21.02.2013 Views

Gas Disks and Supermassive Black Holes in Nearby Radio Galaxies

Gas Disks and Supermassive Black Holes in Nearby Radio Galaxies

Gas Disks and Supermassive Black Holes in Nearby Radio Galaxies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gas</strong> <strong>Disks</strong> <strong>and</strong> <strong>Supermassive</strong> <strong>Black</strong> <strong>Holes</strong> <strong>in</strong> <strong>Nearby</strong> <strong>Radio</strong> <strong>Galaxies</strong><br />

Jacob Noel-Storr<br />

Advisors Jacquel<strong>in</strong>e H. van Gorkom<br />

<strong>and</strong> Stefi A. Baum<br />

Submitted <strong>in</strong> partial fulfillment of the<br />

requirements for the degree<br />

of Doctor of Philosophy<br />

<strong>in</strong> the Graduate School of Arts <strong>and</strong> Sciences.<br />

COLUMBIA UNIVERSITY<br />

2004


c○2004<br />

Jacob Noel-Storr<br />

All Rights Reserved


Abstract<br />

<strong>Gas</strong> <strong>Disks</strong> <strong>and</strong> <strong>Supermassive</strong> <strong>Black</strong> <strong>Holes</strong> <strong>in</strong> <strong>Nearby</strong> <strong>Radio</strong> <strong>Galaxies</strong><br />

Jacob Noel-Storr<br />

We present a detailed analysis of a set of medium resolution spectra, obta<strong>in</strong>ed by<br />

the Space Telescope Imag<strong>in</strong>g Spectrograph on board the Hubble Space Telescope, of<br />

the emission l<strong>in</strong>e gas present <strong>in</strong> the nuclei of a complete sample of 21 nearby, early-type<br />

galaxies with radio jets (the UGC FR-I sample). For each galaxy nucleus we present<br />

spectroscopic data <strong>in</strong> the region of Hydrogen-alpha <strong>and</strong> the derived k<strong>in</strong>ematics.<br />

We f<strong>in</strong>d that is 67% of the nuclei the gas appears to be rotat<strong>in</strong>g <strong>and</strong>, with one<br />

exception, the cases where rotation is not seen are either face on or have complex<br />

central morphologies. We f<strong>in</strong>d that <strong>in</strong> 62% of the nuclei the fit to the central spectrum<br />

is improved by the <strong>in</strong>clusion of a broad component. The broad components have a<br />

mean velocity dispersion of 1349 ± 345 km s −1 <strong>and</strong> are redshifted from the narrow<br />

l<strong>in</strong>e components (assum<strong>in</strong>g an orig<strong>in</strong> <strong>in</strong> Hydrogen-alpha) by 486 ± 443 km s −1 .<br />

We generated model velocity profiles for the nuclei <strong>in</strong>clud<strong>in</strong>g no black hole, a<br />

1 × 10 8 solar mass black hole <strong>and</strong> a 9 × 10 8 solar mass black hole. We compared the


predicted profiles to the observed velocity profiles from the above spectra <strong>and</strong> found<br />

k<strong>in</strong>ematic signatures compatible with black holes > 1 × 10 8 solar masses <strong>in</strong> 53% of<br />

the sample (<strong>in</strong> the rema<strong>in</strong><strong>in</strong>g galaxies we are unable to rule <strong>in</strong> or out the presence of<br />

a nuclear black hole). We suspect that flow is a significant factor <strong>in</strong> the nucleus of<br />

NGC 2329. We found h<strong>in</strong>ts of jet-disk <strong>in</strong>teraction <strong>in</strong> 24% of the sample nuclei <strong>and</strong><br />

signs of twists or warps <strong>in</strong> 19% of the sample nuclei. 24% of the velocity profiles show<br />

signs of multiple dist<strong>in</strong>ct k<strong>in</strong>ematic components. We suggest that the gas disks <strong>in</strong><br />

nearby radio galaxies are generally not well settled systems <strong>in</strong> the equitorial plane of<br />

the gravitational potentials.<br />

We characterize the k<strong>in</strong>ematic state of the nuclear gas through three weighted<br />

mean parameters, <strong>and</strong> f<strong>in</strong>d that aga<strong>in</strong> the disks appear not to be well settled. We<br />

show evidence of a connection between the stellar <strong>and</strong> gas velocity dispersions. We<br />

show correlations <strong>in</strong> the nuclear fluxes from the <strong>Radio</strong> to the X-ray regimes, suggest<strong>in</strong>g<br />

a common orig<strong>in</strong> (e.g. accretion disks or jet bases) for the nuclear fluxes. We f<strong>in</strong>d<br />

agreement with the work of others that the nuclear flux <strong>and</strong> black hole masses are not<br />

correlated, though the width of the broad components, described above may correlate<br />

with the nuclear flux.


Contents<br />

1 Introduction 1<br />

1.1 <strong>Radio</strong> galaxies 3<br />

1.2 Nuclear dust <strong>and</strong> gas 6<br />

1.3 Connections to supermassive black holes 10<br />

1.4 This dissertation 14<br />

2 The UGC FR-I Sample 26<br />

2.1 Sample selection <strong>and</strong> properties 26<br />

2.2 Multiwavelength observations 28<br />

2.2.1 <strong>Radio</strong> properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2.2.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2.3 Stellar Dynamics 30<br />

3 STIS spectroscopy of the emission l<strong>in</strong>e gas <strong>in</strong> the nuclei<br />

i


of nearby FR-I galaxies 57<br />

3.1 Introduction 57<br />

3.2 STIS Observations 58<br />

3.2.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.3 Analysis 62<br />

3.3.1 S<strong>in</strong>gle Gaussian l<strong>in</strong>e fitt<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.3.2 Fits with an additional free component . . . . . . . . . . . . . . . . . 65<br />

3.3.3 Quantify<strong>in</strong>g error sources . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3.4 Individual galaxy descriptions 69<br />

3.5 Interpretation <strong>and</strong> Discussion 79<br />

3.5.1 Rotators <strong>and</strong> non-rotators . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.5.2 Flux ratios <strong>and</strong> ionization . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

3.5.3 Are we observ<strong>in</strong>g broad l<strong>in</strong>es? . . . . . . . . . . . . . . . . . . . . . . 83<br />

3.5.4 Constra<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e shapes . . . . . . . . . . . . . . . . . . . . . . . 85<br />

3.6 Conclusions 87<br />

4 Model<strong>in</strong>g gas <strong>in</strong> gravitational potentials 147<br />

4.1 Introduction 147<br />

4.2 Th<strong>in</strong> disk models with <strong>and</strong> without a black hole 149<br />

4.2.1 WFPC2 imag<strong>in</strong>g: stars <strong>and</strong> dust . . . . . . . . . . . . . . . . . . . . . 150<br />

4.2.2 Flux distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151<br />

ii


4.2.3 Stellar lum<strong>in</strong>osity densities <strong>and</strong> mass distributions . . . . . . . . . . . 152<br />

4.2.4 Dynamical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

4.2.5 Locat<strong>in</strong>g the zero po<strong>in</strong>t velocities . . . . . . . . . . . . . . . . . . . . 157<br />

4.2.6 Sensitivity to parameters . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

4.3 Descriptions of <strong>in</strong>dividual galaxies 161<br />

4.4 Discussion 172<br />

4.4.1 Description of the central k<strong>in</strong>ematics . . . . . . . . . . . . . . . . . . 172<br />

4.4.2 Settl<strong>in</strong>g of the gas <strong>in</strong>to a th<strong>in</strong> disk . . . . . . . . . . . . . . . . . . . . 174<br />

4.4.3 Drivers of unsettled motion . . . . . . . . . . . . . . . . . . . . . . . 176<br />

4.5 Conclusions 179<br />

5 Nuclear gas k<strong>in</strong>ematics <strong>and</strong> central eng<strong>in</strong>es 234<br />

5.1 Introduction 234<br />

5.2 Global k<strong>in</strong>ematic parameterizations 236<br />

5.2.1 Effects of <strong>in</strong>cl<strong>in</strong>ation . . . . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

5.2.2 Correlations between k<strong>in</strong>ematic parameters . . . . . . . . . . . . . . . 242<br />

5.2.3 Relationships to the stellar k<strong>in</strong>ematics . . . . . . . . . . . . . . . . . 244<br />

5.3 The central eng<strong>in</strong>es 246<br />

5.3.1 Are the Broad L<strong>in</strong>es physical? . . . . . . . . . . . . . . . . . . . . . . 247<br />

5.3.2 Correlation of nuclear fluxes . . . . . . . . . . . . . . . . . . . . . . . 249<br />

5.3.3 Correlations between host galaxy <strong>and</strong> central eng<strong>in</strong>e . . . . . . . . . . 250<br />

5.4 Conclusions 252<br />

iii


6 Conclusions 272<br />

6.1 Summary 272<br />

6.2 Future directions 276<br />

References 284<br />

iv


List of Tables<br />

1.1 Properties of various classes of Active Galactic Nuclei. . . . . . . . . 16<br />

1.2 Reliable black hole mass measurements. . . . . . . . . . . . . . . . . . 17<br />

2.1 Properties of the galaxy sample members. . . . . . . . . . . . . . . . 32<br />

2.2 Multiwavelength Fluxes of the UGC FR-I Sample <strong>Galaxies</strong>. . . . . . . 33<br />

2.3 Stellar velocity dispersions <strong>and</strong> estimated black hole masses. . . . . . 34<br />

3.1 HST-STIS G750M observ<strong>in</strong>g log for this program. . . . . . . . . . . . 89<br />

3.2 HST/STIS Instrumental properties for the configurations used. . . . 90<br />

3.3 Position angles of various axes. . . . . . . . . . . . . . . . . . . . . . 91<br />

3.4 Spectral L<strong>in</strong>es <strong>in</strong> the region of Hα. . . . . . . . . . . . . . . . . . . . 92<br />

3.5 NGC 193: Measured Parameters. . . . . . . . . . . . . . . . . . . . . 93<br />

3.6 NGC 315: Measured Parameters. . . . . . . . . . . . . . . . . . . . . 94<br />

3.7 NGC 383: Measured Parameters. . . . . . . . . . . . . . . . . . . . . 95<br />

3.8 NGC 541: Measured Parameters. . . . . . . . . . . . . . . . . . . . . 96<br />

3.9 NGC 741: Measured Parameters. . . . . . . . . . . . . . . . . . . . . 97<br />

3.10 UGC 01841: Measured Parameters. . . . . . . . . . . . . . . . . . . 98<br />

3.11 NGC 2329: Measured Parameters. . . . . . . . . . . . . . . . . . . . 99<br />

3.12 NGC 2892: Measured Parameters. . . . . . . . . . . . . . . . . . . . 100<br />

3.13 NGC 3801: Measured Parameters. . . . . . . . . . . . . . . . . . . . 101<br />

v


3.14 NGC 3862: Measured Parameters. . . . . . . . . . . . . . . . . . . . 102<br />

3.15 UGC 7115: Measured Parameters. . . . . . . . . . . . . . . . . . . . 103<br />

3.16 NGC 4261: Measured Parameters. . . . . . . . . . . . . . . . . . . . 104<br />

3.17 NGC 4335: Measured Parameters. . . . . . . . . . . . . . . . . . . . 105<br />

3.18 M84 : Measured Parameters. . . . . . . . . . . . . . . . . . . . . . . 106<br />

3.19 NGC 4486: Measured Parameters. . . . . . . . . . . . . . . . . . . . 107<br />

3.20 NGC 5127: Measured Parameters. . . . . . . . . . . . . . . . . . . . 108<br />

3.21 NGC 5141: Measured Parameters. . . . . . . . . . . . . . . . . . . . 109<br />

3.22 NGC 5490: Measured Parameters. . . . . . . . . . . . . . . . . . . . 110<br />

3.23 NGC 7052: Measured Parameters. . . . . . . . . . . . . . . . . . . . 111<br />

3.24 UGC 12064: Measured Parameters. . . . . . . . . . . . . . . . . . . 112<br />

3.25 NGC 7626: Measured Parameters. . . . . . . . . . . . . . . . . . . . 113<br />

3.26 Effect of mak<strong>in</strong>g various fit parameters free. . . . . . . . . . . . . . . 114<br />

3.27 Presence of a Nuclear Broad L<strong>in</strong>e. . . . . . . . . . . . . . . . . . . . . 115<br />

3.28 Fits to the central pixel for each galaxy, <strong>in</strong>clud<strong>in</strong>g broad l<strong>in</strong>es. K<strong>in</strong>ematics.<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

3.29 Fits to the central pixel for each galaxy, <strong>in</strong>clud<strong>in</strong>g broad l<strong>in</strong>es. Fluxes. 117<br />

3.30 K<strong>in</strong>ematic estimators with<strong>in</strong> 100 pc of the nucleus. . . . . . . . . . . 118<br />

3.31 Comparison of broad l<strong>in</strong>e statistics . . . . . . . . . . . . . . . . . . . 119<br />

3.32 K<strong>in</strong>ematic parameters measured us<strong>in</strong>g various free-parameter sets. . 120<br />

4.1 Disk <strong>in</strong>cl<strong>in</strong>ations <strong>and</strong> dust masses. . . . . . . . . . . . . . . . . . . . 182<br />

4.2 STIS PSF Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 183<br />

4.3 Lum<strong>in</strong>osity density fit parameters. . . . . . . . . . . . . . . . . . . . 184<br />

4.4 Mass to light ratio (Υ) estimates for sample galaxies. . . . . . . . . . 185<br />

4.5 Best fitt<strong>in</strong>g velocity offsets. . . . . . . . . . . . . . . . . . . . . . . . 186<br />

4.6 <strong>Black</strong> hole signatures <strong>in</strong> the central k<strong>in</strong>ematics. . . . . . . . . . . . . 187<br />

vi


5.1 Weighted mean k<strong>in</strong>ematic parameters. . . . . . . . . . . . . . . . . . 255<br />

5.2 Correlation of X-ray flux with other nuclear flux parameters. . . . . 256<br />

5.3 Correlations between k<strong>in</strong>ematic parameters <strong>and</strong> nuclear fluxes. . . . . 257<br />

vii


List of Figures<br />

1.1 A cartoon radio galaxy. . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

1.2 An example of an FR-I <strong>and</strong> an FR-II radio galaxy . . . . . . . . . . . 19<br />

1.3 The Unified Scheme for Active Galactic Nuclei. . . . . . . . . . . . . 20<br />

1.4 Non uniform dust disks <strong>in</strong> NGC 383. . . . . . . . . . . . . . . . . . . 21<br />

1.5 The segregation of AGNs based on the circumnuclear gas disk. . . . . 22<br />

1.6 Feed<strong>in</strong>g the central eng<strong>in</strong>e. . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

1.7 Velocity cusp <strong>in</strong> the nucleus of M87. . . . . . . . . . . . . . . . . . . . 24<br />

1.8 The M• − σc relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.1 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 193. . . . . . 35<br />

2.2 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 315. . . . . . 36<br />

2.3 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 383. . . . . . 37<br />

2.4 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 541. . . . . . 38<br />

2.5 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 741. . . . . . 39<br />

2.6 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 1841. . . . . . 40<br />

2.7 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 2329. . . . . . 41<br />

2.8 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 2892. . . . . . 42<br />

2.9 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 3801. . . . . . 43<br />

2.10 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 3862. . . . . . 44<br />

2.11 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 7115. . . . . . 45<br />

viii


2.12 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4261. . . . . . 46<br />

2.13 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4335. . . . . . 47<br />

2.14 Optical cont<strong>in</strong>uum image of the nuclear region of M84. . . . . . . . . 48<br />

2.15 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4486. . . . . . 49<br />

2.16 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5127. . . . . . 50<br />

2.17 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5141. . . . . . 51<br />

2.18 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5490. . . . . . 52<br />

2.19 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 7052. . . . . . 53<br />

2.20 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 12064. . . . . 54<br />

2.21 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 7626. . . . . . 55<br />

2.22 The M• − σc relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

3.1 Key to observation <strong>and</strong> fit data plots. . . . . . . . . . . . . . . . . . . 121<br />

3.2 Observation <strong>and</strong> fit data for NGC 193 . . . . . . . . . . . . . . . . . 122<br />

3.3 Observation <strong>and</strong> fit data for NGC 315 . . . . . . . . . . . . . . . . . 123<br />

3.4 Observation <strong>and</strong> fit data for NGC 383 . . . . . . . . . . . . . . . . . 124<br />

3.5 Observation <strong>and</strong> fit data for NGC 541 . . . . . . . . . . . . . . . . . 125<br />

3.6 Observation <strong>and</strong> fit data for NGC 741 . . . . . . . . . . . . . . . . . 126<br />

3.7 Observation <strong>and</strong> fit data for UGC 1841 . . . . . . . . . . . . . . . . . 127<br />

3.8 Observation <strong>and</strong> fit data for NGC 2329 . . . . . . . . . . . . . . . . . 128<br />

3.9 Observation <strong>and</strong> fit data for NGC 2892 . . . . . . . . . . . . . . . . . 129<br />

3.10 Observation <strong>and</strong> fit data for NGC 3801 . . . . . . . . . . . . . . . . . 130<br />

3.11 Observation <strong>and</strong> fit data for NGC 3862 . . . . . . . . . . . . . . . . . 131<br />

3.12 Observation <strong>and</strong> fit data for UGC 7115 . . . . . . . . . . . . . . . . . 132<br />

3.13 Observation <strong>and</strong> fit data for NGC 4261 . . . . . . . . . . . . . . . . . 133<br />

3.14 Observation <strong>and</strong> fit data for NGC 4335 . . . . . . . . . . . . . . . . . 134<br />

ix


3.15 Observation <strong>and</strong> fit data for NGC 4374 . . . . . . . . . . . . . . . . . 135<br />

3.16 Observation <strong>and</strong> fit data for NGC 4486 . . . . . . . . . . . . . . . . . 136<br />

3.17 Observation <strong>and</strong> fit data for NGC 5127 . . . . . . . . . . . . . . . . . 137<br />

3.18 Observation <strong>and</strong> fit data for NGC 5141 . . . . . . . . . . . . . . . . . 138<br />

3.19 Observation <strong>and</strong> fit data for NGC 5490 . . . . . . . . . . . . . . . . . 139<br />

3.20 Observation <strong>and</strong> fit data for NGC 7052 . . . . . . . . . . . . . . . . . 140<br />

3.21 Observation <strong>and</strong> fit data for UGC 12064 . . . . . . . . . . . . . . . . 141<br />

3.22 Observation <strong>and</strong> fit data for NGC 7626 . . . . . . . . . . . . . . . . . 142<br />

3.23 Difference <strong>in</strong> mean velocity with<strong>in</strong> 100 pc of each side of the nucleus . 143<br />

3.24 Difference <strong>in</strong> mean velocity with<strong>in</strong> 100 pc of each side of the nucleus . 144<br />

3.25 Mean gas velocity dispersion with<strong>in</strong> 100 pc of the nucleus . . . . . . . 145<br />

3.26 [N II] aga<strong>in</strong>st Hα fluxes for the UGC FR-I sample members . . . . . . 146<br />

4.1 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 193. . . . 188<br />

4.2 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 315. . . . 189<br />

4.3 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 383. . . . 190<br />

4.4 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 541. . . . 191<br />

4.5 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 741. . . . 192<br />

4.6 Data-Model residuals with vary<strong>in</strong>g velocity offsets for UGC 1841. . . 193<br />

4.7 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 2329. . . 194<br />

4.8 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 2892. . . 195<br />

4.9 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 3862. . . 196<br />

4.10 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 4335. . . 197<br />

4.11 Data-Model residuals with vary<strong>in</strong>g velocity offsets for M84. . . . . . . 198<br />

4.12 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 4486. . . 199<br />

4.13 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 5127. . . 200<br />

x


4.14 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 5141. . . 201<br />

4.15 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 5490. . . 202<br />

4.16 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 7052. . . 203<br />

4.17 Data-Model residuals with vary<strong>in</strong>g velocity offsets for UGC 12064. . . 204<br />

4.18 Data-Model residuals with vary<strong>in</strong>g velocity offsets for NGC 7626. . . 205<br />

4.19 Effect of chang<strong>in</strong>g the STIS PSF. . . . . . . . . . . . . . . . . . . . . 206<br />

4.20 Central observations of M87. . . . . . . . . . . . . . . . . . . . . . . . 207<br />

4.21 Vary<strong>in</strong>g Υ, q ′ <strong>and</strong> i <strong>in</strong> models of NGC 193. . . . . . . . . . . . . . . . 208<br />

4.22 Vary<strong>in</strong>g Υ, q ′ <strong>and</strong> i <strong>in</strong> models of NGC 4335. . . . . . . . . . . . . . . 209<br />

4.23 Observed <strong>and</strong> modeled velocity profiles for NGC 193. . . . . . . . . . 210<br />

4.24 Observed <strong>and</strong> modeled velocity profiles for NGC 315. . . . . . . . . . 211<br />

4.25 Observed <strong>and</strong> modeled velocity profiles for NGC 383. . . . . . . . . . 212<br />

4.26 Observed <strong>and</strong> modeled velocity profiles for NGC 541. . . . . . . . . . 213<br />

4.27 Observed <strong>and</strong> modeled velocity profiles for NGC 741. . . . . . . . . . 214<br />

4.28 Observed <strong>and</strong> modeled velocity profiles for UGC 1841. . . . . . . . . 215<br />

4.29 Observed <strong>and</strong> modeled velocity profiles for NGC 2329. . . . . . . . . 216<br />

4.30 Observed <strong>and</strong> modeled velocity profiles for NGC 2892. . . . . . . . . 217<br />

4.31 Observed <strong>and</strong> modeled velocity profiles for NGC 3862. . . . . . . . . 218<br />

4.32 Observed <strong>and</strong> modeled velocity profiles for NGC 4261. . . . . . . . . 219<br />

4.33 Observed <strong>and</strong> modeled velocity profiles for NGC 4335. . . . . . . . . 220<br />

4.34 Observed <strong>and</strong> modeled velocity profiles for M84. . . . . . . . . . . . . 221<br />

4.35 Observed <strong>and</strong> modeled velocity profiles for NGC 4486. . . . . . . . . 222<br />

4.36 Observed <strong>and</strong> modeled velocity profiles for NGC 5127. . . . . . . . . 223<br />

4.37 Observed <strong>and</strong> modeled velocity profiles for NGC 5141. . . . . . . . . 224<br />

4.38 Observed <strong>and</strong> modeled velocity profiles for NGC 5490. . . . . . . . . 225<br />

4.39 Observed <strong>and</strong> modeled velocity profiles for NGC 7052. . . . . . . . . 226<br />

xi


4.40 Observed <strong>and</strong> modeled velocity profiles for UGC 12064. . . . . . . . . 227<br />

4.41 Observed <strong>and</strong> modeled velocity profiles for NGC 7626. . . . . . . . . 228<br />

4.42 NGC 4335, observations with jet locations <strong>in</strong>dicated. . . . . . . . . . 229<br />

4.43 NGC 7626, observations with jet locations <strong>in</strong>dicated. . . . . . . . . . 230<br />

4.44 NGC 193, observations with jet locations <strong>in</strong>dicated. . . . . . . . . . . 231<br />

4.45 UGC 12064, observations with jet locations <strong>in</strong>dicated. . . . . . . . . . 232<br />

4.46 The M• − σc relation with UGC FR-I black hole limits <strong>in</strong>dicated. . . 233<br />

5.1 Difference <strong>in</strong> weighted mean velocity with<strong>in</strong> 100 pc on each side of the<br />

nucleus <strong>in</strong> the central slit as a function of dust axis ratio. . . . . . . . 258<br />

5.2 Weighted mean gas velocity dispersion along the central slit of each<br />

galaxy as a function of dust axis ratio. . . . . . . . . . . . . . . . . . 259<br />

5.3 Weighted mean po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> gas velocity along the central<br />

slit as a function of dust disk axis ratio. . . . . . . . . . . . . . . 260<br />

5.4 σ100 2 /∆ 2 100<br />

as a function of dust axis ratio. . . . . . . . . . . . . . . . 261<br />

5.5 σ100 as a function of ∆100 for the sample nuclei. . . . . . . . . . . . . 262<br />

5.6 ɛ100 as a function of ∆100 for the sample nuclei. . . . . . . . . . . . . 263<br />

5.7 ɛ100 as a function of σ100 for the sample nuclei. . . . . . . . . . . . . . 264<br />

5.8 ∆100 for each nucleus as a function of the central stellar velocity dispersion<br />

(σc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265<br />

5.9 σ100 for each nucleus as a function of the central stellar velocity dispersion<br />

(σc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266<br />

5.10 ɛ100 for each nucleus as a function of the central stellar velocity dispersion<br />

(σc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267<br />

5.11 σ100 2 /∆2 100 for each nucleus as a function of the central stellar velocity<br />

dispersion (σc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

5.12 Correlations between nuclear fluxes. . . . . . . . . . . . . . . . . . . . 269<br />

5.13 Nuclear SEDs for 5 of the UGC FR-I sample galaxies. . . . . . . . . . 270<br />

5.14 Model SEDs for M87. . . . . . . . . . . . . . . . . . . . . . . . . . . . 271<br />

xii


Acknowledgments<br />

First I would like, of course, to thank my parents, Jenny <strong>and</strong> Peter, <strong>and</strong> my entire<br />

family. I must also thank my scientific collaborators, without whom this thesis would<br />

not have been even remotely possible: Gijs Verdoes Kleijn, Stefi Baum, Jacquel<strong>in</strong>e<br />

van Gorkom, Chris O’Dea, Roel<strong>and</strong> van der Marel, Tim de Zeeuw, <strong>and</strong> Marcella<br />

Carollo. I also thank many wonderful astronomers for discussions on these topics -<br />

<strong>in</strong> particular Aaron Barth <strong>and</strong> Dave Axon, <strong>and</strong> also Johann Knapen, Luis Ho <strong>and</strong><br />

Thaisa Storchi-Bergmann for organiz<strong>in</strong>g fantastic conferences that have taken me<br />

from start to f<strong>in</strong>ish of this thesis.<br />

Everyone that I have known <strong>in</strong> the astronomy department, you have been fantastic.<br />

In particular thanks to Aeree Chung <strong>and</strong> Stephen Muchovej, your friendship is very<br />

important to me... <strong>and</strong> we will always have Rio! I also want to give particular thanks<br />

to Millie Kramer-Garcia for be<strong>in</strong>g possibly the most outst<strong>and</strong><strong>in</strong>g, amaz<strong>in</strong>g, awesome<br />

department adm<strong>in</strong>istrator <strong>in</strong> the history of the entire universe. Probably without you<br />

none of us graduate students would make it past one week of grad school.<br />

Mark Wa<strong>in</strong>er, Simon Stam, Daniel Baker <strong>and</strong> Alex Vitti – thank you guys so<br />

much for always keep<strong>in</strong>g me go<strong>in</strong>g, <strong>and</strong> for keep<strong>in</strong>g me smil<strong>in</strong>g. Your friendship has<br />

been outst<strong>and</strong><strong>in</strong>g, <strong>and</strong> I will value it forever.<br />

I want to thank fantastic friends that I have had through the years – Ethan<br />

Hurdus, Neil Corbett, Jon Doyle, Stuart Laverack, Eileen Bra<strong>in</strong>, Jackie Bletcher,<br />

Jonathan Bletcher, Adam Pogash, Daniel Pogash, Carrie Johnston, Lucy Edge, Abi<br />

Bralee, Tzu-Ch<strong>in</strong>g Chang, Andy Jacobowitz, Karen Vanl<strong>and</strong><strong>in</strong>gham, Ben Clissold,<br />

Solomon Meltser, G<strong>in</strong>a Brissenden, <strong>and</strong> John Drury – Just for be<strong>in</strong>g amaz<strong>in</strong>g people.<br />

Gareth Repton, Jon Soyt, Matt Schoen, Steven Turner, Adam Simon, Daniel<br />

Bryer, Eric Lun<strong>in</strong>, Ariel Stukal<strong>in</strong>, Cliff Shapiro, Seth Kahn, Scott Menke, Ben Silverman,<br />

James Dawson, Isaac Gerste<strong>in</strong>, Peter Plant, Freddie Claro, Stephen Conlon,<br />

Brian Bol<strong>in</strong>, Alex Chval, Andrew Prouty, T.J. Wagner, Jake Sk<strong>in</strong>ner, Michael<br />

Seiler, Billie Swift, Heather Groch, Dan Balick, Tim Mendenko, Jeff W<strong>in</strong>cek, Charles<br />

Stanton-Jones, Eilat Glikman, Suvi Gezari, Andreea Petric, Jen Donovan, Mark Dijkstra,<br />

Sarah Tuttle, Ben Johnson, <strong>and</strong> Antara Basu-Zych – You guys rule! (James<br />

Dawson, you have been the man through the last few weeks of gett<strong>in</strong>g this dissertation<br />

written - Thanks dude).<br />

Everyone else I didn’t have space to write about – Thank you all too!!<br />

Thank you.<br />

xiii


To:<br />

Lofty<br />

Jenny, Peter<br />

Everyone who has ever set foot at Camp Watonka <strong>and</strong> made it feel like home year<br />

after year, <strong>and</strong> especially all of my campers.<br />

<strong>and</strong> Spencer <strong>and</strong> Ceci... In 21 years I expect to be read<strong>in</strong>g your PhD theses!<br />

xiv


Chapter 1<br />

Introduction<br />

The relationship between quiescent <strong>and</strong> active early type galaxies bears on our un-<br />

derst<strong>and</strong><strong>in</strong>g of black holes <strong>and</strong> their role <strong>in</strong> the active nuclei of galaxies, <strong>and</strong> on the<br />

evolution of galactic nuclei along with their host galaxies. <strong>Nearby</strong> early-type galaxies<br />

with radio jets provide an opportunity to ga<strong>in</strong> an underst<strong>and</strong><strong>in</strong>g of the conditions <strong>in</strong><br />

a galaxy which lead to the formation of a radio-active nucleus <strong>and</strong> of the physics of<br />

the regions which harbor the black hole <strong>and</strong> jet-formation regimes.<br />

In this dissertation, we present a detailed analysis of the k<strong>in</strong>ematics of the emission<br />

l<strong>in</strong>e gas <strong>in</strong> the nuclei of a complete sample of nearby, radio galaxies. This forms a<br />

part of a larger, coord<strong>in</strong>ated, multi-wavelength study of the same sample, which is<br />

described <strong>in</strong> the next chapter.<br />

1


The study of radio galaxies addresses some important astrophysical questions that<br />

perta<strong>in</strong> to the nature of active galaxies <strong>in</strong> general:<br />

• How does fuel get <strong>in</strong>to the central eng<strong>in</strong>e? How do active <strong>and</strong> <strong>in</strong>active galaxies<br />

differ <strong>in</strong> terms of fuel <strong>and</strong> fuel<strong>in</strong>g?<br />

• What connections exist between host galaxies, central eng<strong>in</strong>es <strong>and</strong> central su-<br />

permassive black holes?<br />

• How do radio galaxies fit <strong>in</strong>to ‘unified schemes’ that describe various types of<br />

active galaxy?<br />

In this chapter we will first <strong>in</strong>troduce the reader to radio galaxies, which are strong<br />

radio sources associated with lum<strong>in</strong>ous elliptical galaxies, next our discussion moves<br />

<strong>in</strong>wards to focus on the gas <strong>and</strong> dust that has been found <strong>in</strong> many of radio galaxy<br />

nuclei. We <strong>in</strong>crease magnification still further as we go on to talk about the search<br />

for supermassive black holes <strong>and</strong> the connections they have to the galaxy as a whole,<br />

particularly relationships between the black hole masses (M•) <strong>and</strong> the large scale<br />

stellar k<strong>in</strong>ematics. We close by outl<strong>in</strong><strong>in</strong>g the contents of this dissertation.<br />

2


1.1 <strong>Radio</strong> galaxies<br />

A radio galaxy can produce a jet-lobe, radio wavelength emitt<strong>in</strong>g, structure on mega-<br />

parsec scales, emerg<strong>in</strong>g from a central eng<strong>in</strong>e that resides <strong>in</strong> an active region no more<br />

than a few milli-parsecs <strong>in</strong> size. The radio emission is well understood to be from<br />

synchrotron radiation, but the processes <strong>in</strong>volved <strong>in</strong> fuel<strong>in</strong>g <strong>and</strong> collimat<strong>in</strong>g the ra-<br />

dio jets are yet to be expla<strong>in</strong>ed (Lynden-Bell, 2001). The energy that powers the<br />

radio jets is typically believed to be produced dur<strong>in</strong>g the accretion of material onto<br />

a central supermassive black hole (e.g., Lynden-Bell, 1969). The formation of such<br />

well organized large scale jet structures is some of the most compell<strong>in</strong>g evidence for<br />

the necessity of supermassive black holes as an <strong>in</strong>gredient <strong>in</strong> the makeup of a radio<br />

galaxy (Rees, 1984).<br />

<strong>Radio</strong> emission can be detected even from relatively quiescent galaxies, such<br />

as the Milky Way, on the level of around 10 37 erg s −1 . Active galaxies (such as<br />

Seyferts or starburst galaxies) radiate at around 10 37 erg s −1 , <strong>and</strong> radio galaxies (<strong>and</strong><br />

also quasars) extend this energy output range to beyond 10 45 erg s −1 (∼ 10 12 L⊙)<br />

(Burke & Graham-Smith, 1997). An active galaxy central eng<strong>in</strong>e capable of releas-<br />

<strong>in</strong>g ∼ 0.1Mfuelc 2 of <strong>in</strong>fall<strong>in</strong>g fuel as radiation would need to be fueled at a rate of<br />

∼> 1 M⊙ yr −1 to ma<strong>in</strong>ta<strong>in</strong> this lum<strong>in</strong>osity.<br />

3


The ‘cartoon view’ of a typical radio galaxy structure conta<strong>in</strong>s a bright core from<br />

which emanate two jets of radio emitt<strong>in</strong>g material which term<strong>in</strong>ate <strong>in</strong> two large radio<br />

lobes. (Figure 1.1 shows such a cartoon view). Two classes of radio galaxy were<br />

def<strong>in</strong>ed by Fanaroff & Riley (1974) based on the morphology of the radio emission.<br />

Fanaroff-Riley Class I galaxies (FR-Is) are brightest at the <strong>in</strong>ner jets, with emission<br />

that becomes gradually fa<strong>in</strong>ter out <strong>in</strong>to the radio lobes, while <strong>in</strong> the more powerful<br />

FR-II galaxies, hot spots at the outer edges of the radio lobes dom<strong>in</strong>ate the emission.<br />

Owen & Ledlow (1997) present observations of many radio galaxies, illustrat<strong>in</strong>g of<br />

course that there are many <strong>in</strong>adequacies <strong>in</strong> such a simplified viewpo<strong>in</strong>t; <strong>in</strong> Figure 1.2<br />

we present examples of a typical FR-I <strong>and</strong> FR-II galaxy from their sample.<br />

<strong>Radio</strong> galaxies belong to the class of galaxies that have Active Galactic Nuclei<br />

(AGN) which are characterized by large energy outputs from very small regions <strong>in</strong><br />

their cores. Commonly, the ‘Unified Scheme’ (Urry & Padovani, 1995) is used to<br />

expla<strong>in</strong> different properties of the different types of AGN <strong>and</strong> the connections between<br />

them, pr<strong>in</strong>cipally by observ<strong>in</strong>g the model from vary<strong>in</strong>g orientations. A representation<br />

of an AGN accord<strong>in</strong>g to the unified scheme is shown <strong>in</strong> Figure 1.3. Various types of<br />

AGN <strong>and</strong> their properties are listed <strong>in</strong> Table 1.1. The type of AGN <strong>and</strong> host galaxy<br />

are also l<strong>in</strong>ked, radio galaxies be<strong>in</strong>g almost exclusively found <strong>in</strong> early-type (elliptical<br />

or S0) galaxies.<br />

4


This thesis focuses on a sample of nearby radio galaxies (see Chapter 2). The<br />

sample is complete out to redshifts of 7000 km s −1 (100 Mpc) <strong>in</strong> the northern hemi-<br />

sphere, <strong>and</strong> conta<strong>in</strong>s only FR-I galaxies, as no FR-IIs are found <strong>in</strong> this volume (there<br />

is only one FR-II with<strong>in</strong> 7000 km s −1 , Centaurus A, which is <strong>in</strong> the southern sky at a<br />

decl<strong>in</strong>ation of ∼ −43 ◦ ). <strong>Radio</strong> galaxies <strong>and</strong> BL-Lacs provide a high energy contrast to<br />

Seyfert galaxies <strong>and</strong> LINERs (Low Ionization Narrow l<strong>in</strong>e Emission Region galaxies),<br />

<strong>and</strong> may be close cous<strong>in</strong>s of the Quasars observed at higher redshifts.<br />

Both FR-I <strong>and</strong> FR-II galaxies have jets that are well collimated on all scales,<br />

though FR-Is tend to be more prone to hav<strong>in</strong>g twisted <strong>and</strong> ‘blobby’ jets while FR-IIs<br />

tend to have straighter more uniform jets (see Bridle, 1984). The accepted paradigm<br />

is that the jets start out at relativistic velocities <strong>in</strong> both FR-Is <strong>and</strong> FR-IIs, but that<br />

<strong>in</strong> FR-Is the jets then decelerate on scales less than ∼ 1 kpc. (Bridle & Perley,<br />

1984, provide a review of the phenomenology of extragalactic jets). The most elegant<br />

demonstration that flow may actually takes place along the jets is presented by Biretta<br />

et al. (1999), who while monitor<strong>in</strong>g the jet of M87 over four years were able to trace<br />

the motion of blobs of emission, provid<strong>in</strong>g compell<strong>in</strong>g evidence that some type of flow<br />

does occur along the jets.<br />

Baum et al. (1995) describe various differences <strong>in</strong> the populations of FR-I <strong>and</strong> FR-<br />

5


II galaxies. They note that at the same host galaxy magnitude or radio lum<strong>in</strong>osity<br />

FR-IIs can produce <strong>and</strong> order of magnitude more optical l<strong>in</strong>e emission than FR-Is.<br />

This led them to conclude that FR-IIs were predom<strong>in</strong>antly ionized by cont<strong>in</strong>uum<br />

sources <strong>in</strong> the AGN, while <strong>in</strong> FR-Is the host galaxy may also play an important<br />

role <strong>in</strong> the ionization of the emission l<strong>in</strong>e gas. Follow<strong>in</strong>g earlier work by Rees et al.<br />

(1982), Baum et al. (1995) also propose that FR-I galaxies may be produced when<br />

the central eng<strong>in</strong>e is fed at a lower accretion rate <strong>and</strong> FR-IIs are produced when the<br />

fuel is be<strong>in</strong>g accreted more quickly. Underst<strong>and</strong><strong>in</strong>g the fuel<strong>in</strong>g of the central eng<strong>in</strong>es<br />

of nearby radio galaxies, or at least better underst<strong>and</strong><strong>in</strong>g the k<strong>in</strong>ematic nature of the<br />

fuel sources, may lead to greater underst<strong>and</strong><strong>in</strong>g of the physical mechanisms driv<strong>in</strong>g<br />

this dichotomy.<br />

1.2 Nuclear dust <strong>and</strong> gas<br />

Though when observed on the sky elliptical galaxies can appear smooth <strong>and</strong> largely<br />

featureless, the Hubble Space Telescope (HST) was able to resolve dust <strong>and</strong> gas fea-<br />

tures present <strong>in</strong> their central regions (Jaffe et al., 1993; Ford et al., 1994). Central<br />

emission l<strong>in</strong>e dust <strong>and</strong> gas disks are detected <strong>in</strong> about 20% of all giant ellipticals,<br />

<strong>and</strong> virtually all nearby radio galaxies that harbor kiloparsec scale radio jets (e.g.<br />

van Dokkum & Franx, 1995; Verdoes Kleijn et al., 1999; Capetti et al., 2000; de Koff<br />

6


et al., 2000; Tomita et al., 2000; Tran et al., 2001; La<strong>in</strong>e et al., 2003). This dust <strong>and</strong><br />

gas presumably provides a bulk of the fuel for the central eng<strong>in</strong>e.<br />

