21.02.2013 Views

Zero Point Energy and the Charge-Radiation Equation

Zero Point Energy and the Charge-Radiation Equation

Zero Point Energy and the Charge-Radiation Equation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

<strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong>, <strong>and</strong> <strong>the</strong><br />

<strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong><br />

in Bohr’s Atom<br />

H. Vic Dannon<br />

vic0@comcast.net<br />

September, 2012<br />

Abstract Bohr’s postulate of Quantized Angular Momentum is<br />

equivalent to <strong>the</strong> assumption of <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> for <strong>the</strong><br />

Hydrogen Atom.<br />

The confirmation of Bohr’s Atom in spectroscopy, validates <strong>the</strong><br />

existence of <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> for <strong>the</strong> Hydrogen Atom<br />

For an electron that orbits a proton at <strong>the</strong> first Bohr orbit r , at<br />

frequency ν , <strong>the</strong> following are equivalent<br />

B<br />

1) The Angular Momentum is quantized, mv e Br B = � .<br />

2) The Fine-Structure constant Formula,<br />

3) The <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong>,<br />

4) Ground State <strong>Energy</strong> is <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong><br />

1<br />

α<br />

2<br />

e<br />

=<br />

4πε<br />

c�<br />

.<br />

2<br />

e<br />

4πε<br />

r<br />

0<br />

B<br />

0<br />

2<br />

−e<br />

8πε<br />

r<br />

B<br />

0<br />

= hν<br />

.<br />

B<br />

1<br />

2<br />

B<br />

=− hν<br />

,<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

ν = 6.576928348 × 10 cycles/second<br />

B<br />

The Electron’s Magnetic <strong>Energy</strong> in <strong>the</strong> Bohr Orbit is<br />

magnetic 0 B B 2 0 B r<br />

15<br />

1 2 2 1 2 2<br />

μ ν μ v e<br />

4 (4 π)<br />

B<br />

U = r e = 1<br />

It is negligible compared to its Electric <strong>Energy</strong>.<br />

For an electron in <strong>the</strong> n th Bohr orbit , at frequency , ν<br />

<strong>the</strong> following are equivalent<br />

rn n<br />

1) The Angular Momentum is quantized, mvr = n�.<br />

2) The <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong>,<br />

3) Orbit <strong>Energy</strong> is of n photons,<br />

hνn<br />

e nn<br />

2<br />

e<br />

4πε<br />

r<br />

0 n<br />

2<br />

−e<br />

8πε<br />

r<br />

= nhν<br />

.<br />

0 n<br />

n<br />

=− nhν<br />

.<br />

Keywords: <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong>, Bohr’s Atom, Quantized Angular<br />

Momentum, Fine Structure Constant, Electron, Photon, Proton,<br />

Binding Electric <strong>Energy</strong>, <strong>Radiation</strong> <strong>Energy</strong>, <strong>Charge</strong>-<strong>Radiation</strong><br />

<strong>Equation</strong><br />

2000 Physics <strong>and</strong> Astronomy Classification Scheme<br />

03.50.Kk, 03.65.-w.<br />

2<br />

1<br />

2<br />

�<br />

1<br />

n<br />

2<br />

hν<br />

n<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

Introduction<br />

In 1901, Planck showed that <strong>the</strong> radiation-energy density per unit<br />

volume at frequencies between ν , <strong>and</strong> ν + δν of an ideal radiator<br />

(black body) is<br />

8 2 h<br />

u(, T)<br />

3 h<br />

c e kT 1<br />

ν<br />

π ν<br />

ν = ν .<br />

−<br />

The assumption of discrete radiation energy, conflicted with<br />

Planck’s belief in radiation of continuous waves, <strong>and</strong> he kept<br />

searching for a more believable law<br />

To reconcile his quantum hypo<strong>the</strong>sis with his conception of wave<br />

radiation, he avoided <strong>the</strong> conclusion that radiation energy must be<br />

made of particles, <strong>and</strong> postulated that radiation is a transition<br />

between <strong>the</strong> energy levels of an oscillator. Fur<strong>the</strong>rmore, ignoring<br />

