19.11.2013 Views

STACY Code and its Application to the HTR-Module and HTTR

STACY Code and its Application to the HTR-Module and HTTR

STACY Code and its Application to the HTR-Module and HTTR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

meinschaft<br />

Mitglied der Helmholtz-Gem<br />

Development of an Integrated Fission Product Release<br />

<strong>and</strong> Transport <strong>Code</strong> for Spatially Resolved Full-Core<br />

Calculations of V/<strong>HTR</strong>s<br />

A. Xhonneux<br />

Forschungszentrum Jülich, Germany<br />

Technical Meeting on Re-evaluation of Maximum Operating Temperatures<br />

g p g p<br />

<strong>and</strong> Accident Conditions for <strong>HTR</strong> Fuel <strong>and</strong> Structural Materials<br />

IAEA Headquarters,Vienna, June 10-12 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

2<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

3<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview of Fission Product <strong>Code</strong>s at FZJ<br />

FP release rate from one FE<br />

(NOC <strong>and</strong> accident Conditions)<br />

•Fickean diffusion of FPs<br />

in defective <strong>and</strong> intact<br />

CPs / FEs<br />

•Recoil<br />

•SiC layer thinning<br />

Release from FEs <strong>and</strong><br />

transport under<br />

accident conditions<br />

•FP transport in core<br />

due <strong>to</strong> convection<br />

•Deposition on reflec<strong>to</strong>r<br />

surfaces<br />

Fuel Performance<br />

• CP damage fractions<br />

• SiC layer thinning<br />

due <strong>to</strong> <strong>the</strong>rmal<br />

decompostion<br />

o<br />

Deposition / penetration<br />

metallic surfaces<br />

(primary loop)<br />

• Some features have been implemented multiple times in <strong>the</strong> separate codes<br />

• Not complete <strong>to</strong> describe all phenomena under NOC <strong>and</strong> accident conditions<br />

<strong>STACY</strong>: Source Term Analysis l i <strong>Code</strong> d System<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

4<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Former Approach for FP Release Calculation<br />

• FRESCO-II: Fission product release calculation for one or<br />

several representative fuel element(s)<br />

• Time averaged release rate of sphere is multiplied with <strong>the</strong><br />

<strong>to</strong>tal number of fuel elements <strong>to</strong> determine core release rate<br />

„x“ cor re passes<br />

‣ Conservative approach<br />

‣ No spatial distribution of fission product release<br />

‣ More detailed calculation method necessary<br />

(Fuel temperature [°C]<br />

<strong>HTR</strong>-<strong>Module</strong>, VSOP)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

5<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

6<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Main Principles of <strong>STACY</strong><br />

• Calculation of CP failure fractions <strong>and</strong> FP release rates for a large number<br />

of individual tracer pebbles<br />

‣ Spatially resolved fission product release rates<br />

‣ More precise (less conservative) calculation of <strong>to</strong>tal release rate<br />

• Usage of st<strong>and</strong>-alone codes as an intermediate step:<br />

• VSOP: neutron flux <strong>and</strong> fluid temperature distributions under NOC<br />

• MGT: accident temperature distributions<br />

• Fuel shuffling is modelled so far after stream tube model in VSOP<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

7<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Main Principles of <strong>STACY</strong><br />

• Tracer pebbles are added <strong>to</strong> <strong>the</strong> core according <strong>to</strong> a given<br />

distribution with <strong>the</strong> help of a r<strong>and</strong>om number genera<strong>to</strong>r<br />

• For each tracer pebble, an individual burnup <strong>and</strong> radial temperature<br />

profile calculation is performed<br />

• Simulation of FP release rate <strong>and</strong> CP damage fraction for each<br />

individual tracer pebble<br />

• Combining results <strong>to</strong> spatially resolved FP release distributions by<br />

determining average release rate of tracer pebbles within each region<br />

• FP release of tracer pebbles is representative for core in case<br />

distribution of tracer elements over core volume is representative<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

8<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Former Fuel Shuffling Scheme in VSOP<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

9<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Fuel Mixing on Burnup<br />

10<br />

9<br />

8<br />

7<br />

A]<br />

Burn nup [% FIM<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Channel 1<br />

Channel 2<br />

Channel 3<br />

Channel 4<br />

Burnup Target<br />

15 x Channel 1<br />

15 x Channel 4<br />

1 3 5 7 9 11 13 15<br />

Number of completed core passes<br />

• In comparison <strong>to</strong> “VSOP batches”, tracer pebbles are not mixed<br />

• Tracer pebble is loaded <strong>to</strong> final s<strong>to</strong>rage if burnup target is<br />

reached, not after a predefined number of core passes<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