The k<strong>in</strong>ematics of the disk are not well understood, <strong>and</strong> important questions<br />

rema<strong>in</strong> regard<strong>in</strong>g the importance of non-circular motions (such as turbulence, <strong>in</strong>flow,<br />

outflow, w<strong>in</strong>ds, etc...). It is also of <strong>in</strong>terest whether these disks are short lived or<br />

long lived, <strong>and</strong> whether they are provid<strong>in</strong>g fuel to the central eng<strong>in</strong>e or play<strong>in</strong>g a<br />

role <strong>in</strong> the collimation of the jets. <strong>Disks</strong> have been identified that are non-uniform <strong>in</strong><br />

cont<strong>in</strong>uum light <strong>and</strong> are surrounded by arcs, filaments, <strong>and</strong> diffuse absorb<strong>in</strong>g clumps,<br />

suggest<strong>in</strong>g that the dust (<strong>and</strong> by association the gas) <strong>in</strong> the cores of these galaxies is<br />

not dynamically settled (for example, Martel et al., 2000, ; Figure 1.4).<br />

Assum<strong>in</strong>g that this gas <strong>and</strong> dust <strong>in</strong>deed provides the primary fuel source of the<br />

central eng<strong>in</strong>e, a long st<strong>and</strong><strong>in</strong>g problem is the ‘fuel<strong>in</strong>g problem’ – that is how to<br />

remove the large angular momentum of the gas <strong>in</strong> a disk <strong>and</strong> get it <strong>in</strong>to the central<br />

eng<strong>in</strong>e. This problem is described <strong>in</strong> a well known cartoon by Ph<strong>in</strong>ney (1994) of a<br />

baby be<strong>in</strong>g fed by a huge (angular momentum) spoon <strong>in</strong>to its t<strong>in</strong>y mouth (Figure 1.6).<br />

Also, typical f<strong>in</strong>d<strong>in</strong>gs are that 60% of quiescent early-type galaxies have detections<br />

of emission l<strong>in</strong>e gas (e.g. Philips et al., 1986; Goudfrooij et al., 1994) <strong>and</strong> about 40%<br />

have nuclear dust (e.g. van Dokkum & Franx, 1995; Tran et al., 2001). Despite the<br />

7


apparent presence of fuel, these galaxies fail to produce radio jets or any significant<br />

nuclear activity.<br />

Unified schemes (see above) suggest that the ionized gas disk not <strong>in</strong>tersect the<br />

photo-ionization cone of the central eng<strong>in</strong>e, which would require that the disks be<br />

shock ionized (Doptia et al., 1997). An <strong>in</strong>vestigation of the ionization structure of the<br />

disk, <strong>and</strong> any variations, can therefore reveal properties important to underst<strong>and</strong><strong>in</strong>g<br />

<strong>and</strong> confirm<strong>in</strong>g the position of FR-I galaxies <strong>in</strong> such schemes. The nature of the gas<br />

disks is differentiated between the different types of AGN with key parameters be<strong>in</strong>g<br />

the gas mass, the black hole mass <strong>and</strong> the star formation rate. Different AGN can be<br />

plotted as a function of these parameters as represented <strong>in</strong> Figure 1.5. <strong>Radio</strong> <strong>Galaxies</strong><br />

have large black hole masses, low star formation rates <strong>and</strong> relatively low gas masses<br />

so would fall <strong>in</strong>to the same region of this plot as occupied by the quasars (QSOs).<br />

Different fuel<strong>in</strong>g mechanism may operate to br<strong>in</strong>g the fuel <strong>in</strong>to the center depend<strong>in</strong>g<br />

on these parameters (see Wada, 2004, for a recent review).<br />

Asymmetries <strong>in</strong> galaxy potentials can <strong>in</strong>duce dynamical resonances that perturb<br />

the gas dynamics <strong>in</strong> the central regions. Hydrodynamical simulations (e.g., Ma-<br />

ciejewski, 2004) show that these resonances, <strong>and</strong> the result<strong>in</strong>g perturbations <strong>in</strong> the<br />

gas motions, can be governed primarily by the central black hole <strong>and</strong> on scales much<br />

8


larger than the generally expected sphere of <strong>in</strong>fluence (see Equation 1.1 below). These<br />

results may imply that the central black hole is able to have k<strong>in</strong>ematic <strong>in</strong>fluences far<br />

<strong>in</strong>to the gas disk, <strong>and</strong> may even be able to regulate flow (<strong>and</strong> hence the fuel<strong>in</strong>g of the<br />

central eng<strong>in</strong>e) though these mechanisms.<br />

The nuclear gas <strong>and</strong> dust may be perturbed by sources unrelated to the gravita-<br />

tional potential of the galaxy, for example <strong>in</strong>teractions with jets, starburst activity<br />

<strong>and</strong> galactic mergers, each of which could have considerable consequences for the<br />

k<strong>in</strong>ematics of the gas, <strong>and</strong> the organization of structures <strong>in</strong> the central regions of<br />

these galaxies.<br />

Solórzano-Iñarrea et al. (2001) suggest that the emission l<strong>in</strong>e gas may be affected<br />

by jet <strong>in</strong>duced shocks even <strong>in</strong> sources where the radio emission structures are much<br />

larger <strong>in</strong> extent than the regions of emission l<strong>in</strong>e gas (as is the case for the radio<br />

galaxies described <strong>in</strong> this thesis). It would take a certa<strong>in</strong> amount of misalignment<br />

between jet <strong>and</strong> disk for such <strong>in</strong>teractions to be possible, <strong>and</strong> such large misalignments<br />

between disks <strong>and</strong> jets may be observed <strong>in</strong> some radio galaxies (Schmitt et al., 2002;<br />

Verdoes Kleijn & de Zeeuw, 2004).<br />

Starbursts <strong>and</strong> AGN go h<strong>and</strong> <strong>in</strong> h<strong>and</strong> <strong>in</strong> many galactic nuclei (Beckman, 2001)<br />

<strong>and</strong> episodes of star burst activity could <strong>in</strong>duce shocks <strong>in</strong>to the gas disks, hav<strong>in</strong>g a<br />

9


pronounced effect of the observed k<strong>in</strong>ematics. The gas <strong>in</strong> the emission l<strong>in</strong>e disk is<br />

an obvious source of fuel for any starburst activity that may have taken place, which<br />

would have had dramatic consequences for the disk k<strong>in</strong>ematics the remnants of which<br />

may not be fast to dissipate. Galactic mergers <strong>in</strong> the evolutionary history of the radio<br />

galaxy would also have disrupted the gas: both by the addition of new gas <strong>in</strong>to the<br />

disk <strong>and</strong> by tidal disruption of the gas by the merg<strong>in</strong>g galaxy.<br />

1.3 Connections to supermassive black holes<br />

Current evidence suggests that all galaxies may have a central supermassive black<br />

hole <strong>and</strong> that the mass of this black hole is a strong function of the mass <strong>and</strong> lumi-<br />

nosity of the mass spheroid <strong>in</strong> which it presently resides (for example, Kormendy &<br />

Richstone, 1995), <strong>and</strong> an even stronger function of the central stellar velocity disper-<br />

sion (Ferrarese & Merritt, 2000; Gebhardt et al., 2000a; Merritt & Ferrarese, 2001;<br />

Trema<strong>in</strong>e et al., 2002). It is not clear what drives these relationships or whether they<br />

are the same for active <strong>and</strong> quiescent galaxies. S<strong>in</strong>ce black hole growth <strong>and</strong> nuclear<br />

activity are causally related, scatter <strong>in</strong> these relationships can, <strong>in</strong> pr<strong>in</strong>ciple, put limits<br />

on the frequency <strong>and</strong> duration of nuclear activity <strong>in</strong> galaxies.<br />

Four pr<strong>in</strong>ciple methods exist for the direct measurement of black hole masses. The<br />

10


most reliable is, of course, by the measurement of the proper motions <strong>and</strong> accelerations<br />

of the stars <strong>in</strong> the closest orbits to the black hole. This has now been achieved <strong>in</strong><br />

the nucleus of our own galaxy (Ghez et al., 1998; Melia & Falcke, 2001; Reid et al.,<br />

2003; Ghez et al., 2003), though this will be the only case where we can make these<br />

measurements. K<strong>in</strong>ematics of water masers <strong>in</strong> the <strong>in</strong>ner nuclei also provide what<br />

appear to be very robust measurements of the black hole mass (Greenhill & Gw<strong>in</strong>n,<br />

1997; Herrnste<strong>in</strong> et al., 1999), though cases with suitable maser organization <strong>and</strong><br />

orientation prove hard to f<strong>in</strong>d. For larger samples, one must use dynamical model<strong>in</strong>g<br />

either of the stars or of the gas <strong>in</strong> the nuclear region of the galaxy.<br />

A black hole of mass M• dom<strong>in</strong>ates the gravitational potential <strong>in</strong>side an angular<br />

‘radius of <strong>in</strong>fluence’ given by<br />

θ• ∼ 0. ′′ 1<br />

� M•<br />

10 6 M⊙<br />

� � �<br />

−1 2 �1Mpc �<br />

100km s<br />

σ<br />

D<br />

11<br />

(1.1)<br />

Where θ• is the angular size projected on the sky of the radius of <strong>in</strong>fluence of<br />

the black hole, σ is a typical velocity dispersion of stars <strong>in</strong> the galaxy <strong>and</strong> D is the<br />

distance to the galaxy <strong>in</strong> Mpc. For typical nearby galaxies, this radius of <strong>in</strong>fluence<br />

will be less than an arcsecond, so that the Hubble Space Telescope is required to make<br />

the necessary observations.<br />

The mass of the black hole may be sought by model<strong>in</strong>g the observed l<strong>in</strong>e of sight


velocity distribution of the stars <strong>in</strong> a galaxy by superimpos<strong>in</strong>g collections of stellar<br />

orbits <strong>and</strong> a range of different black hole masses to determ<strong>in</strong>e the best fitt<strong>in</strong>g model<br />

velocity profile, us<strong>in</strong>g χ 2 m<strong>in</strong>imization techniques. The most reliable models must<br />

<strong>in</strong>clude the Energy, Angular Momentum <strong>and</strong> Third-Integral of motion, <strong>and</strong> are there-<br />

fore known as ‘three-<strong>in</strong>tegral’ models. While mass estimates obta<strong>in</strong>ed through these<br />

means are often taken to be the most reliable, Valluri et al. (2004) rem<strong>in</strong>d us that we<br />

do not know if orbits that physically exist <strong>in</strong> a galaxy are be<strong>in</strong>g selected to generate<br />

the models, <strong>and</strong> that the errors <strong>in</strong> the fitt<strong>in</strong>g procedure are not normally distributed,<br />

but more represent a range of equally acceptable values.<br />

F<strong>in</strong>ally, <strong>in</strong> what seems the most straightforward method at the outset, the mass<br />

of a central black hole can be measured through the <strong>in</strong>duced cusp <strong>in</strong> the rotation<br />

velocities of gas <strong>in</strong> the nucleus of the galaxy (see Figure 1.7). State of the art models<br />

do not account for dissipative effects or non-circular, coplanar motions <strong>and</strong> these<br />

deviations from the circular th<strong>in</strong> disk model have important consequences for the<br />

determ<strong>in</strong>ation of black hole masses. Underst<strong>and</strong><strong>in</strong>g these motions <strong>in</strong> the nuclei of<br />

galaxies will allow further progress to be made <strong>in</strong> this field.<br />

With the advent of HST, <strong>and</strong> the arrival of the necessary angular resolution to<br />

probe scales of <strong>in</strong>terest to black hole hunters, early emission l<strong>in</strong>e spectra of a few<br />

12


galaxies were obta<strong>in</strong>ed with the Fa<strong>in</strong>t Object Spectrograph (FOS). FOS was a s<strong>in</strong>gle<br />

aperture spectrograph <strong>and</strong> therefore rather <strong>in</strong>efficient for mapp<strong>in</strong>g velocity fields,<br />

however early results were encourag<strong>in</strong>g <strong>and</strong> showed that the k<strong>in</strong>ematic signatures of<br />

black holes could <strong>in</strong>deed be detected <strong>in</strong> the nuclei of some galaxies (Harms et al.,<br />

1994; Ferrarese et al., 1996; van der Marel & van den Bosch, 1998; Ferrarese & Ford,<br />

1999). The Space Telescope Imag<strong>in</strong>g Spectrograph (STIS, see Brown et al., 2002) was<br />

<strong>in</strong>stalled on board HST <strong>in</strong> 1997 mak<strong>in</strong>g it possible to obta<strong>in</strong> long slit spectra of the gas<br />

disks <strong>in</strong> galactic nuclei, <strong>and</strong> map out the velocity fields with much greater efficiency,<br />

spatial coverage <strong>and</strong> resolution. Though the velocity fields may now be mapped much<br />

more precisely, we will see later <strong>in</strong> this thesis that the observed velocity fields are not<br />

those of uniform, circular disks, but rather pose more of a challenge to <strong>in</strong>terpret.<br />

We show the most reliable black hole determ<strong>in</strong>ations to date, as assessed by<br />

Trema<strong>in</strong>e et al. (2002), <strong>in</strong> Table 1.2. The means of determ<strong>in</strong>ation of each M• (by<br />

those methods described briefly above) are also <strong>in</strong>dicated. These data are plotted<br />

<strong>in</strong> Figure 1.8 aga<strong>in</strong>st the stellar velocity dispersion <strong>in</strong> the <strong>in</strong>ner parts of each galaxy<br />

(σc) show<strong>in</strong>g the conspicuous correlation between these two parameters that was first<br />

noted by Ferrarese & Merritt (2000) <strong>and</strong> Gebhardt et al. (2000a).<br />

The scales on which σc are measured are much larger than the nuclear regions<br />

13


where the black hole dom<strong>in</strong>ates the potential, so the relationship implies a connection<br />

between the formation <strong>and</strong> evolution of galaxies <strong>and</strong> the black holes they harbor.<br />

Models describ<strong>in</strong>g this l<strong>in</strong>ked co-evolution, grow<strong>in</strong>g the systems that we observe today<br />

from ‘seed’ black holes <strong>and</strong> small bulges, are beg<strong>in</strong>n<strong>in</strong>g to provide some theoretical<br />

frameworks to expla<strong>in</strong> the observed correlations (Silk & Rees, 1998; Ostriker, 2000;<br />

Haehnelt & Kauffmann, 2000; Adams et al., 2001). This type of co-evolution scenario<br />

may also <strong>in</strong>dicate that other connections between the central eng<strong>in</strong>e <strong>and</strong> large scale<br />

host galaxy may exist.<br />

1.4 This dissertation<br />

In this dissertation we present <strong>in</strong>vestigations <strong>in</strong>to a complete sample of nearby radio<br />

galaxies, based primarily on spectroscopic observations obta<strong>in</strong>ed from the Hubble<br />

Space Telescope. We set out to work towards answer<strong>in</strong>g the follow<strong>in</strong>g questions:<br />

• What is the nature of the spectra observed from the emission l<strong>in</strong>e gas <strong>in</strong> the<br />

nuclei of nearby radio galaxies?<br />

• What can be said about the masses of the black holes <strong>in</strong> these radio galaxies<br />

based on the gas k<strong>in</strong>ematics?<br />

• How is the gas organized <strong>in</strong> the central regions?<br />

14


• What connections can be found between the central eng<strong>in</strong>es <strong>and</strong> that gas?<br />

Underst<strong>and</strong><strong>in</strong>g these matters <strong>in</strong> nearby galaxies, where we are able to probe on<br />

scales that may be mean<strong>in</strong>gful <strong>in</strong> terms of the physical processes that take place, may<br />

allow us <strong>in</strong> future to ga<strong>in</strong> <strong>in</strong>sights <strong>in</strong>to how AGN relate to each other, <strong>and</strong> how we<br />

might make more mean<strong>in</strong>gful <strong>in</strong>terpretations of data we receive from more distant<br />

sources where we do not have the resolution to probe the nuclei <strong>in</strong> such detail.<br />

In Chapter 2, we will describe the selection of our sample of 21, nearby, radio-loud<br />

elliptical galaxies, <strong>and</strong> summarize some previous observational work on the sample. In<br />

Chapter 3, we describe the Hubble Space Telescope (HST) spectroscopic observations<br />

we obta<strong>in</strong>ed of the sample galaxies, <strong>and</strong> present the result<strong>in</strong>g data set. In Chapter 4<br />

we discuss work we have carried out on model<strong>in</strong>g the gas <strong>in</strong> the gravitational potential<br />

of the galaxies, with <strong>and</strong> without black holes, <strong>and</strong> <strong>in</strong> Chapter 5 we go on to discuss<br />

the global k<strong>in</strong>ematic state of the nuclear gas, some properties of the central eng<strong>in</strong>es<br />

<strong>and</strong> possible connections between the two. We present a summary of our conclusions<br />

<strong>and</strong> a description of future directions for this work <strong>in</strong> Chapter 6.<br />

15


Table 1.1. Properties of various classes of Active Galactic Nuclei.<br />

Type Broad L<strong>in</strong>es Narrow L<strong>in</strong>es <strong>Radio</strong><br />

(1) (2) (3) (4)<br />

<strong>Radio</strong>-loud Quasars � � Loud<br />

<strong>Radio</strong>-quiet Quasars � � Weak<br />

Broad-l<strong>in</strong>e <strong>Radio</strong> <strong>Galaxies</strong> � � Loud<br />

Narrow-l<strong>in</strong>e <strong>Radio</strong> <strong>Galaxies</strong> × � Loud<br />

BL-Lacs × × Loud<br />

Seyfert-1 � � Weak<br />

Seyfert-2 × � Weak<br />

LINERS × � No<br />

Note. — Col. (1): Name of the type of AGN; Cols. (2-3): Are broad <strong>and</strong><br />

narrow gas emission l<strong>in</strong>es present?; Col. (4): Is the AGN radio loud?<br />

References. — Adapted from Table 1.2 of Krolik (1999)<br />

16


Table 1.2. Reliable black hole mass measurements.<br />

Name Type M• Method σ∗ Reference<br />

(M ⊙ ) (km s −1 )<br />

(1) (2) (3) (4) (5) (6)<br />

Milky Way SBbc 1.8 × 10 6 s, p 103 (1)<br />

M32 E2 2.5 × 10 6 s, 3I 75 (2)<br />

M31 Sb 4.5 × 10 7 s 160 (3),(4),(5)<br />

NGC 821 E4 3.7 × 10 7 s, 3I 209 (6),(7)<br />

NGC 1023 SB0 4.4 × 10 7 s, 3I 205 (8)<br />

NGC 1068 Sb 1.5 × 10 7 m 151 (9)<br />

NGC 2778 E2 1.4 × 10 7 s, 3I 175 (6),(7)<br />

NGC 2787 SB0 4.1 × 10 7 g 140 (10)<br />

NGC 3115 S0 1.0 × 10 9 s 230 (11)<br />

NGC 3245 S0 2.1 × 10 8 g 205 (12)<br />

NGC 3377 E5 1.0 × 10 8 s, 3I 145 (6),(13)<br />

NGC 3379 E1 1.0 × 10 8 s, 3I 206 (14)<br />

NGC 3384 S0 1.6 × 10 7 s, 3I 143 (6),(7)<br />

NGC 3608 E2 1.9 × 10 8 s, 3I 182 (6),(7)<br />

NGC 4258 Sbc 3.9 × 10 7 m, a 130 (15)<br />

NGC 4261 E2 5.2 × 10 8 g 315 (16)<br />

NGC 4291 E2 3.1 × 10 8 s, 3I 242 (6),(7)<br />

NGC 4342 S0 3.0 × 10 8 s, 3I 225 (17)<br />

NGC 4459 S0 7.0 × 10 7 g 186 (10)<br />

NGC 4473 E5 1.1 × 10 8 s, 3I 190 (6),(7)<br />

NGC 4486 E0 3.0 × 10 9 g 375 (18),(19)<br />

NGC 4564 E3 5.6 × 10 7 s, 3I 162 (6),(7)<br />

NGC 4596 SB0 7.8 × 10 7 g 152 (10)<br />

NGC 4649 E1 5.6 × 10 7 s, 3I 385 (6),(7)<br />

NGC 4697 E4 1.7 × 10 8 s, 3I 177 (6),(7)<br />

NGC 4742 E4 1.4 × 10 7 s, 3I 90 (20)<br />

NGC 5845 E3 2.4 × 10 8 s, 3I 234 (6)<br />

NGC 6251 E2 5.3 × 10 8 g 290 (21)<br />

NGC 7052 E4 3.3 × 10 8 g 266 (22)<br />

NGC 7457 S0 3.5 × 10 6 s, 3I 67 (6),(7)<br />

IC 1459 E3 2.5 × 10 9 s, 3I 340 (23)<br />

Note. — Data from Trema<strong>in</strong>e et al. (2002). Col. (1): Galaxy Name; Col. (2): Morphological Type; Col.<br />

(3): Determ<strong>in</strong>ed black hole mass; Col. (4): Method used, g - gas dynamics, m - maser dynamics, s - stars,<br />

3I - three <strong>in</strong>tegral model<strong>in</strong>g, a - maser accelerations, p - proper motions; Col. (5): Central stellar velocity<br />

dispersion; Col. (6): Reference for the <strong>Black</strong> Hole Mass<br />

References. — <strong>Black</strong> Hole Mass References: (1) Chakrabarty & Saha (2001); (2) Verolme et al. (2002);<br />

(3) Trema<strong>in</strong>e (1995); (4) Kormendy & Bender (1999); (5) Bacon et al. (2001); (6) Gebhardt et al. (2003); (7)<br />

P<strong>in</strong>kney et al. (2003); (8) Bower et al. (2001); (9) Greenhill & Gw<strong>in</strong>n (1997); (10) Sarzi et al. (2001); (11)<br />

Kormendy et al. (1996); (12) Barth et al. (2001); (13) Kormendy et al. (1998); (14) Gebhardt et al. (2000b);<br />

(15) Herrnste<strong>in</strong> et al. (1999); (16) Ferrarese et al. (1996); (17) Cretton & van den Bosch (1999); (18) Harms<br />

et al. (1994); (19) Macchetto et al. (1997); (20) Kaiser, <strong>in</strong> preparation; (21) Ferrarese & Ford (1999); (22)<br />

van der Marel & van den Bosch (1998); (23) Cappellari et al. (2002).<br />

17


Lobe<br />

Jet<br />

Core<br />

Optical galaxy<br />

Jet<br />

Lobe<br />

Figure 1.1 A cartoon view of a radio galaxy show<strong>in</strong>g the core, jets <strong>and</strong> lobes as observed<br />

at radio wavelengths, a typical size scale for the elliptical host galaxy observed<br />

at visible wavelengths is also <strong>in</strong>dicated.<br />

18


Figure 1.2 An example of a FR-I (left) <strong>and</strong> a FR-II (right) radio galaxy, observed at<br />

20 cm wavelengths by Owen & Ledlow (1997). The FR-I is characterized by bright<br />

jets, closest to the nucleus, while the FR-II has bright radio lobes.<br />

19


<strong>Black</strong> Hole<br />

Obscur<strong>in</strong>g Torus<br />

Jet<br />

Jet<br />

Broad L<strong>in</strong>e<br />

Clouds<br />

Narrow L<strong>in</strong>e Region<br />

Obscur<strong>in</strong>g Torus<br />

Accretion Disk<br />

Figure 1.3 A representation of the unified scheme for the central eng<strong>in</strong>e of active<br />

galactic nuclei (AGN); different classes of AGN would be observed by view<strong>in</strong>g the<br />

model from different angles. (after Urry & Padovani, 1995).<br />

20


Figure 1.4 From Martel et al. (2000): The dust disk <strong>in</strong> the nucleus of NGC 383<br />

show<strong>in</strong>g <strong>in</strong>trigu<strong>in</strong>g morphological structures <strong>in</strong> the dust distribution.<br />

21


Figure 1.5 From Wada (2004), the segregation of various types of AGNs from the<br />

po<strong>in</strong>t of view of the circumnuclear gas disk.<br />

22


Figure 1.6 The famous cartoon by Ph<strong>in</strong>ney (1994) captur<strong>in</strong>g the essence of the fuel<strong>in</strong>g<br />

problem <strong>in</strong> AGN: gett<strong>in</strong>g the food with the large (angular momentum) spoon <strong>in</strong>to<br />

the small (area <strong>and</strong> angular momentum) mouth.<br />

23


Figure 1.7 Cusp <strong>in</strong> velocities <strong>in</strong> the nuclear region of M87. Dotted l<strong>in</strong>e <strong>in</strong>dicates the<br />

cont<strong>in</strong>uum flux. (figure from Macchetto et al., 1997).<br />

24


M BH (M Sun)<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

60 70 80 90100 200 300 400<br />

σ c (km s -1 )<br />

Figure 1.8 Measured black hole masses (MBH) as a function of central stellar velocity<br />

dispersion (σc) for reliable determ<strong>in</strong>ations summarized by Trema<strong>in</strong>e et al. (2002).<br />

The l<strong>in</strong>e <strong>in</strong>dicates the fit M• = 1.3 × 10 8 M⊙(σc/200) 4.72 . (*) <strong>in</strong>dicates masses determ<strong>in</strong>ed<br />

from stellar dynamical model<strong>in</strong>g; (◦) <strong>in</strong>dicates masses determ<strong>in</strong>ed from gas<br />

k<strong>in</strong>ematics; <strong>and</strong> (△) <strong>in</strong>dicates masses determ<strong>in</strong>ed from MASER k<strong>in</strong>ematics.<br />

25


Chapter 2<br />

The UGC FR-I Sample<br />

In this Chapter we <strong>in</strong>troduce the UGC FR-I galaxy sample, which is the central<br />

sample of galaxies discussed <strong>in</strong> this dissertation. We briefly discuss the radio <strong>and</strong><br />

optical properties of the sample, <strong>and</strong> present some stellar k<strong>in</strong>ematical data which<br />

relates to relationships between black hole mass <strong>and</strong> properties of the host galaxies.<br />

2.1 Sample selection <strong>and</strong> properties<br />

Our galaxy sample (the UGC FR-I sample) conta<strong>in</strong>s all 21 nearby (vr < 7000 km s −1 ),<br />

elliptical or S0 galaxies <strong>in</strong> the decl<strong>in</strong>ation range −5 ◦ < δ < 70 ◦ <strong>in</strong> the UGC catalog<br />

(Nilson, 1973, limits magnitude mB < 14. m 6 <strong>and</strong> angular size θp > 1. ′ 0) that are<br />

extended radio-loud sources (larger than 10 ′′ at 3σ on VLA A-Array maps, which<br />

crudely ensures that the sources are extended, <strong>and</strong> brighter than 150 mJy from s<strong>in</strong>gle<br />

26


dish flux density measurements at 1400 MHz). The source <strong>in</strong>formation is shown <strong>in</strong><br />

Table 2.1. The selection criteria result <strong>in</strong> a complete sample of nearby radio galaxies<br />

with jets.<br />

This complete sample was drawn from a catalog of 176 radio-loud galaxies con-<br />

structed by Condon & Broderick (1988), by position co<strong>in</strong>cidence of radio identifica-<br />

tions <strong>in</strong> the Green Bank 1400 MHz sky maps <strong>and</strong> galaxies <strong>in</strong> the UGC catalog. All<br />

of the galaxies fall <strong>in</strong>to the Fanaroff & Riley (1974) Type-I (FR-I) radio classification<br />

(see Xu et al., 2000, for a description of the radio properties of our sample); i.e. they<br />

are low lum<strong>in</strong>osity radio galaxies, with jets that are brightest nearest to the nucleus.<br />

(In contrast, FR-II galaxies are more powerful radio sources, <strong>and</strong> have bright spots<br />

at the far edges of their radio lobes, the only FR-II with<strong>in</strong> 7000 km s −1 is the radio<br />

galaxy Cen-A, which is <strong>in</strong> the southern sky.)<br />

The comb<strong>in</strong>ation of select<strong>in</strong>g extended sources <strong>and</strong> early type galaxies results <strong>in</strong><br />

the primary energy source of each galaxy <strong>in</strong> the sample fall<strong>in</strong>g <strong>in</strong>to ‘monster’ rather<br />

than ‘starburst’ classification of Condon & Broderick (1988) based on their <strong>in</strong>fra-red<br />

to radio flux ratios (for example, see Heckman et al., 1983)<br />

u ≡ log<br />

27<br />

� �<br />

S60µm<br />

≪ 1.6, (2.1)<br />

S1400MHz


<strong>and</strong> <strong>in</strong>fra-red spectral gradients<br />

αIR ≡<br />

log (S60µm/S25µm)<br />

log (60/25)<br />

2.2 Multiwavelength observations<br />

28<br />

< +1.25. (2.2)<br />

Prior to the work presented <strong>in</strong> this dissertation, imag<strong>in</strong>g of the galaxies had been car-<br />

ried out at various wavelengths with a variety of <strong>in</strong>struments. The fluxes of the UGC<br />

FR-I nuclei <strong>in</strong> various wave-b<strong>and</strong>s are given <strong>in</strong> Table 2.2. Particular attention has<br />

been paid to the sample at radio <strong>and</strong> optical wavelengths, <strong>and</strong> we briefly summarize<br />

those results below. We describe spectroscopic observations of the nuclei, that we<br />

obta<strong>in</strong>ed us<strong>in</strong>g HST, <strong>in</strong> Chapter 3. In Figures 2.1 to 2.21 we show cont<strong>in</strong>uum optical<br />

images of the central region of each galaxy – <strong>in</strong>dicat<strong>in</strong>g the directions of the galaxy<br />

major axes <strong>and</strong> radio jet axes, along with the positions of the spectroscopic slits (see<br />

Chapter 3). The orientations of the slits compared to morphological features of the<br />

nuclei are expla<strong>in</strong>ed <strong>in</strong> the <strong>in</strong>dividual description of the observations given <strong>in</strong> §3.4 <strong>and</strong><br />

offsets are given <strong>in</strong> Table 3.3. For the majority of cases the STIS slits were aligned<br />

with<strong>in</strong> 10 ◦ of the galaxy major axis.


2.2.1 <strong>Radio</strong> properties<br />

<strong>Radio</strong> observations of the sample galaxies were obta<strong>in</strong>ed us<strong>in</strong>g both the Very Large Ar-<br />

ray (VLA; Wrobel, et al., <strong>in</strong> preparation) <strong>and</strong> the Very Large Basel<strong>in</strong>e Array (VLBA),<br />

descriptions of the radio morphology are given for each galaxy <strong>in</strong> §3.4. Xu et al. (2000)<br />

report the results of a program us<strong>in</strong>g the VLBA to observe 17 of the UGC FR-I sam-<br />

ple galaxies at 1.67 GHz. At a resolution of ∼ 10 × 4 mas, five galaxies showed only<br />

an unresolved radio core, 10 galaxies showed core-jet structures, <strong>and</strong> two galaxies<br />

showed tw<strong>in</strong>-jet structures. Compar<strong>in</strong>g the VLBA jets (on parsec scales) to the VLA<br />

jets (on kiloparsec scales) they found that the VLBA <strong>and</strong> VLA jets are well aligned<br />

<strong>and</strong> that the jet-to-counterjet surface brightness ratios, or the sidedness, decreases<br />

systematically with <strong>in</strong>creas<strong>in</strong>g distance along the jet. Xu et al. (2000) attribute the<br />

sidedness of the jets to the Doppler boost<strong>in</strong>g effect, <strong>and</strong> its decl<strong>in</strong>e to the deceleration<br />

of the jets.<br />

2.2.2 Optical properties<br />

A photometric analysis of the nuclei of the UGC FR-I sample galaxies was performed<br />

by Verdoes Kleijn et al. (1999), based on observations made us<strong>in</strong>g the WFPC2 <strong>in</strong>-<br />

strument on board HST (the photometric analyses of UGC 7115 <strong>and</strong> UGC 12064 are<br />

29


presented <strong>in</strong> Appendix A of Verdoes Kleijn et al., 2002a). Verdoes Kleijn et al. (1999)<br />

obta<strong>in</strong>ed V - <strong>and</strong> I-b<strong>and</strong> images <strong>and</strong> narrow-b<strong>and</strong> images centered on the Hα + [N II]<br />

emission l<strong>in</strong>es. They found that although obscuration by dust prevents satisfactory<br />

determ<strong>in</strong>ations of the central cusp slopes, that the data suggest that most of the<br />

sample galaxies have shallow cores.<br />

Dust is detected <strong>in</strong> all but two galaxies <strong>and</strong> central emission l<strong>in</strong>e gas is detected <strong>in</strong><br />

all of the galaxies <strong>in</strong> the sample. There are a wide variety of central dust morphologies,<br />

rang<strong>in</strong>g from central disks to lanes <strong>and</strong> irregular distributions; the dust morphologies<br />

for each <strong>in</strong>dividual source are described <strong>in</strong> §3.4.<br />

2.3 Stellar Dynamics<br />

We estimate the central stellar velocity dispersion (σc) with<strong>in</strong> one eighth of the effec-<br />

tive radius (re/8) us<strong>in</strong>g the relationship<br />

� �<br />

σap<br />

σc<br />

=<br />

30<br />

� �−0.04 rap<br />

, (2.3)<br />

re/8<br />

as described by Jørgensen et al. (1995) <strong>and</strong> bas<strong>in</strong>g σap on ground based measure-<br />

ments from various sources as referenced <strong>in</strong> Table 2.3.<br />

We found the effective radii of the sample nuclei us<strong>in</strong>g the WFPC2 imag<strong>in</strong>g de-


scribed by Verdoes Kleijn et al. (1999), <strong>and</strong> fitt<strong>in</strong>g a r 1/4 -law profile of the form<br />

I = I0 exp (−7.67(x/re) 0.25 − 1) (2.4)<br />

to the stellar surface brightness profile outside of the break radius.<br />

This procedure to f<strong>in</strong>d σc follows the same prescription as Ferrarese & Merritt<br />

(2000). Us<strong>in</strong>g their relationship between σc <strong>and</strong> M• (Merritt & Ferrarese, 2001):<br />

M• = 1.30 × 10 8 M⊙<br />

�<br />

σc<br />

200kms −1<br />

31<br />

� 4.72<br />

, (2.5)<br />

we estimate values of M• for our sample galaxies. The stellar velocity dispersions<br />

<strong>and</strong> black hole mass estimates are listed <strong>in</strong> Table 2.3, where we also give measured<br />

black hole masses for the 5 sample galaxies for which such data exist. The five<br />

measured black hole masses are plotted on a M• − σc diagram <strong>in</strong>clud<strong>in</strong>g all reliable<br />

black hole masses (cf Figure 1.8) <strong>in</strong> Figure 2.22.<br />

Variations of this relationship give different values for M•, however for our pur-<br />

poses <strong>in</strong> this dissertation we will give black hole mass estimates based on the above<br />

relationship <strong>and</strong> rem<strong>in</strong>d the reader that the masses may vary somewhat from these<br />

values.