<strong>the</strong> symmetry between emission <strong>and</strong> absorption, he maintained<br />

that <strong>the</strong> absorption of radiation energy is continuous.<br />

Under <strong>the</strong>se assumptions, Planck derived in 1912 his second<br />

radiation law in which zero point energy in <strong>the</strong> amount of 1 hν is<br />

2<br />

added to<br />

h<br />

h<br />

e kT 1<br />

ν<br />

ν<br />

, of his 1901 radiation law.<br />

−<br />

In [Dan], we showed that Planck’s derivation of his 1912 radiation<br />

law only recovers <strong>the</strong> <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> that he unknowingly<br />

3


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

assumed in his model for that derivation.<br />

In particular, we showed that Planck’s ZPE radiation law is<br />

equivalent to <strong>the</strong> combined three assumptions of<br />

1) <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> Hypo<strong>the</strong>sis,<br />

2) <strong>the</strong> Quantum Law, <strong>and</strong><br />

3) <strong>the</strong> approximated Boson Statistics distribution law.<br />

Planck’s 1901 radiation law resolves <strong>the</strong> Black body radiation<br />

problem, <strong>and</strong> confirms <strong>the</strong> boson statistics distribution law.<br />

The Quantum law holds independently in <strong>the</strong> photoelectric effect,<br />

in Compton’s scattering, <strong>and</strong> in spectroscopy.<br />

But Planck’s <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> remains a hypo<strong>the</strong>sis. Thus, <strong>the</strong><br />

validity of Planck’s 1912 radiation law, <strong>and</strong> <strong>the</strong> existence of<br />

Planck’s <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> are doubtful.<br />

However, we will show here that Bohr’s postulate of Quantized<br />

Angular Momentum is equivalent to <strong>the</strong> assumption of <strong>Zero</strong> <strong>Point</strong><br />

<strong>Energy</strong> for <strong>the</strong> Hydrogen Atom.<br />

The confirmation of Bohr’s Atom in spectroscopy, validates <strong>the</strong><br />

existence of <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> for <strong>the</strong> Hydrogen Atom.<br />

0.1 Bohr’s Quantized Angular Momentum<br />

Consider an electron with mass m , <strong>and</strong> charge e , in <strong>the</strong> first<br />

Bohr orbit of radius r r , at frequency ν = ν , <strong>and</strong> speed<br />

1 = B<br />

1 B<br />

4<br />

e


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

v = v = ω r = 2πν<br />

rB<br />

,<br />

1<br />

B B B B<br />

encircling a proton with charge −e<br />

,<br />

An electron with charge e , orbiting at frequency ν , <strong>and</strong> speed<br />

v = αc = ωr = 2πν<br />

, a proton with charge e at distance . r<br />

1 1 1 1 r 1<br />

1<br />

− 1<br />

Bohr postulated that <strong>the</strong> angular momentum is quantized:<br />

For <strong>the</strong> electron’s first, Bohr’s orbit, n = 1,<br />

<strong>and</strong><br />

mvr<br />

= � = .<br />

h<br />

e 11 2π<br />

For <strong>the</strong> electron’s 2 nd orbit, n = 2 , <strong>and</strong><br />

mvr<br />

2 2 h = � = ,<br />

e 2 2 2π<br />

For <strong>the</strong> 3 rd electron orbit, n = 3,<br />

<strong>and</strong><br />

mvr<br />

3 3 h = � = ,<br />

e 3 3 2π<br />

………………………………………..<br />

5


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

Angular Momentum is <strong>the</strong> vector product<br />

� � � � �<br />

mv × r = m( ω × r ) × r ,<br />

<strong>and</strong> <strong>the</strong> quantization of that quantity cannot be visualized like <strong>the</strong><br />

quantization of a scalar quantity, such as energy.<br />

We aim to show that Quantized Angular Momentum is equivalent<br />

to <strong>the</strong> assumption of <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> for Bohr’s Atom.<br />

