13.05.2013 Views

Diploma Thesis - Universidad de Buenos Aires

Diploma Thesis - Universidad de Buenos Aires

Diploma Thesis - Universidad de Buenos Aires

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

K


K


K <br />

K0 <br />

K1


R <br />

K0(R) K1(R) <br />

<br />

<br />

R


K<br />

K0<br />

<br />

<br />

(R, +, 0, ·, 1) =: R <br />

R P <br />

M f −→ P → 0 <br />

R r <br />

f ◦ r ≡ IdP<br />

r<br />

<br />

M<br />

f<br />

<br />

P → 0<br />

P R<br />

Q <br />

I<br />

P ⊕ Q ∼ = R (I)<br />

⇒ P {xi}i∈I<br />

R P <br />

<br />

R (I)<br />

<br />

P ∼ = Im(r ◦ f) (r ◦ f) <br />

M Q IdM − (r ◦ f) <br />

r<br />

f<br />

<br />

P<br />

M (r◦f)⊕(IdM −r◦f)<br />

−−−−−−−−−−−−→ Im(r ◦ f) ⊕ Im(IdM − r ◦ f) ∼ = P ⊕ Q<br />

⇐ P ⊕Q ∼ = R (I) <br />

M f −→ P → 0 <br />

<br />

Q Id<br />

−→ Q f <br />

P ⊕ Q<br />

˜r<br />

R (I)<br />

<br />

M ⊕ Q <br />

P ⊕ Q<br />

f⊕IdQ<br />

<br />

<br />

0


M <br />

<br />

π◦˜r<br />

<br />

M<br />

f<br />

R (I)<br />

<br />

i<br />

<br />

<br />

<br />

P<br />

f <br />

(π · ˜r · i) ◦ f = IdP<br />

R <br />

<br />

R n n ∈ N <br />

R <br />

Proj(R) <br />

<br />

<br />

<br />

<br />

S <br />

G(S) j : S → G(S) <br />

φ : S → H H<br />

<br />

S<br />

∀f ∃! ¯ f :<br />

<br />

G(S)<br />

<br />

<br />

¯f<br />

f <br />

<br />

H<br />

j<br />

<br />

<br />

S <br />

<br />

j < j(S) >⊆ G(S) <br />

G(S) <br />

G(S) <br />

(x1, x2) ∈ S × S <br />

<br />

(x1, x2) ∼ (y1, y2) ⇐⇒ ∃t ∈ S : t+x1+y2 = t+y1+x2


j x ↦→ (x + p, p) ∈ S × S/ ∼ <br />

p ∈ S <br />

<br />

¯f(x1, x2) = f(x1) − f(x2)<br />

K0 R <br />

R <br />

<br />

K0(R) := G(Proj(R))<br />

E F <br />

[E] = [F ] ∈ K0(R)<br />

<br />

Q E ⊕ Q ∼ = F ⊕ Q ∈ Proj(R) Q<br />

<br />

<br />

[E] = [F ] ⇐⇒ (∃k) E ⊕ R k ∼ = F ⊕ R k<br />

Proj(R)<br />

<br />

R n n <br />

<br />

<br />

<br />

<br />

Gln(R) n × n<br />

R <br />

n <br />

1<br />

Gln(R) i <br />

Gln+1(R)<br />

A ↦→<br />

A 0<br />

0 1<br />

<br />

<br />

Gl(R) <br />

<br />

R × = Gl1(R) → · · · → Gln(R) → Gln+1(R) → · · · −→ Gl(R)


Mn(R) <br />

<br />

M(R)<br />

Mn(R) <br />

<br />

i<br />

Mn+1(R)<br />

<br />

A<br />

A ↦→<br />

0<br />

0<br />

0<br />

<br />

<br />

M(R) I<strong>de</strong>mn(R) ⊆<br />

I<strong>de</strong>m(R)<br />

f ∈ I<strong>de</strong>m(R) g ∈ I<strong>de</strong>m(R) <br />

Im(f) ∼ = Im(g) α ∈ Gl(R) αfα −1 = g<br />

⇐ <br />

u ∈ GlN(R) R<br />

<br />

<br />

⇒ R δ : R n f −→ R m g<br />

R n f <br />

R m <br />

d ∈ R n×m δ −1 =: ɛ e ∈ R m×n <br />

<br />

d · e = f<br />

e · d = g<br />

d = f · d = d · g<br />

e = g · e = e · f<br />

(1 − f) f <br />

N = n + m<br />

1 − f d<br />

e 1 − g<br />

2<br />

<br />

1n 0<br />

=<br />

0 1m<br />

<br />

<br />

f g <br />

<br />

1 − f<br />

e<br />

d<br />

1 − g<br />

<br />

f<br />

·<br />

0<br />

<br />

0 1 − f<br />

·<br />

0 e<br />

d<br />

1 − g<br />

<br />

=<br />

=<br />

1 − f d<br />

e 1 − g<br />

<br />

0 d<br />

·<br />

0 0<br />

<br />

=<br />

0 0<br />

0 g<br />

M(R) <br />

I<strong>de</strong>m(R) Gl(R)


I<strong>de</strong>m(R) → Proj(R) e ↦→ Im(e)<br />

<br />

I<strong>de</strong>m(R)/Gl(R) ∼ = Proj(R)<br />

<br />

e ∈ I<strong>de</strong>mn(R) f ∈ I<strong>de</strong>mm(R) <br />

P Q <br />

<br />

e 0<br />

e ⊕ f =<br />

0 f<br />

P ⊕ Q<br />

K <br />

<br />

Proj(K) = N0 <br />

K0(K) ∼ = Z<br />

R <br />

R<br />

M <br />

<br />

M ∼ <br />

= R/In<br />

n≤N<br />

In ⊂ R <br />

R N → M <br />

<br />

R <br />

<br />

<br />

A = C ∞ (X) X <br />

X <br />

A <br />

C ∞ X <br />

E <br />

(E p −→ X) ↦→ Γ(X, E) = {s : X → E/p ◦ s = IdX} ∈ Proj(A) <br />

E C ∞ (X) <br />

R <br />

A <br />

<br />

F → X X E ⊕ F ∼ =


X × R N <br />

<br />

Γ(X, E) ⊕ Γ(X, F ) ∼ = Γ(X, E ⊕ F ) ∼ = Γ(X, X × R N ) ∼ = A N<br />

X <br />

C ∞ <br />

A x ∈ X <br />

<br />

<br />

P A <br />

Q P ⊕ Q ∼ = A N P ⊆ A N <br />

f : X → R N <br />

{(x, v) ∈ X × R N /∃f ∈ P f(x) = v} <br />

<br />

f1, . . . , fk ∈ P <br />

f1(x), . . . , fk(x) <br />

g1 · · · gN−k ∈ Q Q x <br />

k × k <br />

{fi(x)}i N − k × N − k <br />

{gj(x)}j <br />

f1, . . . , fk <br />

<br />

<br />

Z → R K0<br />

K0(Z) ∼ = Z i∗<br />

−→ K0(R)<br />

K0 R<br />

˜K0(R) := K0(R)/i∗(Z)<br />

˜ K0(R) = 0<br />

K0 <br />

<br />

<br />

Ri i = 1, 2 <br />

Mn(R) I<strong>de</strong>mn(R) Gln(R)<br />

<br />

<br />

I<strong>de</strong>m(R1 × R2) ∼ = I<strong>de</strong>m(R2) × I<strong>de</strong>m(R2)<br />

Gl(R1 × R2) ∼ = Gl(R1) × Gl(R2)<br />

K0(R1 × R2) ∼ = K0(R1) × K0(R2)


f : R1 → R2 <br />

<br />

<br />

<br />

K0(R1) f∗<br />

−→ K0(R2)<br />

K0 <br />

<br />

K0<br />

K0 <br />

<br />

I ⊆ R <br />

R I R × R <br />

D(R, I) = {(x, y) ∈ R × R : x − y ∈ I}<br />

K0 <br />

P1 : D(R, I) → R K0 I R <br />

<br />

K0(R, I) := Ker{(P1)∗ : K0(D(R, I)) → K0(R)}<br />

<br />

π : R → R/I a ∈ R a ∈ Mn(R) <br />

π ā ∈ Mn(R/I)<br />

<br />

<br />

<br />

K0(R, I) (P2)∗<br />

−−−→ K0(R) π∗<br />

−→ K0(R/I)<br />

[e] − [f] ∈ K0(R, I) ⊆ K0(R × R)<br />

e = (e1, e2), f = (f1, f2) ∈ I<strong>de</strong>m(D(R, I)) <br />

K0(R × R) = K0(R) ⊕ K0(R) <br />

<br />

[e] = ([e1], [e2])<br />

[f] = ([f1], [f2])<br />

[e] − [f] = ([e1] − [f1], [e2] − [f2]) ∈ K0(R × R)


