pabaigoje – rudená. Þydinèiø augalø antþeminë dalis gan<br />

masyvi, nes augalai uþauga iki 90 cm aukðèio, o ðaknø sistema nedidelë. Taèiau<br />

medicininiu poþiûriu rausvaþiedës eþiuolës ðaknys yra vertingesnës uþ stiebus ar ûglius.<br />

Mûsø tyrimø duomenimis, rausvaþiedës eþiuolës produktyvumas kasmet didëja.<br />

318


Antrøjø augimo metø ðvieþias rausvaþiedës eþiuolës þolës derlius siekia 44,2 t ha -1 ,<br />

treèiaisiais augimo metais – 56,7 t ha -1 , o ketv<strong>ir</strong>taisiais – 73,1 t ha -1 . Sausos vaistinës<br />

þaliavos iðeiga atsk<strong>ir</strong>ais metais ðiek tiek áva<strong>ir</strong>uoja, taèiau vidutiniai duomenys tolygûs.<br />

Iðdþiovintos rausvaþiedës eþiuolës þolës svoris siekia 28, ðaknø – 35 proc. p<strong>ir</strong>minio<br />

ðvieþios þaliavos svorio. Dþiovinant eþiuolës þolë netenka nuo 70 iki 75 proc., ðaknys –<br />

nuo 60 iki 70 proc. drëgmës. Taigi, antrøjø auginimo metø vaistinës eþiuolës þolës<br />

orasausës masës derlius buvo 12,4 t ha -1 , treèiøjø – 15,9 t ha -1 , ketv<strong>ir</strong>tøjø – 20,5 t ha -1 .<br />

Ðaknø orasausës masës derlius didëja nuo 0,8 t ha -1 (antraisiais auginimo metais) iki<br />

1,8 t ha -1 (ketv<strong>ir</strong>taisiais auginimo metais) (3 lentelë).<br />

Auginimo<br />

metai<br />

Growing year<br />

3 lentelë. Rausvaþiedës eþiuolës þolës <strong>ir</strong> ðaknø derlius<br />

Table 3. Yield of eastern purple coneflower grass and root<br />

Þolës derlius, t ha -1<br />

Grass yield (t ha -1 )<br />

Ðaknø derlius, t ha -1<br />

Root yield (t ha -1 )<br />

þalia masë orasausë masë þalia masë orasausë masë<br />

fresh matter dry matter fresh matter dry matter<br />

II 44,2 ± 1,85 12,4 ± 0,64 2,2 ± 0,08 0,8 ± 0,04<br />

III 56,7 ± 2,09 15,9 ± 0,71 3,4 ± 0,09 1,2 ± 0,05<br />

IV 73,1 ± 2,40 20,5 ± 0,73 5,3 ± 0,12 1,8 ± 0,05<br />

Aptarimas. 2003–2006 m. atlikti rausvaþiedës eþiuolës auginimo pagal intensyvias<br />

technologijas tyrimai gali bûti tv<strong>ir</strong>tas vaistaþoliø auginimo Lietuvoje pramoniniu<br />

bûdu pagrindas. Fenologiniai stebëjimai patv<strong>ir</strong>tino, kad visais tyrimø metais rausvaþiedës<br />

eþiuolës pereina visus augimo etapus iki sëklø subrandinimo. Eþiuoliø produktyvumas<br />

kasmet didëja. P<strong>ir</strong>maisiais auginimo metais nerekomenduojama augalus<br />

naudoti vaistinei þaliavai, nes antþeminë augalo dalis menka, be generatyviniø organø,<br />

o ðaknys negausios (Ragaþinskienë, 1997). Rausvaþiedës eþiuolës gali augti vienoje<br />

vietoje 5–7 metus, taèiau taikant intensyvias auginimo technologijas <strong>ir</strong> kasant jø<br />

ðaknis, naujus augalus tenka sodinti kas 2 metai. Medicinos tikslams eþiuoliø ðaknis<br />

geriau nukasti antraisiais ar treèiaisiais auginimo metais, nes vëliau pablogëja jø kokybë.<br />

Tokiø þaliavos nuëmimo taisykliø laikosi Ukrainoje <strong>ir</strong> kitose ðalyse d<strong>ir</strong>bantys<br />

eþiuoliø tyrëjai (Samorodov, 2004; Prazna, 1993; Êóïåíêî, 1997). Manome, kad<br />

mûsø pas<strong>ir</strong>inkta daigø sodinimo schema (70 x 50 cm) yra tinkama maitinamojo ploto<br />

atþvilgiu, taip pat leidþia visiðkai mechanizuoti sodinimo, prieþiûros <strong>ir</strong> derliaus nuëmimo<br />

darbus. Rausvaþiedë eþiuolë nëra lepus augalas, taèiau pernelyg drëgnuose d<strong>ir</strong>voþemiuose<br />

blogiau þiemoja. Mûsø bandymuose naudotos tràðos nepakenkë eþiuoliø<br />

produktyvumui. Augalai buvo pakankamai sveiki <strong>ir</strong> veðlûs. Taèiau reikëtø atlikti iðsamesnius<br />

tyrimus ðiuo klausimu, nes daug biologinës masës uþauginantys augalai reikalauja<br />

<strong>ir</strong> daugiau maisto medþiagø. LSD institute atliekami detalûs træðimo tyrimai<br />

ateityje leis plaèiau komentuoti rausvaþiedës eþiuolës træðimo sàlygas. Siekiant gausesnio<br />

eþiuoliø produktyvumo, svarbu parinkti derlingà, daugiameèiams augalams<br />

þiemoti tinkamà laukà, kurio sukultûrimo lygis leistø visiðkai mechanizuoti darbus.<br />

Iðvados. 1. Klimato sàlygos Lietuvoje yra tinkamos auginti rausvaþiedæ eþiuolæ<br />

pramoniniu bûdu <strong>ir</strong> ruoðti vaistinæ þaliavà.<br />

319


2. Taikant intensyvias auginimo technologijas, rausvaþiedës eþiuolës produktyvumas<br />

kasmet didëja: antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais gauta<br />

atitinkamai 44,2; 56,7 <strong>ir</strong> 73,1 t ha -1 þalios masës. Vidutinë apdþiovintos þaliavos<br />

iðeiga – 28 procentai. Orasausës masës derlius tyrimø metais siekë atitinkamai 12,4;<br />

15,9; 20,5 t ha -1 .<br />

3. Rausvaþiedës eþiuolës ðaknø derlius, palyginti su þolës derliumi, negausus:<br />

antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais prikasta atitinkamai 2,2; 3,4 <strong>ir</strong><br />

5,3 t ha -1 ðvieþiø ðaknø. Vidutinë orasausiø ðaknø iðeiga – 35 procentai. Vaistinei<br />

þaliavai tinkamø ðaknø derlius antraisiais, treèiaisiais <strong>ir</strong> ketv<strong>ir</strong>taisiais auginimo metais<br />

buvo atitinkamai 0,8; 1,2 <strong>ir</strong> 1,8 t ha -1 .<br />

Pastaba. Darbas atliktas ið dalies Lietuvos valstybinio mokslo <strong>ir</strong> studijø fondo<br />

lëðomis, ágyvendinant projektà „Vaistiniø augalø auginimo technologijø <strong>ir</strong> þaliavos<br />

kokybës tyrimai“ (sutarties numeris G-43/06)<br />

Gauta 2006-11-06<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Galambosi B., Pulliainen E., Pullainen E., Karlas M. Overwintering of Echinacea<br />

purpurea in Finland During // Production of herbs, spices and medical plants in Nordic<br />

countries. Mikkelin (Finland). 1994. P. 69–70.<br />

2. Getko N., Kabuðeva V., Kronivec A., Kriuèionok A. Perspektyviø rausvaþiedës<br />

eþiuolës (Echinacea purpurea (L.) Moench) formø atranka heterogeninëje kultûrinëje<br />

populiacijoje // Vytauto Didþiojo universiteto Botanikos sodo raðtai. 2006. T. 11. P. 71–75.<br />

3. Hobbs C. The Echinacea Handbook. Oregon, Eclectic Med. Publ. 1989. 118 p.<br />

4. Hodisan V., Tamas M. Study farmaciobotanic comparativ al speciilor Echinacea<br />

angustifolia Moench si E. Purpurea (L.) Moench // Farmacija. 1984. V. 32(4). P. 203–210.<br />

5. Juknevièienë G., Ragaþinskienë O. Purpurinës eþiuolës tyrimai Kauno botanikos<br />

sode // Lietuvos farmacijos þinios. 1995. Nr. 1–2. P. 11.<br />

6. Lapinskienë N., Ragaþinskienë O., Rimkienë S. Echinacea purpurea (L.) Moench<br />

fenologija <strong>ir</strong> biologinis produktyvumas // Botanika Lithuanica. 1999. Vol. 5(1). P. 41–59.<br />

7. Muntean L., Tamas M. Echinacea Specil de perspectiva in Romania // Herba romanica.<br />

1989. Vol. 9. P. 79–85.<br />

8. Parmentei G., Littlejhn R. Planting density effects on root yield of purple coneflower<br />

(Echinacea purpurea (L.) Moench) // N. Zealand Crop Horticult. Sci. 1996. Vol. <strong>25</strong>(2).<br />

P. 169–175.<br />

9. Prazna L., Pozmazi A., Lefter J., Lelik L., Karsai-Bihâtsi E., Vitânui Gy. The cultivation<br />

and analysis of Echinacea purpurea // J. Hungarian Pharm. Soc. // IX Congr. Pharmaceutical<br />

Soc. Budapest. 1993. P. 110.<br />

10. Ragaþinskienë O. Purpurinës eþiuolës (Echinacea purpurea (L.) Moench) antþeminës<br />

<strong>ir</strong> poþeminës daliø vystymasis // Botanika Lithuanica. 1997. Vol. 3(3). P. <strong>25</strong>1–271.<br />

11. Ragaþinskienë O. Purpurinës eþiuolës (Echinacea purpurea (L.) Moench) introdukcija<br />

Lietuvoje: daktaro disertacijos santrauka. Kaunas, 1999. <strong>25</strong> p.<br />

12. Samorodov N., Pospelov V. Genus Echinacea Moench in Ukraine: Sixty-year<br />

experience of studying and using // International Scientific Congress „The development<br />

of contemporary growing and analysis of medical plants“ / Papers of reports.<br />

Kaunas, 2004. P. 98–99.<br />

320


13. Êóïåíêî Í., Îñòàïêî È. Èíòðîäóêöèÿ Echinacea purpurea (L.) Moench â<br />

Äîíáàññå // ×åòâåðòà ìiæíàðîäíà êîíôåðåíöiÿ ç ìåäè÷íîi áîòàíiêè / òåç. äîï.<br />

Êèiâ, 1997. Ñ. 213–214.<br />

14. Ëàïèíñêåíå Í., Ðàãàæèíñêåíå Î., Ðèìêåíå Ñ. Õàðàêòåðèñòèêà ïîäçåìíîé<br />

÷àñòè ýõèíàöåè ïóðïóðíîé â óñëîâèÿõ èíòðîäóêöèè â Ëèòâå // Èçó÷åíèå è<br />

èñïîëüçîâàíèå ýõèíàöåè / ìàòåðèàëû ìåæäóíàð. íàó÷. êîíô. Ïîëòàâà, 1998.<br />

Ñ. 24–26.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

PRODUCTIVITY OF EASTERN PURPLE CONEFLOWER<br />

(ECHINACEA PURPUREA L. MOENCH) APPLYING<br />

INTENSIVE GROWING TECHNOLOGIES<br />

E. Dambrauskienë<br />

Summary<br />

Investigations of the industrial growing of eastern purple coneflower (Echinacea<br />

purpurea L. Moench) were conducted for the f<strong>ir</strong>st time in Lithuania. Field and<br />

laboratory experiments in the basis of the Lithuanian Institute of Horticulture were<br />

carried out in 2003–2006. When applying the intensive growing technologies there<br />

were chosen elements, which guarantee the constantly abundant and qualitative yield<br />

of eastern purple coneflower. During the investigations, which lasted for several<br />

years, there were evaluated the biological features of eastern purple coneflower and<br />

basing on them it was possible to plan industrial growing of this herb. The yield of<br />

plant grass and roots and the output of dry matter were established. The means,<br />

which might increase the productivity of eastern purple coneflower, were previsioned.<br />

Key words: biology, Echinacea purpurea L. Moench, intensive growing, productivity,<br />

eastern purple coneflower, herbs.<br />

321


SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF<br />

HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

EFFECT OF CLIMATIC CONDITIONS AND SEED<br />

DRESSING ON THE YIELD AND PROTEIN CONTENT<br />

IN SEEDS OF PEA<br />

Beata SZWEJKOWSKA *, Pavelas DUCHOVSKIS **<br />

*Cha<strong>ir</strong> of Plant Production, University of Warmia and Mazury in Olsztyn,<br />

Oczapowskiego 8, 10-719 Poland. E–mail: b-szw@gazeta.pl<br />

**Lithuanian Institute of Horticulture, Kauno 30, LT–54333 Babtai, Kaunas<br />

distr., Lithuania. E–mail: p.duchovskis@lsdi.lt<br />

In three-year field trial, completed in 2004–2006, the influence of climatic conditions<br />

and fungicide-insecticide seed dressing preparations on the content and yield<br />

of protein in seeds of several seed pea cultivars (Pisum sativum L.) was assessed.<br />

The study was conducted with three fungicide and insecticide seed dressing chemicals:<br />

Sarfun T 65 and Funaben T (disease control) and Super Homai 70 DS (disease<br />

and pest control). Four seed pea cultivars were grown: two edible ones – cv. ‘Brylant’<br />

and ‘Wenus’, and two field ones – ‘Eurika’ and ‘Marych’. The course of<br />

climatic conditions during the vegetative seasons was shown to have exerted considerable<br />

influence on the processes of total protein accumulation in pea seeds and<br />

protein yields. Weather had particularly positive effect in the f<strong>ir</strong>st and second years<br />

of the trial when more protein was accumulated in seeds of all four pea cultivars. It<br />

was so because in both years, especially during vegetative seasons, a<strong>ir</strong> temperatures<br />

and sunlight were favourable. In contrast, more rainfall and consequently more cloudy<br />

days in the th<strong>ir</strong>d year of the trial did not favour protein accumulation. The effect of<br />

the preparations applied on the volume of protein yields in pea seeds was moderate.<br />

It was produced via significant reduction of the effect of plant diseases and pests on<br />

total weight of seeds. However, fungicide and insecticide seed dressing chemicals<br />

were found to have no impact (or else the<strong>ir</strong> effect was not significant statistically)<br />

on the relative (%) content of protein in seed mass. The analysis of the predispositions<br />

of four cultivars to total protein accumulation proved that field varieties (‘Marych’<br />

and ‘Eurika’) were superior to the edible ones (‘Brylant’ and ‘Wenus’) in that<br />

respect.<br />

Key words: cultivars, pea, seed dressing chemicals, total protein.<br />

Introduction. Papilonaceous plants, including legumes, are rich source of proteins,<br />

which is in constant demand. This stimulates a wealth of research on the<br />

concentration of protein, composition of amino acids, digestibility and factors, which<br />

322


affect proper utilisation of this nutrient (Pisulewska, 1993; Kulig et al., 1997; Pastuszewska,<br />

1997; Martyniak, 2001). Such studies are growing in importance at the<br />

moment, as dieticians recommend substituting some animal protein and fat with<br />

plant nutrients (Lampart-Szczapa, 1997; Pastuszewska and Ochtabiñska, 1995). Increased<br />

demand for high-protein foodstuffs, which can be obtained for example from<br />

pea seeds, meets certain obstacles, both natural as the production of pea is strongly<br />

dependent on the climatic conditions, and economic factors (Pahl i Hoffman, 1995).<br />

Kotecki (1990), Alvino and Leone (1993), Fougereus and Dore (1997), Szukaùa<br />

et al. (1997) point to the fact that seed yield and protein content in seeds of leguminous<br />

plants, including pea, depend not only on genetic factors but also on the weather<br />

conditions (moisture and temperatures). Considering the latter, it is worth noticing<br />

that the literature usually contains information pertaining to the optimum water<br />

and temperature demands of a particular plant species, without making any distinction<br />

between cultivars. This problem has been raised by such authors as Andrzejewska<br />

et al. (2002), Szukaùa et al. (1997), Alvino and Leone (1993), who emphasise the<br />

fact that cultivars not only differ in the<strong>ir</strong> morphology and use, but they also respond<br />

differently to meteorological conditions, including temperatures and sunlight, which<br />

are of great importance for accumulation of protein. As far as yield of seeds is<br />

concerned, optimum a<strong>ir</strong> humidity and rainfall are more important.<br />

The aim of the present study has been to determine to what extent weather<br />

conditions and seed dressing chemicals, which control plant diseases and pests,<br />

influence the content and yield of protein in seeds of several pea cultivars.<br />

Methods and conditions. The experiment was carried out at the Experimental<br />

and Plant Production Station in Baùcyny near Ostróda, in the years 2004–2006. A<br />

strict, two-factor field trial was established on good wheat soil complex (2), classified<br />

according to the Polish soil classification system as class IIIb. It was rich in<br />

phosphorus and potassium and moderately rich in magnesium. The soil pH was 6.7.<br />