We’ll first show that Quantized Angular Momentum is equivalent<br />

to <strong>the</strong> Fine-Structure constant.<br />

0.2 The Fine-Structure Constant<br />

Sommerfeld suggested that<br />

α<br />

2<br />

e<br />

=<br />

4πε<br />

c�<br />

,<br />

determines <strong>the</strong> spacing between <strong>the</strong> fine structure of spectral<br />

lines.<br />

α , known as <strong>the</strong> Fine Structure Constant, is a pure number that<br />

is approximately 1<br />

137<br />

in any unit system.<br />

The fine-structure constant depends on fundamental constants,<br />

� e , <strong>the</strong> electron charge, which was thought to be <strong>the</strong> smallest<br />

electric charge,<br />

� c , light speed in <strong>the</strong> vacuum, which is thought to be <strong>the</strong><br />

greatest speed,<br />

6<br />

0


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

� h = 2π�<br />

, Planck Constant of radiation energy,<br />

ε = , <strong>the</strong> permittivity of <strong>the</strong> vacuum.<br />

1 � 0 2 μ0c<br />

Consequently, it was suspected to hide some truth of nature.<br />

Eddington, Pauli, <strong>and</strong> <strong>the</strong>ir contemporaries [Miller] searched for a<br />

meaning for <strong>the</strong> appearance of <strong>the</strong>se fundamental constant in one<br />

formula.<br />

We show that <strong>the</strong> Formula for <strong>the</strong> Fine Structure Constant can be<br />

written in a form that equates <strong>the</strong> electron-proton binding electric<br />

energy to <strong>the</strong> radiation energy of a photon.<br />

We call that equivalent form <strong>the</strong> <strong>Charge</strong>-<strong>Radiation</strong> equation.<br />

0.3 The <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong><br />

The binding electric energy<br />

e<br />

2<br />

4πε0rB of <strong>the</strong> electron in <strong>the</strong> first<br />

Bohr orbit with frequency ν , equals <strong>the</strong> radiation energy<br />

rB B<br />

hνB B<br />

of a photon of frequency ν .<br />

The binding electric energy of <strong>the</strong> Hydrogen Atom in <strong>the</strong> ground<br />

state is precisely <strong>the</strong> radiation energy of a photon with frequency<br />

that equals <strong>the</strong> frequency of <strong>the</strong> electron motion.<br />

The <strong>Charge</strong>-<strong>Radiation</strong> equation is equivalent to <strong>the</strong> equality of<br />

<strong>the</strong> electron’s energy in <strong>the</strong> ground state to 1 hν of <strong>Zero</strong> <strong>Point</strong><br />

7<br />

2<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

radiation <strong>Energy</strong>.<br />

0.4 The <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> of Bohr’s Atom<br />

The <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> of Bohr’s Atom is <strong>the</strong> Ground state energy.<br />

Its value, 1 hν is <strong>the</strong> lowest energy of <strong>the</strong> Bohr Atom.<br />

2<br />

B<br />

The loss of that <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong>, would mean <strong>the</strong> destruction of<br />

<strong>the</strong> Atom.<br />

Therefore, at absolute zero temperature, when all <strong>the</strong>rmal<br />

motions cease, <strong>the</strong> atom still retains that amount of energy.<br />

The existence of <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> has been always difficult to<br />

confirm in experiments. But <strong>the</strong> confirmation of Bohr’s<br />

quantization of Angular Momentum in spectroscopy, validates<br />

<strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong> in <strong>the</strong> amount of 1 hν , for <strong>the</strong> Bohr Atom.<br />