Table 2.1. Properties of the galaxy sample members.<br />

NGC UGC Other Names Type vsys STIS Scale MB log(L1400) Axis Ratio<br />

(km s −1 ) (pc/pixel) (mag) (W Hz −1 ) b/a<br />

(1) (2) (3) (4) (5) (6) (7) (8) (9)<br />

193 408 E-S0 4342.5 15.0 -21.0 23.93 (0.18)<br />

315 597 E 5092.5 17.6 -22.6 24.10 0.23<br />

383 689 3C 31 E-S0 4890.0 16.9 -22.2 24.51 0.77<br />

541 1004 E 5497.5 19.0 -21.7 23.94 0.91<br />

741 1413 E 5265.0 18.2 -22.6 23.85 · · ·<br />

1841 3C 66B E 6360.0 22.0 -22.5 24.94 ∼ 0.98<br />

2329 3695 E-S0 5725.0 19.8 -21.9 23.76 0.68<br />

2892 5073 E 6810.0 23.6 -21.1 23.36 · · ·<br />

3801 6635 S0 3255.0 11.3 -20.8 23.49 (0.12)<br />

3862 6723 3C 264 E 6330.0 21.9 -21.7 24.75 ∼ 0.99<br />

7115 E 6787.5 23.5 -21.0 23.94 ∼ 0.95<br />

4261 7360 3C 270 E 2212.5 7.7 -21.5 24.40 0.46<br />

4335 7455 E-S0 4672.5 16.2 -21.6 23.11 0.41<br />

4374 7494 M84, 3C 272.1 S0 1155.0 4.0 -20.9 23.35 (0.15)<br />

4486 7654 M87, 3C 274 E 1155.0 4.0 -22.2 24.90 · · ·<br />

5127 8419 E 4830.0 16.7 -21.3 24.08 (0.25)<br />

5141 8433 S0 5302.5 18.4 -21.0 23.80 (0.25)<br />

5490 9058 E 5790.0 20.1 -21.7 23.79 (0.35)<br />

7052 11718 E 4155.0 14.4 -21.0 23.04 0.30<br />

12064 3C 449 E-S0 5122.5 17.7 -20.8 24.38 0.54<br />

7626 12531 E 3495.0 12.1 -21.7 23.37 (0.17)<br />

Note. — Col. (1): NGC number where available; Col. (2): Upsalla General<br />

Catalog (UGC) number; Col. (3): Alternative names; Col. (4): From the NASA<br />

Extragalactic Database (NED); Col. (5): Measured from the stellar k<strong>in</strong>ematics<br />

(from NED); Col. (6): Parsecs per unb<strong>in</strong>ned STIS pixel; Col. (7): Absolute blue<br />

magnitude from Condon & Broderick (1988); Col. (8): <strong>Radio</strong> Lum<strong>in</strong>osity from<br />

Condon & Broderick (1988); Col. (9): Dust disk axis ratio from Verdoes Kleijn<br />

et al. (1999), numbers <strong>in</strong> parentheses <strong>in</strong>dicate a dust lane where the width:length<br />

ratio is given <strong>in</strong>stead.<br />

32


Table 2.2. Multiwavelength Fluxes of the UGC FR-I Sample <strong>Galaxies</strong>.<br />

Galaxy Vnuc Inuc VLBApeak VLApeak X-raysoft X-rayhard<br />

(mJy/b.a.) (mJy/b.a.) (erg cm −2 s −1 ) (erg cm −2 s −1 )<br />

(1) (2) (3) (4) (5) (6) (7)<br />

NGC 193 6.20 × 10 −18 1.10 × 10 −17 29.8 40.0 · · · · · ·<br />

NGC 315 3.30 × 10 −17 4.70 × 10 −17 224 396 4.63 × 10 −13 9.61 × 10 −13<br />

NGC 383 2.40 × 10 −17 1.80 × 10 −17 44.1 89.0 3.91 × 10 −14 6.78 × 10 −14<br />

NGC 541 7.50 × 10 −18 7.40 × 10 −18 1.90 8.00 · · · · · ·<br />

UGC 1841 5.20 × 10 −17 3.70 × 10 −17 112 131 2.37 × 10 −13 8.79 × 10 −14<br />

NGC 2329 1.70 × 10 −16 1.20 × 10 −16 49.7 117 · · · · · ·<br />

NGC 2892 1.60 × 10 −17 1.40 × 10 −17 15.3 22.0 · · · · · ·<br />

NGC 3862 1.90 × 10 −16 1.40 × 10 −16 123 386 · · · · · ·<br />

UGC 7115 3.40 × 10 −17 3.40 × 10 −17 · · · · · · · · · · · ·<br />

NGC 4261 3.80 × 10 −18 1.00 × 10 −17 67.4 165 9.64 × 10 −14 9.86 × 10 −13<br />

NGC 4335 2.50 × 10 −17 3.00 × 10 −17 9.20 15.0 · · · · · ·<br />

NGC 4374 6.20 × 10 −17 7.30 × 10 −17 106 112 1.89 × 10 −13 8.94 × 10 −14<br />

NGC 4486 6.40 × 10 −16 3.20 × 10 −16 1570 3600 · · · · · ·<br />

NGC 5127 · · · · · · 3.90 7.00 · · · · · ·<br />

NGC 5141 9.50 × 10 −18 1.40 × 10 −17 35.5 71.0 · · · · · ·<br />

NGC 5490 6.70 × 10 −19 4.00 × 10 −18 20.0 41.0 · · · · · ·<br />

NGC 7052 · · · · · · 2.79 × 10 1 36.0 · · · · · ·<br />

UGC 12064 · · · 3.10 × 10 −17 · · · · · · · · · · · ·<br />

NGC 7626 3.70 × 10 −18 1.10 × 10 −17 12.5 23.0 · · · · · ·<br />

Note. — Col. (1): Galaxy Name; Cols. (2-3): The nuclear po<strong>in</strong>t source V <strong>and</strong><br />

I fluxes (from WFPC2 imag<strong>in</strong>g) <strong>in</strong> (erg s −1 cm −2 ˚A −1 ); Cols. (4-5) Peak fluxes <strong>in</strong><br />

the radio core from VLBA <strong>and</strong> VLA observations; Cols. (5-6) Unabsorbed X-ray<br />

fluxes from the nucleus <strong>in</strong> soft (0.02 - 2 keV) <strong>and</strong> hard (2 - 10 keV) b<strong>and</strong>s from<br />

Ch<strong>and</strong>ra observations.<br />

References. — Cols. 2-3: Verdoes Kleijn et al. (2002a); Cols. 4-5: Xu et al.<br />

(2000); Cols. 6-7 E. Colbert (Private Communication).<br />

33


Table 2.3. Stellar velocity dispersions <strong>and</strong> estimated black hole masses.<br />

Galaxy σmeas Ref. rap re σc M• MF01 M•Meas. Ref.<br />

(km s −1 ) (arcsec) (arcsec) (km s −1 ) (10 8 M⊙) (10 8 M⊙)<br />

NGC 193 · · · · · · · · · 25.90 · · · · · · · · · · · ·<br />

NGC 315 357 (1) 1.48 62.78 334 14.6 · · · · · ·<br />

NGC 383 311 (1) 1.48 22.65 303 9.24 · · · · · ·<br />

NGC 541 225 (1) 1.48 21.34 220 2.03 · · · · · ·<br />

NGC 741 284 (1) 1.48 47.01 269 5.24 · · · · · ·<br />

UGC 1841 382 (10) Re · · · 352 18.6 · · · · · ·<br />

NGC 2329 274 (1) 1.48 26.81 265 4.92 · · · · · ·<br />

NGC 2892 · · · · · · · · · 33.51 · · · · · · · · · · · ·<br />

NGC 3801 225 (2) Re? · · · 207 1.53 · · · · · ·<br />

NGC 3862 263 (1) 1.48 12.87 264 4.66 · · · · · ·<br />

UGC 7115 198 (3) 3.39 13.63 204 1.41 · · · · · ·<br />

NGC 4261 306 (1) 1.48 38.25 292 7.75 5.4 (5)<br />

NGC 4335 282 (9) 2Re · · · 252 3.9 ≤ 1.0 (9)<br />

NGC 4374 304 (1) 1.48 43.87 288 7.30 4.3 (6)<br />

NGC 4486 383 (1) 4.50 113.87 366 22.5 35.7 (7)<br />

NGC 5127 198 (3) 3.39 48.12 194 1.11 · · · · · ·<br />

NGC 5141 · · · · · · · · · 15.13 · · · · · · · · · · · ·<br />

NGC 5490 305 (1) 1.48 15.39 302 9.07 · · · · · ·<br />

NGC 7052 270 (4) ∼ Re · · · 248 3.62 3.7 (8)<br />

UGC 12064 233 (10) Re · · · 214 1.80 · · · · · ·<br />

NGC 7626 244 (1) 1.48 34.16 234 2.72 · · · · · ·<br />

Note. — Measured stellar velocity dispersions are shown, with the source<br />

reference <strong>in</strong>dicated. These have then been adapted to yield σc based on measurements<br />

of re from our WFPC2 data (see text). The relation of Merritt &<br />

Ferrarese (2001) was then used to yield estimates of the black hole masses.<br />

References. — (1) Davies et al. (1987); (2) Di Nella et al. (1995); (3) Tonry<br />

& Davis (1981); (4) Wagner et al. (1988); (5) Ferrarese et al. (1996); (6) Maciejewski<br />

& B<strong>in</strong>ney (2001); (7) Macchetto et al. (1997); (8) van der Marel & van<br />

den Bosch (1998); (9) Verdoes Kleijn et al. (2002b); (10) Balcells et al. (1995);<br />

(11) van der Marel & van den Bosch (1998).<br />

34


0.5"<br />

Figure 2.1 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 193. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

35


0.5"<br />

Figure 2.2 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 315. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

36


0.5"<br />

Figure 2.3 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 383. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

37


0.5"<br />

Figure 2.4 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 541. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

38


0.5"<br />

Figure 2.5 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 741. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

39


0.5"<br />

Figure 2.6 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 1841. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

40


0.5"<br />

Figure 2.7 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 2329. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

41


0.5"<br />

Figure 2.8 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 2892. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

42


0.5"<br />

Figure 2.9 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 3801. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

43


0.5"<br />

Figure 2.10 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 3862. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

44


0.5"<br />

Figure 2.11 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 7115. The position<br />

of the spectroscopic slit used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

45


0.5"<br />

Figure 2.12 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4261. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

46


0.5"<br />

Figure 2.13 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4335. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

47


0.5"<br />

Figure 2.14 Optical cont<strong>in</strong>uum image of the nuclear region of M84. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

48


0.5"<br />

Figure 2.15 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 4486. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

49


0.5"<br />

Figure 2.16 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5127. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

50


0.5"<br />

Figure 2.17 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5141. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

51


0.5"<br />

Figure 2.18 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 5490. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

52


0.5"<br />

Figure 2.19 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 7052. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

53


0.5"<br />

Figure 2.20 Optical cont<strong>in</strong>uum image of the nuclear region of UGC 12064. The<br />

position of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter<br />

3 are <strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the<br />

dotted l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

54


0.5"<br />

Figure 2.21 Optical cont<strong>in</strong>uum image of the nuclear region of NGC 7626. The position<br />

of the spectroscopic slits used <strong>in</strong> the observ<strong>in</strong>g program described <strong>in</strong> Chapter 3 are<br />

<strong>in</strong>dicated. The dashed l<strong>in</strong>e <strong>in</strong>dicates the galaxy major axis position angle, the dotted<br />

l<strong>in</strong>e <strong>in</strong>dicates the direction of the radio jet. A north-east <strong>in</strong>dicator is shown.<br />

55


M BH (M Sun)<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

60 70 80 90100 200 300 400<br />

σ c (km s -1 )<br />

Figure 2.22 Measured black hole masses (MBH) as a function of central stellar velocity<br />

dispersion (σc) for reliable determ<strong>in</strong>ations summarized by Trema<strong>in</strong>e et al. (2002). The<br />

l<strong>in</strong>e <strong>in</strong>dicates the fit M• = 1.3 ×10 8 M⊙(σc/200) 4.72 . (*) <strong>in</strong>dicates masses determ<strong>in</strong>ed<br />

from stellar dynamical model<strong>in</strong>g; (◦) <strong>in</strong>dicates masses determ<strong>in</strong>ed from gas k<strong>in</strong>ematics;<br />

<strong>and</strong> (△) <strong>in</strong>dicates masses determ<strong>in</strong>ed from MASER k<strong>in</strong>ematics. The members of<br />

the UGC FR-I sample which have previous black hole mass measurements are shown<br />

as black squares (�).<br />

56


Chapter 3<br />

STIS spectroscopy of the emission<br />

l<strong>in</strong>e gas <strong>in</strong> the nuclei of nearby<br />

FR-I galaxies<br />

This chapter orig<strong>in</strong>ally appeared as part of Noel-Storr et al. (2003).<br />

3.1 Introduction<br />

We present the results of the analysis of a set of medium resolution spectra, obta<strong>in</strong>ed<br />

by the Space Telescope Imag<strong>in</strong>g Spectrograph on board the Hubble Space Telescope,<br />

of the emission l<strong>in</strong>e gas present <strong>in</strong> the nuclei of a complete sample of 21 nearby, early-<br />

type galaxies with radio jets (the UGC FR-I Sample). For each galaxy nucleus we<br />

present spectroscopic data <strong>in</strong> the region of Hα <strong>and</strong> the derived k<strong>in</strong>ematics.<br />

57


We f<strong>in</strong>d that <strong>in</strong> 67% of the nuclei the gas appears to be rotat<strong>in</strong>g <strong>and</strong>, with one<br />

exception, the cases where rotation is not seen are either face on or have complex<br />

central morphologies. We f<strong>in</strong>d that <strong>in</strong> 62% of the nuclei the fit to the central spectrum<br />

is improved by the <strong>in</strong>clusion of a broad component. The broad components have a<br />

mean velocity dispersion of 1349 ± 345 km s −1 <strong>and</strong> are redshifted from the narrow<br />

l<strong>in</strong>e components (assum<strong>in</strong>g an orig<strong>in</strong> <strong>in</strong> Hα) by 486 ± 443 km s −1 .<br />

The chapter is organized as follows. In section 2 we describe the sample <strong>and</strong> <strong>in</strong><br />

section 3 we describe the STIS spectroscopic observations <strong>and</strong> the data reduction. In<br />

section 4 we describe our analysis procedures. We present our <strong>in</strong>itial <strong>in</strong>terpretations<br />

<strong>in</strong> section 5 <strong>and</strong> draw conclusions <strong>in</strong> section 6. We use a Hubble constant of H0 =<br />

50km s −1 Mpc −1 throughout.<br />

3.2 STIS Observations<br />

In program 8236 we used HST/STIS (see Kimble, et al., 1998) to take spectra of the<br />

19 sample members not previously or concurrently observed by others. Observations<br />

were carried out at both medium (for 19/19 galaxies) <strong>and</strong> low (for 4/19 galaxies) res-<br />

olution, with the G750M <strong>and</strong> the G430L <strong>and</strong> G750L grat<strong>in</strong>gs respectively. Our medium<br />

resolution observation log is shown <strong>in</strong> Table 3.1. We will present the low resolution<br />

58


spectra <strong>in</strong> a future paper. We <strong>in</strong>clude <strong>in</strong> our analysis similar medium resolution data<br />

obta<strong>in</strong>ed by R. Green <strong>and</strong> collaborators for the nucleus of M84 (program 7124, see<br />

Bower et al., 1998) <strong>and</strong> H. Ford <strong>and</strong> collaborators for the nucleus of M87 (program<br />

8666) to complete the data set for UGC FR-I galaxies.<br />

In our program, we observed each galaxy <strong>in</strong> three parallel, adjacent slit positions.<br />

For each slit position we obta<strong>in</strong>ed two exposures with a shift of 0. ′′ 202800 (4 unb<strong>in</strong>ned<br />

STIS Pixels) along the slit direction to enable us to more efficiently remove detector<br />

effects (bad pixels, etc.). In the case of UGC 7115 we observed <strong>in</strong> only one slit position<br />

- we sacrificed STIS observ<strong>in</strong>g time to make WFPC2 observations of this galaxy as<br />

it had not been <strong>in</strong>cluded <strong>in</strong> our earlier WFPC2 program.<br />

The data for M87 (NGC 4486) were obta<strong>in</strong>ed <strong>in</strong> a similar manner to our own.<br />

In the case of M84 (NGC 4374) the observation pairs were not shifted along the slit<br />

direction, thus some detector effects may rema<strong>in</strong>, though will be much less significant<br />

thanks to the far greater signal to noise.<br />

We list the <strong>in</strong>strumental properties of the STIS configurations used <strong>in</strong> Table 3.2.<br />

Panel (a) of Figures 3.2 to 3.22 (see key <strong>in</strong> Figure 3.1) shows the location of the STIS<br />

slits on each galaxy observed, along with the position angles of the galaxy major axes<br />

<strong>and</strong> radio-jet axes. For the majority of cases the STIS slits were aligned with<strong>in</strong> 10 ◦<br />

59


of the galaxy major axes (Table 3.3), with the exceptions that we note below.<br />

In the cases of NGC 741 [∆PA(gal, slit) = 19.4 ◦ ] <strong>and</strong> NGC 2892 [∆PA(gal, slit) =<br />

22 ◦ ] more freedom <strong>in</strong> orientation was allowed to provide reasonable observ<strong>in</strong>g w<strong>in</strong>-<br />

dows.<br />

In NGC 3862 <strong>and</strong> UGC 7115 the position angles of the galaxy major axes are<br />

hard to determ<strong>in</strong>e, we decided to position the slits approximately perpendicular to<br />

the radio jets [∆PA(jet, slit) = 92.3 ◦ & 110.4 ◦ , respectively]. The central major axis<br />

is also hard to determ<strong>in</strong>e <strong>in</strong> NGC 541, where the central isophotes rotate consid-<br />

erably. In this case we chose to use a slit position somewhere around the mean of<br />

the isophotal position angles with considerable leeway given to allow for reasonable<br />

observ<strong>in</strong>g w<strong>in</strong>dows.<br />

For UGC 12064 the slits were aligned along the major axis of the prom<strong>in</strong>ent dust<br />

disk, which is offset from the galaxy major axis by ∼ 50 ◦ .<br />

The slits <strong>in</strong> M84 were positioned approximately perpendicular to the radio jet,<br />

which lies close to the major axis of the nuclear gas. For NGC 4486 (M87) the slits<br />

were positioned to follow certa<strong>in</strong> morphological structures across the nuclear regions.<br />

60


3.2.1 Data Reduction<br />

We used the st<strong>and</strong>ard STIS calibration pipel<strong>in</strong>e (calstis, see Brown et al., 2002) to<br />

perform bias, dark <strong>and</strong> flat-field corrections us<strong>in</strong>g the best available reference files.<br />

We used calstis version 2.13 (26-April-2002) throughout the data reduction 1 .<br />

We shifted the rows of alternat<strong>in</strong>g observations by 4 pixels, so that they were<br />

properly aligned with their counterparts <strong>and</strong> comb<strong>in</strong>ed them us<strong>in</strong>g the STSDAS rou-<br />

t<strong>in</strong>e ocrreject. We cleaned co-<strong>in</strong>cident cosmic rays <strong>and</strong> negative bad pixels, which<br />

would not be caught by ocrreject, us<strong>in</strong>g the NOAO/IRAF task cosmicrays. At<br />

each step we carefully <strong>in</strong>vestigated the effects of vary<strong>in</strong>g task parameters to <strong>in</strong>sure we<br />

were not damag<strong>in</strong>g valid data while remov<strong>in</strong>g most cosmic rays.<br />

We made use of the STIS calibration pipel<strong>in</strong>e tasks wavecal <strong>and</strong> x2d to perform<br />

wavelength calibration <strong>and</strong> image rectification respectively. The error <strong>in</strong>troduced by<br />

rectify<strong>in</strong>g after shift<strong>in</strong>g one of the images is ∼ < 0.05 pixels (which is ∼ < 1.3 km s −1 at<br />

6750˚A).<br />

Panel (b) of Figures 3.2 to 3.22 (see key <strong>in</strong> Figure 3.1) shows (i) the central strip<br />

1 We found that significant variations <strong>in</strong> measured parameters could be <strong>in</strong>troduced by us<strong>in</strong>g different<br />

calstis versions. Versions 2.4 <strong>and</strong> 2.13 produce consistent results, while <strong>in</strong>termediate versions<br />

do not.<br />

61


of the reduced spectrum for each slit position observed on each galaxy, along with<br />

(ii) Gaussian l<strong>in</strong>e fits to the same (see §4.1).<br />

3.3 Analysis<br />

In this section we describe the l<strong>in</strong>e fitt<strong>in</strong>g that we carried out on each spectral row<br />

of each reduced CCD spectral image, firstly with a s<strong>in</strong>gle Gaussian per spectral l<strong>in</strong>e<br />

(§4.1) <strong>and</strong> secondly with the <strong>in</strong>clusion of an additional free component (§4.2). In<br />

§4.3 we discuss the sizes of the errors on quoted parameters from various sources. In<br />

§4.4 we describe each of the UGC FR-I sample members <strong>in</strong> turn. For each galaxy<br />

we def<strong>in</strong>e the central spectrum as the row with the greatest <strong>in</strong>tegrated flux after the<br />

data reduction. We list the row numbers <strong>in</strong> the f<strong>in</strong>al x2d image correspond<strong>in</strong>g to the<br />

central spectrum <strong>in</strong> Table 3.1.<br />

3.3.1 S<strong>in</strong>gle Gaussian l<strong>in</strong>e fitt<strong>in</strong>g<br />

In the G750M spectra we expect to f<strong>in</strong>d the emission l<strong>in</strong>es <strong>in</strong> the vic<strong>in</strong>ity of Hα that are<br />

listed <strong>in</strong> Table 3.4. We used wavelengths from the recent measurements of Wallerste<strong>in</strong><br />

et al. (2001) <strong>and</strong> converted from air to vacuum wavelengths us<strong>in</strong>g the IAU st<strong>and</strong>ard<br />

formula<br />

62


λvac − λair<br />

λair<br />

= 6.4328 × 10 −5 +<br />

2.94981 × 10−2<br />

146 − (104 2.5540 × 10−4<br />

2 +<br />

/λair)<br />

41 − (10 4 /λair) 2.<br />

63<br />

(3.1)<br />

Us<strong>in</strong>g one Gaussian to represent each of these five l<strong>in</strong>es we obta<strong>in</strong> a set of 7 free<br />

parameters to fit: the cont<strong>in</strong>uum flux level, velocity (vr), velocity dispersion (σ), <strong>and</strong><br />

the fluxes of each l<strong>in</strong>e. The flux of [N II]6550 was fixed <strong>in</strong> a ratio of 1:3 with the<br />

flux of [N II]6585 based on the transition probabilities derived from atomic physics<br />

(Osterbrock, 1989).<br />

We used a χ 2 m<strong>in</strong>imization rout<strong>in</strong>e (us<strong>in</strong>g Levenberg-Marquardt iterations, see<br />

Press et al., 1992) to fit the Gaussian template to the observed spectra. The applica-<br />

tion of this fitt<strong>in</strong>g technique <strong>and</strong> development of this rout<strong>in</strong>e are described by van der<br />

Marel & van den Bosch (1998). Formal errors are drawn from the covariance matrix<br />

of the fit. As we do not expect the noise <strong>in</strong> each spectrum to be normally-distributed<br />

after the steps of wavelength calibration <strong>and</strong> two-dimensional rectification, these error<br />

values should be treated strictly as the formal fit errors under the underst<strong>and</strong><strong>in</strong>g that<br />

the size of the real errors may be somewhat different (see §4.3 below).<br />

From this po<strong>in</strong>t on we only consider data po<strong>in</strong>ts where the formal errors from<br />

the fits meet the follow<strong>in</strong>g criteria, allow<strong>in</strong>g us to exclude unreliable data po<strong>in</strong>ts<br />

orig<strong>in</strong>at<strong>in</strong>g from poorly constra<strong>in</strong>ed fits:


∆F(Hα)<br />

F(Hα)<br />

∆σ < 50 km s −1<br />

64<br />

(3.2)<br />

< 0.75 (3.3)<br />

where ∆σ <strong>and</strong> ∆F(Hα) are the errors <strong>in</strong> velocity dispersion <strong>and</strong> l<strong>in</strong>e flux respec-<br />

tively. The ma<strong>in</strong> constra<strong>in</strong>t arises from the limit on the velocity dispersion error. The<br />

very large flux error allowed is <strong>in</strong> place to remove only the few rema<strong>in</strong><strong>in</strong>g bad data<br />

po<strong>in</strong>ts where the profile very precisely fits the noise.<br />

In Panel (e) of Figures 3.2 to 3.22 (see key <strong>in</strong> Figure 3.1) we show profiles of (i)<br />

radial velocity, (ii) velocity dispersion, (iii) [N II]6585 l<strong>in</strong>e flux <strong>and</strong> (iv) [N II] / Hα<br />

ratios result<strong>in</strong>g from this fitt<strong>in</strong>g procedure for each of our sample galaxies. These<br />

profiles are comb<strong>in</strong>ed <strong>and</strong> visualized <strong>in</strong> 2D for each galaxy <strong>in</strong> Panel (c) of Figures 3.2<br />

to 3.22.<br />

We present the fit data <strong>in</strong> Tables 3.5 to 3.25, where the errors given are the formal<br />

errors from the fit. In these tables Column (1) is the row number of the portion of the<br />

spectrum fitted. Column (2) shows the offset along the slit direction <strong>in</strong> arcseconds<br />

from the row with the greatest <strong>in</strong>tegrated flux. Columns (3) <strong>and</strong> (4) give the radial<br />

velocities (vr) <strong>and</strong> gas velocity dispersions (σgas) respectively. Column (5) gives the


l<strong>in</strong>e flux of the Hα l<strong>in</strong>e <strong>and</strong> columns (6) <strong>and</strong> (7) show its ratio aga<strong>in</strong>st the fluxes of<br />

the [N II]6585 <strong>and</strong> [S II]total (the total flux of the two [S II] l<strong>in</strong>es) respectively. Column<br />

(8) gives the reduced χ 2 (R 2 ) value of the result<strong>in</strong>g fit.<br />

We repeated the fit for the central row of the galaxy NGC 4335 vary<strong>in</strong>g the set of<br />

free parameters <strong>in</strong> order to estimate the reliability of the fits that we had used. We<br />

found that the fit was stable to with<strong>in</strong> one formal error on all quoted parameters when<br />

the velocities, velocity dispersions <strong>and</strong> fluxes of all parameters were fit <strong>in</strong>dependently.<br />

The signal to noise falls off rapidly outside of the very nuclear regions so it is not<br />

possible to consistently run fits with a large number of free parameters. The results<br />

for the nucleus of NGC 4335 satisfy us that we are justified <strong>in</strong> fix<strong>in</strong>g the parameters<br />

<strong>in</strong> the manner that we have chosen, without add<strong>in</strong>g any obvious biases to our results.<br />

3.3.2 Fits with an additional free component<br />

In many cases, as the very central pixels are reached the fit beg<strong>in</strong>s to do a poorer<br />

job of match<strong>in</strong>g the observed profile. In an attempt to improve the fit to the narrow<br />

centers of the l<strong>in</strong>es we tested a fit for the central spectrum of each galaxy <strong>in</strong>clud<strong>in</strong>g<br />

an additional fit component with <strong>in</strong>dependent velocity, velocity dispersion <strong>and</strong> flux,<br />

along with the orig<strong>in</strong>al set of five Gaussians. The fits to the central spectra are<br />

shown <strong>in</strong> Panel (d) of Figures 3.2 to 3.22 (see key <strong>in</strong> Figure 3.1), (i) exclud<strong>in</strong>g <strong>and</strong><br />

65


(ii) <strong>in</strong>clud<strong>in</strong>g the additional component.<br />

We assessed the effectiveness of <strong>in</strong>clud<strong>in</strong>g this component <strong>in</strong> each galaxy based<br />

on (1) an improvement <strong>in</strong> the mean of the absolute value of the residuals from the<br />

fit ≥ 5% (2) an improvement <strong>in</strong> the reduced χ 2 value of the fit such that (R 2 1 −<br />

R 2 2 )/R2 1<br />

≥ 0.15 <strong>and</strong> (3) an improvement judged by eye <strong>in</strong> the fit compared to the<br />

data. We assigned a score to each galaxy, with one po<strong>in</strong>t available for each of the<br />

three categories. We consider scores of 2 or 3 to be <strong>in</strong>dicative of the presence of a<br />

broad component, a score of 1 <strong>in</strong>dicates the possibility of a broad component, while<br />

we treat a score of 0 as a none detection. The three parameters <strong>and</strong> scores are listed<br />

<strong>in</strong> Table 3.27.<br />

We f<strong>in</strong>d an additional free component improves the fit <strong>in</strong> 62% (N = 13) of the<br />

sample galaxies. In the cases of NGC 2329 <strong>and</strong> NGC 3862 the component appears to<br />

represent a non-flat cont<strong>in</strong>uum. The k<strong>in</strong>ematic parameters for each galaxy <strong>in</strong>clud<strong>in</strong>g<br />

the additional free component are listed <strong>in</strong> Table 3.28 <strong>and</strong> the flux parameters <strong>in</strong><br />

Table 3.29. We present further <strong>in</strong>terpretation of the nature <strong>and</strong> orig<strong>in</strong> of the features<br />

fit by the additional free component <strong>in</strong> §5.3.<br />

66


3.3.3 Quantify<strong>in</strong>g error sources<br />

The STIS data h<strong>and</strong>book (Brown et al., 2002) gives the follow<strong>in</strong>g absolute <strong>and</strong> relative<br />

accuracies applicable to this work: A wavelength absolute calibration error (∆λ offset)<br />

of 0.1 to 0.3 pixels (2.6 to 7.7 km s −1 at 6500˚A) with<strong>in</strong> an exposure, <strong>and</strong> from 0.2 to<br />

0.5 pixels (5.1 to 12.8 km s −1 at 6500˚A) between exposures. An absolute photometry<br />

error of 5% <strong>and</strong> a relative photometry error of 2% with<strong>in</strong> a s<strong>in</strong>gle exposure assum<strong>in</strong>g<br />

a wide slit observation. 5 µm variations <strong>in</strong> slit width along the slit lengths could<br />

result <strong>in</strong> variations of up to 20% <strong>in</strong> flux along the 0. ′′ 1 slit.<br />

In Verdoes Kleijn et al. (2002a) Hα + [N II] fluxes were presented for each nucleus<br />

<strong>in</strong> the sample. The values presented there agree well with the values we f<strong>in</strong>d here,<br />

certa<strong>in</strong>ly given our limited ability to extract comparable apertures <strong>and</strong> with<strong>in</strong> the<br />

20% potential flux errors noted above.<br />

In Section 1 we <strong>in</strong>dicated that a 1.3 km s −1 error could be <strong>in</strong>corporated <strong>in</strong>to the<br />

f<strong>in</strong>al data as a result of shift<strong>in</strong>g the spectra for image comb<strong>in</strong>ation <strong>and</strong> cosmic ray<br />

rejection. This shift is <strong>in</strong>significant compared to other error sources.<br />

In Table 3.26 we showed that by allow<strong>in</strong>g different free parameters with<strong>in</strong> the<br />

s<strong>in</strong>gle-Gaussian-per-l<strong>in</strong>e fit produced changes <strong>in</strong> the measurement <strong>in</strong> velocity of ∼<br />

67


8 km s −1 <strong>and</strong> of ∼ 16 km s −1 <strong>in</strong> velocity dispersion for the nucleus of NGC 4335.<br />

In Table 3.32 we show the effect on the measured velocities <strong>and</strong> velocity dispersions<br />

of the various components for each of the models described <strong>in</strong> the previous section,<br />

aga<strong>in</strong> for the case of NGC 4335. This illustrates that the measured velocities of the<br />

narrow l<strong>in</strong>es may vary by up to ∼ 20 km s −1 (<strong>and</strong> velocity dispersions by as much as<br />

∼ 110 km s −1 ) when additional components <strong>in</strong> the l<strong>in</strong>e shape are taken <strong>in</strong>to account.<br />

In the nuclei of NGC 383 <strong>and</strong> NGC 4335 (represent<strong>in</strong>g cases with blended <strong>and</strong><br />

less blended l<strong>in</strong>es respectively) we repeated the narrow l<strong>in</strong>e fit to the central spec-<br />

trum with 286 different comb<strong>in</strong>ations of <strong>in</strong>put velocity <strong>and</strong> velocity dispersion; vary-<br />

<strong>in</strong>g the velocities over a range of 2000 km s −1 <strong>and</strong> the velocity dispersions over a<br />

range of 6000 km s −1 . In the case of NGC 4335 we found that the velocity varied<br />

by ±10.91 km s −1 <strong>and</strong> the velocity dispersion by just ±0.02 km s −1 . In the case of<br />

NGC 383 we found that the velocity varied by ±13.04 km s −1 <strong>and</strong> the velocity disper-<br />

sion by just ±3.76 km s −1 . There was a systematic effect relat<strong>in</strong>g <strong>in</strong>put <strong>and</strong> output<br />

velocities <strong>in</strong> both cases.<br />

We conclude that reasonable estimates of the genu<strong>in</strong>e errors on each of our mea-<br />

sured parameters are: 5% - 10% on fluxes (dom<strong>in</strong>ated by the effects of variations along<br />

the narrow slits <strong>and</strong> the STIS absolute calibration); <strong>and</strong> ∼ 20 km s −1 on velocities<br />

68


<strong>and</strong> velocity dispersions (dom<strong>in</strong>ated by the fit model dependency of the results).<br />

3.4 Individual galaxy descriptions<br />

Below, we give descriptions of each member of the UGC FR-I sample <strong>in</strong> turn. The<br />

galaxy classifications are taken from the NASA Extragalactic Database, which lists<br />

references <strong>in</strong> which the terms used are described. Descriptions of dust properties <strong>and</strong><br />

radio sources are as presented by Verdoes Kleijn et al. (1999) <strong>and</strong> Xu et al. (2000)<br />

respectively.<br />

NGC 193 (UGC 408) This S0 galaxy has a complex gas morphology with two<br />

lanes apparent <strong>in</strong> the central regions (the most clearly def<strong>in</strong>ed lane has a width :<br />

length = 0.18). It has a core-jet radio morphology on VLA <strong>and</strong> VLBA scales. The<br />

STIS slits were aligned parallel to the galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong><br />

flux properties are listed <strong>in</strong> Table 3.5; the gas does not exhibit a regular rotation<br />

curve, though it does appear dom<strong>in</strong>ated by systematic rather than r<strong>and</strong>om motions.<br />

The fit to the central spectrum is improved by the addition of a broad component.<br />

Data for this galaxy are shown <strong>in</strong> Figure 3.2 (see key <strong>in</strong> Figure 3.1 for an explanation<br />

of these plots).<br />

69


NGC 315 (UGC 597) This elliptical galaxy has a nuclear dust disk (b/a = 0.23).<br />

It has a core-jet radio morphology on VLA <strong>and</strong> VLBA scales. The STIS slits were<br />

aligned parallel to the galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties<br />

are listed <strong>in</strong> Table 3.6; the gas appears to be <strong>in</strong> organized motion, possibly regular<br />

rotation. The fit to the central spectrum is improved by the addition of a broad<br />

component. Data for this galaxy are shown <strong>in</strong> Figure 3.3 (see key <strong>in</strong> Figure 3.1 for<br />

an explanation of these plots).<br />

NGC 383 (UGC 689) This S0 galaxy has a nuclear dust disk (b/a = 0.77). It<br />

has a core-jet radio morphology on VLBA scales, <strong>and</strong> a tw<strong>in</strong>-jet morphology on VLA<br />

scales. The STIS slits were aligned parallel to the galaxy major axis. The central<br />

k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.7; the gas exhibits a regular rotation<br />

profile. In the negative offset side slit there is a dip <strong>in</strong> the velocity dispersion profile<br />

at a position close to the nucleus. The fit to the central spectrum is improved by the<br />

addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.4 (see key<br />

<strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 541 (UGC 1004) This cD S0 galaxy has a nuclear dust disk (b/a = 0.91). It<br />

has a radio core on VLBA scales <strong>and</strong> a core-jet morphology on VLA scales. The STIS<br />

70


slits were aligned to a mean of the position angles of the central isophotes measured<br />

from our WFPC/2 images, which vary considerably. We allowed considerable flexibil-<br />

ity <strong>in</strong> position angle to enable reasonable observ<strong>in</strong>g w<strong>in</strong>dows. The central k<strong>in</strong>ematic<br />

<strong>and</strong> flux properties are listed <strong>in</strong> Table 3.8; the gas does not exhibit a regular rotation<br />

profile. The fit to the central spectrum is not significantly improved by the addition<br />

of a broad component, though the fit improves somewhat when judged by eye. Data<br />

for this galaxy are shown <strong>in</strong> Figure 3.5 (see key <strong>in</strong> Figure 3.1 for an explanation of<br />

these plots).<br />

NGC 741 (UGC 1413) This E0 galaxy has no apparent nuclear dust. It has a<br />

radio core on VLBA scales <strong>and</strong> a core-jet morphology on VLA scales. The STIS slits<br />

were aligned approximately parallel to the galaxy major axis, however a certa<strong>in</strong> degree<br />

of freedom was allowed <strong>in</strong> slit placement to allow reasonable observ<strong>in</strong>g w<strong>in</strong>dows. The<br />

central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.9. Very few po<strong>in</strong>ts had<br />

sufficient signal to noise to obta<strong>in</strong> good fits <strong>in</strong> these data, it has not been <strong>in</strong>cluded<br />

<strong>in</strong> further analysis of global k<strong>in</strong>ematic properties. The fit to the central spectrum is<br />

not improved by the addition of a broad component. Data for this galaxy are shown<br />

<strong>in</strong> Figure 3.6 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

71


UGC 1841 This elliptical galaxy has a nuclear dust disk (b/a ∼ 0.98). It has a<br />

core-jet radio morphology on VLBA <strong>and</strong> VLA scales. The STIS slits were aligned<br />

parallel to the galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed<br />

<strong>in</strong> Table 3.10; the gas does not exhibit a regular rotation profile. The fit to the central<br />

spectrum is improved by the addition of a broad component. Data for this galaxy<br />

are shown <strong>in</strong> Figure 3.7 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 2329 (UGC 3695) This S0 galaxy has a nuclear dust disk (b/a = 0.68).<br />

It has a core-jet radio morphology on VLBA <strong>and</strong> VLA scales. The STIS slits were<br />

aligned parallel to the galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties<br />

are listed <strong>in</strong> Table 3.11; the gas does not exhibit a regular rotation profile. The<br />

fit to the central spectrum is improved by the addition of a broad component which<br />

appears to represent a non-flat cont<strong>in</strong>uum <strong>in</strong> this case. Data for this galaxy are shown<br />

<strong>in</strong> Figure 3.8 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 2892 (UGC 5073) This elliptical galaxy has no apparent nuclear dust. It<br />

has a radio core on VLBA scales <strong>and</strong> a tw<strong>in</strong>-jet morphology on VLA scales. The<br />

STIS slits were aligned approximately parallel to the galaxy major axis, however a<br />

certa<strong>in</strong> degree of freedom was allowed <strong>in</strong> slit placement to allow reasonable observ<strong>in</strong>g<br />

72


w<strong>in</strong>dows. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.12; the gas<br />

does not exhibit a regular rotation profile. The fit to the central spectrum is not<br />

significantly improved by the addition of a broad component. Data for this galaxy<br />

are shown <strong>in</strong> Figure 3.9 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 3801 (UGC 6635) This S0/a galaxy has a complex nuclear dust morphol-<br />

ogy with a large scale dust lane (width : length = 0.12). It has a tw<strong>in</strong>-jet radio<br />

morphology on VLA scales. The STIS slits were aligned parallel to the galaxy major<br />

axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.13; the gas does<br />

not exhibit a regular rotation profile. The fit to the central spectrum is not signif-<br />

icantly improved by the addition of a broad component. Data for this galaxy are<br />

shown <strong>in</strong> Figure 3.10 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 3862 (UGC 6723) This elliptical galaxy has a nuclear dust disk (b/a ∼<br />

0.99). It has a core-jet radio morphology on VLBA <strong>and</strong> VLA scales. The STIS slits<br />

were aligned approximately perpendicular to the radio jet as the nuclear isophotal<br />

position angles are poorly constra<strong>in</strong>ed. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are<br />

listed <strong>in</strong> Table 3.14; the gas does not exhibit a regular rotation profile. The fit to the<br />

central spectrum is improved by the addition of a broad component which appears to<br />

73


epresent a non-flat cont<strong>in</strong>uum <strong>in</strong> this case. Data for this galaxy are shown <strong>in</strong> Figure<br />

3.11 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

UGC 7115 This elliptical galaxy has a nuclear dust disk (b/a ∼ 0.95). It has a<br />

core-jet radio morphology on VLA scales. The STIS slit were aligned approximately<br />

perpendicular to the radio jet as the nuclear isophotal position angles are poorly con-<br />

stra<strong>in</strong>ed, a certa<strong>in</strong> degree of freedom was allowed <strong>in</strong> slit placement to allow reasonable<br />

observ<strong>in</strong>g w<strong>in</strong>dows. This galaxy was observed <strong>in</strong> only one slit position, as we also<br />

required WFPC2 observations of this target <strong>in</strong> order to measure the central photo-<br />

metric properties (see Verdoes Kleijn et al., 2002a). The central k<strong>in</strong>ematic <strong>and</strong> flux<br />

properties are listed <strong>in</strong> Table 3.15; the gas exhibits a regular rotation profile. The<br />

fit to the central spectrum is not significantly improved by the addition of a broad<br />

component. Data for this galaxy are shown <strong>in</strong> Figure 3.12 (see key <strong>in</strong> Figure 3.1 for<br />

an explanation of these plots).<br />

NGC 4261 (UGC 7360) This E2-3 galaxy has a nuclear dust disk (b/a = 0.46).<br />

It has a tw<strong>in</strong>-jet radio morphology on VLBA <strong>and</strong> VLA scales. The STIS slits were<br />

aligned parallel to the galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties<br />

are listed <strong>in</strong> Table 3.16. The nucleus of this galaxy lies closer to one of the side slits<br />

74


(slit one) than the central position, however it is still possible to see a clear rotation<br />

curve along that slit. The fit to the central spectrum is improved by the addition of<br />

a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.13 (see key <strong>in</strong> Figure<br />

3.1 for an explanation of these plots).<br />

NGC 4335 (UGC 7455) This elliptical galaxy has a nuclear dust disk (b/a =<br />

0.41). It has a radio core on VLBA scales <strong>and</strong> a tw<strong>in</strong>-jet morphology on VLA scales.<br />

The STIS slits were aligned parallel to the galaxy major axis. The central k<strong>in</strong>ematic<br />

<strong>and</strong> flux properties are listed <strong>in</strong> Table 3.17; the gas exhibits a regular rotation profile.<br />

In the positive offset side slit there is a dip <strong>in</strong> the velocity dispersion profile at the<br />

position closest to the nucleus. See also Verdoes Kleijn et al. (2002b). The fit to the<br />

central spectrum is improved by the addition of a broad component. Data for this<br />

galaxy are shown <strong>in</strong> Figure 3.14 (see key <strong>in</strong> Figure 3.1 for an explanation of these<br />

plots).<br />

NGC 4374 (M84; UGC 7494) This E1 galaxy has a nuclear dust lane (width :<br />

length = 0.15). It has a core-jet radio morphology on VLBA scales, <strong>and</strong> a tw<strong>in</strong>-jet<br />

morphology on VLA scales. The STIS slits were aligned approximately perpendicular<br />

to the radio jets, which lies close to the major axis of the emission l<strong>in</strong>e gas. The<br />

75


central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.18; the gas exhibits a<br />

regular rotation profile. See also Bower et al. (1998). The fit to the central spectrum<br />

is not significantly improved the addition of a broad component. Data for this galaxy<br />

are shown <strong>in</strong> Figure 3.15 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 4486 (M87; UGC 7654) This elliptical galaxy has an irregular nuclear dust<br />

morphology. It has a core-jet radio morphology on VLBA <strong>and</strong> VLA scales. The STIS<br />

slits were aligned to trace morphological features <strong>in</strong> the emission l<strong>in</strong>e gas across the<br />

nuclear region of this galaxy. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong><br />

Table 3.19; the gas exhibits a regular rotation profile. The fit to the central spectrum<br />

is improved by the addition of a broad component. Data for this galaxy are shown<br />

<strong>in</strong> Figure 3.16 (see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 5127 (UGC 8419) This elliptical peculiar galaxy has a nuclear dust lane<br />

(width : length = 0.25). It has a radio core on VLBA scales <strong>and</strong> a tw<strong>in</strong>-jet morphol-<br />

ogy on VLA scales. The STIS slits were aligned parallel to the galaxy major axis.<br />

The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.20; the gas exhibits a<br />

regular rotation profile. The fit to the central spectrum is not significantly improved<br />

by the addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.17<br />

76


(see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 5141 (UGC 8433) This S0 galaxy has a nuclear dust lane (width : length =<br />

0.25). It has a core-jet radio morphology on VLBA scales <strong>and</strong> a tw<strong>in</strong>-jet morphology<br />

on VLA scales. The STIS slits were aligned parallel to the galaxy major axis. The<br />

central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.21; the gas exhibits a<br />

regular rotation profile. The fit to the central spectrum is improved by the addition<br />

of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.18 (see key <strong>in</strong><br />