In each year of the trial pea was preceded by cereals.<br />

The variables in the experiment consisted of:<br />

– weather conditions (an independent variable, but characterised by high probability<br />

of variability, especially of average temperatures and rainfalls during subsequent<br />

months of pea vegetation seasons in a three-year trial);<br />

– either no seed dressing chemicals (control plots) or application of plant disease<br />

control preparations (Funaben T, Sarfun T) or disease and pest control preparation<br />

(Super Homai 70 DS);<br />

– two different types of pea cultivars: edible (‘Brylant’ and ‘Wenus’) and field<br />

ones (‘Marych’ and ‘Eurika’).<br />

In each year of the trial, seeds were sown in the f<strong>ir</strong>st decade of April, using a<br />

row seed drill, with the plant density of 100 plants per 1 square meter. Pea plants<br />

were harvested at two stages, in each year on the same day – 31 st of July. The<br />

volume of yields was assessed at comparable seed moisture content (14%), and the<br />

concentration of total protein was determined in laboratory, with Kjeldahl’s method<br />

applied to average samples collected from replications.<br />

The field experiment was established in a split-plot design, with four replications.<br />

Each plot measured 14.4 m 2 in surface area. The results were processed<br />

323


statistically using analysis of variance for multiple trials, testing the hypotheses according<br />

to T-student test at α = 0.05.<br />

While discussing the effect of the seed dressing chemicals applied and the weather<br />

conditions on the content of total protein in pea seeds, it is necessary to state a<br />

priori that weather conditions prevailing during the three years of the experiment<br />

were variable. Two basic factors, in particular, were highly changeable – a<strong>ir</strong> temperature<br />

and rainfall (Fig. 1 and 2).<br />

Fig. 1. Monthly precipitation during vegetation. Long-term: average in the period of<br />

1961–1990<br />

1 pav. Krituliø kiekis per mënesá. Daugiameèiai – vidutiniðkai per 1961–1990 metus<br />

The f<strong>ir</strong>st year of the tests (2004) was warm, with mean monthly precipitation<br />

suitable for the growth and development of pea plants. The second year (2005) was<br />

warmer, with the mean monthly temperature higher than long-term means and with<br />

lack of rains in April and July. Regardless of those differences, both years can be<br />

considered favourable for pea cultivation.<br />

The last year of the trial (2006) was completely different. Early spring was<br />

rather cold, whereas June and July were extremely hot with very little and sporadically<br />

occurring rainfall. It should be stressed that July in 2006 was the hottest month<br />

in this part of Poland during the past 200 years – the average temperature reached<br />

more than 23.5°C.<br />

Fig. 2. Monthly temperatures during vegetation. Long-term: average in the period of<br />

1961–1990<br />

2 pav. Mënesio temperatûrø vidurkis per vegetacijà. Daugiameèiai – vidutiniðkai per<br />

1961–1990 metus<br />

324


Results. The results of the experiments show clearly what effect weather conditions<br />

produced on the yield of protein obtained from each pea cultivar tested. Let<br />

us not forget that the volume of protein yields was a product of two traits, i.e. seed<br />

yield volume and per cent concentration of protein in seeds, both under the d<strong>ir</strong>ect<br />

influence of weather conditions, rather than an intrinsic characteristic. Those two<br />

traits significantly varied between the years of the trial, showing a diverse d<strong>ir</strong>ection<br />

of modification. On the one hand, the mean seed yield volume for all the four pea<br />

cultivars was higher in the f<strong>ir</strong>st two years (4.38 and 4.32 dt/ha, respectively), decreasing<br />

considerably in the th<strong>ir</strong>d year (down to 3.11 dt/ha). On the other hand, the<br />

relative protein content in pea seeds was the highest in the last year of the trial<br />

(<strong>25</strong>.3%), which was considerably higher than in the f<strong>ir</strong>st two years (20.9 and 23.9%,<br />

respectively) (Tables 1 and 2). This means that the less favourable weather inhibited<br />

synthesis of non-protein compounds in pea seeds to a slightly larger extent than that<br />

of protein.<br />

Year<br />

Metai<br />

Table 1. Yield of pea seeds. Baùcyny, 2004–2006<br />

1 lentelë. Þ<strong>ir</strong>niø sëklø derlius. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Mean of<br />

cultivars<br />

Veislës vidurkis<br />

2004 4.48 4.61 3.49 4.95 4.38<br />

2005 4.52 4.39 3.50 4.87 4.32<br />

2006 3.35 3.21 2.83 3.03 3.11<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.34; interaction of cultivar<br />

and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,34; veisliø <strong>ir</strong> metø –<br />

neesminiai.<br />

Table 2. Content of total protein in pea seed. Baùcyny, 2004–2006<br />

2 lentelë. Suminis baltymø kiekis þ<strong>ir</strong>niø sëklose. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

Mean of<br />

cultivars<br />

Veislës vidurkis<br />

Year<br />

Metai ‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

%<br />

2004 20.5 20.5 21.3 21.3 20.9<br />

2005 22.5 22.8 <strong>25</strong>.5 24.8 23.9<br />

2006 23.7 23.5 27.5 26.5 <strong>25</strong>.3<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.09; interaction of<br />

cultivar and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,09; veisliø <strong>ir</strong><br />

metø – neesminiai.<br />

3<strong>25</strong>


The variability in the seed yields obtained in the consecutive years of the experiment<br />

was significantly higher than that of the relative protein content in seed mass,<br />

which meant that the protein yield was positively correlated with the yield of seeds,<br />

depending on the changeable weather conditions. In other words, higher seed yield<br />

well compensated for the depressed relative protein yield (Table 3).<br />

Table 3. Total protein yield in pea seed. Baùcyny, 2004–2006<br />

3 lentelë. Suminis baltymø þ<strong>ir</strong>niø sëklose derlius. Baùcyny, 2004–2006 m.<br />

Cultivar<br />

Veislë<br />

Mean of<br />

Year<br />

cultivars<br />

Metai ‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Veislës vidurkis<br />

2004 0.918 0.945 0.743 1.054 0.915<br />

2005 1.017 1.001 0.893 1.208 1.032<br />

2006 0.794 0.754 0.778 0.803 0.787<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); years – 0.23; interaction of cultivar<br />

and years – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø neesminiai, tarp metø – 0,23; veisliø <strong>ir</strong> metø –<br />

neesminiai.<br />

Comparing the cultivars, it needs to be said that the highest relative decline in<br />

yields in the th<strong>ir</strong>d year of the experiment was recorded for cv. ‘Eurika’ and ‘Wenus’<br />

(Fig. 3), although the increase in the relative content of protein compensated this<br />

loss, especially in the case of cv. ‘Eurika’, whose relative protein yield in the th<strong>ir</strong>d<br />

year of the experiment was the highest among all the cultivars tested (Table 3).<br />

Fig. 3. Variation of yield of the pea seed (yield in 2004 = 100%)<br />

3 pav. Þ<strong>ir</strong>niø sëklø derliaus kintamumas (2004 m. derlius = 100%)<br />

The application of seed dressing chemicals was an experimental variable, which<br />

was independent from weather conditions. The response of pea seed yielding to the<br />

preparations used was clearly evident and statistically significant in years. Versus the<br />

control plots, where no seed dressing treatments were conducted, the protein yield<br />

obtained was much higher. Such correlation occurred <strong>ir</strong>respective of weather conditions,<br />

in all the years of the trial and for all the cultivars. The increased seed mass<br />

attributed to the application of the seed dressing chemicals was caused by the pro-<br />

326


tective action of the latter, which inhibited the development of pathogenic organisms<br />

and pests. Three preparations, which offered complex protection of the crops, were<br />

tested in the present study: Sarfun and Funaben to control plant diseases and Super<br />

Homai to control diseases and pests. In comparison with the control plots, the plots<br />

where the above preparations had been applied revealed much weaker negative effects<br />

on the growth and development of pea plants caused mainly by such diseases<br />

as cochyta blight (Ascochita pinodest) and fungal diseases evoked by Fusarium spp.<br />

Less severe damage was caused by plant pests, including pea moth (Laspeyresia<br />

nigricana Steph), pea beetle (Bruchus pisorum L.), weevils (Sitona L.) and pea<br />

aphid (Acyrthosiphon pisum Harris).<br />

As mentioned before, the volume of protein yield depended on the seed yield<br />

mass and its relative protein content. The effect of the seed dressing preparations<br />

consisted mainly in raising the seed yield, whereas the modification of the relative<br />

protein content in seeds, albeit unid<strong>ir</strong>ectional (the largest change occurred when<br />

Super Homai had been applied) was statistically non-significant.<br />

While analysing the potential capability of the cultivars to accumulate protein in<br />

seeds, it appeared to be the highest for the field cultivar ‘Eurika’, followed by two<br />

edible varieties ‘Brylant’ and ‘Wenus’. The lowest protein mass per plot area unit<br />

was determined for the field cultivar ‘Marych’, which was attributed to the lowest<br />

total yield of seeds, as the relative protein content in the seeds of this cultivar was the<br />

highest among the four pea varieties (Tables 4, 5).<br />

Table 4 Yield of pea seed in relationship to the seed dressing chemicals. Baùcyny,<br />

2004–2006<br />

4 lentelë. Þ<strong>ir</strong>niø sëklø apdorojimo cheminiais preparatais poveikis sëklø derliui.<br />

Baùcyny, 2004–2006 m.<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

No seed dressing chemicals<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

t ha -1<br />

Mean<br />

Vidurkis<br />

Sëklos neapdorotos 3.51 3.35 2.87 3.73 3.36<br />

Sarfun / Funaben 4.18 4.<strong>25</strong> 3.30 4.39 4.03<br />

Super Homai 4.59 4.57 3.64 4.73 4.38<br />

Mean / Vidurkis 4.09 4.06 3.27 4.28<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); seed dressing chemicals – n.s.;<br />

interaction of cultivar and seed dressing chemicals – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø,<br />

tarp sëklø apdorojimo cheminiais preparatais, tarp veisliø <strong>ir</strong> apdorojimo cheminiais<br />

preparatais sàveikos neesminiai.<br />

327


Table 5 Contents of total protein in pea seed in relationship to the seed dressing<br />

chemicals<br />

5 lentelë. Bendrøjø baltymø koncentracijos þ<strong>ir</strong>niø sëklose priklausomumas nuo sëklø<br />

apdorojimo cheminiais preparatais<br />

Seed dressing chemicals<br />

Sëklø apdorojimas cheminiais<br />

preparatais<br />

Cultivar<br />

Veislë<br />

‘Brylant’ ‘Wenus’ ‘Marych’ ‘Eurika’<br />

Mean<br />

Vidurkis<br />

%<br />

No seed dressing chemicals<br />

Sëklos neapdorotos 21.6 21.9 24.4 23.8 22.9<br />

Sarfun / Funaben 22.5 22.4 24.8 24.4 23.5<br />

Super Homai 22.6 22.7 <strong>25</strong>.2 24.5 23.7<br />

Mean / Vidurkis 22.2 22.3 24.8 24.2<br />

LSD (p = 0.05) for: cultivar – n.s. (not significant differences); seed dressing chemicals – n.s.;<br />

interaction of cultivar and seed dressing chemicals – n.s. / R 05<br />

: sk<strong>ir</strong>tumai tarp veisliø,<br />

tarp sëklø apdorojimo cheminiais preparatais, tarp veisliø <strong>ir</strong> apdorojimo cheminiais<br />

preparatais sàveikos neesminiai.<br />

Discussion. The main source of plant protein, which is a staple nutrient in<br />

foodstuffs, is found in leguminous plants, including pea, which are cultivated all<br />

over the world. At present, it is recommended to increase the share of plant protein<br />

in human diets. The content of this nutrient in leguminous plants is diverse and<br />

depends on a plant species, genetic traits of cultivars and the course of the weather<br />

conditions during the vegetative season. Such a strong response of pea to changeable<br />

weather conditions has negative consequences for farmers. It is perceived as a<br />

problem in many countries (Alvino and Leone, 1993; Martin et al., 1994; Fougereus<br />

and Dore, 1997). In Poland, Jasiñska and Kotecki (1994), Kotecki (1990), Pisulewska<br />

(1993) conf<strong>ir</strong>m that both seed yield and protein content in seeds, apart from<br />

genetic traits of crops, also depend on climatic conditions, which prevail during the<br />

growth and development of plants. The present study has clearly verified this hypothesis.<br />

Slightly different moisture and temperature conditions, which occurred in<br />

each year of the experiment, caused a significant difference in the content of protein<br />

in the seeds of four seed pea cultivars. The trial has also demonstrated a positive<br />

correlation between the yield of seeds and the protein yield, which is in accord with<br />

other researches (Úwiêcicki and Úwiêcicki, 1981). The lowest total protein content<br />

in the seeds of all the four pea cultivars was determined in 2004; it was 3% lower<br />

than in 2005 and 4.2% lower than in 2006. Jasiñska and Kotecki (1994) show that<br />

differences in the content of protein caused by climatic factors can range within<br />

4.5%. The differences recorded hereby in the content of total protein in pea seeds<br />

were caused, apart from genetic traits, by an immediate influence of weather conditions<br />

as well as an ind<strong>ir</strong>ect influence of seed dressing chemicals applied. The difference<br />

to the advantage of seed dressing preparations, in relative values, was ca 2%,<br />

but turned out to be statistically non-significant. The results reported by Kolasiñski<br />

and Grzelak (1993) and Kolasiñski (1997) show that while selecting and applying<br />

328


seed dressing chemicals it is necessary to know what response they can cause in<br />

seeds of various crops. This study did not reveal any negative impact of the chemicals<br />

applied on seed quality, vigour or emergence.<br />

Conclusions. 1. The analysis of the climatic conditions and seed dressing chemicals<br />

contained in the present study, on the content and yield of total protein in<br />

seeds of several pea cultivars enables us to draw the following conclusions:<br />

2. Changeable weather conditions significantly influenced the content and yield<br />

of total protein in seed of four pea cultivars examined. The accumulation of protein<br />

in seeds and increase in the seed mass obtained per surface area unit were favoured<br />

by higher temperature during the vegetative season, moderate rainfall and, as a result,<br />

more sunlight.<br />

3. Inhibition of fungal diseases and infestation by plant pests caused by the<br />

application of seed dressing resulted mainly in a considerable increase in the seed<br />

mass per surface area unit. This fact, along with the statistically non-significant<br />

effect of the seed dressing chemicals applied on the relative protein content, meant<br />

that a considerable increase in the mass of protein per surface area unit was obtained<br />

versus the control plots.<br />

4. Four pea cultivars tested showed statistically conf<strong>ir</strong>med variation in the capability<br />

to accumulate protein. Two field cultivars, ‘Eurika’ and ‘Marych’, showed<br />

particularly high potential for protein accumulation, although in the former cultivar it<br />

consisted mainly of its ability to accumulate relatively high quantities of protein in<br />

seed mass.<br />

Gauta 2006-11-09<br />

Parengta spausdinti 2006-12-11<br />

References<br />

1. Alvino A., Leone A. Response to low soil water potential in pea genotypes (Pisum<br />

sativum L.) with different leaf morphology // Scientia Hort. 1993. Vol. 53. P. 21–34.<br />

2. Andrzejewska J., Wiatr K., Pilarczyk W. Wartoúã gospodarcza wybranych odmian<br />

grochu siewnego (Pisum sativum L.) na glebach kompleksu ýytniego bardzo dobrego //<br />

Acta Sci. Pol., Agricultura. 2002. T. 1(1). P. 59–72.<br />

3. Fougereus J. A., Dore T. Water stress during reproductive stages affects see and<br />

yield of pea (Pisum sativum L.). Crop. Sci. 1997. 37(4) s. P. 1247–1<strong>25</strong>2.<br />

4. Jasiñska Z., Kotecki A. Roúliny stràczkowe. PWN, Warszawa, 1994.<br />

5. Kotecki A. Wpùyw ukùadu warunków wilgotnoúciowych i termicznych na plonowanie<br />

grochu siewnego odmiany Kaliski // Zesz. Nauk. AR we Wrocùawiu, Rolnictwo,<br />

1990. T. LII. S. 69–82.<br />

6. Kulig B., Pisulewska E., Zióùek W., Antoniewicz A. Wpùyw sposobu zbioru na<br />

plonowanie i jakoúã biaùka nasion dwóch odmian grochu siewnego // Zesz. Probl. Pos.<br />

Nauk Rol. 1997. Z. 446. S. 147–152.<br />

7. Lampart – Szczapa E. Nasiona roúlin stràczkowych w ýywieniu czùowieka wartoúã<br />

biologiczna i technologiczna // Zesz. Probl. Pos. Nauk Roln. 1997. Z. 446. S. 61–81.<br />

8. Martyniak S. Oddziaùywanie chemicznych zapraw nasiennych na efektywnoúã<br />

szczepienia roúlin stràczkowych bakteriami symbiotycznymi / Post. w Ochr. Roúl. Poznañ,<br />

2001. T. 41.<br />

329


9. Martin I., Tenorio J. L., Ayerbe L. Yield, growth and water use of conventional<br />

leafless peas in semi-arid env<strong>ir</strong>onments // Crop Sci. 1994. Vol. 34. P. 1576–1583.<br />

