25.07.2013 Views

Burr-Brown Dual Op. Amp. (rad. hard)

Burr-Brown Dual Op. Amp. (rad. hard)

Burr-Brown Dual Op. Amp. (rad. hard)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FEATURES<br />

● VERY LOW NOISE: 8nV/√Hz at 10kHz<br />

● LOW V : 500μV max<br />

OS<br />

● LOW DRIFT: 5μV/°C max<br />

● LOW I : 5pA max<br />

B<br />

● FAST SETTLING TIME: 2μs to 0.01%<br />

● UNITY-GAIN STABLE<br />

DESCRIPTION<br />

BIFET ® Difet<br />

National Semiconductor<br />

® <strong>Burr</strong>-<strong>Brown</strong> Corp.<br />

®<br />

Precision <strong>Dual</strong> Difet ®<br />

OPERATIONAL AMPLIFIER<br />

The OPA2107 dual operational amplifier provides<br />

precision Difet performance with the cost and space<br />

savings of a dual op amp. It is useful in a wide range<br />

of precision and low-noise analog circuitry and can be<br />

used to upg<strong>rad</strong>e the performance of designs currently<br />

using BIFET ® type amplifiers.<br />

The OPA2107 is fabricated on a proprietary<br />

dielectrically isolated (Difet ) process. This holds input<br />

bias currents to very low levels without sacrificing<br />

other important parameters, such as input offset voltage,<br />

drift and noise. Laser-trimmed input circuitry<br />

yields excellent DC performance. Superior dynamic<br />

performance is achieved, yet quiescent current is held<br />

to under 2.5mA per amplifier. The OPA2107 is unitygain<br />

stable.<br />

The OPA2107 is available in plastic DIP, metal TO-<br />

99, and SOIC packages. Industrial and Military temperature<br />

range versions are available.<br />

APPLICATIONS<br />

–In<br />

(2, 6)<br />

+In<br />

(3, 5)<br />

Cascode<br />

OPA2107<br />

● DATA ACQUISITION<br />

● DAC OUTPUT AMPLIFIER<br />

● OPTOELECTRONICS<br />

● HIGH-IMPEDANCE SENSOR AMPS<br />

● HIGH-PERFORMANCE AUDIO CIRCUITRY<br />

● MEDICAL EQUIPMENT, CT SCANNERS<br />

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706<br />

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132<br />

© 1989 <strong>Burr</strong>-<strong>Brown</strong> Corporation PDS-863B Printed in U.S.A. October, 1993<br />

+VS<br />

(8)<br />

Output<br />

(1, 7)<br />

–VS<br />

(4)


SPECIFICATIONS<br />

T A = +25°C, V S = ±15V unless otherwise noted.<br />

®<br />

OPA2107<br />

2<br />

OPA2107AM, SM, AP, AU OPA2107BM<br />

PARAMETER CONDITION MIN TYP MAX MIN TYP MAX UNITS<br />

OFFSET VOLTAGE (1)<br />

Input Offset Voltage VCM = 0V 100 1mV 50 500 μV<br />

Over Specified Temperature 0.5 2 0.2 1 mV<br />

SM G<strong>rad</strong>e 0.8 2.5 mV<br />

Average Drift Over Specified Temperature 3 10 2 5 μV/°C<br />

Power Supply Rejection<br />

INPUT BIAS CURRENT<br />

VS = ±10 to ±18V 80 96 84 100 dB<br />

(1)<br />

Input Bias Current VCM = 0V 4 10 2 5 pA<br />

Over Specified Temperature 0.25 1.5 0.15 1 nA<br />

SM G<strong>rad</strong>e 4 35 nA<br />

Input Offset Current VCM = 0V 1 8 0.5 3 pA<br />

Over Specified Temperature 1 0.5 nA<br />

SM G<strong>rad</strong>e<br />

INPUT NOISE<br />

1 28 nA<br />

Voltage: f = 10Hz RS = 0 30 * nV/√Hz<br />

f = 100Hz 12 * nV/√Hz<br />

f = 1kHz 9 * nV/√Hz<br />

f = 10kHz 8 * nV/√Hz<br />

BW = 0.1 to 10Hz 1.2 * μVp-p<br />

BW = 10 to 10kHz 0.85 * μVrms<br />

Current: f = 0.1Hz thru 20kHz 1.2 0.9 fA/√Hz<br />

BW = 0.1Hz to 10Hz<br />

INPUT IMPEDANCE<br />

23 17 fAp-p<br />

Differential 1013 || 2 * Ω || pF<br />

Common-Mode 1014 INPUT VOLTAGE RANGE<br />

|| 4 * Ω || pF<br />

Common-Mode Input Range ±10.5 ±11 * * V<br />

Over Specified Temperature ±10.2 ±10.5 * * V<br />

SM G<strong>rad</strong>e ±10 ±10.3 V<br />

Common-Mode Rejection<br />

OPEN-LOOP GAIN<br />

VCM = ±10V 80 94 84 100 dB<br />

<strong>Op</strong>en-Loop Voltage Gain VO = ±10V, RL = 2kΩ 82 96 84 100 dB<br />