Figure 3.1 for an explanation of these plots).<br />

NGC 5490 (UGC 9058) This elliptical galaxy has a nuclear dust lane (width :<br />

length = 0.35). It has a core-jet radio morphology on VLBA scales <strong>and</strong> a tw<strong>in</strong>-jet<br />

morphology on VLA scales. The STIS slits were aligned parallel to the galaxy major<br />

axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.22; the gas does<br />

not exhibit a regular rotation profile. The fit to the central spectrum is improved by<br />

the addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.19<br />

(see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

77


NGC 7052 (UGC 11718) This elliptical galaxy has a nuclear dust disk (b/a =<br />

0.30). It has a tw<strong>in</strong>-jet radio morphology on VLBA scales <strong>and</strong> a core-jet morphology<br />

on VLA scales. The STIS slits were aligned parallel to the galaxy major axis. The<br />

central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.23; the gas exhibits a regular<br />

rotation profile. The fit to the central spectrum is not significantly improved by the<br />

addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.20 (see<br />

key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

UGC 12064 This S0 galaxy has a nuclear dust disk (b/a = 0.54). It has a tw<strong>in</strong>-jet<br />

radio morphology on VLA scales. The STIS slits were aligned parallel to the dust<br />

disk major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.24;<br />

the gas exhibits a regular rotation profile. The fit to the central spectrum is improved<br />

by the addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.21<br />

(see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

NGC 7626 (UGC 12531) This elliptical peculiar galaxy has a nuclear dust lane<br />

(width : length = 0.17). It has a core-jet radio morphology on VLBA scales <strong>and</strong><br />

a tw<strong>in</strong>-jet morphology on VLA scales. The STIS slits were aligned parallel to the<br />

galaxy major axis. The central k<strong>in</strong>ematic <strong>and</strong> flux properties are listed <strong>in</strong> Table 3.25;<br />

78


the gas exhibits a regular rotation profile. The fit to the central spectrum is improved<br />

by the addition of a broad component. Data for this galaxy are shown <strong>in</strong> Figure 3.22<br />

(see key <strong>in</strong> Figure 3.1 for an explanation of these plots).<br />

3.5 Interpretation <strong>and</strong> Discussion<br />

In our <strong>in</strong>itial <strong>in</strong>terpretation we have focussed on underst<strong>and</strong><strong>in</strong>g the general parameters<br />

of the data set. We will undertake more detailed analyses <strong>in</strong> future work that we<br />

outl<strong>in</strong>e <strong>in</strong> §6 below. Here, we first describe the categorization of sources as rotat<strong>in</strong>g<br />

<strong>and</strong> non-rotat<strong>in</strong>g systems based on the observed k<strong>in</strong>ematics (§5.1). We then discuss<br />

the ionization states of the nuclear regions (§5.2). We go on to discuss the presence<br />

of broad components <strong>in</strong> these nuclei <strong>and</strong> a more detailed analysis of the l<strong>in</strong>e shapes<br />

(§5.3).<br />

3.5.1 Rotators <strong>and</strong> non-rotators<br />

By <strong>in</strong>spect<strong>in</strong>g maps of the central k<strong>in</strong>ematics <strong>and</strong> the velocity profiles along each slit<br />

(as presented above <strong>in</strong> figures 3.2 to 3.22), we have classified, by eye, the galaxies<br />

<strong>in</strong>to two classes: rotators <strong>and</strong> non-rotators. Rotators are systems where we see pat-<br />

terns rem<strong>in</strong>iscent of rotation curves; <strong>in</strong> non-rotators we f<strong>in</strong>d no such patterns - the<br />

79


k<strong>in</strong>ematics seem either irregular or organized <strong>in</strong> some manner that does not represent<br />

regular rotation. We do not <strong>in</strong>clude NGC 741 <strong>in</strong> discussions of k<strong>in</strong>ematics as very<br />

few po<strong>in</strong>ts were well fit dur<strong>in</strong>g our analysis. We classify 67% (N = 14/21) of the<br />

UGC FR-I galaxies as rotators. 73% of galaxies with dust disks (N = 8/11), 100%<br />

of galaxies with dust lanes (N = 5/5) <strong>and</strong> 50% of galaxies with complex dust or no<br />

dust (N = 2/4) are rotators.<br />

We have made use of the mean velocity dispersion<br />

σ100pc = 1<br />

N<br />

80<br />

�<br />

σi : xi ≤ 100pc, (3.4)<br />

<strong>and</strong> the difference <strong>in</strong> mean velocities on each side of the nucleus<br />

�<br />

��<br />

� ⎛<br />

� 1 �<br />

∆100pc = �<br />

� vi : −100pc ≤ xi < 0 − ⎝<br />

� N1 i<br />

1<br />

⎞�<br />

�<br />

�<br />

�<br />

vj : 0 < xj ≤ 100pc⎠�<br />

�<br />

N2 j<br />

�<br />

i<br />

(3.5)<br />

with<strong>in</strong> 100 pc of the brightest pixel as illustrative of the global k<strong>in</strong>ematic pa-<br />

rameters along the central slit 2 . These parameters are shown <strong>in</strong> Table 3.30 for each<br />

galaxy, along with the mean properties for each class of galaxy. In Figure 3.23 we<br />

2 For NGC 4261 we used the offset slit closest to the nucleus as expla<strong>in</strong>ed above.


show the relationship between the two parameters for each galaxy. It is clear that<br />

the non-rotators lie at the bottom of the ∆100pc distribution, so it is conceivable that<br />

irregular motions conceal any rema<strong>in</strong><strong>in</strong>g signs of rotation <strong>in</strong> these cases. We note that<br />

we detect rotation <strong>in</strong> all cases where the disk is ∼ > 25 ◦ from face on, other than those<br />

cases where the dust morphology is highly irregular. The only exception is NGC 5490<br />

where the signal to noise was particularly poor.<br />

In Figure 3.24 we show the values of ∆100pc plotted as a function of dust disk axis<br />

ratio, or dust lane width to length ratio; if the dust were all <strong>in</strong> circular disks this<br />

would be an <strong>in</strong>dicator of disk <strong>in</strong>cl<strong>in</strong>ation. We <strong>in</strong>cluded l<strong>in</strong>es show<strong>in</strong>g an <strong>in</strong>dication<br />

of the projection of several values of ∆100pc at different disk <strong>in</strong>cl<strong>in</strong>ations through the<br />

relation<br />

�<br />

�<br />

�<br />

�<br />

∆obs ≈ ∆<strong>in</strong>t.s<strong>in</strong>i ≈ ∆<strong>in</strong>t × 1 −<br />

81<br />

� �2 b<br />

, (3.6)<br />

a<br />

Where ∆obs is the observed ∆100pc parameter at a given <strong>in</strong>cl<strong>in</strong>ation, ∆<strong>in</strong>t is the<br />

presumed <strong>in</strong>tr<strong>in</strong>sic rotation of the disk <strong>and</strong> b/a is the axis (or width:length) ratio.<br />

This is not a rigorously valid means of project<strong>in</strong>g these values, but it serves our<br />

purposes of illustration here.


It is easy to see that the non-rotators with face on disks would have to be <strong>in</strong>tr<strong>in</strong>si-<br />

cally rotat<strong>in</strong>g very fast for their rotation to register over the r<strong>and</strong>om motions <strong>in</strong> these<br />

cases. From the observations of systems at greater <strong>in</strong>cl<strong>in</strong>ations we have no cause to<br />

expect any disks to be rotat<strong>in</strong>g that fast. In a similar manner we plot the values of<br />

σ100pc aga<strong>in</strong>st dust disk axis ratio, or dust lane width to length ratio <strong>in</strong> Figure 3.25.<br />

Here we see no clear trend <strong>in</strong> velocity dispersion with axis ratio.<br />

We f<strong>in</strong>d no significant systematic differences between the typical values σ100pc be-<br />

tween the two classes. Us<strong>in</strong>g the Kolmogorov-Smirnov Test to assess the two groups<br />

we f<strong>in</strong>d a probability of 0.93 that the distributions of velocity dispersions were drawn<br />

from the same underly<strong>in</strong>g distribution. Apply<strong>in</strong>g the same test to the ∆100pc param-<br />

eter gives only a 0.08 probability that these were drawn from the same distribution.<br />

This evidence suggests to us that rotators <strong>and</strong> non-rotators represent the same<br />

type of k<strong>in</strong>ematic systems, with observational effects such as <strong>in</strong>cl<strong>in</strong>ation <strong>and</strong> dust<br />

properties limit<strong>in</strong>g our ability to detect the rotation of those systems where we do<br />

not. We conclude that a model of a rotat<strong>in</strong>g gas disk with significant r<strong>and</strong>om motions<br />

is compatible with all of the observations.<br />

82


3.5.2 Flux ratios <strong>and</strong> ionization<br />

In Figure 3.26 we show the [N II] flux as a function of Hα narrow l<strong>in</strong>e flux for each<br />

central spectrum. The values are compatible with values typically found for photo-<br />

ionization <strong>and</strong> shock models (see, for example, Doptia et al., 1997). The unusually<br />

low ratios shown <strong>in</strong> two nuclei (NGC 383 <strong>and</strong> M84) are likely a consequence of the<br />

high degree of blend<strong>in</strong>g of the l<strong>in</strong>es <strong>in</strong> these observations (see panel (d) of Figures 3.4<br />

<strong>and</strong> 3.15), rather than any underly<strong>in</strong>g physics.<br />

While we are satisfied that our data have not produced any results that are <strong>in</strong>-<br />

compatible with reasonable parameters, detailed model<strong>in</strong>g is required to underst<strong>and</strong><br />

the various ionization mechanisms at work <strong>in</strong> each <strong>in</strong>dividual case. We <strong>in</strong>tend to<br />

undertake this type of model<strong>in</strong>g <strong>and</strong> present the outcomes <strong>in</strong> future work.<br />

3.5.3 Are we observ<strong>in</strong>g broad l<strong>in</strong>es?<br />

The fit to the central spectrum is improved <strong>in</strong> 62% of the galaxies by the <strong>in</strong>clusion<br />

of an additional free Gaussian component (see §4.2). Each of these fits resulted <strong>in</strong><br />

the supplementary component be<strong>in</strong>g centered redwards of the Hα l<strong>in</strong>e with a velocity<br />

dispersion between about two <strong>and</strong> ten times that of the narrow l<strong>in</strong>es; thus we describe<br />

this feature as a broad fit component. We identify these broad components <strong>in</strong> 73%<br />

83


of galaxies with dust disks (N=8/11), 60% of galaxies with dust lanes (N=3/5), 67%<br />

of galaxies with irregular dust (N=2/3) <strong>and</strong> 0% of galaxies with no dust (N=0/2).<br />

If we make a flux cut <strong>in</strong> Hα we f<strong>in</strong>d broad components <strong>in</strong> 40% of nuclei with<br />

1×10 −15 ≤ F(Hα) ≤ 1×10 −14 , <strong>in</strong> 55% of nuclei with 1×10 −14 ≤ F(Hα) ≤ 5×10 −14<br />

<strong>and</strong> <strong>in</strong> 100% of nuclei with F(Hα) ≥ 5 × 10 −14 . This detection trend with flux is<br />

reflected <strong>in</strong> Figure 3.26. This suggests that the detection of nuclear broad components<br />

is somewhat flux (<strong>and</strong> therefore signal to noise) dependent across the sample.<br />

The broad components could orig<strong>in</strong>ate either as an artifact of attempt<strong>in</strong>g to fit<br />

Gaussians to non-Gaussian l<strong>in</strong>e profiles, or from a physical source – such as a broad<br />

l<strong>in</strong>e region or a change <strong>in</strong> the characteristics of the gas as the <strong>in</strong>ner regions of the<br />

disk are approached.<br />

We detect broad components only <strong>in</strong> the central few pixels, this could be a con-<br />

sequence of either the fall <strong>in</strong> signal to noise or that the component is an unresolved<br />

source. It is important to note as a consequence of this, that fitt<strong>in</strong>g s<strong>in</strong>gle Gaus-<br />

sians to each l<strong>in</strong>e samples a different part of the l<strong>in</strong>e shape as the central pixels are<br />

approached.<br />

In Table 3.31 we show the mean properties of the broad components <strong>and</strong> compare<br />

84


them to the samples of LINERS by Ho et al. (1997) <strong>and</strong> <strong>Radio</strong> <strong>Galaxies</strong> summarized<br />

by Sulentic et al. (2000). These comparisons show that our broad components are<br />

compatible with the broad l<strong>in</strong>es seen <strong>in</strong> LINERs <strong>and</strong> that the observed offsets from<br />

the narrow l<strong>in</strong>e components are compatible with those observed <strong>in</strong> samples of radio<br />

loud galaxies.<br />

3.5.4 Constra<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e shapes<br />

In order to better establish the l<strong>in</strong>e shape, we <strong>in</strong>vestigated the profiles from the nucleus<br />

of NGC 4335, which has a relatively good signal to noise <strong>and</strong> relatively non-blended<br />

l<strong>in</strong>es (Verdoes Kleijn et al., 2002b).<br />

We first <strong>in</strong>vestigated the profile of the two [S II] l<strong>in</strong>es, as they are less entangled<br />

than the Hα + [N II] complex. We fit these two l<strong>in</strong>es with a vary<strong>in</strong>g number of<br />

Gaussians per l<strong>in</strong>e. The m<strong>in</strong>imum <strong>in</strong> the reduced χ 2 parameter result<strong>in</strong>g from each<br />

of these fits lay between two <strong>and</strong> three Gaussians per l<strong>in</strong>e. We extended the two<br />

Gaussian per l<strong>in</strong>e model to fit the entire profile of the five emission l<strong>in</strong>es. By then<br />

test<strong>in</strong>g various sets of free parameters we were able to discover an optimal set.<br />

Fitt<strong>in</strong>g these models quickly illustrated that the additional broad component is a<br />

very strongly favored feature; <strong>in</strong> any case where it was possible for the parameters to<br />

85


contrive to create a broad component they did so. Table 3.32 shows the k<strong>in</strong>ematic pa-<br />

rameters <strong>and</strong> reduced χ 2 values from five comb<strong>in</strong>ations of fit parameters that produce<br />

dist<strong>in</strong>ct fits. These were:<br />

1. Narrow l<strong>in</strong>es only: The orig<strong>in</strong>al 5 Gaussian model (one Gaussian for each of<br />

the follow<strong>in</strong>g 5 l<strong>in</strong>es: [N II]6550, Hα, [N II]6585, [S II]6718, [S II]6733), with a s<strong>in</strong>gle<br />

value of velocity <strong>and</strong> velocity dispersion for all l<strong>in</strong>es.<br />

2. Additional broad component: The same as the Narrow l<strong>in</strong>es only model, with an<br />

additional broad component, with an <strong>in</strong>dependent velocity, velocity dispersion<br />

<strong>and</strong> flux.<br />

3. Flux-constra<strong>in</strong>ed Broad Bases (i): The same as model 2, with an additional set<br />

of 5 Gaussians, represent<strong>in</strong>g the broader w<strong>in</strong>gs (Broad Bases). This new set of<br />

l<strong>in</strong>es had a s<strong>in</strong>gle velocity <strong>and</strong> velocity dispersion <strong>and</strong> the velocity was fixed to<br />

be the same as for the other l<strong>in</strong>es. The fluxes of each l<strong>in</strong>e <strong>in</strong> the second set of<br />

Gaussians was fixed at a constant ratio to its counterpart <strong>in</strong> the first set, based<br />

on the mean ratio measured <strong>in</strong> the fit of two Gaussians per l<strong>in</strong>e to the two [S II]<br />

l<strong>in</strong>es as described above.<br />

4. Flux-constra<strong>in</strong>ed Broad Bases (ii): The same as model 3, however <strong>in</strong> this case<br />

the velocity of the set of broad bases was allowed to vary from that of the narrow<br />

86


l<strong>in</strong>es.<br />

5. Flux-unconstra<strong>in</strong>ed Broad Bases: the same as model 3, however <strong>in</strong> this case the<br />

l<strong>in</strong>es <strong>in</strong> both sets were able to vary <strong>in</strong>dependently <strong>in</strong> flux, other than the fixed<br />

1:3 ratio between the two [N II] l<strong>in</strong>es <strong>in</strong> each set.<br />

We conclude, as the Flux-constra<strong>in</strong>ed Broad Bases (ii) model not only produces<br />

the most satisfy<strong>in</strong>g fit judged by eye, but also the lowest reduced χ 2 value, that this<br />

model is likely to most closely represent the l<strong>in</strong>e profile present <strong>in</strong> the central regions.<br />

The broad bases <strong>in</strong> this case are able to represent an asymmetric red w<strong>in</strong>g on each<br />

l<strong>in</strong>e, but they do not reduce the importance of the broad component <strong>in</strong> the fit.<br />

3.6 Conclusions<br />

In this chapter we presented the medium resolution spectra of the 21 galaxies <strong>in</strong> our<br />

UGC FR-I sample, obta<strong>in</strong>ed by ourselves <strong>and</strong> others us<strong>in</strong>g STIS. Data were obta<strong>in</strong>ed<br />

for three parallel slit positions on each nucleus (other than UGC 7115, which was<br />

observed <strong>in</strong> only one slit position).<br />

We f<strong>in</strong>d that all nuclei are compatible with a s<strong>in</strong>gle k<strong>in</strong>ematic description: a<br />

rotat<strong>in</strong>g gas disk, where r<strong>and</strong>om motions are always important. We observe patterns<br />

87


em<strong>in</strong>iscent of rotation <strong>in</strong> 67% of the nuclei, <strong>in</strong> the rema<strong>in</strong>der the non-detection can be<br />

accounted for as the systems are either face on, have complex central morphologies (as<br />

judged from the nuclear dust distribution) or, <strong>in</strong> the case of NGC 5490, particularly<br />

poor signal to noise.<br />

We f<strong>in</strong>d that the <strong>in</strong>clusion of an additional fit component with unconstra<strong>in</strong>ed<br />

parameters improves our fit to the nuclear spectrum <strong>in</strong> 62% of the galaxies, where<br />

it fits <strong>in</strong> every case as a broad component <strong>in</strong> the vic<strong>in</strong>ity of Hα <strong>and</strong> [N II]. The<br />

detection of the broad component is related to the l<strong>in</strong>e flux (<strong>and</strong> therefore the signal<br />

to noise). The broad components have a mean velocity dispersion of 1349±345 km s −1<br />

<strong>and</strong> are redshifted from the narrow l<strong>in</strong>e components (assum<strong>in</strong>g an orig<strong>in</strong> <strong>in</strong> Hα) by<br />

486 ± 443 km s −1 .<br />

The broad component could be a consequence of non-Gaussian l<strong>in</strong>e profiles with<br />

broad w<strong>in</strong>gs, which would be biased toward the brightest [N II] l<strong>in</strong>e (redwards of<br />

Hα). However, our more detailed analysis of l<strong>in</strong>e shape shows that it is very hard<br />

to reproduce this effect by <strong>in</strong>clud<strong>in</strong>g broad (even asymmetric) w<strong>in</strong>gs on each l<strong>in</strong>e,<br />

suggest<strong>in</strong>g the broad component may <strong>in</strong>deed have a physical orig<strong>in</strong>.<br />

The measured Hα to [N II] ratios for the narrow components <strong>in</strong> the central spectra<br />

are consistent with st<strong>and</strong>ard photo-ionization or shock-ionization models (for example,<br />

Doptia et al., 1997) other than two examples where the l<strong>in</strong>es are highly blended<br />

<strong>and</strong> may be lead<strong>in</strong>g us to mislead<strong>in</strong>g fits <strong>in</strong> the very center.<br />

88


Table 3.1. HST-STIS G750M observ<strong>in</strong>g log for this program.<br />

Galaxy Visit ID Aperture Offsets Exposure times Brightest Row<br />

( ′′ ) (seconds)<br />

(1) (2) (3) (4) (5) (6)<br />

NGC 193 o5ee01 52x0.2 -0.20, 0.00, +0.20 1700, 1300, 1560 300<br />

NGC 315 o5ee02 52x0.1 -0.10, 0.00, +0.10 1082, 1000, 1098 598<br />

NGC 383 o5ee03 52x0.1 -0.10, 0.00, +0.10 1082, 1000, 1098 599<br />

NGC 541 o5ee04 52x0.2 -0.20, 0.00, +0.20 1442, 1300, 1500 300<br />

NGC 741 o5ee05 52x0.2 -0.20, 0.00, +0.20 1667, 1145, 1500 300<br />

UGC 1841 o5ee06 52x0.2 -0.20, 0.00, +0.20 1870, 1300, 1560 300<br />

NGC 2329 o5ee07 52x0.2 -0.20, 0.00, +0.20 1967, 1245, 1560 300<br />

NGC 2892 o5ee09 52x0.2 -0.20, 0.00, +0.20 2037, 1300, 1560 299<br />

NGC 3801 o5ee10 52x0.2 -0.20, 0.00, +0.20 1699, 1292, 1560 305<br />

NGC 3862 o5ee11 52x0.2 -0.20, 0.00, +0.20 900, 731, 1066 300<br />

UGC 7115 o5ee22 52x0.2 0.00 2058 299<br />

NGC 4261 o5ee12 52x0.1 -0.10, 0.00, +0.10 994, 1000, 1000 601<br />

NGC 4335 o5ee13 52x0.2 -0.20, 0.00, +0.20 2154, 1300, 1560 300<br />

NGC 4374 o3wn01 52x0.2 -0.20, 0.00, +0.20 2245, 2600, 2600 600<br />

NGC 4486 o67z01/2 52x0.2 -0.20, 0.00, +0.20 1708, 1380, 1708 601<br />

NGC 5127 o5ee15 52x0.2 -0.20, 0.00, +0.20 1660, 1000, 1500 303<br />

NGC 5141 o5ee16 52x0.2 -0.20, 0.00, +0.20 1968, 1300, 1560 300<br />

NGC 5490 o5ee17 52x0.2 -0.20, 0.00, +0.20 1590, 1300, 1560 299<br />

NGC 7052 o5ee18 52x0.1 -0.10, 0.00, +0.10 1747, 1300, 1500 600<br />

UGC 12064 o5ee20 52x0.1 -0.10, 0.00, +0.10 1532, 1000, 1500 599<br />

NGC 7626 o5ee19 52x0.2 -0.20, 0.00, +0.20 1905, 1263, 1560 300<br />

Note. — Col. (1): NGC/UGC Number; Col. (2): Root name for<br />

the HST visit <strong>and</strong> data sets; Col. (3): HST/STIS aperture used; Col.<br />

(4): Slit positions with offsets perpendicular to the slit direction, given<br />

relative to the central slit position. UGC 7115 was observed <strong>in</strong> only<br />

one position. Further data not <strong>in</strong>cluded here is available for NGC 4374<br />

(M84) <strong>and</strong> NGC 4486 (M87); Col. (5): Exposure times <strong>in</strong> each offset<br />

position. For each position two observations were obta<strong>in</strong>ed separated<br />

by 0. ′′ 2028 along the direction of the slit, the comb<strong>in</strong>ed exposure time is<br />

shown; Col. (6): Row number <strong>in</strong> the f<strong>in</strong>al x2d file of the brightest row.<br />

89


Table 3.2. HST/STIS Instrumental properties for the configurations used.<br />

Grat<strong>in</strong>g Aperture Slit Width B<strong>in</strong>n<strong>in</strong>g Wavelength Covered λ Scale Spatial Scale<br />

( ′′ ) (˚A ... ˚A) (˚A/ pixel) ( ′′ / pixel)<br />

(1) (2) (3) (4) (5) (6) (7)<br />

G750M 52x0.1 0.1 2 × 1 6482 ... 7054 1.108 0.05<br />

G750M 52x0.2 0.2 2 × 2 6482 ... 7054 1.108 0.1<br />

G750M 52x0.2 (M84) 0.2 1 × 1 6295 ... 6867 0.554 0.05<br />

G750M 52x0.2 (M87) 0.2 1 × 1 6295 ... 6867 0.554 0.05<br />

Note. — Col. (1): HST/STIS Grat<strong>in</strong>g Used; Col. (2): HST/STIS Aperture<br />

Used; Col. (3): The slit width of the chosen aperture; Col. (4): The degree<br />

of on chip b<strong>in</strong>n<strong>in</strong>g used given as b<strong>in</strong>axis1× b<strong>in</strong>axis2 (wavelength by spatial<br />

b<strong>in</strong>n<strong>in</strong>g); Col. (5): The m<strong>in</strong>imum <strong>and</strong> maximum wavelengths on the CCD chip<br />

at that central wavelength position; Col. (6) The wavelength scale per b<strong>in</strong>ned<br />

pixel; Col. (7) The spatial scale per b<strong>in</strong>ned pixel. Further details of HST/STIS<br />

configurations can be found <strong>in</strong> Kimble, et al. (1998).<br />

90


Table 3.3. Position angles of various axes.<br />

Galaxy Major Axis <strong>Radio</strong> Axis Dust Axis STIS Slits Target ∆PA<br />

( ◦ N ↩→ E) ( ◦ N ↩→ E) ( ◦ N ↩→ E) ( ◦ N ↩→ E) ( ◦ )<br />

(1) (2) (3) (4) (5) (6) (7)<br />

NGC 193 58 104 0 57.9 � M.Ax. 0.1<br />

NGC 315 39 130 40 -143.8 � M.Ax. 2.8<br />

NGC 383 144 162 138 144.1 � M.Ax. 0.1<br />

NGC 541 143 76 · · · -85.6 · · · · · ·<br />

NGC 741 92 · · · · · · -107.4 � M.Ax. † 19.4<br />

UGC 1841 91 50 · · · 90.0 � M.Ax. 1.0<br />

NGC 2329 171 150 174 170.8 � M.Ax. 0.2<br />

NGC 2892 164 52 · · · 142.0 � M.Ax. † 22.0<br />

NGC 3801 121 121 24 121.1 � M.Ax. 0.1<br />

NGC 3862 25 30 · · · 122.3 ⊥ Jet 2.3<br />

UGC 7115 91 116 175 -174.4 ⊥ Jet † 20.4<br />

NGC 4261 155 87 163 157.9 � M.Ax. 2.9<br />

NGC 4335 156 82 158 -32.5 � M.Ax. 8.5<br />

NGC 4374 128 1 79 104.0 ⊥ Jet 13.0<br />

NGC 4486 128 112 · · · 164.7 · · · · · ·<br />

NGC 5127 68 118 48 68.0 � M.Ax. 0.0<br />

NGC 5141 65 12 88 71.9 � M.Ax. 6.9<br />

NGC 5490 1 75 143 -173.9 � M.Ax. 5.1<br />

NGC 7052 64 23 65 63.6 � M.Ax. 0.4<br />

UGC 12064 39 11 171 170.6 � Dust 0.4<br />

NGC 7626 171 44 167 170.8 � M.Ax. 0.2<br />

Note. — Col. (1): NGC/UGC Name; Col. (2): Position angles of the major axes just<br />

outside the central dust distributions; Col. (3): Position angles of the radio jet axes on<br />

arcsecond scales or smaller; Col. (4): Position angles of the central dust distributions;<br />

Col. (5): Position angles of the STIS slits on the nucleus; Col. (6): The target orientation<br />

of the STIS slits (� M.Ax.: Parallel to the Major Axis; � Dust: Parallel to the Dust<br />

Axis; ⊥ Jet: Perpendicular to the radio jet; † Additional flexibility allowed to reduce<br />

schedul<strong>in</strong>g constra<strong>in</strong>ts); Col. (7): Offset <strong>in</strong> degrees of the STIS slits from the target<br />

orientation.<br />

References. — Data for Columns 3 - 5 taken from Verdoes Kleijn, et al. (1999)<br />

91


Table 3.4. Spectral L<strong>in</strong>es <strong>in</strong> the region of Hα.<br />

Ion Ref. Transition λair λvac<br />

(˚A) (˚A)<br />

(1) (2) (3) (4) (5)<br />

[N II] (a) 3 P1 − 1 D2 6548.05 6549.86<br />

Hα (b) 6562.80 6564.61<br />

[N II] (a) 3 P2 − 1 D2 6583.39 6585.21<br />

[S II] (a) 4 S3/2 − 2 D5/2 6716.44 6718.29<br />

[S II] (a) 4 S3/2 − 2 D3/2 6730.81 6732.67<br />

Note. — Col. (1): Ion responsible for the l<strong>in</strong>e;<br />

Col. (2): Wavelength reference; Col. (3): Transition<br />

configuration terms; Col. (4): Air wavelength;<br />

Col. (5): Vacuum wavelength. Note<br />

that the value for Hα is computed from the <strong>in</strong>tensity<br />

weighted mean of f<strong>in</strong>e structure l<strong>in</strong>es at<br />

λair = 6562.7247 <strong>and</strong> λair = 6562.8516 with relative<br />

<strong>in</strong>tensities of 120 <strong>and</strong> 180 respectively.<br />

References. — (a) Wallerste<strong>in</strong>, et al. (2001);<br />

(b) Reader & Corliss (1998)<br />

92


Table 3.5. NGC 193: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

2 -0.9128 4334 ± 30 135 ± 30 6.6 ± 2.9 1.7 ± 0.9 1.2 ± 0.7 3.79<br />

3 -0.8114 4270 ± 30 121 ± 32 6.9 ± 3.3 1.5 ± 1.0 0.2 ± 0.3 3.17<br />

4 -0.7099 4323 ± 22 124 ± 23 10.6 ± 4.0 1.5 ± 0.7 0.1 ± 0.2 3.90<br />

5 -0.6085 4390 ± 7 40 ± 7 7.8 ± 2.3 1.4 ± 0.6 0.1 ± 0.2 3.23<br />

6 -0.5071 4602 ± 42 233 ± 41 12.9 ± 4.5 0.0 ± 0.3 1.8 ± 0.8 2.83<br />

7 -0.4057 4371 ± 10 67 ± 10 7.4 ± 2.3 1.5 ± 0.6 1.2 ± 0.5 3.67<br />

8 -0.3043 4402 ± 9 48 ± 9 6.2 ± 2.2 1.1 ± 0.5 0.9 ± 0.5 3.46<br />

9 -0.2028 4369 ± 23 210 ± 18 24.7 ± 4.4 1.2 ± 0.3 1.3 ± 0.3 3.28<br />

10 -0.1014 4344 ± 9 132 ± 9 12.5 ± 2.8 2.9 ± 0.7 3.0 ± 0.7 3.49<br />

11 0.0000 4336 ± 7 121 ± 7 18.3 ± 2.8 2.8 ± 0.5 2.2 ± 0.4 3.66<br />

12 0.1014 4340 ± 8 128 ± 8 18.6 ± 2.9 2.7 ± 0.5 1.6 ± 0.3 3.50<br />

13 0.2028 4374 ± 6 85 ± 6 18.0 ± 2.7 1.8 ± 0.3 1.1 ± 0.2 3.11<br />

14 0.3043 4343 ± 7 86 ± 7 19.2 ± 3.1 1.3 ± 0.3 1.0 ± 0.2 2.77<br />

15 0.4057 4298 ± 14 97 ± 14 8.0 ± 2.6 2.6 ± 1.0 0.2 ± 0.3 2.52<br />

16 0.5071 4309 ± 10 64 ± 10 8.0 ± 2.3 1.5 ± 0.6 1.0 ± 0.4 3.05<br />

17 0.6085 4303 ± 8 66 ± 8 9.9 ± 2.3 1.7 ± 0.5 0.9 ± 0.3 2.96<br />

18 0.7099 4317 ± 6 47 ± 6 13.3 ± 2.7 0.5 ± 0.2 0.6 ± 0.2 2.95<br />

19 0.8114 4331 ± 8 45 ± 7 10.8 ± 2.9 0.6 ± 0.3 0.2 ± 0.1 3.50<br />

20 0.9128 4390 ± 31 169 ± 29 5.7 ± 3.1 3.2 ± 1.9 1.6 ± 1.1 3.42<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 4425 ± 41 164 ± 38 7.2 ± 4.0 2.5 ± 1.6 0.4 ± 0.5 2.62<br />

4 -0.7099 4336 ± 10 75 ± 10 10.5 ± 3.1 1.9 ± 0.7 0.8 ± 0.4 2.41<br />

5 -0.6085 4353 ± 10 96 ± 10 13.4 ± 3.1 1.9 ± 0.5 1.4 ± 0.4 2.58<br />

6 -0.5071 4345 ± 18 163 ± 17 22.8 ± 4.5 1.2 ± 0.3 1.0 ± 0.3 2.81<br />

7 -0.4057 4391 ± 22 178 ± 18 22.4 ± 4.7 1.0 ± 0.3 1.7 ± 0.4 2.86<br />

8 -0.3043 4331 ± 39 223 ± 31 17.3 ± 4.9 1.4 ± 0.5 1.6 ± 0.6 2.78<br />

9 -0.2028 4551 ± 15 274 ± 12 54.9 ± 6.3 2.3 ± 0.3 2.1 ± 0.3 2.61<br />

10 -0.1014 4560 ± 10 444 ± 9 205.9 ± 13.8 3.2 ± 0.2 2.0 ± 0.2 3.16<br />

11 0.0000 4481 ± 7 437 ± 6 316.4 ± 16.3 3.5 ± 0.2 1.8 ± 0.1 3.89<br />

12 0.1014 4308 ± 5 178 ± 4 74.1 ± 5.0 2.5 ± 0.2 1.6 ± 0.1 2.87<br />

13 0.2028 4339 ± 10 135 ± 9 16.0 ± 3.4 2.2 ± 0.6 3.4 ± 0.8 2.33<br />

14 0.3043 4323 ± 12 109 ± 11 10.1 ± 3.0 2.1 ± 0.8 3.5 ± 1.2 2.67<br />

15 0.4057 4336 ± 9 51 ± 8 11.2 ± 3.0 0.9 ± 0.4 0.3 ± 0.2 2.50<br />

16 0.5071 4288 ± 26 159 ± 25 17.0 ± 4.4 1.0 ± 0.4 0.9 ± 0.4 2.88<br />

17 0.6085 4314 ± 25 137 ± 24 7.9 ± 3.3 2.4 ± 1.2 1.9 ± 1.0 2.97<br />

18 0.7099 4331 ± 15 80 ± 16 11.4 ± 3.6 1.0 ± 0.5 0.3 ± 0.2 2.90<br />

20 0.9128 4110 ± 28 158 ± 24 11.4 ± 3.5 0.1 ± 0.3 2.3 ± 0.9 2.96<br />

21 1.0142 4483 ± 39 200 ± 33 8.7 ± 3.8 3.0 ± 1.5 0.7 ± 0.6 2.86<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 4366 ± 10 75 ± 9 11.1 ± 2.7 1.4 ± 0.4 0.4 ± 0.2 3.19<br />

2 -0.9128 4380 ± 10 80 ± 10 8.5 ± 2.4 1.8 ± 0.6 1.1 ± 0.4 3.07<br />

7 -0.4057 4450 ± 13 101 ± 13 4.6 ± 2.5 3.5 ± 2.0 3.7 ± 2.1 2.81<br />

8 -0.3043 4466 ± 9 84 ± 9 4.2 ± 2.2 4.2 ± 2.3 5.0 ± 2.7 2.91<br />

9 -0.2028 4449 ± 11 91 ± 11 6.7 ± 2.4 2.1 ± 0.9 3.0 ± 1.2 2.83<br />

10 -0.1014 4453 ± 7 84 ± 7 9.6 ± 2.6 3.3 ± 1.0 1.8 ± 0.6 2.91<br />

11 0.0000 4433 ± 7 87 ± 7 9.3 ± 2.6 3.8 ± 1.2 2.4 ± 0.7 2.78<br />

12 0.1014 4385 ± 7 77 ± 7 10.8 ± 2.5 2.5 ± 0.7 1.4 ± 0.4 2.67<br />

13 0.2028 4386 ± 14 131 ± 15 5.2 ± 2.7 6.5 ± 3.5 1.9 ± 1.1 2.56<br />

14 0.3043 4411 ± 8 61 ± 8 8.3 ± 2.3 1.7 ± 0.6 1.3 ± 0.5 2.61<br />

15 0.4057 4421 ± 20 107 ± 19 10.6 ± 3.5 1.1 ± 0.5 0.9 ± 0.4 2.66<br />

16 0.5071 4342 ± 22 83 ± 23 6.1 ± 2.8 1.1 ± 0.7 1.1 ± 0.7 2.77<br />

17 0.6085 4413 ± 44 114 ± 44 3.7 ± 2.8 2.2 ± 2.0 0.4 ± 0.7 2.96<br />

21 1.0142 4112 ± 35 130 ± 34 5.6 ± 2.8 0.1 ± 0.4 2.0 ± 1.2 3.34<br />

93


Table 3.6. NGC 315: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.1 ′′<br />

1 -0.5071 4827 ± 22 70 ± 21 39.1 ± 17.8 0.0 ± 0.3 0.5 ± 0.4 1.67<br />

7 -0.2028 4884 ± 34 161 ± 31 52.2 ± 19.8 1.2 ± 0.6 1.2 ± 0.6 1.90<br />

8 -0.1521 4943 ± 33 175 ± 29 33.0 ± 17.3 3.0 ± 1.7 2.7 ± 1.6 1.93<br />

9 -0.1014 4866 ± 32 193 ± 27 62.0 ± 19.8 2.4 ± 0.9 1.0 ± 0.4 1.65<br />

10 -0.0507 4905 ± 37 272 ± 32 88.4 ± 25.3 2.4 ± 0.8 0.9 ± 0.4 1.84<br />

11 0.0000 4917 ± 28 302 ± 24 151.2 ± 29.4 2.5 ± 0.6 1.3 ± 0.3 1.83<br />

12 0.0507 4814 ± 48 485 ± 44 60.7 ± 45.0 8.3 ± 6.3 3.0 ± 2.3 1.90<br />

13 0.1014 4882 ± 36 337 ± 35 61.7 ± 28.1 5.4 ± 2.6 2.2 ± 1.1 1.88<br />

14 0.1521 5041 ± 8 65 ± 8 55.6 ± 13.8 1.6 ± 0.5 0.9 ± 0.3 1.64<br />

15 0.2028 5036 ± 14 66 ± 13 42.2 ± 15.7 1.3 ± 0.6 0.5 ± 0.3 1.51<br />

16 0.2535 5079 ± 17 79 ± 17 45.6 ± 17.0 1.2 ± 0.6 0.5 ± 0.3 1.45<br />

17 0.3043 5069 ± 12 59 ± 11 65.0 ± 19.4 0.1 ± 0.2 0.6 ± 0.3 1.68<br />

18 0.3550 5053 ± 8 43 ± 7 25.4 ± 9.9 0.5 ± 0.4 2.1 ± 1.0 1.46<br />

20 0.4564 5283 ± 11 42 ± 11 18.7 ± 10.4 0.4 ± 0.5 1.6 ± 1.1 1.28<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 4880 ± 43 174 ± 40 58.9 ± 22.8 0.9 ± 0.5 0.7 ± 0.4 1.36<br />