K0(R, I) <br />

(P1)∗([e] − [f]) = [e1] − [f1] = 0 ∈ K0(R)<br />

I <br />

<br />

<br />

<br />

[ē1] − [ ¯ f1] = 0<br />

ē1 − ē2 = 0<br />

¯f1 − ¯ f2 = 0<br />

[ē2] = [ ¯ f2] ∈ K0(R/I)<br />

(P2)∗(K(R, I)) ⊆ Ker(π∗)<br />

[e] − [f] ∈ K0(R) <br />

<br />

0 = π∗([e] − [f]) = [ē] − [ ¯ f]<br />

K0 <br />

ē ¯ f <br />

ē⊕1n ¯ f ⊕1m <br />

ē ¯ f <br />

∃¯g ∈ GLn(R/I) / ē = ¯g ¯ f ¯g −1 ∈ I<strong>de</strong>m(R/I)<br />

R <br />

R/I R <br />

<br />

R <br />

Ā ∈ Gln(R/I) =⇒ Ā + Ā−1 ∈ π∗(Gl2n(R))<br />

<br />

ē + 0n ē ¯ f <br />

¯g ⊕ ¯g −1 ¯g R<br />

I R π R/I <br />

Ā ∈ Gln(R/I) =⇒ Ā ⊕ Ā−1 ∈ π∗(Gl2n(R))<br />

<br />

Ā Ā −1<br />

<br />

=<br />

1 Ā<br />

1<br />

<br />

1<br />

−( Ā)−1 1<br />

1 Ā<br />

1<br />

<br />

1<br />

−1<br />

<br />

<br />

Ā A Ā−1 N <br />

R


K1<br />

K1 <br />

Gln(R)<br />

K1(R) := Gl(R)/[Gl(R), Gl(R)]<br />

eij 1 <br />

(i, j)<br />

En(R) Gln(R) <br />

(Idn + α · eij) j = i <br />

<br />

En(R) :=< (Idn + α · eij) / α ∈ R, j = i >⊂ Gln(R)<br />

E(R) Gl(R)<br />

E(R) := <br />

En(R) ⊂ Gl(R)<br />

E(R) <br />

n<br />

<br />

<br />

<br />

⎛<br />

⎜<br />

⎝<br />

1 0<br />

<br />

∗ 1<br />

⎞<br />

⎟<br />

⎠ ∈ E(R) <br />

eij(a)<br />

⎛<br />

a ∈<br />

⎞<br />

R i > j <br />

1 ∗<br />

⎜<br />

⎝<br />

⎟<br />

⎠ ∈ E(R)<br />

0 1<br />

0 −1<br />

1 0<br />

<br />

∈ E(R) <br />

<br />

<br />

<br />

0<br />

1<br />

−1<br />

0<br />

<br />

1<br />

=<br />

0<br />

−1<br />

1<br />

<br />

1 0<br />

1 1<br />

1 −1<br />

0 1


A ∈ Gln(R) <br />

<br />

A<br />

0<br />

0<br />

A−1 <br />

∈ E2n(R) <br />

<br />

<br />

[Gl(R), Gl(R)] = [E(R), E(R)] = E(R)<br />

E(R) [E(R), E(R)] <br />

<br />

eij(α) = [eik(α), ekj(1)]<br />

i, j, k α ∈ R <br />

E(R) ⊆ [E(R), E(R)] ⊆ [Gl(R), Gl(R)]<br />

A, B ∈ Gln(R) <br />

ABA −1 B −1 0<br />

0 1<br />

<br />

=<br />

AB 0<br />

0 B −1 A −1<br />

A −1 0<br />

0 A<br />

B −1 0<br />

0 B<br />

<br />

E2n(R) <br />

<br />

K1(R) <br />

<br />

−1 A 0 AB 0 B 0<br />

=<br />

0 B 0 1 0 B<br />

<br />

R R × R ×<br />

ab <br />

<br />

<br />

R × = Gl1(R) → Gl(R)<br />

R × <br />

ab<br />

K1 <br />

<br />

K1(R)<br />

˜K1(R) := K1(R)/R ×<br />

ab = Gl(R)/ < [Gl(R), Gl(R)], R× ><br />

R ˜ K1(R) = 1


A ∈ Gl(R) A ∈ Gln(R) n ∈ N <br />

<br />

<br />

<br />

<br />

K1 <br />

<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

1p<br />

λ<br />

0<br />

λ −1<br />

0 1q<br />

⎟<br />

⎠ ∈ E2n(R)<br />

1p 1q p + q = 2n − 2<br />

λ ∈ R ×<br />

ab <br />

λ 0<br />

0 1n−1<br />

<br />

1 ∈ ˜ K1(R) <br />

R I := R − R × <br />

R R I <br />

<br />

<br />

<br />

K1(R) ∼ = R ×<br />

ab<br />

<br />

R <br />

K1(R)<br />

<strong>de</strong>t : K1(R) → R ×<br />

Gln(R) <br />

R × =<br />

R ×<br />

ab <br />

K1(R) <br />

K1(R)<br />

K1(R) = R × ⊕ ˜ K1(R)<br />

<br />

K1(R) <br />

R 2 <br />

1


−1 K1(R) <br />

<br />

˜ K1(R) <br />

0 1<br />

1 0<br />

<br />

=<br />

−1 0<br />

0 1<br />

0 −1<br />

1 0<br />

<br />

≡ 1 ∈ ˜ K1(R)<br />

<br />

<br />

Mk(Mn(R)) = Mnk(R) <br />

Gl(R) ∼ = Gl(Mn(R))<br />

1 <br />

MN(R) N ∈ N <br />

n <br />

<br />

K1(R) ∼ = K1(Mn(R))<br />

G Z[G] <br />

<br />

Z[G] <br />

±g g ∈ G<br />

{±g : g ∈ G} ⊆ Z[G] ×<br />

K1(Z[G]) <br />

{±¯g : g ∈ G} ⊆ Z[G] × a b ⊂ K1(Z[G])<br />

G <br />

<br />

W h(G) = K1(Z(G))/{±¯g, g ∈ G}<br />

X G = π1(X, x0)<br />

X x0 <br />

W h(π1(X, x0)) = W h(X) <br />

x1 <br />

<br />

W h(π1(X, x0)) ∼ = W h(π1(X, x1))<br />

x0 x1 <br />

<br />

<br />

γ ∈ π1(X, x0) Gl(R) <br />

γ


K1(R) <br />

<br />

W h(X) <br />

<br />

<br />

W h(X) := <br />

W h(π1(X, p))<br />

p∈π0(X)