10. Pahl H., Hoffmann H. Economics of grain legumes cultivation In the F.R.G. with<br />

special regard to the CAP reform. Proc. and Europ. Conf. Grain Legumes, Copenhagen,<br />

1995. P. 4–5.<br />

11. Pastuszewska B., Ochtabiñska A. Protein value of legume seeds fed to rats as the<br />

only source of protein or in combination with cereals / Proc. 2nd Europ. Grain Legumes,<br />

Copenhagen, 1995. P. 272.<br />

12. Pastuszewska B. Wartoúã pokarmowa nasion roúlin stràczkowych w ýywieniu<br />

zwierzàt // Zesz. Probl.Pos. Nauk Roln.1997. Z. 446. S. 83–94.<br />

13. Pisulewska E. Plonowanie i wartoúã odýywcza biaùka nasion grochu siewnego i<br />

peluszki w zaleýnoúci od dolistnego nawoýenia mikroelementami // Acta. Agrar. et Silv.,<br />

ser.Agr. 1993. T. XXXI. S. 99–105.<br />

14. Szukaùa J., Maciejewski S., Sobiech S. Wpùyw deszczowania i nawoýenia azotowego<br />

na plonowanie bobiku, grochu siewnego i ùubinu biaùego // Zesz. Probl. Post. Nauk<br />

Roln. 1997. Z. 446. S. 247–<strong>25</strong>2.<br />

15. Úwiæcicki W., Swiæcicki W. K. Roúliny stràczkowe êródùem biaùka paszowego.<br />

PWRiL, Warszawa, 1981.<br />

SODININKYSTË IR DARÞININKYSTË. MOKSLO DARBAI. 2006. <strong>25</strong>(4).<br />

METEOROLOGINIØ SÀLYGØ IR SËKLØ APDOROJIMO<br />

CHEMINIAIS PREPARATAIS ÁTAKA ÞIRNIØ DERLIUI IR<br />

BALTYMØ KIEKIUI<br />

B. Szwejkowska, P. Duchovskis<br />

Santrauka<br />

2004–2006 metais atlikti lauko bandymai, siekiant nustatyti meteorologiniø sàlygø<br />

<strong>ir</strong> sëklø apdorojimo cheminiais preparatais átakà áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø derliui <strong>ir</strong><br />

baltymø kaupimuisi. Nustatyta, kad þ<strong>ir</strong>niø derlius <strong>ir</strong> baltymø kiekis jø sëklose ið esmës<br />

priklausë nuo veislës genotipo <strong>ir</strong> atsk<strong>ir</strong>ø metø meteorologiniø sàlygø, ypaè nuo<br />

aukðtesnës temperatûros bei optimalaus apðvietimo. Sëklø apdorojimas áva<strong>ir</strong>iais cheminiais<br />

preparatais ið esmës nedarë átakos þ<strong>ir</strong>niø derliui bei baltymø kiekiui sëklose.<br />

Reikðminiai þodþiai: suminis baltymø kiekis, sëklø apdorojimas cheminiais preparatais,<br />

veislë, þ<strong>ir</strong>niai.<br />

330


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

ÞEMOS TEMPERATÛROS POVEIKIS SUPEROKSIDO<br />

DISMUTAZËS AKTYVUMUI ATSPARIUOSE ÐALNOMS<br />

BULVIØ HIBRIDUOSE<br />

Regina VYÐNIAUSKIENË, Zenonas JANÈYS, Rapolas SPALINSKAS<br />

Botanikos institutas, Þaliøjø eþerø g. 49, LT-08406 Vilnius.<br />

El. paðtas regina.v@botanika.lt<br />

Buvo iðt<strong>ir</strong>ti atspariø ðalnoms Solanum tuberosum L. <strong>ir</strong> S. commersonii Dun. hibridø,<br />

augintø in vitro kultûroje, superoksido dismutazës (SOD) <strong>ir</strong> fotosintetiniø pigmentø<br />

pokyèiai po adaptacijos þema (+6°C) temperatûra. Nustatyti tëviniø formø –<br />

S. commersonii <strong>ir</strong> S. tuberosum – tarprûðiniai SOD izofermentinio spektro sk<strong>ir</strong>tumai.<br />

Hibridai paveldëjo ið recipiento S. tuberosum veislës ‘Matilda’ SOD spektro tipà su 6<br />

izoformomis <strong>ir</strong> ið donoro S. commersonii adaptacijos metu indukuojamà SOD-1 izoformà.<br />

Tarprûðiniø hibridø SOD aktyvumas yra didesnis nei jautrios ðalnoms recipientinës<br />

rûðies S. tuberosum veislës ‘Matilda’, taèiau maþesnis nei S. commersonii<br />

Dun. Po 14 <strong>ir</strong> 21 dienos adaptacijos þema temperatûra visuose augaluose sumaþëjo<br />

fotosintezës pigmentø kiekis, taèiau padidëjo SOD aktyvumas <strong>ir</strong> tik hibride H323<br />

SOD aktyvumas ðiek tiek maþëjo. Galbût hibrido H323 izofermentinio SOD aktyvumo<br />

sumaþëjimas yra ne visai susijæs su ið S. commersonii paveldëtu atsparumu þemai<br />

temperatûrai. Aukðtas H188 hibrido SOD aktyvumo lygis leidþia tikëtis, kad SOD<br />

izofermentai dalyvauja bulviø atsparumo ðalèiui formavimosi procese.<br />

Reikðminiai þodþiai: SOD – superoksido dismutazë, S. commersonii Dun.,<br />

S. tuberosum veislë ‘Matilda’, tarprûðiniai hibridai.<br />

Ávadas. Þemos temperatûros sukeliami augalø paþeidimai daþniausiai pas<strong>ir</strong>eiðkia<br />

laikinais metabolizmo sutrikimais, o minusinës temperatûros sukelia <strong>ir</strong> negráþtamus<br />

pakitimus. Taèiau atsparûs ðalèiui augalai gali atsigauti po p<strong>ir</strong>miniø paþeidimø. Nustatyta,<br />

kad vienø ðalèio indukuojamø Cor (cold regulated) genø grupës koduojami baltymai<br />

apsaugo làstelës membranines struktûras nuo dehidratacijos <strong>ir</strong> t<strong>ir</strong>piø toksinø,<br />

kitos genø grupës koduojami baltymai reaguoja netiesiogiai á ðalèio stresà <strong>ir</strong> tarpininkauja<br />

biocheminiuose <strong>ir</strong> fiziologiniuose procesuose adaptacijos ðalèiui metu (Steponkus,<br />

1998; Shinozaki, Yamaguchi-Shinozaki, 1997). Atsparumas þemai temperatûrai<br />

yra genetiðkai kontroliuojamas procesas, sietinas <strong>ir</strong> su metabolizmo persitvarkymu,<br />

<strong>ir</strong> genø raiðka augalo làstelëse.<br />

Be atsako á ðaltá, augalø genø apsauginëse reakcijose svarbûs <strong>ir</strong> antioksidacinio<br />

streso fermentai. Oksidaciniai paþeidimai, ats<strong>ir</strong>andantys dël neigiamø temperatûrø,<br />

331


daþniausiai susijæs su superoksido radikalø pertekliumi. Superoksido dismutazës (SOD)<br />

izofermentas (EC 1.15.1.1) svarbiausias augalø antioksidacinëse reakcijose, nes paðalina<br />

superoksido radikalus (O 2-<br />

) dismutazës reakcijos metu. Ðiai reakcijai vykstant<br />

susidaro vandenilio peroksidas <strong>ir</strong> deguonis. Vandenilio peroksido perteklius detoksikuojamas<br />

kitø antioksidaciniø fermentø – katalazës <strong>ir</strong> peroksidazës. Antioksidaciniø<br />

izofermentø aktyvumo padidëjimas daþniausiai siejamas su antioksidaciniu augalo<br />

atsaku á sukeltà stresà (Blokhina <strong>ir</strong> kt, 2003). Augalo atsako intensyvumà á oksidaciná<br />

stresà galima nustatyti pagal padidëjusá antioksidaciniø fermentø aktyvumà adaptacijos<br />

metu. Yra duomenø, kad pakankamai didelis antioksidacinis fermentinis aktyvumas<br />

gali apsaugoti augalà nuo oksidacijos paþaidø, tuo padidindamas augalo tolerantiðkumà<br />

stresiniams veiksniams (Foyer, 1994).<br />

Darbo tikslas – iðt<strong>ir</strong>ti tarprûðiniø atspariø ðalnoms bulviø hibridø adaptaciná<br />

þemos temperatûros poveiká antioksidaciniø fermentø aktyvumui. Pagrindiniai uþdaviniai<br />

– nustatyti atspariø ðalnoms somatiniø bulviø hibridø SOD elektroforezinius<br />

spektrus, SOD aktyvumà, palyginti su tëvinëmis formomis <strong>ir</strong> ávertinti galimà SOD<br />

izofermentø dalyvavimà adaptacijos þemai temperatûrai procese.<br />

Tyrimo objektas <strong>ir</strong> metodai. Somatiniai bulviø hibridai yra paveldëjæ ið donoro –<br />

laukinës rûðies Solanum commersonii Dun. genominës DNR fragmentus <strong>ir</strong> ágavæ<br />

atsparumà ðalèiui (Proscevièius, 1987). Atsparios ðalèiui Solanum commersonii Dun.<br />

rûðies <strong>ir</strong> kultûrinës veislës S. tuberosum veislës ‘Matilda’ somatiniai bulviø hibridai<br />

(H188, H323, H269) auginami in vitro sàlygomis. Adaptacijos bandymai atliekami su<br />

trijø savaièiø amþiaus kultûromis: kontroliniai augalai (K) auginami +22°C temperatûroje,<br />

adaptacija (Ad) vyksta +6°C temperatûroje, esant 16/8 val. fotoperiodui.<br />

SOD izofermentiniams tyrimams lapø auginiai imami po 7, 14 <strong>ir</strong> 21 dienø adaptacijos.<br />

SOD iðsk<strong>ir</strong>iamas lapus homogenizuojant Na-K fosfatiniu buferiu, pH 7,8. SOD<br />

elektroforetiðkai frakcionuojamas 4–10% PAAG pagal V. K. Laemmlá (1970). Bendras<br />

SOD aktyvumas buvo nustatomas spektrofotometru. Metodas paremtas SOD<br />

savybe inhibuoti NBT fotocheminæ reakcijà (Beyer, Fridovich 1987).<br />

Baltymo koncentracija apskaièiuojama pagal BSA kalibracinæ kreivæ<br />

(Bradford, 1976). Fotosintetiniai pigmentai nustatomi spektofotometru 100% acetone.<br />

Statistinë analizë atlikta naudojant MS („Microsoft Corporation“) „Exel 2003“<br />

statistinës analizës programiniø priedø paketà.<br />

Rezultatai. T<strong>ir</strong>iant natyviø baltymø elektroforegramas, buvo nustatyti bulviø<br />

superoksido dismutazës (SOD) izofermentiniai profiliai: atsparaus ðalèiui S. commersonii<br />

Dun., jautrios ðalèiui Solanum tuberosum L. veislës ‘Matilda’ <strong>ir</strong> atspariø ðalnoms<br />

H323, H188 hibridø SOD profiliai. Laukinës rûðies S. commersonii SOD spektras<br />

susideda ið keturiø izoformø, kurios buvo paþymëtos SOD-1, SOD-2, SOD-3,<br />

SOD-4 pagal elektroforeziná paslankumà (R f<br />

). Numeracija pradedama anodo link nuo<br />

lëèiausiai judanèios izoformos, kuriø R f<br />

atitinkamai yra 0,30; 0,38; 0,42; 0,48.<br />

Kultûrinës S. tuberosum veislës ‘Matilda’ spektrà sudaro ðeðios SOD izoformos,<br />

paþymëtos SOD-2, SOD-3a, SOD-4, SOD-5, SOD-6, SOD-7, kuriø R f<br />

yra<br />

atitinkamai 0,38; 0,45; 0,48; 0,51; 0,56 <strong>ir</strong> 0,67. Lyginant tëvines formas tarpusavyje,<br />

buvo nustatyta, kad dvi juostos – SOD-2 <strong>ir</strong> SOD-4 – aptinkamos <strong>ir</strong> laukinëje S. commersonii<br />

rûðyje, <strong>ir</strong> kultûrinës rûðies S. tuberosum veislëje ‘Matilda’. Taèiau S. commersonii<br />

spektrui bûdinga SOD-1 izoforma neaptinkama veislës ‘Matilda’ kontrolëje.<br />

332


Pastarojoje aptinkamos, be jau minëtø, dar 3 izoformos: SOD-5, SOD-6 <strong>ir</strong> SOD-7,<br />

kuriø neturi laukinë rûðis S. commersonii. Taigi, elektroforetiðkai buvo nustatyta, kad<br />

ðalnoms atsparûs hibridai H188 <strong>ir</strong> H323 paveldëjo kultûrinës rûðies SOD izoformø<br />

profilá, kuris susideda ið 6 izoformø. Schematiðkai pavaizduota 1 pav., A.<br />

1 pav. Bulviø Solanum commersonii <strong>ir</strong> S. tuberosum <strong>ir</strong> atspariø ðalnoms hibridø SOD<br />

izoformø profiliø schema. A – kontroliniai augalai, B – po 14 dienø adaptacijos (+6°C)<br />

Þymëjimai: S. com. – (S. commersonii), S. tuberosum veislë ‘Matilda’, hibridai: H188 <strong>ir</strong><br />

H323. Panaudotas 10% PAAG.<br />

Fig. 1. SOD isozyme profiles from hybrids of potato Solanum commersonii and S. tuberosum.<br />

SOD izoforms elektoforetic profiles: A – control plants, B – after 14 day adaptation (+6°C)<br />

Designations: S. commersonii- S. com., S. tuberosum cv. ‘Matilda’, hybrids: H188 and H323.<br />

Po 14 dienø adaptacijos indukuojama SOD-1 izoforma hibriduose H188, H323<br />

<strong>ir</strong> tëvinëse formose, taèiau ðios izoformos SOD aktyvumas intensyvesnis S. commersonii<br />

po adaptacijos.<br />

2 pav. SOD izofermentinio aktyvumo pokyèiai po 14 dienø adapacijos bulviø<br />

Solanum tuberosum <strong>ir</strong> S. commersonii hibriduose: takeliai: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum v. ‘Matilda’; 5, 6 – H188; 7, 8 – H323; kontrolës – 1, 3, 5, 7;<br />

adaptacija (+ 6°C) – 2, 4, 6, 8. Naudotas 10% PAAG. Vaizdas revertuotas.<br />

Fig. 2. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids of potato after 14 days after adaptation: Lanes: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum cv. ‘Matilda’; 5, 6 – H188; 7, 8 – H323. Control – 1, 3, 5, 7;<br />

adaptation (+ 6°C)- 2, 4, 6, 8. 10% PAG. Image reversed.<br />

333


Taèiau po 21 dienos adaptacijos SOD-1 izoforma ats<strong>ir</strong>anda <strong>ir</strong> visuose kontroliniuose<br />

augaluose. (3 pav.). Po 21 dienos adaptacijos S. commersonii padidëja SOD-5<br />

izoformos aktyvumas. Tikriausiai izoformos SOD-1 sintezë susijusi ne tik su adaptacijos<br />

procesais, bet <strong>ir</strong> su augalo senëjimu.<br />

3 pav. SOD izofermentinio aktyvumo pokyèiai po 21 dienos adaptacijos Solanum<br />

tuberosum <strong>ir</strong> S. commersonii hibriduose: takeliai: 1, 2 – S. commersonii;<br />

3, 4 – S. tuberosum v. ‘Matilda’; 5, 6 – H323; 7, 8 – H188; 9, 10 – H269;<br />

11, 12 – H545; 13, 14 – H515; kontrolës – 1, 3, 5, 7, 9, 11, 13;<br />

adaptacija (+ 6°C) – 2, 4, 6, 8, 10, 12. Vaizdas revertuotas.<br />

Fig. 3. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids after 21 days after adaptation: Lanes: 1, 2 – S. commersonii; 3, 4 – S. tuberosum cv.<br />

‘Matilda’; 5, 6 – H188; 7, 8 – H323;. Control – 1, 3, 5, 7 9, 11, 13, 15; adaptation (+ 6°C) –<br />

2, 4, 6, 8, 10, 12, 14. Image reversed.<br />

T<strong>ir</strong>dami bendràjá SOD aktyvumà, nustatëme, kad po 14 <strong>ir</strong> 21 dienø adaptacijos<br />

jis padidëja, palyginti su kontrole. Pateiktame 4 pav. matyti, kad SOD aktyvumas<br />

S.commersonii 7 kartus v<strong>ir</strong>ðija kultûrinës S. tuberosum veislës ‘Matilda’ SOD<br />

lygá, o po adaptacijos padidëja net iki 8,5 karto. SOD aktyvumas S. tuberosum<br />

veislës ‘Matilda’ po adaptacijos pakyla beveik dvigubai, bet yra þymiai maþesnis,<br />

palyginti su laukinës S.commersonii SOD aktyvumu. Hibrido H188 po adaptacijos<br />