2 -0.4564 4800 ± 31 160 ± 29 98.9 ± 26.6 0.7 ± 0.3 0.1 ± 0.2 1.65<br />

4 -0.3550 4860 ± 38 166 ± 36 63.5 ± 22.0 1.2 ± 0.6 0.4 ± 0.3 1.55<br />

5 -0.3043 4853 ± 30 183 ± 27 96.9 ± 23.9 1.1 ± 0.4 0.6 ± 0.3 1.47<br />

6 -0.2535 4878 ± 26 206 ± 22 90.1 ± 21.7 1.8 ± 0.5 1.5 ± 0.4 1.62<br />

7 -0.2028 4915 ± 18 162 ± 16 72.1 ± 17.8 2.0 ± 0.6 2.1 ± 0.6 1.63<br />

8 -0.1521 4921 ± 26 263 ± 19 228.1 ± 29.8 1.3 ± 0.2 0.9 ± 0.2 1.38<br />

9 -0.1014 4873 ± 19 347 ± 16 442.4 ± 43.7 2.1 ± 0.2 0.9 ± 0.1 1.79<br />

10 -0.0507 4824 ± 9 354 ± 8 992.3 ± 53.0 2.2 ± 0.1 1.1 ± 0.1 2.39<br />

11 0.0000 4835 ± 9 528 ± 7 899.0 ± 108.2 7.1 ± 0.9 1.8 ± 0.2 3.84<br />

12 0.0507 4906 ± 9 457 ± 8 1314.6 ± 83.9 3.6 ± 0.2 0.9 ± 0.1 2.94<br />

13 0.1014 4819 ± 28 438 ± 26 479.8 ± 62.2 1.9 ± 0.3 0.7 ± 0.1 1.89<br />

14 0.1521 5124 ± 22 204 ± 18 156.1 ± 26.6 1.3 ± 0.3 0.8 ± 0.2 1.37<br />

15 0.2028 5172 ± 33 172 ± 29 81.8 ± 22.6 0.9 ± 0.4 0.9 ± 0.4 1.74<br />

17 0.3043 4957 ± 38 213 ± 29 117.9 ± 25.8 0.8 ± 0.3 0.7 ± 0.2 1.84<br />

19 0.4057 5218 ± 14 60 ± 14 47.4 ± 16.3 0.7 ± 0.4 0.4 ± 0.3 1.49<br />

20 0.4564 5060 ± 24 102 ± 24 60.6 ± 20.9 0.0 ± 0.2 0.6 ± 0.3 1.58<br />

21 0.5071 5185 ± 8 39 ± 8 15.8 ± 8.5 1.1 ± 0.9 2.8 ± 1.7 1.78<br />

Slit 2: X-Offset +0.1 ′′<br />

3 -0.4057 4971 ± 26 164 ± 24 97.2 ± 22.4 0.8 ± 0.3 0.3 ± 0.2 1.60<br />

4 -0.3550 4889 ± 22 154 ± 20 72.4 ± 17.4 1.2 ± 0.4 1.2 ± 0.4 1.67<br />

5 -0.3043 4868 ± 18 169 ± 16 66.0 ± 16.7 2.5 ± 0.7 1.8 ± 0.5 1.67<br />

6 -0.2535 4977 ± 12 136 ± 11 61.9 ± 14.8 3.0 ± 0.8 1.8 ± 0.5 1.83<br />

7 -0.2028 4956 ± 16 222 ± 13 143.8 ± 20.6 2.1 ± 0.4 1.4 ± 0.3 1.69<br />

8 -0.1521 4944 ± 11 208 ± 9 145.5 ± 18.8 3.2 ± 0.5 2.0 ± 0.3 1.56<br />

9 -0.1014 4897 ± 7 214 ± 5 320.3 ± 22.0 2.6 ± 0.2 1.5 ± 0.1 1.96<br />

10 -0.0507 4880 ± 5 239 ± 4 597.9 ± 27.9 2.8 ± 0.2 1.4 ± 0.1 1.99<br />

11 0.0000 4883 ± 4 251 ± 3 712.0 ± 30.2 3.2 ± 0.2 1.4 ± 0.1 1.90<br />

12 0.0507 4953 ± 6 263 ± 4 657.0 ± 31.9 3.0 ± 0.2 1.2 ± 0.1 2.04<br />

13 0.1014 4984 ± 8 242 ± 6 378.2 ± 26.5 2.9 ± 0.2 1.1 ± 0.1 2.30<br />

14 0.1521 5021 ± 17 244 ± 13 198.5 ± 24.1 2.3 ± 0.3 1.2 ± 0.2 1.54<br />

15 0.2028 5014 ± 43 273 ± 33 136.9 ± 28.1 1.2 ± 0.3 0.9 ± 0.3 1.68<br />

17 0.3043 5097 ± 35 191 ± 30 49.1 ± 17.4 2.3 ± 1.0 1.0 ± 0.5 1.70<br />

18 0.3550 5165 ± 45 190 ± 40 65.0 ± 21.8 0.8 ± 0.4 0.7 ± 0.4 1.94<br />

19 0.4057 5256 ± 40 218 ± 31 108.3 ± 26.6 0.9 ± 0.3 0.4 ± 0.2 1.56<br />

20 0.4564 5313 ± 50 222 ± 45 97.2 ± 30.9 0.4 ± 0.3 0.5 ± 0.3 1.71<br />

21 0.5071 5169 ± 41 190 ± 35 63.9 ± 20.5 1.6 ± 0.7 0.1 ± 0.3 1.76<br />

94


Table 3.7. NGC 383: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.1 ′′<br />

2 -0.4564 4953 ± 7 37 ± 7 9.5 ± 5.5 3.4 ± 2.2 3.6 ± 2.4 1.40<br />

3 -0.4057 4880 ± 21 105 ± 21 21.6 ± 10.0 2.4 ± 1.3 1.6 ± 1.1 1.58<br />

4 -0.3550 4923 ± 41 184 ± 38 29.1 ± 13.5 2.4 ± 1.3 0.1 ± 0.7 1.62<br />

5 -0.3043 4915 ± 30 163 ± 28 42.5 ± 14.2 1.9 ± 0.8 0.1 ± 0.4 1.86<br />

6 -0.2535 4952 ± 24 201 ± 20 95.3 ± 17.3 1.3 ± 0.3 0.6 ± 0.3 1.91<br />

7 -0.2028 4945 ± 18 205 ± 15 116.8 ± 16.9 1.5 ± 0.3 1.1 ± 0.3 1.48<br />

8 -0.1521 4957 ± 13 173 ± 11 112.3 ± 14.9 1.7 ± 0.3 1.0 ± 0.2 1.68<br />

9 -0.1014 5046 ± 16 248 ± 12 156.8 ± 18.2 2.1 ± 0.3 0.9 ± 0.2 1.64<br />

10 -0.0507 5086 ± 11 269 ± 9 235.4 ± 20.0 2.6 ± 0.3 1.3 ± 0.2 1.65<br />

11 0.0000 5135 ± 7 235 ± 5 274.4 ± 18.7 3.1 ± 0.2 1.3 ± 0.1 1.90<br />

12 0.0507 5186 ± 7 223 ± 5 275.3 ± 18.6 2.7 ± 0.2 1.0 ± 0.1 2.04<br />

13 0.1014 5201 ± 13 239 ± 10 157.2 ± 17.6 2.6 ± 0.3 1.0 ± 0.2 1.48<br />

14 0.1521 5263 ± 40 306 ± 35 64.9 ± 20.0 3.1 ± 1.1 0.5 ± 0.5 1.34<br />

17 0.3043 5166 ± 40 126 ± 40 31.0 ± 14.3 0.8 ± 0.6 0.6 ± 0.7 1.76<br />

18 0.3550 5216 ± 25 87 ± 25 26.6 ± 11.7 0.3 ± 0.3 1.6 ± 1.0 1.58<br />

20 0.4564 4457 ± 30 137 ± 29 40.8 ± 14.6 1.2 ± 0.6 0.4 ± 0.5 1.60<br />

21 0.5071 5285 ± 7 37 ± 7 33.6 ± 9.2 0.4 ± 0.2 0.5 ± 0.3 1.70<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 4909 ± 19 94 ± 19 55.7 ± 18.5 0.8 ± 0.4 0.3 ± 0.3 1.68<br />

2 -0.4564 4750 ± 33 140 ± 32 49.6 ± 18.0 1.0 ± 0.5 0.5 ± 0.5 1.68<br />

3 -0.4057 4796 ± 16 93 ± 15 57.9 ± 15.5 1.0 ± 0.4 0.8 ± 0.4 1.72<br />

4 -0.3550 4905 ± 41 212 ± 33 70.8 ± 21.1 1.4 ± 0.5 0.2 ± 0.4 1.71<br />

5 -0.3043 4987 ± 24 149 ± 23 59.9 ± 17.9 1.6 ± 0.6 0.2 ± 0.4 1.56<br />

6 -0.2535 4873 ± 24 213 ± 23 36.6 ± 16.8 5.0 ± 2.4 2.4 ± 1.4 1.76<br />

7 -0.2028 4865 ± 11 182 ± 10 140.6 ± 18.8 2.2 ± 0.4 0.6 ± 0.2 1.89<br />

8 -0.1521 4874 ± 15 319 ± 14 263.4 ± 29.6 2.7 ± 0.3 1.0 ± 0.2 2.08<br />

9 -0.1014 4939 ± 16 464 ± 15 501.0 ± 54.0 3.1 ± 0.4 1.1 ± 0.2 2.17<br />

10 -0.0507 4924 ± 21 798 ± 13 359.0 ± 186.5 13.3 ± 6.9 3.8 ± 2.0 2.99<br />

11 0.0000 5266 ± 44 924 ± 28 5274.1 ± 587.9 0.6 ± 0.1 0.3 ± 0.1 2.68<br />

13 0.1014 5258 ± 16 311 ± 15 181.2 ± 28.0 3.1 ± 0.5 0.7 ± 0.2 1.83<br />

14 0.1521 5299 ± 29 288 ± 29 40.4 ± 22.6 5.9 ± 3.4 0.4 ± 0.8 1.80<br />

15 0.2028 5188 ± 27 159 ± 26 46.7 ± 18.3 2.1 ± 0.9 0.2 ± 0.5 1.69<br />

18 0.3550 4537 ± 57 265 ± 44 67.6 ± 22.3 1.7 ± 0.7 0.5 ± 0.5 1.47<br />

19 0.4057 5193 ± 24 135 ± 24 58.6 ± 18.6 1.2 ± 0.5 0.4 ± 0.4 1.53<br />

20 0.4564 5239 ± 22 108 ± 21 23.9 ± 13.3 2.8 ± 1.7 0.6 ± 0.9 1.76<br />

21 0.5071 5069 ± 11 38 ± 10 22.4 ± 10.1 0.5 ± 0.4 1.5 ± 1.0 1.36<br />

Slit 2: X-Offset +0.1 ′′<br />

1 -0.5071 4871 ± 8 39 ± 7 45.1 ± 13.5 0.4 ± 0.2 0.2 ± 0.2 1.48<br />

2 -0.4564 4865 ± 18 89 ± 18 38.1 ± 12.8 1.4 ± 0.6 0.2 ± 0.4 1.74<br />

4 -0.3550 4855 ± 12 54 ± 12 26.0 ± 10.1 1.5 ± 0.8 0.1 ± 0.5 2.26<br />

5 -0.3043 4813 ± 16 79 ± 16 48.2 ± 15.6 0.7 ± 0.4 0.4 ± 0.3 1.77<br />

6 -0.2535 4777 ± 8 64 ± 8 53.1 ± 11.6 1.3 ± 0.4 0.6 ± 0.3 1.97<br />

7 -0.2028 4813 ± 8 105 ± 8 40.0 ± 10.5 5.2 ± 1.5 1.4 ± 0.6 1.79<br />

8 -0.1521 4857 ± 9 145 ± 9 98.8 ± 14.3 2.6 ± 0.5 1.2 ± 0.3 1.91<br />

9 -0.1014 4922 ± 20 289 ± 17 203.9 ± 24.9 2.0 ± 0.3 1.1 ± 0.2 1.67<br />

10 -0.0507 4967 ± 11 257 ± 8 333.5 ± 25.0 2.0 ± 0.2 0.6 ± 0.1 1.76<br />

11 0.0000 5083 ± 22 406 ± 21 290.3 ± 38.2 2.4 ± 0.4 0.9 ± 0.2 1.53<br />

12 0.0507 5169 ± 35 420 ± 34 245.2 ± 42.5 1.8 ± 0.4 0.7 ± 0.2 1.82<br />

13 0.1014 5229 ± 19 190 ± 18 69.8 ± 16.8 2.6 ± 0.7 0.8 ± 0.4 1.65<br />

18 0.3550 4761 ± 16 64 ± 15 34.8 ± 12.3 0.0 ± 0.3 0.9 ± 0.6 1.75<br />

19 0.4057 5278 ± 23 82 ± 23 15.8 ± 10.7 2.4 ± 1.9 1.4 ± 1.5 1.66<br />

20 0.4564 5122 ± 47 179 ± 43 28.2 ± 15.5 2.2 ± 1.4 1.5 ± 1.3 1.84<br />

21 0.5071 5260 ± 11 59 ± 11 40.4 ± 12.3 1.0 ± 0.4 0.1 ± 0.3 1.81<br />

95


Table 3.8. NGC 541: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

2 -0.9128 5600 ± 41 188 ± 35 11.4 ± 4.5 1.6 ± 0.8 1.1 ± 0.6 2.73<br />

5 -0.6085 5516 ± 4 51 ± 4 29.4 ± 4.0 0.4 ± 0.1 0.2 ± 0.1 3.11<br />

6 -0.5071 5528 ± 6 60 ± 6 26.7 ± 4.1 0.5 ± 0.2 0.2 ± 0.1 3.27<br />

7 -0.4057 5535 ± 7 54 ± 6 21.5 ± 3.9 0.7 ± 0.2 0.4 ± 0.1 2.86<br />

8 -0.3043 5195 ± 7 43 ± 7 3.2 ± 1.8 4.5 ± 2.8 1.9 ± 1.3 2.36<br />

9 -0.2028 5220 ± 23 142 ± 22 4.7 ± 3.2 5.6 ± 4.1 4.3 ± 3.1 2.66<br />

10 -0.1014 5297 ± 19 140 ± 18 11.6 ± 4.1 2.8 ± 1.1 1.2 ± 0.6 2.34<br />

11 0.0000 5389 ± 15 168 ± 14 17.6 ± 4.3 4.1 ± 1.1 0.0 ± 0.2 2.61<br />

12 0.1014 5451 ± 8 63 ± 8 4.4 ± 2.3 6.6 ± 3.6 2.6 ± 1.5 2.57<br />

13 0.2028 5442 ± 13 107 ± 14 13.6 ± 3.5 2.4 ± 0.8 0.7 ± 0.3 2.34<br />

14 0.3043 5419 ± 5 104 ± 5 38.3 ± 3.8 1.8 ± 0.2 1.1 ± 0.2 2.85<br />

15 0.4057 5401 ± 4 66 ± 4 34.2 ± 3.8 0.8 ± 0.1 0.7 ± 0.1 2.70<br />

16 0.5071 5390 ± 6 63 ± 6 22.6 ± 3.5 0.9 ± 0.2 0.2 ± 0.1 3.38<br />

17 0.6085 5379 ± 11 80 ± 11 11.4 ± 2.9 1.2 ± 0.4 1.3 ± 0.4 3.38<br />

18 0.7099 5403 ± 11 69 ± 11 9.0 ± 2.7 1.3 ± 0.5 1.1 ± 0.5 2.57<br />

19 0.8114 5497 ± 20 77 ± 21 5.4 ± 2.6 1.4 ± 0.9 1.1 ± 0.8 2.49<br />

20 0.9128 5742 ± 21 47 ± 20 5.1 ± 3.0 0.0 ± 0.3 0.4 ± 0.5 3.00<br />

Slit 0: X-Offset 0.0 ′′<br />

5 -0.6085 5485 ± 7 45 ± 6 17.6 ± 3.7 0.3 ± 0.1 0.2 ± 0.1 2.10<br />

6 -0.5071 5498 ± 5 43 ± 4 25.2 ± 4.1 0.1 ± 0.1 0.1 ± 0.1 2.59<br />

7 -0.4057 5471 ± 5 29 ± 4 13.4 ± 3.0 0.6 ± 0.2 0.1 ± 0.1 2.98<br />

9 -0.2028 5406 ± 24 163 ± 22 13.0 ± 4.3 2.2 ± 0.9 2.1 ± 0.8 2.26<br />

10 -0.1014 5597 ± 23 362 ± 21 78.5 ± 11.2 2.6 ± 0.4 1.0 ± 0.2 2.78<br />

11 0.0000 5459 ± 16 336 ± 13 138.3 ± 11.7 2.0 ± 0.2 0.4 ± 0.1 2.44<br />

12 0.1014 5402 ± 23 164 ± 21 21.6 ± 5.2 1.7 ± 0.5 0.3 ± 0.2 2.54<br />

13 0.2028 5331 ± 8 38 ± 8 8.7 ± 2.8 0.7 ± 0.3 0.7 ± 0.4 2.60<br />

14 0.3043 5377 ± 8 55 ± 7 14.5 ± 3.2 0.9 ± 0.3 0.6 ± 0.2 2.73<br />

15 0.4057 5372 ± 3 36 ± 3 26.1 ± 3.5 0.4 ± 0.1 0.3 ± 0.1 2.54<br />

16 0.5071 5360 ± 8 77 ± 8 27.2 ± 4.4 0.3 ± 0.1 0.5 ± 0.1 2.51<br />

17 0.6085 5250 ± 32 117 ± 31 4.5 ± 2.9 0.7 ± 0.8 3.1 ± 2.3 2.28<br />

20 0.9128 5411 ± 14 47 ± 14 5.5 ± 2.6 0.1 ± 0.3 0.9 ± 0.7 2.62<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 5503 ± 24 84 ± 22 8.2 ± 3.4 0.8 ± 0.5 0.5 ± 0.4 3.02<br />

2 -0.9128 5039 ± 38 160 ± 36 8.9 ± 3.7 0.2 ± 0.3 1.4 ± 0.8 2.87<br />

6 -0.5071 5484 ± 8 73 ± 8 20.5 ± 3.6 0.5 ± 0.2 0.6 ± 0.2 3.47<br />

7 -0.4057 5382 ± 11 107 ± 11 33.3 ± 5.0 0.2 ± 0.1 0.4 ± 0.1 3.15<br />

8 -0.3043 5428 ± 11 108 ± 11 27.5 ± 4.5 0.9 ± 0.2 0.2 ± 0.1 2.56<br />

9 -0.2028 5383 ± 9 68 ± 8 14.0 ± 3.1 1.2 ± 0.4 0.9 ± 0.3 2.62<br />

10 -0.1014 5371 ± 17 110 ± 17 16.4 ± 4.0 0.9 ± 0.3 1.0 ± 0.3 2.34<br />

11 0.0000 5410 ± 20 106 ± 20 19.5 ± 5.4 0.1 ± 0.2 0.6 ± 0.2 2.79<br />

12 0.1014 5292 ± 17 117 ± 17 19.6 ± 4.5 1.1 ± 0.3 0.2 ± 0.2 2.62<br />

13 0.2028 5312 ± 3 27 ± 4 16.1 ± 3.8 0.5 ± 0.2 0.3 ± 0.1 2.63<br />

14 0.3043 5324 ± 5 49 ± 5 20.2 ± 3.4 0.5 ± 0.1 0.3 ± 0.1 2.89<br />

15 0.4057 5330 ± 6 55 ± 5 19.9 ± 3.1 0.5 ± 0.1 0.5 ± 0.1 2.85<br />

16 0.5071 5346 ± 6 54 ± 5 22.0 ± 3.5 0.2 ± 0.1 0.3 ± 0.1 2.85<br />

17 0.6085 5343 ± 6 42 ± 6 12.9 ± 2.9 0.1 ± 0.1 0.4 ± 0.2 2.60<br />

19 0.8114 5275 ± 20 75 ± 19 9.2 ± 3.3 0.0 ± 0.2 0.4 ± 0.3 2.60<br />

20 0.9128 4453 ± 26 144 ± 24 11.4 ± 3.0 0.1 ± 0.2 1.4 ± 0.5 2.37<br />

96


Table 3.9. NGC 741: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

2 -0.9128 5337 ± 33 86 ± 31 5.6 ± 3.5 0.0 ± 0.3 1.2 ± 0.9 2.41<br />

3 -0.8114 5309 ± 28 125 ± 28 15.0 ± 5.3 0.1 ± 0.2 0.6 ± 0.3 2.69<br />

6 -0.5071 5303 ± 32 190 ± 29 7.1 ± 4.2 4.1 ± 2.6 1.3 ± 1.0 3.00<br />

7 -0.4057 5465 ± 23 100 ± 22 7.5 ± 3.8 1.8 ± 1.1 0.8 ± 0.6 3.08<br />

12 0.1014 5686 ± 20 138 ± 19 11.9 ± 3.9 1.7 ± 0.7 1.9 ± 0.7 2.83<br />

13 0.2028 5616 ± 41 192 ± 37 9.5 ± 4.7 2.4 ± 1.4 0.6 ± 0.5 3.50<br />

18 0.7099 5252 ± 42 181 ± 41 9.6 ± 4.2 0.1 ± 0.3 1.5 ± 0.8 3.33<br />

19 0.8114 5317 ± 10 37 ± 10 10.5 ± 3.9 0.3 ± 0.2 0.0 ± 0.1 2.94<br />

Slit 0: X-Offset 0.0 ′′<br />

2 -0.9128 5091 ± 54 168 ± 49 13.7 ± 6.4 0.7 ± 0.5 0.5 ± 0.4 2.12<br />

6 -0.5071 5164 ± 0 3 ± 0 0.1 ± 0.0 2.4 ± 0.0 0.4 ± 2.1 2.45<br />

11 0.0000 5706 ± 26 424 ± 24 57.2 ± 14.4 4.2 ± 1.1 1.8 ± 0.5 2.40<br />

12 0.1014 5882 ± 52 361 ± 47 25.8 ± 10.3 2.8 ± 1.2 1.3 ± 0.7 2.22<br />

13 0.2028 5163 ± 28 96 ± 28 7.6 ± 4.1 0.7 ± 0.6 1.5 ± 1.0 2.15<br />

Slit 2: X-Offset +0.2 ′′<br />

10 -0.1014 5559 ± 32 96 ± 30 12.1 ± 5.8 0.4 ± 0.4 0.3 ± 0.3 2.40<br />

11 0.0000 5608 ± 21 122 ± 20 22.4 ± 6.3 0.7 ± 0.3 0.3 ± 0.2 2.92<br />

14 0.3043 5171 ± 10 61 ± 10 4.2 ± 2.3 0.9 ± 0.7 3.5 ± 2.1 2.63<br />

97


Table 3.10. UGC 01841: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -1.0142 6626 ± 13 87 ± 13 10.6 ± 2.6 1.0 ± 0.3 0.4 ± 0.2 4.21<br />

2 -0.9128 6276 ± 27 172 ± 25 5.5 ± 2.4 3.5 ± 1.7 1.3 ± 0.9 4.16<br />

5 -0.6085 6444 ± 7 60 ± 7 13.1 ± 2.6 0.8 ± 0.2 0.3 ± 0.2 4.90<br />

6 -0.5071 6258 ± 47 289 ± 35 22.2 ± 4.6 1.0 ± 0.3 1.1 ± 0.3 4.45<br />

7 -0.4057 6416 ± 9 115 ± 9 6.9 ± 2.1 4.6 ± 1.5 1.5 ± 0.6 4.76<br />

8 -0.3043 6411 ± 7 137 ± 7 9.3 ± 2.2 5.8 ± 1.5 2.9 ± 0.8 4.34<br />

9 -0.2028 6379 ± 13 234 ± 10 48.3 ± 4.0 1.5 ± 0.2 0.5 ± 0.1 3.53<br />

10 -0.1014 6155 ± 29 574 ± 25 28.0 ± 11.2 7.2 ± 2.9 3.0 ± 1.3 4.58<br />

11 0.0000 6228 ± 10 316 ± 8 85.7 ± 5.9 2.5 ± 0.2 1.0 ± 0.1 4.20<br />

12 0.1014 6305 ± 8 212 ± 7 38.8 ± 3.5 2.5 ± 0.3 1.1 ± 0.2 4.32<br />

13 0.2028 6088 ± 47 426 ± 47 12.8 ± 5.8 4.4 ± 2.1 0.6 ± 0.6 4.56<br />

14 0.3043 6369 ± 36 155 ± 32 4.1 ± 2.4 3.2 ± 2.0 0.3 ± 0.9 4.48<br />

15 0.4057 6458 ± 24 95 ± 23 3.4 ± 2.0 1.7 ± 1.2 2.3 ± 1.7 5.04<br />

16 0.5071 6725 ± 19 57 ± 19 5.2 ± 2.4 0.4 ± 0.3 0.4 ± 0.4 3.89<br />

17 0.6085 6433 ± 32 125 ± 32 3.2 ± 2.0 2.7 ± 2.0 0.9 ± 1.1 5.27<br />

19 0.8114 6617 ± 20 84 ± 20 9.2 ± 3.8 0.4 ± 0.3 0.1 ± 0.3 3.96<br />

20 0.9128 6320 ± 22 112 ± 21 4.8 ± 1.9 2.3 ± 1.1 1.1 ± 0.7 4.76<br />

Slit 0: X-Offset 0.0 ′′<br />

3 -0.8114 6350 ± 12 68 ± 11 4.0 ± 2.2 3.9 ± 2.4 0.4 ± 0.7 3.40<br />

4 -0.7099 6339 ± 23 125 ± 23 14.1 ± 4.2 1.1 ± 0.4 0.5 ± 0.3 2.62<br />

6 -0.5071 6276 ± 21 169 ± 19 9.2 ± 3.6 4.4 ± 1.9 1.1 ± 0.7 2.43<br />

7 -0.4057 6371 ± 15 163 ± 14 16.3 ± 3.8 3.0 ± 0.8 0.1 ± 0.3 3.18<br />

8 -0.3043 6428 ± 10 164 ± 10 22.8 ± 3.9 3.2 ± 0.6 0.9 ± 0.3 3.83<br />

9 -0.2028 6329 ± 10 278 ± 8 110.7 ± 7.2 1.9 ± 0.2 1.1 ± 0.1 3.44<br />

10 -0.1014 6337 ± 7 596 ± 6 215.6 ± 26.7 9.1 ± 1.1 3.2 ± 0.4 4.16<br />

11 0.0000 6305 ± 5 592 ± 4 1001.2 ± 37.8 3.0 ± 0.1 1.1 ± 0.1 4.79<br />

13 0.2028 6322 ± 26 260 ± 21 26.3 ± 5.2 2.2 ± 0.5 0.3 ± 0.2 3.46<br />

14 0.3043 6126 ± 27 176 ± 26 5.2 ± 3.3 5.2 ± 3.5 2.8 ± 2.1 2.94<br />

15 0.4057 6451 ± 31 105 ± 31 5.1 ± 3.0 1.6 ± 1.1 1.6 ± 1.2 3.10<br />

17 0.6085 6407 ± 36 104 ± 33 10.6 ± 4.8 0.2 ± 0.2 0.5 ± 0.4 3.84<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 6449 ± 35 172 ± 33 7.7 ± 3.1 2.0 ± 1.0 0.7 ± 0.6 4.02<br />

3 -0.8114 6303 ± 12 109 ± 12 4.6 ± 2.1 4.8 ± 2.3 3.8 ± 1.9 3.60<br />

6 -0.5071 6394 ± 10 85 ± 10 12.3 ± 2.7 1.5 ± 0.4 0.9 ± 0.3 3.62<br />

7 -0.4057 6393 ± 5 72 ± 4 7.1 ± 1.9 5.2 ± 1.5 1.3 ± 0.5 3.12<br />

8 -0.3043 6412 ± 5 111 ± 5 17.2 ± 2.6 3.9 ± 0.6 0.9 ± 0.3 3.54<br />

9 -0.2028 6388 ± 5 120 ± 5 25.7 ± 3.1 2.4 ± 0.3 1.6 ± 0.3 4.25<br />

10 -0.1014 6390 ± 6 166 ± 6 42.1 ± 3.7 2.2 ± 0.2 1.5 ± 0.2 3.76<br />

11 0.0000 6363 ± 6 150 ± 6 46.0 ± 3.8 1.5 ± 0.2 1.1 ± 0.1 3.04<br />

12 0.1014 6415 ± 10 165 ± 9 21.3 ± 3.4 2.8 ± 0.5 1.1 ± 0.3 4.05<br />

14 0.3043 6328 ± 20 123 ± 20 7.3 ± 2.6 2.4 ± 1.0 0.5 ± 0.6 4.44<br />

17 0.6085 6204 ± 14 79 ± 14 6.7 ± 2.3 1.8 ± 0.8 0.1 ± 0.5 3.44<br />

18 0.7099 6450 ± 44 268 ± 39 7.3 ± 3.6 3.6 ± 1.9 1.0 ± 0.9 3.65<br />

20 0.9128 6391 ± 27 120 ± 27 7.7 ± 2.9 0.0 ± 0.2 1.9 ± 1.0 3.41<br />

21 1.0142 6118 ± 7 45 ± 7 9.7 ± 2.3 0.4 ± 0.2 0.5 ± 0.3 3.95<br />

98


Table 3.11. NGC 2329: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

2 -0.9128 6017 ± 7 52 ± 7 13.0 ± 2.6 0.4 ± 0.1 0.3 ± 0.2 3.27<br />

3 -0.8114 5709 ± 49 164 ± 48 4.6 ± 2.7 1.7 ± 1.2 1.7 ± 1.4 2.73<br />

4 -0.7099 5752 ± 52 284 ± 40 28.8 ± 5.7 0.4 ± 0.2 0.2 ± 0.2 3.24<br />

5 -0.6085 5973 ± 10 67 ± 11 8.9 ± 2.3 1.2 ± 0.4 0.5 ± 0.3 3.19<br />

6 -0.5071 5989 ± 13 59 ± 12 8.8 ± 3.1 0.5 ± 0.3 0.8 ± 0.4 2.98<br />

7 -0.4057 5493 ± 26 112 ± 26 7.4 ± 2.7 1.2 ± 0.6 0.6 ± 0.5 3.33<br />

8 -0.3043 5816 ± 39 223 ± 30 12.7 ± 3.8 2.1 ± 0.7 0.2 ± 0.4 3.04<br />

9 -0.2028 5810 ± 20 154 ± 20 9.5 ± 3.2 3.3 ± 1.3 0.2 ± 0.5 2.53<br />

10 -0.1014 5763 ± 13 133 ± 13 16.6 ± 3.6 2.3 ± 0.6 0.7 ± 0.4 2.67<br />

11 0.0000 5747 ± 13 150 ± 12 16.0 ± 3.2 3.4 ± 0.8 0.5 ± 0.4 2.51<br />

12 0.1014 5775 ± 19 201 ± 16 25.0 ± 4.0 1.8 ± 0.4 0.1 ± 0.2 2.94<br />

13 0.2028 5855 ± 26 170 ± 22 9.4 ± 3.0 2.7 ± 1.0 0.9 ± 0.6 2.90<br />

14 0.3043 5678 ± 8 29 ± 7 2.8 ± 1.2 1.6 ± 0.9 1.0 ± 0.9 3.03<br />

18 0.7099 5748 ± 32 137 ± 31 6.4 ± 2.6 1.6 ± 0.8 0.6 ± 0.7 3.22<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 5898 ± 23 74 ± 23 3.7 ± 2.6 2.2 ± 1.8 2.0 ± 2.0 1.93<br />

5 -0.6085 6063 ± 10 38 ± 11 5.3 ± 2.5 1.2 ± 0.8 0.4 ± 0.6 2.34<br />

6 -0.5071 5877 ± 28 129 ± 28 11.8 ± 4.2 0.1 ± 0.3 1.9 ± 0.9 2.50<br />

7 -0.4057 5943 ± 12 79 ± 11 11.8 ± 3.3 1.8 ± 0.7 1.1 ± 0.5 2.20<br />

9 -0.2028 5819 ± 9 104 ± 9 20.5 ± 4.3 2.6 ± 0.6 1.7 ± 0.5 2.17<br />

10 -0.1014 5795 ± 5 268 ± 5 96.0 ± 9.6 6.6 ± 0.7 2.2 ± 0.3 3.19<br />

11 0.0000 5789 ± 4 301 ± 4 348.6 ± 13.8 3.0 ± 0.1 1.1 ± 0.1 3.82<br />

12 0.1014 5735 ± 2 61 ± 2 30.4 ± 4.1 3.7 ± 0.6 0.1 ± 0.2 4.66<br />

14 0.3043 5627 ± 16 76 ± 16 13.3 ± 4.5 0.7 ± 0.4 0.3 ± 0.4 2.64<br />

20 0.9128 5782 ± 45 146 ± 43 12.2 ± 5.1 0.6 ± 0.4 0.2 ± 0.5 2.23<br />

21 1.0142 5770 ± 38 111 ± 37 4.1 ± 3.0 2.5 ± 2.1 0.6 ± 1.4 2.25<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 5643 ± 37 154 ± 35 8.9 ± 3.4 1.4 ± 0.7 0.5 ± 0.6 2.15<br />

2 -0.9128 5560 ± 7 32 ± 10 6.7 ± 2.9 0.4 ± 0.3 0.4 ± 0.4 2.48<br />

8 -0.3043 5905 ± 5 53 ± 5 21.3 ± 3.3 0.5 ± 0.1 0.7 ± 0.2 2.64<br />

9 -0.2028 5830 ± 21 195 ± 20 11.6 ± 3.8 3.9 ± 1.4 1.2 ± 0.7 2.69<br />

10 -0.1014 5875 ± 9 119 ± 9 25.0 ± 3.8 1.9 ± 0.4 0.1 ± 0.2 2.94<br />

11 0.0000 5844 ± 10 123 ± 10 24.2 ± 4.0 1.8 ± 0.4 1.0 ± 0.3 2.44<br />

12 0.1014 5839 ± 6 82 ± 6 20.7 ± 3.3 1.8 ± 0.4 0.6 ± 0.2 2.66<br />

13 0.2028 5742 ± 12 77 ± 12 12.5 ± 3.1 1.1 ± 0.4 0.5 ± 0.3 2.25<br />

14 0.3043 5700 ± 8 45 ± 8 10.9 ± 2.9 0.7 ± 0.3 0.2 ± 0.3 2.58<br />

15 0.4057 5631 ± 10 39 ± 9 6.5 ± 2.4 0.5 ± 0.3 0.3 ± 0.4 2.59<br />

17 0.6085 5774 ± 30 157 ± 29 4.8 ± 2.8 4.0 ± 2.5 0.5 ± 1.1 2.71<br />

19 0.8114 5841 ± 20 60 ± 20 5.3 ± 2.7 0.6 ± 0.5 0.9 ± 0.8 2.43<br />

20 0.9128 5742 ± 13 59 ± 13 5.4 ± 2.2 1.6 ± 0.8 0.5 ± 0.7 2.61<br />

99


Table 3.12. NGC 2892: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -1.0142 6843 ± 8 25 ± 6 1.4 ± 0.9 1.1 ± 0.9 4.9 ± 3.6 3.48<br />

3 -0.8114 6649 ± 13 76 ± 12 15.2 ± 3.6 0.1 ± 0.1 0.4 ± 0.2 3.31<br />

4 -0.7099 6895 ± 22 143 ± 22 7.9 ± 2.5 1.8 ± 0.7 1.2 ± 0.7 3.43<br />

6 -0.5071 6700 ± 20 71 ± 20 3.1 ± 1.9 2.0 ± 1.5 0.6 ± 1.0 3.25<br />

8 -0.3043 6905 ± 14 81 ± 13 10.1 ± 2.7 0.9 ± 0.3 0.3 ± 0.3 3.19<br />

9 -0.2028 6912 ± 23 71 ± 23 5.7 ± 2.7 0.5 ± 0.4 1.0 ± 0.7 3.18<br />

11 0.0000 6844 ± 9 98 ± 9 10.4 ± 2.7 2.5 ± 0.7 0.5 ± 0.4 3.17<br />

12 0.1014 6868 ± 12 99 ± 12 3.9 ± 2.9 5.8 ± 4.4 2.5 ± 2.1 2.98<br />

13 0.2028 6935 ± 9 85 ± 10 3.6 ± 2.1 5.5 ± 3.4 3.6 ± 2.4 2.94<br />

15 0.4057 6856 ± 8 35 ± 7 3.0 ± 1.4 1.8 ± 1.0 1.7 ± 1.3 2.95<br />

16 0.5071 6891 ± 4 36 ± 3 8.0 ± 1.7 1.5 ± 0.4 0.3 ± 0.3 2.74<br />

19 0.8114 6674 ± 22 71 ± 22 6.7 ± 2.8 0.0 ± 0.2 0.4 ± 0.4 3.38<br />

21 1.0142 6931 ± 13 31 ± 13 3.4 ± 2.0 0.2 ± 0.3 0.1 ± 0.5 3.43<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 6734 ± 46 157 ± 44 5.8 ± 3.7 2.1 ± 1.6 1.2 ± 1.2 2.11<br />

3 -0.8114 6665 ± 27 66 ± 26 7.1 ± 3.9 0.2 ± 0.3 0.5 ± 0.6 2.21<br />

9 -0.2028 6962 ± 24 206 ± 21 26.6 ± 5.4 1.5 ± 0.4 0.1 ± 0.3 2.25<br />

10 -0.1014 6844 ± 19 354 ± 18 28.1 ± 7.8 5.9 ± 1.7 1.4 ± 0.5 2.24<br />

11 0.0000 6938 ± 7 453 ± 6 240.9 ± 17.0 4.3 ± 0.3 1.1 ± 0.1 2.44<br />

12 0.1014 6947 ± 10 452 ± 9 259.5 ± 17.3 2.8 ± 0.2 0.5 ± 0.1 2.96<br />

21 1.0142 6956 ± 33 81 ± 34 4.1 ± 2.9 1.5 ± 1.6 0.3 ± 1.1 1.98<br />

Slit 2: X-Offset +0.2 ′′<br />

3 -0.8114 6894 ± 28 65 ± 26 4.3 ± 2.7 0.0 ± 0.4 1.7 ± 1.4 2.70<br />

4 -0.7099 7218 ± 44 147 ± 43 3.8 ± 2.9 3.0 ± 2.6 0.1 ± 1.2 1.70<br />

5 -0.6085 6902 ± 34 134 ± 31 15.9 ± 5.5 0.0 ± 0.1 0.2 ± 0.3 2.70<br />

7 -0.4057 6801 ± 21 92 ± 21 7.4 ± 3.0 1.5 ± 0.8 0.3 ± 0.6 2.44<br />

10 -0.1014 6963 ± 43 260 ± 37 11.0 ± 4.7 2.9 ± 1.4 1.2 ± 0.9 2.22<br />

11 0.0000 6840 ± 13 169 ± 12 38.5 ± 5.1 1.1 ± 0.2 0.2 ± 0.2 2.62<br />

12 0.1014 6890 ± 10 138 ± 9 16.2 ± 3.3 3.2 ± 0.7 0.7 ± 0.4 2.52<br />

13 0.2028 6957 ± 17 183 ± 17 5.8 ± 3.3 7.7 ± 4.6 1.0 ± 1.3 2.55<br />

14 0.3043 6938 ± 26 135 ± 26 5.8 ± 3.0 2.9 ± 1.7 0.4 ± 0.9 2.42<br />

15 0.4057 6899 ± 26 54 ± 25 4.3 ± 2.9 0.5 ± 0.6 0.4 ± 0.8 2.46<br />

16 0.5071 6980 ± 38 213 ± 32 9.4 ± 4.0 2.6 ± 1.3 0.8 ± 0.8 2.17<br />

17 0.6085 7064 ± 8 42 ± 8 3.2 ± 1.7 3.4 ± 2.0 0.4 ± 0.9 2.46<br />

100


Table 3.13. NGC 3801: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

2 -0.9128 3372 ± 40 89 ± 40 3.7 ± 2.2 0.0 ± 0.3 0.2 ± 0.6 3.00<br />

3 -0.8114 3436 ± 16 57 ± 16 4.3 ± 1.7 0.4 ± 0.3 0.4 ± 0.5 3.49<br />

4 -0.7099 3468 ± 9 46 ± 9 3.4 ± 1.2 1.0 ± 0.5 1.7 ± 0.9 3.59<br />

7 -0.4057 3476 ± 9 48 ± 9 1.5 ± 1.0 1.0 ± 0.9 7.5 ± 5.2 3.41<br />

9 -0.2028 3325 ± 13 161 ± 12 25.4 ± 3.3 0.9 ± 0.2 0.8 ± 0.2 3.78<br />

10 -0.1014 3383 ± 10 143 ± 9 20.8 ± 2.9 1.7 ± 0.3 0.8 ± 0.2 3.66<br />

11 0.0000 3378 ± 12 142 ± 11 15.6 ± 2.8 1.9 ± 0.4 1.3 ± 0.3 3.01<br />

12 0.1014 3345 ± 17 148 ± 17 14.5 ± 2.9 1.0 ± 0.3 1.1 ± 0.4 3.50<br />

14 0.3043 3471 ± 16 74 ± 17 2.5 ± 1.5 3.1 ± 2.2 2.1 ± 1.7 3.23<br />

17 0.6085 3317 ± 26 113 ± 24 8.0 ± 2.7 1.0 ± 0.5 0.3 ± 0.4 3.53<br />

20 0.9128 3190 ± 19 56 ± 20 2.9 ± 1.6 0.9 ± 0.7 0.9 ± 0.9 3.17<br />

Slit 0: X-Offset 0.0 ′′<br />

2 -0.9128 3510 ± 26 124 ± 26 6.3 ± 2.5 1.7 ± 0.8 1.4 ± 0.8 2.76<br />

3 -0.8114 3461 ± 17 57 ± 17 3.4 ± 1.8 1.2 ± 0.8 1.4 ± 1.2 2.43<br />

6 -0.5071 3448 ± 18 157 ± 17 11.5 ± 2.8 2.5 ± 0.7 0.3 ± 0.4 2.51<br />

8 -0.3043 3438 ± 12 75 ± 12 4.7 ± 2.0 2.6 ± 1.3 2.5 ± 1.3 2.02<br />

9 -0.2028 3486 ± 12 146 ± 12 16.0 ± 3.0 2.1 ± 0.5 1.6 ± 0.4 2.55<br />

10 -0.1014 3510 ± 12 174 ± 11 25.0 ± 3.7 2.0 ± 0.4 1.1 ± 0.3 2.56<br />

11 0.0000 3498 ± 12 163 ± 12 25.8 ± 4.1 1.8 ± 0.4 1.1 ± 0.3 2.32<br />

12 0.1014 3451 ± 14 129 ± 14 9.9 ± 3.1 3.1 ± 1.1 2.3 ± 0.9 2.72<br />

13 0.2028 3397 ± 20 125 ± 20 10.8 ± 3.3 1.5 ± 0.6 1.1 ± 0.6 2.27<br />

14 0.3043 3425 ± 31 208 ± 26 22.9 ± 4.7 0.9 ± 0.3 0.2 ± 0.3 2.20<br />

17 0.6085 2822 ± 37 205 ± 36 21.4 ± 5.4 0.1 ± 0.1 0.7 ± 0.3 2.57<br />

19 0.8114 3194 ± 28 108 ± 28 9.7 ± 3.5 0.1 ± 0.2 0.7 ± 0.5 2.43<br />

20 0.9128 3184 ± 38 164 ± 38 13.8 ± 4.3 0.1 ± 0.2 0.5 ± 0.4 2.71<br />

21 1.0142 3263 ± 47 180 ± 44 11.2 ± 4.1 0.5 ± 0.3 0.8 ± 0.5 2.66<br />

Slit 2: X-Offset +0.2 ′′<br />

2 -0.9128 3405 ± 17 53 ± 17 3.5 ± 1.7 0.7 ± 0.5 0.8 ± 0.7 2.96<br />

3 -0.8114 3455 ± 15 47 ± 15 3.7 ± 1.6 0.6 ± 0.4 0.1 ± 0.4 2.64<br />

4 -0.7099 3506 ± 10 39 ± 10 1.3 ± 0.9 3.4 ± 2.7 1.9 ± 1.9 2.44<br />

5 -0.6085 3388 ± 16 67 ± 16 3.5 ± 1.6 0.1 ± 0.3 2.5 ± 1.4 2.43<br />

7 -0.4057 3447 ± 19 119 ± 19 8.6 ± 2.4 0.5 ± 0.2 2.4 ± 0.8 2.75<br />

8 -0.3043 3456 ± 11 102 ± 10 15.3 ± 2.9 0.7 ± 0.2 1.3 ± 0.3 2.62<br />

9 -0.2028 3522 ± 12 93 ± 12 6.4 ± 1.9 2.1 ± 0.7 2.1 ± 0.8 2.93<br />

10 -0.1014 3640 ± 17 138 ± 17 11.2 ± 2.6 1.0 ± 0.3 2.1 ± 0.6 2.70<br />

11 0.0000 3611 ± 18 140 ± 18 8.7 ± 2.4 1.4 ± 0.5 2.8 ± 0.9 2.98<br />

12 0.1014 3518 ± 19 121 ± 19 7.2 ± 2.3 1.1 ± 0.5 2.9 ± 1.1 2.93<br />

13 0.2028 3441 ± 8 38 ± 8 5.9 ± 1.9 0.5 ± 0.3 0.6 ± 0.4 2.52<br />

14 0.3043 3456 ± 9 63 ± 9 10.1 ± 2.2 0.5 ± 0.2 0.9 ± 0.4 2.43<br />

15 0.4057 3451 ± 9 59 ± 9 7.8 ± 1.9 0.8 ± 0.3 1.5 ± 0.5 2.31<br />

20 0.9128 3482 ± 18 99 ± 19 4.7 ± 1.8 1.8 ± 0.8 2.0 ± 1.0 2.90<br />

101


Table 3.14. NGC 3862: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -1.0142 6244 ± 13 48 ± 13 9.5 ± 4.4 0.6 ± 0.4 1.1 ± 0.8 2.10<br />

