04.01.2013 Views

SOTIS: A Self-Organizing Traffic Information System based on Car-2 ...

SOTIS: A Self-Organizing Traffic Information System based on Car-2 ...

SOTIS: A Self-Organizing Traffic Information System based on Car-2 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g>: A <str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Car</strong>-2-<strong>Car</strong> Communicati<strong>on</strong>s<br />

Hermann Rohling ∗ and Holger Busche ∗∗<br />

Department of Telecommunicati<strong>on</strong>s<br />

Hamburg University of Technology, Germany<br />

Emails: ∗ rohling@tu-harburg.de, ∗∗ busche@et2.tu-harburg.de<br />

Abstract—Inter-Vehicle Communicati<strong>on</strong> (IVC) is an important<br />

research and future applicati<strong>on</strong> topic which experiences increasing<br />

attenti<strong>on</strong> from all major car manufacturers. This paper<br />

describes a <str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g>)<br />

which is purely <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> IVC and which does not need any<br />

expensive infrastructure. A <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> car is equipped with a satellite<br />

navigati<strong>on</strong> receiver, a digital map and a communicati<strong>on</strong> unit. The<br />

new traffic informati<strong>on</strong> system <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology will<br />

give the driver many benefits even in situati<strong>on</strong>s where <strong>on</strong>ly a very<br />

small percentage of cars are equipped with the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology.<br />

Index Terms—inter-vehicle communicati<strong>on</strong>, car-to-car communicati<strong>on</strong>,<br />

traffic informati<strong>on</strong> system<br />

I. INTRODUCTION<br />

C<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>s (TIS) are mainly<br />

organized in a centralized signal processing structure as illustrated<br />

in Figure 1.<br />

<str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g><br />

Center<br />

<strong>Car</strong>s with radio receiver or cellular transceiver.<br />

<strong>Car</strong>s with <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system.<br />

Radio broadcast stati<strong>on</strong> or<br />

cellular base stati<strong>on</strong>.<br />

Fig. 1: C<strong>on</strong>venti<strong>on</strong>al centralized traffic informati<strong>on</strong> system.<br />

In this case a large number of traffic m<strong>on</strong>itoring sensor<br />

devices, which are directly mounted at highway bridges,<br />

measure and collect floating car data (FCD), like traffic density<br />

and average velocity. These data are used to characterize the<br />

current traffic situati<strong>on</strong>. All these data are transferred to a<br />

central <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> Center (TIC), where the current<br />

road situati<strong>on</strong> analysis is carried out. Finally, the result of this<br />

situati<strong>on</strong> analysis is packed into data packets and will be transmitted<br />

to the driver via FM radio or mobile communicati<strong>on</strong><br />

networks.<br />

The service of such a centralized traffic informati<strong>on</strong> system<br />

has some advantages but also several technical disadvantages:<br />

• A large number of sensors is needed to get a full coverage<br />

of all streets. <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> informati<strong>on</strong> service is available <strong>on</strong>ly<br />

<strong>on</strong> these streets where sensors have been mounted and<br />

where FCD have been measured. <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> informati<strong>on</strong> is<br />

therefore not available in all cities for the time being.<br />

• The recorded FCD is transmitted to the TIC for a situati<strong>on</strong><br />

and traffic analysis. This procedure causes a relatively<br />

l<strong>on</strong>g delay (typically 20-50 minutes) before the result of<br />

the situati<strong>on</strong> analysis is broadcasted to the driver.<br />

• The centralized TIS is therefore not suited for timecritical<br />

messages, e.g. some emergency notificati<strong>on</strong>s. In<br />

this case a direct car-to-car communicati<strong>on</strong> technology is<br />

needed.<br />

• Since a central unit covers a relatively large area, <strong>on</strong>ly<br />

major traffic events are reported and announced to the<br />

driver.<br />

• The centralized TIS is expensive. If the traffic informati<strong>on</strong><br />

is transmitted via mobile ph<strong>on</strong>e for example, service<br />

charges have to be paid.<br />

For all these reas<strong>on</strong>s, an alternative and completely different<br />