8<br />

2<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

1.<br />

Quantized Angular Momentum<br />

<strong>and</strong> <strong>the</strong> Fine Structure Constant<br />

1.1<br />

Proof:<br />

mv r<br />

B B<br />

e<br />

= � ⇔ α =<br />

4πε<br />

c�<br />

Ignoring <strong>the</strong> magnetic Field of <strong>the</strong> proton on <strong>the</strong> electron’s charge,<br />

<strong>the</strong> centripetal repulsion is balanced by <strong>the</strong> electric attraction<br />

2<br />

v 2<br />

B 1 e<br />

e<br />

4 2<br />

B πε0<br />

B<br />

m = .<br />

r r<br />

1<br />

mv r v = e<br />

������� 4πε<br />

e B B<br />

�<br />

B<br />

v<br />

B<br />

0<br />

2<br />

0<br />

1 e<br />

=<br />

4πε<br />

� ,<br />

v 2<br />

B 1 e<br />

=<br />

�c<br />

4πε<br />

� c<br />

.<br />

α<br />

9<br />

0<br />

2<br />

,<br />

2<br />

0


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

2.<br />

The Fine-Structure Constant <strong>and</strong><br />

<strong>the</strong> <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong><br />

2.1<br />

Proof:<br />

Hence,<br />

Therefore,<br />

2 2<br />

e e<br />

α = ⇔ = hν<br />

4πε c�4πε r<br />

0 0<br />

α<br />

B<br />

2<br />

0<br />

B<br />

e<br />

=<br />

4πε<br />

c�<br />

,<br />

2<br />

e<br />

� =<br />

4πε<br />

αc<br />

=<br />

e<br />

0<br />

2<br />

4πε0vB 2<br />

e<br />

= .<br />

4πε0ωBrB 2<br />

e<br />

� ωB<br />

= .<br />

4πε<br />

r<br />

10<br />

0<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

3.<br />

The <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong><br />

<strong>and</strong> <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong><br />

3.1<br />

2 2<br />

1 2 2 −<br />

1<br />

= hνB ⇔ U1 st Orbit = mω 2 BrB + = −<br />

2<br />

0r ���������<br />

B 0rB<br />

U �������<br />

e e<br />

4πε 4πε<br />

Proof:<br />

Ignoring <strong>the</strong> magnetic forces,<br />

rotation<br />

U electric<br />

�����������������<br />

2<br />

−e<br />

8πε<br />

r<br />

2<br />

v 2<br />

B 1 e<br />

e<br />

4 2<br />

B πε0<br />

B<br />

0 B<br />

m = ,<br />

r r<br />

1m 2 e<br />

2<br />

v<br />

ω<br />

= 1<br />

2<br />

�B 2 2<br />

BrB 0<br />

hν<br />

2<br />

1 e<br />

,<br />

4πε<br />

r<br />

������� B<br />

The electron’s energy at <strong>the</strong> ground orbit is <strong>the</strong> sum of <strong>the</strong><br />

electron’s kinetic energy of rotation,<br />

1 2 2 1 2<br />

rotation ω<br />

2 B B 2 B<br />

U = m r = mv ,<br />

<strong>and</strong> <strong>the</strong> electron’s binding electric energy<br />

11<br />

B<br />

hν<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

0<br />

U<br />

electric<br />

2<br />

−e<br />

= ,<br />

4πε0rB 2<br />

1 2 2 −e mω 2 BrB+ ������� 4πε 2 0rB 1 e<br />

2<br />

−e<br />

=<br />

8πε0rB<br />

1 = − hν<br />

2 B<br />

4πε<br />

r<br />

B<br />

In <strong>the</strong> Bohr orbit, <strong>the</strong> electron’s energy is of photon with energy<br />

− hν .<br />

1<br />

2<br />

That is, <strong>the</strong> Ground state <strong>Energy</strong> of <strong>the</strong> Bohr Atom is <strong>Zero</strong> <strong>Point</strong><br />

<strong>Energy</strong> of 1 hν .<br />

2<br />

B<br />

3.2 Bohr’s Atom <strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong><br />

3.3<br />

1 1 e<br />

EB =− hν<br />

13.6eV<br />

2 B =− =−<br />

8πε<br />

r<br />

13.6eV<br />

15<br />

ν B = 2 = 6.576928348 × 10 cycles/second<br />

h<br />

Computation: h = 4.1356692 × 10 eV , [Woan].<br />

B<br />

−15<br />

12<br />

0<br />

2<br />

B<br />

.