5 -0.6085 6452 ± 9 56 ± 8 23.3 ± 5.4 0.4 ± 0.2 0.1 ± 0.2 2.22<br />

6 -0.5071 6464 ± 5 43 ± 5 20.7 ± 4.2 0.7 ± 0.2 1.0 ± 0.3 1.94<br />

7 -0.4057 6450 ± 5 43 ± 4 34.1 ± 5.5 0.2 ± 0.1 0.1 ± 0.1 2.25<br />

8 -0.3043 6451 ± 9 78 ± 9 23.7 ± 4.9 1.3 ± 0.4 0.4 ± 0.3 2.07<br />

9 -0.2028 6457 ± 8 80 ± 8 20.3 ± 4.9 2.0 ± 0.6 0.7 ± 0.4 2.30<br />

10 -0.1014 6486 ± 13 149 ± 13 10.2 ± 5.1 7.7 ± 4.0 1.9 ± 1.4 2.36<br />

11 0.0000 6468 ± 13 214 ± 12 42.7 ± 7.7 3.1 ± 0.6 1.2 ± 0.4 2.41<br />

12 0.1014 6408 ± 9 87 ± 9 29.0 ± 5.4 1.3 ± 0.3 0.7 ± 0.3 2.36<br />

13 0.2028 6438 ± 8 77 ± 8 32.2 ± 5.6 0.8 ± 0.2 0.3 ± 0.2 2.26<br />

14 0.3043 6455 ± 5 47 ± 5 29.4 ± 4.9 0.2 ± 0.1 0.9 ± 0.3 2.27<br />

15 0.4057 6460 ± 7 51 ± 7 21.1 ± 4.7 0.7 ± 0.2 0.4 ± 0.3 1.96<br />

16 0.5071 6472 ± 6 38 ± 6 13.9 ± 3.9 0.8 ± 0.3 0.7 ± 0.4 2.10<br />

17 0.6085 6478 ± 10 49 ± 9 10.8 ± 3.7 1.2 ± 0.5 0.4 ± 0.5 2.31<br />

18 0.7099 6573 ± 18 66 ± 18 10.2 ± 4.5 0.9 ± 0.6 1.1 ± 0.8 1.95<br />

21 1.0142 6463 ± 10 40 ± 10 5.6 ± 2.9 0.0 ± 0.4 3.3 ± 2.2 2.23<br />

Slit 0: X-Offset 0.0 ′′<br />

4 -0.7099 6525 ± 19 50 ± 19 7.6 ± 4.7 1.0 ± 0.9 0.5 ± 0.9 1.75<br />

5 -0.6085 6510 ± 7 38 ± 8 17.5 ± 5.4 0.4 ± 0.2 0.6 ± 0.4 1.70<br />

6 -0.5071 6503 ± 7 43 ± 7 10.1 ± 3.7 2.1 ± 0.9 1.1 ± 0.7 1.82<br />

7 -0.4057 6512 ± 7 52 ± 6 21.3 ± 5.0 1.3 ± 0.4 0.3 ± 0.3 1.81<br />

8 -0.3043 6520 ± 7 52 ± 7 14.0 ± 4.3 1.9 ± 0.7 1.4 ± 0.7 1.88<br />

9 -0.2028 6520 ± 10 116 ± 10 39.4 ± 7.4 1.8 ± 0.4 0.2 ± 0.2 2.34<br />

10 -0.1014 6605 ± 6 267 ± 6 84.9 ± 13.8 9.4 ± 1.6 3.7 ± 0.7 3.40<br />

11 0.0000 6441 ± 4 302 ± 3 854.0 ± 25.6 2.4 ± 0.1 1.0 ± 0.1 4.21<br />

12 0.1014 6474 ± 6 197 ± 6 18.8 ± 8.2 17.9 ± 7.8 0.7 ± 0.8 4.59<br />

13 0.2028 6487 ± 15 147 ± 15 11.5 ± 5.8 6.2 ± 3.3 0.1 ± 0.9 2.01<br />

14 0.3043 6526 ± 6 49 ± 6 20.9 ± 4.8 1.1 ± 0.3 0.6 ± 0.3 1.90<br />

16 0.5071 6603 ± 44 199 ± 37 20.5 ± 7.9 1.5 ± 0.7 0.0 ± 0.5 1.96<br />

17 0.6085 6511 ± 28 95 ± 28 10.6 ± 5.8 1.4 ± 1.0 0.4 ± 0.7 1.76<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 6364 ± 50 235 ± 40 14.1 ± 5.9 2.1 ± 1.0 0.4 ± 0.6 1.90<br />

3 -0.8114 6480 ± 14 51 ± 13 5.6 ± 3.2 1.8 ± 1.2 0.9 ± 0.9 2.27<br />

4 -0.7099 6526 ± 5 40 ± 5 5.6 ± 2.3 3.7 ± 1.7 1.8 ± 1.0 2.43<br />

5 -0.6085 6536 ± 7 46 ± 7 12.8 ± 3.5 1.1 ± 0.4 0.1 ± 0.3 2.27<br />

6 -0.5071 6541 ± 8 65 ± 8 18.3 ± 4.1 1.2 ± 0.3 0.3 ± 0.3 2.32<br />

7 -0.4057 6527 ± 5 74 ± 5 12.7 ± 3.5 3.8 ± 1.1 0.8 ± 0.5 2.81<br />

8 -0.3043 6554 ± 7 77 ± 7 16.0 ± 3.6 2.2 ± 0.6 1.3 ± 0.5 2.32<br />

9 -0.2028 6551 ± 14 149 ± 14 15.1 ± 4.7 3.6 ± 1.2 1.1 ± 0.6 2.33<br />

10 -0.1014 6625 ± 9 102 ± 8 13.9 ± 3.8 3.5 ± 1.1 2.5 ± 0.9 2.61<br />

11 0.0000 6603 ± 10 118 ± 9 28.3 ± 5.1 2.0 ± 0.4 0.5 ± 0.3 1.99<br />

12 0.1014 6581 ± 20 214 ± 18 26.8 ± 5.8 2.5 ± 0.6 1.1 ± 0.5 2.45<br />

13 0.2028 6435 ± 34 235 ± 29 23.6 ± 6.3 1.8 ± 0.6 0.7 ± 0.4 2.06<br />

14 0.3043 6450 ± 64 263 ± 49 26.0 ± 7.9 0.9 ± 0.4 0.5 ± 0.4 2.12<br />

15 0.4057 6568 ± 6 46 ± 5 23.8 ± 4.4 0.5 ± 0.1 0.2 ± 0.2 1.99<br />

16 0.5071 6530 ± 7 55 ± 7 15.6 ± 3.5 1.0 ± 0.3 1.3 ± 0.5 2.44<br />

102


Table 3.15. UGC 7115: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F(N II6585) F(S IItotal) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 0: X-Offset 0.0 ′′<br />

5 -0.6085 6792 ± 17 63 ± 18 5.7 ± 2.7 1.0 ± 0.7 0.6 ± 0.5 2.59<br />

6 -0.5071 6886 ± 9 49 ± 8 8.4 ± 2.5 1.0 ± 0.4 0.5 ± 0.3 2.90<br />

7 -0.4057 6863 ± 6 57 ± 6 15.8 ± 3.0 0.8 ± 0.2 0.7 ± 0.2 2.65<br />

8 -0.3043 6897 ± 7 64 ± 7 15.1 ± 2.9 1.2 ± 0.3 0.6 ± 0.2 2.84<br />

9 -0.2028 6914 ± 9 107 ± 9 17.1 ± 3.8 2.3 ± 0.6 0.9 ± 0.3 2.53<br />

10 -0.1014 6963 ± 10 271 ± 9 74.7 ± 6.9 2.6 ± 0.3 1.1 ± 0.1 2.48<br />

11 0.0000 6801 ± 9 496 ± 7 372.8 ± 19.3 2.4 ± 0.1 1.4 ± 0.1 2.79<br />

12 0.1014 6625 ± 13 545 ± 10 138.7 ± 20.7 5.6 ± 0.8 2.3 ± 0.4 3.86<br />

13 0.2028 6669 ± 8 224 ± 7 62.4 ± 5.0 2.3 ± 0.2 0.9 ± 0.1 2.92<br />

15 0.4057 6639 ± 8 69 ± 8 3.1 ± 1.9 5.6 ± 3.7 4.7 ± 3.1 2.78<br />

16 0.5071 6661 ± 5 40 ± 6 5.7 ± 1.8 1.9 ± 0.7 0.7 ± 0.4 2.42<br />

103


Table 3.16. NGC 4261: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.1 ′′<br />

1 -0.5071 2442 ± 17 126 ± 16 77.3 ± 19.6 1.6 ± 0.5 1.0 ± 0.4 1.62<br />

2 -0.4564 2324 ± 17 149 ± 17 68.2 ± 18.7 2.3 ± 0.7 1.2 ± 0.5 1.62<br />

3 -0.4057 2388 ± 14 114 ± 13 43.0 ± 15.6 3.3 ± 1.3 1.8 ± 0.8 1.54<br />

4 -0.3550 2365 ± 16 186 ± 15 94.8 ± 20.8 2.7 ± 0.7 1.5 ± 0.4 1.45<br />

5 -0.3043 2357 ± 11 193 ± 10 174.7 ± 23.0 2.5 ± 0.4 0.7 ± 0.2 1.83<br />

6 -0.2535 2377 ± 7 195 ± 6 223.3 ± 23.1 3.3 ± 0.4 1.4 ± 0.2 1.64<br />

7 -0.2028 2393 ± 6 237 ± 5 381.4 ± 27.7 3.4 ± 0.3 1.4 ± 0.1 1.91<br />

8 -0.1521 2360 ± 7 343 ± 7 864.7 ± 48.2 2.8 ± 0.2 1.0 ± 0.1 2.24<br />

9 -0.1014 2216 ± 7 463 ± 6 948.5 ± 69.4 5.0 ± 0.4 1.7 ± 0.1 1.96<br />

10 -0.0507 2079 ± 7 461 ± 6 936.9 ± 69.3 5.0 ± 0.4 1.6 ± 0.1 2.17<br />

11 0.0000 2038 ± 11 459 ± 10 491.7 ± 57.1 5.1 ± 0.6 1.4 ± 0.2 1.68<br />

12 0.0507 2071 ± 20 406 ± 19 263.9 ± 43.1 3.5 ± 0.6 1.1 ± 0.2 1.85<br />

13 0.1014 2099 ± 35 341 ± 32 84.0 ± 30.4 4.3 ± 1.6 1.7 ± 0.7 1.59<br />

14 0.1521 2187 ± 29 239 ± 24 62.6 ± 21.5 3.7 ± 1.4 1.4 ± 0.7 1.68<br />

18 0.3550 2142 ± 22 123 ± 22 52.5 ± 17.3 1.5 ± 0.6 0.9 ± 0.5 1.90<br />

20 0.4564 2020 ± 34 119 ± 34 35.0 ± 16.8 1.5 ± 1.0 0.1 ± 0.5 1.50<br />

21 0.5071 2021 ± 22 99 ± 22 45.1 ± 16.2 1.3 ± 0.6 0.1 ± 0.3 1.73<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 2327 ± 27 112 ± 26 33.6 ± 17.5 2.3 ± 1.4 0.4 ± 0.5 1.93<br />

2 -0.4564 2283 ± 22 155 ± 21 51.3 ± 18.9 3.0 ± 1.3 0.7 ± 0.5 1.89<br />

3 -0.4057 2274 ± 20 152 ± 18 46.9 ± 18.1 3.1 ± 1.3 2.6 ± 1.1 1.33<br />

4 -0.3550 2216 ± 13 141 ± 12 71.3 ± 18.5 3.2 ± 0.9 1.8 ± 0.6 1.64<br />

5 -0.3043 2233 ± 14 164 ± 13 84.7 ± 19.9 2.7 ± 0.7 2.2 ± 0.6 1.77<br />

6 -0.2535 2249 ± 18 191 ± 15 125.0 ± 23.4 2.2 ± 0.5 0.4 ± 0.2 2.05<br />

7 -0.2028 2280 ± 12 139 ± 12 118.2 ± 20.7 1.8 ± 0.4 0.5 ± 0.2 1.71<br />

8 -0.1521 2243 ± 13 189 ± 11 161.9 ± 23.5 2.1 ± 0.4 1.0 ± 0.2 1.77<br />

9 -0.1014 2210 ± 11 182 ± 10 83.5 ± 19.1 5.0 ± 1.2 2.8 ± 0.7 1.72<br />

10 -0.0507 2194 ± 11 205 ± 10 91.9 ± 21.1 5.6 ± 1.4 2.4 ± 0.6 1.98<br />

11 0.0000 2140 ± 18 290 ± 17 70.1 ± 25.7 8.2 ± 3.1 4.3 ± 1.7 1.71<br />

12 0.0507 2184 ± 14 194 ± 12 68.1 ± 20.3 4.9 ± 1.5 3.6 ± 1.1 1.67<br />

13 0.1014 2189 ± 15 147 ± 16 40.8 ± 16.1 5.0 ± 2.1 1.8 ± 0.9 1.58<br />

14 0.1521 2156 ± 11 79 ± 11 41.0 ± 13.1 2.6 ± 1.0 1.3 ± 0.6 1.79<br />

15 0.2028 2212 ± 15 84 ± 15 33.1 ± 13.8 2.2 ± 1.1 1.7 ± 0.9 1.86<br />

Slit 2: X-Offset +0.1 ′′<br />

1 -0.5071 2341 ± 18 116 ± 17 73.2 ± 20.6 1.6 ± 0.6 0.3 ± 0.3 1.74<br />

2 -0.4564 2300 ± 17 135 ± 17 76.0 ± 20.4 2.1 ± 0.7 0.4 ± 0.3 1.54<br />

3 -0.4057 2261 ± 17 131 ± 16 79.8 ± 20.2 2.0 ± 0.6 0.5 ± 0.3 1.44<br />

4 -0.3550 2212 ± 22 214 ± 18 127.7 ± 25.1 2.1 ± 0.5 0.9 ± 0.3 1.61<br />

5 -0.3043 2228 ± 20 163 ± 18 57.2 ± 19.1 3.1 ± 1.2 2.0 ± 0.8 1.83<br />

6 -0.2535 2317 ± 15 110 ± 15 63.7 ± 18.3 1.7 ± 0.6 1.4 ± 0.5 1.52<br />

7 -0.2028 2308 ± 15 83 ± 15 31.6 ± 14.8 2.7 ± 1.5 1.2 ± 0.8 1.54<br />

8 -0.1521 2244 ± 22 167 ± 20 85.7 ± 21.9 1.9 ± 0.6 1.0 ± 0.4 1.52<br />

9 -0.1014 2271 ± 12 144 ± 11 73.4 ± 17.9 3.3 ± 0.9 2.1 ± 0.6 1.59<br />

10 -0.0507 2223 ± 9 125 ± 8 97.9 ± 18.0 2.8 ± 0.6 1.5 ± 0.4 1.33<br />

11 0.0000 2243 ± 11 139 ± 11 93.6 ± 18.9 2.9 ± 0.7 1.3 ± 0.3 1.48<br />

12 0.0507 2251 ± 9 103 ± 9 37.2 ± 16.5 6.0 ± 2.8 2.4 ± 1.2 1.94<br />

13 0.1014 2199 ± 19 170 ± 18 26.7 ± 19.0 8.4 ± 6.1 3.6 ± 2.7 1.39<br />

15 0.2028 1984 ± 49 251 ± 38 49.4 ± 21.9 3.1 ± 1.5 2.4 ± 1.2 1.63<br />

16 0.2535 2091 ± 34 161 ± 31 66.0 ± 21.6 1.1 ± 0.5 1.0 ± 0.5 1.63<br />

20 0.4564 2022 ± 24 90 ± 24 21.6 ± 14.0 2.3 ± 1.8 1.6 ± 1.3 1.60<br />

104


Table 3.17. NGC 4335: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -1.0142 4955 ± 12 94 ± 12 5.4 ± 1.6 2.3 ± 0.8 0.8 ± 0.5 2.80<br />

3 -0.8114 4943 ± 7 92 ± 7 13.0 ± 1.9 1.8 ± 0.3 0.8 ± 0.3 2.81<br />

4 -0.7099 4915 ± 9 107 ± 9 14.3 ± 2.2 1.7 ± 0.3 1.0 ± 0.3 2.37<br />

5 -0.6085 4928 ± 7 84 ± 7 8.5 ± 1.9 2.9 ± 0.7 1.3 ± 0.5 2.29<br />

6 -0.5071 4967 ± 6 83 ± 6 13.7 ± 2.2 2.0 ± 0.4 0.3 ± 0.2 2.15<br />

7 -0.4057 4947 ± 5 85 ± 5 20.8 ± 2.6 1.7 ± 0.3 0.8 ± 0.2 1.84<br />

8 -0.3043 4904 ± 8 111 ± 8 19.2 ± 3.1 2.2 ± 0.4 1.0 ± 0.3 2.20<br />

9 -0.2028 4807 ± 10 160 ± 9 29.5 ± 4.0 2.3 ± 0.4 1.0 ± 0.3 2.43<br />

10 -0.1014 4711 ± 7 174 ± 6 41.4 ± 4.4 2.8 ± 0.3 0.5 ± 0.2 2.06<br />

11 0.0000 4639 ± 5 163 ± 5 45.9 ± 4.2 3.1 ± 0.3 0.9 ± 0.2 2.34<br />

12 0.1014 4606 ± 6 158 ± 6 36.3 ± 3.9 3.0 ± 0.4 0.6 ± 0.2 2.14<br />

13 0.2028 4540 ± 6 109 ± 6 15.5 ± 3.0 3.4 ± 0.7 0.4 ± 0.3 2.50<br />

14 0.3043 4507 ± 6 83 ± 6 6.1 ± 2.3 5.4 ± 2.1 1.0 ± 0.7 3.17<br />

16 0.5071 4471 ± 10 100 ± 10 8.3 ± 2.0 2.4 ± 0.7 0.7 ± 0.4 2.72<br />

17 0.6085 4416 ± 29 227 ± 25 9.4 ± 2.9 2.4 ± 0.8 0.7 ± 0.5 2.99<br />

18 0.7099 4476 ± 18 129 ± 18 9.0 ± 2.3 1.3 ± 0.4 1.0 ± 0.4 3.24<br />

20 0.9128 4526 ± 17 97 ± 18 7.0 ± 2.1 1.0 ± 0.4 0.5 ± 0.4 3.04<br />

21 1.0142 4531 ± 21 138 ± 22 6.3 ± 2.0 1.2 ± 0.5 1.7 ± 0.7 3.68<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 4940 ± 11 80 ± 11 9.7 ± 2.5 1.4 ± 0.5 0.8 ± 0.4 2.16<br />

2 -0.9128 4928 ± 8 70 ± 8 7.0 ± 2.1 2.5 ± 0.9 1.5 ± 0.7 2.21<br />

3 -0.8114 4912 ± 6 60 ± 6 15.7 ± 2.7 1.1 ± 0.2 1.0 ± 0.3 2.18<br />

4 -0.7099 4910 ± 5 55 ± 5 17.8 ± 2.8 0.9 ± 0.2 0.8 ± 0.2 2.31<br />

5 -0.6085 4906 ± 7 61 ± 7 17.0 ± 3.1 0.9 ± 0.2 0.9 ± 0.3 2.01<br />

6 -0.5071 4890 ± 22 170 ± 21 12.9 ± 4.2 2.7 ± 1.0 1.7 ± 0.8 1.88<br />

7 -0.4057 4865 ± 20 207 ± 19 12.8 ± 4.8 4.7 ± 1.9 1.7 ± 1.0 1.62<br />

8 -0.3043 4800 ± 10 133 ± 10 27.1 ± 4.9 2.4 ± 0.5 1.1 ± 0.4 1.66<br />

9 -0.2028 4749 ± 8 162 ± 7 42.6 ± 5.8 3.0 ± 0.5 1.7 ± 0.3 1.56<br />

10 -0.1014 4683 ± 4 210 ± 3 155.9 ± 8.1 3.0 ± 0.2 1.3 ± 0.1 2.19<br />

11 0.0000 4619 ± 3 248 ± 2 337.3 ± 10.3 2.6 ± 0.1 1.0 ± 0.1 3.21<br />

12 0.1014 4568 ± 3 220 ± 3 206.9 ± 8.2 2.7 ± 0.1 1.0 ± 0.1 2.19<br />

13 0.2028 4531 ± 5 134 ± 5 47.9 ± 5.2 3.3 ± 0.4 1.2 ± 0.2 1.72<br />

14 0.3043 4493 ± 8 131 ± 8 28.0 ± 4.7 2.7 ± 0.5 1.1 ± 0.3 1.98<br />

15 0.4057 4376 ± 17 168 ± 17 22.7 ± 5.1 2.0 ± 0.5 0.6 ± 0.3 2.11<br />

16 0.5071 4372 ± 22 175 ± 21 18.7 ± 4.7 2.0 ± 0.6 0.8 ± 0.4 2.39<br />

17 0.6085 4406 ± 17 148 ± 17 17.0 ± 4.0 1.9 ± 0.5 1.1 ± 0.4 2.28<br />

18 0.7099 4383 ± 13 123 ± 14 12.2 ± 3.2 2.2 ± 0.7 1.6 ± 0.6 2.16<br />

19 0.8114 4438 ± 23 159 ± 23 8.8 ± 3.2 2.5 ± 1.1 1.6 ± 0.8 2.54<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 4683 ± 53 259 ± 49 5.1 ± 3.6 3.2 ± 2.4 3.5 ± 2.8 2.72<br />

4 -0.7099 4883 ± 14 67 ± 14 6.0 ± 2.3 1.5 ± 0.7 0.3 ± 0.5 2.69<br />

5 -0.6085 4767 ± 14 103 ± 15 9.7 ± 2.9 1.9 ± 0.7 1.1 ± 0.6 2.17<br />

7 -0.4057 4725 ± 13 114 ± 12 16.2 ± 4.0 1.8 ± 0.5 0.7 ± 0.4 1.95<br />

8 -0.3043 4713 ± 13 109 ± 12 13.5 ± 3.7 2.2 ± 0.7 1.1 ± 0.5 1.74<br />

9 -0.2028 4673 ± 8 82 ± 8 8.4 ± 3.2 4.4 ± 1.8 1.5 ± 0.9 1.72<br />

10 -0.1014 4654 ± 5 76 ± 5 11.8 ± 3.0 4.3 ± 1.2 1.9 ± 0.7 1.95<br />

11 0.0000 4605 ± 5 83 ± 5 12.2 ± 3.2 4.8 ± 1.3 1.4 ± 0.6 1.74<br />

12 0.1014 4550 ± 5 94 ± 6 13.7 ± 3.4 5.0 ± 1.3 1.4 ± 0.6 1.94<br />

13 0.2028 4509 ± 6 115 ± 6 22.4 ± 3.7 3.7 ± 0.7 0.9 ± 0.3 1.70<br />

14 0.3043 4504 ± 11 145 ± 10 12.6 ± 3.7 4.8 ± 1.5 1.6 ± 0.7 1.85<br />

15 0.4057 4481 ± 19 158 ± 18 13.8 ± 3.9 2.4 ± 0.8 0.8 ± 0.5 1.75<br />

16 0.5071 4329 ± 6 54 ± 6 14.9 ± 2.9 1.0 ± 0.3 0.4 ± 0.2 1.68<br />

17 0.6085 4325 ± 7 58 ± 7 12.0 ± 3.1 1.2 ± 0.4 0.4 ± 0.3 2.24<br />

18 0.7099 4352 ± 14 128 ± 14 5.8 ± 2.6 4.6 ± 2.2 3.4 ± 1.8 2.51<br />

19 0.8114 4345 ± 10 78 ± 10 5.3 ± 2.1 2.9 ± 1.3 1.7 ± 1.0 2.20<br />

21 1.0142 4476 ± 34 152 ± 34 4.3 ± 2.7 2.7 ± 1.9 0.9 ± 1.1 3.22<br />

105


Table 3.18. M84 : Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -0.5071 1088 ± 7 89 ± 8 19.3 ± 3.2 1.9 ± 0.4 0.9 ± 0.3 1.33<br />

2 -0.4564 1071 ± 6 88 ± 6 14.4 ± 2.8 3.2 ± 0.7 1.6 ± 0.4 1.28<br />

3 -0.4057 1064 ± 7 95 ± 7 21.7 ± 3.3 2.2 ± 0.4 1.0 ± 0.2 1.36<br />

4 -0.3550 1061 ± 6 101 ± 6 31.6 ± 3.6 1.9 ± 0.3 1.1 ± 0.2 1.22<br />

5 -0.3043 1068 ± 5 118 ± 5 45.4 ± 4.0 1.9 ± 0.2 0.9 ± 0.1 1.34<br />

6 -0.2535 1106 ± 4 126 ± 4 53.1 ± 3.9 2.5 ± 0.2 1.2 ± 0.1 1.39<br />

7 -0.2028 1102 ± 3 115 ± 3 67.7 ± 4.0 2.2 ± 0.2 1.1 ± 0.1 1.42<br />

8 -0.1521 1102 ± 2 102 ± 2 65.0 ± 3.6 2.3 ± 0.2 1.5 ± 0.1 1.54<br />

9 -0.1014 1099 ± 2 124 ± 2 79.8 ± 3.9 2.5 ± 0.1 1.6 ± 0.1 1.50<br />

10 -0.0507 1076 ± 2 137 ± 2 104.9 ± 4.1 2.7 ± 0.1 1.8 ± 0.1 1.65<br />

11 0.0000 1026 ± 2 178 ± 2 150.0 ± 4.9 2.5 ± 0.1 1.8 ± 0.1 1.58<br />

12 0.0507 944 ± 2 197 ± 2 168.1 ± 5.2 2.5 ± 0.1 1.8 ± 0.1 1.61<br />

13 0.1014 878 ± 2 190 ± 2 153.1 ± 5.1 2.7 ± 0.1 1.7 ± 0.1 1.33<br />

14 0.1521 856 ± 3 200 ± 2 131.4 ± 5.0 2.8 ± 0.1 1.8 ± 0.1 1.24<br />

15 0.2028 865 ± 3 184 ± 2 113.5 ± 4.9 2.8 ± 0.1 1.8 ± 0.1 1.23<br />

16 0.2535 855 ± 4 175 ± 3 87.5 ± 4.7 2.5 ± 0.2 1.8 ± 0.1 1.31<br />

17 0.3043 839 ± 5 158 ± 4 56.8 ± 4.3 2.6 ± 0.2 1.9 ± 0.2 1.42<br />

18 0.3550 846 ± 5 141 ± 5 46.2 ± 4.0 2.4 ± 0.2 1.6 ± 0.2 1.33<br />

19 0.4057 881 ± 6 160 ± 6 43.3 ± 4.1 2.5 ± 0.3 1.6 ± 0.2 1.24<br />

20 0.4564 900 ± 6 143 ± 6 33.0 ± 3.8 3.0 ± 0.4 2.0 ± 0.3 1.34<br />

21 0.5071 913 ± 5 126 ± 5 27.0 ± 3.5 3.2 ± 0.5 2.3 ± 0.4 1.26<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 1148 ± 7 118 ± 7 31.6 ± 3.7 1.4 ± 0.2 1.2 ± 0.2 1.30<br />

2 -0.4564 1156 ± 7 148 ± 7 28.0 ± 3.5 2.3 ± 0.3 1.9 ± 0.3 1.30<br />

3 -0.4057 1202 ± 5 140 ± 5 32.9 ± 3.4 2.4 ± 0.3 1.6 ± 0.2 1.47<br />

4 -0.3550 1224 ± 4 138 ± 4 46.1 ± 3.6 2.1 ± 0.2 1.4 ± 0.1 1.40<br />

5 -0.3043 1238 ± 4 156 ± 3 60.6 ± 3.9 2.3 ± 0.2 1.6 ± 0.1 1.33<br />

6 -0.2535 1269 ± 3 173 ± 3 86.3 ± 4.1 2.3 ± 0.1 1.5 ± 0.1 1.45<br />

7 -0.2028 1322 ± 3 192 ± 2 115.7 ± 4.4 2.6 ± 0.1 1.8 ± 0.1 1.58<br />

8 -0.1521 1376 ± 2 224 ± 2 190.2 ± 5.2 2.7 ± 0.1 1.9 ± 0.1 1.78<br />

9 -0.1014 1420 ± 2 305 ± 2 380.0 ± 8.1 2.6 ± 0.1 1.6 ± 0.0 2.35<br />

10 -0.0507 1383 ± 4 483 ± 3 633.2 ± 20.0 3.2 ± 0.1 1.7 ± 0.1 3.95<br />

11 0.0000 1107 ± 11 883 ± 5 761.1 ± 81.3 4.8 ± 0.5 2.4 ± 0.3 5.07<br />

12 0.0507 751 ± 10 779 ± 5 402.9 ± 60.4 7.3 ± 1.1 3.9 ± 0.6 4.03<br />

13 0.1014 754 ± 4 415 ± 4 377.8 ± 14.0 3.0 ± 0.1 1.9 ± 0.1 2.33<br />

14 0.1521 786 ± 5 319 ± 4 175.4 ± 7.8 2.9 ± 0.1 1.9 ± 0.1 2.12<br />

15 0.2028 869 ± 6 258 ± 5 106.9 ± 6.0 2.4 ± 0.2 1.4 ± 0.1 1.67<br />

16 0.2535 934 ± 5 188 ± 4 74.5 ± 4.9 2.1 ± 0.2 1.2 ± 0.1 1.30<br />

17 0.3043 963 ± 4 141 ± 4 58.2 ± 4.3 1.9 ± 0.2 1.1 ± 0.1 1.36<br />

18 0.3550 979 ± 3 105 ± 3 37.1 ± 3.5 2.4 ± 0.3 1.3 ± 0.2 1.37<br />

19 0.4057 975 ± 4 101 ± 3 40.0 ± 3.6 2.0 ± 0.2 1.0 ± 0.1 1.37<br />

20 0.4564 960 ± 3 94 ± 3 36.8 ± 3.4 2.0 ± 0.2 1.2 ± 0.2 1.28<br />

21 0.5071 958 ± 3 83 ± 3 33.6 ± 3.3 2.0 ± 0.2 1.2 ± 0.2 1.56<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -0.5071 1266 ± 6 122 ± 5 38.3 ± 3.7 1.6 ± 0.2 1.2 ± 0.2 1.27<br />

2 -0.4564 1261 ± 5 126 ± 5 34.4 ± 3.5 2.1 ± 0.3 1.4 ± 0.2 1.30<br />

3 -0.4057 1249 ± 5 138 ± 5 34.1 ± 3.5 2.7 ± 0.3 1.3 ± 0.2 1.30<br />

4 -0.3550 1256 ± 5 150 ± 4 34.5 ± 3.6 3.3 ± 0.4 2.2 ± 0.3 1.33<br />

5 -0.3043 1251 ± 4 169 ± 4 49.4 ± 3.9 3.1 ± 0.3 2.0 ± 0.2 1.40<br />

6 -0.2535 1276 ± 4 170 ± 4 61.0 ± 4.1 2.8 ± 0.2 1.6 ± 0.1 1.49<br />

7 -0.2028 1266 ± 3 162 ± 3 71.6 ± 4.2 2.5 ± 0.2 1.4 ± 0.1 1.41<br />

8 -0.1521 1239 ± 3 150 ± 3 79.4 ± 4.3 2.3 ± 0.1 1.3 ± 0.1 1.31<br />

9 -0.1014 1208 ± 3 147 ± 3 71.4 ± 4.4 2.2 ± 0.2 1.4 ± 0.1 1.41<br />

10 -0.0507 1159 ± 4 163 ± 3 59.6 ± 4.6 2.7 ± 0.2 1.7 ± 0.2 1.39<br />

11 0.0000 1126 ± 3 140 ± 3 71.3 ± 4.3 2.1 ± 0.1 1.4 ± 0.1 1.42<br />

12 0.0507 1105 ± 3 136 ± 3 63.5 ± 4.1 2.1 ± 0.2 1.5 ± 0.1 1.28<br />

13 0.1014 1086 ± 4 140 ± 4 54.8 ± 4.1 2.2 ± 0.2 1.1 ± 0.1 1.27<br />

14 0.1521 1060 ± 4 118 ± 4 46.0 ± 3.8 2.1 ± 0.2 1.2 ± 0.1 1.32<br />

15 0.2028 1035 ± 4 111 ± 4 36.1 ± 3.7 2.2 ± 0.3 1.4 ± 0.2 1.22<br />

16 0.2535 1039 ± 4 102 ± 4 41.1 ± 3.7 1.8 ± 0.2 1.1 ± 0.2 1.40<br />

17 0.3043 1006 ± 4 97 ± 4 45.0 ± 4.1 1.5 ± 0.2 0.7 ± 0.1 1.55<br />

18 0.3550 986 ± 4 96 ± 4 34.2 ± 3.9 1.9 ± 0.3 0.9 ± 0.2 1.36<br />

19 0.4057 980 ± 4 90 ± 4 36.8 ± 4.0 1.4 ± 0.2 0.7 ± 0.1 1.27<br />

20 0.4564 983 ± 4 74 ± 3 36.5 ± 3.7 1.2 ± 0.2 0.7 ± 0.1 1.28<br />

21 0.5071 998 ± 5 90 ± 5 30.3 ± 3.7 1.5 ± 0.2 0.8 ± 0.2 1.28<br />

106


Table 3.19. NGC 4486: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -0.5071 1535 ± 14 374 ± 12 113.0 ± 17.5 3.9 ± 0.6 2.4 ± 0.4 1.93<br />

2 -0.4564 1634 ± 12 376 ± 10 252.0 ± 19.7 2.0 ± 0.2 1.4 ± 0.1 2.10<br />

3 -0.4057 1775 ± 5 266 ± 4 353.6 ± 14.4 1.7 ± 0.1 1.3 ± 0.1 2.18<br />

4 -0.3550 1765 ± 4 256 ± 3 352.3 ± 14.1 2.0 ± 0.1 1.4 ± 0.1 1.89<br />

5 -0.3043 1755 ± 5 274 ± 4 332.3 ± 14.4 2.2 ± 0.1 1.5 ± 0.1 1.90<br />

6 -0.2535 1788 ± 3 274 ± 2 477.4 ± 15.6 2.5 ± 0.1 1.6 ± 0.1 2.33<br />

7 -0.2028 1850 ± 2 235 ± 1 794.4 ± 16.2 2.4 ± 0.1 1.5 ± 0.0 2.68<br />

8 -0.1521 1842 ± 1 206 ± 1 1109.7 ± 17.9 2.4 ± 0.0 1.5 ± 0.0 2.81<br />

9 -0.1014 1814 ± 1 191 ± 0 1301.5 ± 18.2 2.3 ± 0.0 1.3 ± 0.0 3.34<br />

10 -0.0507 1789 ± 1 191 ± 1 1101.6 ± 17.5 2.2 ± 0.0 1.2 ± 0.0 3.37<br />

11 0.0000 1720 ± 1 211 ± 1 894.9 ± 17.9 2.0 ± 0.0 1.1 ± 0.0 2.53<br />

12 0.0507 1587 ± 2 251 ± 2 744.3 ± 19.3 1.9 ± 0.1 1.0 ± 0.0 2.89<br />

13 0.1014 1411 ± 3 304 ± 3 611.7 ± 19.7 2.4 ± 0.1 1.3 ± 0.1 2.98<br />

14 0.1521 1287 ± 4 308 ± 3 536.7 ± 18.8 2.6 ± 0.1 1.6 ± 0.1 2.42<br />

15 0.2028 1195 ± 3 259 ± 2 450.5 ± 15.5 2.6 ± 0.1 1.7 ± 0.1 1.83<br />

16 0.2535 1115 ± 2 197 ± 2 423.7 ± 12.7 2.4 ± 0.1 1.6 ± 0.1 2.20<br />

17 0.3043 1106 ± 2 180 ± 2 311.2 ± 11.1 2.7 ± 0.1 1.8 ± 0.1 1.84<br />

18 0.3550 1120 ± 2 171 ± 2 257.4 ± 10.6 2.5 ± 0.1 1.6 ± 0.1 1.69<br />

19 0.4057 1115 ± 3 149 ± 2 193.4 ± 9.6 2.3 ± 0.1 1.6 ± 0.1 1.87<br />

20 0.4564 1115 ± 3 145 ± 3 139.1 ± 8.8 2.4 ± 0.2 1.8 ± 0.1 1.81<br />

21 0.5071 1112 ± 5 166 ± 5 93.9 ± 8.8 3.2 ± 0.3 1.9 ± 0.2 1.84<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 1451 ± 7 212 ± 6 189.2 ± 14.2 1.8 ± 0.2 1.3 ± 0.1 1.64<br />