TIS is proposed in this paper. This new system is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong><br />

the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology and is organized in a pure decentralized<br />

and self-organized way. In this case the large number of traffic<br />

Radio broadcast stati<strong>on</strong> or<br />

sensors and the centralized TIC are not needed at all. Instead<br />

cellular base stati<strong>on</strong>.<br />

a direct car-to-car communicati<strong>on</strong> technology is established<br />

<str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g><br />

which isCenter Center the basis for a car-to-car traffic informati<strong>on</strong> exchange.<br />

In this case, vehicles inform each other about the local traffic<br />

situati<strong>on</strong> inside the radio range. The c<strong>on</strong>sidered situati<strong>on</strong> is<br />

illustrated in Figure 2. There is absolutely no traffic sensor<br />

infrastructure needed in the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology case, each car<br />

is measuring the FCD, like average velocity, itself.<br />

<strong>Car</strong>s with radio receiver or cellular transceiver.<br />

<strong>Car</strong>s with <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system.<br />

Fig. 2: Decentralized and self-organizing traffic informati<strong>on</strong><br />

system.<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology applies a completely decentralized and<br />

self-organized procedure. Based <strong>on</strong> a digital map which is<br />

divided into several road segments, the current traffic situati<strong>on</strong><br />

is not reported to a central TIC but will be alternatively<br />

analyzed <strong>on</strong> board of each car.


II. <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> SYSTEM<br />

The general idea of the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system is to collect all<br />

available FCD, especially the current average speed inside<br />

all adjacent road segments, analyze the traffic situati<strong>on</strong> aut<strong>on</strong>omously<br />

and distribute this knowledge by standardized data<br />

packets into the car-to-car communicati<strong>on</strong> network [1].<br />

Therefore, each individual vehicle collects specifically for<br />

each road segment all available traffic and especially speed<br />

informati<strong>on</strong> from its own speed measurement and from data<br />

packets which have been received from cars in the local<br />

envir<strong>on</strong>ment. After the traffic situati<strong>on</strong> analysis each car is<br />

going to transmit for example the average speed informati<strong>on</strong><br />

for all individual road segments of the local envir<strong>on</strong>ment into<br />

the IVC network by broadcast techniques.<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> offers very accurate and detailed traffic informati<strong>on</strong><br />

(e.g. traffic jam length, expected time delay) inside the local<br />

envir<strong>on</strong>ment with an extremely low time delay even in traffic<br />

situati<strong>on</strong>s where <strong>on</strong>ly a very few percent of cars are equipped<br />

with the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology. The radio range of each transmitter<br />

is approximately 1 km. But it will be shown in this<br />

paper that the resulting traffic informati<strong>on</strong> range inside the<br />

IVC network is approximately 50 km and more.<br />

Two relevant <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> applicati<strong>on</strong>s are:<br />

1) Safety <str<strong>on</strong>g>System</str<strong>on</strong>g>: In case of an accident an emergency data<br />

packet will be transmitted automatically. This informati<strong>on</strong> is<br />

either presented to the driver or will be used directly to activate<br />

the brake system or throttle c<strong>on</strong>trol automatically.<br />

2) Comfort and Route Guidance <str<strong>on</strong>g>System</str<strong>on</strong>g>: This type of SO-<br />

TIS applicati<strong>on</strong> improves passenger comfort, traffic efficiency<br />

and/or optimizes the traffic route. Examples for this category<br />

are: traffic informati<strong>on</strong> system <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> FCD, weather informati<strong>on</strong>,<br />

locati<strong>on</strong> of gas stati<strong>on</strong>s and restaurants including price<br />

informati<strong>on</strong>, interactive communicati<strong>on</strong> such as Internet access<br />

or music downloads.<br />

It should be taken into account that in any applicati<strong>on</strong> case<br />

