22.09.2013 Views

I0N34a THERMODYNAMICA Oefenzitting 4 - bio-ingenieur - home

I0N34a THERMODYNAMICA Oefenzitting 4 - bio-ingenieur - home

I0N34a THERMODYNAMICA Oefenzitting 4 - bio-ingenieur - home

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>I0N34a</strong> Thermodynamica 2 de studiefase <strong>bio</strong>-<strong>ingenieur</strong>swetenschappen<br />

Oefening 1<br />

Oefening 2<br />

<strong>I0N34a</strong> <strong>THERMODYNAMICA</strong><br />

<strong>Oefenzitting</strong> 4: Machines II<br />

Oplossingen<br />

a) Condensatievat = Low-temperature heat exchanger<br />

Verzadigde vloeistof bij T1 =320K<br />

diagram isobutaan : P1 =0,65 MPa en H1 275 kJ / kg<br />

b) Turbine = adiabatisch/isentroop<br />

Isobutaan dat turbine binnengaat :<br />

T 480 K<br />

3<br />

P 10<br />

MPa<br />

3<br />

<br />

H 780 kJ / kg<br />

<br />

3<br />

3<br />

S 2,26 kJ / kgK<br />

Isobutaan dat turbine verlaat :<br />

<strong>Oefenzitting</strong> 4 - Oplossingen 1/4


<strong>I0N34a</strong> Thermodynamica 2 de studiefase <strong>bio</strong>-<strong>ingenieur</strong>swetenschappen<br />

P 0,65 MPa<br />

4<br />

T 360 K<br />

4<br />

<br />

S 4 2, 26 kJ / kgK<br />

<br />

H 4 660 kJ / kg<br />

c) Energiebalans – steady state<br />

dU<br />

dt<br />

<br />

0 W M in(<br />

H 4 H 3)<br />

<br />

<br />

W <br />

T <br />

43 <br />

H H 780 660 120 kJ / kg<br />

M in<br />

3MW 3000kW 3000<br />

kJ / s<br />

3000 kJ / s<br />

isobutaan M 25 kg / s<br />

120 kJ / kg<br />

e) Compressor : Q=0 (adiabatische omkeerbare compressie)<br />

W <br />

H 2H1 (290 275) kJ / kg 15<br />

kJ / kg<br />

M<br />

<br />

in<br />

W (15 kJ / kg)*(25 kg / s) 375<br />

kJ / s<br />

P<br />

Turbine : adiabatische omkeerbare expansie : -WT/Min =120 kJ/kg<br />

Condensatievat : isobare warmteafgifte<br />

Q<br />

M<br />

C<br />

in<br />

Boiler :<br />

Q<br />

M<br />

<br />

B<br />

in<br />

<br />

H 1H4 (275 660) kJ / kg 385<br />

kJ / kg<br />

<br />

H 3H2 (780 290) kJ / kg 490 kJ / kg<br />

Q 490 kJ / kg *25 kg / s 12,3<br />

MJ / s<br />

B<br />

f) Efficiëntie :<br />

netto arbeid uit 3000 375<br />

kJ / s<br />

0,213 of 21,3%<br />

warmte in boiler 12,3*1000 kJ / s<br />

<strong>Oefenzitting</strong> 4 - Oplossingen 2/4


<strong>I0N34a</strong> Thermodynamica 2 de studiefase <strong>bio</strong>-<strong>ingenieur</strong>swetenschappen<br />

Oefening 4<br />

a)<br />

1→2:<br />

boiler<br />

2 3<br />

1<br />

V1 = 1,917 10 -3 m 3<br />

P1 = 10 5 Pa<br />

T1=300K<br />

condensatievat<br />

V2 =V1/18= 1,065 10 -4 m 3<br />

P2 =P1V1 γ V2 -γ =5,72 10 6 Pa<br />

W = (P1 V1 γ ( 1<br />

) ( 1<br />

)<br />

<br />

V<br />

<br />

2 V1<br />

) <br />

1<br />

1<br />

<br />

PV 2 2<br />

T2 = T1<br />

PV 1 1<br />

2→3:<br />

= 953 K<br />

V3 = 2V2=2,13 10 -4 m 3<br />

P3 =P2= 5,72 10 6 Pa<br />

W =- P ∆V = - 609,2 J<br />

PV 3 3<br />

T3 = T2<br />

= 1906 K<br />

PV<br />

3→4:<br />

2 2<br />

V4 = V1 = 1,917 10 -3 m 3<br />

4<br />

= 1044 J<br />

<strong>Oefenzitting</strong> 4 - Oplossingen 3/4


<strong>I0N34a</strong> Thermodynamica 2 de studiefase <strong>bio</strong>-<strong>ingenieur</strong>swetenschappen<br />

P4 = P3V3 γ V4 -γ = 2,64 10 5 Pa<br />

W = -1781 J<br />

T4 = 792 K<br />

4→1: geen arbeid<br />

Netto arbeid: + 1044 – 609,2 – 1781 = -1346 J in één cyclus.<br />

Warmte opname in stap 2→3:<br />

Q nC T =2123 J (T stijgt van 953 naar 1906 K)<br />

p<br />

Warmte-afgifte in stap 4→1:<br />

Q nC T = - 782 J<br />

v<br />

b)<br />

S2 – S1 = Cp ln (T2/T1) – R ln (P2/P1) = 0<br />

S3 – S2 = Cp ln (T3/T2) – R ln (P3/P2) = + 20 J/(mol . K)<br />

S4 – S3 = 0<br />

S1 – S4 = Cp ln (T1/T4) – R ln (P1/P4) = - 20 J/(mol . K)<br />

<strong>Oefenzitting</strong> 4 - Oplossingen 4/4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!