07.01.2021 Views

Appel 43.1 - Micro

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DE APPEL

MICRO

WATCH

ENGINEERING

VISUAL

CAMPUS QUARAN-

TAINE

Column Hugo

j

43.1

Het verenigingsblad van W.S.G. Isaac Newton

A SOFT TOUCH:

SECRET POWER OF

MICROFLUIDICS


Groeten uit...

Maak uw bijdrage over op banknummer

59.27.19.189 ten name van Stichting

Universiteitsfonds Twente.

Op onze website www.utwente.nl/ufonds

kunt u makkelijk en veilig via IDEAL een

bedrag overmaken.

Daar vindt u ook meer informatie over

notariële schenkingen.

Hartelijk dank namens

de studenten van de

Universiteit Twente.

Met het Universiteitsfonds

Twente komen ze verder.

Word nu donateur!

Stichting Universiteitsfonds Twente

De Stichting Universiteitsfonds Twente is een door de Belastingdienst officieel erkend goed doel.

De Stichting heeft de status van Algemeen Nut Beogende Instelling (ANBI).


CHAIRMAN’S NOTE

63

Welcome to the first Appel edition of the academic

year! And for all new students, welcome to

maybe even your first edition of the Appel ever.

I hope that everyone enjoyed the first months of

the new academic year, despite it being different

than usual. Personally, I had a lot of fun with the first lustrum activities.

The committee did great work for a spectacular opening drink

and a very nice port tasting. And not to forget, we’ve had countless

DJ’s from our own association turning our self-isolation into a party

with the lustrum radio, live from Diepzat.

Anyways, back to this new edition of the Appel. Most mechanical engineers

like big chunky robust machines and constructions. This is a

logical mindset, more steel is more better, right? For example, during

our 55th Dies we went for the record of biggest apple pie ever made,

resulting in an astonishing and moreover very delicious cake of two

square meters. However, just as important as grandiose is the many

tiny details that every big construction is made up of. Therefore the

theme of this edition is ‘micro’.

Some interesting things of ‘micro’ with big effects are coatings, which

can make an object resistant to water, wear, erosion, et cetera. Another

great example is a computer or phone. Millions of tiny transistors

can get a big job done. And when the performance of one tiny

transistor can be improved slightly, the effects will be enormous.

Furthermore, there are very elaborate studies and work fields consisting

of one simple task: trying to get things smaller. This might be

a type of engineering that goes against our nature, but being small

can have some serious advantages like easier transportation, cheaper

production, and sometimes just to blow people’s minds with new

technology.

I would like to finish this introduction with some advice. It is not the

physical size that matters, but the greatness of the performance.

I wish all of you lots of fun reading this new edition of the Appel!

Jonne van Haastregt

Chairman of W.S.G. Isaac Newton

Adunare Utile Dulci


INHOUD

Colofon

De Appel is een uitgave van het werktuigbouwkundig

studiegenootschap Isaac

Newton in samenwerking met de opleiding

Werktuigbouwkunde aan de faculteit

der Construerende Technische Wetenschappen

van de Universiteit Twente.

Redactie-adres

W.S.G. Isaac Newton t.a.v. de Appel

Postbus 217

7500 AE Enschede

[T] 053 - 489 25 31

[F] 053 - 489 40 05

[E] appel@isaacnewton.utwente.nl

Uitgave

Jaargang 43, nummer 1, december 2020

Oplage

1200 exemplaren

Abonnementen

Abonnementen op de Appel zijn te verkrijgen

bij het bestuur van W.S.G. Isaac Newton.

Abonnementsprijs 25 euro per jaar

© 2020 de Appel

De redactie is op geen enkele wijze

verantwoordelijk voor de inhoud van de

aangeleverde kopij en houdt zich het recht

kopij in te korten en te wijzigen.

Hoofdredacteur

Almer Lagerweij

Eindredacteur

Michiel Louwé

Grafische vormgeving

Fedde Engelen

Jeroen van den Hoogen

Redactie

Ekaterina Antimirova

Roland Guijs

Alicia Knijnenburg

Fausto Visser

Sabine van der Werff

Hugo Wesselink

Danique Wetsteijn

Drukker

Drukbedrijf.nl

Joan Muyskenweg 114

1114 AN Amsterdam

Advertenties & Advertorials

p. 2 Ufonds

p. 10-11 ASML

p. 18 Shell

p. 19 Aeronamic

p. 26 ETC

p. 34-35 NTS

06

A Soft Touch: Secret Power

of Microfluidics

A rising, sensitive technology

12

Microraptor

The four winged predator

14

Jelle Korblet

De wielen van

31

The little war

Building with Lego

4

DE APPEL


16 Microgravity

20 Watch exposition

Visual

24 Association News

27 Micro huisdieren

Klein formaat, grote

gevolgen

31 Campus quarantaine

Column Hugo

36 Temperature and

strain rate dependence

for end-loaded unidirectional

glass-polypropylene

composites

Graduation article

REDACTIONEEL

Na een paar hele snelle eerste maanden zijn we

onderhand al aanbeland in de tweede module

van dit academisch jaar. Ik hoop dat jullie

allen het eerste kwartiel goed gepresteerd

hebben en jullie cijfers je bevallen. Of je cijfers

nou mee- of tegenzitten, maakt nu even

niet uit, want het is nu tijd voor de eerste Appel van dit jaar.

Langverwacht en naar gesmacht door velen. We hebben een

(te korte) zomerstop achter de rug en zijn weer helemaal vers

voor jullie lezers aan het werk gegaan. Onze redactie heeft

weer wat mooie onderwerpen aangesneden, en dankzij de

grafici ziet het er allemaal messcherp uit. Of je tentamen- en

projectcijfers een 6 of een 8 waren, maakt niet uit met het

thema van deze editie, micro. (Tenzij je cijfer een 6 µ was).

De meeste van ons WB’ers houden van gigantische machines

en constructies. Deze editie gaan we proberen je toch

wat van gedachte te doen veranderen, en je het mooiste van

de hele kleine wereld te laten zien. Micro beïnvloedt immers

macro. Hoe proberen we je van gedachte te veranderen? Misschien

lukt dat al als je leest over micro-zwaartekracht, wat

astronauten ondervinden in het ISS bijvoorbeeld. Wat nog

meer op microschaal is, maar wel gigantische gevolgen heeft

zijn processors. In bijna elk elektronisch apparaat wat je gebruikt

zit het wel, maar de rekenkracht dat zo’n microscopisch

chipje heeft is ondenkbaar. Mocht dit allemaal je nog

niet overtuigd hebben dan zijn er nog microfluidics. Manipulaties

van vloeistoffen in sub-millimeter schaal. Haast ondenkbaar,

maar met ondenkbaar veel applicaties. Daarnaast

is een oude rubriek nieuw leven ingeblazen, sommige ‘oldtimers’

onder ons zullen het nog wel kennen; De wielen van!

Met deze editie, Jelle Korblet.

Mocht je nieuwsgierig zijn geworden nu je dit hebt gelezen,

schroom niet en lees gauw verder. Dit was nog maar het

tipje van de sluier en ik beloof je nog veel meer microscopisch

vermaak. Hierbij onze ode aan de kleine wetenschap,

veel leesplezier.

Almer Lagerweij

Hoofdredacteur

DE APPEL 5


A SOFT TOUCH:

SECRET POWER OF

MICROFLUIDICS

A rising technology to help your grandparents

feel, veterans move, and more sensitive and

fragile operations take place.

BY EKATERINA ANTIMIROVA

As part of the Mechanical Engineering study, we learn,

analyse, and calculate rigid bodies. Endless hours are

spent on calculating their tensile strength graphs and

failure mechanisms. Well, truth be told, after all that work,

these rigid bodies are not even as useful as one may hope.

When actuated, these rigid bodies are not helpful when

handling soft and biological materials. This is why we need

soft robotics. They tackle the most interesting motions via

the most weak means, fluids, called microfluidics. Currently,

there is a massive gap in the application of microfluidics in

soft robotics, allowing those who jump on this train to steer

development of this technology and spin off companies.

6

DE APPEL


WHY RIGID-BODIED MECHANISMS ARE NOT AN

ALL-PURPOSE SOLUTION?

First of all, hard robotics and flexure based mechanisms maintain their

shape and material structure, whereas soft robotics adopts a new shape

and adjusts stiffness based on a required application. This sort of operation

was inspired by nature, specifically muscle movement. Imagine a

cheetah as it sets off to catch its prey. Its eyes are set dead on a target as

it leaps forward, but the terrain is changing. It is changing from a rocky

stone where the cheetah was hiding to some soft grass. Its paws and

legs need to compliantly match this new environment. When the cheetah

successfully catches its prey, its jaws need to rapidly adjust their

deadly grip. If every move had to be calculated and individually controlled,

it would be an impossible calculational task. This, in part, is because

there is an infinite amount of degrees of freedom in the body. Besides,

if its limbs were made from a metal with a high modulus of elasticity,

the cheetah would not be able to adjust their stiffness. Potential internal

damage of its organs could follow as result of high contact forces. Hence,

an ideal soft robot would have to exert some if not all of the described

characteristics. This robot must achieve its tasks via adjusting its stiffness

to a given environment and absorbing impacts. For example, use

of soft grippers to handle animals and fragile materials will decrease a

likelihood of their injury or damage. Besides when technology finally

allows robots to operate on humans, you would want this robot to have

built in compliance to prevent some unintentional scratching and stabbing.

Therefore, a basic purpose of soft robotics is to allow for a careful and

safe interaction with humans and animals and manipulation of fragile

materials. This task will be achieved when actuators and materials allow

for programmable adjustment of robots’ stiffness and shape. This

means a soft robot can only be as good as the technology behind its

actuation and composition. For example, a perfect muscle has not yet

been recreated. This is when state of the art technologies like microfluidics

enter the stage.

WHAT ARE MICROFLUIDICS AND WHAT MAKES

THEM SO SPECIAL?