<strong>on</strong>ly a very small number of cars will be equipped with the<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology at the beginning. But nevertheless even in<br />

this low market penetrati<strong>on</strong> situati<strong>on</strong> the driver should benefit<br />

from the discussed applicati<strong>on</strong>.<br />

The objective in this secti<strong>on</strong> is to describe a traffic informati<strong>on</strong><br />

system which has a certain system performance and<br />

benefit for each driver in real traffic applicati<strong>on</strong>s even if the<br />

market penetrati<strong>on</strong> of <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> equipped cars is still quite low.<br />

Furthermore, if critical changes in the traffic situati<strong>on</strong> will<br />

occur (e.g. an accident), an emergency packet is instantly<br />

transmitted and broadcasted to all vehicles inside the radio<br />

transmissi<strong>on</strong> range. In this special case, a small data packet<br />

including the precise positi<strong>on</strong> of the emergency is transmitted<br />

with high priority. The comfort applicati<strong>on</strong> of <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> is<br />

structured in three different parts.<br />

A. Data Aggregati<strong>on</strong><br />

It is assumed in this paper that each car has a digital map<br />

where each road is divided into several road segments of<br />

approximately 500 m length. Each car measures per road segment<br />

the current speed and collects all FCD traffic informati<strong>on</strong><br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the received data packets from other cars in the local<br />

envir<strong>on</strong>ment.<br />

If for a road segment s the current velocity Vs has been<br />

measured by the individual car or has been reported by a data<br />

packet of an adjacent car, the average velocity informati<strong>on</strong><br />

for this specific road segment will be updated in a recursive<br />

procedure.<br />

In additi<strong>on</strong>, a road segment specific time stamp indicates the<br />

last update time. Relevant data will be further processed and<br />

expired data are deleted. Thus, a single velocity informati<strong>on</strong><br />

�Vs and a time stamp ts per road segment s will be recorded<br />

for each road segment.<br />

B. Data and Situati<strong>on</strong> Analysis<br />

Each vehicle receives data packets with road segments<br />

informati<strong>on</strong> from all cars in local radio range. Figure 3<br />

illustrates the data packet structure. The data packet c<strong>on</strong>tains<br />

the average velocity and a time stamp inside each road segment<br />

for a fixed number of road segments. Therefore, the data packet<br />

length and the data packet structure is identical for all nodes.<br />

Each data packet covers all road segment informati<strong>on</strong> in the<br />

local envir<strong>on</strong>ment of 50 km radius for example. From this<br />

informati<strong>on</strong> the current average velocity and other road traffic<br />

features are calculated and recorded.<br />

Packet<br />

Header 1 1<br />

Vˆ , t Vˆ 2, t Vˆ L<br />

2 3, t3<br />

Fig. 3: <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> data packet.<br />

Vˆ N, tN<br />

The measured and received traffic informati<strong>on</strong> will be<br />

analyzed inside each individual car and all traffic informati<strong>on</strong><br />

are updated c<strong>on</strong>tinuously, see equati<strong>on</strong> (1). The time stamp<br />

indicates whether the traffic data are still relevant or have<br />

already expired.<br />

�Vs,new = (1 − α) · �Vs,prev. + α ·Vs<br />

(1)<br />

The updated new average velocity is indicated by �Vs,new<br />

and �Vs,prev. is the previous calculated average velocity for road<br />

segment s. The parameter α is between [0,1].<br />

C. Data Disseminati<strong>on</strong><br />

The segment specific average velocity informati<strong>on</strong> �Vs and<br />

the time stamp are transmitted by local broadcast. Figure 4<br />

shows an example where each vehicle c<strong>on</strong>siders the road<br />

segment specific average velocity informati<strong>on</strong> Vs for each road<br />

segment s. The informati<strong>on</strong> range of the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system is<br />

much larger than the radio range. This fact is illustrated in<br />

the following figure.<br />

Vehicle A and vehicle C are driving <strong>on</strong> the same road<br />

and in the same directi<strong>on</strong>. Vehicle B drives in the opposite<br />

directi<strong>on</strong> and is currently inside the radio range of vehicle C.<br />