SOD aktyvumas padidëja, taèiau jo kontrolinis SOD lygis yra beveik 3 kartus didesnis<br />

negu kultûrinës S. tuberosum veislës ‘Matilda’, todël absoliutus atsparaus<br />

hibrido SOD aktyvumo padidëjimas yra triskart didesnis. Kiek netikëtas hibrido<br />

H323 bendro SOD aktyvumo sumaþëjimas po adaptacijos, bet vis tiek hibrido H323<br />

bendras SOD aktyvumo lygis lieka 1,5 karto didesnis negu jautrios S. tuberosum<br />

veislës ‘Matilda’ po adaptacijos <strong>ir</strong> prilygsta atsparaus ðalnoms hibrido H188 kontroliniam<br />

lygiui.<br />

Po 14 dienø poveikio þema temperatûra baltymø kiekis sumaþëjo visuose t<strong>ir</strong>tuose<br />

augaluose. Þymûs yra baltymø kiekio svyravimai tarp rûðiø. Ypaè jautriai reagavo<br />

á temperatûros sumaþëjimà S. commersonii augalai – baltymø kiekis sumaþëjo 2,5<br />

karto, o hibridø adaptacijos poveikis nebuvo toks ryðkus.<br />

334


4 pav. SOD aktyvumo <strong>ir</strong> baltymø kiekio pokyèiai po 14 dienø adapacijos Solanum<br />

tuberosum <strong>ir</strong> S. commersonii <strong>ir</strong> atspariuose ðalnoms hibriduose<br />

Þymëjimai: kontrolës: S. com. K – S. commersonii; S. tub. – S. tuberosum ‘Matilda’ K;<br />

hibridai – H323 K, H188 K; adaptacija: S. com. Ad – S. commersonii, S.tub. ‘Matilda’<br />

Ad S tuberosum; hibridai: H323 Ad, H188 Ad; SOD aktyvumas, nM min - ¹ g - ¹<br />

þalios biomasës. Baltymø kiekis, mg g -1 þalios biomasës.<br />

Fig. 4. Changes of SOD isozyme activity from Solanum tuberosum and S. commersonii<br />

hybrids after 14 days after adaptation. Designation: control - S. commersonii- S. com. K,<br />

S. tuberosum – S. tub. ‘Matilda’ K, hybrids - H323 K, H188 K; adaptacion - S. commersonii –<br />

S. com. Ad, S. tuberosum – S. tub. ‘Matilda’ Ad; hybrids – H323 Ad, H188 Ad. SOD activity,<br />

nM min - ¹ g - ¹ f.wt. Protein, mg g -1 f.w.; f.w. – fresh weight.<br />

Taigi, bendras SOD aktyvumo tyrimas rodo, kad laukinës S. commersonii <strong>ir</strong> kultûrinës<br />

S. tuberosum veislës ‘Matilda’ <strong>ir</strong> jø atsparaus hibrido H188 fermentinës sistemos<br />

aktyvumo padidëjimas, indukuojamas þema teigiama temperatûra, yra proporcingas, o<br />

sk<strong>ir</strong>tumai kiekybiniai, taèiau H323 hibrido SOD aktyvumas adaptacijos metu maþëja.<br />

T<strong>ir</strong>iant fotosintezës pigmentø pokyèius adaptacijos metu, nustatyta, kad jø kiekis<br />

visø variantø bulvëse maþëja, iðskyrus hibrido H 323 chlorofilà b (1 lentelë).<br />

1 lentelë. Bulviø Solanum tuberosum <strong>ir</strong> S. commersonii atspariø ðalnoms hibridø<br />

adaptacijos þema temperatûra poveikis fotosintetiniø pigmentø kiekiui augalø lapuose<br />

Table 1. Low temperature influence on pigments concentration in the leaves of potato<br />

S. tuberosum and S. commersonii hybrids<br />

Pavadinimas<br />

Nomination<br />

Pigmentai, mg g - ¹ þ. m<br />

Pigments, mg g - ¹f. w<br />

karotinai<br />

ChA<br />

ChB<br />

carotines<br />

S. com 0,505 ± 0,024 0,176 ± 0,014 0,226 ± 0,013<br />

S. com ad 0,<strong>25</strong>3 ± 0,007 0,089 ± 0,008 0,120 ± 0,001<br />

‘Matilda’ 0,341 ± 0,119 0,1<strong>25</strong> ± 0,042 0,152 ± 0,056<br />

‘Matilda’ ad 0,244 ± 0,005 0,108 ± 0,010 0,116 ± 0,002<br />

H 323 0,284 ± 0,022 0,086 ± 0,013 0,121 ± 0,009<br />

H 323 ad 0,265 ± 0,027 0,112 ± 0,011 0,110 ± 0,015<br />

H 188 0,577 ± 0,053 0,176 ± 0,0<strong>25</strong> 0,239 ± 0,021<br />

H 188 ad 0,388 ± 0,018 0,146 ± 0,014 0,174 ± 0,002<br />

Paaiðkinimai: ChA – chlorofilas a, ChB – chlorofilas b / Designation. Chlorophyll – ChA,<br />

chlorophyll b – Ch<br />

335


Pateikti duomenys rodo, kad S. commersonii jautriausiai reaguoja á þemas teigiamas<br />

temperatûras visais t<strong>ir</strong>tais rodikliais <strong>ir</strong> ChA, ChB beveik siekia 50 proc. Tas<br />

pats pasakytina apie atsparø hibridà H188. Taèiau H323 ChA <strong>ir</strong> karotino kiekio sumaþëjimas<br />

neþymus (nesiekë 10 proc.), nors ChB kiekis padidëjo net 30 proc. Taèiau<br />

H188 ChA, ChB <strong>ir</strong> karotinø kiekis prilygsta laukinës rûðies S. comersonii pigmentø<br />

kiekiui <strong>ir</strong> net didesnis uþ já.<br />

Aptarimas. T<strong>ir</strong>dami bulviø Solanum commersonii <strong>ir</strong> S. tuberosum SOD izoformø<br />

spektrus, aptikome, kad jie yra sk<strong>ir</strong>tingø tipø, o atsparûs ðalnoms hibridai visiðkai<br />

paveldëjo kultûrinës veislës SOD izofermentiná spektro tipà.<br />

Adaptacijos (+6°) metu S. commersonii <strong>ir</strong> atspariuose ðalnoms hibriduose H323<br />

<strong>ir</strong> H188 indukuojamos SOD-1 <strong>ir</strong> SOD-5 izoformos. Pastaroji konstitutyvi – randama<br />

<strong>ir</strong> jautrioje S. tuberosum veislëje ‘Matilda’, <strong>ir</strong> hibridø H323, H188 kontrolëje bei po<br />

adaptacijos. Matyt, SOD-1 izoforma yra paveldëta ið donoro <strong>ir</strong> yra specifinë laukinei<br />

rûðiai. Ðalèio adaptacijos metu indukuojama <strong>ir</strong> SOD-5 izoforma, kurios aktyvumas<br />

labai ryðkus veikiant ðalèiu S. commersonii. Ðià izoformà turi <strong>ir</strong> jautri ðalnoms S. tuberosum<br />

veislë ‘Matilda’, taip pat atsparûs ðalnoms hibridai <strong>ir</strong> kontrolëje, <strong>ir</strong> adaptacijos<br />

þema teigiama temperatûra metu.<br />

Adaptacija suaktyvina augalo apsauginæ sistemà, nes padidëja atsk<strong>ir</strong>ø SOD izoformø<br />

aktyvumas <strong>ir</strong> tëvinëse formose, <strong>ir</strong> hibride H188. Taip pat adaptacija sukelia<br />

fotosintetiniø pigmentø – chlorofilø a, b <strong>ir</strong> karotinoidø kiekio sumaþëjimà. Kitø autoriø<br />

duomenimis, þemos teigiamos temperatros kukurûzuose <strong>ir</strong> ðpinatuose sukelia fotosintezës<br />

pigmentø kiekio sumaþëjimà, kuris tiesiogiai koreliuoja su antioksidaciniø<br />

fermentø aktyvumo padidëjimu. Tai pagrindþia prielaidà, kad pakankamai didelis antioksidacinis<br />

aktyvumas gali apsaugoti augalà nuo oksidacijos paþaidø, esant stresams,<br />

todël <strong>ir</strong> padidëja tolerantiðkumas tam veiksniui.<br />

Atspariame ðalèiui hibride H323 (kitaip negu H188) antioksidacinis SOD aktyvumas<br />

maþëja, nors iðlieka aukðtesnis negu jautrios ðalnoms kultûrinës veislës ‘Matilda’.<br />

Þema temperatûra slopina fotosintezës procesà, tuo maþindama <strong>ir</strong> chlorofilo a,<br />

<strong>ir</strong> karotinoidø kieká. Taèiau staigmenà pateikia hibridas H323 – chlorofilo b sintezë<br />

þymiai padidëja. Taigi, apibendrinant SOD aktyvumo <strong>ir</strong> fotosintetiniø pigmentø tyrimø<br />

duomenis adaptacijos metu, galima teigti, kad chlorofilo b sintezë atv<strong>ir</strong>kðèiai susijusi<br />

su SOD sinteze atspariame H323 hibride. Taèiau, kaip matyti ið ankstesniø<br />

tyrimø, abiejø ðiø hibridø atsparumo ðalèiui lygis aukðtas <strong>ir</strong> jie pakelia po adaptacijos<br />

net iki -5°C ðalnas (Proscevièius <strong>ir</strong> kt., 1998). Galbût hibrido H323 antioksidacinis<br />

SOD aktyvumas yra nevisiðkai susijæs su adaptacija. Manytume, kad tai nulemta<br />

hibrido H323 sk<strong>ir</strong>tingos atsparumo ðalèiui reguliacijos. Aukðtas abiejø H188 <strong>ir</strong> H323<br />

hibridø SOD aktyvumo lygis leidþia tikëtis, kad SOD izofermentai dalyvauja bulviø<br />

atsparumo ðalèiui formavimosi procese.<br />

Iðvados. SOD elektroforeziniais tyrimais nustatyti S. commersonii <strong>ir</strong> S. tuberosum<br />

tarprûðiniai SOD izofermentinio profilio sk<strong>ir</strong>tumai. Atsparûs ðalnoms hibridai<br />

paveldëjo ið recipiento S. tuberosum veislës ‘Matilda’ SOD spektro tipà, o ið<br />

donoro – indukuojamà SOD-1 izoformà, priklausanèià indukuojamam atsparumui.<br />

Aukðtas SOD aktyvumo lygis kontroliniuose augaluose <strong>ir</strong> hibride H188 po adaptacijos<br />

leidþia teigti, kad SOD izofermentai dalyvauja bulviø atsparumo formavimosi<br />

ðalèiui procese.<br />

336


Padëka. Ðis darbas buvo remiamas pagal Lietuvos valstybinio mokslo <strong>ir</strong> studijø<br />

fondo ABIOTECHA programà.<br />

Gauta 2006-11-14<br />

Parengta spausdinti 2006-12-11<br />

Literatûra<br />

1. Beauchamp C. O, Fridovich I. Superoxide dismutase: improved assays and an<br />

assay applicable to acrylamide gels // Anal. Biochem. 1971. Vol. 44. P. 276–287.<br />

2. Blokhina O., V<strong>ir</strong>olainen E., Fagerstedt K. V. Antioksidants, Oxidative damage and<br />

oxygen deprivation stress: a review // Annals of Botany. 2003. Vol. 91. P. 179–194.<br />

3. Bradford M. N. A rapid and sensitive method for the quantification of microgram<br />

quantities of protein utilizing the principle of protein–dye binding // Analytical Biochemistry.<br />

1976. Vol. 72. P. 248–<strong>25</strong>7.<br />

4. Foyer C. H., Descourviêres P., Kunert K. J. Protection against oxygen radicals: an<br />

important defence mechanism studied in transgenic plants // Plant Cell Env<strong>ir</strong>on. 1994.<br />

Vol. 17. P. 507–523.<br />

5. Laemmli V. K. Cleavage of structural proteins during the assembly of the head of<br />

bacteriophage T4 // Nature. 1970. Vol. 227. P. 680–685.<br />

6. Levitt J. Responses of plants to env<strong>ir</strong>onmental stress. Chilling, freezing, and high<br />

temperature stresses // Ed 2. Academic Press, New York, 1980. P. 497.<br />

7. Perl A., Perl–Treves R., Galili S., Aviv D., Shalgi E., Malkin S. & Galun E. Enhanced<br />

oxidative–stress defense in transgenic potato expressing tomato Cu,Zn superoxide dismutases<br />

// The Appl. Genet. 1993. Vol. 85. P. 568–576.<br />

8. Proscevièius J., Staðevski Z., Tiunaitienë N., Ganusauskienë R. Interspecific somatic<br />

hybridization between potato Solanum tuberosum L. and S. commersonii Dun.<br />

Biologija. 1998. Vol. 1. P. 68–71.<br />

9. Shinozaki K., Yamaguchi–Shinozaki K. Gene expression and signal transduction in<br />

waterstress response. Plant Physiol. 1997. Vol. 115. P. 327–334.<br />

10. Steponkus P. L., Uemura M., Joseph R. A., Gilmour S. J., Thomoshow M. F. Mode<br />

of action the COR15a gene of the freezing tolerance of Arabidopsis thaliana. // PNAS.<br />

1998. Vol. 95. P. 14570–14575.<br />

SODININKYSTË IR DARÞININKYSTË. SCIENTIFIC ARTICLES. 2006. <strong>25</strong>(4).<br />

IMPACT OF LOW TEMPERATURE ON SUPEROXIDE<br />

DISMUTASE (SOD) ACTIVITY OF FROST RESISTANT<br />

HYBRIDS OF POTATOES<br />

R. Vyðniauskienë, Z. Janèys, R. Spalinskas<br />

Summary<br />

The isoenzymes changes of superoxide dismutase (SOD) and photosynthetic<br />

pigments in frost resistant somatic hybrids of Solanum tuberosum L. and S. com-<br />

337


mersonii Dun. in vitro culture after low (+6°C) temperature adaptation were investigated.<br />

There have discovered interspecific differences of SOD isoenzyme profiles<br />

in paternal forms – S. commersonii, S. tuberosum. The hybrids inherited the SOD<br />

profiles with 6 isoforms from the recipient S. tuberosum cv. ‘Matilda’, while from<br />

donor, a wild species S. commersonii, SOD-1 isoenzymes were inherited. However,<br />

the SOD activity studies showed that SOD activity of the interspecific hybrids was<br />

higher than of S. tuberosum cv. ‘Matilda’, but lower than of S. commersonii Dun.<br />

species. After 14 and 21 days of adaptation in all plants the reduction of photosynthetic<br />

pigments and increase in the SOD activity were observed, but in the hybrid<br />

H323 SOD activity was slightly decreasing. Probably, the reduction of isoenzymatic<br />

SOD activity in the hybrid H323 is not completely related with the adaptation to low<br />

temperature inherited from S. commersonii. High level of SOD activity in the hybrid<br />

H188 allow the statement that, perhaps, SOD isoenzymes participated in the process<br />

of plant adaptation to low temperature.<br />

Key words: SOD – superoxide dismutase, S. commersonii Dun., S. tuberosum<br />

c. ‚Matilda’, interspecific hybrids.<br />

338


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

PRANEÐIMAS SPAUDAI<br />

2006 10 16<br />

VILNIUS<br />

ES LËÐOS INVESTUOJAMOS Á ÞEMËS IR MIÐKØ ÛKIO<br />

STUDENTUS, MOKSLININKUS BEI TYRËJUS<br />

Þemës <strong>ir</strong> miðkø ûkio studentø, mokslininkø bei tyrëjø augalø genø inþinerijos <strong>ir</strong><br />

biotechnologijos srities kvalifikacija keliama investuojant Europos Sàjungos sk<strong>ir</strong>iamos<br />

paramos lëðas. Taip didinamas þemës <strong>ir</strong> miðkø ûkio specialistø konkurencingumas<br />

Europos Sàjungoje bei gebëjimas prisitaikyti d<strong>ir</strong>bti þiniø ekonomikos sàlygomis,<br />

stabdoma potencialiø mokslininkø emigracija <strong>ir</strong> protø nutekëjimas.<br />

Biotechnologijos mokslo þinovø teigimu, ðiuolaikiniams biotechnologiniams augalø<br />

tyrimams vykdyti reikia daug þiniø, kurios savo prigimtimi bûtø keliø biotechnologijos<br />

mokslo ðakø sintezë. Todël savo pajëgas suvienijæ 4 mokslo tyrimo ástaigos –<br />

Biotechnologijos institutas, Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas, Lietuvos<br />

miðkø institutas bei Lietuvos þemd<strong>ir</strong>bystës institutas – vykdo iki 2-jø metø trunkanèius<br />

Europos Sàjungos paramos lëðomis finansuojamus projektus, sk<strong>ir</strong>tus þemës<br />

<strong>ir</strong> miðkø ûkio specialistø kompetencijai didinti biotechnologijos srityje. Tobulinant<br />

aukðèiausios pakopos studentø rengimà þemës <strong>ir</strong> miðkø ûkyje prisideda <strong>ir</strong> Lietuvos<br />