Over Specified Temperature 80 94 82 96 dB<br />

SM G<strong>rad</strong>e<br />

DYNAMIC RESPONSE<br />

80 92 dB<br />

Slew Rate G = +1 13 18 * * V/μs<br />

Settling Time: 0.1% G = –1, 10V Step 1.5 * μs<br />

0.01% 2 * μs<br />

Gain-Bandwidth Product G = 100 4.5 * MHz<br />

THD + Noise G = +1, f = 1kHz 0.001 * %<br />

Channel Separation<br />

POWER SUPPLY<br />

f = 100Hz, RL = 2kΩ 120 * dB<br />

Specified <strong>Op</strong>erating Voltage ±15 * V<br />

<strong>Op</strong>erating Voltage Range ±4.5 ±18 * * V<br />

Current<br />

OUTPUT<br />

±4.5 ±5 * * mA<br />

Voltage Output RL = 2kΩ ±11 ±12 * * V<br />

Over Specified Temperature ±10.5 ±11.5 * * V<br />

SM G<strong>rad</strong>e ±10.2 ±11.3 V<br />

Short Circuit Current ±10 ±40 * * mA<br />

Output Resistance, <strong>Op</strong>en-Loop 1MHz 70 * Ω<br />

Capacitive Load Stability<br />

TEMPERATURE RANGE<br />

Specification<br />

G = +1 1000 * pF<br />

AP, AU, AM, BM –25 +85 * * °C<br />

SM<br />

<strong>Op</strong>erating<br />

–55 +125 °C<br />

AP, AU –25 +85 °C<br />

AM, BM, SM<br />

Storage<br />

–55 +125 * * °C<br />

AP, AU –40 +125 °C<br />

AM, BM, SM<br />

Thermal Resistance (θJ-A) –65 +150 * * °C<br />

AP 90 °C/W<br />

AU 175 °C/W<br />

AM, BM, SM<br />

* Specifications same as OPA2107AM. NOTE: (1) Specified with devices fully warmed up.<br />

200 * °C/W


ABSOLUTE MAXIMUM RATINGS<br />

Supply Voltage ................................................................................... ±18V<br />

Input Voltage Range ..................................................................... ±V S ±2V<br />

Differential Input Voltage ........................................................ Total V S ±4V<br />

<strong>Op</strong>erating Temperature<br />

M Package .................................................................. –55°C to +125°C<br />

P and U Packages ........................................................ –25°C to + 85°C<br />

Storage Temperature<br />

M Package .................................................................. –65°C to +150°C<br />

P and U Packages ....................................................... –40°C to +125°C<br />

Output Short Circuit to Ground (T A = +25°C) ........................... Continuous<br />

Junction Temperature .................................................................... +175°C<br />

Lead Temperature<br />

M and P Packages (soldering, 10s) ............................................ +300°C<br />

U Package, SOIC (3s) ................................................................ +260°C<br />

ORDERING INFORMATION<br />

MODELS PACKAGE<br />

SPECIFICATION<br />

TEMPERATURE RANGE<br />

OPA2107AP Plastic DIP –25 to +85°C<br />

OPA2107AM Metal TO-99 –25 to +85°C<br />

OPA2107BM Metal TO-99 –25 to +85°C<br />

OPA2107SM Metal TO-99 –55 to +125°C<br />

OPA2107AU SO-8 SOIC –25 to +85°C<br />

PIN CONFIGURATIONS<br />

Out A<br />

1<br />

3<br />

+In A<br />

DICE INFORMATION<br />

Top View – M Package<br />

+V S and Case<br />

8<br />

4<br />

–V S<br />

Out B<br />

7<br />

A B<br />

–In A 2 6 –In B<br />

5<br />

+In B<br />

OPA2107 DIE TOPOGRAPHY<br />

3<br />

PACKAGE INFORMATION<br />

MODELS PACKAGE<br />

PACKAGE DRAWING<br />

NUMBER (1)<br />

OPA2107AP Plastic DIP 006<br />

OPA2107AM Metal TO-99 001<br />

OPA2107BM Metal TO-99 001<br />

OPA2107SM Metal TO-99 001<br />

OPA2107AU SO-8 SOIC 182<br />

NOTE: (1) For detailed drawing and dimension table, please see end of data<br />

sheet, or Appendix D of <strong>Burr</strong>-<strong>Brown</strong> IC Data Book.<br />