R (C•, ∂•) R<br />

Z −1 <br />

∂• ◦ ∂• ≡ 0<br />

R Cn <br />

∂n<br />

<br />

· · · → Cn+1<br />

∂n+1 ∂n<br />

−−−→ Cn −→ Cn−1 → · · ·<br />

∂n+1 ◦ ∂n ≡ 0<br />

(C•, c•) f•<br />

−→ (D•, d•) R<br />

0 <br />

fn<br />

{Cn −→ Dn : n ∈ Z} dn ◦ fn = fn−1 ◦ cn <br />

<br />

. . . <br />

Cn+1<br />

. . . <br />

<br />

fn+1<br />

cn+1 <br />

Cn<br />

<br />

fn<br />

dn+1 Dn+1 <br />

Dn<br />

cn <br />

Cn−1<br />

<br />

fn−1<br />

dn <br />

Dn−1<br />

<br />

. . .<br />

<br />

. . .<br />

<br />

<br />

<br />

cn : Cn → Cn+1<br />

<br />

<br />

Bn(C) := Im(∂n+1) ⊆ Ker(∂n) =: Zn(C)<br />

Bn(C) n n Zn(C)<br />

n <br />

<br />

Hn(C•) = Zn(C)/Bn(C) <br />

f <br />

f∗ <br />

Hn(C•) f∗<br />

−→ Hn(D•) <br />

Hn <br />

R


Zn(C) Hn(C)<br />

Bn(C) <br />

Hn(C) = 0, ∀n ∈ Z <br />

<br />

<br />

R<br />

M ′<br />

∂ ′<br />

<br />

<br />

′ N<br />

<br />

0<br />

Ker(∂ ′ )<br />

<br />

Coker(∂ ′ )<br />

f<br />

f<br />

f<br />

f<br />

<br />

M<br />

∂<br />

<br />

<br />

N<br />

<br />

Ker(∂)<br />

S<br />

g<br />

g<br />

<br />

M ′′<br />

∂ ′′<br />

<br />

<br />

′′ N<br />

g<br />

<br />

Coker(∂) g<br />

<br />

0<br />

<br />

′′ Ker(∂ )<br />

<br />

′′ Coker(∂ )<br />

<br />

<br />

f g <br />

<br />

<br />

S <br />

<br />

S = π ′ ◦ (f −1 ) ◦ ∂ ◦ (g −1 ) <br />

f g <br />

π ′ <br />

∂ ′ <br />

<br />

<br />

<br />

<br />

<br />

<br />

0 → C ′ •<br />

f• g•<br />

−→ C• −→ C ′′<br />

• → 0<br />

Hn+1(C ′′ ) ∂ −→ Hn(C)<br />

f∗ g∗ <br />

· · · → Hn+1(C ′′ ) ∂∗<br />

−→ Hn(C ′ ) f∗<br />

−→ Hn(C) g∗<br />

−→ Hn(C ′′ ) → · · ·


R <br />

k <br />

0 <br />

C ′ k<br />

0<br />

∂ ′<br />

k<br />

<br />

<br />

C ′ k−1<br />

fk <br />

Ck<br />

<br />

∂k<br />

fk−1 <br />

Ck−1<br />

gk <br />

gk−1 <br />

C ′′<br />

k<br />

<br />

∂ ′′<br />

k<br />

C ′′<br />

k−1<br />

<br />

0<br />

<br />

0<br />

k k−1<br />

<br />

0 <br />

Ker(∂ ′ k )<br />

<br />

Coker(∂ ′ k )<br />

f<br />

f<br />

<br />

Ker(∂k)<br />

Sk<br />

g<br />

<br />

Coker(∂k) g<br />

<br />

Ker(∂ ′′<br />

k )<br />

<br />

Coker(∂ ′′<br />

k )<br />

<br />

0<br />

<br />

<br />

<br />

<br />

0<br />

Coker(∂ ′ k )<br />

∂ ′<br />

k−1<br />

fk−1 <br />

Coker(∂k)<br />

∂k−1<br />

gk−1 <br />

Coker(∂ ′′<br />

k )<br />

∂ ′′<br />

k−1<br />

<br />

<br />

<br />

<br />

Ker(∂ ′ k−2 ) fk−2 <br />

Ker(∂k−2) gk−2 <br />

Ker(∂ ′′<br />

k−2 )<br />

<br />

Ker( Coker(∂k) ∂k−1<br />

−−−→ Ker(∂k−2)) = Hk−1(C)<br />

Coker( Coker(∂k) ∂k−1<br />

−−−→ Ker(∂k−2)) = Hk−2(C)<br />

<br />

· · · → Hk−1(C ′ ) f∗<br />

−→ Hk−1(C) g∗<br />

−→ Hk−1(C ′′ ) ∂∗<br />

−→ Hk−2(C ′ ) → · · ·<br />

<br />

R <br />

<br />

<br />

<br />

<br />

0


(C•, ∂) <br />

Σ k C• k ∈ Z<br />

(−1) k <br />

(Σ k C•)n = Cn−k<br />

∂ Σ k C• = (−1) k .∂C•<br />

∂n <br />

<br />

<br />

R <br />

( ˘ C•)n := HomR(C−n, R) <br />

−1 (−n+1) (∂−n+1) ∗ =: ˘ ∂n<br />

˘Cn := HomR(C−n, R) (∂−n+1)∗<br />

−−−−−−→ HomR(C−n+1, R) =: ˘ Cn−1<br />

<br />

<br />

n <br />

n<br />

<br />

Σ n ( ˘ C•) =: ˘ C•−n<br />

Σ n ( ˘ C•) ∼ =<br />

˘<br />

(Σ −n C) •<br />

<br />

(C, c) (D, d) R S<br />

(C ⊗D, ∂)<br />

R ⊗Z S ∂ <br />

(C ⊗D)n = <br />

∂n = <br />

k∈Z<br />

k∈Z<br />

Ck ⊗Z Dn−k<br />

ck ⊗ 1Dn−k + (−1)k 1Ck<br />

⊗ dn−k<br />

∂• ◦ ∂• = 0 <br />

Ck ⊗ Dn−k<br />

∂n−1 ◦ ∂n = ∂n−1 ◦ {ck ⊗ 1Dn−k } + ∂n−1 ◦ {−1k 1Ck ⊗ dn−k}<br />

= (ck−1 ⊗ 1Dn−k ) ◦ (ck ⊗ 1Dn−k )<br />

+ (ck ⊗ 1Dn−1−k ) ◦ ( (−1)k · 1Ck<br />

⊗ dn−k)<br />

+ ( −1k−1 · 1Ck−1 ⊗ dn−k ) ◦ (ck ⊗ 1Dn−k )<br />

+ ( −1k−1 · 1Ck−1 ⊗ dn−k ) ◦ ( (−1) k 1Ck ⊗ dn−k)<br />

c• d•


R (C, c) <br />

(D, d) (Hom(C, D), ∂) <br />

Hom(C, D)n := <br />

HomR(Ck−n, Dk)<br />

k∈Z<br />

f ∈ HomR(Ck−n, Dk)<br />

∂n(f) = dk ◦ f − (−1) n f ◦ (ck−n+1)<br />

D R <br />

0 C<br />

C D R D <br />

<br />

D ⊗R HomR(C, R) −→ HomR(C, D)<br />

x ⊗ φ ↦→ (x ⊗ φ) (y) = φ(y) · x<br />

<br />

D <br />

D ⊕ Q ∼ = R n {(d1, q1), . . . , (dn, qn)}<br />

f ∈ HomR(C, D) φk C R k = 1, . . . , n<br />

<br />

k dk ⊗ φk <br />

f <br />

(C, c) (D, d) R D<br />

Hom<br />

C D<br />

Hom(C, D) = (D• ⊗R ˘ C•)<br />

<br />

D•⊗ ˘ C• = <br />

Dk ⊗ ( ˘ C•)n−k = <br />

HomR(Ck−n, Dk) := Hom(C, D)n<br />

k∈Z<br />

k∈Z<br />

<br />

∂n(f) = dk ◦ f + (−1) k 1D (−1) k−n+1 (ck−n+1) ∗ ◦ f<br />

= (dk ⊗ 1C ′ + (−1)k ⊗ (c ′ )n−k)(f)<br />

<br />

Hom <br />

<br />

0 z ∈ (Hom(C, D))0 = <br />

k HomR(Ck, Dk) <br />

∂(z) = d ◦ z − z ◦ c = 0 <br />

f −g = ∂(h)


f ∼ = g f ∼ =h g <br />

h ∈ <br />

k∈Z Hom(Ck+1, Dk) <br />

[C•, D•] C• D•<br />

<br />

H0(Hom(C, D)) = [C•, D•] <br />

Hom <br />

Hom(C, D)n = <br />

Hom(Ck−n, Dk) = <br />

k∈Z<br />

k∈Z<br />

Hom((Σ n C)k, Dk) = Hom(Σ n C, D)0<br />

<br />

Hom Hom <br />

<br />

Hn(Hom(C•, D•)) = [Σ n C•, D•]<br />

f g [f] = [g] ∈<br />

[C•, D•] <br />

<br />

[C•, D•] → HomR(Hn(C), Hn(D))<br />

[f] ↦→ {Hn(C•) f∗<br />

−→ Hn(D•)}<br />

<br />

<br />

fn − gn = ∂(h) = h ◦ cn + dn+1 ◦ h <br />

h• <br />

f g<br />

cn <br />

<br />

hn<br />

<br />

Cn<br />

<br />

dn+1<br />

Dn+1 <br />

Dn<br />

f−g<br />

<br />

hn−1<br />

Cn−1<br />

∂(h) ∗ = (d ◦ f − f ◦ c)∗ = 0<br />

<br />

Hn(D)<br />

f ∼ = 0 <br />

<br />

(C, ∂) Sop(C) :=<br />

{n ∈ Z/Cn = 0} Z


R <br />

R <br />

<br />

<br />

R <br />

<br />

C IdC ≡ 0 <br />

Hn(C) = Id∗(Hn(C)) = 0 C <br />

<br />

<br />

R <br />

. . . → Cn<br />

∂n<br />

∂1<br />

−→ . . . → C1 −→ C0 → 0<br />

H0(C) = 0 C0 C0 <br />

r0 <br />

∂1 ◦ r0 = 1C0 r0 ◦ ∂1 ∈ I<strong>de</strong>m(EndR(C1)) <br />

Ker(∂1) ⊕ r0◦∂1(C1) = C1<br />

<br />

Ker(∂1) ∂2 <br />

Ker(∂1) H1(C) = 0 <br />

<br />

rn ∂n+1 <br />

δ <br />

δn = rn ⊕ 0 sobre Ker(∂n) ⊕ rn−1◦∂n(Cn) <br />

(∂n+1 ◦δn) Ker(∂n) (δn−1 ◦∂n)<br />

<br />

IdCn = δn−1 ◦ ∂n + ∂n+1 ◦ δn<br />

<br />

R<br />

f• : C• → D• <br />

<br />

f : C• → D• <br />

<br />

(f∗)n ∀n ∈ Z


f• : C• → D• <br />

g• : D• → C• <br />

+1 h• : C• → C•+1 h ′ • : D• → D•+1 <br />

g ◦ f − IdC = ∂ ◦ h + h ◦ ∂<br />

f ◦ g − IdD = ∂ ◦ h ′ + h ′ ◦ ∂<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

f <br />

<br />

<br />

<br />

Z <br />

<br />

p 2 <br />

Zp 0 <br />

Zp Z p 2 p <br />

Z p 2 p<br />

. . . 0 → Zp → Z p 2<br />

µp<br />

−→ Z p 2 → · · · → Z p 2 . . .<br />

δ x ∈ Z p 2 n <br />

<br />

x = (µp ◦ δn + δn−1 ◦ µp)(x)<br />

= p · (δn + δn−1)(x)<br />

<br />

x = p 2 · (δn + δn−1) 2 (x) = 0 ∀x


f•<br />

C• −→ D• <br />

△(f)n = Cn−1 ⊕ Dn ∂n = (−cn−1, fn−1 + dn)<br />

<br />

−cn−1<br />

∂n(x, y) =<br />

0<br />

<br />

x<br />

·<br />

y<br />

fn−1 dn<br />

f•<br />

C• −→ D• <br />

<br />

0 → (D, d)•<br />

i<br />

p<br />

−→ △(f)• −→ σ 1 C• → 0 <br />

<br />

. . . → Hn+1(△(f)) → Hn(C) ∂∗<br />

−→ Hn(D) → Hn(△(f)) → . . . <br />

∂∗ f<br />

[x] ∈ Hn(C) <br />

<br />

x<br />

(p∗ −1 )(x) = (x, y)<br />

∂n<br />

∂n(x, y) = (−cn−1(x), fn−1(x) + dn(y) ) = ( 0 , fn−1(x) + dn(y) )<br />

<br />

<br />

∂n−1([x]) = [fn−1(x) + dn(y)] = [fn−1(x)] = fn−1([x]) ∈ Hn(D)<br />

<br />

<br />

f △(f) <br />

f △(f) <br />

<br />

∂∗ = f∗<br />

⇐ f δ △(f) <br />

g : D → C h h ′ g ◦ f ∼ =h 1C f ◦ g ∼ =h ′ 1D<br />

<br />

δ ◦ ∂ + ∂ ◦ δ = 1C ⊕ 1D


δ(x, 0) = (h(x), s(x))<br />

δ(0, y) = (g(y), −h ′ (y))<br />

<br />

(x, 0) = (δ ◦ ∂ + ∂ ◦ δ)(x, 0)<br />

= δ(−c(x), f(x)) + ∂(h(x), . . .)<br />

= (−h ◦ c(x) + g ◦ f − c ◦ h(x), . . .)<br />

h (g ◦f)<br />

C <br />

(0, y) = δ(0, d(y)) + ∂(g(y), −h ′ (y))<br />

= (g ◦ d(y), −h ′ ◦ g(y)) + (−c ◦ g(y), f ◦ g(y) − d ◦ h ′ (y))<br />

= (g ◦ d(y) − c ◦ g(y) , − h ′ ◦ g(y) + f ◦ g(y) − d ◦ h ′ (y))<br />

g <br />

h ′ (f ◦g) <br />

D<br />

⇒ <br />

<br />

δ(x, y) = ((h(x)+g(y)+g◦h ′ ◦f(x)+g◦f ◦h(x), −h ′ (y)+h ′ ◦f ◦h(x)−(h ′ ) 2 ◦f(x))<br />

<br />

<br />

C D R <br />

<br />

<br />

<br />

f : C → D R<br />

C D <br />

<br />

f <br />

f <br />

<br />

C 1 ∼ = C 2 D 1 ∼ = D 2 <br />

C i ⊗ D i <br />

D 1 = D 2 = D C i <br />

D i <br />

( ¯ C, c) C 1 φ −→ C 2 <br />

s <br />

1 ¯ C = s ◦ c + c ◦ s


(s ⊗ 1D) <br />

(φ ⊗ 1D) <br />

<br />

D <br />

C 1 ⊗ D φ⊗IdD<br />

−−−−→ C 2 ⊗ D<br />

n <br />

<br />

(C 1 ⊗ D)n−1 ⊕ (C 2 ⊗ D)n = <br />

<br />

<br />

k∈Z (C1 n−1−k ⊗ Dk) ⊕ (C2 n−k<br />

= <br />

k∈Z (C1 n−1−k ⊕ C2 n−k ) ⊗ Dk)<br />

∂ ¯ C⊗D = c ⊗ 1D + −1 grad( ¯ C) · 1 ¯C ⊗ d<br />

⊗ Dk)<br />

∂m(φ ⊗ 1d) = −(c 1 ⊗ 1D + −1 grad(C1 ) · 1C 1 ⊗ d) . . .<br />

⊕ (φ ⊗ 1D) + (c 2 ⊗ 1D + −1 grad(C2 ) · 1C 2 ⊗ d)<br />

= (−c 1 ⊕ (φ + c 2 )) ⊗ 1D + (−1 grad(C1 )−1 · 1C 1 ⊕ −1 grad(C2 ) · 1C 2) ⊗ d<br />

= c ⊗ 1D + −1 grad( ¯ C) · 1 ¯C ⊗ d<br />

<br />

grad( ¯ C) = grad(C 1 ) + 1 = grad(C 2 )<br />

<br />

<br />

<br />

R <br />

K0(R)<br />

<br />

<br />

<br />

R C <br />

χ(C) <br />

K0(R) Cn<br />

χ(C) = <br />

(−1) n [Cn] ∈ K0(R) <br />

k∈Z


χ <br />

<br />

C <br />

<br />

χ(C ⊕ D) = χ(C) + χ(D)<br />

χ(Σ n C) = (−1) n χ(C)<br />

χ(C•, ∂) = χ(C•, 0)<br />

<br />

<br />

<br />

0 → C• → D• → E• → 0<br />

χ(D) = χ(C) + χ(E) <br />

<br />

<br />

0 → Cn → Dn → En → 0 En <br />

<br />

Dn ∼ = Cn ⊕ En<br />

<br />

(−1) n [Dn] = <br />

(−1) n [Cn] + [En] ∈ K0(R)<br />

n<br />

n<br />

C R <br />

Hn(C) <br />

χ(C) = <br />

(−1) n [Hn(C)] <br />

k∈Z<br />

Z0 = C0 B0 <br />

n = 0<br />

0 → Bn → Zn<br />

p<br />

−→ Hn → 0 <br />

Z1 <br />

n = 1<br />

0 → Zn → Cn<br />

∂n<br />

−→ Bn−1 → 0 <br />

Bn <br />

Zn+1 <br />

K0(R) <br />

[Cn] = [Zn] + [Bn−1]