10<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Screenshot of Tracer Pebbles within Eq. Core<br />

• 4,500 tracer fuel elements<br />

• Volumetric density of tracer fuel<br />

elements is constant<br />

• Colours indicate core pass number<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

11<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Calculation of Fission Product Inven<strong>to</strong>ry<br />

• FRESCO-II:<br />

• Relative fission product release calculation with<br />

constant birth rate of fission product of interest<br />

• Neglecting space dependent d neutron fluxes<br />

• Birth rate during accident is neglected<br />

• <strong>STACY</strong>:<br />

• Coupling of <strong>STACY</strong> with newly developed burnup<br />

code TNT<br />

• Including precise calculation of inven<strong>to</strong>ry in fission<br />

product release calculation<br />

• Still condensed birth <strong>and</strong> removal rate<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

12<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


I-131 Inven<strong>to</strong>ry of a Tracer Pebble<br />

core pass<br />

1.8<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

en<strong>to</strong>ry<br />

Relative iod dine-131 inv<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Irradiation time [EFPD]<br />

Inven<strong>to</strong>ry, Q = var., TNT<br />

Inven<strong>to</strong>ry, Q = const<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

13<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


I-131 Release Rate of a Tracer Pebble<br />

core pass 1 2 3 4 5 1 2 3 4 5<br />

1.8<br />

3.0E-12 30<br />

Relative iod dine-131 inve en<strong>to</strong>ry<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

[mol/s]<br />

release rate<br />

Iodine 131<br />

2.5E-12<br />

2.0E-12<br />

1.5E-12<br />

1.0E-12<br />

5.0E-13<br />

0.0<br />

0 100 200 300<br />

0.0E+00<br />

0 100 200 300<br />

Irradiation time [EFPD]<br />

Irradiation time [EFPD]<br />

Inven<strong>to</strong>ry, Q = var., TNT<br />

Inven<strong>to</strong>ry, Q = const<br />

Rel. Rate = f(t), 15x inner, Q = var., TNT<br />

Rel. Rate = f(t), 15x inner, Q = const<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

14<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

15<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Intera<strong>to</strong>m Safety Analysis of <strong>HTR</strong>-<strong>Module</strong> (1)<br />

• Normal operating conditions<br />

• FP release calculation of one representative<br />

fuel element<br />

• <strong>Code</strong>s being applied:<br />

‣ SLIPPER for condensable fission i products<br />

(cesium, strontium, silver species)<br />

‣ STADIF for noble gases <strong>and</strong> iodine species<br />

• Accident conditions<br />

• Rudimentary calculation of fission product<br />

inven<strong>to</strong>ry distribution at start of <strong>the</strong> accident<br />

• <strong>Code</strong> being applied:<br />

‣ FRESCO-I for all nuclides<br />

(e.g. cesium, strontium, silver <strong>and</strong> iodine species)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

16<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Intera<strong>to</strong>m Safety Analysis of <strong>HTR</strong>-<strong>Module</strong> (2)<br />

• <strong>Application</strong> of so-called Trumpet Curve for coated particle failure fraction<br />

1.0E-03<br />

Co oated particle<br />

failure frac ction<br />

1.0E-04<br />

Fresh fuel element<br />

Fuel element (50% target burnup)<br />

Fuel element (100% target burnup)<br />

1.0E-05<br />

1000 1100 1200 1300 1400 1500 1600<br />

Fuel temperature [°C]<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

17<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of Main Parameters<br />

• Neutron flux <strong>and</strong> fuel temperature distribution<br />

in good agreement<br />

• Influence of cone modeling <strong>and</strong> realistic pebble flow<br />

pattern on parameters negligible<br />

fur<strong>the</strong>r use of model without cone <strong>and</strong> parallel<br />

pebble flow<br />

VSOP model of <strong>HTR</strong>-<strong>Module</strong> incl. cone<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

18<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Fission Product Release Fractions during DLOFC<br />

1.0E-04<br />

10E-05<br />

1.0E 05<br />

Re<br />

elative releas<br />

se fraction<br />

1.0E-06<br />

1.0E-07<br />

1.0E-08<br />

08<br />

FRESCO-I<br />

(Intera<strong>to</strong>m)<br />

<strong>STACY</strong><br />

1.0E-09<br />

1.0E-10<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Accident time [h]<br />

FRESCO-I, Cs-137 FRESCO-I, I-131 FRESCO-I, Sr-90<br />

FRESCO-I, Cs-137 FRESCO-I, I-131 FRESCO-I, Sr-90<br />

<strong>STACY</strong>, Cs-137 <strong>STACY</strong>, I-131 <strong>STACY</strong>, Sr-90<br />