There is no clear definition to the concept of microfluidics. The prefix

“micro” is used rather loosely, since the devices range in size from as

low as the nano level (10^-9 m) to more a understandable millimeter scale

(10^-3 m). So we call any device a microfluidic device if it operates via

fluids within these scales. Conveniently, most of them do fall in the

micro scale (10^-6 ) range. Larger devices are referred to as conventional

fluidic devices. This is why the definition of microfluidics, “The science

and engineering of systems in which fluid behavior differs from conventional

flow theory primarily due to the small length scale of the system”,

is rather vague.

Microfluidics are not well known within mechanical engineering study

primarily due to their original application in chemical and biological

particle analysis. In these fields, microfluidics have several physical advantages

over conventional fluids. On a smaller scale, fluids are more

laminar; particles flow smooth and straight without turbulence. This

simplifies mathematical analysis and helps to precisely predict their

behavior.

Additionally, capillary forces dominate over gravitational forces. These

forces are the reason why tea climbs up the tea bag and spills onto the

table. On a smaller scale, molecules always strive to decrease their surface

energy. Therefore when placed into a sufficiently small channel or

a porous material, like the tea bag, water particles will try to fill it. The

intermolecular forces between particles will keep water together even

DE APPEL 7


when it defies gravity. Together laminar flow and capillary

forces allow for ideal dispersion and faster diffusion.

Using these principles, chemists and biologists developed

complex microfluidic circuits and measuring devices, like

blood glucose meters and pregnancy tests.

Unfortunately, many of these scientists were too preoccupied

with this microfluidic technology. They neglected

to produce research with commercial or practical applications.

Currently, microfluidics are experiencing a revival

thanks to a close collaboration between new generations

of scientists and engineers.

HOW MICROFLUIDICS CAN BE AP-

PLIED IN A SOFT ROBOT?

design, pressure opens and closes the gates. This controls

whether or not a microfluid can pass through.

This year researchers from the Chonnam National University,

South Korea, published a paper on a new concept

of a 3D slope valve which precisely controls fluid flow.

Through either improvement of functions or revision of

control of microfluidic circuits, researchers are now working

tirelessly to replicate functions of integrated electric

circuits (IECs) into integrated microfluidic circuits (IMCs).

Depending on the amount of programmable actions, soft

robots will be able to sense, move, and interact with their

surroundings.

CONTROL

A recent result of this collaboration has been an introduction

of microfluidics into some soft robotics devices.

In 2016, Harvard presented the first entirely autonomous

soft robotics device, an octopus shaped robot named Octobot.

Microfluidics powered, controlled, and actuated it.

Octobot did not look too phenomenal and its tentacles appeared

to rather twinge than produce a smooth motion,

but it was a start nevertheless.

A complete integration of fully microfluidic control is a

reason why this was such a prominent project. Microfluidics

and regular fluids are a good source for smooth and

compliant movement of a robot. For example changing

pressure can alter the shape of the silicon (or another soft

material), so there is nothing groundbreaking there. However,

prior to Cctobot, the traditional control of these

motions was done via hard electronics and batteries or

other external connections. Naturally, use of rigid electronics

significantly reduces the compliant behavior of

robots and, therefore, their effectiveness.

Beginning with fuel storage and ending with actuation, all

tasks are done via microfluidics within the Octobot. The

power comes from the chemical reaction which explodes

liquid fuel into a gas. This gas fills 3D printed cavities of

the silicon based body, which expands them, causing respective

twitching. The brain of Octobot is a microfluidic

logic circuit, and it controls when the chemical reaction

should take place. This microfluidic circuit functions similarly

to an electronic oscillator where the inductor and

capacitor exchange energy creating an alternating current.

The exchange continues until the robot runs out of

fuel, and friction within channels decreases the current

to zero. According to the Nature Magazine, one milliliter

of the liquid can support Octobot for around 8 minutes [6].

Research to increase and improve functions of a microfluidic

circuit, and thus expanding what it can actually do,

is an ongoing process.

Back in 2011, a group from the University of Michigan,

USA, proposed a design of an elastomeric valve based system

which functions as a self regulating circuit. In the

MANUFACTURING

Two years after the release of Octobot, the same team

from Harvard presented another eight legged silicon

creature, a peacock spider. This soft robot combined microfluidic

control with newly developed microfabrication

techniques to achieve a wider range of motion. Not an expanding

gas but dyed water allows it to squat and balance

on its eight colorful legs. With an increased amount of

channels and interwindings, degrees of freedom and complexity

of the movement increase, approaching the ideal

of a muscle.

But, the spider is still far from this ideal. Its body and legs

are made from twelve layers of stacked silicon allowing

for varying stiffness. The channels and their sizes merge

between different layers. Larger cavities span more layers,

for example. When fluid fills one of knee cavities, the

compliant layers expand under the pressure, thus forcing

the leg to bend. The group from Harvard calls this process

injection-induced self-folding. The control of bending the

eight legs allows for a variety of different motions.

There are different ways to create these patterns of cavities

and channels. The industry standard for many years

has been soft lithography. Simply put, this process transfers

the pattern on a photomask to the surface of a silicon

wafer using UV light. There are many steps and preparation

procedures in this process. The main steps are: (1)

8

DE APPEL


placement of a photoresisting material onto a silicon base; (2) shining

UV light onto a photoresist through a photomask depicting the design;

(3) removing the photoresist exposed to UV light, and (4) chemically etching

silicon from areas not protected by the layer of photoresist. This

process creates precise cavities for a microfluid to follow.

When manufacturing their peacock spider, the group from Harvard

developed a new microfabrication process, which combined soft lithography

and laser machining. In the future, more complicated interwindings

between channels and more sophisticated geometry of silicon

layers will allow for an even greater range of motion. Therefore, not

only microfluidic control must be developed for this to happen, but also

an improved channel fabrication is needed for fluids to actually create

the smooth motion.

SOFT ROBOTICS IN CONTEXT

Microfluidics is not the sole way to control soft robots. Traditional electronics

and batteries are more technologically advanced than their

microfluidic alternatives, and often they scale better to a micro level.

Micro valves and pumps are bulkier, for example. Therefore to examine

a particular aspect of soft robotics, researchers often rely on the traditional

options. For example, when only the geometry of the body is

of interest, the researchers may choose to actuate the soft robot via

regular electronics.

In other cases a completely soft robot is not necessary, making a hybrid

option the most logical choice. Reduction of degrees of freedom

could be done to decrease computational power. Moreover, soft robotics

are not meant to substitute rigid robotics altogether even when their

technology, like microfluidics, does catch up. They serve different purposes,

and therefore there is no competition. Soft robotics, however, has

a long road ahead to fulfill its purpose. Research to improve microfluidics

with respect to soft robotics is well underway, but it is still in its

infancy. Just two years ago, a single twitch of Octobot was a success.

Many can choose to doubt the necessity for the effort to develop the

field from scratch when rigid robots, like ones from Boston Dynamics,

approximate live dynamics so well. But they are exactly that: they are a

rigid approximation. The only way to achieve absolute compliance is to

forego all traditional rigid technologies.

When it comes to micromanipulation, surgery, and wearable devices,

soft robotics are a road to take. For a veteran coming home with an

unfortunate injury wishing to truly walk again and play with his or her

children, no rigid L-shaped prosthetic will substitute a compliant and

natural biocompatible option. Scientists studying coral reefs, animals,

or taking care of other humans, soft robotics will allow for less invasive

and careful manipulation.

“Too often we underestimate the power of a touch, a smile, a kind word,

a listening ear, an honest compliment, or the smallest act of caring, all of

which have the potential to turn a life around” (Leo F. Buscaglia). When

sitting behind a desk, designing robots and running a finite element

analysis, anyone will feel impersonal. The lines of code do not predict

smiles and tears of joy. We engineer the world to make it a better and

safer place, to ease the struggles and to help those in need. Soft robotics

is an underdeveloped field, and it is far more complex than most manipulation

methods. We are not doing engineering because it is easy. We

are doing engineering because it serves the people. a

DE APPEL 9


ADVERTORIAL

WHEN OP-

PORTUNITY

KNOCKS,

DARE TO

OPEN THE

DOOR

Experienced people know that careers are founded on as

much luck as judgement and skill, as Arnela Masic discovered

during her engineering studies in 2015. One lucky moment

put her on a path to the career she enjoys today: she forgot

her lunch. “A friend suggested I could get a free lunch at

an ASML-hosted lunch meeting on campus that day. It was

there I learned about the ASML scholarship. I applied and

was eventually selected – it felt pretty special as only 25

scholarships are on offer in the Netherlands each year.”

Through the scholarship, ASML supported Arnela through a

Masters in Systems and Control, which then led to her joining

the company in 2017.

NOTHING “GREY-HAIRED” ABOUT IT

“Everybody at my university had heard of ASML – the logo is everywhere.

But what they did there was more of a mystery. For me personally,

‘lithography’ did not sound as interesting as other technical industries

like aerospace or automotive. I was picturing grey-haired guys

doing boring experiments. It wasn’t until I got to know them through

the scholarship that I realized there’s nothing ‘grey-haired’ about it.

There are so many different careers here, with such diverse, supersmart

people. It was nothing like I expected.”

ENGINEERING AND SO MUCH MORE

“I was looking for more than just a ‘technical’ job. After learning about

the many different careers on offer, the role of Customer Support Applications

Engineer really appealed to me. I get to travel to customer sites

around the world – the US, Korea, Japan, China and Taiwan - and work

on projects to improve the performance of our lithography systems. I

get to use my engineering knowledge – not in terms of always knowing

the answers, but in terms of applying logic, troubleshooting, analysis

and identifying which experts can help – and I combine it with communications,

project management and implementation. There’s great team

spirit; I’m supported by a wide network of experienced colleagues who

all help each other.”

AN IDEA WORTH MILLIONS

“And I receive lots of training, both technical and non-technical – soft

skills like customer focus and influencing without power.” Arnela quickly

found out how useful her newly acquired skills are. “There was project

at a customer where it was important to prove a certain output of a

machine in order to make the sale. However, at that moment, there was

an issue with one of the machine parts that would not have helped my

demo test. My training helped me convince people to make this issue

a priority over their own projects, resulting not only in a permanent

solution, but also in the sale of the system worth millions!”

ARNELA’S ADVICE – ‘GO FOR IT’

“My advice is if something about a job sounds interesting then don’t

overthink it, just try it, because you never know exactly what you will

be doing on a day to day basis. That’s ok, nobody does when they start.