þemës ûkio universitetas.<br />

Jau baigta surengti didþioji dalis augalø genø inþinerijos <strong>ir</strong> biotechnologijos teoriniø<br />

bei praktiniø mokymo kursø, vykdant projektus „Þmoniø iðtekliø kokybës gerinimas<br />

þemës <strong>ir</strong> miðkø ûkio biotechnologiniø tyrimø srityje“ bei „Aukðèiausios studijø<br />

pakopos – magistrantø <strong>ir</strong> doktorantø – rengimas þemës <strong>ir</strong> miðkø ûkio augalø biotechnologijø<br />

srityje“, kuriø kiekvienam ágyvendinti numatyta sk<strong>ir</strong>ti po 1,9 mln. Lt ið Europos<br />

socialinio fondo. Numatyta, kad ðiuos kursus iðklausys po 20 magistrantø <strong>ir</strong><br />

doktorantø bei 40 mokslininkø <strong>ir</strong> kitø tyrëjø, tarp kuriø bûtø tiek pat vyrø <strong>ir</strong> moterø.<br />

Mokymø rengimas sudarë puikias galimybes specialistams artimiau bendrauti, keistis<br />

sukaupta pat<strong>ir</strong>timi <strong>ir</strong> þiniomis, papildyti þinias, susipaþinti su naujausiais tyrimø metodais<br />

bei literatûra. Be to, laukiami rezultatai yra moksliniø tyrimø skaièiaus padidëjimas,<br />

iðvestos naujos augalø veislës.<br />

Projektus ágyvendinant praktiðkai, iðryðkëjo didþiulis aukðtesniosios studijø pakopos<br />

studentø bei mokslininkø <strong>ir</strong> kitø tyrëjø susidomëjimas rengiamais augalø biotechnologijos<br />

mokymais. Iðleistø mokomøjø leidinukø paklausa þymiai v<strong>ir</strong>ðijo ið anksto<br />

planuotà, todël dabar mëginama padidinti jø t<strong>ir</strong>aþà. Rengiamus mokymus aktualiais<br />

339


klausimais lankë ne tik projektus ágyvendinanèiø institucijø atstovai, bet <strong>ir</strong> klausytojai<br />

ið kitø institucijø: Vytauto Didþiojo, Kauno technologijos, Kauno medicinos, Vilniaus<br />

universitetø, Kauno miðkø <strong>ir</strong> aplinkos inþinerijos kolegijos (KMAIK), Miðko genetiniø<br />

iðtekliø, sëklø <strong>ir</strong> sodmenø tarnybos, Augalø genø banko, VÁ „Dubravos eksperimentinë<br />

mokomoji miðkø urëdija“.<br />

Lietuvoje, ágyvendinant 2004-2006 m. BPD 2.5 priemonæ „Þmoniðkøjø iðtekliø<br />

kokybës gerinimas moksliniø tyrimø <strong>ir</strong> inovacijø srityje“, 2005–2007 metø laikotarpiu<br />

vykdomi vienas kità papildantys Europos socialinio fondo finansuojami projektai:<br />

„Þmoniø iðtekliø kokybës gerinimas þemës <strong>ir</strong> miðkø ûkio biotechnologiniø tyrimø<br />

srityje“ <strong>ir</strong> „Aukðèiausios studijø pakopos – magistrantø <strong>ir</strong> doktorantø – rengimas<br />

þemës <strong>ir</strong> miðkø ûkio augalø biotechnologijø srityje“.<br />

Daugiau informacijos: R. Abraitis, projekto vadovas, tel. (8~5) 269 1883,<br />

mob. tel. (8~650) 22895, el.p. Abraitis@ibt.lt;<br />

http://agrobiotech-vs06.ibt.lt, http://agrobiotech-vs05.ibt.lt.<br />

Gauta 2006-11-13<br />

Parengta spausdinti 2006-12-11<br />

340


LIETUVOS SODININKYSTËS IR DARÞININKYSTËS INSTITUTO IR<br />

LIETUVOS ÞEMËS ÛKIO UNIVERSITETO MOKSLO DARBAI.<br />

SODININKYSTË IR DARÞININKYSTË. 2006. <strong>25</strong>(4).<br />

IÐKILUS MOKSLININKAS SODININKAS<br />

ALGIMANTAS KVIKLYS<br />

KRONIKA<br />

2006 m. lapkrièio 23 d. sukanka 70 metø kaip<br />

gimë iðkilus sodininkas <strong>ir</strong> þymus mokslininkas Algimantas<br />

Kviklys, kuris visas savo þinias <strong>ir</strong> jëgas atidavë<br />

Lietuvos sodininkystës mokslo <strong>ir</strong> verslo plëtrai.<br />

Algimantas Kviklys gimë 1936 m. lapkrièio 23 d.<br />

Rokiðkyje, mokytojø ðeimoje. Vëliau su tëvais gyveno<br />

Kaune. 1941 m. ðeima buvo iðtremta á Altajaus<br />

kraðtà, po karo nelegaliai gráþo á Lietuvà. Algimantas<br />

Kviklys 1951–1955 m. mokësi Vilniaus þemës ûkio<br />

technikume <strong>ir</strong> baigë já, o po to vienerius metus studijavo<br />

Lietuvos þemës ûkio akademijoje. Taèiau jausdamas<br />

didelá potrauká sodininkystei, iðvaþiavo á Mièiûrinskà<br />

<strong>ir</strong> ástojo á visasàjunginá Mièiûrinsko sodininkystës<br />

institutà. Baigæs studijas, gráþo á Lietuvà <strong>ir</strong><br />

pradëjo d<strong>ir</strong>bti Vilniaus vaismedþiø veisliø tyrimo<br />

punkto vedëju, kartu dëstë Vilniaus pedagoginiame Algimantas Kviklys<br />

institute.<br />

1963 m. Algimantas Kviklys buvo pakviestas d<strong>ir</strong>bti á Vytënø sodininkystës <strong>ir</strong> darþininkystës<br />

bandymø stotá. Pradþioje bandymø stotyje d<strong>ir</strong>bo jaunesniuoju, vëliau – vyresniuoju<br />

moksliniu bendradarbiu. 1971 m. Algimantas Kviklys visasàjunginiame Mièiûrinsko<br />

sodininkystës institute apgynë þemës ûkio mokslø kandidato disertacijà<br />

tema „Vegetatyviniai poskiepiai <strong>ir</strong> jø dauginimas Lietuvos TSR“. Kaip gabus <strong>ir</strong> energingas<br />

darbuotojas 1972 m. buvo pask<strong>ir</strong>tas vadovauti Sodø agrotechnikos skyriui,<br />

kuriam sëkmingai vadovavo dvideðimt metø. Jo vadovavimo dëka Sodininkystës technologijø<br />

skyrius tapo vienu aktyviausiø skyriø tuometinëje bandymø stotyje, o vëliau –<br />

<strong>ir</strong> institute. Skyrius iðsiplëtë iki 12 mokslo darbuotojø. Skyriaus mokslininkai ne tik<br />

tradiciðkai tyrë sëklavaisiø <strong>ir</strong> kaulavaisiø sodø veisimo <strong>ir</strong> prieþiûros technologijas, bet<br />

kûrë <strong>ir</strong> uoginiø augalø verslinio auginimo technologijas. Skyriaus vedëjo Algimanto<br />

Kviklio didelës kompetencijos sodininkystës mokslo <strong>ir</strong> verslo srityje bei plaèiø paþiûrø<br />

<strong>ir</strong> nenuilstamos energijos dëka jo vadovaujamo skyriaus mokslininkø kolektyvas<br />

visada sprendë tuo laikotarpiu labai svarbius sodininkystës <strong>ir</strong> uogininkystës technologinius<br />

klausimus. Tyrimø rezultatai buvo reikalingi <strong>ir</strong> sparèiai besipleèianèiai mëgëjiðkai<br />

sodininkystei, <strong>ir</strong> verslinei sodininkystei, kuri buvo plëtojama tuo laikotarpiu gan<br />

paþangiuose specializuotuose sodininkystës ûkiuose.<br />

341


Algimanto Kviklio mokslinë t<strong>ir</strong>iamoji veikla prasidëjo dar studijuojant visasàjunginiame<br />

Mièiûrinsko sodininkystës institute. P<strong>ir</strong>mieji moksliniai tyrimai <strong>ir</strong> p<strong>ir</strong>mosios<br />

mokslinës publikacijos, paskelbtos 1960–1961 m. Mièiûrinske <strong>ir</strong> Maskvoje, buvo ið<br />

darþininkystës srities. Buvo t<strong>ir</strong>ta pomidorø auginimo galimybës elektros lauke bei<br />

pomidorø generatyviniø <strong>ir</strong> vegetatyviniø hibridø paveldëjimas <strong>ir</strong> kintamumas. Nors<br />

studijø metais p<strong>ir</strong>muosius tyrimus Algimantas Kviklys atliko darþininkystës srityje,<br />

taèiau jau tuo metu jis buvo susiþavëjæs þemaûge sodininkyste (tuo metu Mièiûrinske<br />

buvo stipri <strong>ir</strong> átakinga prof. Budagovskio þemaûgës sodininkystës mokykla) <strong>ir</strong> ateityje<br />

daugelá savo moksliniø darbø skyrë svarbiausioms mokslinëms problemoms þemaûgës<br />

sodininkystës srityje spræsti bei ðiems sodams propaguoti. Dar d<strong>ir</strong>bdamas<br />

Vilniaus vaismedþiø veisliø tyrimo punkte surinko obelø vegetatyviniø poskiepiø kolekcijà<br />

<strong>ir</strong> 1963 m. jà persikëlë á Vytënø sodininkystës <strong>ir</strong> darþininkystës bandymø stotá.<br />

P<strong>ir</strong>miausia vegetatyviniai obelø poskiepiai buvo t<strong>ir</strong>iami medelyne, daugiausia dëmesio<br />

sk<strong>ir</strong>iant poskiepiø atsparumui ðalèiams bei iðtvermingumui nepalankiomis þiemojimo<br />

sàlygomis. Jau po 1965–1966 m. nepalankios þiemos buvo nustatyta, kad tuo metu<br />

plaèiai plintantis þemaûgis poskiepis B.396 buvo iðtvermingas nepalankioms þiemojimo<br />

sàlygoms, o dauguma MM <strong>ir</strong> M serijos poskiepiø buvo nepakankamai iðtvermingi<br />

ar visai neiðtvermingi. Buvo ieðkoma gerai besiðaknijanèiø poskiepiø <strong>ir</strong> t<strong>ir</strong>iamos jø<br />

ásiðaknijimà gerinanèios priemonës. Iðtyrus sodinukø su vegetatyviniais poskiepiais<br />

augimà medelyne, nustatyta, kad sodinukø kokybë labai priklauso nuo poskiepio augumo.<br />

Baigus tyrimus, patikslinti sodinukø kokybës reikalavimai, atsiþvelgiant á poskiepiø<br />

augumà.<br />

Nuo 1969 m. pradëtas naujas <strong>ir</strong> pats svarbiausias tyrimø etapas – áva<strong>ir</strong>aus augumo<br />

vegetatyviniø poskiepiø tyrimas sode. Ið 17 t<strong>ir</strong>tø áva<strong>ir</strong>aus augumo poskiepiø tuometinës<br />

intensyvios sodininkystës reikalavimus, kai vaismedþiai buvo auginami be<br />

atramø <strong>ir</strong> formuojami aukðtiniais retaðakiais ar artimais natûraliems vainikais, labiausiai<br />

atitiko MM.106 poskiepis. Nustatyta, kad p<strong>ir</strong>maisiais derëjimo metais vaismedþiai<br />

su M.9, B.9 <strong>ir</strong> MM.106 poskiepiais dera 3–5 kartus gausiau negu su sëkliniais<br />

poskiepiais, o septintaisiais–aðtuntaisiais metais – gausiai.<br />

1971–1988 m. buvo t<strong>ir</strong>ta dar 33 vegetatyviniø poskiepiø grupë. Atliekant ðá tyrimà,<br />

1978–1979 m. þiema buvo labai ðalta <strong>ir</strong> besniegë, todël buvo galima ávertinti<br />

vaismedþiø su sk<strong>ir</strong>tingais poskiepiais atsparumà ðalèiui. Po ðaltos þiemos derëjimo<br />

gausumu iðsiskyrë vaismedþiai su tokiais iðtvermingais poskiepiais kaip B.118 <strong>ir</strong> B.545,<br />

nors iki tol gausiau derëjo vaismedþiai su kitais poskiepiais. Vaismedþiai su minëtais<br />

poskiepiais buvo panaðaus augumo kaip <strong>ir</strong> su MM.106, bet po ðaltos þiemos vaismedþiai<br />

su B.118, B.545 poskiepiais derëjo daug gausiau negu su MM.106 poskiepiu:<br />

pastarieji buvo stipriai paðalæ. Ðiø tyrimø rezultatai labai aktualûs <strong>ir</strong> ðiuo metu, nes<br />

veisiant sodus prastesnëse d<strong>ir</strong>vose, derinant poskiepius su silpnesnio augumo veislëmis<br />

ar veisiant þaliavinius sodus, iðtvermingas <strong>ir</strong> produktyvus B.118 poskiepis galëtø<br />

bûti sëkmingai naudojamas <strong>ir</strong> ðiuo metu.<br />

Atliekant poskiepiø tyrimus, visada buvo ieðkoma tokiø poskiepiø, kurie turëtø<br />

pakankamai stiprià ðaknø sistemà <strong>ir</strong> vaismedþiai iðlaikytø gausø derliø be papildomø<br />

atramø. Tai buvo viena ið prieþasèiø, dël kurios neiðplito labai þemi, su silpna ðaknø<br />

sistema poskiepiai, su kuriais vaismedþiams reikia atramø, o plito vidutinio augumo<br />

poskiepiai, su kuriais vaismedþiai galëjo augti <strong>ir</strong> be papildomø atramø. Neatsitiktinai<br />

342


uvo pradëti plaèiai t<strong>ir</strong>ti þemaûgiai tarpininkai. Vyravo nuomonë, kad á ‘Paprastojo<br />

antaninio’ poskiepá áskiepijus þemaûgá tarpininkà, o á já – norimà veislæ, vaismedþiai<br />

bus þemaûgiai, bet turës tv<strong>ir</strong>tà ðaknø sistemà <strong>ir</strong> nereikës palaikomøjø kuolø. Buvo<br />

nustatyta, kad obelims geriausi buvo 10–15 cm ilgio B.9 <strong>ir</strong> 3-3-72 intarpai.<br />

Algimantas Kviklys d<strong>ir</strong>bo ne tik su obelø, bet <strong>ir</strong> su kitø sodo augalø poskiepiais.<br />

Geriausi rezultatai gauti d<strong>ir</strong>bant su svarainiais (Cidonija oblonga) kaip kriauðiø poskiepiais.<br />

Tyrimø pradþioje (1963–1973 m.) buvo t<strong>ir</strong>tos aðtuonios vegetatyviðkai dauginamos<br />

svarainiø formos kaip kriauðiø poskiepiai. Svarbiausias ið jø buvo svarainis A.<br />

T<strong>ir</strong>iant svarainius kaip kriauðiø poskiepius, daug dëmesio buvo sk<strong>ir</strong>iama kriauðiø veisliø<br />

suaugimo su svarainiais anatomijai. Nustatyta, kad ið t<strong>ir</strong>tø gausybës veisliø geriausiai<br />

su svarainiais suaugo ‘Jûratë’, ‘Sonata’ <strong>ir</strong> Nr. 31. Vëliau jos buvo pradëtos naudoti<br />

kaip tarpininkës dauginant þemaûges kriauðes su svarainio poskiepiu. Deja, po 1978–<br />

1979 m. ðaltos þiemos svarainiø kolekcija <strong>ir</strong> kriauðiø su svarainio poskiepiu sodas<br />

iððalo.<br />

Siekiant sukurti þemaûgius <strong>ir</strong> iðtvermingus þiemà kriauðiø poskiepius ið treèiosios<br />

Lietuvoje iðaugusiø svarainiø kartos, kurie sëkmingai perþiemojo 1955–1956 m.<br />

ðaltà þiemà, kai temperatûra buvo nukritusi iki -38°C, buvo atrinkti atsk<strong>ir</strong>i sëkliniai<br />

augalai <strong>ir</strong> padauginti sëklomis kaip kriauðiø poskiepiai. Ðiuo metu ið minëtø sëjinukø<br />

yra atrinkti <strong>ir</strong> registruoti trys K serijos sëkliniai svarainiø poskiepiai, su kuriais Lietuvos<br />

sàlygomis kriauðës gausiai dera <strong>ir</strong> iðaugina geros kokybës vaisius. Taèiau svarbiausia,<br />

kad kriauðës su ðiais registruotais svarainiø poskiepiais yra pakankamai iðtvermingos<br />

þiemà. To negalima pasakyti apie daugumà kitø Europoje plaèiai paplitusiø<br />

svarainiø poskiepiø. Algimantas Kviklys taip pat ieðkojo þemaûgiø poskiepiø ar<br />

vaismedþius þeminanèiø tarpininkø <strong>ir</strong> slyvoms bei treðnëms. Ðiuos darbus perëmë <strong>ir</strong><br />

baigë kiti tyrëjai.<br />

Nors Algimantas Kviklys atliko daug tyrimø, paraðë knygà „Þemaûgiai vaismedþiai“<br />