1: N. N.: Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil II: Störfälle,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1988<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

19<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of <strong>STACY</strong> <strong>and</strong> Intera<strong>to</strong>m Results<br />

Equilibrium core: Output power specific release values [Bq/(MW th·h)]<br />

Design<br />

Nuclide <strong>STACY</strong> SLIPPER<br />

(Intera<strong>to</strong>m)<br />

<strong>STACY</strong><br />

Expected<br />

SLIPPER<br />

(Intera<strong>to</strong>m)<br />

Cs‐137 2.67×10 3 5.9×10 4 6.76×10 2 3.0×10 4<br />

I‐131 51×10 5.1×10 7 38×10 3.8×10 6 13×10 1.3×10 7 95×10 9.5×10 5<br />

DLOFC: Cumulative relative release fraction of core inven<strong>to</strong>ry after 200 h<br />

Design<br />

Expected<br />

Nuclide<br />

+90°C Nom. temperature +90°C Nom. temperature<br />

<strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

Cs‐137 2.62x10 ‐5 8.44x10 ‐5 4.76x10 ‐6 8.44x10 ‐5 7.81x10 ‐6 5.09x10 ‐5 6.01x10 ‐7 8.98x10 ‐6<br />

I‐131 5.31x10 ‐55 2.86x10 ‐55 2.05x10 ‐55 1.16x1016x10 ‐55 4.96x10 ‐66 9.13x10 ‐66 3.24x10 ‐66 1.12x1012x10 ‐66<br />

1<br />

: N. N. :Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil I: Bestimmungsgemäßer Betrieb,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1987<br />

2<br />

: N. N.: Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil II: Störfälle,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1988<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

20<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of <strong>STACY</strong> <strong>and</strong> Intera<strong>to</strong>m Results<br />

<strong>STACY</strong> results in comparison <strong>to</strong> Intera<strong>to</strong>m results (<strong>STACY</strong> / Intera<strong>to</strong>m):<br />

DLOFC: Cumulative relative release fraction of core inven<strong>to</strong>ry after 200 h<br />

• Iodine-131: Fac<strong>to</strong>r of 2 higher<br />

• Cesium-137: Fac<strong>to</strong>r of 3 (design) <strong>to</strong> 6 (expected) lower<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

21<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Core Pass Number on Fuel Temp.<br />

mperature DLOFC [°C]<br />

Max. fuel te<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

VSOP, nominelle NZL<br />

ZIRKUS, nominelle NZL<br />

VSOP, +10% NZL<br />

ZIRKUS, +10 % NZL<br />

VSOP, +10 % NZL, -10 % WL, -10 % WK<br />

1350<br />

5 6 7 8 9 10 11 12 13 14 15<br />

Core pass number<br />

Source of ZIRKUS data : Bernnat W., Feltes W., Model for reac<strong>to</strong>r physics calculation for <strong>HTR</strong> pebble bed modular reac<strong>to</strong>rs, Nuclear Engineering <strong>and</strong> Design 222 (2003)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

22<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Core Pass Number on Cs-137 Release<br />

lease rate [m mol/s]<br />

Cs-137 rel<br />

6.0E-10<br />

5.0E-10<br />

4.0E-10<br />

3.0E-10<br />

2.0E-10<br />

1.0E-10<br />

55 Durchläufe core passes<br />

66 Durchläufe core passes<br />

77 Durchläufe core passes<br />

10 10 Durchläufe core passes<br />

15 15 Durchläufe<br />

core passes<br />

Kurve Curve maximaler of max. releases Freisetzungsraten<br />

0.0E+00<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200<br />

Accident time [h]<br />

Calculation with <strong>STACY</strong><br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

23<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

24<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Fission product release calculation of <strong>HTTR</strong><br />

• Improvements in fission product release code:<br />

• Fickean diffusion within (hollow) cylindrical bodies<br />

• Usage of Monte-Carlo method <strong>to</strong> r<strong>and</strong>omize particle failure<br />

• Usage of burnup calculation <strong>to</strong> determine nuclide inven<strong>to</strong>ries instead of<br />

using simplified analytical equation<br />

→ Spatial resolved fission product release rates<br />

(so far, only block‐wise)<br />

• Burnup calculation with SERPENT<br />

• Monte-Carlo neutronics code incl. burnup calculation<br />

• Developed at VTT Technical Research Centre<br />

• Applied <strong>to</strong> <strong>HTTR</strong>, <strong>HTR</strong>-10, Konvoi (1300 MW class)<br />

etc. at FZJ<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

25<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Serpent Model of <strong>HTTR</strong><br />