[Hn] + [Bn] = [Zn]<br />

[Cn] = [Hn] + ( [Bn−1] + [Bn] )<br />

<br />

<br />

χ(C) = <br />

(−1) n [Hn]<br />

k∈Z<br />

C R <br />

χ(C) = 0<br />

f : C → D<br />

R <br />

<br />

C• R <br />

R C ′ <br />

C <br />

χ(C) := χ(C)<br />

χ <br />

<br />

R (C, ∂) <br />

Hn(C) <br />

n ∈ N <br />

<br />

⇐ <br />

<br />

Cn Zn R<br />

Hn(C) = Zn/Bn <br />

⇒ <br />

C0 = Z0 H0 = Z0/B0 =< ¯z1, . . . , ¯zk > H0 <br />

k <br />

R k → H0 H0 <br />

R <br />

z1, . . . , zk ∈ C0<br />

R k φ −→ C0 <br />

<br />

<br />

0<br />

<br />

Ker(φ)<br />

<br />

k R<br />

<br />

φ0 <br />

H0<br />

<br />

0


q R <br />

Rk ¯φ0 <br />

H0<br />

<br />

0 <br />

C ′ • φ C•<br />

<br />

0 → C <br />

φ : C ′ • → C• <br />

C ′ 0 = R k<br />

C ′ 1 = R q<br />

φ0 := φ φ1<br />

φ1 : C ′ 1 → C1<br />

φ1(ej) = uj uj ∈ C1 <br />

∂(uj) = φ0 ◦ ∂(ej) ∀j ≤ q<br />

φ0 <br />

C <br />

0 (φ0)∗ <br />

· · ·<br />

· · ·<br />

<br />

C2<br />

<br />

<br />

0<br />

∂ <br />

C1<br />

φ1<br />

<br />

<br />

′ C 1<br />

∂ <br />

C0<br />

φ0<br />

<br />

∂ <br />

′ C 0<br />

<br />

k ≤ N − 1 <br />

Hk+1(C) <br />

n = nk+1 <br />

R n → Ck+1<br />

<br />

0<br />

<br />

0<br />

<br />

<br />

<br />

n ′ <br />

Rn′ ∂ <br />

n R <br />

Hk+1<br />

R n′ ∂ −→ R n <br />

k + 1 k + 2 C ′ <br />

<br />

<br />

0


φ <br />

k + 1 k + 2<br />

<br />

· · ·<br />

· · ·<br />

<br />

Ck+3<br />

<br />

<br />

0 <br />

<br />

Ck+2<br />

φk+2<br />

<br />

C ′ k+2<br />

∂ <br />

Ck+1<br />

φk+1<br />

<br />

∂ <br />

C ′ k+1<br />

<br />

· · ·<br />

<br />

· · ·<br />

<br />

C0<br />

φ0<br />

<br />

<br />

′ C 0<br />

<br />

<br />

N C ′ N+1<br />

<br />

N − 1 N<br />

φ △(φ) =: △ k = N + 1<br />

Hk(△) = 0<br />

∂ ′′ N+1<br />

HN+1(△) △N+1 = C ′ N<br />

HN+1(△) = Ker(∂ ′′ N+1 ) C′ N <br />

∂ ′ C ′ • φN<br />

C ′ N <br />

C ′ • C• <br />

<br />

<br />

C R <br />

R <br />

<br />

K0 <br />

˜χ(C) := [χ(C)] = 0 ∈ ˜ K0(R)<br />

<br />

C R ˜ K0(R) <br />

<br />

˜χ(C) = <br />

(−1) n [Cn] = 0 ∈ ˜ K0(R)<br />

k∈Z<br />

<br />

C <br />

<br />

<br />

<br />

. . . → Cn<br />

∂n<br />

∂1<br />

−→ . . . → C1 −→ C0 → 0<br />

<br />

<br />

0<br />

<br />

0


Qn Cn Cn ⊕ Qn =: Fn ∼ = R m <br />

Qn ⊗ Σ n ∆(Id : R → R) <br />

. . . → 0 → Qn<br />

Id<br />

−→ Qn → 0 → . . .<br />

n n−1 <br />

<br />

<br />

0 → Fn → . . . F0 → Q0 → 0<br />

Fi = Ci ⊕<br />

Qi ⊕ Qi+1 <br />

[Qn] = −[Cn] ∈ ˜ K0(R)<br />

[Qj] = −([Cj] + [Qj+1]) j = 0, . . . n − 1<br />

Q0 <br />

[Q0] = −[C0] + ([C1] − [Q2]) + . . . = − <br />

(−1) n [Cn] = 0 ∈ ˜ K0(R)<br />

m ∈ N Rm ⊕ Q0 ∼ = Rk <br />

<br />

k∈Z<br />

. . . → 0 → R m Id<br />

−→ R m → 0 → . . .<br />

0 −1<br />

<br />

<br />

<br />

<br />

<br />

R <br />

R P <br />

· · · → 0 → P → 0 → · · ·<br />

<br />

<br />

· · · → 0 → F s −→ F → 0 → · · ·<br />

Q ⊕ P F <br />

s <br />

F = P ⊕ Q ⊕ P ⊕ Q ⊕ · · ·<br />

s(p0, q1, p1, q2, . . . ) = (p1, q1, p2, q2, . . . )<br />

s Ker(s) = P


R S <br />

C D <br />

<br />

C ⊗Z D <br />

R⊗Z S <br />

<br />

R ⊗ S<br />

<br />

K0 <br />

<br />

K0(R) × K0(S) → K0(R ⊗ S)<br />

([P ], [Q]) ↦→ [P ⊗ Q]<br />

<br />

<br />

χ(C ⊗ D) = <br />

j (−1)j [ <br />

k (Cj−k ⊗ Dk)] ∈ K0(R ⊗ZS)<br />

= <br />

j, k (−1)j · [Cj−k ⊗ Dk]<br />

= <br />

j, k (−1)j · [Cj−k] · [Dk]<br />

= <br />

k (<br />

j (−1)j · [Cj−k]) · [Dk]<br />

χ(C ⊗ D) = χ(C) · χ(D) <br />

<br />

<br />

D Z χ(D) K0(Z) = Z <br />

K0 <br />

<br />

˜χ(C ⊗Z D) = ˜χ(C) · χ(D) ∈ ˜ K0(R)<br />

<br />

<br />

<br />

f <br />

<br />

<br />

R <br />

(C•, ∂•) δ


(∂ + δ) <br />

<br />

Cpar = <br />

n<br />

Cimpar = <br />

n<br />

C2n<br />

C2n+1<br />

χ(C) = 0 <br />

<br />

rg(Cpar) = rg(Cimpar)<br />

Cpar<br />

(∂•+δ•)par<br />

−−−−−−−−→ Cimpar<br />

<br />

R <br />

(∂• + δ•) 2 := (∂• + δ•)impar ◦ (∂• + δ•)par<br />

= ∂ 2 + δ ◦ ∂ + ∂ ◦ δ + (δ) 2<br />

= 1C + (δ) 2<br />

(∂• + δ•) 2 = 1 ∈ K1(R)<br />

<br />

δ<br />

δ 2 +2 <br />

1C + (δ) 2 <br />

K1(R) <br />

[(∂ + δ)par] = [(∂ + δ)impar] −1 ∈ K1(R)<br />

<br />

R <br />

˜τ(C) = [(∂ + δ)par] ∈ K1(R) <br />

<br />

δ <br />

<br />

C <br />

f +g = 1C g◦f = 0 <br />

f + g = 1C = (f + g) 2 = f 2 + f g + g f + g 2 = f ◦ (f + g) + g 2 = f + g 2<br />

=⇒ g = g 2 , f = f 2<br />

<br />

1Cn = (∂n+1 ◦ δn) + (δn−1 ◦ ∂n)