For that reas<strong>on</strong> it will receive all road segment informati<strong>on</strong><br />

from vehicle C. Later vehicle B is inside the radio range with<br />

vehicle A which will be informed by vehicle B about all<br />

road segments traffic c<strong>on</strong>diti<strong>on</strong>s which have been originally


t=t 1<br />

t=t 2<br />

90<br />

91<br />

95 50<br />

A<br />

Data packet: … 90 20 10 5<br />

91 95 92 93 98 96 99<br />

Distance > Tx-range<br />

95 50 100 99<br />

Data packet: … 90 20 10 5<br />

90<br />

20 10 5<br />

FCD value, available for car A FCD value, not available for car A<br />

Fig. 4: <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> data distributi<strong>on</strong> in cases of low market penetrati<strong>on</strong>.<br />

sensed by vehicle C. In this case vehicle A has all average<br />

velocity informati<strong>on</strong> for the next road segments in his driving<br />

directi<strong>on</strong> available which increases the traffic informati<strong>on</strong><br />

range dramatically.<br />

III. <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> SYSTEM HARDWARE STRUCTURE<br />

The <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> functi<strong>on</strong>al structure comp<strong>on</strong>ents inside each<br />

vehicle is depicted in Figure 6. A digital map with the detailed<br />

road segment informati<strong>on</strong> is needed. A satellite receiver is<br />

integrated into the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system which gives the current<br />

positi<strong>on</strong> and road segment locati<strong>on</strong>. Finally a radio system<br />

for a car-to-car communicati<strong>on</strong> functi<strong>on</strong>ality is necessary.<br />

Each car and individual node is going to update the traffic<br />

informati<strong>on</strong> for each road segment <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the measured<br />

velocity or reported traffic informati<strong>on</strong> from all other adjacent<br />

cars [3] and [2]. Each data packet c<strong>on</strong>tains the traffic informati<strong>on</strong><br />

for all road segments in the local envir<strong>on</strong>ment of the<br />

vehicle. If the time stamp shows an expired time the related<br />

traffic informati<strong>on</strong> will not be used in the update process.<br />

It is very important to notice that the traffic situati<strong>on</strong><br />

analysis is processed c<strong>on</strong>tinuously inside each car <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the<br />

currently available traffic informati<strong>on</strong> stored in the individual<br />

knowledge base. In a c<strong>on</strong>venti<strong>on</strong>al and centralized TIS the<br />

situati<strong>on</strong> analysis will be processed in the central unit but in<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g><br />

Knowledge<br />

Base<br />

Memory of of available<br />

traffic informati<strong>on</strong><br />

Road ID<br />

CAN Bus Interface<br />

Map<br />

Vehicle<br />

Speed<br />

B<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> Core<br />

FCD processing,<br />

data packet generati<strong>on</strong><br />

UDP<br />

Broadcast,<br />

Port X<br />

Air Interface<br />

(WLAN)<br />

User Interface<br />

Visualizati<strong>on</strong>,<br />

User Interacti<strong>on</strong><br />

C<br />

Satellite<br />

Nav.<br />

Geo.<br />

Positi<strong>on</strong><br />

Fig. 6: <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system implemented in each vehicle.<br />

B<br />

TABLE I: Parameters used in the traffic simulati<strong>on</strong>.<br />

Road segment length 500 m<br />

Number of lanes 2 per directi<strong>on</strong><br />

Decelerati<strong>on</strong> prob. 0.1<br />

C<strong>on</strong>stituti<strong>on</strong> of traffic 15 % slow, 85 %regular vehicles<br />

Desired velocity 108 (slow), 142 km/h (regular)<br />

Number of vehicles 1600, 1100, 850 (cars/h/lane)<br />

Average Velocity 110 km/h<br />

Radio range 1000 m<br />

Update rate 2 s<br />

<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g>, the situati<strong>on</strong> analysis is d<strong>on</strong>e in each car and in a<br />

decentralized way.<br />

The analysis results are included into the next broadcasted<br />

data packet. The broadcast update rate can be additi<strong>on</strong>ally<br />

adapted to the local c<strong>on</strong>diti<strong>on</strong>s to avoid overload situati<strong>on</strong>s<br />

in the radio channel [7], [6].<br />

IV. ROAD TRAFFIC SIMULATION<br />

In a first step of the simulati<strong>on</strong> the road traffic and movement<br />

of individual cars will be described by a mathematical<br />

model. In this respect the typical movement pattern in an<br />

inter-vehicle network is completely different in comparis<strong>on</strong><br />

with general wireless network simulati<strong>on</strong>s. Therefore, the ns-<br />