Out A<br />

–In A<br />

+In A<br />

Top View – P & U Packages<br />

1<br />

2<br />

3<br />

A<br />

8<br />

7 Out B<br />

–VS 4 5 +In B<br />

B<br />

PAD FUNCTION<br />

1 Out A<br />

2 –In A<br />

3 +In A<br />

4 –VS 5 +In B<br />

6 –In B<br />

7 Out B<br />

8 +VS Substrate Bias: –V S<br />

MECHANICAL INFORMATION<br />

6<br />

+VS<br />

–In B<br />

MILS (0.001") MILLIMETERS<br />

Die Size 97 x 77 ±3 2.46 x 1.96 ±0.13<br />

Die Thickness 20 ±3 0.51 ±0.08<br />

Min. Pad Size 4 x 4 0.10 x 0.10<br />

Transistor Count 53<br />

Backing None<br />

OPA2107<br />

®


Voltage Noise (nV/ Hz)<br />

TYPICAL PERFORMANCE CURVES<br />

T A = +25°C, V S = ±15V unless otherwise noted.<br />

Bias Current (pA)<br />

Power Supply Rejection (dB)<br />

1k<br />

100<br />

10<br />

10nA<br />

INPUT VOLTAGE AND CURRENT NOISE<br />

SPECTRAL DENSITY vs FREQUENCY<br />

Voltage Noise<br />

Current Noise<br />

1<br />

0.1<br />

1 10 100 1k<br />

Frequency (Hz)<br />

10k 100k 1M<br />

1nA<br />

100<br />

10<br />

1<br />

®<br />

BIAS AND OFFSET CURRENT<br />

vs TEMPERATURE<br />

OPA2107<br />

Bias Current<br />

Offset Current<br />

0.11<br />

–50 –25 0 +25 +50 +75<br />

Ambient Temperature (°C)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Current Noise<br />

Voltage Noise<br />

POWER SUPPLY AND COMMON-MODE<br />

REJECTION vs FREQUENCY<br />

+PSR<br />

–PSR<br />

100<br />

10<br />

1<br />

10nA<br />

1nA<br />

100<br />

10<br />

1<br />

0.1<br />

+100 +125<br />

0<br />

0<br />

10 100 1k 10k 100k 1M 10M<br />

Frequency (Hz)<br />

CMR<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Current Noise (ƒA/ Hz)<br />

Offset Current (pA)<br />

Common-Mode Rejection (dB)<br />

4<br />

Voltage Noise, E O (n/V/ Hz)<br />

Bias Current (pA)<br />

Common-Mode Rejection (dB)<br />

1k<br />

100<br />

10<br />

TOTAL INPUT VOLTAGE NOISE SPECTRAL DENSITY<br />

at 1kHz vs SOURCE RESISTANCE<br />

RS<br />

EO<br />

OPA2107 + Resistor<br />

Resistor Noise Only<br />

1<br />

100 1k 10k 100k 1M 10M 100M<br />

Source Resistance ( Ω)<br />

10<br />

1<br />

0.1<br />

BIAS AND OFFSET CURRENT<br />

vs INPUT COMMON-MODE VOLTAGE<br />

Offset Current<br />

0.01<br />

0.01<br />

–15 –10 –5 0 +5 +10 +15<br />

Common-Mode Voltage (V)<br />

110<br />

100<br />

90<br />

80<br />

COMMON-MODE REJECTION<br />

vs INPUT COMMON-MODE VOLTAGE<br />

70<br />

–15 –10 –5 0 +5 +10 +15<br />

Common-Mode Voltage (V)<br />

10<br />

1<br />

0.1<br />

Offset Current (pA)