Bn = Im(∂n+1) Cn <br />

pn = ∂n+1 ◦ δn <br />

˜ Bn−1 = Im(δn−1 ◦ ∂n) <br />

Cn = Bn ⊕ ˜ Bn−1 ∂( ˜ Bk) = Bk<br />

<br />

Cn<br />

(pn⊕∂n)<br />

−−−−−→ Bn ⊕ Bn−1<br />

<br />

Bn Cn <br />

in ⊕ δn−1 <br />

C• <br />

Bi <br />

C• R <br />

¯ C• <br />

C B ′ i τ(C) = τ( ¯ C)<br />

<br />

0 → Ck → · · · → C2<br />

∂2 ∂1<br />

−→ C1 −→ C0 → 0<br />

Ci B0 = C0 <br />

Bi <br />

K0 <br />

<br />

0 = [C1] = [B0] + [B1] = [B1] ∈ ˜ K0(R)<br />

F B0 R <br />

F ⊕ B1 ∼ = R N<br />

<br />

· · · → 0 → F IdF<br />

−−→ F → 0 → · · ·<br />

R ¯ C•<br />

· · ·<br />

<br />

C2 ⊕ F ∂2⊕IdF <br />

C1 ⊕ F<br />

δ⊕IdF<br />

<br />

B ′ 1 <br />

∂1⊕0 <br />

C0 · · ·<br />

B ′ 1 = Ker( ¯ ∂1) = Im( ¯ ∂2) = B1 ⊕ F ∼ = R N<br />

<br />

Ci


F <br />

(∂ + δ)par <br />

<br />

K1 <br />

τ( ¯ C•) = [ (∂ + δ)par ]<br />

= [(∂ + δ)par ⊕ IdF ]<br />

= [(∂ + δ)par] · [IdF ]<br />

= [(∂ + δ)par]<br />

τ( ¯ C•) = τ(C•) ∈ K1(R)<br />

Bi R <br />

<br />

R [pn ⊕ ∂n] ∈ K1(R) <br />

<br />

<br />

p ′ n <br />

Ker(pn − p ′ n) ⊇ Bn<br />

∂n pn − p ′ n = u ◦ ∂n <br />

<br />

pn<br />

<br />

<br />

<br />

1 u<br />

0 1<br />

∂n<br />

=<br />

1 u<br />

0 1<br />

p ′ n<br />

<br />

K1(R) <br />

∂n<br />

[pk ⊕ ∂k] = [p ′ k ⊕ ∂k] ∈ K1(R)<br />

<br />

K1(R)<br />

<br />

[pk ⊕ ∂k] (−1)k<br />

∈ K1(R)<br />

k<br />

<br />

Bi pi ⊕ ∂i−1 <br />

pi⊕∂i K1<br />

<br />

R <br />

<br />

τ(C) = <br />

[pn ⊕ ∂n] (−1)n<br />

∈ K1(R) <br />

n


L<br />

k (pk⊕∂k)<br />

−−−−−−−→ <br />

(Bk ⊕ Bk−1) <br />

Cpar<br />

<br />

k <br />

(Bk ⊕ Bk−1)<br />

k <br />

L<br />

−1<br />

k (pk⊕∂k)<br />

−−−−−−−−−→ Cimpar<br />

<br />

(pk ⊕ ∂k) −1 = ik ⊕ δk−1 <br />

<br />

<br />

(Bk ⊕ Bk−1)<br />

k <br />

L<br />

k (δk⊕ik−1)<br />

−−−−−−−−−→ Cimpar<br />

<br />

K1(R)<br />

<br />

pk = ∂k+1 ◦ δk<br />

<br />

k <br />

(δk ◦ ∂k+1 ◦ δk) ⊕ ∂k) = ((δ ◦ ∂ ◦ δ) ⊕ ∂) par<br />

¯ δ := δ ◦ ∂ ◦ δ C• δ<br />

( ¯ δ ⊕ ∂)par K1 <br />

τ(C) = [( ¯ δ + ∂)par] ∈ K1(R) ¯ δ <br />

<br />

( ¯ δ + ∂)impar ◦ ( ¯ δ ⊕ ∂)par = ¯ δ2 + ∂ ◦ ¯ δ ⊕ ¯ δ ◦ ∂ + ∂2 = ¯ δ2 + IdB• ⊕ IdB•−1 ˜<br />

= ( ¯ δ2 ⊕ 0) + IdC•<br />

<br />

( δ ¯ + ∂)impar · ( δ¯ ⊕ ∂)par = 1 ∈ K1(R)<br />

<br />

pn δ<br />

<br />

<br />

<br />

R<br />

u•<br />

A• −→ B• <br />

<br />

τ(A) · τ(B) −1 = <br />

[uk] k<br />

∈ K1(R) <br />

k


u• δ <br />

u δ ˜ δ B<br />

˜δ• = u•+1 ◦ δ• ◦ u• −1<br />

· · · A•+1<br />

u<br />

<br />

<br />

δ<br />

∂ A<br />

· · · B•+1 ∂ B<br />

<br />

1Bk = uk · 1Ak<br />

<br />

A• · · ·<br />

u<br />

<br />

<br />

B• · · ·<br />

· u−1<br />

k<br />

= uk(δ · ∂A + ∂A · δ)u −1<br />

k<br />

= (uk δ u −1<br />

k−1 ) · (uk−1 ∂A u −1<br />

k<br />

) + · · ·<br />

· · · (uk ∂ A uk+1 −1 ) · (uk+1 δ u −1<br />

k )<br />

= ˜ δk−1 · ∂ B k + ∂B k+1 · ˜ δk<br />

B<br />

<br />

τ(B) = [(∂ B + ˜ δ)par] = <br />

1Bk = ˜ δ · ∂ B + ∂ B · ˜ δ <br />

τ(A) · τ(B) −1 = <br />

k<br />

[u2k+1] · [u2k] −1 · [(∂ A + δ)par]<br />

k<br />

[u2k+1] −1 · [u2k]<br />

<br />

<br />

0 → (C ′ ; β ′ ) ι −→ (C; β) π −→ (C ′′ ; β ′′ ) → 0<br />

<br />

ι(β ′ ) ⊂ β<br />

β” = π(β \ ι(β ′ ))<br />

<br />

<br />

R <br />

<br />

0<br />

<br />

′ C •<br />

j<br />

<br />

C•<br />

p<br />

<br />

′′ C •<br />

τ(C ′ ) · τ(C) −1 · τ(C ′′ ) = 1 ∈ K1(R)<br />

<br />

<br />

0


τ(C ′ •) · τ(C ′′ •) = τ(C ′ ⊕ C ′′ )•<br />

<br />

β <br />

β, β ′′ <br />

C•<br />

Id⊕π<br />

−−−→ (C ′ ⊕ C ′′ )•<br />

[(j ⊕ p)k] = 1 ∈ K1(R) <br />

τ(C ′ ⊕ C ′′ )• = τ(C•)<br />

f : C• → D• <br />

R <br />

f <br />

τ(f) := τ(∆(f))<br />

<br />

R C• D• E• <br />

<br />

<br />

<br />

<br />

f∗ g∗ h∗ <br />

<br />

0<br />

0<br />

<br />

′ C •<br />

f∗<br />

<br />

<br />

C•<br />

<br />

′ D •<br />

g∗<br />

<br />

<br />

D•<br />

<br />

h∗<br />

E ′ •<br />

<br />

<br />

E•<br />

τ(f∗) · τ(g∗) −1 · τ(h∗) = 1 ∈ K1(R) <br />

f, g : C → D R<br />

f ∼ = g <br />

<br />

0<br />

<br />

0<br />

τ(f∗) = τ(g∗) <br />

<br />

f∗ : C• → D• g∗ : D• → E•<br />

τ(g∗ ◦ f∗) = τ(g∗) · τ(f∗)


R <br />

<br />

f<br />

g h <br />

<br />

<br />

F• G• f∗ g∗ <br />

C•−1 ⊕ D•<br />

h <br />

<br />

<br />

1 0<br />

h 1<br />

<br />

<br />

1<br />

h<br />

0<br />

1<br />

<br />

−∂C<br />

·<br />

f∗<br />

0<br />

−∂D<br />

<br />

−∂C<br />

=<br />

g∗<br />

0<br />

∂D<br />

<br />

1<br />

·<br />

h<br />

0<br />

1<br />

<br />

f∗ g∗ <br />

h∗ : Σ−1△(g∗) → △(f∗) <br />

<br />

0<br />

−IdD<br />

<br />

0<br />

: Dk ⊕ Ek+1 → Ck−1 ⊕ Dk<br />

0<br />

<br />

<br />

△(h∗)k = Dk−1 ⊕ Ek ⊕ Ck−1 ⊕ Dk<br />

<br />

0 → △(f∗) → △(h∗) → △(g∗) → 0 <br />

<br />

0 → △(g∗ ◦ f∗) ī −→ △(h∗) → △(IdD) → 0 <br />

D <br />

<br />

⎛<br />

⎜<br />

[ ī ] = ⎜<br />

⎝<br />

f<br />

0<br />

IdC<br />

0<br />

IdE<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

0 0<br />

: C•−1 ⊕ E• −→ D•−1 ⊕ E• ⊕ C•−1 ⊕ D•


△(h∗) <br />

<br />

<br />

<br />

<br />

τ(h∗) = τ(f∗) · τ(g∗)<br />

τ(h∗) = τ(g∗ ◦ f∗) · τ(IdD)<br />

τ(g∗ ◦ f∗) = τ(f∗) · τ(g∗)


f : (X, A) → (Y, B) <br />

f : X → Y A B <br />

f |A: A → B <br />

f, g : (X, A) → (Y, B) <br />

<br />

H <br />

H : X × I → Y <br />

<br />

H | X×{0}≡ f<br />

H | X×{1}≡ g<br />

H | A×{0}≡ f |A<br />

H | A×{1}≡ g |A<br />

[(X, A), (Y, B)] <br />

(X, A) (Y, B)<br />

[(X, A), (Y, B)] := {γ : (X, A) → (Y, B)}/ ∼ <br />

X Y <br />

F G <br />

X<br />

<br />

F<br />

G<br />

<br />

Y<br />

G ◦ F ∼ =h IdX<br />

F ◦ G ∼ =h ′ IdY<br />

<br />

X Y <br />

F G <br />

I = [0, 1] I n <br />

n n ≥ 1 ∂I n I 0 <br />

∂I 0 = ∅ I n = ∅ n <br />

n X<br />

x0 ∈ X <br />

πn(X, x0) := [(I n , ∂I n ), (X, x0)]