2 -0.4564 1469 ± 4 191 ± 4 200.7 ± 13.1 2.4 ± 0.2 1.8 ± 0.1 1.72<br />

3 -0.4057 1497 ± 3 197 ± 2 406.8 ± 15.6 2.1 ± 0.1 1.5 ± 0.1 2.01<br />

4 -0.3550 1521 ± 2 201 ± 2 582.5 ± 17.4 1.9 ± 0.1 1.3 ± 0.0 1.97<br />

5 -0.3043 1532 ± 2 205 ± 2 655.5 ± 17.7 2.1 ± 0.1 1.3 ± 0.0 2.11<br />

6 -0.2535 1526 ± 2 217 ± 1 802.6 ± 19.7 2.1 ± 0.1 1.2 ± 0.0 2.53<br />

7 -0.2028 1548 ± 2 253 ± 2 883.2 ± 22.4 2.2 ± 0.1 1.2 ± 0.0 2.63<br />

8 -0.1521 1525 ± 3 301 ± 2 1378.4 ± 30.7 2.1 ± 0.1 1.0 ± 0.0 3.91<br />

9 -0.1014 1378 ± 3 422 ± 3 2160.2 ± 48.2 2.2 ± 0.1 1.1 ± 0.0 3.38<br />

10 -0.0507 1128 ± 7 681 ± 5 1781.4 ± 108.3 4.3 ± 0.3 1.5 ± 0.1 3.29<br />

11 0.0000 1109 ± 6 612 ± 6 3500.2 ± 102.1 1.8 ± 0.1 0.8 ± 0.0 7.08<br />

12 0.0507 1142 ± 18 920 ± 10 4026.6 ± 258.4 1.2 ± 0.1 0.4 ± 0.0 7.24<br />

13 0.1014 940 ± 8 628 ± 7 1372.2 ± 58.2 2.3 ± 0.1 0.7 ± 0.0 3.91<br />

14 0.1521 948 ± 6 395 ± 5 697.2 ± 26.5 2.5 ± 0.1 1.2 ± 0.1 1.98<br />

15 0.2028 1003 ± 4 277 ± 3 558.2 ± 17.6 2.6 ± 0.1 1.6 ± 0.1 2.13<br />

16 0.2535 1020 ± 2 218 ± 2 622.5 ± 15.2 2.3 ± 0.1 1.5 ± 0.0 2.13<br />

17 0.3043 1007 ± 2 206 ± 2 536.8 ± 13.7 2.3 ± 0.1 1.5 ± 0.0 2.07<br />

18 0.3550 1000 ± 3 193 ± 2 364.7 ± 11.9 2.3 ± 0.1 1.5 ± 0.1 1.95<br />

19 0.4057 1018 ± 4 190 ± 3 266.5 ± 11.5 2.3 ± 0.1 1.4 ± 0.1 1.70<br />

20 0.4564 1047 ± 3 183 ± 3 258.4 ± 11.1 2.2 ± 0.1 1.3 ± 0.1 1.66<br />

21 0.5071 1073 ± 3 156 ± 3 207.0 ± 10.4 2.4 ± 0.1 1.5 ± 0.1 1.47<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -0.5071 1083 ± 10 225 ± 8 143.0 ± 12.0 1.7 ± 0.2 1.2 ± 0.1 1.84<br />

2 -0.4564 1088 ± 9 236 ± 7 132.8 ± 12.0 2.3 ± 0.2 1.4 ± 0.2 1.90<br />

3 -0.4057 1089 ± 8 234 ± 6 158.2 ± 12.2 2.1 ± 0.2 1.5 ± 0.1 1.75<br />

4 -0.3550 1053 ± 8 254 ± 7 152.5 ± 12.1 2.4 ± 0.2 1.7 ± 0.2 1.82<br />

5 -0.3043 1019 ± 9 275 ± 8 165.4 ± 12.9 2.5 ± 0.2 1.6 ± 0.2 2.15<br />

6 -0.2535 1008 ± 11 309 ± 9 197.4 ± 15.1 2.4 ± 0.2 1.5 ± 0.2 2.03<br />

7 -0.2028 1026 ± 12 350 ± 10 209.9 ± 17.3 2.5 ± 0.2 1.7 ± 0.2 1.85<br />

8 -0.1521 1029 ± 12 367 ± 10 216.5 ± 18.4 2.8 ± 0.3 1.7 ± 0.2 2.05<br />

9 -0.1014 1038 ± 11 368 ± 9 261.9 ± 19.6 2.5 ± 0.2 1.7 ± 0.2 2.39<br />

10 -0.0507 1038 ± 10 380 ± 8 344.8 ± 21.0 2.3 ± 0.2 1.5 ± 0.1 2.10<br />

11 0.0000 992 ± 10 407 ± 8 364.2 ± 22.6 2.5 ± 0.2 1.6 ± 0.1 2.25<br />

12 0.0507 922 ± 9 395 ± 8 404.9 ± 21.9 2.5 ± 0.2 1.6 ± 0.1 2.23<br />

13 0.1014 869 ± 5 329 ± 5 434.7 ± 18.0 2.8 ± 0.1 1.6 ± 0.1 2.39<br />

14 0.1521 852 ± 4 286 ± 3 499.4 ± 16.4 2.6 ± 0.1 1.4 ± 0.1 2.26<br />

15 0.2028 843 ± 3 239 ± 2 555.4 ± 14.7 2.3 ± 0.1 1.3 ± 0.0 2.16<br />

16 0.2535 864 ± 3 239 ± 2 520.7 ± 14.1 2.1 ± 0.1 1.3 ± 0.0 2.23<br />

17 0.3043 890 ± 3 231 ± 2 483.9 ± 13.5 2.1 ± 0.1 1.4 ± 0.1 2.22<br />

18 0.3550 893 ± 3 213 ± 2 440.6 ± 12.6 2.1 ± 0.1 1.3 ± 0.1 1.87<br />

19 0.4057 880 ± 3 199 ± 2 364.4 ± 11.5 2.3 ± 0.1 1.4 ± 0.1 1.97<br />

20 0.4564 907 ± 3 199 ± 2 322.5 ± 11.1 2.1 ± 0.1 1.4 ± 0.1 1.79<br />

21 0.5071 940 ± 4 203 ± 3 296.1 ± 11.0 2.2 ± 0.1 1.5 ± 0.1 1.79<br />

107


Table 3.20. NGC 5127: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

5 -0.6085 4931 ± 17 52 ± 17 4.4 ± 2.3 0.4 ± 0.5 1.3 ± 0.9 3.61<br />

8 -0.3043 4851 ± 10 125 ± 10 11.4 ± 2.8 2.5 ± 0.7 2.7 ± 0.7 3.72<br />

9 -0.2028 4873 ± 9 91 ± 9 5.4 ± 2.2 4.3 ± 1.9 3.5 ± 1.5 3.01<br />

10 -0.1014 4799 ± 8 61 ± 8 6.7 ± 2.1 1.5 ± 0.6 1.8 ± 0.7 3.31<br />

11 0.0000 4919 ± 22 125 ± 22 7.6 ± 2.9 1.8 ± 0.8 1.2 ± 0.6 2.99<br />

12 0.1014 4711 ± 27 161 ± 26 11.1 ± 3.5 1.4 ± 0.6 1.0 ± 0.4 3.59<br />

13 0.2028 4705 ± 10 68 ± 10 9.6 ± 2.5 0.6 ± 0.3 1.4 ± 0.5 3.65<br />

14 0.3043 4663 ± 36 219 ± 31 14.0 ± 4.1 1.0 ± 0.4 1.3 ± 0.5 3.24<br />

17 0.6085 4685 ± 12 75 ± 13 5.9 ± 2.3 2.2 ± 1.0 1.2 ± 0.6 3.17<br />

20 0.9128 4305 ± 12 61 ± 11 8.0 ± 2.4 0.7 ± 0.3 0.7 ± 0.3 3.25<br />

21 1.0142 4360 ± 9 67 ± 9 18.7 ± 4.2 0.0 ± 0.1 0.4 ± 0.1 3.50<br />

Slit 0: X-Offset 0.0 ′′<br />

4 -0.7099 5010 ± 29 97 ± 29 9.7 ± 4.8 1.3 ± 0.8 0.4 ± 0.4 2.02<br />

7 -0.4057 4879 ± 13 174 ± 12 24.8 ± 5.3 2.9 ± 0.7 2.1 ± 0.5 2.07<br />

8 -0.3043 4902 ± 5 157 ± 5 46.6 ± 5.7 4.3 ± 0.6 2.2 ± 0.3 2.01<br />

9 -0.2028 4861 ± 10 173 ± 8 33.1 ± 5.7 3.5 ± 0.7 2.3 ± 0.5 2.15<br />

10 -0.1014 4810 ± 9 95 ± 9 14.4 ± 4.2 3.0 ± 1.0 2.1 ± 0.7 1.96<br />

11 0.0000 4769 ± 8 52 ± 8 10.7 ± 3.5 1.9 ± 0.8 1.1 ± 0.5 1.97<br />

12 0.1014 4747 ± 6 36 ± 7 13.2 ± 4.0 1.0 ± 0.4 0.5 ± 0.3 1.99<br />

13 0.2028 4799 ± 17 83 ± 16 11.6 ± 4.5 0.2 ± 0.3 1.4 ± 0.7 1.92<br />

18 0.7099 4606 ± 34 162 ± 33 8.5 ± 4.6 2.9 ± 1.8 1.1 ± 0.9 1.94<br />

21 1.0142 4422 ± 45 166 ± 41 8.0 ± 4.8 1.8 ± 1.3 1.7 ± 1.2 2.29<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 4826 ± 20 19 ± 9 5.3 ± 2.8 0.0 ± 0.2 0.2 ± 0.2 2.64<br />

4 -0.7099 4984 ± 9 56 ± 9 4.9 ± 2.1 2.6 ± 1.3 1.7 ± 0.9 2.37<br />

6 -0.5071 4983 ± 9 72 ± 9 6.9 ± 2.5 3.3 ± 1.4 1.0 ± 0.6 2.41<br />

7 -0.4057 4978 ± 10 86 ± 10 12.1 ± 3.1 2.2 ± 0.7 1.0 ± 0.4 2.36<br />

8 -0.3043 4929 ± 10 90 ± 9 15.9 ± 3.5 1.9 ± 0.5 0.7 ± 0.3 2.24<br />

9 -0.2028 4899 ± 10 76 ± 9 10.1 ± 2.9 2.2 ± 0.8 1.5 ± 0.6 1.91<br />

10 -0.1014 4865 ± 11 77 ± 11 7.5 ± 2.6 1.6 ± 0.8 2.9 ± 1.1 2.53<br />

11 0.0000 4924 ± 32 143 ± 30 10.0 ± 4.1 1.7 ± 0.9 0.7 ± 0.5 2.49<br />

12 0.1014 4918 ± 19 119 ± 19 5.3 ± 3.2 4.8 ± 3.1 0.4 ± 0.6 2.52<br />

13 0.2028 4882 ± 15 88 ± 14 4.6 ± 2.8 4.2 ± 2.7 1.9 ± 1.3 2.50<br />

14 0.3043 4861 ± 14 70 ± 13 4.1 ± 2.5 2.2 ± 1.5 2.4 ± 1.6 2.43<br />

18 0.7099 5121 ± 41 132 ± 39 13.3 ± 5.4 0.1 ± 0.2 0.0 ± 0.2 2.47<br />

19 0.8114 4800 ± 14 68 ± 14 3.0 ± 2.2 1.7 ± 1.4 3.6 ± 2.9 2.91<br />

108


Table 3.21. NGC 5141: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

1 -1.0142 5498 ± 15 128 ± 15 6.0 ± 2.4 3.9 ± 1.7 1.4 ± 0.9 2.78<br />

4 -0.7099 5335 ± 26 160 ± 25 5.2 ± 2.6 4.2 ± 2.3 0.5 ± 0.9 2.97<br />

5 -0.6085 5494 ± 10 87 ± 10 8.9 ± 2.3 2.3 ± 0.7 0.8 ± 0.4 2.27<br />

6 -0.5071 5389 ± 20 179 ± 18 7.1 ± 2.8 5.3 ± 2.2 0.7 ± 0.8 2.26<br />

7 -0.4057 5456 ± 23 198 ± 21 10.8 ± 3.3 3.4 ± 1.2 0.6 ± 0.6 2.35<br />

8 -0.3043 5383 ± 12 158 ± 11 12.6 ± 3.0 4.1 ± 1.1 2.1 ± 0.7 2.67<br />

9 -0.2028 5295 ± 7 141 ± 7 25.5 ± 3.3 3.0 ± 0.5 2.3 ± 0.4 2.21<br />

10 -0.1014 5265 ± 3 131 ± 3 50.9 ± 3.6 3.2 ± 0.3 1.5 ± 0.2 2.35<br />

11 0.0000 5282 ± 2 107 ± 2 66.4 ± 3.6 2.9 ± 0.2 1.2 ± 0.1 2.43<br />

12 0.1014 5243 ± 3 105 ± 3 50.2 ± 3.3 2.6 ± 0.2 0.8 ± 0.1 2.66<br />

13 0.2028 5169 ± 2 62 ± 2 22.3 ± 2.5 3.4 ± 0.4 0.7 ± 0.2 2.44<br />

14 0.3043 5123 ± 15 120 ± 15 9.6 ± 2.8 2.8 ± 1.0 0.7 ± 0.5 1.97<br />

15 0.4057 5134 ± 13 80 ± 13 3.5 ± 2.0 4.6 ± 2.8 1.2 ± 1.2 2.10<br />

16 0.5071 5058 ± 22 138 ± 22 18.1 ± 4.1 0.6 ± 0.2 0.5 ± 0.3 2.10<br />

17 0.6085 4932 ± 57 275 ± 42 16.8 ± 4.7 1.4 ± 0.5 0.3 ± 0.4 2.36<br />

18 0.7099 5032 ± 17 96 ± 17 3.1 ± 2.1 5.0 ± 3.7 0.6 ± 1.1 2.15<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 5440 ± 26 103 ± 27 6.4 ± 3.2 2.1 ± 1.3 0.8 ± 0.9 2.24<br />

3 -0.8114 5401 ± 15 94 ± 15 8.9 ± 3.1 2.4 ± 1.0 0.5 ± 0.6 2.03<br />

5 -0.6085 5408 ± 14 117 ± 14 6.6 ± 3.0 5.5 ± 2.7 0.6 ± 0.8 2.20<br />

6 -0.5071 5486 ± 20 107 ± 19 12.5 ± 3.8 1.6 ± 0.6 0.4 ± 0.4 2.05<br />

7 -0.4057 5435 ± 17 148 ± 16 20.1 ± 4.3 1.9 ± 0.5 1.3 ± 0.4 1.77<br />

8 -0.3043 5384 ± 13 183 ± 12 22.8 ± 4.6 3.4 ± 0.8 1.6 ± 0.5 1.80<br />

9 -0.2028 5330 ± 5 165 ± 5 73.6 ± 5.2 2.4 ± 0.2 1.2 ± 0.1 1.99<br />

10 -0.1014 5296 ± 3 186 ± 2 191.1 ± 6.8 2.6 ± 0.1 1.1 ± 0.1 2.53<br />

11 0.0000 5228 ± 3 148 ± 3 140.1 ± 6.4 2.4 ± 0.1 0.9 ± 0.1 2.39<br />

12 0.1014 5189 ± 3 106 ± 3 56.4 ± 4.8 3.3 ± 0.3 0.8 ± 0.1 1.71<br />

13 0.2028 5134 ± 7 121 ± 7 30.9 ± 4.3 2.9 ± 0.5 0.6 ± 0.2 1.65<br />

14 0.3043 5088 ± 17 132 ± 16 28.2 ± 5.5 1.0 ± 0.3 0.7 ± 0.3 1.84<br />

15 0.4057 5103 ± 13 112 ± 13 23.5 ± 4.5 1.2 ± 0.3 0.5 ± 0.3 1.81<br />

16 0.5071 4978 ± 50 263 ± 39 22.4 ± 6.3 1.4 ± 0.5 1.0 ± 0.5 2.19<br />

17 0.6085 5344 ± 51 256 ± 41 14.0 ± 5.6 2.3 ± 1.0 1.2 ± 0.8 1.84<br />

18 0.7099 5336 ± 36 213 ± 32 9.4 ± 4.8 3.6 ± 2.0 0.4 ± 0.7 2.21<br />

Slit 2: X-Offset +0.2 ′′<br />

3 -0.8114 5462 ± 15 62 ± 15 6.3 ± 2.6 1.6 ± 0.8 0.3 ± 0.6 2.46<br />

4 -0.7099 5523 ± 17 95 ± 17 15.0 ± 4.0 0.8 ± 0.3 0.2 ± 0.3 2.44<br />

6 -0.5071 5326 ± 22 136 ± 21 4.5 ± 3.1 6.8 ± 4.9 1.1 ± 1.4 1.85<br />

7 -0.4057 5389 ± 16 112 ± 16 9.2 ± 3.2 3.0 ± 1.2 1.7 ± 0.9 2.04<br />

8 -0.3043 5334 ± 15 100 ± 16 16.0 ± 4.0 1.1 ± 0.4 0.7 ± 0.4 2.22<br />

9 -0.2028 5312 ± 7 115 ± 7 35.9 ± 4.1 1.8 ± 0.3 0.7 ± 0.2 1.81<br />

10 -0.1014 5252 ± 4 122 ± 4 52.1 ± 4.1 2.5 ± 0.2 1.2 ± 0.2 2.06<br />

11 0.0000 5215 ± 5 128 ± 5 53.9 ± 4.6 2.0 ± 0.2 0.8 ± 0.1 2.07<br />

12 0.1014 5162 ± 6 112 ± 6 29.2 ± 3.8 2.5 ± 0.4 0.8 ± 0.2 1.98<br />

13 0.2028 5110 ± 9 95 ± 9 14.2 ± 3.0 2.3 ± 0.6 0.8 ± 0.4 1.72<br />

14 0.3043 5032 ± 14 141 ± 13 22.5 ± 4.0 1.6 ± 0.4 0.7 ± 0.3 2.47<br />

15 0.4057 5062 ± 9 89 ± 8 18.1 ± 3.2 1.6 ± 0.4 0.6 ± 0.2 2.36<br />

16 0.5071 5023 ± 19 113 ± 19 13.7 ± 3.7 1.0 ± 0.4 1.0 ± 0.5 2.15<br />

19 0.8114 4973 ± 8 45 ± 8 9.2 ± 2.5 0.8 ± 0.3 0.1 ± 0.3 2.24<br />

21 1.0142 5510 ± 15 42 ± 15 5.5 ± 2.8 0.1 ± 0.3 0.3 ± 0.4 2.74<br />

109


Table 3.22. NGC 5490: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

3 -0.8114 5164 ± 33 76 ± 33 5.8 ± 3.5 0.5 ± 0.5 0.3 ± 0.6 2.42<br />

5 -0.6085 5104 ± 7 33 ± 10 9.8 ± 4.1 0.1 ± 0.2 0.6 ± 0.4 2.05<br />

10 -0.1014 5008 ± 16 162 ± 15 16.1 ± 4.4 3.4 ± 1.0 0.8 ± 0.5 2.02<br />

11 0.0000 4999 ± 10 205 ± 9 41.3 ± 5.4 3.3 ± 0.5 0.8 ± 0.2 2.29<br />

12 0.1014 5154 ± 11 261 ± 9 79.9 ± 7.0 2.6 ± 0.3 1.0 ± 0.2 2.29<br />

13 0.2028 5220 ± 9 160 ± 8 29.9 ± 4.4 3.6 ± 0.6 1.5 ± 0.3 1.94<br />

14 0.3043 5204 ± 18 145 ± 18 24.3 ± 5.3 1.3 ± 0.4 0.8 ± 0.3 2.00<br />

16 0.5071 5213 ± 17 63 ± 17 7.9 ± 3.3 1.0 ± 0.6 0.5 ± 0.5 2.07<br />

19 0.8114 5154 ± 17 77 ± 16 11.0 ± 3.4 0.9 ± 0.4 0.2 ± 0.3 2.45<br />

20 0.9128 5002 ± 48 192 ± 39 7.4 ± 3.6 2.4 ± 1.4 1.0 ± 0.9 2.51<br />

Slit 0: X-Offset 0.0 ′′<br />

2 -0.9128 5214 ± 10 34 ± 9 7.0 ± 3.6 0.0 ± 0.2 1.0 ± 0.7 2.21<br />

3 -0.8114 5073 ± 8 39 ± 8 11.4 ± 3.4 0.1 ± 0.2 0.2 ± 0.2 2.37<br />

6 -0.5071 5317 ± 9 38 ± 9 10.6 ± 3.6 0.2 ± 0.2 0.5 ± 0.4 2.20<br />

7 -0.4057 5537 ± 28 115 ± 28 22.9 ± 8.2 0.3 ± 0.2 0.2 ± 0.3 1.79<br />

10 -0.1014 4701 ± 11 280 ± 9 74.4 ± 7.4 3.4 ± 0.4 1.3 ± 0.2 2.24<br />

13 0.2028 5058 ± 16 199 ± 14 40.2 ± 6.6 2.3 ± 0.5 0.7 ± 0.3 2.18<br />

18 0.7099 5491 ± 26 60 ± 25 7.4 ± 4.3 0.2 ± 0.4 0.2 ± 0.5 1.93<br />

21 1.0142 5350 ± 37 131 ± 36 7.7 ± 3.7 1.7 ± 1.1 0.3 ± 0.7 2.43<br />

Slit 2: X-Offset +0.2 ′′<br />

1 -1.0142 5222 ± 13 41 ± 13 6.1 ± 2.7 0.1 ± 0.2 0.1 ± 0.4 2.81<br />

4 -0.7099 5506 ± 8 30 ± 7 −3.1 ± 1.7 1.1 ± 0.8 3.0 ± 2.0 2.38<br />

13 0.2028 5083 ± 6 77 ± 6 15.3 ± 3.0 3.0 ± 0.7 0.4 ± 0.3 1.67<br />

16 0.5071 5228 ± 36 131 ± 36 8.8 ± 4.0 1.5 ± 0.9 0.2 ± 0.6 1.91<br />

110


Table 3.23. NGC 7052: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.1 ′′<br />

2 -0.4564 4310 ± 26 153 ± 23 35.8 ± 10.0 1.9 ± 0.7 0.3 ± 0.3 2.33<br />

5 -0.3043 4466 ± 26 186 ± 24 28.5 ± 9.9 3.3 ± 1.3 0.6 ± 0.5 1.94<br />

6 -0.2535 4527 ± 24 179 ± 22 25.7 ± 9.8 4.0 ± 1.7 0.7 ± 0.5 2.75<br />

7 -0.2028 4461 ± 26 241 ± 22 50.7 ± 12.0 2.9 ± 0.8 1.0 ± 0.4 2.97<br />

8 -0.1521 4481 ± 27 281 ± 21 86.0 ± 15.0 2.3 ± 0.5 1.6 ± 0.4 2.15<br />

9 -0.1014 4487 ± 15 285 ± 12 167.2 ± 17.1 2.4 ± 0.3 1.1 ± 0.2 2.62<br />

10 -0.0507 4463 ± 15 413 ± 14 289.4 ± 29.2 3.0 ± 0.3 1.1 ± 0.2 2.31<br />

11 0.0000 4541 ± 17 456 ± 16 354.7 ± 35.1 2.7 ± 0.3 0.8 ± 0.1 2.94<br />

12 0.0507 4722 ± 24 387 ± 22 148.1 ± 24.7 2.8 ± 0.5 0.9 ± 0.2 2.95<br />

16 0.2535 4173 ± 7 37 ± 6 29.4 ± 7.9 0.4 ± 0.2 0.1 ± 0.2 2.29<br />

18 0.3550 4130 ± 14 59 ± 13 20.7 ± 8.5 0.1 ± 0.3 1.2 ± 0.6 3.04<br />

19 0.4057 4210 ± 15 54 ± 15 20.2 ± 7.7 0.0 ± 0.2 0.5 ± 0.5 2.56<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -0.5071 4434 ± 8 66 ± 7 87.2 ± 15.5 0.5 ± 0.1 0.4 ± 0.2 1.76<br />

4 -0.3550 4606 ± 21 130 ± 20 37.3 ± 13.6 1.6 ± 0.7 1.8 ± 0.8 1.65<br />

7 -0.2028 4511 ± 22 175 ± 19 59.6 ± 15.7 2.0 ± 0.6 1.6 ± 0.5 2.02<br />

8 -0.1521 4558 ± 19 232 ± 18 48.1 ± 17.2 5.6 ± 2.1 1.5 ± 0.7 1.46<br />

9 -0.1014 4665 ± 14 265 ± 13 110.1 ± 20.7 4.1 ± 0.8 2.3 ± 0.5 1.54<br />

10 -0.0507 4677 ± 10 268 ± 8 244.8 ± 24.5 3.1 ± 0.3 1.3 ± 0.2 2.09<br />

11 0.0000 4772 ± 11 303 ± 9 285.5 ± 29.5 3.1 ± 0.4 0.5 ± 0.1 1.97<br />

12 0.0507 4832 ± 17 346 ± 16 153.1 ± 28.8 4.1 ± 0.8 1.6 ± 0.4 1.91<br />

14 0.1521 3887 ± 25 65 ± 24 21.6 ± 11.3 0.4 ± 0.4 0.4 ± 0.5 1.64<br />

Slit 2: X-Offset +0.1 ′′<br />

1 -0.5071 4468 ± 9 84 ± 9 87.2 ± 14.6 0.5 ± 0.1 0.0 ± 0.1 1.91<br />

2 -0.4564 4479 ± 15 99 ± 15 62.3 ± 13.8 0.4 ± 0.2 0.5 ± 0.2 1.73<br />

3 -0.4057 4561 ± 13 75 ± 13 47.9 ± 12.4 0.7 ± 0.3 0.3 ± 0.2 1.82<br />

4 -0.3550 4572 ± 18 114 ± 17 51.7 ± 13.3 1.3 ± 0.4 0.3 ± 0.2 2.24<br />

5 -0.3043 4576 ± 20 105 ± 19 53.3 ± 14.5 0.6 ± 0.3 0.4 ± 0.2 1.99<br />

6 -0.2535 4582 ± 13 79 ± 13 41.2 ± 10.9 0.9 ± 0.4 0.7 ± 0.3 1.82<br />

7 -0.2028 4536 ± 21 127 ± 21 71.6 ± 16.4 0.2 ± 0.2 0.1 ± 0.2 1.87<br />

8 -0.1521 4641 ± 9 69 ± 9 55.7 ± 11.1 1.0 ± 0.3 0.2 ± 0.2 2.06<br />

9 -0.1014 4667 ± 11 126 ± 11 73.4 ± 12.1 1.8 ± 0.4 0.8 ± 0.2 1.91<br />

10 -0.0507 4670 ± 7 109 ± 7 68.4 ± 10.4 2.3 ± 0.4 1.6 ± 0.3 1.73<br />

11 0.0000 4678 ± 9 137 ± 9 65.2 ± 11.1 2.6 ± 0.5 2.1 ± 0.4 2.11<br />

13 0.1014 4726 ± 13 87 ± 12 14.5 ± 7.5 5.8 ± 3.2 0.9 ± 0.8 1.62<br />

14 0.1521 4759 ± 33 125 ± 33 32.5 ± 13.3 1.1 ± 0.6 0.2 ± 0.3 1.50<br />

16 0.2535 4738 ± 32 132 ± 32 20.8 ± 10.5 1.7 ± 1.1 1.8 ± 1.2 2.30<br />

20 0.4564 3941 ± 15 73 ± 15 11.0 ± 5.9 2.9 ± 1.8 2.6 ± 1.6 1.96<br />

111


Table 3.24. UGC 12064: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.1 ′′<br />

2 -0.4564 4876 ± 17 136 ± 17 39.5 ± 10.9 1.8 ± 0.6 1.3 ± 0.5 2.29<br />

3 -0.4057 4971 ± 18 107 ± 18 47.6 ± 11.6 0.4 ± 0.2 0.7 ± 0.3 1.88<br />

4 -0.3550 4962 ± 19 73 ± 19 29.8 ± 10.6 0.1 ± 0.2 0.2 ± 0.3 2.06<br />

5 -0.3043 4880 ± 25 127 ± 25 37.2 ± 11.3 1.0 ± 0.4 0.1 ± 0.3 2.24<br />

6 -0.2535 4868 ± 18 134 ± 16 44.1 ± 10.1 1.7 ± 0.5 0.0 ± 0.3 2.11<br />

7 -0.2028 4940 ± 13 47 ± 12 17.8 ± 7.1 0.5 ± 0.4 0.9 ± 0.6 1.77<br />

8 -0.1521 4957 ± 8 46 ± 8 32.3 ± 8.5 0.4 ± 0.2 0.7 ± 0.3 2.44<br />

9 -0.1014 5015 ± 21 191 ± 18 69.0 ± 13.2 1.6 ± 0.4 0.7 ± 0.3 2.36<br />

10 -0.0507 5085 ± 22 259 ± 20 37.9 ± 13.4 5.4 ± 2.0 2.4 ± 1.0 2.13<br />

11 0.0000 5141 ± 21 248 ± 15 87.6 ± 14.6 2.6 ± 0.5 0.9 ± 0.3 1.81<br />

12 0.0507 5231 ± 26 305 ± 21 93.0 ± 17.7 3.1 ± 0.7 1.2 ± 0.3 1.97<br />

18 0.3550 5121 ± 13 40 ± 12 10.7 ± 5.9 1.4 ± 1.0 0.5 ± 0.7 2.26<br />

Slit 0: X-Offset 0.0 ′′<br />

2 -0.4564 4783 ± 36 174 ± 34 87.6 ± 24.2 0.3 ± 0.2 0.4 ± 0.3 1.63<br />

3 -0.4057 4795 ± 43 157 ± 41 44.9 ± 18.3 1.1 ± 0.6 0.3 ± 0.4 1.63<br />

5 -0.3043 4963 ± 28 82 ± 29 23.2 ± 14.3 1.2 ± 1.0 0.5 ± 0.7 1.56<br />

6 -0.2535 4951 ± 49 189 ± 44 35.9 ± 17.5 1.8 ± 1.1 1.0 ± 0.8 1.41<br />

8 -0.1521 4846 ± 42 245 ± 36 35.5 ± 17.8 3.8 ± 2.1 2.8 ± 1.6 1.63<br />

10 -0.0507 5070 ± 15 341 ± 14 265.0 ± 31.6 3.3 ± 0.4 1.1 ± 0.2 1.25<br />

11 0.0000 5186 ± 15 496 ± 13 304.5 ± 62.6 7.1 ± 1.5 1.7 ± 0.4 1.67<br />

12 0.0507 5207 ± 14 444 ± 13 446.8 ± 53.5 4.3 ± 0.5 1.0 ± 0.2 2.28<br />

13 0.1014 5187 ± 32 320 ± 27 132.7 ± 28.3 2.7 ± 0.7 0.8 ± 0.3 1.73<br />

19 0.4057 5128 ± 30 97 ± 30 43.7 ± 18.4 0.2 ± 0.2 0.2 ± 0.3 1.68<br />

20 0.4564 5170 ± 35 121 ± 34 36.4 ± 16.2 0.3 ± 0.4 1.3 ± 0.9 1.86<br />

21 0.5071 5086 ± 32 79 ± 32 22.2 ± 15.6 1.1 ± 1.1 0.2 ± 0.6 1.71<br />

Slit 2: X-Offset +0.1 ′′<br />

1 -0.5071 5016 ± 38 199 ± 34 23.1 ± 10.8 3.0 ± 1.6 0.9 ± 0.8 1.65<br />

2 -0.4564 4863 ± 8 38 ± 7 29.0 ± 8.2 0.6 ± 0.3 0.0 ± 0.2 1.81<br />

3 -0.4057 4881 ± 41 134 ± 42 14.8 ± 9.4 2.1 ± 1.6 0.2 ± 0.8 1.72<br />

8 -0.1521 4884 ± 18 160 ± 17 21.5 ± 9.0 4.7 ± 2.1 3.2 ± 1.5 1.73<br />

9 -0.1014 4914 ± 19 237 ± 17 47.7 ± 12.1 4.1 ± 1.1 1.8 ± 0.6 1.89<br />

10 -0.0507 4926 ± 15 257 ± 12 96.8 ± 14.1 3.3 ± 0.5 1.1 ± 0.3 1.88<br />

11 0.0000 4939 ± 16 304 ± 14 127.4 ± 17.4 3.3 ± 0.5 1.1 ± 0.2 1.72<br />

14 0.1521 5081 ± 45 199 ± 38 38.5 ± 13.1 1.3 ± 0.6 0.6 ± 0.4 2.36<br />

15 0.2028 5088 ± 23 101 ± 22 41.0 ± 12.5 0.1 ± 0.2 0.5 ± 0.3 2.03<br />

16 0.2535 5197 ± 33 97 ± 33 11.2 ± 7.7 2.1 ± 1.8 1.2 ± 1.3 1.69<br />

18 0.3550 4867 ± 38 143 ± 37 43.4 ± 15.4 0.1 ± 0.2 0.3 ± 0.3 1.75<br />

112


Table 3.25. NGC 7626: Measured Parameters.<br />

Row Y-Offset vr σgas F(Hα/10 −16 ) F([NII]6585) F([SII]total) R 2<br />

( ′′ ) (km s −1 ) (km s −1 ) (erg s −1 cm −2 Hz −1 ) F(Hα) F(Hα)<br />

Slit 1: X-Offset -0.2 ′′<br />

8 -0.3043 3554 ± 30 210 ± 25 17.5 ± 4.1 1.6 ± 0.5 0.5 ± 0.3 2.25<br />

9 -0.2028 3583 ± 22 230 ± 18 22.5 ± 4.2 2.3 ± 0.5 0.4 ± 0.3 2.17<br />

10 -0.1014 3457 ± 13 200 ± 12 34.4 ± 4.1 1.9 ± 0.3 0.9 ± 0.2 2.46<br />

11 0.0000 3378 ± 8 152 ± 8 14.0 ± 3.1 5.1 ± 1.2 1.4 ± 0.5 2.32<br />

12 0.1014 3332 ± 15 185 ± 14 8.6 ± 3.4 6.5 ± 2.6 1.3 ± 0.8 2.51<br />

13 0.2028 3331 ± 18 163 ± 17 20.5 ± 4.0 1.5 ± 0.4 0.4 ± 0.3 2.14<br />

14 0.3043 3295 ± 27 155 ± 27 13.4 ± 4.1 1.3 ± 0.5 0.4 ± 0.4 2.25<br />

16 0.5071 3289 ± 16 63 ± 16 7.9 ± 2.8 0.0 ± 0.2 0.2 ± 0.3 2.89<br />

17 0.6085 3412 ± 36 147 ± 35 9.7 ± 3.5 0.8 ± 0.4 0.1 ± 0.4 2.61<br />

18 0.7099 3572 ± 23 93 ± 23 10.2 ± 3.3 0.1 ± 0.2 0.1 ± 0.3 3.05<br />

19 0.8114 4142 ± 23 170 ± 21 16.7 ± 3.4 1.0 ± 0.3 0.4 ± 0.2 3.42<br />

Slit 0: X-Offset 0.0 ′′<br />

1 -1.0142 3116 ± 34 156 ± 33 4.8 ± 3.0 3.9 ± 2.7 0.5 ± 1.0 2.74<br />

2 -0.9128 3191 ± 43 197 ± 38 8.1 ± 3.8 2.6 ± 1.4 0.5 ± 0.7 2.33<br />

6 -0.5071 3630 ± 39 184 ± 36 6.2 ± 3.9 4.2 ± 2.9 0.3 ± 1.0 2.16<br />

7 -0.4057 3568 ± 10 104 ± 10 7.1 ± 2.9 5.6 ± 2.4 2.0 ± 1.0 1.83<br />

8 -0.3043 3605 ± 9 153 ± 8 34.7 ± 4.3 2.5 ± 0.4 1.3 ± 0.2 1.96<br />

9 -0.2028 3607 ± 5 171 ± 5 65.4 ± 4.8 2.9 ± 0.3 1.2 ± 0.1 1.97<br />

10 -0.1014 3552 ± 4 260 ± 3 217.8 ± 7.7 2.3 ± 0.1 1.0 ± 0.1 2.43<br />

11 0.0000 3446 ± 5 349 ± 5 261.0 ± 11.3 3.2 ± 0.2 1.1 ± 0.1 2.64<br />

12 0.1014 3227 ± 4 223 ± 3 136.0 ± 6.2 2.6 ± 0.1 1.0 ± 0.1 2.58<br />

13 0.2028 3216 ± 6 151 ± 6 44.4 ± 4.3 2.7 ± 0.3 0.9 ± 0.2 2.08<br />

14 0.3043 3235 ± 13 157 ± 13 21.7 ± 4.1 2.5 ± 0.6 0.5 ± 0.3 2.23<br />

16 0.5071 3417 ± 24 95 ± 24 12.4 ± 4.4 0.5 ± 0.3 0.4 ± 0.4 2.32<br />

17 0.6085 3470 ± 16 84 ± 16 7.9 ± 2.9 1.8 ± 0.8 0.3 ± 0.5 2.21<br />

21 1.0142 3136 ± 27 118 ± 28 8.9 ± 3.5 1.1 ± 0.6 1.0 ± 0.7 2.29<br />

Slit 2: X-Offset +0.2 ′′<br />

5 -0.6085 3780 ± 5 29 ± 5 7.0 ± 2.1 0.1 ± 0.2 1.1 ± 0.5 2.06<br />

6 -0.5071 3849 ± 18 69 ± 18 5.6 ± 2.5 0.6 ± 0.5 2.3 ± 1.3 2.84<br />

10 -0.1014 3479 ± 14 181 ± 14 12.0 ± 3.7 5.5 ± 1.8 1.6 ± 0.7 1.97<br />

11 0.0000 3433 ± 6 135 ± 6 33.9 ± 3.7 2.9 ± 0.4 0.8 ± 0.2 2.36<br />

12 0.1014 3405 ± 7 119 ± 7 27.1 ± 3.5 2.4 ± 0.4 0.1 ± 0.2 1.90<br />

15 0.4057 3442 ± 27 185 ± 25 10.7 ± 3.5 2.6 ± 1.0 0.2 ± 0.5 2.42<br />

16 0.5071 3377 ± 10 51 ± 10 6.0 ± 2.1 1.5 ± 0.7 0.3 ± 0.4 2.29<br />

17 0.6085 3391 ± 10 34 ± 11 2.9 ± 1.7 1.3 ± 1.0 1.2 ± 1.1 2.33<br />

18 0.7099 3275 ± 42 163 ± 41 6.9 ± 3.3 1.5 ± 1.0 1.5 ± 1.0 2.19<br />

19 0.8114 3579 ± 15 56 ± 15 3.8 ± 1.9 1.2 ± 0.8 2.2 ± 1.3 2.65<br />

20 0.9128 3518 ± 10 31 ± 10 4.0 ± 1.9 0.3 ± 0.3 1.0 ± 0.7 2.37<br />

113


Table 3.26. Effect of mak<strong>in</strong>g various fit parameters free.<br />

Fit description vHα v[NII] σHα σ[NII] F([N II]6585) R 2<br />

(km s −1 ) (km s −1 ) (km s −1 ) (km s −1 ) F([N II]6549)<br />

(1) (2) (3) (4) (5) (6) (7)<br />

114<br />

<strong>in</strong>itial parameters 4620 ± 4 249 ± 3 3.0 3.21<br />

vHα free 4616 ± 9 4620 ± 3 249 ± 3 3.0 3.22<br />

σHα free 4619 ± 3 228 ± 9 256 ± 4 3.0 3.21<br />

vHα + σHα free 4618 ± 9 4619 ± 4 228 ± 9 256 ± 4 3.0 3.22<br />

[N II] ratio free 4622 ± 3 248 ± 3 2.32 ± 0.09 3.04<br />

Note. — The measurements shown were made us<strong>in</strong>g the central spectral row <strong>in</strong> the<br />

central slit observed for NGC 4335. Col. (1): Parameters made free, Initially a set of<br />

l<strong>in</strong>es with one velocity <strong>and</strong> one velocity dispersion was used, with the ratio of the two<br />

[N II] l<strong>in</strong>es fixed to 3.0. The two [S II] l<strong>in</strong>es are fixed <strong>in</strong> velocity <strong>and</strong> width to the [N II]<br />

l<strong>in</strong>es <strong>in</strong> every case; Col. (2-3): The radial velocities of the Hα <strong>and</strong> [N II] l<strong>in</strong>es; Col.<br />

(3-4): The velocity dispersions of the Hα <strong>and</strong> [N II] l<strong>in</strong>es; Col. (5): The ratio of the<br />

[N II]6585 <strong>and</strong> [N II]6549 l<strong>in</strong>es; Col. (6): The reduced χ 2 value of the result<strong>in</strong>g fit.