(1977 m.) <strong>ir</strong> dëjo daug pastangø, kad Lietuvoje iðplistø þemaûgë sodininkystë,<br />

taèiau tuometinës ûkinës <strong>ir</strong> ekonominës sàlygos bei konservatyvus valdþios poþiûris<br />

neleido to padaryti plaèiai. Tarybiniais metais daþni buvo verslinës sodininkystës plëtros<br />

vajai. Kartais bûdavo suplanuojama atsk<strong>ir</strong>uose ûkiuose per metus pasodinti net iki<br />

100 ha naujø sodø. Sparèiai veisiant sodus, daþnai pritrûkdavo sodinukø <strong>ir</strong>, siekiant<br />

vykdyti planus, vaismedþius tekdavo sodinti retai. Tuo laiku kuras buvo pigus, pesticidai<br />

nebrangûs, konkurencija vaisiø rinkoje buvo maþa, todël verslinë sodininkystë<br />

buvo plëtojama labai neintensyviai. Daþnai net <strong>ir</strong> kà tik pasodinti versliniai sodai buvo<br />

prastai priþiûrimi, menkai genimi, neformuojami. Esant tokiai situacijai sodininkystës<br />

versle, daug kapitaliniø ádëjimø <strong>ir</strong> specialiø þiniø reikalaujantys versliniai þemaûgiai<br />

sodai nepaplito. Neatsitiktinai, matydamas esamà sodininkystës verslo padëtá ðalyje <strong>ir</strong><br />

siekdamas paskatinti þemaûgës sodininkystës plëtrà Lietuvoje, Algimantas Kviklys<br />

ëmësi dar vieno þingsnio – iðvertë <strong>ir</strong> pritaikë Lietuvos sàlygoms þymaus Lenkijos<br />

sodininkystës mokslininko A. Mikos knygà „Vaismedþiø <strong>ir</strong> vaiskrûmiø genëjimas“(1987<br />

m.). Tuo laikotarpiu Lenkija, prieðingai negu Tarybø Sàjunga, pradëjo sekti ne Amerikos,<br />

o Vakarø Europos pavyzdþiu – veisë nedidelius, bet labai intensyvius, tankius<br />

þemaûgius sodus, kurie greitai pradëdavo gausiai derëti <strong>ir</strong> pat<strong>ir</strong>tos sodo áveisimo <strong>ir</strong><br />

prieþiûros iðlaidos greitai sugráþdavo. Deja, tik po Algimanto Kviklio m<strong>ir</strong>ties nepriklausomoje<br />

Lietuvoje buvo ryþtingai pasukta þemaûgës sodininkystës plëtros krypti-<br />

343


mi. Lietuvai rengiantis stoti á Europos Sàjungà, ðalies verslinë sodininkystë <strong>ir</strong> sodininkystës<br />

mokslas taip pat buvo pertvarkomi ES pavyzdþiu. Buvo toliau tæsiami <strong>ir</strong> pleèiami<br />

Algimanto Kviklio pradëti þemaûgiø poskiepiø tyrimai (juos atlieka sûnus Darius<br />

Kviklys), árengti nauji labai intensyviø þemaûgiø sodø konstrukcijø, vaismedþiø<br />

vainikø formø, vaisiø kokybës gerinimo bei prameèiavimo maþinimo <strong>ir</strong> kiti su intensyvios<br />

sodininkystës verslu susijæ bandymai.<br />

Algimantas Kviklys, bûdamas vienas þymiausiø medelynø specialistø tuometinëje<br />

Sàjungoje, p<strong>ir</strong>masis praktiðkai pritaikë <strong>ir</strong> iðpopuliarino vaismedþiø akiavimà ne<br />

kaip áprasta, uþkiðant akutæ po þieve, o akutæ priglaudþiant. Akiuojant priglaudimu,<br />

galima akiuoti <strong>ir</strong> plonesnius poskiepius arba kai prastai atðoka poskiepio þievë. Vis tik<br />

svarbiausia, kad akiuojant ðiuo metodu, darbo naðumas padidëja du <strong>ir</strong> daugiau kartø.<br />

Akiavimas priglaudimu buvo pademonstruotas 1976 m. p<strong>ir</strong>majame akiavimo konkurse<br />

Lietuvoje. Vëlesniuose konkursuose ðá akiavimo metodà naudojo jau <strong>ir</strong> kitø medelynø<br />

akiuotojos. Nors visasàjunginiame akiavimo konkurse Lietuvos delegacija áspûdingai<br />

pademonstravo naujàjá akiavimo bûdà <strong>ir</strong> didelá tokio darbo naðumà, taèiau tuometiniai<br />

þymiausi Sàjungos medelynø specialistai nenorëjo to pripaþinti. Vis tik Algimanto<br />

Kviklio pasiûlytas akiavimo bûdas plito <strong>ir</strong> po 10 metø visoje Tarybø Sàjungoje<br />

vaismedþiai buvo akiuojami priglaudþiant akutæ, o ne uþkiðant jà. Tai leido þymiai<br />

padidinti svarbiausio medelyne darbo – akiavimo naðumà.<br />

Algimantas Kviklys buvo didelës erudicijos mokslininkas <strong>ir</strong> vadovaudamas skyriui,<br />

kuriame buvo kuriamos sodininkystës technologijos, jis ne tik tyrinëjo poskiepius<br />

medelyne bei sode, bet domëjosi <strong>ir</strong> visais kitais aktualiausiais sodininkystës klausimais.<br />

Praëjus labai ðaltai <strong>ir</strong> besniegei 1978–1979 m. þiemai, jo iniciatyva Lietuvoje<br />

buvo suorganizuota visasàjunginë mokslinë konferencija, sk<strong>ir</strong>ta sodø paðalimo klausimams<br />

aptarti. Po jos, be kitø moksliniø <strong>ir</strong> populiariø straipsniø, buvo iðleista broðiûra<br />

„Lietuvos sodø paðalimas 1978–1979 metø þiemà <strong>ir</strong> priemonës jø iðtvermingumui<br />

padidinti“ (1982 m.), kurios pagrindinis autorius buvo A. Kviklys.<br />

Kurdami tuometines sodø veisimo <strong>ir</strong> prieþiûros technologijas, A. Kviklys kartu<br />

su kitais skyriaus darbuotojais iðtyrë <strong>ir</strong> sudarë versliniams sodams <strong>ir</strong> uogynams tinkamø<br />

herbicidø naudojimo sistemà. Ðio darbo rezultatas – kartu su L. Kulikausku<br />

paraðyta broðiûra „Herbicidai sodininkystëje“ (1979 m.).<br />

Kilus poreikiui tiksliau ávertinti versliniø sodø mitybà, A. Kviklys kartu su<br />

S. Ðvagþdþiu ádiegë Lietuvoje vaismedþiø mitybos vertinimo ne tik pagal d<strong>ir</strong>vos, bet<br />

<strong>ir</strong> pagal lapø cheminës analizës duomenis sistemà. A. Kviklio pasiûlymu versliniuose<br />

soduose buvo ádiegta srovinë derliaus dorojimo technologija. Kartu su A. Lokcikaite<br />

buvo pradëti labai aktualûs obelø uþuomazgø retinimo, derëjimo optimizavimo bei<br />

vaisiø kokybës gerinimo darbai.<br />

Aðtuntajame praëjusio ðimtmeèio deðimtmetyje buvo atkreiptas dëmesys á uogininkystës<br />

plëtrà specializuotuose versliniuose soduose bei uogynuose. Todël A. Kviklio<br />

iniciatyva, bendradarbiaujant su S. Kutkevièiumi, buvo sukurta <strong>ir</strong> plaèiai versliniuose<br />

uogynuose ádiegta mechanizuota serbentø auginimo <strong>ir</strong> derliaus nuëmimo technologija.<br />

Ði technologija buvo pristatyta mûsø institute suorganizuotoje visasàjunginëje konferencijoje.<br />

Mokslinis ðios technologijos pagrindimas pateiktas S. Kutkevièiaus disertacijoje.<br />

Ði technologija versliniuose serbentynuose plaèiai taikoma <strong>ir</strong> dabar.<br />

344


Kilus avieèiø poreikiui, buvo sukurta mechanizuoto avieèiø dauginimo technologija<br />

<strong>ir</strong> iðplësti avieèiø veisliø bei auginimo technologijos tobulinimo tyrimai, kuriuos<br />

A. Kviklio vadovaujama atliko L. Ðvitraitë-Buskienë.<br />

Buvo pradëti platûs braðkiø auginimo <strong>ir</strong> dauginimo technologijø tobulinimo tyrimai,<br />

ið kuriø rezultatø A. Kviklio vadovaujamas asp<strong>ir</strong>antas N. Uselis paraðë <strong>ir</strong> sëkmingai<br />

apgynë disertacijà tema „Braðkiø dauginimo <strong>ir</strong> auginimo ypatumai Lietuvos TSR“<br />

(1990 m).<br />

A. Kviklio iniciatyva buvo pradëti sodininkystës ekonominiai tyrimai. L. Braþukienë<br />

tyrë pagrindiniø fondø reikðmæ <strong>ir</strong> jø efektyvumo didinimo bûdus specializuotuose<br />

sodininkystës ûkiuose, rengë kapitaliniø iðlaidø normatyvus intensyviems sodams<br />

<strong>ir</strong> uogynams áveisti <strong>ir</strong> priþiûrëti.<br />

Algimantas Kviklys yra paraðæs kelias knygas <strong>ir</strong> iðspausdinæs daugiau kaip 180<br />

moksliniø <strong>ir</strong> populiariø straipsniø. Vieni reikðmingiausiø leidiniø, sk<strong>ir</strong>tø sodininkystës<br />

specialistams, yra knygos „Intensyvios sodø <strong>ir</strong> uogynø auginimo technologijos“<br />

(1986 m.) <strong>ir</strong> „Intensyvus obelø sodas“ (1988 m.). Algimantas Kviklys buvo ðiø<br />

knygø sudarytojas <strong>ir</strong> bendraautorius. Knygoje „Intensyvios sodø <strong>ir</strong> uogynø auginimo<br />

technologijos“ aptarti visi vaisiø <strong>ir</strong> uogø verslinio auginimo aspektai, leidþiantys tuometinëmis<br />

ekonominëmis <strong>ir</strong> organizacinëmis sàlygomis gauti didelius derlius <strong>ir</strong> iðauginti<br />

konkurencingà pagrindiniø Lietuvoje auginamø vaisiø <strong>ir</strong> uogø produkcijà. Knygoje<br />

„Intensyvus obelø sodas“, remiantis ilgameèiais Vytënø bandymø stoties bei<br />

kitø ðaliø mokslo ástaigø tyrimø duomenimis bei patyrimu, apibendrinti intensyviø<br />

sodø áveisimo <strong>ir</strong> prieþiûros pagrindai Lietuvoje. Ðios knygos pradþioje pateiktas intensyvaus<br />

sodo apibûdinimas: intensyvus sodas – tai optimalus ekologiniø sàlygø <strong>ir</strong><br />

veisliø biologinio potencialo panaudojimas parinkus tokias agrotechnines priemones,<br />

kurios padëtø gauti didþiausià <strong>ir</strong> geros kokybës derliø ið ploto vieneto pat<strong>ir</strong>iant<br />

maþiausias (arba racionaliausias) energijos <strong>ir</strong> darbo sànaudos produkcijos vienetui.<br />

Ðis teiginys dar aktualesnis ðiais laikais, praëjus 20 metø, kai labai sumaþëjo darbingø<br />

þmoniø, iðaugo energijos <strong>ir</strong> kitø iðtekliø kainos bei þymiai padidëjo konkurencija<br />

vaisiø rinkoje. Minëta knyga turëjo didelæ reikðmæ tuometinei versliniø sodø plëtrai<br />

ðalyje.<br />

Algimantas Kviklys ne tik d<strong>ir</strong>bo t<strong>ir</strong>iamàjá darbà <strong>ir</strong> vadovavo Sodø agrotechnikos<br />

skyriui, bet <strong>ir</strong> buvo instituto tarybos p<strong>ir</strong>mininkas, metodinës komisijos p<strong>ir</strong>mininkas.<br />

A. Kviklys, kaip mokslininkas, buvo gerai þinomas <strong>ir</strong> Tarybø Sàjungoje. Jis buvo<br />

Visasàjunginës þemës ûkio mokslø akademijos Vakarø skyriaus biuro, Visasàjunginio<br />

sodininkystës instituto metodinës komisijos, Visasàjunginës sodininkystës enciklopedijos<br />

redaktoriø komisijos, Lietuvos sodininkystës draugijos centro valdybos bei<br />

kitø organizacijø narys. Mokëjo rusø, anglø, vokieèiø, lenkø, latviø, ukrainieèiø, bulgarø,<br />

èekø <strong>ir</strong> esperanto kalbas<br />

Algimantas Kviklys buvo didelës erudicijos þymus mokslininkas, visà savo gyvenimà<br />

paðventæs sodininkystës mokslo <strong>ir</strong> verslo plëtrai. Deja, klastinga liga pak<strong>ir</strong>to<br />

mokslininkà paèiame kûrybiniø jëgø þydëjime. Liko neiðspræsta dar daug moksliniø<br />

problemø, neparaðyta daug knygø.<br />

Nobertas USELIS<br />

345<br />

Gauta 2006-10-16<br />

Parengta spausdinti 2006-12-11


ATMINTINË AUTORIAMS, RAÐANTIEMS Á MOKSLO DARBUS<br />

„SODININKYSTË IR DARÞININKYSTË“<br />

Straipsnio rankraðèio pateikimo–priëmimo procedûra<br />

Straipsnius redakcijai gali pateikti bet kurie Lietuvos ar uþsienio ðalies mokslo<br />

darbuotojai bei asmenys, d<strong>ir</strong>bantys moksliná darbà. Ne mokslo darbuotojo<br />

straipsnis turi bûti paraðytas kartu su mokslo darbuotoju.<br />

Rankraðtis redakcijai siunèiamas paðtu dviem egzemplioriais, atspausdintas<br />

kompiuteriu popieriuje, laikantis toliau tekste nurodytø reikalavimø. Pateiktas<br />

straipsnio rankraðtis uþregistruojamas <strong>ir</strong> perduodamas redkolegijos nariui,<br />

kuruojanèiam ðià sritá. Jis ávertina, ar rankraðèio turinys <strong>ir</strong> forma atitinka<br />

svarbiausius periodiniams straipsniams keliamus reikalavimus. Rankraðèiai, kurie<br />

buvo atmesti p<strong>ir</strong>mojo vertinimo metu, su aiðkinamuoju raðtu gràþinami autoriui.<br />

Jeigu straipsnio tinkamumas nekelia abejoniø, redkolegijos narys sk<strong>ir</strong>ia du<br />

recenzentus.<br />

Pataisytà rankraðtá autorius per deðimt dienø turi atsiøsti el. paðtu<br />

arba paðtu redakcijai kartu su elektronine laikmena (diskeliu).<br />

Koks turi bûti rankraðtis:<br />

Struktûra <strong>ir</strong> apimtis<br />

Rankraðèio forma turi atitikti periodiniams moksliniams straipsniams keliamus<br />

reikalavimus. Teksto <strong>ir</strong> jo sudedamøjø daliø seka tokia:<br />

- Straipsnio pavadinimas (ne daugiau kaip 10 þodþiø);<br />

- Autoriaus vardas, pavardë<br />

Vardas raðomas maþosiomis, pavardë – didþiosiomis raidëmis. Jeigu yra<br />

keli autoriai, raðoma maþëjanèia jø autorystës indëlio tvarka.<br />

- Institucija, adresas, elektroninis paðtas<br />

Pagrindinis tekstas<br />

- Santrauka (iki 1400 raðybos þenklø arba <strong>25</strong>0 þodþiø);<br />

Labai glaustai pateikiami tikslai, sàlygos, svarbiausieji rezultatai.<br />

- Reikðminiai þodþiai (ne daugiau kaip 10 þodþiø abëcëlës tvarka);<br />

- Ávadas<br />

Trumpai iðdëstoma nagrinëjama problema, ankstesnieji kitø panaðiø tyrimø<br />

rezultatai, darbo reikalingumas, originalumas. Nurodomas darbo tikslas.<br />

- Tyrimo objektas <strong>ir</strong> metodai<br />

- Rezultatai<br />

Trumpai iðdëstomi tyrimø metu surinkti duomenys, dokumentai (lentelës,<br />

grafikai).<br />

- Aptarimas<br />

346


Aptariami, bet ne kartojami „Rezultatø“ skyrelyje pateikti duomenys,<br />

palyginami su kitø autoriø duomenimis, aiðkinamos t<strong>ir</strong>tø reiðkiniø prieþastys,<br />

keliamos naujos idëjos, hipotezës.<br />

- Iðvados;<br />

- Literatûra<br />

Rekomenduojama skelbti ne maþiau kaip 10 naujausiø raðoma tema<br />

literatûros ðaltiniø.<br />

- Santrauka anglø kalba (600–1400 sp. þenklø)<br />

- Padëka (neprivaloma)<br />

Straipsnio pabaigoje turi bûti autoriaus (-iø) ar kitø uþ straipsná atsakingø<br />