f, g ∈ πn(X, x0) <br />

<br />

f(2 · s1, ..., sn) s1 ≤ 1/2<br />

f · g(s1, ..., sn) =<br />

g(2 · s1 − 1, ..., sn) s1 ≥ 1/2<br />

<br />

πn n ≥ 2 <br />

f · g =: f + g<br />

k<br />

<br />

f : (X k , X k−1 , X k−2 , . . . ) → (Y k , Y k−1 , Y k−2 , . . . )<br />

f |X q: Xq → Y q k<br />

n πn(X, A, x0) x0 ∈<br />

A ⊆ X <br />

πn(X, A, x0) := [(I n , ∂I n , J n−1 ), (X, A, x0)]<br />

J n−1 := ∂I n \ I n−1◦ I n−1 ∂I n<br />

<br />

x0 ∈ B ⊂ A ⊂ X <br />

<br />

· · · → πn(A, B, x0) i∗<br />

−→ πn(X, B, x0) j∗<br />

−→ πn(X, A, x0) ∂ −→ πn−1(A, B, x0) → · · ·<br />

<br />

i∗ j∗ <br />

∂ ∂I n (X, A) (Y, B) f : (X, A) →<br />

(Y, B) <br />

f∗ : πn(X, A, a0) → πn(Y, B, f(a0))<br />

γ ∈ πn(X, A, a0) ↦→ f ◦ γ ∈ πn(Y, B, f(a0))<br />

f, g : (X, A) → (Y, B) <br />

f∗, g∗ <br />

<br />

<br />

f : X → Y k <br />

<br />

f∗ : πn(X, x0) → πn(Y, f(x0))<br />

n k n = k<br />

k k ∈ N0


f : X → Y <br />

<br />

f <br />

<br />

f f∗ : S•(X) → S•(Y ) <br />

<br />

g f <br />

f ◦g g◦f f∗ <br />

Id∗ = (f ◦ g)∗ = f∗ ◦ g∗ <br />

<br />

<br />

Sn(X) Z <br />

n < 0 <br />

f ∈ πn(X, A, x0) = [(I n , ∂I n , J n−1 ), (X, A, x0)] <br />

<br />

f∗ : Hn(I n , ∂I n ) → Hn(X, A)<br />

α ∈ Hn(I n , ∂I n ) ∼ = Z<br />

h <br />

h : πn(X, A, x0) → Hn(X, A)<br />

[f] ↦→ f∗(α)<br />

f∗ <br />

<br />

α<br />

(X, A) <br />

f∗ : Hn(I n , ∂I n ) → Hn(X, A) n > 1<br />

<br />

<br />

(X, A)<br />

· · ·<br />

· · ·<br />

<br />

πn(X, x0)<br />

<br />

<br />

Hn(X)<br />

j∗ <br />

πn(X, A, x0)<br />

p∗ <br />

<br />

Hn(X, A)<br />

∂ <br />

πn−1(A, x0)<br />

∂ <br />

<br />

<br />

<br />

Hn−1(A)<br />

<br />

· · ·<br />

<br />

· · ·


(X, A) n πq(X, A, x0) <br />

q ≤ n x0 ∈ A<br />

(X, A) (n − 1) <br />

n ≥ 2 A = ∅ <br />

<br />

i n<br />

h : πn(X, A, x0) → Hn(X, A)<br />

Hi(X, A) = 0<br />

<br />

<br />

<br />

Y ⊆ X <br />

Y X<br />

<br />

<br />

<br />

f : X → Y <br />

<br />

f∗ : Hn(X) → Hn(Y ) n ∈ N<br />

<br />

<br />

X f<br />

<br />

Y <br />

˜ f <br />

˜X<br />

˜f<br />

<br />

Y˜<br />

˜ f π <br />

f X<br />

f ◦ PX : ( ˜ X, p) → (Y, f(p))<br />

p ∈ P −1<br />

X (p) <br />

<br />

<br />

PX<br />

f<br />

˜X<br />

<br />

Y˜<br />

<br />

X<br />

f<br />

<br />

<br />

<br />

Y<br />

PY


f(p) ∈ P −1<br />

Y (f(p)) ⊂ ˜ Y <br />

γ ∈ π1(X) ˜ X <br />

˜ Y <br />

f ◦ γ ˜ Y <br />

γ · p = p ′<br />

<br />

γ · f(p) = f(p) ′<br />

f(p ′ ) = f(p) ′<br />

f<br />

f ◦ PX : ( ˜ X, p ′ ) → (Y, f(p))<br />

f(p) ′<br />

∈ ˜ Y f ′ <br />

<br />

f ′ (p ′ ) = f(p) ′<br />

f ≡ f ′<br />

<br />

f(γ · p) = f(p ′ ) = f(p) ′<br />

π <br />

= γ · f(p) = γ · f(p)<br />

g f <br />

g ◦ f ∼ =H IdX f ◦ g ∼ =H ′ IdY <br />

<br />

<br />

H p ∈ X ˜p ∈ P −1 (p) <br />

<br />

(˜p, 0) ∈ ˜ X × I<br />

P ×Id<br />

<br />

(p, 0) ∈ X × I<br />

H<br />

H <br />

X˜ ∋ f(p) ˜<br />

<br />

<br />

X ∋ f(p)<br />

˜ X × I <br />

<br />

H0 ≡ Id ˜ X<br />

H1 ≡ (g ◦ f)<br />

H0 H0 ≡ IdX Id ˜ X H1 H1 = (g ◦ f)<br />

<br />

g ◦ f ≡ (g ◦ f)<br />

˜ X ˜ Y


F : X → Y <br />

π Z[π] <br />

<br />

S•( ˜ X) F∗<br />

−→ S•( ˜ Y )<br />

F <br />

<br />

˜ F Z <br />

˜ F π <br />

Z[π] <br />

<br />

X <br />

X0 ⊆ X1 ⊆ X2 ⊂ · · · <br />

<br />

α∈An Sn−1<br />

<br />

<br />

<br />

α∈An Dn<br />

∪φα<br />

∪Φα<br />

<br />

Xn−1<br />

<br />

<br />

Xn<br />

˜ X <br />

Xn ( ˜ X)n := P −1 (Xn)<br />

<br />

X <br />

˜ X X | π | <br />

<br />

π <br />

π ˜ X → X <br />

<br />

<br />

α∈An<br />

<br />

α∈An<br />

π × Sn−1<br />

<br />

<br />

π × Dn<br />

∪ ¯ φα<br />

∪ ¯ Φα<br />

<br />

Xn−1<br />

˜<br />

<br />

<br />

Xn<br />

˜<br />

˜ X Z<br />

X π <br />

<br />

Z[π] <br />

n |An |=: an<br />

C•( ˜ X; Z[π]) ∼ = Z[π] an


X <br />

Z <br />

Hn(Xn, Xn−1) <br />

<br />

<br />

α∈An<br />

Hn(D n , S n−1 ) ⊕α(Φα,φα)<br />

−−−−−−−→ Hn(Xn, Xn−1)<br />

<br />

Hn(Xn, Xn−1) <br />

−1 <br />

<br />

<br />

<br />

α∈An<br />

Hn(π × (D n , S n−1 ))<br />

⊕α( Φα, ˜ ˜ φα)<br />

−−−−−−−→ Hn( ˜ Xn, ˜ Xn−1)<br />

Hn(D n , S n−1 ) <br />

π <br />

π α ∈ An <br />

Z[π] Z[π] <br />

Hn( ˜ Xn, ˜ Xn−1)<br />

<br />

±g ∈ π <br />

π <br />

<br />

X W <br />

f g <br />

<br />

Id<br />

X<br />

f<br />

g<br />

<br />

<br />

X<br />

<br />

W<br />

X ∼ =h g ◦ f<br />

X <br />

<br />

X W <br />

W <br />

X<br />

<br />

i<br />

r<br />

<br />

W<br />

r ◦ i = IdX


S <br />

S•(W ) r∗<br />

−→ S•(X) → 0<br />

S•(X) <br />

<br />

W <br />

X<br />

X <br />

R C R <br />

D R C <br />

f : C → D g : D → C g ◦ f ∼ = 1C C <br />

<br />

X W <br />

W <br />

<br />

(S•( ˜ W ), f∗, g∗, ¯ h) S•( ˜ X) Z[π]<br />

<br />

R <br />

<br />

R <br />

<br />

C R <br />

<br />

χ(C) ∈ K0(R)<br />

X <br />

S•(X) <br />

Z[π] <br />

<br />

χ(X) := χ(S•(X)) ∈ K0(Z[π])<br />

<br />

˜χ(X) := ˜χ(S•(X)) ∈ ˜ K0(Z[π])


X π <br />

<br />

X <br />

S•( ˜ X) Z[π]<br />

X S•( ˜ X) <br />

<br />

Z[π1(X)]<br />

S•( ˜ X) X<br />

X Y S•( ˜ X) <br />

Y <br />

Z[π] <br />

<br />

Z[π] S•( ˜ X)<br />

X Y X <br />

Y <br />

Z[π] <br />

S•( ˜ X) <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

X Y <br />

f : X → Y <br />

<br />

˜ f<br />

˜X<br />

˜f<br />

<br />

X<br />

f<br />

˜ f∗ <br />

Z[π] <br />

<br />

<br />

<br />

Y˜<br />

<br />

<br />

Y


τ( ¯ f∗) ∈ K1(Z[π]) <br />

f <br />

<br />

τ(f) ∈ W h(π)<br />

τ(f) = 1 <br />

<br />

<br />

<br />

K1(Z[π]) W h(π) <br />

±g ∈ π <br />

<br />

<br />

i<br />

A f<br />

<br />

X g<br />

A B X f i <br />

<br />

Y Yn j(Bn) g(Xn)<br />

<br />

Z<br />

<br />

0 → C•(A)<br />

<br />

B<br />

<br />

<br />

Y<br />

j<br />

f∗⊕ i∗<br />

−−−−→ C•(B) ⊕ C•(X) j∗⊕g∗<br />

−−−−→ C•(Y ) → 0 <br />

j ⊔ g Y <br />

Y ∼ = (B ⊔ X)/(f ⊔ i)A<br />

<br />

<br />

ĩ<br />

Ã<br />

<br />

˜f<br />

˜X ˜g<br />

<br />

A γ ∈ π1(A, a0) <br />

˜ f f∗(γ) ∈ π1(B, f(a0)) B<br />

j : B → Y Z[π1(B)] → Z[π1(Y )]<br />

Z[π1(Y )] Z[π1(B)] <br />

<br />

˜B<br />

<br />

<br />

Y˜<br />

C( ˜ B) Z[π1(Y )] = C( ˜ B) ⊗ Z[π1(B)] Z[π1(Y )]<br />

<br />

˜j


Z[π1(B)] <br />

Z[π1(Y )] C( ˜ X) Z[π1(Y )] C( Ã) Z[π1(Y )] <br />

g g ◦ i = j ◦ f<br />

<br />

Z[π(Y )] <br />

<br />

0 → C•( Ã) Z[π(Y )] → C•( ˜ B) Z[π(Y )] ⊕ C•( ˜ X) Z[π(Y )] → C•( ˜ Y ) → 0 <br />

<br />

fi : Xi → Yi <br />

fj ◦ ij = kjfj j = 1, 2 f : X → Y <br />

l0 = l1k1 = l2k2 f <br />

<br />

i2<br />

X0<br />

<br />

X2<br />

i1 <br />

j2<br />

X1<br />

j1<br />

k2<br />

Y0<br />

<br />

<br />

<br />

X Y2<br />

k1 <br />

fi : Xi → Yi i = 0, 1, 2 <br />

f : X → Y <br />

τ(f) = l1∗τ(f1) · l2∗τ(f2) · l0∗τ(f0) −1<br />

l0 = l1 ◦ k1 = l2 ◦ k2<br />

l2<br />

Y1<br />

<br />

<br />

Y<br />

l1<br />

∈ W h(Y ) <br />

A B f, g : A → B <br />

f ∼ = g <br />

τ(f) = τ(g)<br />

<br />

f : X → Y g : Y → Z <br />

<br />

τ(g ◦ f) = τ(g) · g∗τ(f) ∈ W h(Z)<br />

<br />

f : A ′ → A g : B ′ → B <br />

a0 ∈ A b0 ∈ B i : A → A × B, i(a) =<br />

(a, b0) j : B → A × B j(b) = (a0, b) <br />

τ(f × g) = (i∗τ(f)) χ(Y ) · (j∗τ(g)) χ(X)