But at companies like ASML, you will have excellent training, support

and inspiring colleagues, so there’s no need to be afraid to go for it.

When opportunity knocks, dare to open the door. For me, there’s has

literally been a whole world to discover, and I’m really enjoying the journey

– it was worth stepping into the unknown to start it.”

Are you interested to learn more about ASML? Visit www.asml.com/

students for more information about our events, internships and scholarship

program.


ADVERTORIAL

COMPANY PROFILE

ASML is a high-tech company, headquartered in the Netherlands. We manufacture

the complex lithography machines that chipmakers use to produce integrated

circuits, or computer chips. Over 30 years, we have grown from a small

startup into a multinational company with over 60 locations in 16 countries

and annual net sales of €11.8 billion in 2019.

Behind ASML’s innovations are engineers who think ahead. The people who

work at our company include some of the most creative minds in physics, electrical

engineering, mathematics, chemistry, mechatronics, optics, mechanical

engineering, computer science and software engineering.

Because ASML spends more than €2 billion per year on R&D, our teams have

the freedom, support and resources to experiment, test and push the boundaries

of technology. They work in close-knit, multidisciplinary teams, listening

to and learning from each other.

GET IN TOUCH WITH YOUR

ASML CAMPUS PROMOTOR!

SANDER GEURTS

sander@workingatasml.com

If you are passionate about technology and want to be a part of progress, visit

www.asml.com/careers.


MICRORAPTOR

THE FOUR WINGED PREDATOR

DOOR DANIQUE WETSTEIJN

While many of the topics in this edition are

about very, very small things, this article will address a very, very old

thing. It’s dinosaur time! And although dinosaurs couldn’t really be

categorized to be small, one of them has a really convenient name:

The Microraptor. This ancient creature is very interesting to tell about

regarding history, evolution, but also aerodynamics. And fortunately

it’s also small!

When we are talking of dinosaurs the first thing coming to mind are:

The T-rex, the velociraptor, the stegosaurus or any other of those gigantic

reptiles walking around in Jurassic Park. But the microraptor

is more comparable to a large bird, like an owl or an eagle. But with a

very long tail, feathers over its complete body and four wings. Scientists

have estimated the length of a full grown microraptor to be 70 - 120 cm,

a height of at least 40 cm and weighing 1 kg. In 2012 research has been

done with the pigment cells in a new specimen. The structure of the

cells was found to be similar to that of the starling, a bird really common

to find in the Netherlands. Like the starling, the microraptor had a

blue metallic color that reflected light beautifully.

Something that a lot of people don’t know is that all birds we know nowadays

have a direct line to dinosaurs. Birds and dinosaurs have many

similarities. Their digestive system makes use of gastroliths, their bone

structure is hollow and include many pneumatic bones, they build

nests, lay eggs and brood them. Actually, that makes sense, doesn’t it?

We know several land dinosaurs that had feathers around their heads,

their legs or were even completely covered in it. And if you ever have

seen a plucked chicken, you know it’s basically a Tyrannosaurus Rex

that lost his deep voice after a rough night of partying …

That the microraptor was a predator and creative hunter has been proven

several times in the past 10 years. Besides the obvious claws that

were discovered in well preserved fossils, its gut contents told us even

more. Not only did the microraptor eat small mammal-like animals that

lived around trees, also smaller birds were swallowed whole and fish

couldn’t escape this dinosaur bird either. This suggests that the microraptor

did not only live amongst trees, but also close to lakes and seas.

Let us pay some attention to the fact that the microraptor has four wings

instead of only two. The microraptor is a special kind of avian dinosaur,

as it is an important historical link that strongly supports the fourwinged

stage of bird-evolution. Although it may be hard to imagine for

us right now, having four wings was trending topic in the dinosaur era.

There are multiple classes of bird-like dinosaurs with feathers attached

to the arm limbs and the leg limbs, resulting in four wings. But only the

microraptor family was discovered to be able to actually use the ‘leg

wings’ for flying or gliding purposes. As it was able to arrange its leg

limbs much alike a flying squirrel while gliding. This was determined

after carefully studying the hip bone structure. Moreover, the feathers

attached to the leg limbs of the microraptor were much longer and had

higher structural stiffness than on other dinosaur birds, creating four

12 DE APPEL


aerodynamic surfaces with suitable

properties for midair maneuvers.

In 2014, Dennis Evangelista and his very large

research team did wind tunnel experiments on a

3D-printed and scaled model of the microraptor. This

model was based on what experts thought it must have looked

like. The research team wanted to find out how having four

wings and being able to arrange leg limbs in various positions

affected the flying capability of a feathered dinosaur.

A bird or bird-like animal can use its wings in three ways. The

wings can act like a parachute, decreasing falling velocity while

dropping from a tree; they can be used as passive gliders, for

levitating as long as possible; or be used in “true flight”. The

latter is the situation where occasionally flapping wings create

thrust and all aerodynamic surfaces create enough lift compared

to drag and gravitational forces to maintain or even increase

altitude. The wind tunnel experiments showed that the “parachute

function” was not possible as the wings were too narrow

and were not having a suitable curvature. Gliding and flying

was determined to be very possible and even likely for the microraptor.

As the microraptor had two extra wings that could be

arranged in many configuration, several flying specifics could

be created, just by moving its legs. After the wind tunnel experiments,

the researchers concluded that adding two extra aerodynamic

surfaces vertically (legs down) provided stability and

more maneuverability.

Horizontally (legs up) these surfaces provided a double amount

of lift, which makes the total amount of lift more likely to be

enough for the “true flight” situation.

The microraptor would be able to

achieve true flight with only two wings as

well, provided that their arm limb wings were

much longer than they were. This is an indicator

that the natural habitat of the microraptor included narrow

spaces, for which long arm feathers would be inconvenient.

Mankind has been copying many concepts of nature before. As

also we know aircrafts making use of these aerodynamic tricks

of this four winged predator. Think of tandem winged aircrafts,

of which a so called “Delanne wing” mimics the aerodynamic

geometry of the microraptor most.

If the microraptor would be able to align its hind winds perfectly

with its front wings, then one can compare its flying abilities

with a “Canard”. These aircrafts can do impressive maneuvers in

mid-air like loops, corkscrews and abrupt turns.

Regardless of any fancy wing configurations, the microraptor

needs his tail to change direction while flying. A little sweep left

or right changes the air flow and hence the flying direction. But

also does the tail help to swift its center of gravity to make fast

and sharp curves. We find this vertical stabilizer in fixed form as

well on every single flying aircraft, namely the fin on the back!

All together the microraptor had interesting features, making it

almost a pity it is not flying around nowadays anymore. Luckily

we are able to fill the skies with our own impressive birds of

steel. With or without feathers… k

DE APPEL 13


De Wielen Van

JELLE KORBLET

In de collegezaal zie je

genoeg auto’s op de

bureaubladachtergronden van

WB’ers. Ook wordt er in de

gangen van de horst vaak genoeg

gesproken over paardenkrachten,

wegligging, topsnelheden en

nieuwe technieken om het

eerdergenoemde tot een hoger

niveau te tillen. Maar net zoals

bij seks wordt er meer over

gepraat dan gepraktiseerd. Maar

er zijn uitzonderingen, een aantal

WB’ers heeft niet alleen een twee

wieler voor het vervoer naar de

collegezaal maar ook een vierwieler

erbij. Vanuit de Appel gingen we

opzoek naar deze uitzonderlijke

WB’ers, met de vraag of ze over

hun auto wilden ouwehoeren.

14 DE APPEL

DOOR FAUSTO VISSER

FOTO’S AUDI MICHIEL LOUWÉ

Voor deze eerste editie van de hernieuwde rubriek bijt Jelle het spits af. Als 29-jarige masterstudent

pakt hij het even anders aan en heeft zelfs meerdere vierwielers tot zijn beschikking.

AUDI 100

De automechanische avonturen van Jelle begonnen met een Audi 100, deze was samen met maten

gekocht onder het mom van een cross auto. Gekocht bij het inbeslag genomen spul van de

politie voor 406 euries. Dit allemaal voordat Jelle zelf 18 was. De auto had al een paar jaar zonder

APK stil gestaan. Echter was het wel de meeste luxe uitvoering van de 100, met een 2.3L vijf

cilinder blok in combinatie met een handbak. Gedurende een jaar werd in rustig tempo de auto

weer opgelapt en rijklaar gemaakt. Naast wat schoonmaakwerk waarbij mos en een vogelnestje

onder de motorkap werd verwijderd moesten natuurlijk ook de standaard dingen aangepakt

worden. Nieuwe accu, remmen vervangen en nagelopen etc. Na deze opknap beurt heeft de Audi

in goede toestand veel kilometers mogen maken op vakanties en allerlei andere trips, zelfs de

Nürburgring heeft ie nog mogen zien.

Ondertussen gaat de Audi van Jelle al lang mee, hij heeft al de dertig jaar aan mogen tikken, wat

ook gunstig is met de APK intervallen die vanaf dan tweejaarlijks zijn. Qua wegenbelasting viel

het sowieso al mee, vroeger maakte men namelijk nog grote ‘auto’s’ die niet twee ton wegen.

Met zijn 1200 kilo de Audi 100 dan ook een relatief lichte auto. Aangezien Jelle best veel rondrijdt

met de Audi wil hij nog wel groot werk verzetten aan de auto maar komt dat eigenlijk niet goed


uit zolang er nog geen tweede auto

is die de last samen met de Audi kan

dragen. Mocht dat zo zijn, dan zouden

de volgende zaken aangepakt

gaan worden; De velgenranden kunnen

wat werk gebruiken, de randen

zijn wat gecorrodeerd, dus op het

moment lopen de banden mondjesmaat

leeg. De airco heeft ook eigenlijk

een nieuwe pomp nodig. Nu

is het even wachten tot het buiten

echt lekker koud is of de airco pompen

nog wat goedkoper worden.

FORD BUS

Het tweede voertuig dat Jelle veel

gebruikt is een Ford Transit Mk2 uit 1980. Deze heeft Jelle samen met een collega gekocht

van een lid uit de Simca club van zijn collega in februari 2018. Die beste man had

een Bierwinkel in Leiden, dus zat de bus natuurlijk helemaal vol geplakt met stickers

van zijn winkel. Maar hij wilde er graag van af omdat de bus uitermate slecht liep.