asmenø paraðas (-ai) bei pas<strong>ir</strong>aðymo data.<br />

Straipsniø, paraðytø remiantis netradiciniais bandymø duomenimis <strong>ir</strong> rezultatais<br />

struktûros dalys gali bûti <strong>ir</strong> kitokios.<br />

Straipsnis turi bûti ne daugiau kaip 10–15 puslapiø apimties, áskaitant<br />

lenteles <strong>ir</strong> paveikslus (didesnës apimties straipsniai derinami su redkolegijos<br />

p<strong>ir</strong>mininku).<br />

Teksto parengimas<br />

Straipsnis raðomas lietuviø, anglø ar rusø kalba IBM tipo kompiuteriu,<br />

spausdinamas MO Microsoft WORD for Windows 95; 98; 2000 teksto<br />

redaktoriais TIMES NEW ROMAN 12 dydþio ðriftu, vienoje A 4<br />

formato<br />

(210 x 297 mm) lapo pusëje, atstumas tarp rankraðèio eiluèiø – 1 (single),<br />

teksto po recenzijø – 1,5 (1,5 lines), iðlyginamas ið abiejø pusiø, pateikiamas<br />

elektroninëje laikmenoje – 1,44 MB diskelyje. Paraðèiø plotis v<strong>ir</strong>ðuje <strong>ir</strong><br />

apaèioje – 2 cm, deðinëje – 1,5 cm, ka<strong>ir</strong>ëje – 3 cm.<br />

Paryðkintai (Bold) raðoma straipsnio pavadinimas visomis kalbomis, antraðtës<br />

bei svarbiausieji struktûriniai elementai (santrauka, ávadas, metodai, sàlygos,<br />

rezultatai, diskusija, iðvados, literatûra). Kursyvu (Italic) raðomi lotyniðki<br />

augalø rûðiø, genèiø, ligø, kenkëjø <strong>ir</strong> mikroorganizmø pavadinimai. Augalø veisliø<br />

pavadinimai raðomi viengubose kabutëse.<br />

Cituojamas ðaltinis tekste nurodomas lenktiniuose skliaustuose (autoriaus<br />

pavardë, metai).<br />

Lentelës<br />

Lentelëse neturëtø bûti kartojami paveiksluose ar kitose iliustracijose pateikti<br />

duomenys.<br />

Lenteliø tekstas raðomas lietuviø <strong>ir</strong> anglø kalbomis. Jeigu straipsnis paraðytas<br />

rusø kalba – rusø <strong>ir</strong> anglø. Jei lietuviðkas <strong>ir</strong> angliðkas tekstas talpinamas<br />

vienoje eilutëje, tarp jø dedamas þenklas /. Lentelës teksto dalys vertikaliomis <strong>ir</strong><br />

347


horizontaliomis linijomis neatsk<strong>ir</strong>iamos. Horizontaliomis linijomis atsk<strong>ir</strong>iamos tik<br />

lentelës metrikos dalys bei lentelës pabaiga. Lentelës padëtis puslapyje tik vertikali<br />

(Portrait).<br />

Bandymø variantai lentelëse neturi bûti þymimi skaièiais, sudëtingomis<br />

santrumpomis, o pateikiami visa arba suprantamai sutrumpinta apraðo forma.<br />

Statistiniai duomenys, skaièiai <strong>ir</strong> skaitmenys<br />

Pageidautina detaliai apraðyti taikytus tyrimø metodus <strong>ir</strong> nurodyti jø originalius<br />

ðaltinius. Labai svarbi informacija apie lauko, vegetaciniø <strong>ir</strong> kt. bandymø iðdëstymo<br />

schemà <strong>ir</strong> jos pas<strong>ir</strong>inkimo motyvus. Lentelëse <strong>ir</strong> paveiksluose pateikiami duomenys<br />

privalo bûti statistiðkai apdoroti: apskaièiuoti vidurkiai, jø kitimo paklaidos,<br />

ryðio <strong>ir</strong> jo tikslumo koeficientai, esminio sk<strong>ir</strong>tumo ribos (priimtiniausia apskaièiuoti<br />

95% arba <strong>ir</strong> – 90,99% tikimybës lygiu) <strong>ir</strong> pan. Rodikliø þymëjimo santrumpos<br />

turi bûti paaiðkintos, jeigu jos neatitinka tarptautiniø ISO standartø [13].<br />

Reikðminiø skaièiø turi bûti ne daugiau negu leidþia bandymo metodas. Variantø<br />

vidurkiai turi bûti suapvalinti iki 1/10, apskaièiuotos jø standartinës paklaidos.<br />

Kieká þymintys skaièiai raðomi arabiðkais skaitmenimis, pvz.: 15 tonø, o eilæ<br />

þymintys gali bûti raðomi <strong>ir</strong> romëniðkai, <strong>ir</strong> arabiðkai, pvz.: XX amþius, 2 pavyzdys.<br />

Skaièiai nuo vieneto iki devyniø raðomi þodþiu, iðskyrus, kai jie reiðkia<br />

matavimo vienetø dydá (pvz.: 5 km, bet „trys variantai“) arba yra prasminë skaièiø<br />

seka (pvz.: 6, 9, 12 tarpsnis). Tarp daugiaþenkliø skaièiø klasiø paliekamas tarpelis,<br />

pvz., 42 351. Procentai þymimi %, kai reiðkia konkretø skaièiø, taèiau „procentiniai<br />

vienetai“ raðomi tik þodþiu. Deðimtainës trupmenos dalys nuo sveikøjø skaièiø<br />

atsk<strong>ir</strong>iamos kableliu.<br />

Paveikslai<br />

Visa iliustracinë medþiaga - brëþiniai, grafikai, diagramos, fotografijos, pieðiniai<br />

<strong>ir</strong> kt. – vadinami bendru paveikslø vardu. Tekstas juose raðomas lietuviø <strong>ir</strong> anglø<br />

kalbomis.<br />

Paveikslai turi bûti nespalvoti, padaryti Microsoft Office 95, 98, 2000<br />

paketo elektroninëje lentelëje EXCEL arba naudojantis kitomis ðio paketo<br />

programomis <strong>ir</strong> pateikiami straipsnio tekste bei atsk<strong>ir</strong>a EXCEL byla<br />

diskelyje. Ranka pieðti, braiþyti, kopijuoti paveikslai nepriimami arba jie<br />

perdaromi pagal galiojanèius maketavimo ákainius. Redakcija pasilieka teisæ keisti<br />

jø formatà pagal straipsnio ar viso leidinio dizainà.<br />

Áraðai <strong>ir</strong> simboliai paveiksluose turi bûti paraðyti ne maþesniu kaip 10 ðrifto<br />

dydþiu. Paveikslø blokø dalys turi bûti suþymëtos raidëmis a, b, c <strong>ir</strong> t.t.<br />

Literatûros sàraðas<br />

Á literatûros sàraðà gali bûti átraukiama:<br />

- straipsniai, atspausdinti moksliniuose periodiniuose þurnaluose,<br />

moksliniuose recenzuotuose leidiniuose ( knygose, monografijose), moksliniø<br />

348


konferencijø, simpoziumø, kuriø medþiaga buvo recenzuota arba struktûros <strong>ir</strong><br />

apimties poþiûriu atitinka moksliniø periodiniø leidiniø straipsniø reikalavimus,<br />

straipsniø rinkiniuose;<br />

- mokslinës knygos, monografijos, maþesnës apimties recenzuoti <strong>ir</strong><br />

tik iðimtinai mokslinës pask<strong>ir</strong>ties leidiniai (t. y. disertacijø mokslo laipsniui<br />

ágyti santraukos) arba jø dalys.<br />

Á sàraðà rekomenduojama átraukti ne maþiau kaip deðimt literatûros ðaltiniø.<br />

Visi jie turi bûti cituojami tekste. Du treèdaliai ðaltiniø turëtø bûti ne senesni kaip<br />

ketveriø–ðeðeriø metø, o senesni – tik ypatingai reikðmingi <strong>ir</strong> svarbûs. Autoriaus<br />

cituotini tik tie darbai, kurie tiesiogiai susijæ su nagrinëjama tema.<br />

Mokslinës ataskaitos, rankraðtinë medþiaga, vadovëliai, þinynai, konferencijø<br />

medþiaga (tezës ar trumpi praneðimai), rekomendacijos, reklaminiai lankstinukai<br />

bei laikraðèiai literatûros ðaltiniais nelaikomi <strong>ir</strong> á sàraðà neátraukiami. Nuorodos á<br />

standartus, þinynus <strong>ir</strong> kitus normatyvinius teisinius dokumentus nurodomos puslapiø<br />

iðnaðose.<br />

Uþsienyje leistø þurnalø, konferencijø rinkiniø <strong>ir</strong> kt. pavadinimai netrumpinami.<br />

Literatûra sàraðe suraðoma abëcëlës tvarka.<br />

Knygos<br />

Bulavas J. Augalø selekcija. V.: Mintis, 1963. P. 2–15.<br />

Straipsniai ið moksliniø þurnalø <strong>ir</strong> periodiniø leidiniø<br />

Juozaitis J. Pomidorø auginimas // Sodininkystë <strong>ir</strong> darþininkystë. Babtai,<br />

2000. T. 20. P. 4–9.<br />

Koch J. Plough depth // Soil Science. 1998. Vol. 15. N 2. P. 12–15.<br />

Disertacijø santraukos<br />

Simonaitis J. Þ<strong>ir</strong>niø agrotechnika: daktaro disertacijos santrauka. Kaunas,<br />

1988. <strong>25</strong> p.<br />

349


GUIDELINES FOR THE PREPARATION AND SUBMISSION OF ARTICLES<br />

TO THE VOLUMES OF SCIENTIFIC WORKS „SODININKYSTË IR<br />

DARÞININKYSTË“<br />

Rules for Submission – Acceptance of Papers.<br />

Papers can be contributed by Lithuanian and foreign researchers or persons<br />

carrying out scientific research. The latter’s paper will be accepted only when the<br />

coauthor is an investigator.<br />

Manuscripts should be sent by mail printed out in two copies taking in account<br />

following instructions. The manuscript will be registered and submitted to the member<br />

of the Editorial Board in charge. He(she) will evaluate if the contents and the form<br />

conf<strong>ir</strong>m with the main requ<strong>ir</strong>ements for periodical articles. Manuscripts rejected<br />

during the f<strong>ir</strong>st evaluation will be returned to the author with explanatory remarks. If<br />

the article is approved the member of the Editorial Board appoints two reviewers.<br />

The author must return the corrected manuscript to the Editorial Board<br />

in ten days by email or by mail in a diskette.<br />

Standard Manuscript<br />

Structure and length<br />

The form of a manuscript has to conf<strong>ir</strong>m with requ<strong>ir</strong>ements for periodical<br />

scientific articles. The paper should be organized in the following order:<br />

-Title (should not exceed 10 words);<br />

-Author(s)’ names<br />

The name should be written in small letters, the surname – in capital letters. If<br />

there is more than one author they are listed according to the<strong>ir</strong> input to the paper.<br />

-Institution(s), address, email address;<br />

-Research report:<br />

-Abstract (should not exceed 1400 characters or <strong>25</strong>0 words);<br />

Should contain the statement of the aims, methods and main results in short.<br />

-Key words (should not exceed 10 words in alphabetical order);<br />

-Introduction<br />

Should present the investigated subject, results of earlier related research, reasons<br />

of the study, innovation.<br />

-Materials and methods;<br />

-Results<br />

Should present concisely the collected data during investigation, documentation<br />

(tables, figures).<br />

-Discussion<br />

Should not repeat results presented in “Results” but should interpret them<br />

with reference to the results obtained by other authors, explain the reasons of the<br />

investigated phenomena, raise new ideas, hypotheses.<br />

-Conclusions;<br />

-References<br />

Should be kept to a minimum of 10 latest references on this theme.<br />

-Summary in English (up to 2000 characters or 350 words);<br />

-Acknowledgements (not compulsory);<br />

350


The paper should be ended by a signature of the author(s) or other persons<br />

responsible for the article and the date.<br />

Articles written based on non-traditional trial data and the obtained results may<br />

have other than traditional structural parts of a paper.<br />

The article should not exceed 10-15 pages, tables and figures included (longer<br />

articles are agreed with the cha<strong>ir</strong>man of the Editorial Board).<br />

Text preparation<br />

The manuscripts should be submitted in Lithuanian, English or Russian, typed<br />

by IBM type computer, used MO Microsoft WORD for Windows 95; 98; 2000<br />

word-processor format, the font to be typed - TIMES NEW ROMAN size 12, on<br />

A 4 paper (210 x 297 mm) one side, for a manuscript – single spaced, for the text<br />

after reviews - 1,5 lines, justified, in a 1,44 MB diskette. Margins: top - 2 cm,<br />

bottom - 2 cm, right -1.5 cm, left - 3 cm.<br />

In bold are written the title of the paper in all languages, headings and all main<br />

structural elements (abstract, introduction, materials, methods, results,<br />

discussion, conclusions, references). In Italic are written Latin names of species,<br />

genera, diseases, pests and microorganisms. Cultivar is it be placed within single<br />

quatation marks.<br />

Tables<br />

If results are already given in figures, tables should not be used. Double<br />

documentation is not acceptable.<br />

Text in tables is written in Lithuanian and English languages. If the text is written<br />

in Russian – in Russian and English. If Lithuanian and English texts are in one line<br />

they are separated by /. Do not use vertical and horizontal lines to separate parts of<br />

the text. A horizontal line separates only headings of columns and the end of the<br />

table. Orientation in a page only vertical (Portrait).<br />

Trial variants in tables should not be numbered or submitted in complicated<br />

abbreviations. Tables should be self explanatory, and if there are abbreviations, they<br />

should be understandable.<br />

Statistical data, figures, numerals<br />

It is des<strong>ir</strong>able to describe in detail the applied research methods and indicate<br />

references. The information on the scheme (design) of field, vegetative and other<br />

trials and motivation of the<strong>ir</strong> choice are very important. Data presented in tables and<br />

figures must be statistically processed: means, standard errors, correlation<br />

coefficients, significance of differences, (most acceptable at 95% or and – 90.99%<br />

level), etc. calculated. Abbreviations of parameters should be explained if they are<br />

not international standard abbreviations (ISO) [13].<br />

Value figures should not be more than the trial method allows. Means of values<br />

should be rounded off to 1/10, the<strong>ir</strong> standard errors calculated.<br />

For figures indicating quantity should be used Arabic numerals, e.g.: 15 tons,<br />

and for consecutive numbering can be used both Roman and Arabic numerals, e.g.:<br />

XX century, 2nd sample.<br />

Numbers from one to nine are written in words, except when they mean<br />

measurement size (e.g.: 5 km, but “three variants”) or numbered consecutively (e.g.:<br />

phase 6, 9, 12). In many-figured numbers between classes an interval is made, e.g.,<br />

42 351. Percent is noted as %, when a specific number is implied, though „percent<br />

unit“ is written in words. In decimals use the decimal point.<br />

351


Figures<br />

All illustrations – drawings, graphs, diagrams, photographs are considered as<br />

figures. The text in them is written in Lithuanian and English.<br />

Figures must be drafted in black color in Microsoft Office 95, 98, 2000 packet<br />

EXCEL or other programs of this packet and included into the text and submitted<br />

as a separate EXCEL file in a diskette. Drawings must be professionally drafted<br />

or they can be redrafted by a professional and the work will be paid by the author<br />

according to the price list. Notice that the Editorial Board has the right to change<br />

the<strong>ir</strong> format according to the design of the article or the whole publication.<br />

Letters and symbols in figures are recommended not smaller than size 10. Block<br />

parts of figures should be numbered consecutively by letters a, b, c, etc.<br />

References<br />

Into references can be included:<br />

-articles, published in scientific periodical journals, scientific reviewed<br />

publications (books, monographs), article collections of scientific conferences and<br />

symposiums whose papers were reviewed or they meet the requ<strong>ir</strong>ements of scientific<br />

periodical publications with reference to the structure and the length of the article;<br />

-scientific books, monographs, reviewed publications of smaller volume<br />

and exclusively for scientific purpose (i.e. abstracts of theses to obtain a<br />

scientific degree) or the<strong>ir</strong> parts;<br />

It is recommended to include a minimum of 10 references. All of them must be<br />

cited in the text. Two th<strong>ir</strong>ds of references should be not older than four-six years,<br />

and if older – only very significant. Cited are only these works, which are d<strong>ir</strong>ectly<br />

related to the investigated theme.<br />

Scientific reports, manuscripts, textbooks, reference books, conference<br />

proceedings (theses or short presentations), recommendations, pamphlets, articles<br />

in newspapers are not considered as references and are not included into references<br />

list. References to standards, reference books or other regulations and rules are<br />

indicated in footnotes.<br />

Names of journals, volumes of conference articles, etc, are not abbreviated.<br />

The reference list should be arranged in alphabetical order.<br />

Book:<br />

Wertheim S.J. Rootstock guide. Wilhelminadorp. 1998. 144 p.<br />

Journal article<br />

Johnson D.S. Controlled atmosphere storage of apples in UK // Acta horticulturae.<br />