W h(Y ) j∗<br />

−→ W h(X × Y ) <br />

x0 ∈ X i∗ <br />

A B χ(A) χ(B) <br />

<br />

<br />

<br />

Z <br />

0<br />

0<br />

<br />

C•( ˜ X0)<br />

( ˜ f0)∗<br />

<br />

<br />

C•( ˜ Y0)<br />

<br />

C•( ˜ X1) ⊕ C•( ˜ X2)<br />

( ˜ f1)∗⊕(f2)∗<br />

<br />

<br />

C•( ˜ Y1) ⊕ C•( ˜ Y2)<br />

<br />

C•( ˜ X)<br />

˜f∗<br />

<br />

<br />

C•( ˜ Y )<br />

Z[π(Y )] <br />

π =<br />

π(X)<br />

<br />

0 → △(f0∗) Z[π] → △(f1∗) Z[π] ⊕ △(f2∗) Z[π] → △(f∗) → 0<br />

<br />

Z[π]<br />

<br />

<br />

˜ f∗ ˜ f <br />

<br />

<br />

(li)∗ i = 0, 1, 2 <br />

<br />

τ(△(fi∗) Z[π]) = (li)∗τ(fi)<br />

R<br />

<br />

τ(f) = (l1)∗τ(f1) · (l2)∗τ(f2) · ((l0)∗τ(f0)) −1 ∈ W h(Y )<br />

<br />

<br />

g∗ W h(Y ) W h(Z)<br />

<br />

f × g = (f × IdY ) ◦ (IdX ′ × g)<br />

<br />

τ(f × g) = τ(f × IdY ) · (f ×IdY )∗τ(IdX ′ × g)<br />

<br />

<br />

0<br />

<br />

0


τ(f × IdY ) = i∗(τ(f) χ(Y ) ) ∈ W h(X × Y )<br />

Y <br />

Y <br />

X × Y = X ⊔ · · · ⊔ X <br />

τ(f × IdY ) = τ(f) ⊕ · · · ⊕ τ(f) ∈ W h(X × Y ) := <br />

W h(X)<br />

<br />

<br />

Sk−1 φ<br />

<br />

Y<br />

<br />

Dk Φ<br />

φ Y <br />

<br />

f : X ′ → X <br />

<br />

X ′ × Sk−1 (Id,φ) <br />

<br />

X ′ × D k<br />

X ′ × Y<br />

<br />

(Id,i)<br />

<br />

′ ′ X × Y<br />

(Id,Φ)<br />

<br />

i<br />

<br />

<br />

′ Y<br />

y∈Y<br />

X × Sk−1 (Id,φ) <br />

<br />

X × Dk (Id,Φ)<br />

X × Y<br />

(Id,i)<br />

<br />

<br />

′ X × Y<br />

τ(f ×IdY ′) = (Id, i)∗τ(f ×IdY )·(Id, Φ)∗τ(f ×Id D k)·(Id, i◦φ)∗τ(f ×Id S k−1) −1<br />

<br />

τ(f × IdY ) = i∗(τ(f) χ(Y ) )<br />

τ(f × Id D k) = i∗(τ(f) χ(Dk ) )<br />

τ(f × Id S k−1) = i∗(τ(f) χ(Sk−1 ) )<br />

X <br />

Y ′ <br />

<br />

i∗ : W h(X) → W h(X × Y ′ ) <br />

τ(f × IdY ′) = i∗τ(f) χ(Y )+χ(Dk )−χ(S k−1 ) ∈ W h(Y ′ )<br />

Y ′ <br />

<br />

χ<br />

τ(f × IdY ′) = i∗τ(f) χ(Y ′ ) ∈ W h(Y ′ )