Layer 2: 1: 4: 5: 6: 7: 3: 9: 8: Top Fuel Bot<strong>to</strong>m reflec<strong>to</strong>r<br />

layer<br />

reflec<strong>to</strong>r<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

26<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Cesium-137 release rates after 660 days<br />

Example:Layer 2 (blocks containing fuel only)<br />

-150<br />

-100<br />

5.64044E-11<br />

5.61247E-11<br />

5.61489E-11<br />

[mol/s]<br />

5.69754E-11<br />

5.56938E-11<br />

-50<br />

5.60440E-11<br />

6.64296E-11<br />

6.63254E-11<br />

5.51433E-11<br />

6.99919E-11<br />

Positio on 2<br />

0<br />

5.61235E-11 7.00011E-11 6.98107E-11 5.60894E-11<br />

6.64607E-1164607E 6.57313E-11<br />

11<br />

5.61670E-11 7.05264E-11 6.98409E-11 5.52424E-11<br />

6.98319E-11<br />

50<br />

5.55644E-11<br />

6.58100E-11<br />

6.55939E-11<br />

5.58302E-11<br />

5.55661E-11<br />

5.61413E-11<br />

5.58089E-11 5.58945E-11<br />

100<br />

5.55622E-11<br />

• Temperature input by JAEA<br />

• Fission product 150<br />

-150 calculation -100 -50 of one 0 representative 50 100 compact 150 per fuel block<br />

Position 1<br />

during “st<strong>and</strong>ard operation plan” of 660 days<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

27<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Cesium-137 release rates under NOC<br />

Relative Cesium-13 37-release fraction<br />

1.0E-01<br />

1.0E-02<br />

1.0E-03<br />

1.0E-04<br />

1.0E-05<br />

1.0E-06<br />

HT‐Phase<br />

FRESCO-II, Layer1<br />

FRESCO-II, Layer2<br />

FRESCO-II, Layer3<br />

FRESCO-II, Layer5<br />

<strong>STACY</strong>, Layer 1<br />

<strong>STACY</strong>, Layer 2<br />

<strong>STACY</strong>, Layer 3<br />

<strong>STACY</strong>, Layer 5<br />

0 110 220 330 440 550 660<br />

Time [d]<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

28<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

29<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Summary<br />

• Original codes have been modernized <strong>and</strong> merged <strong>to</strong> form one<br />

consistent code module <strong>STACY</strong><br />

• <strong>STACY</strong> has been extended <strong>and</strong> coupled with <strong>the</strong> code system<br />

VSOP, MGT-3D <strong>and</strong> <strong>the</strong> burnup code TNT <strong>to</strong> enable detailed<br />

spatially resolved fission product release calculations<br />

• Fission product release rate of short-living respectively long-<br />

living i nuclides are higher h respectively lower in comparison <strong>to</strong><br />

former calculation methods<br />

• <strong>STACY</strong> has been coupled <strong>to</strong> <strong>the</strong> backbone of <strong>the</strong> <strong>HTR</strong> <strong>Code</strong><br />

Package (currently being tested)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

30<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Outlook<br />

• Fission product release of Cs-137, Sr-90, I-131, Ag-110m of<br />

<strong>HTR</strong>-10 (ARCHER Project)<br />

• VSOP model simulating running-in-phase is based on <strong>HTR</strong>-10<br />

model being developed as a contribution <strong>to</strong> CRP 5<br />

(prediction of first criticality)<br />

• Calibration of control rods (2D VSOP model)<br />

• Modeling of fluid mechanics in VSOP (THERMIX)<br />

• Development of irregular fuel shuffling scheme<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

31<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Thermal power during running-in phase <strong>HTR</strong>-10<br />

10<br />

9<br />

8<br />

Measured<br />

7<br />

Pow wer [MW]<br />

6<br />

5<br />

4<br />

3<br />

Condensed<br />

power<br />

his<strong>to</strong>ry<br />

2<br />

1<br />

0<br />

0 500 1000 1500<br />

Operation days<br />

Source: Fu LI, The <strong>HTR</strong>-10, operation performance <strong>and</strong> data collected, IAEA Consultancy Meeting, Vienna, 5-7 December 2011<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

32<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Calculated reactivity values by using VSOP<br />

• Calculated reactivity values during operation <strong>and</strong> zero power phase<br />

• Fine-tuning of <strong>the</strong> reactivity k eff = 1.0 would be easily possible with <strong>the</strong><br />

control rods margins<br />

operation<br />

zero power<br />

phase<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

33<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of FRESCO-I <strong>and</strong> <strong>STACY</strong><br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

34<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!