1999. Vol. 485. P.187-193.<br />

Koch J. Plough depth // Soil Science. 1998. Vol. 15. N 2. P. 12-15.<br />

Thesis abstract<br />

Karkleliene R. Inheritance of quantitative characters and estimation of combining<br />

ability in carrots: summary of doctoral dissertation. Babtai, 2001. 43 p.<br />

352


TURINYS<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Introdukuotø obelø veisliø biologiniø savybiø tyrimas ........................................ 3<br />

A. Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

P. Viðkelis. Introdukuotø obelø veisliø produktyvumo <strong>ir</strong> vaisiø<br />

kokybës tyrimas ...................................................................................................... 12<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Obelø selekciniø numeriø biologiniø savybiø tyrimas ........................................ 20<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

P. V i ð k e l i s . Obelø selekciniø numeriø produktyvumo <strong>ir</strong> vaisiø kokybës<br />

tyrimas ...................................................................................................................... 32<br />

R. Rugienius, A. Sasnauskas. Braðkiø veisliø tyrimas Lietuvoje<br />

pagal tarptautinæ COST 863 programà ..................................................................... 43<br />

P. Banach, M. Gàstoù . Obelø veislës ‘Jonica’ su sk<strong>ir</strong>tingais poskiepiais<br />

augimas <strong>ir</strong> derëjimas ................................................................................................. 54<br />

D.Kviklys, J. Stankienë, H. Kemp. Sodinamosios medþiagos<br />

sveikumo átaka obelø augimui <strong>ir</strong> derliui ................................................................ 62<br />

S. Nominaitis, V. M. Rutkovienë, P. Viškelis. Agrotechniniø<br />

(ûkininkavimo) sistemø átaka ‘Elise’ veislës obelø derliui, produkcijos<br />

kokybei <strong>ir</strong> d<strong>ir</strong>voþemio sudëèiai ............................................................................... 72<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë,<br />

A.Kasiulevièiûtë, P. Duchovskis. Poskiepiø átaka obelø<br />

vaismedþiø fotosintezës sistemos veiklai .............................................................. 79<br />

J. Skrzyñski, M. Gàstoù. ‘Jonica’ veislës obelø vaisiø kokybës<br />

priklausomumas nuo poskiepiø ............................................................................... 88<br />

J. P. Privé. Obelø poskiepiø atsparumo ðalèiui tyrimai ......................................... 95<br />

R. Petrokas, P. Duchovskis. Miðkinës obels (Malus sylvestris Mill.)<br />

sk<strong>ir</strong>iamieji ypatumai ............................................................................................... 104<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys,<br />

J. B. Ðikðnianienë, E. Kupèinskienë. Obelø ligø <strong>ir</strong> kenkëjø<br />

plitimo ávertinimas sk<strong>ir</strong>tingos pramoninës tarðos rajonuose ............................. 114<br />

L. Taparauskienë. Drëkinimo átaka ‘Senga Sengana’ braðkëms .................. 124<br />

L. Buskienë, N. Uselis, J. Lanauskas. Geleþies tràðø átaka<br />

‘Bogota’ veislës braðkiø mitybai, iðsivystymui <strong>ir</strong> derliui ................................. 137<br />

A.Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë,<br />

P. Duchovskis, A. Brazaitytë, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë,<br />

N. Uselis, B. Gelvonauskis. Kompleksinis UV-B spinduliuotës <strong>ir</strong><br />

temperatûros poveikis braðkiø fiziologiniams rodikliams ................................... 146<br />

L. Raudonis. Abamectino poveikis þemuoginëms erkëms Tarsonemus pallidus<br />

(Acari: Tarsonemidae) braðkëse ............................................................................ 153<br />

L. Raudonis. Abemectino toksiðkumas raudonosioms sodinëms erkëms<br />

Panonychus ulmi (Acari: Tetranychidae) obelyse ............................................... 162<br />

353


J. Lanauskas, D. Kviklys. Kaulavaisiø poskiepiø tyrimai Lietuvoje ......... 170<br />

M.Meland, O. Fr∅ ynes. Slyvø veisliø ‘Opal’ <strong>ir</strong> ‘Reine Claude de GF 1119’,<br />

auginamø Norvegijoje, penkiø poskiepiø charakteristika ...................................... 179<br />

K.Baranauskis, J. Sakalauskaitë, A. Brazaitytë,<br />

A. Urbonavièiûtë, G. Samuolienë, G. Ðabajevienë,<br />

S. Sakalauskienë, J. B. Ðikðnianienë, P. Duchovskis.<br />

UV sugerianèiø pigmentø pokyèiai augalø lapuose veikiant UV-B spinduliuotei . 187<br />

R. Karklelienë. Morkø <strong>ir</strong> burokëliø lietuviðkø veisliø bei hibridø ypatumai<br />

ekologinëje <strong>ir</strong> intensyvioje darþininkystëje ............................................................ 193<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis. Optimalaus sëjos <strong>ir</strong><br />

nuëmimo laiko átaka morkø ‘Svalia’ F 1<br />

derliui <strong>ir</strong> kokybei ................................ 201<br />

O.Bundinienë, È. Bobinas, P. Duchovskis. Áva<strong>ir</strong>iø azoto<br />

tràðø <strong>ir</strong> ceolito átaka valgomosios morkos produktyvumui <strong>ir</strong><br />

morfometriniams rodikliams .................................................................................. 211<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë,<br />

J. B. Ðikðnianienë, G. Samuolienë, P. Duchovskis.<br />

UV-B spinduliuotës poveikis morkø biometriniams rodikliams ........................ 223<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë. Pomidorø (Lycopersicon<br />

esculentum Mill.) v<strong>ir</strong>usø diagnostika elektronomikroskopiniu <strong>ir</strong> molekuliniu<br />

metodais ................................................................................................................. 230<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë,<br />

D. Ðvegþdienë, Z. Janèys, K. Ðlekytë, P. Duchovskis,<br />

A. Brazaitytë, J. Ðikðnianienë. Pomidorø (Lycopersicon<br />

esculentum Mill.) augimo bei biocheminiø rodikliø priklausomumas<br />

nuo UV-B spinduliuotës........................................................................................ 240<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis,<br />

O. D. Petronienë. Raudonøjø burokëliø ‘Kamuoliai’ kai kuriø<br />

organiniø medþiagø dinamika þydëjimo indukcijos <strong>ir</strong> evokacijos tarpsniais .... <strong>25</strong>1<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius. Augalø, auginamø<br />

þaliajai tràðai, agrobiologinis ávertinimas <strong>ir</strong> átaka svogûnø derliui ................... 261<br />

D.Kavaliauskaitë. Herbicido Boxer 800 EC (v. m. Prosulfocarb 800 g l -1 )<br />

átaka valgomøjø svogûnø pasëlio derlingumui <strong>ir</strong> piktþolëtumui ...................... 270<br />

G. Samuolienë, P. Duchovskis. Fitohormonø dinamika <strong>ir</strong> vaidmuo<br />

po paprastojo kmyno þydëjimo indukcijos ......................................................... 278<br />

J. Jankauskienë, A. Brazaitytë. Sodinimo tankumo átaka<br />

pavasariniø agurkø produktyvumui ....................................................................... 286<br />

B. Szwejkowska, P. Duchovskis. Áva<strong>ir</strong>iø veisliø þ<strong>ir</strong>niø reakcija á<br />

beicavimà fungicidais <strong>ir</strong> insekticidais bei á herbicidus ........................................... 295<br />

V. A. Ð lapakauskas, E. Kazlauskas, S. Glioþ eris.<br />

Karboks<strong>ir</strong>ûgðèiø hidrazidø dariniø átaka pupeliø pridëtiniø ðaknø<br />

formavimuisi <strong>ir</strong> fotosintetiniam elektronø judëjimui ............................................... 305<br />

E. Dambrauskienë. Rausvaþiedës eþiuolës (Echinacea purpurea (L.)<br />

Moench) produktyvumas, taikant intensyvias auginimo technologijas ............. 316<br />

B. Szwejkowska, P. Duchovskis. Meteorologiniø sàlygø <strong>ir</strong> sëklø<br />

apdorojimo cheminiais preparatais átaka þ<strong>ir</strong>niø derliui <strong>ir</strong> baltymø kiekiui ............... 322<br />

354


R. Vyðniauskienë, Z. Janèys, R. Spalinskas. Þemos<br />

temperatûros poveikis superoksido dismutazës aktyvumui atspariuose<br />

ðalnoms bulviø hibriduose ................................................................................... 331<br />

P ranešimas spaudai. ES lëðos investuojamos á þemës <strong>ir</strong> miðkø ûkio<br />

studentus, mokslininkus bei tyrëjus ...................................................................... 339<br />

Kronika. Iškilus mokslininkas sodininkas Algimantas Kviklys ......................... 341<br />

Atmintinë autoriams, raðantiems á mokslo darbus „Sodininkystë <strong>ir</strong> darþininkystë“ ... 346<br />

355


CONTENTS<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Investigation of biological traits of apple cultivars .................................................... 3<br />

A.Sasnauskas, D. Gelvonauskienë, B. Gelvonauskis,<br />

P. Viðkelis. Productivity, fruit quality and chemical characteristic of<br />

introduced apple cultivars ...................................................................................... 12<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

J. B. Ðikðnianienë, G. Ðabajevienë, P. Duchovskis.<br />

Investigation of biological important traits of apple selections ......................... 20<br />

D.Gelvonauskienë, A. Sasnauskas, B. Gelvonauskis,<br />

P. Viðkelis. Productivity and fruit quality of apple selections .................... 32<br />

R. Rugienius, A. Sasnauskas. Investigation of strawberry cultivars<br />

according to international COST 863 programme in Lithuania ............................ 43<br />

P. Banach, M. Gàstoù. Growth and fruiting of apple tree cv. ‘Jonica’<br />

on different rootstocks ............................................................................................. 54<br />

D.Kviklys, J. Stankienë, H. Kemp. Effect of health status of<br />

planting material on apple tree growth and yield ............................................... 62<br />

S. Nominaitis, V. M. Rutkovienë, P. Viðkelis. Influence of<br />

different agrotechnical measures on apple-tree ‘Elisa’ yield, production<br />

quality and composition of soil ............................................................................ 72<br />

G. Ðabajevienë, D. Kviklys, N. Kviklienë,<br />

A. Kasiulevièiûtë, P. Duchovskis. Rootstock effect on<br />

photosynthetic pigment system formation in apple tree leaves .......................... 79<br />

J. Skrzyñski, M. Gàstoù. Quality of ‘Jonica’ apple fruit as influenced by<br />

rootstocks ................................................................................................................ 88<br />

J . P. P r i v é . Techniques for cold hardiness research for apple rootstocks. ............ 95<br />

R. Petrokas, P. Duchovskis. Distinctive characteristics of Malus<br />

sylvestris Mill ......................................................................................................... 104<br />

L. Duchovskienë, J. Sakalauskaitë, D. Kviklys,<br />

J. B. Ðikðnianienë, E. Kupèinskienë. Evaluation of apple<br />

diseases and pest spread in different regions of industrial emission ............. 114<br />

L. Taparauskienë. Influence of <strong>ir</strong>rigation on strawberries<br />

‘Senga Sengana’.................................................................................................... 124<br />

L. Buskienë, N. Uselis, J. Lanauskas. Effect of foliar applied <strong>ir</strong>on<br />

fertilizers on nutrition, development and yield of strawberry cv. ‘Bogota’ .... 137<br />

A.Urbonavièiûtë, G. Samuolienë, J. Sakalauskaitë,<br />

P. Duchovskis, A. Brazaitytë, J. B. Ðikðnianienë,<br />

G. Ðabajevienë, K. Baranauskis, S. Sakalauskienë.<br />

The complex exposure of temperature and UV-B <strong>ir</strong>radiation on<br />

physiological indices in strawberry ..................................................................... 146<br />

L. Raudonis. The effect of abamectin on strawberry mite Tarsonemus<br />

pallidus (Acari: Tarsonemidae) in strawberries ..................................................... 153<br />

356


L. Raudonis. Toxicity of abamectin to fruit tree red spider mite, Panonychus<br />

ulmi (Acari: Tetranychidae) in apple tree site ........................................................ 162<br />

J. Lanauskas, D. Kviklys. Stone fruit rootstok research in Lithuania....... 170<br />

M.Meland, O. Fr∅ynes. Performance of five plum rootstocks to<br />

the plum cultivars ‘Opal’ and ‘Reine Claude GF 1119’ growing in Norway ............ 179<br />

K.Baranauskis, J. Sakalauskaitë, A. Brazaitytë,<br />

A. Urbonavièiûtë, G. Samuolienë, G. Ðabajevienë,<br />

S. Sakalauskaitë, J. B. Ðikðnianienë, P. Duchovskis.<br />

Variability of UV-absorbing compounds in plant leaves under UV-B exposure ..... 187<br />

R. Karklelienë. Features of Lithuanian carrot and red beet varieties and<br />

hybrids in ecological and intensive vegetable growing ......................................... 193<br />

V. Zalatorius, A. Zalatoriûtë, P. Viðkelis. Influence of the optimal<br />

sowing and harvesting time on the yield and quality of carrot ‘Svalia’ F 1<br />

........................ 201<br />

O.Bundinienë, È. Bobinas, P. Duchovskis. Influence efficacy<br />

of different nitrogen fertilizers and zeolite on productivity and<br />

morphometrics indices of carrot .......................................................................... 211<br />

S. Sakalauskienë, A. Brazaitytë, J. Sakalauskaitë,<br />

J. B. Ðikðnianienë, G. Samuolienë, P. Duchovskis.<br />

Biometric indexes of carrot in response to different UV-B radiation .............. 223<br />

I. Zitikaitë, E. Survilienë, G. Bûtaitë. The diagnostic of<br />

v<strong>ir</strong>uses in tomato (Lycopersicon esculentum Mill.)<br />

by electronmicroscopic and molecular methods ................................................. 230<br />

R. Vyðniauskienë, V. Ranèelienë, D. Raklevièienë,<br />

D. Ðvegþdienë, Z. Janèys, K. Ðlekytë, P. Duchovskis,<br />

A. Brazaitytë, J. Ðikðnianienë. Growth parameters dependence<br />

of tomato (Lycopersicon esculentum Mill.) from UV-B <strong>ir</strong>radiation................... 240<br />

J. B. Ðikðnianienë, P. Duchovskis, P. Viðkelis,<br />

O. D. Petronienë. The dynamics of some organic substances of<br />

red beet ‘Kamuoliai’ at flowering induction and evocation stages .................. <strong>25</strong>1<br />

R. Starkutë, L. Duchovskienë, V. Zalatorius. Agrobiological<br />

evaluation of plants for green manure and it’s inffluence on yield ............... 261<br />

D. Kavaliauskaitë. Influence of herbicide Boxer 800 EC<br />

(Prosulfocarb 800 gl -1 ) on edible onion crop weeding and harvest ............... 270<br />

G. Samuolienë, P. Duchovskis. Dynamics and role of<br />

phytohormones in common caraway after flowering induction ........................ 278<br />

J. Jankauskienë, A. Brazaitytë. Physiological aspects of<br />

cucumber crop density ......................................................................................... 286<br />

B. Szwejkowska, P. Duchovskis. Response of several cultivars<br />

of sowing pea to fungicide-insecticide dressings and herbicides .......................... 295<br />

V. A. Ðlapakauskas, E. Kazlauskas <strong>ir</strong> S. Glioþeris.<br />

Effect of carboxylic acid hydrazid derivatives on the adventitious roots<br />

formation and photosynthetic electron transport in Phaseolus vulgaris .............. 305<br />

E. Dambrauskienë. Productivity of eastern purple coneflower<br />

(Echinacea purpurea L. moench) applying intensive growing technologies ..... 316<br />

357


B. Szwejkowska, P. Duchovskis. Effect of climatic conditions and<br />

seed dressing on the yield and protein content in seeds of pea ............................ 322<br />

R. Vyðniauskienë, Z. Janèys, R. Spalinskas. Impact of low<br />

temperature on superoxide dismutase (SOD) activity of frost resistant<br />

hybrids of potatoes .............................................................................................. 331<br />

Guidelines for the preparation and submission of articles to the volumes of<br />

scientific works „Sodininkystë <strong>ir</strong> darþininkystë“ .................................................... 350<br />

358


359


ISSN 0236-4212<br />

Mokslinis leidinys<br />

Lietuvos sodininkystës <strong>ir</strong> darþininkystës instituto <strong>ir</strong><br />

Lietuvos þemës ûkio universiteto mokslo darbai<br />

SODININKYSTË IR DARÞININKYSTË. T.<strong>25</strong>(4). 1-384.<br />

Redaktorës <strong>ir</strong> korektorës: Jolanta KRIÛNIENË, Danguolë VANAGAITË<br />

Kompiuteriu maketavo Graþina NARUÐIENË<br />

SL 1070. 2006 08 <strong>25</strong> 24 sp. l T<strong>ir</strong>aþas 200 egz.<br />

Iðleido Lietuvos sodininkystës <strong>ir</strong> darþininkystës institutas,<br />

LT-54333 Babtai, Kauno r.<br />

Spausdino UAB „Judex“ leidykla-spaustuvë, Europos pr. 122,<br />

LT-46351 Kaunas<br />

Uþsakymo Nr. 4<strong>25</strong>.<br />

360

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!