f : X → Y <br />

<br />

τ(f) = 1 ∈ W h(π)<br />

π1(X) ∼ = π1(Y ) =: π<br />

<br />

<br />

<br />

<br />

<br />

(X, Y ) X <br />

Y <br />

e k e k+1 <br />

S k−1<br />

<br />

D<br />

k <br />

<br />

Y<br />

<br />

Y ∪Sk−1 Dk <br />

S k<br />

<br />

D<br />

k+1 <br />

g<br />

<br />

Y ∪Sk−1 Dk g (D k ) ◦ <br />

g −1 ((D k ) ◦ ) S k e k+1 g <br />

<br />

X Y <br />

<br />

<br />

<br />

Y X<br />

<br />

Y X <br />

<br />

<br />

X


C•( ˜ X, ˜ Y ) <br />

<br />

W h(X) <br />

<br />

<br />

<br />

<br />

<br />

f : X → Y <br />

<br />

⇐ <br />

<br />

C•(X, Y ) k k + 1<br />

C•( ˜ X, ˜ Y ) <br />

· · · 0 → Z[π] ∂ −→ Z[π] → 0 → · · ·<br />

e k+1 <br />

e k k Y <br />

e k ∂ 1 ∈ Z[π] (k + 1) ±g <br />

W h(π) <br />

<br />

<br />

<br />

<br />

⇒ <br />

(X, Y ) <br />

<br />

<br />

Y π <br />

w ∈ W h(π) X Y <br />

w<br />

w ∈ W h(π) <br />

M = (mij)i,j ∈ Glq(Z[π])<br />

n ≥ 2 y ∈ Y q <br />

n <br />

Y ′ := Y ∨ <br />

<br />

q n y ∈ Y <br />

πn(Y ′ , y) <br />

Z[π] <br />

<br />

i≤q<br />

S n i


y ∈ Y ′ <br />

[S n i ] ∈ πn(Y ′ , y) Y <br />

<br />

µi = <br />

1≤j≤q<br />

mij[S n i ] ∈ πn(Y ′ , y)<br />

fi : S n → Y ′ i = 1, . . . , q <br />

<br />

q n + 1 X<br />

n ≥ 2 <br />

π := π1(Y, y) ∼ = π1(X, y) ( ˜ X, ˜ Y )<br />

Cj( ˜ X, ˜ Y ) =<br />

<br />

(Z[π]) q k = n, n + 1<br />

0 k = n, n + 1<br />

<br />

∂<br />

· · · → 0 → (Z[π]) q ∂ −→ (Z[π]) q → 0 → · · ·<br />

M ∈ Glq(Z[π]) <br />

˜y ∈ P −1 (y) <br />

P <br />

<br />

H•( ˜ Y , ˜ X) = 0<br />

(Y, X) 1 <br />

<br />

<br />

<br />

<br />

<br />

τ(X, Y ) = w (−1)n+1<br />

W h(π) <br />

<br />

n <br />

<br />

<br />

C ∞ n <br />

M0 M1 <br />

M0 ⊔ M1 W <br />

∂W = ∂0W ⊔ ∂1W


∂jW ∼ = Mj j = 0, 1<br />

<br />

(W, M0, M1)<br />

(W, M0, f0, M0, f0) j = 0, 1<br />

fj <br />

Mj<br />

fj <br />

∂jW<br />

W <br />

∂0W ∼ = M + 0 ∂1W ∼ = M − 1 <br />

M1 W <br />

<br />

<br />

<br />

M0 × I <br />

<br />

(W, M0, M1)<br />

(W ′ , M1, M2) M1 (W ∪M1 W ′ , M0, M2)<br />

M0 M2<br />

n<br />

Ωn<br />

[M0] + [M1] = [M0 ⊔ M1]<br />

<br />

n <br />

<br />

D n Mi <br />

<br />

W = (M0 ⊔ M1 × I) ∪ (D n ×j→Mj×1) D n × I <br />

W M0 ⊔ M1 <br />

M0#M1 := (M0 ⊔ M1) ∪ S n−1 ×{j} (S n−1 × I)<br />

M <br />

S n <br />

Ωn<br />

M0 (W, M0, f0, M1, f1) <br />

(W ′ , M0, f ′ 0, M ′ 1, f ′ 1) <br />

F : W → W ′ F ◦ f0 ≡ f ′ 0<br />

F (M1) ∼ = M ′ 1<br />

M0 <br />


M0 M1 <br />

<br />

<br />

(W, M0, f0, M1, f1) <br />

Mj → W j = 0, 1 <br />

<br />

<br />

(W, M0)<br />

τ(W, M0) ∈ W h(π1(M0))<br />

<br />

M0 n ≥ 5 <br />

π := π1(M0) <br />

∂ <br />

τ(W, M0) = 1 ∈ W h(π)<br />

<br />

M0 <br />

∀x ∈ W h(π) ∃ (W, M0, M1) / τ(W, M0) = x<br />

<br />

M0 <br />

M0<br />

<br />

<br />

<br />

π = ∗ <br />

<br />

M <br />

5 <br />

<br />

n M <br />

S n <br />

n = 1 <br />

n = 2 <br />

n ≥ 6 <br />

n = 5 n = 3, 4 <br />

n = 3


M n ≥ 6 Sn <br />

<br />

Z k = 0, n<br />

Hk(M) =<br />

0 k = 0, n<br />

1 <br />

n − 1 πn(M, p) = Hn(M, p)<br />

p ∈ M <br />

n <br />

f : S n → M<br />

<br />

<br />

g : M → S n f <br />

n <br />

M D n 0 D n 1 g <br />

<br />

˜g : M\(D n 0 ∪ D n 1 ) −→ S n−1 × I<br />

W := M\(D n 0 ∪ D n 1 ) <br />

S n−1 ˜g <br />

W ∂D n 0 ∼ = S n−1 <br />

<br />

<br />

<br />

F : (W, ∂D n 0 , ∂D n 1 ) −→ (∂D n 0 × I, ∂D n 0 × 0, ∂D n 0 × 1)<br />

D n 0 <br />

D n 1 F1 : ∂D n 1 → ∂D n 0 × 1 <br />

<br />

<br />

D n 1 −→ D n<br />

(r, θ) ↦→ (r, r · F1(1, θ))<br />

r θ ∈ S n−1 <br />

r = 0 <br />

<br />

M = W ∪ D n 0 ∪ D n 1 −→ ∼ (∂D n 0 × I) ∪ D n 0 ∪ F1(∂D n 1 ) D n ∼ = S n


X n <br />

T : I n → X<br />

n T (s1, . . . , sn) <br />

<br />

n <br />

Qn(X) <br />

n Dn(X) n <br />

Sn(X)<br />

Sn(X) = Qn(X)/Dn(X)<br />

Sn(X) <br />

n <br />

n T : I n → X <br />

(n − 1) T<br />

1 ≤ i ≤ n<br />

AiT (s1, . . . , sn−1) = T (s1, . . . , si−1, 0, si, . . . , sn−1)<br />

BiT (s1, . . . , sn−1) := T (s1, . . . , si−1, 1, si, . . . , sn−1)<br />

∂n : Qn(X) → Qn−1(X) <br />

∂n(T ) :=<br />

n<br />

(−1) i [AiT − BiT ] <br />

i=1<br />

(n−1) <br />

∂n : Qn(X) → Qn−1(X) <br />

<br />

∂n∂n−1 ≡ 0<br />

∂n(Dn(X)) ⊆ Dn−1(X)<br />

<br />

1 ≤ i < j ≤ n<br />

AiAj(T ) = Aj−1Ai(T )<br />

BiBj(T ) = Bj−1Bi(T )<br />

AiBj(T ) = Aj−1Bi(T )<br />

BiAj(T ) = Bj−1Ai(T )<br />

T i<br />

AiT = Bi


X <br />

∂n : Sn(X) → Sn−1(X)<br />

(S•(X), ∂) Z <br />

X<br />

(S•(X), ∂) <br />

<br />

Hn(X) := Hn(S•(X))<br />

(X, A) <br />

X A <br />

Sn(X, A) := Sn(X)/Sn(A)<br />

∂ A ∂(Sn(A)) ⊆<br />

Sn−1(A) (S•(X, A), ∂) <br />

∂ <br />

<br />

0 → S•(A) i −→ S•(X) p −→ S•(X, A) → 0<br />

<br />

· · · ∂ −→ Hn(A) i∗<br />

−→ Hn(X) p∗<br />

−→ Hn(X, A) ∂ −→ Hn−1(A) → · · ·<br />

Hn(X) Hn(X, A) <br />

X <br />

A Hn(X, A) ∂ −→ Hn−1(A) <br />

<br />

(X, A) (Y, B) f : (X, A) → (Y, B)<br />

f∗ : Sn(X, A) → Sn(Y, B) <br />

f <br />

f f∗ <br />

f ∼ = g : X → Y <br />

f∗, g∗ : Sn(X) → Sn(Y ) <br />

<br />

<br />

<br />

<br />

U V X <br />

X <br />

· · · Hn(U ∩ V) iU ⊕−iV<br />

−−−−−−→ Hn(U) ⊕ Hn(V) jU +jV<br />

−−−−→ Hn(X) δ −→ Hn−1(U ∩ V) → · · ·


iU iV <br />

U ∩V U V jU jV <br />

X <br />

δ : Hn(X) → Hn−1(U ∩ V)<br />

z ∈ Hn(X) <br />

U V <br />

z = u + v <br />

<br />

0 = ∂z = ∂u + ∂v<br />

δ : z ↦→ ∂u = −∂v ∈ Hn−1(U ∩ V)<br />

z <br />

<br />

z = u ′ + v ′ u ′ ⊂ U v ′ ⊂ V <br />

0 = u − u ′ + v − v ′<br />

u − u ′ ⊂ U ∩ V<br />

∂(u − u ′ ) = 0 ∈ Hn−1(U ∩ V)<br />

<br />

<br />

<br />

<br />

X Y <br />

a : Z → X b : Z → Y E <br />

<br />

a<br />

Z <br />

X<br />

b p.o. <br />

<br />

<br />

<br />

Y <br />

E<br />

<br />

E = (X ⊔ Y )/a(z) ∼ b(z)<br />

E <br />

<br />

X Y X Y <br />

n D n S n−1


n <br />

X <br />

<br />

<br />

α∈An Sn−1<br />

∪φα<br />

<br />

<br />

α∈An Dn<br />

∪ ¯ φα<br />

Y X n<br />

¯ φ : D n → X n<br />

S n−1 → D n <br />

φα ¯ φα <br />

an =|An | n<br />

<br />

X <br />

<br />

X<br />

<br />

<br />

Y<br />

∅ := X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · ·<br />

Xn Xn−1 n X <br />

<br />

<br />

n Xn n<br />

n<br />

D n<br />

D n◦ X <br />

X <br />

<br />

A <br />

X 0 := A ⊔ D D <br />

<br />

(X, A) <br />

A X A <br />

X/A<br />

<br />

X = X/∅ ∼ = (X, A)<br />

A ⊂ X<br />

<br />

X (X, A) <br />

A<br />

n Xn X <br />

(X, Xn) <br />

<br />

(X, A) X/A


Hn(X, A) ∼ = ˜ Hn(X/A)<br />

(X, A) <br />

· · · → H•(A) i∗<br />

−→ H•(X) j −→ ˜ H•(X/A) ∂ −→ H•−1(A) → · · ·<br />

X<br />

Hk(Xn, Xn−1) =<br />

∀k > n Hk(Xn) = 0<br />

<br />

0 k = n<br />

Z an k = n<br />

∀k < n Hk(Xn) ∼ = Hk(X) <br />

Xn/Xn−1 n <br />

<br />

Xn/Xn−1 ∼ <br />

=<br />

<br />

α∈An<br />

S n α<br />

Hk(Xn, Xn−1) ∼ = ˜ Hk( <br />

α∈An<br />

<br />

U <br />

V <br />

<br />

· · · Hk(U∩V) iU ⊕−iV<br />

−−−−−−→ Hk(U)⊕Hk(V) jU +jV<br />

−−−−→ Hk( <br />

S n )<br />

α∈An<br />

S n ) δ −→ Hk−1(U∩V) → · · ·<br />

<br />

<br />

<br />

<br />

Hk( <br />

U<br />

α∈An<br />

˜Hk(U ∩ V) = 0<br />

S n ) ∼ = Hk(U) ⊕ Hk(V)<br />

Hk(U) ∼ = Hk(S n )


Hk(S n ) = Z k = n <br />

V <br />

<br />

˜Hn( <br />

S n ) ∼ = Z an<br />

α∈An<br />

an =|An | <br />

<br />

<br />

Xn−1 ⊆ Xn <br />

<br />

0 → Hn(Xn)) jn<br />

−→ Hn(Xn, Xn−1) ∂n<br />

−→ Hn−1(Xn−1) i∗<br />

−→ Hn−1(X) → 0 <br />

X Cn(X) :=<br />

Hn(Xn, Xn−1) dn = jn−1 ◦ ∂n<br />

· · ·<br />

<br />

Hn(Xn, Xn−1)<br />

<br />

dn <br />

Hn−1(Xn−1, Xn−2)<br />

<br />

<br />

<br />

<br />

∂n <br />

jn−1<br />

Hn−1(Xn−1)<br />

<br />

dn ◦ dn+1 = (jn−1 ◦ ∂n) ◦ (jn−2 ◦ ∂n−1)<br />

= jn−1 ◦ (∂n ◦ jn−2) ◦ ∂n−1<br />

= jn−1 ◦ (0) ◦ ∂n−1<br />

dn ◦ dn+1 = 0<br />

<br />

<br />

· · ·<br />

<br />

C•(X)<br />

<br />

<br />

<br />

∂n+1<br />

· · · Hn+1(Xn+1, Xn) <br />

Hn(Xn)<br />

<br />

jn <br />

<br />

dn+1<br />

<br />

<br />

0<br />

Hn(Xn, Xn−1)<br />

<br />

∂n<br />

i∗ <br />

Hn(X) → 0<br />

dn<br />

<br />

<br />

0 → Hn−1(Xn−1) Hn−1(Xn−1, Xn−2)<br />

jn−1<br />

Hn(X) ∼ = Hn(Xn)<br />

Im(∂n+1)


jn <br />

<br />

Hn(X) ∼ = jn(Hn(X))<br />

Im(jn) = Ker(∂n) = Ker(dn)<br />

Hn(X) ∼ = jn(Hn(Xn)/Im(∂n+1) ∼ = Ker(∂n)<br />

=: Hn(C•(X))<br />

Im(dn+1)<br />

<br />

X <br />

X x ∈ U V <br />

x ∈ V ⊆ U<br />

<br />

<br />

X <br />

x0 ∈ X U <br />

π1(U, x0) i∗ <br />

π1(X, x0)<br />

i∗ ≡ 0<br />

<br />

<br />

X E <br />

P<br />

E P <br />

X<br />

X {Ui}i P <br />

Ui P −1 (Ui)<br />

X <br />

<br />

˜ X P<br />

˜ X <br />

˜X P <br />

X


X <br />

f : X → B p : E → B <br />

x0 ∈ X e0 ∈ E f(x0) = p(e0) <br />

<br />

f∗(π1(X, x0)) ⊆ p∗(π1(E, e0))<br />

˜ f : X → E p ◦ ˜ f = f<br />

E<br />

˜f<br />

<br />

<br />

<br />

<br />

X <br />

B<br />

f<br />

<br />

p


n <br />

M <br />

n<br />

∀x ∈ M ∃ U ⊂ M <br />

R n φ : U −→ Ũ ⊆ Rn <br />

U φ <br />

φ : U −→ φ(U) ψ : V −→ ψ(V ) <br />

φ ◦ ψ −1 : ψ(U ∩ V ) → φ(U ∩ V )<br />

R n <br />

C k n <br />

M n C k <br />

k <br />

k = 0 k = ∞ <br />

<br />

M <br />

R n + := {(x1 · · · xn) : xn ≥ 0} n<br />

<br />

<br />

<br />

C k f : M m → N n <br />

C k φ : U ⊂ M −→ φ(U) ⊂ R m <br />

ψ : V ⊂ N −→ ψ(V ) ⊂ R n <br />

ψfφ −1 : φ(f −1 (V ) ∩ U) ⊆ R m −→ ψ(f(U) ∩ V ) ⊆ R n <br />

k <br />

<br />

R n + R n <br />

R n <br />

<br />

<br />

f : M m → N n <br />

<br />

x ∈ M <br />

D(ψfφ −1 ) φ(x) ∈ HomR(R m , R n )<br />

f : M → N <br />

f


M N (N) ≥ 2·(M)+1 M <br />

f : M → N <br />

M N<br />

n M n <br />

R 2n+1 <br />

<br />

p : E → X p −1 (x) p <br />

x ∈ X X E <br />

p : E → X <br />

<br />

K n X <br />

C k E E p −→ X <br />

X E <br />

X {(Ui, φi)} <br />

p −1 (U)<br />

p<br />

φi<br />

∼ <br />

U × Kn π1<br />

<br />

<br />

U<br />

Ui ∩Uj<br />

<br />

n ψ◦φ−1<br />

Ui∩Uj × K −−−−→ Ui∩Uj × K n<br />

(x, ¯v) ↦→ (x, gij x (¯v))<br />

gij<br />

gij : Ui∩Uj → Gln(K) <br />

C q <br />

0 ≤ q ≤ k ≤ ∞ X <br />

<br />

C k E <br />

<br />

C k <br />

E φ −→ F


E<br />

<br />

F<br />

<br />

<br />

X<br />

φx : Ex → Fx<br />

φx : Ex → Fx<br />

M n C k k ≥ 1 <br />

T M M n {Ui ⊂ M φi<br />

−→ Ũi ⊂<br />

Rn }i∈I T M <br />

<br />

Ui × R n / ∼<br />

(x, u) ∼ (y, v) x = y v = D(φjφ −1<br />

i ) φi(x)(u) <br />

T M → M <br />

{Ui × R n }i φi × Id <br />

<br />

<br />

x ↦→ D(φjφ −1<br />

i ) φi(x) ∈ Gln(R)<br />

<br />

p : E → X k <br />

X p ′ : E ′ → X <br />

N ∈ N<br />

E ⊕ E ′ ∼ = X × R N<br />

E <br />

R N <br />

E R N <br />

T E ⊕ NE ∼ = E × R N <br />

X ⊂ E T X<br />

TXE E X <br />

T R k ∼ = R k Ex ∼ = T Ex <br />

E TXE <br />

X<br />

TXE ∼ = T M ⊕ E


E (x, v) x ∈ X <br />

v ∈ Ex TXE ((x, 0, u, v))<br />

x ∈ X u ∈ T X v ∈ T Ex 0 <br />

E X<br />

X <br />

E<br />

E ⊕ (T M ⊕ NXE) ∼ = TXE ⊕ NXE ∼ = X × R N


K <br />

<br />

<br />

<br />

<br />

<br />

CW <br />

<br />

CW

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!