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

4.<br />

The Electron’s magnetic <strong>Energy</strong><br />

4.1 Electron’s Total Quantized <strong>Energy</strong><br />

Bohr’s quantization of <strong>the</strong> Angular Momentum ignores <strong>the</strong><br />

electron’s Orbital Magnetic <strong>Energy</strong>, <strong>and</strong> <strong>the</strong> electron’s Spin<br />

Magnetic <strong>Energy</strong>.<br />

Including orbital magnetic forces, in <strong>the</strong> force balance, <strong>the</strong><br />

electron’s total quantized energy in <strong>the</strong> Bohr orbit is<br />

2<br />

e<br />

− + Umagnetic = hνB.<br />

8πε<br />

r<br />

4.2 The Electron’s Magnetic <strong>Energy</strong><br />

0<br />

B<br />

1 2 2<br />

magnetic = μ<br />

4 0 Be νB<br />

U r<br />

1<br />

=<br />

(4 π)<br />

2<br />

μ<br />

1<br />

2 2<br />

0vBe<br />

rB<br />

Proof: The current due to <strong>the</strong> electron’s charge e that turns<br />

cycles/second is<br />

I = eνB<br />

The Magnetic <strong>Energy</strong> of this current is [Benson, p.486]<br />

1<br />

2<br />

2<br />

LI .<br />

13<br />

νB


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

By [Fischer, p.97]<br />

2 πrB<br />

1<br />

0 2 0 B<br />

2πrB<br />

L = μ = μ r .<br />

Thus, <strong>the</strong> magnetic energy due to <strong>the</strong> electron charge is<br />