Gelukkig bleek het een bekend probleem te zijn met de automatische choke van de

carburateur, maar dat wist de verkoper nog niet. Deze was zelf ook in bezit van twee

linkerhanden dus die wilde er graag van af. Voor een kleine duizend euro is deze bus

van eigenaar veranderd naar Jelle en zijn collega. Nu kan de bus veel gebruikt worden

voor allerhande zaken, verhuizen, tijdelijk slapen, etc. Terwijl hij ook al richting de

veertig jaar oud gaat.

aVW PASSAT

De laatste vierwieler beschrijft Jelle meer als een

Kermis auto, deze heeft ook een interresant verhaal.

Voor de Carbage run heeft hij deze met een paar maten

uitgezocht, specifiek omdat ze op zoek waren naar

vierwiel aandrijving met toch een beetje por onder de

motorkap. Voor de Carbage run mag het natuurlijk wel

wat aandacht trekken en herrie maken. Het werd een

passat uit 1999 met een 2.8L V6. Herrie maken dat doet

de Passat zeker, omdat het thema de NS was zit er ook

een enorme toeter op. Dit thema was snel gevonden

omdat de twee maten van Jelle bij het spoor werken.

Zo zijn er zoveel mogelijk logo’s van de volkwagen vervangen

door echte NS pijlen, is er een bewegende pantograaf

op het dak gemaakt en komt de verlichting aan

de voorkant in de buurt van een goede loc. Door hard

te crossen door het bevroren en sneeuwigge noorden

en maffe opdrachten uit te voeren heben ze ook nog de

Carbage run kunnen winnen. Deze overwinning kwam

onder andere door het passeren van de finish met een

vis bevroren in een blok ijs.

Ook mooie wielen? Neem contact op

met de Appelredactie!

DE APPEL 15


MICROGRAVITY

BY ALICIA KNIJNENBURG

Have you ever looked at space and imagined yourself being there? Seeing Earth’s

surface from a completely different view. Not only the view, but also the feeling of being

weightless must be incredible. You do not have to go all the way to space to experience

being weightless. It is also present here on Earth. You only need to know where to look.

WHAT IS IT?

The name microgravity already speaks for itself: a very small amount

of gravity. It is also referred to as weightlessness since objects or people

appear to be weightless in it. It should be noted however that the gravity

will not be exactly zero, but just very small. Gravity works between

objects with a mass. For it not to work, you have to be very far away

from an object. However, environments can be created where you do

not have to be far away and still experience microgravity. Astronauts,

for example, who float in their spacecrafts or the fact that they can lift

the heaviest objects with just one hand or finger. Those experiences are

possible because of microgravity.

HOW TO CREATE IT?

Being in a state of microgravity means that no other forces should be

present. One way of doing that is by being in a free fall. It also means

that air drag cannot be present, as it is with for example skydivers.

16 DE APPEL


Therefore, drop towers are created. These towers are often very high, up

to 150m, and the air is pumped out of it. Objects are then shot to the top

of the tower and dropped. The objects are in microgravity during their

fall until they crash on the ground. Of course, this crash is not ideal, but

the research can tell us a lot about microgravity.

Another place where microgravity exists is inside the International

Space Station ISS. The station has a specific speed and altitude. It orbits

around Earth 15 times a day at an altitude of 400km making it appear in

free fall. Experiments with microgravity at the ISS are conducted to get

more insight. One of the outcomes is that the human body loses bone

and muscle mass while being in a microgravity environment. Because

of this research, together with other studies and technology, improvements

could be made to treat osteoporosis.

Astronauts have to train a lot before going into space. One of the ways

to get used to the microgravity environment is a reduced-gravity aircraft

or parabolic flight. Some refer to it as the vomit comet, since the

near-weightlessness experiment can be quite hard on the stomach. The

environment is achieved by following a parabolic flight path relative to

the center of the Earth. At some points during the flight, the object and

people inside are in free fall. In this way, the astronauts can get used to

the feeling of orbiting the Earth.

HOW CAN IT BE USED?

Wherever you are, a gravitational force is present between you and another

object. You do not even think about it as it is there all the time.

However, it makes the Earth orbit the sun and the moon orbit around

Earth. It makes the apples fall from the tree. Now imagine it not being

there. You would feel weightless on Earth itself. While this is a very

interesting experience for you, it is also interesting for scientists. Since

gravity is always present, it has an influence on all research and scientists

have to take it into account in their experiments. Working in a

microgravity surrounding therefore opens new doors for research.

In the field of material science already some progress has been made.

A lighter compound that can be used in turbine blades for aircrafts has

been created. In the medical and physics research areas also interesting

discoveries have been made. One of those is the growth of crystals. Proteins

in the human body are responsible for a variety of biological functions,

such as the repair and build of tissues. Protein crystallography

helps understanding the structure of protein. On Earth, the growth of

crystal is influenced by gravity. However, in a microgravity environment

its influence is much smaller. This results in crystals growing to much

larger sizes than here on Earth. This makes the structure analysis much

easier and is useful in developing medicine for all kinds of diseases.

Another observation following from experiments in space is that what

we perceive as natural convection disappears. On Earth hot air naturally

flows up and cold air goes down. However, in a microgravity environment,

there is no up or down. Other forces now determine the movement

of the hot or cold gas or liquid. An example where this is shown is

the shape of a combustion flame. On Earth, the gases from the chemical

reaction of combustion are much hotter and rise. This makes the shape

of a flame more like a falling teardrop. In microgravity the hot gases are

not influenced by gravity anymore and the flame looks more like a ball.

At the moment, research regarding microgravity is still ongoing. With

the continued exploration of outer space, a better understanding of microgravity

and its effects is necessary. Not only in the ISS, but also in

drop towers on Earth, experiments take place. There are multiple drop

towers already in use around the world, the closest one being in Bremen.

Every year around 400 drop experiments are carried out there.

They even have a program that assists students with research projects

in the drop tower. But they are not the only one. So, if you want to find

out more about microgravity, make sure to contact one of the research

centers available and pitch your ideas! n

DE APPEL 17




TAKE A MINUTE

TO LOOK AT

THOSE WATCHES

PHOTOGRAPHY MICHIEL LOUWÉ

To accurately read time at any place, numerous small devices have been developed

over the last centuries. Starting roughly in the same era as our famous hero in

the seventeenth century, the clocks and watches have a rather long history which

results in the most beautiful technique on its scale. Engineering effort has gone

to various different mechanisms to let the user know precisely what time it is. This

has paid off twofold: mechanical mechanisms have reached high accuracies and

their appearance is simply magnificent. Thanks to Maaskant

Juweliers at Apeldoorn, we have taken a look

inside the clock and watch

world.

20 DE APPEL


DE APPEL 21


22 DE APPEL


DE APPEL 23


24 DE APPEL

ASSOCIATION NEWS

IN THE PICTURE

THE LUSTRUM HAS BEGUN!

The Lustrum has finally begun! Newton has turned 55 years old, and

that is of course a reason to celebrate. Sadly, a lot of the activities

we would have had right around now were rescheduled due to corona.

Luckily though, the lustrum committee still had some awesome

things planned for now as we still wanted to celebrate on time

of course. With the lustrum opening kicking it all off, a great drink

behind the Horst was held with amazing weather! A fair bit of drinks

had been poured and a fire was lit, very much Olympic games style!

Everyone was seated as per the official guidelines, however this took

nothing away from the fun. A lot of people stayed the whole drink

from half past three to eight, but this seemed to be no time at all, as

the theme of the lustrum says “Time Flies” right? At the end a nice

J

song was sung with everyone there. The lustrum committee also baked

a huge apple pie for the Dies. With roughly 1.6 m2 of apple pie,

there was enough to go around and it was handed out in the Horst

canteen, people being guided to it with the green carpet as every year.

There was also a selection of merchandise arranged by the committee.

Three pieces were created, a clock, a LEGO apple and a pair of

custom pockies. Next to this, the lustrum committee has also set up

the lustrum radio, so that the lustrum cheer could be broadcasted to

everyone who is working at home! It is safe to say, despite the bad luck

we have had with this year’s celebration, we are still making the best

out of it and it is definitely showing!

24 DE APPEL


OPENING NEWTON ROOM

Since the summer holiday is over, the Newton Room has opened

once again for the members! We have coffee and free notebooks as

always, but there is a walking route and there can not be too many

people at once in the room. We are very happy to see you once more

in the Newton Room though, so please come and get a cup of coffee!

We are happy to have a chat as well of course, just make sure it is

not getting too cramped!

KICK-IN

With the new year starting, the Kick-In came along as always. New

students were welcomed to Enschede and shown around to the best

of the do-groups ability while the corona measures are still in play.

Such as all other events, the Kick-In was altered quite significantly

as well. Do-groups were still set up, this time by presenting themselves

with just videos, and they made sure the new students had a

great time in their first experiences in our city!

LUSTRUM RADIO

COMMITTEE INTEREST MARKET

With the corona measures, the committee interest market had to be

held a little bit differently than it normally would have been held.

This time we held the committee interest market outside of the

Horst, on which we were luckily enough greeted with some great

weather once again. A lot of committees were presenting themselves

to interested members and a lot of interested members were

there to sign up for the committees. All in all, the attendance was a

little lower than normally, but that is to be expected if most people

are working at home, but it was a good market nonetheless.

As was mentioned before, the lustrum committee has set up the

lustrum radio. The committee has made a whole set-up in Diepzat,

making it a temporary radio studio in which our members come and

make Radio for an hour each on Thursdays. People who signed up

could make radio the way they wanted for an hour long according

to a schedule made by the lustrum committee. This radio was going

on all Thursdays in October for six hours every time. The radio has

reached far and wide, taking over multiple association rooms in Enschede!

DE APPEL 25


ADVERTORIAL

NUCLEAR:

A SUSTAINABLE POWER

SOURCE FOR A

DECARBONIZED FUTURE

The scientific case for climate change is

overwhelming, immediate and undeniable

– the burning of fossil fuels has to stop. If

climate change is the biggest challenge

facing humanity, how can we quickly move to

a global energy supply that meets our needs

while remaining sustainable and protecting

the planet?