TYPICAL PERFORMANCE CURVES (CONT)<br />

T A = +25°C, V S = ±15V unless otherwise noted.<br />

Voltage Gain (dB)<br />

Gain-Bandwidth (MHz)<br />

Settling Time (µs)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

OPEN-LOOP FREQUENCY RESPONSE<br />

0<br />

–180<br />

1 10 100 1k 10k 100k 1M 10M<br />

8<br />

6<br />

4<br />

2<br />

Frequency (Hz)<br />

R = 2KΩ<br />

L<br />

C = 100pF<br />

L<br />

A OL<br />

GAIN-BANDWIDTH AND SLEW RATE<br />

vs TEMPERATURE<br />

0<br />

5<br />

–50 –25 0 +25 +50 +75 +100 +125<br />

Ambient Temperature (°C)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Gain-Bandwidth<br />

SETTLING TIME vs CLOSED-LOOP GAIN<br />

0.01%<br />

0.1%<br />

φ<br />

Slew Rate<br />

V O = 10V Step<br />

R L = 2k Ω<br />

C L = 100pF<br />

0<br />

–1 –10 –100 –1000<br />

Closed-Loop Gain (V/V)<br />

0<br />

–45<br />

–90<br />

–135<br />

25<br />

20<br />

15<br />

10<br />

Slew Rate (V/µs)<br />

Phase Shift (Degrees)<br />

5<br />

Output Voltage (Vp-p)<br />

Gain-Bandwidth (MHz)<br />

Supply Current (mA)<br />

30<br />

20<br />

10<br />

MAXIMUM OUTPUT VOLTAGE SWING<br />

vs FREQUENCY<br />

R L = 2kΩ<br />

0<br />

10k 100k<br />

Frequency (Hz)<br />

1M 10M<br />

6<br />

5<br />

GAIN-BANDWIDTH AND SLEW RATE<br />

vs SUPPLY VOLTAGE<br />

A V = +100<br />

R L = 2kΩ<br />

Gain-Bandwidth<br />

4<br />

14<br />

5 10 15 20<br />

Supply Voltage (±V S )<br />

7<br />

6<br />

5<br />

4<br />

OPA2107<br />

Slew Rate<br />

SUPPLY CURRENT vs TEMPERATURE<br />

Total of Both <strong>Op</strong> <strong>Amp</strong>s<br />

3<br />

–50 –25 0 +25 +50 +75 +100 +125<br />

Ambient Temperature (°C)<br />

22<br />

20<br />

18<br />

16<br />

Slew Rate (V/µs)<br />

®


TYPICAL PERFORMANCE CURVES (CONT)<br />

T A = +25°C, V S = ±15V unless otherwise noted.<br />

Channel Separation (dB)<br />

THD + Noise (%rms)<br />

150<br />

140<br />

130<br />

120<br />

Output Voltage (5V/div)<br />

®<br />

CHANNEL SEPARATION vs FREQUENCY<br />

R =<br />

L<br />

∞<br />

R L = 2k Ω<br />

110<br />

10 100 1k<br />

Frequency (Hz)<br />

10k 100k<br />

1<br />

0.1<br />

0.01<br />

TOTAL HARMONIC DISTORTION vs FREQUENCY<br />

RS<br />

A = +101V/V<br />

V<br />

A = +11V/V<br />

V<br />

OPA2107 LARGE-SIGNAL RESPONSE<br />

OPA2107<br />

6.5Vrms<br />

2kΩ<br />

0.001<br />

A V = +1V/V<br />

1 10 100 1k 10k 100k<br />

Frequency (Hz)<br />

Time (2µs/div)<br />

6<br />

Voltage Gain (dB)<br />

THD + Noise (%rms)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

Output Voltage (20mV/div)<br />

OPEN-LOOP GAIN vs SUPPLY VOLTAGE<br />

70<br />

5 10 15 20<br />

Supply Voltage (±V S )<br />

1<br />

0.1<br />

0.01<br />

THD + NOISE vs FREQUENCY AND OUTPUT VOLTAGE<br />

RS<br />

2kΩ<br />

Noise Limited<br />

Noise Limited<br />

A = +11V/V<br />

V<br />

Noise Limited<br />

10Vp-p<br />

20Vp-p<br />

0.001<br />

1 10 100 1k 10k 100k<br />

Frequency (Hz)<br />

OPA2107 SMALL-SIGNAL RESPONSE<br />

Time (200ns/div)<br />

2Vp-p


APPLICATIONS INFORMATION<br />

AND CIRCUITS<br />

The OPA2107 is unity-gain stable and has excellent phase<br />

margin. This makes it easy to use in a wide variety of<br />

applications.<br />

Power supply connections should be bypassed with capacitors<br />

positioned close to the amplifier pins. In most cases,<br />

0.1μF ceramic capacitors are adequate. Applications with<br />

larger load currents and fast transient signals may need up to<br />

1μF tantalum bypass capacitors.<br />

INPUT BIAS CURRENT<br />

The OPA2107’s Difet input stages have very low input bias<br />

current—an order of magnitude lower than BIFET op amps.<br />

Circuit board leakage paths can significantly deg<strong>rad</strong>e performance.<br />