11 2 1 2 2<br />

μ<br />

22 0rB( eνB) = μ<br />

4 0rBe<br />

νB<br />

=<br />

1<br />

4<br />

2 2<br />

μ0erB ν<br />

�B<br />

1<br />

ω<br />

2<br />

4π<br />

2<br />

B<br />

1 2 2 1<br />

= μ<br />

2 0vBe<br />

.<br />

(4 π)<br />

r<br />

4.3 The Electron’s Magnetic <strong>Energy</strong> in <strong>the</strong> Bohr’s Orbit is<br />

Proof:<br />

negligible compared to its Electric <strong>Energy</strong><br />

1 1<br />

U r v<br />

2 2 μ0v<br />

2 Be<br />

2<br />

magnetic (4 π)<br />

B 1 B 1 2 1<br />

−6<br />

= = = α ≈ ≈ 8.5 × 10<br />

2 2 2 2 (137)<br />

electric 1<br />

2π 2π<br />

π<br />

U e c<br />

8πε<br />

0<br />

r<br />

B<br />

14<br />

B


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

5.<br />

The n th Orbit <strong>Charge</strong>-<strong>Radiation</strong><br />

In <strong>the</strong> n th orbit,<br />

<strong>the</strong> Angular momentum is mvr = n�,<br />

The orbit energy is<br />

5.1 The Electron’s <strong>Energy</strong><br />

Proof:<br />

5.2<br />

Proof:<br />

5.3<br />

E<br />

n<br />

e nn<br />

1<br />

=−<br />

8πε<br />

2 2<br />

1 2 2 −e −e<br />

1 2 2<br />

m<br />

2 eωnrnm 2 eωnrn<br />

4πε0rn 8πε0rn<br />

0 n<br />

α<br />

+ = = − = − � 1 c<br />

2 r<br />

r v<br />

+ = = = − = −<br />

1 2 2<br />

meω 2 nn r<br />

�������<br />

2 e<br />

2<br />

−e 4πε0rn 2<br />

−e 8πε0rn 2<br />

−e<br />

B<br />

8πε0rB<br />

r<br />

������� n<br />

1 B �<br />

2 rn<br />

4πε<br />

r<br />

− �ωB<br />

v<br />

2 2 ( e nn) n<br />

= = �<br />

n<br />

vB<br />

α<br />

= = c<br />

n n<br />

m ω r r αcα vnc mvr n� n<br />

=<br />

e n n<br />

2<br />

n = B<br />

r n r<br />

15<br />

1<br />

2<br />

0<br />

e<br />

r<br />

2<br />

n<br />

n<br />

1<br />

2<br />

�αc<br />

r<br />

n


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

Proof:<br />

n� n�<br />

�<br />

r n<br />

2 2<br />

n = = = = n r<br />

1<br />

B<br />

mv e n m mv<br />

e v<br />

n B<br />

e B<br />

5.4 ν = 1 ν 3<br />

Proof:<br />

n n B<br />

v<br />

ν = ω = = = ω = ν B<br />

1<br />

1 1 vn<br />

1 n B 1 1 1<br />

n 2π n 2π 2 2 3 2 B<br />

r π π<br />

3<br />

n nrB n n<br />

5.5 The Orbit <strong>Energy</strong><br />

Proof:<br />

E<br />

n<br />

1 1 1<br />

En = E ( )<br />

2 B = − hν<br />

2 2 B<br />

n n<br />

2 2<br />

1 e 1 e rB<br />

=− =−<br />

8πε0 rn 8πε0<br />

rB<br />

r<br />

������� �n<br />

1<br />

2<br />

hν<br />

5.6 The <strong>Charge</strong>-<strong>Radiation</strong> <strong>Equation</strong><br />

The binding electric energy<br />

B<br />

1<br />

n<br />

2<br />

e<br />

2<br />

4πε 0rn<br />

of <strong>the</strong> electron-proton<br />

Atom, where <strong>the</strong> electron is in <strong>the</strong> n th Bohr orbit r with<br />

frequency , equals <strong>the</strong> radiation energy nhν of n photons<br />

of frequency ν .<br />

νn n<br />

n<br />

16<br />

n


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

Proof:<br />

1<br />

4πε<br />

0<br />

1<br />

4πε<br />

0<br />

e<br />

r<br />

e �v<br />

r<br />

r r nr<br />

2<br />

n<br />

= nhν<br />

2<br />

n<br />

= B<br />

n<br />

= � ω<br />

�B 3<br />

n ω<br />

B<br />

2<br />

B<br />

= nhνn<br />

n<br />

17<br />

n


Gauge Institute Journal Volume 8, No.4, November 2012 H. Vic Dannon<br />

References<br />

[Benson], Benson Walter, Harris John, Stocker Horst, Lutz Holger,<br />

“H<strong>and</strong>book of Physics”, Springer, 2002.<br />

[Born] Max Born, “The Mechanics of <strong>the</strong> Atom”, Ungar Publishing, 1924<br />

[Dan] H. Vic Dannon, “<strong>Zero</strong> <strong>Point</strong> <strong>Energy</strong>: Planck <strong>Radiation</strong> Law” Gauge<br />

Institute Journal, Vol.1 No 3, August 2005,<br />

[Fischer] Fischer-Cripps, A., C., “The Physics Companion”, IoP, 2003.<br />

[Miller] Arthur I. Miller, “Deciphering <strong>the</strong> Cosmic Number” Norton, 2009<br />

[Polyanin] Andrei D. Polyanin, Alexi I. Chernoutsan, “A Concise H<strong>and</strong>book of<br />

Ma<strong>the</strong>matics, Physics, <strong>and</strong> Engineering Sciences” CRC, 2011.<br />

[Woan] Graham Woan, “The Cambridge H<strong>and</strong>book of Physics Formulas”,<br />

Cambridge 2000.<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!