Every small action makes a difference, of course: recycle those cans;

walk instead of drive; cut down on plastic packaging; and produce less

waste, if possible. But will that be enough? Our hunger for energy continues

to rise, and not just in the most obvious ways of transport, heat

and light. After all, even an email has a carbon footprint, and something

needs to power the internet.

“We have to do everything possible to overcome this challenge, and we

have to do it now,” says Reinhard Hinterreither, CEO of ETC Nederland,

a company based in Almelo which designs and builds highly sophisticated

centrifuge systems for enriching uranium so it can be used as

nuclear fuel. “Only a mix of the different types of renewable energy

sources, plus nuclear energy, can help remediate the problem and give

us an achievable and sustainable energy supply. If we genuinely want

to get to zero CO2 emissions and completely decarbonize by 2050, there

isn’t any other way.”

But what happens when the uranium runs out? “Uranium is one of the

most prevalent elements in the earth’s crust, as common as tin or zinc”

says Hinterreither. “Also, the Japanese have already developed a method

for extracting it from sea water. If this proves cost-effective it would

provide almost limitless raw material.”

Delivering future demands while decarbonizing is not going to be easy.

“Can anyone predict when the human race’s demand for power will

actually fall?” asks Hinterreither. “Our industrial processes need huge

amounts of energy. If we want to continue to produce the steel and concrete

that underpin our engineering projects without burning fossil

fuels, we need nuclear power. Looking at the technologies that we have

available today, if we are serious about achieving net carbon zero by

2050, there is no other option but to embrace nuclear power as part of

an energy mix that drives and sustains a cleaner world.”

Renewable energy sources on their own are not going to meet our

needs. Europe, and the Netherlands in particular, simply doesn’t have

enough room for the amount of infrastructure needed to produce sufficient

wind and solar energy. It also can’t afford a 40cm rise in sea

levels. “Any other solution has a massive infrastructure commitment

that would take decades, which is time we don’t have” comments Hinterreither.

Instead, he points to advances being made in nuclear technology which

address the issues that have seen nuclear energy’s popularity diminish

over the last decade. New Generation IV reactors are being developed

that are inherently safe. Huge investments are being made into techniques

for using and re-using nuclear materials to produce more electricity.


MICRO HUISDIEREN

KLEIN FORMAAT, GROTE GEVOLGEN

DOOR SABINE VAN DER WERFF

Puppy’s, kittens, veulentjes, kalfjes, biggetjes… Zouden ze maar voor altijd zo klein en schattig

kunnen blijven! U vraagt, wij draaien, moet de (huis)dierfokkerij gedacht hebben. Inmiddels zijn

miniatuurdieren redelijk makkelijk te verkrijgen, van klein tot heel klein en alles daartussenin.

Ze staan fantastisch op je instagrampagina, en zo’n wollig kopje met guitige oogjes is een leuke

accessoire in je handtas. Maar hoe schattig en lief is dat nou eigenlijk echt? Helaas blijkt het

allemaal toch iets minder rooskleurig, want kleine dieren komen met grote gevolgen.

DE APPEL 27


HOE KLEIN?

Dwerg, toy, mini, micro, miniatuur, teacup, pocket, de naamgevingen

voor kleine dieren zijn eindeloos. Dat maakt het soms best verwarrend,

want geen van deze benamingen is “officieel”. Het zegt dan ook helemaal

niks over hoe groot een dier uiteindelijk kan worden, het is een willekeurige

term die de fokker zelf gebruikt om zijn huisdieren te verkopen.

Het kleinste erkende hondenras door de FCI, de internationale rashondenorganisatie,

is de chihuahua. Chihuahua’s horen volgens de rasstandaard

tussen de 1 en 3 kg te wegen, en zijn ongeveer tussen de 15 en

22 centimeter groot. Het kleinste kattenras dat is erkend door de FNK,

de Federatie Nederlandse Kattenverenigingen, is de singapura, die niet

zwaarder wordt dan 4 kg.

Dat dit de twee kleinste erkende rassen

zijn, betekent echter niet dat er geen

kleinere dieren worden gefokt.

Vanwege alle risico’s die deze

kleine afmetingen met

zich meebrengen wordt

het ten zeerste afgekeurd

door dierenartsen

en de

internationale

en nationale

overkoepelende

ras- en

fokverenigingen,

maar

het is daar bovenop

ook nog eens verboden. De

NVWA is er erg duidelijk over:

de fokker moet ervoor zorgen dat het

ouderdier geen schadelijke, uiterlijke kenmerken

aan de nakomelingen doorgeeft.

Om een idee te geven hoe klein zulke dieren nou eigenlijk zijn, maakt

een groep onderzoekers een treffende vergelijking. Waar een gemiddelde

hond zo rond de 30 kilo weegt, wegen veel kleine hondjes minder

dan 5 kilo of zelfs minder dan 1 kilo. Zouden we dezelfde verhouding

aanhouden voor mensen, dan hebben we het over volwassen mensen

van 2 tot 10 kilo.

HOE FOK JE ZO’N KLEIN DIER?

Dat het niet gewenst of zelfs niet toegestaan is om zulke kleine dieren

te fokken, zal sommige, discutabele, fokkers een worst wezen. Dit soort

fokkers worden broodfokkers genoemd: fokkers die hun brood verdienen

met dieren fokken. Dit gebeurt vaak onder trieste omstandigheden,

waarbij de dieren niet de zorg krijgen die ze verdienen, omdat teveel

kosten met zich meebrengt en de winst dus afneemt. Mensen zijn bereid

om grof te betalen voor een harig bolletje schattigheid, en voor broodfokkers

komt dierenwelzijn dus niet op de eerste plaats.

De meeste miniatuurdieren worden gefokt uit rassen die ‘van nature’

al niet groot zijn, of kruisingen van zulke rassen, zoals maltezers, keeshondjes

en poedels bij honden, of hangbuikzwijntjes bij varkens. Om dan

het gewenste formaat te krijgen, worden de kleinste dieren weer geselecteerd

om verder mee te fokken. Dit selectief fokken is niet iets onbekends,

vaak wordt het gedaan om een ras te verbeteren

en om de goede, gewenste eigenschappen

van een dier door te geven

aan de

volgende

generatie.

Dit werkt

echter alleen

als het

verstandig

ingezet

wordt door

iemand die

oog heeft voor

het algehele

dierenwelzijn. En

daar zit nu net het

probleem.

De kleinste dieren uit een

nest zijn vaak ook de zwakste,

minst ontwikkelde dieren.

Met goede zorg en een hoop liefde

komt het met deze nakomelingen in normale

omstandigheden vaak wel goed, maar wanneer

een fokker ervoor kiest om twee zwakkere dieren te

gebruiken om te fokken, kan je voor nare verrassingen komen te staan.

Soms zijn nakomelingen simpelweg zwak door een tekort aan voedingsstoffen,

maar het gebeurt ook dat er een afwijking of ziekte aan ten

grondslag ligt. Als je met zulke afwijkingen verder fokt, wordt de gezondheid

van het diertje er niet beter op, met alle vervelende gevolgen

van dien.

GEZONDHEID EN ANDERE PROBLEMEN

Die vervelende gevolgen en gezondheidsproblemen, dat zijn er nogal

wat, en ze zijn niet mals. Een van de grootste problemen is dat vooral

28 DE APPEL


het skelet verkleind wordt, maar dat de zachte weefsels niet evenredig

kleiner worden. Een aantal gevolgen zijn onder anderen dat de oogjes

uitpuilen, er ademhalingsproblemen zijn en dat de hersenen te groot

zijn voor de schedel, Dit laatste zorgt bij honden in veel gevallen voor

twee aandoeningen genaamd chiari malformatie en syringomyelie: de

hersenen worden weggedrukt, blokkeren het ruggenmerg en leiden uiteindelijk

tot hoofdpijn, waarbij sommige hondjes zelfs agressief worden

of het uitgillen van de pijn.

Nog een probleem van het verkleinen van het skelet is simpelweg dat de

botjes alsmaar kleiner worden, waardoor ze sneller breken. Hierdoor is

spelen met (grotere) soortgenoten niet mogelijk, ze zijn immers extreem

kwetsbaar. Nog schrijnender: het is al meerdere malen gebeurd dat iemand

per ongeluk bovenop zijn eigen hondje is gaan staan, vaak met

(voor de hond) fatale afloop.

Ook bij katten zijn dwergvarianten in trek, een goed en bekend voorbeeld

is de Munchkin kat. Deze variant is met zijn korte pootjes en “normale”

lichaam het beste te omschrijven als een teckel-kat. Met dit opvallende

uiterlijk ziet de kat er best schattig uit, en hij wordt er dan ook

doelbewust op gefokt. De korte poten van de Munchkin zijn echter te

wijten aan een genetische afwijking, die naast dwerggroei ook veel andere

gezondheidsproblemen met zich meebrengt, zoals een afwijkende

ruggengraat en vervormende kaken. Daarnaast zijn ze ook niet goed in

staat om te rennen of te springen, waardoor ze enorm beperkt worden

in hun “normale” kattengedrag. Ook andere rassen kunnen in dwergformaat

voorkomen, vaak als gevolg van een afwijking. Net als met honden

wordt het fokken met dit soort mutaties sterk afgekeurd door de meeste

organisaties.

EEN VARKEN IN JE HUIS

Naast de standaard hond en kat, zijn er ook nog genoeg andere dieren

die veel leuker schijnen te zijn als ze klein zijn. Bonus: je kan ze dan

ook als huisdier houden! De miniatuurkoe en het mini-varken zijn geen

uitzonderingen, maar er zijn nog genoeg andere dwerg-varianten van

(boerderij)dieren te bedenken. Hoewel er minder te vinden is over de

gezondheidsproblemen van deze dieren, is het niet onwaarschijnlijk dat

ook zij niet vrij van gebreken zijn.