2 simulator has been extended by a movement model which is<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> a traffic simulati<strong>on</strong> tool using a cellular automat<strong>on</strong><br />

approach [4] and [5].<br />

The c<strong>on</strong>sidered street scenario which has been assumed in<br />

this paper simulates a regular highway situati<strong>on</strong> with two lanes<br />

per directi<strong>on</strong>.<br />

Table I lists the road and system parameters used for<br />

traffic simulati<strong>on</strong>. Arrival times are assumed to be Poiss<strong>on</strong><br />

distributed. Initial time gaps between two adjacent vehicles<br />

are therefore chosen from an exp<strong>on</strong>ential distributi<strong>on</strong>.<br />

V. SIMULATION RESULTS<br />

Figure 5a to Figure 5c illustrate the simulati<strong>on</strong> results. For<br />

three different traffic models with low, medium and high traffic<br />

density the resulting delay time, which is called informati<strong>on</strong><br />

delay, between a far away event and the c<strong>on</strong>sidered node<br />

is illustrated. If a traffic jam happens at 50 km distance,<br />

the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> network needs 6 minutes to report this event to<br />

the individual node in a high density traffic situati<strong>on</strong> and a<br />

penetrati<strong>on</strong> rate of 5 %.<br />

The resulting informati<strong>on</strong> delay is relatively low in high<br />

traffic density situati<strong>on</strong>s. But in case of a low traffic density,<br />

the informati<strong>on</strong> delays for a market penetrati<strong>on</strong> of 5 % and<br />

10 % increase significantly up to 20 or 10 minutes. In low<br />

density road situati<strong>on</strong>s the probability to find a communicati<strong>on</strong><br />

partner inside the radio range which can forward the data<br />

packet and traffic informati<strong>on</strong> is decreased.<br />

The performance results in these road scenarios dem<strong>on</strong>strate<br />

the potential of the <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> technology. The system is able to<br />

provide traffic informati<strong>on</strong> for the local area with reas<strong>on</strong>able<br />

delay even if a low <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> market penetrati<strong>on</strong> of 5 % is<br />

assumed.


Delay [minutes]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2%<br />

5%<br />

10%<br />

0<br />

0 10 20 30 40 50<br />

Distance ahead [km]<br />

(a) Low traffic density (850 cars/h/lane)<br />

Delay [minutes]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2%<br />

5%<br />

10%<br />

0<br />

0 10 20 30 40 50<br />

Distance ahead [km]<br />

(b) Medium traffic density (1100 cars/h/lane)<br />

Delay [minutes]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

2%<br />

5%<br />

10%<br />

0<br />

0 10 20 30 40 50<br />

Distance ahead [km]<br />

(c) High traffic density (1600 cars/h/lane)<br />

Fig. 5: Performance of the basic <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> system for a penetrati<strong>on</strong> of 2 %, 5 % and 10 % when the traffic density is varied.<br />

Until now, the c<strong>on</strong>sidered basic <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> implementati<strong>on</strong><br />

was assumed to be static: Broadcast messages were generated<br />

in time intervals with c<strong>on</strong>stant length and the radio<br />

range/transmissi<strong>on</strong> power of the vehicle was assumed to be<br />

fixed not least because of low market penetrati<strong>on</strong>s, where the<br />

impact of overload c<strong>on</strong>diti<strong>on</strong>s were neglected.<br />