This is especially evident with the SO-8 surfacemount<br />

package where pin-to-pin dimensions are particularly<br />

small. Residual soldering flux, dirt, and oils, which conduct<br />

leakage current, can be removed by proper cleaning. In most<br />

instances a two-step cleaning process is adequate using a<br />

clean organic solvent rinse followed by de-ionized water.<br />

Each rinse should be followed by a 30-minute bake at 85°C.<br />

A circuit board guard pattern effectively reduces errors due<br />

to circuit board leakage (Figure 1). By encircling critical<br />

high impedance nodes with a low impedance connection at<br />

the same circuit potential, any leakage currents will flow<br />

harmlessly to the low impedance node. Guard traces should<br />

be placed on all levels of a multiple-layer circuit board.<br />

In<br />

In<br />

2<br />

3<br />

A<br />

Non-Inverting<br />

2<br />

3<br />

Inverting<br />

A<br />

1<br />

Out<br />

1 Out<br />

Teflon® E. I. Du Pont de Nemours & Co.<br />

FIGURE 1. Connection of Input Guard.<br />

In<br />

Buffer<br />

A<br />

TO-99 Bottom View<br />

2<br />

2<br />

3<br />

3<br />

4<br />

1 Out<br />

1 7<br />

8<br />

BOARD LAYOUT<br />

FOR INPUT GUARDING<br />

Guard top and bottom of board.<br />

Alternate: use Teflon® standoff<br />

for sensitive input pins.<br />

5<br />

6<br />

7<br />

–In<br />

+In<br />

R G<br />

3<br />

1/2<br />

OPA2107<br />

2<br />

A<br />

1<br />

INA105<br />

RF 5kΩ<br />

2<br />

25kΩ 25kΩ<br />

101Ω<br />

RF 3 25kΩ<br />

6<br />

5<br />

5kΩ<br />

B<br />

7<br />

25kΩ<br />

1<br />

1/2<br />

OPA2107<br />

Differential Voltage Gain = 1 + 2R F /R G = 100<br />

FIGURE 2. FET Input Instrumentation <strong>Amp</strong>lifier.<br />

E1<br />

–In<br />

R G<br />

E2<br />

+In<br />

3<br />

1/2<br />

OPA2107<br />

2<br />

A<br />

1<br />

INA106<br />

RF 10kΩ<br />

2<br />

10kΩ 100kΩ<br />

202Ω<br />

RF 3 10kΩ<br />

6<br />

5<br />

10kΩ<br />

B<br />

7<br />

100kΩ<br />

1<br />

1/2<br />

OPA2107<br />

OPA2107<br />

5<br />

6<br />

I = 5pA Max<br />

B<br />

Gain = 100<br />

CMRR ~ 95dB<br />

R = 10 IN 13 ~<br />

Ω<br />

E O = [10 (1 + 2R F /R G ) (E 2 – E 1 )] = 1000 (E 2 – E 1 )<br />

FIGURE 3. Precision Instrumentation <strong>Amp</strong>lifier.<br />

Output<br />

E O<br />

Output<br />

Using the INA106 for an output difference amplifier extends the input<br />

common-mode range of an instrumentation amplifier to ±10V. A conventional<br />

IA with a unity-gain difference amplifier has an input common-mode<br />

range limited to ±5V for an output swing of ±10V. This is because a unitygain<br />

difference amp needs ±5V at the input for 10V at the output, allowing<br />

only 5V additional for common-mode range.<br />

The information provided herein is believed to be reliable; however, BURR-<br />

BROWN assumes no responsibility for inaccuracies or omissions. BURR-<br />

BROWN assumes no responsibility for the use of this information, and all use<br />

of such information shall be entirely at the user’s own risk. Prices and specifications<br />

are subject to change without notice. No patent rights or licenses to any of<br />

the circuits described herein are implied or granted to any third party. BURR-<br />

BROWN does not authorize or warrant any BURR-BROWN product for use in<br />

life support devices and/or systems.<br />

5<br />

6<br />

®

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!