Het klinkt misschien redelijk logisch, maar een varken of koe als huisdier

is niet voor iedereen weggelegd, je moet goed bedenken waar je

aan begint en of dat überhaupt wel een verstandige beslissing is. Maar

Google op “mini koe” en het eerste wat je ziet is de kop “Dit wil je hebben:

Een fluffy mini-koe als huisdier” op een “online lifestyle magazine voor

de twenty something vrouw die alles uit het leven wil halen”. Over het

algemeen niet het publiek dat kennis heeft over het houden van dergelijke

dieren. Het artikel bejubelt hoe schattig de koetjes wel niet zijn, met

vervolgens de uitleg waar je er een kan aanschaffen. De enige disclaimer

is dat je ze waarschijnlijk niet in je appartementje moet houden.

Het is een illustratie van het soort onwetendheid en onkunde dat vaak

leidt tot problematisch gedrag van dit soort huisdieren. Minivarkens en

-koeien zijn nog steeds varkens en koeien, en die zijn niet gemaakt om in

een huiskamer te wonen, ze hebben behoefte aan contact met soortgenoten

en buitenruimte, om maar een voorbeeld te noemen. “Vervelende”

minivarkens als gevolg van verkeerde huisvesting en opvoeding zijn

geen uitzondering, er zijn zelfs speciale varkenstehuizen om dit soort

gevallen op te vangen.

Dit is nog maar een korte opsomming van alles wat er mis kan zijn of

mis kan gaan met miniatuurdieren, de lijst is immens. En natuurlijk, het

is niet gezegd dat grotere rassen dan wel volledig zonder gebreken zijn,

want ook die kennen hun eigen problemen. Dat neemt echter niet weg

dat fokken voor extremen tot ontzettend sneue situaties kan leiden voor

DE APPEL 29


de dieren in kwestie. Maar niet alleen de dieren zijn de dupe van deze

trend, ook voor mensen kan het soms vervelend uitpakken.

OPLICHTING

Extreem kleine dieren zijn populair, mede door social media accounts en

beroemdheden die graag laten zien hoe schattig zo’n dier is. Door deze

grote interesse kunnen de fokkers veel geld vragen, er zijn teacup hondjes

die verkocht worden voor omgerekend tot wel €7500,-. Maar met zo’n

prijs ben je nog niet verzekerd van een gezonde en gezellige hond.

Met alle risico’s voor de gezondheid van de mini-dieren kan een koper

voor vervelende verrassingen komen te staan. Een puppy laat misschien

nog geen problemen zien, maar zodra ze ouder worden kunnen de gebreken

opstapelen, en de rekeningen van de dierenarts ook. Daar komt

bovenop dat broodfokkers de dieren vaak onder valse voorwendselen te

jong verkopen, omdat ze dan kleiner zijn. Puppy’s en kittens mogen in

Nederland vanaf 7 weken het nest uit. Een dier dat eerder het nest verlaat

is minder goed gesocialiseerd en mist cruciale vaardigheden in het

omgaan met soortgenoten.

De industrie achter zulke dieren is niet heel transparant en waarschijnlijk

ook niet heel gezond. Websites die vanuit bijvoorbeeld Korea teacup

puppy’s aanbieden zijn zo te vinden, en zijn bereid het hondje naar je op

te sturen. Ze geven ook een gezondheidsgarantie van een jaar, op een

aantal aandoeningen die leiden tot de dood, hartafwijkingen en een aantal

virussen. Mocht het hondje nu een onbehandelbare aandoening hebben

of daaraan overlijden, dan is het bedrijf bereid je een nieuw beestje

op te sturen van hetzelfde geslacht, ras en kwaliteit als waarvoor je had

betaald. Alsof je dieren zo kan inruilen.

Mocht alles nu goed zijn gegaan en je een leuk huisdier in je hart hebben

gesloten, dan is er nog een mogelijke uitdaging: het dier blijkt helemaal

geen mini-huisdier te zijn! Je zal niet de eerste zijn met een volledig volgroeid

varken in huis, terwijl je in de veronderstelling was dat het voor

altijd het formaat van een biggetje zou blijven. En dat is toch vervelend.

GOED NIEUWS!

Gelukkig is er niet alleen maar ellende. Steeds meer mensen worden

zich bewust van de grote problemen die bij heel kleine dieren komen

kijken, en van broodfokkers in het algemeen. Dit is mede door dierenartsen,

dierenwelzijnsorganisaties en ras- en fokverenigingen die zich

nadrukkelijk uitspreken tegen dit soort praktijken.

Ook verkoopplatforms nemen hun verantwoordelijkheid, zo heeft de

Duitse eBay de verkoop van alle dieren die volgens de Duitse wet onder

het ‘martelfokken’ vallen, verboden. Marktplaats heeft zo’n verbod nog

niet, maar het is wel mogelijk om malafide advertenties te melden. Ook

neemt de NVWA stappen, de opsporingscapaciteit voor broodfokkers is

in 2020 verdubbeld naar 10 fte.

En natuurlijk zijn er ook heel veel fokkers die wel hun verantwoordelijkheid

nemen. Ze kijken naar waar het ras te verbeteren is, waar de dieren

baat bij hebben en zorgen dat ze een gezond en gelukkig leven tegemoet

gaan.

Dat er nog zoveel interesse is in schattige maar ongezond kleine dieren,

is ontzettend verdrietig, vooral voor de dieren zelf. Het beste advies is

om ze simpelweg niet te kopen, want door zulke dieren aan te schaffen

wordt de industrie in stand gehouden. Dat neemt niet weg dat je nooit

meer een huisdier mag nemen, want een dier in huis is vooral ontzettend

gezellig! Maar doe het dan wel verstandig; denk goed na over wat

je een dier kan en wil bieden, lees je in over een huisdier adopteren of

kopen en doe een beetje onderzoek naar het ras en de fokker. Dat is voor

jou een kleine moeite, maar daarmee doe je je dieren een groot plezier! a

30 DE APPEL


COLUMN

HUGO WESSELINK

CAMPUS QUARANTAINE

Er zijn in het verleden een flink aantal experimenten geweest

waarvan men achteraf vond dat een strengere ethische

commissie niet misplaatst zou zijn geweest. Echter zullen

de vlagvoerders van deze experimenten, er vanuit gaande

dat Rutger Bregman gelijk had en dat de mens goed is, niet

hebben gestreefd naar deze resultaten. Bij deze hang ik dan

ook een kleine disclaimer aan deze column. Mocht het hier

beschreven hersenspinsel worden uitgevoerd, maar achteraf

niet heel hoog scoren op het ethisch gebied, dan was

dat niet zo bedoeld.

Door de steeds veranderende maatregelen

van Mark, Jaap en Hugo verandert ook

steeds onze lockdown situatie. Eerst

was het een intelligente lockdown,

daarna mocht er weer een hoop en

nu zijn we al weer verzeild geraakt in

een nieuwe (gedeeltelijke) lockdown.

Toch heeft dit coronatrio het nog niet

één keer gehad over de lockdown die

ik graag zou willen invoeren. Ik wil het

namelijk hebben over een nieuwe vorm van

quarantaine, de campus quarantaine. Veel studenten

balen van hun ingeperkte vrijheid en snakken

naar het verleden waar huisfeesten, sporten en onbeperkt

sociaal contact de norm waren. Nu begrijpen we heus wel

dat dit met de huidige omstandigheden niet mogelijk is en

we onze verantwoordelijkheid gewoon maar moeten nemen,

maar wat als dit gecombineerd zou kunnen worden? Een

oase van vrijheid, sociale contacten en als kers op de taart:

een flinke portie verantwoordelijkheid. De campus quarantaine

begint met een periode van drie weken, waarin iedere

campusbewoner de kans krijgt om deel te nemen aan het

sociaal experiment. Deze uitnodiging aannemen dan wel afwijzen

is geheel vrijwillig, echter wordt er bij verwerping van

het aanbod vriendelijk doch dringend verzocht een nieuwe

woning buiten de campus te zoeken. U wilde immers niet

meedoen.

Na deze initiële periode kan fase twee van start gaan: de

campus gaat in lockdown. De vrijheidsoase wordt gecreëerd,

maar ook direct afgebakend. Bewoners mogen namelijk de

campus niet meer af en buitenstaanders mogen er niet meer

op. Dit recht behoort enkel tot de toevoer van de Coop, de

Vestingbar, Diepzat en andere vergelijkbare etablissementen.

Gezien geen enkele docent nu de

campus meer op mag, zullen ook je laatste

analoge colleges zich verplaatsen naar

Teams of Discord. Je ouders, de kapper of

de markt bezoeken is ook verleden tijd

en vervangen voor hetgeen waar je zo

naar snakte: de sociale interactie van

de pre-corona campus. Je mag weer

onbeperkt sporten in teamverband,

drie huisfeesten in één weekend afwerken

en net zo lang aan de bar blijven zitten

totdat het TL licht aangaat en piano man

afgelopen is. Zo lang het maar op de campus is.

Mocht je onverwachts een griepje krijgen en naar de IC

moeten voor een beademingsapparaat, helaas. Het is te hopen

dat je jong en vitaal genoeg bent en dat het met een paar

dagen goed uitzieken weer over is.

Met de campusquarantaine is in één klap de speelruimte

terug waar zo naar wordt gesnakt. Daar bovenop wordt er

geen enkel zorgstelsel overbelast, omdat er simpelweg géén

gebruik van zal worden gemaakt. Het is een perfecte balans

tussen vrijheid en verantwoordelijkheid, doordat de top van

studerend Nederland zichzelf afsluit van de buitenwereld en

zich schuilhoudt in zijn eigen oase. Een daadwerkelijk intelligente

lockdown. HW

DE APPEL 31


THE LITTLE WAR

BUILDING WITH LEGO

BY FAUSTO VISSER

Since the first general purpose processor set free from the

R&D development tract and made into a consumer product

the race was on. The race for ever faster, cheaper,

more efficient and more versatile forms

of compute was born. However, around

the start of this decade it was clear who was

leading the race. With Intel capturing more than

70% of the marketshare in the processor market and

even more than that with the laptop and server divisions.