With a very low percentage of <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> equipped vehicles<br />

inside the road traffic, the informati<strong>on</strong> about a traffic event in<br />

a road segment 50 km away from the current node locati<strong>on</strong><br />

is still very useful traffic informati<strong>on</strong> if it is received with a<br />

delay of less than 10 minutes. C<strong>on</strong>venti<strong>on</strong>al traffic informati<strong>on</strong><br />

systems have a delay time between 20 and 50 minutes.<br />

VI. CONCLUSION<br />

IVC technology can significantly increase driver and passenger<br />

safety and comfort. A critical requirement for the<br />

market introducti<strong>on</strong> of a <str<strong>on</strong>g>SOTIS</str<strong>on</strong>g> like system is the market<br />

penetrati<strong>on</strong>. The good news is that the traffic informati<strong>on</strong><br />

system offers significant benefits and relevant informati<strong>on</strong> even<br />

in a penetrati<strong>on</strong> rate of 5 % and outperforms c<strong>on</strong>venti<strong>on</strong>al<br />

traffic informati<strong>on</strong> systems <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> a centralized structure.<br />

The paper describes a <str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> (<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g>) for the distributi<strong>on</strong> of data packets with<br />

detailed, relevant and up-to-date travel and traffic informati<strong>on</strong><br />

for the local envir<strong>on</strong>ment of a vehicle. The informati<strong>on</strong> range<br />

can be much larger than 50 km.<br />

REFERENCES<br />

[1] L. Wischhof, A. Ebner, and H. Rohling. ”<str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> Disseminati<strong>on</strong> in<br />

<str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> Intervehicle Networks”. IEEE Transacti<strong>on</strong>s <strong>on</strong> Intelligent<br />

Transportati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g>s, Vol. 6, Num. 1, pp. 90-101, Mar. 2005.<br />

[2] L. Wischhof, A. Ebner, H. Rohling, M. Lott, and R. Halfmann. ”<str<strong>on</strong>g>SOTIS</str<strong>on</strong>g><br />

- A <str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> <str<strong>on</strong>g>Traffic</str<strong>on</strong>g> <str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g>”. In Proceedings of the<br />

57th IEEE Vehicular Technology C<strong>on</strong>ference (VTC 03 Spring), Jeju,<br />

South Korea, Apr. 2003.<br />

[3] L. Wischhof, A. Ebner, and H. Rohling. ”<str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Organizing</str<strong>on</strong>g> <str<strong>on</strong>g>Traffic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Informati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Car</strong>-to-<strong>Car</strong> Communicati<strong>on</strong>: Prototype<br />

Implementati<strong>on</strong>”. In Proceedings of the 1st Internati<strong>on</strong>al Workshop <strong>on</strong><br />

Intelligent Transportati<strong>on</strong> (WIT 2004), Hamburg, Germany, Mar. 2004.<br />

[4] K. Nagel and M. Schreckenberg, ”A cellular automat<strong>on</strong> model for<br />

freeway traffic”, J. Phys. I (France), vol. 1992, no. 2, pp. 2221-2229,<br />

1992.<br />

[5] K. Nagel, D.E. Wolf, P. Wagner, and P. Sim<strong>on</strong>, ”Two-lane traffic rules<br />

for cellular automata: A systematic approach”, Los Alamos Nat. Lab.,<br />

Los Alamos, NM, Tech. Rep. LA-UR 97-4706, 1997.<br />

[6] H. Busche, C. Khorakhun, and H. Rohling. ”C<strong>on</strong>gesti<strong>on</strong> C<strong>on</strong>trol in<br />

a <str<strong>on</strong>g>Self</str<strong>on</strong>g>-Organized <strong>Car</strong>-to-<strong>Car</strong> Radio Network”. In Proceedings of the<br />

6th Internati<strong>on</strong>al Workshop <strong>on</strong> Intelligent Transportati<strong>on</strong> (WIT 2009),<br />

Hamburg, Germany, Mar. 2009.<br />

[7] C. Khorakhun, H. Busche, and H. Rohling. ”C<strong>on</strong>gesti<strong>on</strong> C<strong>on</strong>trol for<br />

VANETs <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> Power or Rate Adaptati<strong>on</strong>”. In Proceedings of the<br />

5th Internati<strong>on</strong>al Workshop <strong>on</strong> Intelligent Transportati<strong>on</strong> (WIT 2008),<br />

Hamburg, Germany, Mar. 2008.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!