What Intel had been doing since 2007, and quite succesfully at that was

their tick-tock engineering strategy. Every year an new line of processors

would be released, however not every year was the same. A tock

was a change and redesign of the micro architecture which mostly allowed

for streamlining of the innerworkings of the processor and the

implementation of new features. The following step, a Tick, introduces

a new fabrication process that would allow the node size to be shrunk

down. What this essentially means is that the same physical features

on the processor can be packaged in a smaller physical area. This by

decreasing the nanoscopic disctances between the nodes, such as in

2010 when moving from the Nephalem architecture (42nm) to Westmere

(32nm). Decreasing this distance means there is less length to be travelled

within the CPU which generally results in less powerconsumption

for the same performance. An added benefit is that the die (piece of silicon

in the cpu) can now either be made smaller such that more processors

can be made from the same size wafer. Or the die size can be kept

the same but performance will be greatly improved.

Until about 2015 this strategy worked swimmingly, with the update of

the skylake microarchitecture on the existing 14 nm production process.

This would be the last time that the tick-tock bell had rung per

usual. For the next step would be the move to a 10nm production process.

But Intel had and has quite some problems with making this step .

In the last five years only a few chips have come from Intel on the 10 nm

process but most are still made on 14nm.

Meanwhile over at AMD things had been quite rough. Their last processor

that could really compete with the offerings from Intel had been in

the form of the AMD phenom II X4 in 2008. And even that was for the

bit more budget concerned pc builder, on the high end Intel held all the

cards with their i7 processors. After that came some marginal succes

and a few big failures. Most likely inspired by the succesfull quad core

designs of Intel, Amd focussed on the multicore aspect of the processors.

With their new generation of bulldozer cpu’s launched in 2011 they

promised high performance numbers with low power consumption. Dis-

32 DE APPEL


CORE 0 CORE 1

CORE 4 CORE 5

CORE 2

CORE 3

CORE 6

CORE 7

CORE 8 CORE 9

CORE 12 CORE 13

CORE 10

CORE 11

CORE 14

CORE 15

appointingly this generation could only come close to the competition

from Intel, which was to top it off even cheaper. Small pickings were had

by AMD in the desktop APU market. These were small computers with

considerable graphics performance for their size, which a nice integration

tactic as the graphics cards branch of the company had been doing

quite well. In these years most of the profits of AMD originated from

making chips akin to their APU’s for the console market. AMD chips

were found in the XBOX one, playstation 4, playstation 4 pro, XBOX one

S, XBOX one X and the playstation 5.

In 2017 AMD came with the launch of RYZEN, which would mark the

beginning of the resurgence for AMD. With the first generation of this

concept AMD was able to provide more performance, especially in multi

core applications, than intel in their offering while undercutting them

on pricing. How they managed this was by completely changing the way

they produce processors.

MONOLITHIC DESIGN

Virtually all processors are made by engineering a single piece of silicon,

the so called die. This includes the 2 to typically 4 cores, the low

level cache, on board graphics and the I/O. Incorporating all these parts

on single piece of silicon requires quite some engineering, but has certainly

been proven as the go-to method. However this approach requires

a different design and layout for every processor that is produced.

These differences in design also impact the production, as every design

has to be produced individually. This model of production is called the

monolithic design aproach.

CHIPLET APPROACH

Instead of making different pieces of silicon for each and every chip

AMD went down a different path in 2017. Their base unit became a computing

block with four cores, this is essentially their smallest lego block

with which they build virtually all their processors. A pair of these is

installed on one die (piece of silicon) where they share things like cache

and other things, this is the basic unit and called a CCD. Essentially

meaning an eight core processor is the smallest one made. But in the

whole line up there are 6, 8, 12, 16, 24 and 32 core processors. These

are all still built from those eight core dies, so a 16 core processor is

formed by combining two CCD’s that each contain eight cores. This can

be further extended for a 32 core processor by combining four of these

units. But now comes the ingenius part. With any production process

there are rejected parts, that is simply an inevitabilty. Especially in the

semi conductor industry a considerable part of the produced chips can

be rejected due to faults. Generally these faults are localised an thus

will have one or two cores that are faulty. So the 6 core processors are

made by taking the partial rejected eight core blocks, disabling the two

faulty cores which then can have a productive life as a six core processor.

The same is done for the 4 core unit where half of the cores were

not working etc. Meaning the statistical yields of the production process

are part of the strategy to create a line up varying from budget

processors all the way to enthausiast and server products. Compared

to the monolithic approach this makes sense for a larger number of

cores as the risk of a completely failed product is much lower.

The last contributing factor for the resurgence of AMD is that because

their process naturally accounts for failures they have been able to

more quickly move to a smaller process. In 2017 they started on 14nm,

12nm in 2018 and in 2020 they moved to all the way down to 7nm, while

Intel is still on 14nm. This leap in technology in a market that had been

dominated by one party means that active competition has resumed

after a lull of about 12 years. In the end this should only mean faster

technological progress from both sides where hopefully the consumers

and new siences enable by faster compute will have the pickings. k

DE APPEL 33


ADVERTORIAL

COMBINED EXPERTISE IN MOTION CONTROL, ELECTRONICS, SOFTWARE AND

MECHATRONICS UNIQUE IN EUROPE

NTS’ KNOWHOW OF

MECHATRONIC PRINT

SYSTEMS CONSIDERABLY

SHORTENS CUSTOMERS’

TIME-TO-MARKET

System architect Mike Curvers (47) develops printing systems at

NTS. Twenty years ago, he started at a predecessor of NTS. He

saw his professional field change: mechanical machines became

mechatronic, motion control continued to become more important

and the demand for printing flexible, customised series continued

to grow. Moreover, technologies like printing reliefs and Additive

Manufacturing entered the market. The know-how NTS has in the

field of customized printers is unique in the market. “Our knowledge

and experience in the field of motion control, electronics and

mechatronics cannot be found at any other company. That helps our

customers to considerably shorten their time-to-market.”

Mike was already interested in technology at a very early age. During

his study he found electronics especially appealing. In practice he discovered

that he was mainly fascinated by engines and propulsion That is

why Mike chose to start at Te Strake, one of NTS’ predecessors.

“That was twenty years ago,” Mike says: “and now I still work here. In

that time a lot has changed, the company has professionalised a great

deal. Although we were already a forerunner back then when it came

to our machines for textile printing for instance. That was a very innovative

product.”

UNDERSTANDING EXACTLY WHAT HAPPENS

“Back then those machines were entirely mechanical. At a later moment

in time they became mechatronic: a combination between electronics,

software and mechanics. The textile printer is an example of an extensive

project that I have worked on. It is a system printer, motion control

in this case is very complex, the ink needs to end up in the exact right

position. I want to be able to understand what happens exactly and I

want to see that it works.”

FROM CUSTOMER QUESTION TO PROJECT PLAN

AND CONCEPT

“Recently we received a question from a customer that wanted to develop

a bar in which printheads needed to be integrated. At such a moment

we demonstrate the customer what we have already done before

and what our competences are. The customer was enthusiastic, we showed

him what he wanted to see and he chose to work with NTS. After he

had sent us his requirements, we made a project proposal and then you

translate it in a project plan and a concept.”

“We are now working on the next step. We are going to further investigate

the things we have and the aspects that are difficult to develop or

produce. In this process we look at whether it is possible to manufacture

it and whether it is possible to clean all components. The customer does

not have the knowhow to do that himself.”

ROBOTS KULICKE & SOFFA ARE STILL BEING

BUILT

“Another example of a system that I have worked on in the past and that

is still in production, is a robot that we developed for Kulicke & Soffa.


ADVERTORIAL

These robots among others are used for assembling circuit boards. I

started developing these robots some 17 or 18 years ago and they are

still being used. The robots of course are continuously being updated

by NTS’ Assembly division. When a certain component is not available

for instance an alternative is looked for. The fact that the robots are still

being used, is really nice.”

“Sometimes we also develop machines that eventually do not obtain the

results that the customer expected. Take the inkjet printer for textile

as an example. Seen from a technical perspective the machine worked

perfectly, but from a commercial perspective the inkjet printhead was

simply too expensive. That is something you see more often in the inkjet

print market: some projects are really innovative which does not always

make it easy to predict the commercial viability.”

BEST PROJECT EVER: PRINTER OF 800 KILOS

WITH HIGH PRECISION PRINTHEADS

“The best project I have ever worked on is a very large printer for Agfa.

It is a large industrial printer with a print system that weighs 800 kilos

and has 64 printheads that need to move with an accuracy of 10 micrometre.

We were mainly responsible for the motion control and electronics.

That was really, very nice. It was even patented.”

“Agfa has a sound knowledge of inkjet but does not have enough expertise

of this type of motion control. We have developed the printer

together with three parties. A lot of the testing took place in Germany.

That was a very nice period, the collaboration was very good. During

daytime we worked hard and, in the evenings, we went out to dinner

and explored the environment. It was challenging, educational and fun.”

“In the end about 30 of this type of machines have been manufactured

and I am very proud of it. The machines among others are used to print

commercial posters. The well-known glass display posters that you for

instance can see in subway stations in Great-Britain. Eventually the

image quality of the inkjet printer was better than an offset image. For

that time, it was really unique.”

INKJET OFFERS GREAT FLEXIBILITY

“The advantage of inkjet over offset is that it offers you great flexibility.

It is extremely suited for printing small series or limited editions. You

can also apply special effects, like printing layers, fast marketing campaigns

where you print relief on packaging, printing a wooden pattern

on boards, printing panels and so on. It offers you a wide range of possibilities.”

continuously greater variety of materials are being printed.”

PRINTING ON PRODUCTS

“Inkjet printing is also evolving. One of the new developments in the

field of inkjet is printing directly on the final product. Think of plastic

bottles. We print directly on the bottle and because of this you do not

need to use a plastic wrap. By doing so, you reduce the required number

of activities and the logistics, which reduces your footprint and makes

it better for the environment. Furthermore, personalising products is

something you see more and more often.”

KNOWLEDGE NTS HAS OF MOTION AND PRINT

SYSTEMS IS UNIQUE IN EUROPE

“What NTS does in the field of motion and print systems and the experience

we have in this field is unique in Europe. Not a single other

company has the expertise that we have in the combination of motion

control, electronics, software and mechatronics. We do not sell products

of our own. Our services consist of helping our customers design and

develop customised print systems and parts of these systems in order

to manufacture them in series.”

NOT A SINGLE OTHER COMPANY KNOWS ALL

PARTS AND CAN ALSO MANUFACTURE THEM

“There are a lot of other companies with a specialism in specific parts

but there isn’t a single other company that has knowledge of all parts

and that can also manufacture those parts. When NTS would not have

had these competencies, a considerable number of the print systems

that are currently on the market, simply would not have existed.”

EXPERTISE NTS SHORTENS TIME-TO-MARKET

CUSTOMER

“Moreover, our expertise helps customers to develop and manufacture

the machine they have in mind in a much shorter period of time. They

could do it themselves and hire people for it but the enormous advantage

NTS offers, is that we don’t have to go through the learning curve. We

already have the experience we need in the field of deposition systems

and in the field of manufacturing and assembly.”

EVER SMALLER SERIES

“The wish to be able to be flexible and print small customised series is

something you hear a lot in the market. You don’t see a lot of large series

anymore. Certainly not in Dutch industry. It is all about small series and

large flexibility. Products generally have a continuously shorter lifespan.

Think of potato chips, in the past you could choose between a natural

or sweet pepper flavour, now you continuously have new flavours.

These new products repeatedly require new packaging.”

3D PRINTING IS ON THE RISE

“Another trend you see in the market is 3D printing. Initially it was

mainly used for prototyping purposes but now more and more often it

is used for printing the final product. It also concerns products that cannot

be produced in one piece by using another production technique, a

chess piece for example. Additive Manufacturing is rapidly developing. A


THESIS ARTICLE

TEMPERATURE

AND STRAIN RATE

DEPENDENCE

FOR END-LOADED

UNIDIRECTIONAL

GLASS-POLYPROPYLENE

COMPOSITES

BY ROLAND GUIJS

Composites have seen a rapid increase in usage for various applications. The combination of

lightweight and a good mechanical properties is an often-praised characteristic. Whereas

the latter is related to the usage of high-strength fiber in the composite, such as carbon or

glass, does the polymer matrix offer other great opportunities for the possible applications of

composites. Its high degree of freedom and suitability for mass-production with, for example

injection-moulding opens up endless new possibilities. This leads to, among others, new shapes

and significant material reductions. Based on all of these advantages, composites become

more and more of an alternative for conventional materials. Due to its rapid emerge in both

science and the industry, the available knowledge on it is rather limited. The fact that there

are numerous variations and types of composites, all with their own (mechanical) properties,

increases the lack of insight in composite behavior.

36 DE APPEL


LEFT, SCHEMATIC REPRESENTATION OF THE RELATION BETWEEN THE YIELD STRESS

AND APPLIED STRAIN RATE FOR A VISCOELASTIC MATERIAL. RIGHT, SCHEMATIC

REPRESENTATION OF THE RELATION BETWEEN THE YIELD STRESS AND TEMPERATURE

FOR A VISCOELASTIC MATERIAL.

A mechanical property of composites of which is typically less known

is its compressive behavior. It is generally considered that the tensile

properties of a composite are superior to its compressive properties,

which is mainly related to the fact that the fibers used have good tensile

properties, but are sensitive in compression, for example because

of buckling. Due to the inhomogeneous structure of the composites,

performing qualitative research is impeded, mainly because of practical

reasons. The fact that composites are highly sensitive to their production

process, and hence their properties, makes this even more complicated.

For this research, a testing procedure based on end-loading

is used. Multiple tests at different strain rates and temperatures will

be performed, to establish a potential relation among these and the

compressive properties.

Due to the presence of the matrix and results from other research, the

hypothesis is formed that the composite will behave according to a

viscoelastic nature, just as the pure polymer would do. In this particular

case, a polypropylene polymer is used as comparison. If the hypothesis

would be true, it would mean that the available knowledge on viscoelastic

behavior of polymers could be applied to (unidirectional) composites

under a compressive load, which would significantly increase the available

knowledge and insight. Typical for polymers is their behavior over

time, of which delayed yielding is a typical phenomenon. In practice

this means that even at an applied stress below the yield stress of the

material, it can still fail, and sooner than expected. During for example

creep tests this phenomenon is exhibited. In such a creep test, typically

three stages of deformation can be distinguished. In the primary

phase, the viscoelastic phase, the rate of deformation decreases in time.

Afterwards, the material enters the secondary phase, which is characterized

by a constant strain rate. This is caused by the fact that the

applied stress matches the chain mobility in the polymer, resulting in

the constant creep rate. Eventually the strain rate will increase again,

ultimately resulting in failure of the specimen.

The delayed yielding described above is related to the applied stress,

which is described by Sherby-Dorn. In order for the chain mobility to

match a higher applied stress, an elevated chain mobility is required,

which will eventually result in a quicker failure of the material. Consequently,

with an increasing applied stress, the time-to-failure will

decrease, but the engineering strain will remain the same. When the

strain rate is plotted against the engineering strain for various stresses,

a so called Sherby-Dorn plot is created. Typically, this figure consists

of multiple convex lines, oriented vertically to each other. This convex

shape is characterizing for an unstable system, where at a strain rate

higher than the minimum strain rate, the strain rate will increase with

the strain, leading to an acceleration of the total strain of the material.

When these minimum strain rates are plotted for their applied stress

versus the log of the plastic flow rate, it can be noted that they are on a

straight line. On the same line, the yield stresses for samples tested at

various strain rates, will be as well. This corresponds with the theory

posed above, where the yield point can be regarded as the stresss level

where the macroscopic strain rate of the material matches the applied

strain rate. Based on this relation, according to Bauwens-Crowet et al.,

it can be regarded that during secondary creep the stress dependence

of the flow rate follows the same trend as the strain rate dependence of

the yield stress in a tensile test. Consequently, the stress dependence of

the flow rate can be quantified.

This is done in the Eyring’s activated flow theory, which depends on

both the temperature and the stress:

Other variables are the activation energy, Boltzmann’s constant and the

activation volume. The first term, also known as the Arrhenius term,

covers the temperature effects, whereas the sine hyperbolic covers the

plastic flow rate. Under isothermal conditions and with a constant applied

strain rate, this equation can be simplified to the following equation:

DE APPEL 37


YIELD STRESS IN MPA VERSUS THE TESTING TEMPERATURE, TESTED WITH THE PURE END

LOADING METHOD.

This linear relation can be applied for single deformation behavior, typically

intra-lamellar. It expresses the relation between the yield stress

of a polymer and the logarithm of the applied strain rate. However, composites

often exhibit multiple deformation behaviors; an α -phase in

the plies, intra-lamellar, and a β-phase on the interfaces between the

plies, the inter-lamellar. At high temperatures or low strain rates, intralamellar

deformation is the dominant type to determine the yield stress,

whereas at lower temperatures or higher strain rates, inter-lamellar deformation

is dominantly present. Since these deformations act in parallel,

they can be described according to the principle of the stress additive,

resulting in the modified Ree-Eyring equation. For higher stresses,

this can be written as follows:

FAILURE OF SAMPLES, LEFT -20 C AND RIGHT 110 C, BOTH TESTED WITH PURE END

LOADING.

38 DE APPEL


MICROSCOPY IMAGE OF A TESTED SAMPLE, TESTED AT ROOM TEMPERATURE.

This equation describes the contribution of both the strain rate (I) as

well as the temperature (II) dependence of the yield stress. When this

trend is modelled, a line with a characteristic sharp bend can be recognized,

as seen in the figure. This bend separates the α-phase is dominant

and where both the α-phase and β-phase contribute. At a constant

temperature and increasing strain rate, the true yield stress will increase,

whereas with a constant strain rate and increasing temperature,

the true yield stress will decrease. This is typical for a viscoelastic material,

such as polypropylene, and research shows the same behavior for

glass-polypropylene (GPP) composites in tension.

To validate whether this same behavior can be regarded in a compressive

load state, multiple tests have been performed. As testing method,

a method based on pure loading and comparable with ASTM D695 is

used. To this extent, small, cubic samples with a 3.77 mm thickness will

be used. Crucial in the production phase of these samples is the planparallelism,

to obtain the required accuracy during testing. A deviation

of on average 21 micron was established.

With this method, multiple tests were performed, with sample sets

of five. The temperature was varied between -20 deg. C and 110 deg. C,

and the strain rate between 10^-5 and 10^-2 /s. This resulted in figures

comparable to the ones which were expected based on the modified

Ree-Eyring equation. An interesting observation during the test was

the fact that with increasing strain rates or decreasing temperatures,

the deviation between the multiple samples in a single set increased.

The temperature effect can be related to the fact that with increasing

temperature, the ductility of a material increases. Consequently, at low

temperatures the material tends to behave more brittle, increasing its

sensitivity for for example stress concentrations. Stress concentrations

can be an initiator for sample failure, which could explain the increased

standard deviation. Furthermore, the samples tested at elevated temperatures

exhibited little exterior damage after failure, whereas samples

tested at lower temperatures often split or had excessive damage.

For the tests with different constant strain speeds, a similar trend can

be recognized, as mentioned above. At higher testing rates, the deviation

among the samples tends to increase. Similarly, the damage to the

sample after failure is much more excessive compared to the samples

tested at lower strain rates. This can be related to the fact that at elevated

strain rates, the sensitivity for local defects and stress concentrations

in the material is increased.

When a close look is taken at a sample after failure, interesting observations

can be done. In the figure, a sample tested at room temperature

at a strain rate of 10^-3 can be seen. Approximately ¾ of the sample has

been removed, after it was embedded in an epoxy. Clearly, the fibers can

be recognized in the picture. The elliptic shapes which can be regarded

are fibers which have bend in the z-direction. The load during testing

was exerted in the vertical direction on the sample. From the figure, it

can be regarded that most of the fibers are still intact but have changed

location. This means they could move freely through the matrix during

deformation, which would be another indication that the matrix is dominant

during compression of the sample, resulting in a viscoelastic

nature of the composite, based on the polymer properties.

Based on the observations done it can be stated that under a compressive

load, the GPP polymer tends to exhibit a viscoelastic behavior. In

practice this means that there is a positive relation between the applied

strain rate and the yield stress, and a negative relation between the

temperature and the yield stress. The addition of fibers, in this case

glass fibers, does increase the compressive properties of the composite,

however, the polymer properties remain dominant in the failure mode. n

DE APPEL 39


Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!