Table 3.27. Presence of a Nuclear Broad L<strong>in</strong>e.<br />

Galaxy ∆|residual| R 2 N − R 2 A By eye Score Broad Cpt.<br />

(%) R 2 N<br />

(1) (2) (3) (4) (5) (6)<br />

NGC 193 9.6 0.19 � 3 Yes<br />

NGC 315 25.0 0.46 � 3 Yes<br />

NGC 383 8.7 0.16 ◦ 2 Yes<br />

NGC 541 4.6 0.12 � 1 No<br />

NGC 741 1.9 0.01 ◦ 0 No<br />

UGC 1841 14.7 0.35 � 3 Yes<br />

NGC 2329 9.4 0.32 ◦ 2 *<br />

NGC 2892 2.8 0.09 ◦ 0 No<br />

NGC 3801 0.1 0.01 ◦ 0 No<br />

NGC 3862 8.0 0.22 ◦ 2 *<br />

UGC 7115 2.6 0.09 ◦ 0 No<br />

NGC 4261 7.8 0.22 � 3 Yes<br />

NGC 4335 8.0 0.40 � 3 Yes<br />

NGC 4374 2.4 0.12 ◦ 0 No<br />

NGC 4486 3.4 0.15 � 2 Yes<br />

NGC 5127 -1.5 -0.01 ◦ 0 No<br />

NGC 5141 3.7 0.16 � 2 Yes<br />

NGC 5490 5.2 0.23 � 3 Yes<br />

NGC 7052 4.9 0.04 � 1 No<br />

UGC 12064 6.7 0.11 � 2 Yes<br />

NGC 7626 2.5 0.13 � 2 Yes<br />

Note. — Col. (1): NGC/UGC Identification; Col. (2): Difference <strong>in</strong><br />

the mean of the absolute values of the residuals from the fits <strong>in</strong>clud<strong>in</strong>g<br />

<strong>and</strong> exclud<strong>in</strong>g the additional component; Col. (3): Relative change <strong>in</strong><br />

reduced χ 2 value between fits with the narrow l<strong>in</strong>es alone (N) <strong>and</strong> with<br />

the additional component (A); Col. (4): Could an improvement <strong>in</strong> the<br />

fit be judged by eye?; Col. (5): Additional component ‘score’, one po<strong>in</strong>t<br />

available from each of columns 2 to 6, see text for criteria; Col. (6) Is<br />

an additional broad component useful <strong>in</strong> the fit based on these results?<br />

An asterisk (*) <strong>in</strong>dicates the component appears to represent a non-flat<br />

cont<strong>in</strong>uum.<br />

115


Table 3.28. Fits to the central pixel for each galaxy, <strong>in</strong>clud<strong>in</strong>g broad l<strong>in</strong>es.<br />

K<strong>in</strong>ematics.<br />

Galaxy Row vr(NL) vr(BL) σgas(NL) σgas(BL) R 2<br />

(km s −1 ) (km s −1 ) (km s −1 ) (km s −1 )<br />

(1) (2) (3) (4) (5) (6) (7)<br />

NGC 193 11 4417 ± 7 5128 ± 36 277 ± 6 967 ± 21 3.15<br />

NGC 315 11 4830 ± 9 5738 ± 55 406 ± 9 1790 ± 67 2.06<br />

NGC 383 11 5278 ± 54 5568 ± 29 669 ± 39 1367 ± 79 2.25<br />

UGC 1841 11 6409 ± 8 6585 ± 20 436 ± 7 1254 ± 35 3.11<br />

NGC 4261 † 11 2056 ± 9 2703 ± 68 366 ± 12 1079 ± 55 1.69<br />

NGC 4335 11 4618 ± 3 4893 ± 37 188 ± 4 1299 ± 51 1.93<br />

NGC 4486 11 1417 ± 14 1408 ± 28 534 ± 12 1479 ± 42 6.01<br />

NGC 5141 11 5229 ± 3 5356 ± 86 121 ± 4 1223 ± 96 2.01<br />

NGC 5490 11 4733 ± 16 5621 ± 61 377 ± 22 1336 ± 56 1.94<br />

UGC 12064 11 5195 ± 16 5417 ± 90 423 ± 19 1321 ± 168 1.49<br />

NGC 7626 11 3432 ± 7 4083 ± 76 287 ± 10 1126 ± 73 2.29<br />

Note. — †For NGC 4261 slit 1 (offset -0.1 arcsec) was used; Col. (1):<br />

NGC/UGC Number; Col. (2): Central pixel row number referenced from<br />

the earlier data tables for each galaxy; Col. (3): The l<strong>in</strong>e of sight velocities<br />

of the narrow l<strong>in</strong>e components; Col. (4): The l<strong>in</strong>e of sight velocities of the<br />

broad components (where present); Col. (5): The l<strong>in</strong>e of sight velocity<br />

dispersions of the narrow l<strong>in</strong>e components; Col. (6): The l<strong>in</strong>e of sight<br />

velocity dispersions of the broad components (where present); Col. (7):<br />

The reduced χ 2 value of the fit. The parameters were measured by fitt<strong>in</strong>g<br />

a models with 5 narrow l<strong>in</strong>es, fixed to each other <strong>in</strong> velocity <strong>and</strong> velocity<br />

dispersion <strong>and</strong> one free broad component, except as noted above. Errors<br />

quoted are the formal errors on the various parameters from the fit.<br />

116


Table 3.29. Fits to the central pixel for each galaxy, <strong>in</strong>clud<strong>in</strong>g broad l<strong>in</strong>es. Fluxes.<br />

Galaxy F(HαNarrow) F([N II]6585) F([S II]total) F(Broad L<strong>in</strong>e) F([S II]6733)<br />

(ergs −1 cm −2 Hz −1 ) F(HαNarrow) F(HαNarrow) F(HαNarrow) F([S II]6718)<br />

(1) (2) (3) (4) (5) (6)<br />

NGC 193 1.33 ± 0.23 4.21 ± 0.77 3.86 ± 0.71 7.60 ± 1.46 1.18 ± 0.07<br />

NGC 315 9.28 ± 0.77 4.72 ± 0.42 1.81 ± 0.21 4.40 ± 0.51 1.80 ± 0.14<br />

NGC 383 27.72 ± 3.65 0.33 ± 0.18 0.56 ± 0.63 2.14 ± 0.50 0.11 ± 0.12<br />

UGC 1841 7.71 ± 0.46 2.41 ± 0.16 1.39 ± 0.11 2.57 ± 0.28 1.09 ± 0.06<br />

NGC 4261 4.36 ± 1.53 6.76 ± 2.42 3.37 ± 1.23 7.22 ± 2.93 1.55 ± 0.15<br />

NGC 4335 1.33 ± 0.13 4.46 ± 0.44 2.63 ± 0.32 7.54 ± 0.87 1.04 ± 0.08<br />

NGC 4486 44.96 ± 1.53 0.43 ± 0.04 0.59 ± 0.60 1.37 ± 0.11 0.03 ± 0.03<br />

NGC 5141 0.91 ± 0.07 2.95 ± 0.25 1.38 ± 0.22 3.11 ± 0.45 0.97 ± 0.14<br />

NGC 5490 0.25 ± 0.20 14.34 ± 11.64 9.12 ± 7.56 40.54 ± 32.95 1.94 ± 0.38<br />

UGC 12064 0.48 ± 1.14 30.72 ± 72.97 11.16 ± 26.60 32.31 ± 77.41 0.58 ± 0.12<br />

NGC 7626 1.48 ± 0.24 3.80 ± 0.66 1.98 ± 0.38 4.00 ± 1.01 0.95 ± 0.09<br />

Note. — Col. (1): NGC/UGC Number; Col. (2): Hα narrow l<strong>in</strong>e flux; Col.<br />

(3): Ratio of the broad l<strong>in</strong>e flux to the Hα narrow l<strong>in</strong>e flux; Col. (4) Ratio of<br />

the [N II]6585 narrow l<strong>in</strong>e flux to the Hα Narrow l<strong>in</strong>e flux; Col. (5) Ratio of<br />

the total [S II] flux to the Hα Narrow l<strong>in</strong>e flux; Col. (6) Ratio of the [S II]6733<br />

narrow l<strong>in</strong>e to the [S II]6718 narrow l<strong>in</strong>e. The parameters were measured by<br />

fitt<strong>in</strong>g a models with 5 narrow l<strong>in</strong>es, fixed to each other <strong>in</strong> velocity <strong>and</strong> velocity<br />

dispersion <strong>and</strong> one free broad component, except as noted above. Errors quoted<br />

are the formal errors on the various parameters from the fit.<br />

117


Table 3.30. K<strong>in</strong>ematic estimators with<strong>in</strong> 100 pc of the nucleus.<br />

Galaxy rmax. σnuc. ¯σ100pc ∆100pc<br />

(pc) (km s −1 ) (km s −1 ) (km s −1 )<br />

(1) (2) (3) (4) (5)<br />

Rotators:<br />

NGC 315 · · · 528 290 353<br />

NGC 383 · · · 924 342 434<br />

NGC 2329 · · · 302 145 84<br />

UGC 7115 · · · 497 287 337<br />

NGC 4261 78 459 238 319<br />

NGC 4335 · · · 249 166 307<br />

M 84 41 883 229 669<br />

NGC 4486 41 612 313 607<br />

NGC 5127 · · · 157 148 69<br />

NGC 5141 · · · 149 146 196<br />

NGC 7052 · · · 303 226 945<br />

UGC 12064 · · · 497 308 361<br />

NGC 7626 · · · 350 175 391<br />

Mean 463 ± 254 236 ± 72 390 ± 250<br />

Non-Rotators:<br />

NGC 193 · · · 437 228 253<br />

NGC 541 · · · 336 182 266<br />

UGC 1841 · · · 593 378 16<br />

NGC 2892 · · · 453 338 118<br />

NGC 3801 · · · 163 143 113<br />

NGC 3862 · · · 303 182 130<br />

NGC 5490 · · · 680 240 358<br />

Mean 381 ± 147 242 ± 95 149 ± 95<br />

Note. — Col. (1): Galaxy ID; Col. (2): Where the radius away from the central<br />

pixel used was less than 100 pc the radius is <strong>in</strong>dicated here; Col. (3): The velocity<br />

dispersion of the very central spectrum; Col. (4): The mean velocity dispersion<br />

with<strong>in</strong> 100 pc of the central position; Col. (5): The difference <strong>in</strong> mean velocities<br />

with<strong>in</strong> 100 pc to either side of the central spectrum. The galaxies are grouped <strong>in</strong>to<br />

two classes ‘rotators’ <strong>and</strong> ‘non-rotators’ judged by eye as discussed <strong>in</strong> the text,<br />

mean values of each parameter are given for each class.<br />

118


Table 3.31. Comparison of broad l<strong>in</strong>e statistics<br />

Parameter UGC FR-I sample Sy/LINERs <strong>Radio</strong> Loud<br />

(1) (2) (3) (4)<br />

< σBL > (km s −1 ) 1295 ± 218 2400 ± 1100 5900 ± 3700<br />

< σNL > (km s −1 ) 371 ± 153 · · · · · ·<br />

< vNL − vBL > (km s −1 ) −435 ± 335 · · · −500 ± 1200<br />

Note. — The mean velocity dispersions of broad <strong>and</strong> narrow l<strong>in</strong>es <strong>and</strong><br />

offsets of broad <strong>and</strong> narrow l<strong>in</strong>es for three different galaxy samples: Col.(2)<br />

the data presented <strong>in</strong> this work; Col. (3) A sample of Seyferts <strong>and</strong> LINERs;<br />

Col. (4) A summary of properties of several sample of radio galaxies.<br />

References. — (3) Ho et al. (1997); (4) Sulentic et al. (2000)<br />

119


Table 3.32.<br />

Model ID Description vr(NL) vr(BB) vr(BC) σgas(NL) σgas(BB) σgas(BC) R 2<br />

(km s −1 ) (km s −1 ) (km s −1 ) (km s −1 ) (km s −1 ) (km s −1 )<br />

(1) (2) (3) (4) (5) (6) (7) (8) (9)<br />

1 Narrow l<strong>in</strong>es only 4620 · · · · · · 249 · · · · · · 3.21<br />

2 (1) + Extra Broad Component 4618 · · · 4893 188 · · · 1299 1.93<br />

3 (2) + Constra<strong>in</strong>ed Broad Bases (i) 4616 = 4616 4767 139 354 1565 1.73<br />

4 (2) + Constra<strong>in</strong>ed Broad Bases (ii) 4595 4724 4680 139 319 1417 1.60<br />

5 (2) + Unconstra<strong>in</strong>ed Broad Bases 4616 = 4616 4764 128 319 1389 1.68<br />

Note. — Col. (1) Model ID (see text); Col. (2): Brief description of the fit; Cols. (3-5): The radial velocities of the<br />

narrow l<strong>in</strong>e (NL), broad base (BB) <strong>and</strong> broad components (BC) respectively; Cols. (6-8): The velocity dispersions of the<br />

narrow l<strong>in</strong>e (NL), broad base (BB) <strong>and</strong> broad components (BC) respectively. Fits were performed on the central row of the<br />

central slit of the observations of NGC 4335; Col. (9): The reduced χ 2 value of the fit.<br />

Table 3.32 K<strong>in</strong>ematic parameters measured us<strong>in</strong>g various free-parameter sets.<br />

120


(a)<br />

(b) (i)<br />

(ii)<br />

(c)<br />

(i) (ii) (iii) (iv)<br />

(d)<br />

(i) (ii)<br />

(e)<br />

(i) (ii) (iii) (iv)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

4700<br />

4600<br />

4500<br />

4400<br />

4300<br />

4200<br />

4100<br />

0<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

0.91<br />

0.41<br />

−0.10<br />

−0.61<br />

σ gas<br />

v r<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

−2•10<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

−15<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

σ gas<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.0<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

−2•10<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

−15<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.1 Key to plots. Region (a): the HST acquisition image for each galaxy<br />

observed is shown with the positions of the observed long slits overlaid. The relative<br />

position angles of the galaxy major axes measured from the central isophotes (dashed<br />

l<strong>in</strong>es) <strong>and</strong> the arcsecond scale radio jets (dotted l<strong>in</strong>es) are shown. These l<strong>in</strong>es cross,<br />

<strong>and</strong> a North-East <strong>in</strong>dicator is drawn, at the location of the central pixel (see text).<br />

Region (b): (i) the central portion of the reduced 2-D spectrum from the central<br />

slit position is shown along with (ii) an image created from fitt<strong>in</strong>g a set of 5 Gaussian<br />

l<strong>in</strong>es to the same. Region (c): plots represent<strong>in</strong>g the two-dimensional distributions<br />

of parameters measured by fitt<strong>in</strong>g a one Gaussian per emission l<strong>in</strong>e model to spectra<br />

from the nuclear region. The dashed <strong>and</strong> dash-dot l<strong>in</strong>es <strong>in</strong>dicate the directions of the<br />

m<strong>in</strong>or <strong>and</strong> major axes respectively. The l<strong>in</strong>es cross at the location of the central pixel.<br />

We show: (i) radial velocity (filled circles represent velocities greater than the mean,<br />

empty circles represent velocities less than the mean <strong>and</strong> the radius of each po<strong>in</strong>t [i,j]<br />

is proportional to |vi,j − vmean|); (ii) velocity dispersion (the radius of the circle is<br />

proportional to σi,j); (iii) <strong>in</strong>tegrated l<strong>in</strong>e flux (the area of each po<strong>in</strong>t is proportional<br />

to Fi,j); <strong>and</strong> (iv) [N II]6585 / Hα ratio (The radius of each circle is proportional to<br />

log(F([N II]6585)/F(Hα))). Region (d): s<strong>in</strong>gle Gaussian per l<strong>in</strong>e fit <strong>and</strong> residuals<br />

without (i) <strong>and</strong> with (ii) the additional free component described <strong>in</strong> the text for the<br />

central spectrum of each galaxy. Region (e): plots of (i) radial velocity, (ii) velocity<br />

dispersion, (iii) [N II] l<strong>in</strong>e flux <strong>and</strong> (iv) [N II]6585 / Hα ratio along each slit measured<br />

by fitt<strong>in</strong>g a one Gaussian per l<strong>in</strong>e model to the emission l<strong>in</strong>e spectra. The vertical<br />

dotted l<strong>in</strong>e <strong>in</strong>dicates the Y position of the central row. The dash-dot l<strong>in</strong>e <strong>in</strong> the<br />

velocity panel <strong>in</strong>dicates the quoted recession velocity for the galaxy (see Table 2.1).<br />

0.5"<br />

121


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

4700<br />

4600<br />

4500<br />

4400<br />

4300<br />

4200<br />

4100<br />

0<br />

−2•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

0.91<br />

0.41<br />

−0.10<br />

−0.61<br />

σ gas<br />

v r<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−2•10 −15<br />

σ gas<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.0<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 −0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.2 Observation <strong>and</strong> fit data for NGC 193, see Figure 3.1 for description.<br />

122


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.71•10 −14<br />

2.12•10 −14<br />

1.54•10 −14<br />

9.58•10 −15<br />

3.75•10 −15<br />

−2.08•10 −15<br />

5200<br />

5100<br />

5000<br />

4900<br />

4800<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.1<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.71•10 −14<br />

2.12•10 −14<br />

1.54•10 −14<br />

9.58•10 −15<br />

3.75•10 −15<br />

−2.08•10 −15<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20<br />

22.5<br />

17.5<br />

12.5<br />

7.5<br />

σ gas<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

2.5<br />

−2.5<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.3 Observation <strong>and</strong> fit data for NGC 315, see Figure 3.1 for description.<br />

123


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

5400<br />

5300<br />

5200<br />

5100<br />

5000<br />

4900<br />

4800<br />

4700<br />

0<br />

−5.0•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.1<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

9<br />

7<br />

5<br />

3<br />

1<br />

−1<br />

45<br />

35<br />

25<br />

15<br />

5<br />

−5<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−5.0•10 −15<br />

σ gas<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

0<br />

−2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.4 Observation <strong>and</strong> fit data for NGC 383, see Figure 3.1 for description.<br />

124


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.5•10 −15<br />

2.0•10 −15<br />

1.5•10 −15<br />

1.0•10 −15<br />

5.0•10 −16<br />

5700<br />

5600<br />

5500<br />

5400<br />

5300<br />

5200<br />

5100<br />

5000<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.5•10 −15<br />

2.0•10 −15<br />

1.5•10 −15<br />

1.0•10 −15<br />

5.0•10 −16<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

−0.2<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0.225<br />

0.175<br />

0.125<br />

0.075<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.025<br />

−0.025<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.5 Observation <strong>and</strong> fit data for NGC 541, see Figure 3.1 for description.<br />

125


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.0•10 −15<br />

1.5•10 −15<br />

1.0•10 −15<br />

5.0•10 −16<br />

5800<br />

5600<br />

5400<br />

5200<br />

0<br />

−5.0•10 −16<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.0•10 −15<br />

1.5•10 −15<br />

1.0•10 −15<br />

5.0•10 −16<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

2.25<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

−0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0<br />

−5.0•10 −16<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.00<br />

−0.05<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.6 Observation <strong>and</strong> fit data for NGC 741, see Figure 3.1 for description.<br />

126


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

1.75•10 −14<br />

1.25•10 −14<br />

7.50•10 −15<br />

2.50•10 −15<br />

−2.50•10 −15<br />

−7.50•10 −15<br />

6600<br />

6500<br />

6400<br />

6300<br />

6200<br />

6100<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

1.75•10 −14<br />

1.25•10 −14<br />

7.50•10 −15<br />

2.50•10 −15<br />

−2.50•10 −15<br />

−7.50•10 −15<br />

2.25<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

−0.25<br />

40<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.1<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.7 Observation <strong>and</strong> fit data for UGC 184, see Figure 3.1 for description.<br />

127


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

9•10 −15<br />

7•10 −15<br />

5•10 −15<br />

3•10 −15<br />

1•10 −15<br />

−1•10 −15<br />

6000<br />

5900<br />

5800<br />

5700<br />

5600<br />

5500<br />

5400<br />

5300<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

9•10 −15<br />

7•10 −15<br />

5•10 −15<br />

3•10 −15<br />

1•10 −15<br />

−1•10 −15<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.45<br />

0.35<br />

0.25<br />

0.15<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.05<br />

−0.05<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.8 Observation <strong>and</strong> fit data for NGC 2329, see Figure 3.1 for description.<br />

128


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

7000<br />

6900<br />

6800<br />

6700<br />

6600<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.1<br />

0.0<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.9 Observation <strong>and</strong> fit data for NGC 2892, see Figure 3.1 for description.<br />

129


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

1.0•10 −15<br />

8.0•10 −16<br />

6.0•10 −16<br />

4.0•10 −16<br />

2.0•10 −16<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

1.0•10 −15<br />

8.0•10 −16<br />

6.0•10 −16<br />

4.0•10 −16<br />

2.0•10 −16<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

−0.1<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0.175<br />

0.125<br />

0.075<br />

0.025<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−0.025<br />

−0.075<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.10 Observation <strong>and</strong> fit data for NGC 3801, see Figure 3.1 for description.<br />

130


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

6550<br />

6500<br />

6450<br />

6400<br />

6350<br />

0<br />

−5.0•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

−0.25<br />

−0.75<br />

22.5<br />

17.5<br />

12.5<br />

7.5<br />

2.5<br />

−2.5<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−5.0•10 −15<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.0<br />

−0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.11 Observation <strong>and</strong> fit data for NGC 3862, see Figure 3.1 for description.<br />

131


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

6•10 −15<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

7000<br />

6900<br />

6800<br />

6700<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = 0.0<br />

6600<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas (km s −1 )<br />

600<br />

400<br />

200<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6628 6687 6747 6806<br />

Wavelength (Å)<br />

6865 6925 6984<br />

0.5"<br />

X = 0.0<br />

0<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

6•10 −15<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

9<br />

7<br />

5<br />

3<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = 0.0<br />

1<br />

−1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6628 6687 6747 6806<br />

Wavelength (Angstroms)<br />

6865 6925 6984<br />

[NII]/Hα<br />

X = 0.0<br />

0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.12 Observation <strong>and</strong> fit data for UGC 7115, see Figure 3.1 for description.<br />

132


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

0<br />

−5.0•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.1<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6503 6557 6610 6664 6718 6772 6825<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

2.0•10 −14<br />

1.5•10 −14<br />

1.0•10 −14<br />

5.0•10 −15<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

45<br />

35<br />

25<br />

15<br />

5<br />

−5<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0<br />

−5.0•10 −15<br />

σ gas<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

0.5<br />

0.0<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6503 6557 6610 6664 6718 6772 6825<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.13 Observation <strong>and</strong> fit data for NGC 4261, see Figure 3.1 for description.<br />

133


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

1.0•10 −14<br />

8.0•10 −15<br />

6.0•10 −15<br />

4.0•10 −15<br />

2.0•10 −15<br />

5000<br />

4800<br />

4600<br />

4400<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

−0.25<br />

−0.75<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

1.0•10 −14<br />

8.0•10 −15<br />

6.0•10 −15<br />

4.0•10 −15<br />

2.0•10 −15<br />

9<br />

7<br />

5<br />

3<br />

1<br />

−1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.1<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.14 Observation <strong>and</strong> fit data for NGC 4335, see Figure 3.1 for description.<br />

134


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

1.75•10 −14<br />

1.25•10 −14<br />

7.50•10 −15<br />

2.50•10 −15<br />

−2.50•10 −15<br />

−7.50•10 −15<br />

1400<br />

1200<br />

1000<br />

800<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6470 6531 6592 6652 6713 6774 6835<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

1.75•10 −14<br />

1.25•10 −14<br />

7.50•10 −15<br />

2.50•10 −15<br />

−2.50•10 −15<br />

−7.50•10 −15<br />

4.5<br />

3.5<br />

2.5<br />

1.5<br />

0.5<br />

−0.5<br />

40<br />

30<br />

20<br />

10<br />

0<br />

−10<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.0<br />

−0.5<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6470 6531 6592 6652 6713 6774 6835<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.15 Observation <strong>and</strong> fit data for NGC 4374, see Figure 3.1 for description.<br />

135


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

4.5•10 −14<br />

3.5•10 −14<br />

2.5•10 −14<br />

1.5•10 −14<br />

5.0•10 −15<br />

−5.0•10 −15<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6470 6531 6592 6652 6713 6774 6835<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

4.5•10 −14<br />

3.5•10 −14<br />

2.5•10 −14<br />

1.5•10 −14<br />

5.0•10 −15<br />

−5.0•10 −15<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20<br />

17.5<br />

12.5<br />

7.5<br />

2.5<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−2.5<br />

−7.5<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6470 6531 6592 6652 6713 6774 6835<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.16 Observation <strong>and</strong> fit data for NGC 4486, see Figure 3.1 for description.<br />

136


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

2.71•10 −15<br />

2.12•10 −15<br />

1.54•10 −15<br />

9.58•10 −16<br />

3.75•10 −16<br />

−2.08•10 −16<br />

5000<br />

4900<br />

4800<br />

4700<br />

4600<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.71•10 −15<br />

2.12•10 −15<br />

1.54•10 −15<br />

9.58•10 −16<br />

3.75•10 −16<br />

−2.08•10 −16<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.05<br />

0.00<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.17 Observation <strong>and</strong> fit data for NGC 5127, see Figure 3.1 for description.<br />

137


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

5500<br />

5400<br />

5300<br />

5200<br />

5100<br />

5000<br />

4900<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

−0.5<br />

4.5<br />

3.5<br />

2.5<br />

1.5<br />

0.5<br />

−0.5<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−0.25<br />

−0.75<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.18 Observation <strong>and</strong> fit data for NGC 5141, see Figure 3.1 for description.<br />

138


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

6500<br />

6000<br />

5500<br />

5000<br />

4500<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

5•10 −15<br />

4•10 −15<br />

3•10 −15<br />

2•10 −15<br />

1•10 −15<br />

2.25<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

−0.25<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.0<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

0<br />

6584 6638 6691 6745<br />

Wavelength (Angstroms)<br />

6799 6852 6906<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.19 Observation <strong>and</strong> fit data for NGC 5490, see Figure 3.1 for description.<br />

139


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

7•10 −15<br />

5•10 −15<br />

3•10 −15<br />

1•10 −15<br />

−1•10 −15<br />

−3•10 −15<br />

4800<br />

4600<br />

4400<br />

4200<br />

4000<br />

3800<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.1<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

7•10 −15<br />

5•10 −15<br />

3•10 −15<br />

1•10 −15<br />

−1•10 −15<br />

−3•10 −15<br />

9<br />

7<br />

5<br />

3<br />

1<br />

−1<br />

9<br />

7<br />

5<br />

3<br />

1<br />

−1<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

σ gas<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

0.0<br />

−0.5<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.20 Observation <strong>and</strong> fit data for NGC 7052, see Figure 3.1 for description.<br />

140


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

5300<br />

5200<br />

5100<br />

5000<br />

4900<br />

4800<br />

0<br />

−2•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.1<br />

Y (arcsec)<br />

0.46<br />

0.20<br />

-0.05<br />

-0.30<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

600<br />

400<br />

200<br />

0<br />

0.5"<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

22.5<br />

17.5<br />

12.5<br />

7.5<br />

2.5<br />

−2.5<br />

4.5<br />

3.5<br />

2.5<br />

1.5<br />

0<br />

−2•10 −15<br />

σ gas<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

0.5<br />

−0.5<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.1 0.0 -0.1<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.1<br />

X = 0.0<br />

X = +0.1<br />

−0.51 −0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 3.21 Observation <strong>and</strong> fit data for UGC 12064, see Figure 3.1 for description.<br />

141


Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

v r (km s −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

3800<br />

3600<br />

3400<br />

3200<br />

0<br />

−2•10 −15<br />

Reduced 2−D Spectrum<br />

S<strong>in</strong>gle Gaussian per L<strong>in</strong>e Fit<br />

v r<br />

X = −0.2<br />

Y (arcsec)<br />

0.91<br />

0.41<br />

-0.10<br />

-0.61<br />

Hα+[NII] & [SII] − Narrow L<strong>in</strong>e Fit<br />

σ gas<br />

v r<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.5"<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Intensity (erg s −1 cm −2 Å −1 arcsec −2 )<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

8•10 −15<br />

6•10 −15<br />

4•10 −15<br />

2•10 −15<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

−0.2<br />

9<br />

7<br />

5<br />

3<br />

1<br />

−1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0<br />

−2•10 −15<br />

σ gas<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

[NII] 6585 Flux<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

0.1<br />

−0.1<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

F([NII] 6585)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

Hα+[NII] & [SII] − Narrow & Broad Cpt. Fit<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

F([NII])/F(Hα)<br />

+0.2 0.0 -0.2<br />

X (arcsec)<br />

6584 6638 6691 6745 6799 6852 6906<br />

Wavelength (Angstroms)<br />

[NII]/Hα<br />

X = −0.2<br />

X = 0.0<br />

X = +0.2<br />

−1.01 −0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 3.22 Observation <strong>and</strong> fit data for NGC 7626, see Figure 3.1 for description.<br />

142


Difference <strong>in</strong> mean velocity on each side of nucleus (km s -1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0 100 200 300 400 500<br />

Mean gas velocity dispersion (km s -1 0<br />

)<br />

Figure 3.23 Difference <strong>in</strong> mean velocity with<strong>in</strong> 100 pc of each side of the nucleus<br />

(∆100pc, see text) as a function of the mean gas velocity dispersion with<strong>in</strong> 100 pc<br />

of the nucleus (σ100pc). The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies are<br />

<strong>in</strong>dicated. Filled symbols represent rotators: with dust disks (•), with dust lanes<br />

(�) or with irregular dust (�); Empty symbols represent non-rotators: with dust<br />

disks (◦), with dust lanes (�) or with no-dust or irregular dust (△). The solid l<strong>in</strong>e<br />

is the 1:1 ratio between ∆100pc <strong>and</strong> σ100pc, <strong>in</strong>dicat<strong>in</strong>g regions where organized motions<br />

(above the l<strong>in</strong>e) or r<strong>and</strong>om motions (below the l<strong>in</strong>e) dom<strong>in</strong>ate.<br />

143


Difference <strong>in</strong> mean velocity on each side of nucleus (km s -1 )<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Axis Ratio (b/a or width:length)<br />

Figure 3.24 Difference <strong>in</strong> mean velocity with<strong>in</strong> 100 pc of each side of the nucleus<br />

(∆100pc, see text) as a function of dust disk axis ratio (b/a) or dust lane width : length<br />

ratio, which is an <strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation. The different k<strong>in</strong>ematic classes <strong>and</strong> dust<br />

morphologies are <strong>in</strong>dicated. Filled symbols represent rotators: with dust disks (•),<br />

with dust lanes (�) or with irregular dust (�); Empty symbols represent non-rotators:<br />

with dust disks (◦), with dust lanes (�) or with no-dust or irregular dust (△). The<br />

solid l<strong>in</strong>es are loci for disks with the same <strong>in</strong>tr<strong>in</strong>sic ∆100pc (990, 680 <strong>and</strong> 360 km s −1 )<br />

viewed at <strong>in</strong>cl<strong>in</strong>ations projected assum<strong>in</strong>g b/a = s<strong>in</strong> i (i.e. a circular disk).<br />

144


Mean velocity dispersion (km s -1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Axis Ratio (b/a or width:length)<br />

Figure 3.25 Mean gas velocity dispersion with<strong>in</strong> 100 pc of the nucleus (σ100pc) as a<br />

function of dust disk axis ratio (b/a) or dust lane width : length ratio, which is an<br />

<strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation. The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies are<br />

<strong>in</strong>dicated. Filled symbols represent rotators: with dust disks (•), with dust lanes<br />

(�) or with irregular dust (�); Empty symbols represent non-rotators: with dust disks<br />

(◦), with dust lanes (�) or with no-dust or irregular dust (△).<br />

145


[N II] Flux<br />

10 -12<br />

10 -13<br />

10 -14<br />

10 -15<br />

10 -15<br />

10 -14<br />

Hα Flux<br />

10 -13<br />

146<br />

10 -12<br />

Figure 3.26 [N II] aga<strong>in</strong>st Hα fluxes for the UGC FR-I sample members. Formal errors<br />

<strong>in</strong> the fluxes are shown. The shad<strong>in</strong>g of the symbols <strong>in</strong>dicates the score assigned to<br />

the broad component <strong>in</strong> each case (see text). A score of 3 (most confident) is shown<br />

by black symbols, through to white symbols for a score of zero (no confidence <strong>in</strong> a<br />

broad l<strong>in</strong>e). It is possible to see a trend with flux from less to more confidence <strong>in</strong><br />

broad-l<strong>in</strong>e detection.


Chapter 4<br />

Model<strong>in</strong>g gas <strong>in</strong> gravitational<br />

potentials<br />

4.1 Introduction<br />

Spectroscopic observations from the Hubble Space Telescope have made it possible<br />

to attempt to measure the black hole masses <strong>in</strong> the centers of nearby galaxies us<strong>in</strong>g<br />

stellar <strong>and</strong> gas k<strong>in</strong>ematics (see Chapter 1). The black hole masses correlate somewhat<br />

with the host lum<strong>in</strong>osity, <strong>and</strong> more tightly with the <strong>in</strong>ner velocity dispersion of the<br />

stars (‘<strong>in</strong>ner’ refers to <strong>in</strong>side the effective radius (Chapter 2), but still on much larger<br />

scales than the region we describe as ‘central’ or ‘nuclear’ through this thesis). In<br />

Chapter 3 we presented spectroscopic observations of the emission l<strong>in</strong>e gas <strong>in</strong> the<br />

nuclear regions of our sample of 21 nearby radio-galaxies (Chapter 2). Here, we may<br />

try to learn more about those data by compar<strong>in</strong>g our observational results to models<br />

147


for the gravitational potential from the stars <strong>and</strong> prospective nuclear black holes <strong>in</strong><br />

each galaxy.<br />

In this chapter we present the techniques used to create model velocity profiles<br />

for each set of observations <strong>in</strong>clud<strong>in</strong>g the stars, <strong>and</strong> black holes with masses of 0,<br />

1 × 10 8 M⊙ <strong>and</strong> 9 × 10 8 M⊙. We go on to discuss the models for each galaxy <strong>and</strong><br />

compare the predicted k<strong>in</strong>ematic signatures <strong>in</strong>clud<strong>in</strong>g the presence of supermassive<br />

black holes to the observed gas velocity profiles presented <strong>in</strong> Chapter 3.<br />

An important drawback of the approach of measur<strong>in</strong>g black hole masses by us<strong>in</strong>g<br />

gas k<strong>in</strong>ematics is that the gas dynamics may be affected by many non-gravitational<br />

sources <strong>and</strong> the gravitational motions may not be settled <strong>in</strong>to a coplanar th<strong>in</strong> disk.<br />

We describe any such motions as ‘unsettled’. In §4.4.3 we will discuss some non-<br />

gravitational sources of k<strong>in</strong>etic energy <strong>in</strong> the gas <strong>and</strong> the consequences of unsettled<br />

motions for the determ<strong>in</strong>ation of black hole masses. We do not produce model fits for<br />

each galaxy because, as we will see, a large proportion of the gas motion can not be<br />

described by simple circular-th<strong>in</strong>-disk rotation, render<strong>in</strong>g such fits difficult constra<strong>in</strong><br />

<strong>and</strong> impossible to <strong>in</strong>terpret mean<strong>in</strong>gfully.<br />

148


4.2 Th<strong>in</strong> disk models with <strong>and</strong> without a black<br />

hole<br />

We have created model velocity profiles assum<strong>in</strong>g that the emission l<strong>in</strong>e gas that we<br />

observe orig<strong>in</strong>ates from a th<strong>in</strong> rotat<strong>in</strong>g circular disk <strong>in</strong> each nucleus. This assumption<br />

matches our f<strong>in</strong>d<strong>in</strong>gs that the gas can be expla<strong>in</strong>ed by a rotat<strong>in</strong>g system as we showed<br />

<strong>in</strong> Chapter 3; however, the large velocity dispersions that we measure <strong>in</strong>dicate that<br />

the assumption that the disk is th<strong>in</strong> may not be very reliable. Yet for the purposes of<br />

model<strong>in</strong>g this assumption is necessary: to enable first steps to be made <strong>and</strong> to give<br />

us some h<strong>and</strong>le on explanations of the nuclear gas dynamics.<br />

We use model<strong>in</strong>g techniques very similar to those described by van der Marel &<br />

van den Bosch (1998) <strong>and</strong> Verdoes Kleijn et al. (2002b) to generate velocity profiles<br />

along the observed slits for gas sitt<strong>in</strong>g <strong>in</strong> the gravitational potential generated by the<br />

stellar population of the galaxy <strong>and</strong> <strong>in</strong>clud<strong>in</strong>g (i) no black hole, (ii) a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> (iii) a 9×10 8 M⊙ black hole, <strong>and</strong> tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>strumental<br />

PSF. These values of black hole mass are <strong>in</strong> the range typically conjectured for the<br />

nuclei of galaxies of this size, <strong>and</strong> we would not expect to resolve black holes of less<br />

than ∼ 1 ×10 8 M⊙ at the distances of the majority of the galaxies <strong>in</strong> our sample. We<br />

assume that the galaxy is at a distance D = v/H0, where v is the mean recessional<br />

149


velocity as given earlier <strong>in</strong> Table 2.1.<br />

4.2.1 WFPC2 imag<strong>in</strong>g: stars <strong>and</strong> dust<br />

Each galaxy was observed dur<strong>in</strong>g HST program GO-6673 us<strong>in</strong>g the Wide Field <strong>and</strong><br />

Planetary Camera - 2 (WFPC2) <strong>in</strong>strument (described <strong>in</strong>, e.g. Trauger, 1994; Biretta,<br />

1996) on the Hubble Space Telescope. Observations <strong>and</strong> reduction are described by<br />

Verdoes Kleijn et al. (1999) (<strong>and</strong> also <strong>in</strong> Appendix A of Verdoes Kleijn et al., 2002a,<br />

for UGC 7115 <strong>and</strong> UGC 12064). Observations were obta<strong>in</strong>ed us<strong>in</strong>g wide b<strong>and</strong> filters<br />

approximat<strong>in</strong>g the V (F555W or F547M) <strong>and</strong> I (F814W or F791W) b<strong>and</strong>s, along with<br />

a narrow b<strong>and</strong> image obta<strong>in</strong>ed us<strong>in</strong>g a l<strong>in</strong>ear ramp filter.<br />

Verdoes Kleijn et al. (1999) fitted an elliptical contour to the outl<strong>in</strong>e of the dust<br />

disk <strong>in</strong> each case to f<strong>in</strong>d the position angles of the dust disks, which were listed<br />

earlier <strong>in</strong> Table 3.3. We assume that the gas <strong>and</strong> dust disks are co<strong>in</strong>cident (this is<br />

consistent with the observations of the dust <strong>and</strong> the narrow b<strong>and</strong> Hα+ [N II]), <strong>and</strong><br />

that they co<strong>in</strong>cide with the major axis of the galaxy <strong>and</strong> def<strong>in</strong>e the major plane. This<br />

f<strong>in</strong>al assumption seems reasonable based on the position angles for the majority of<br />

galaxies, however there are some cases where this may not be a fair assumption to<br />

make about the disk as we see large differences <strong>in</strong> the dust <strong>and</strong> galaxy position angles<br />

(e.g. NGC 3801, NGC 4374, NGC 5490 <strong>and</strong> UGC 7115). Incl<strong>in</strong>ations for the dust<br />

150


gas disks were computed by mak<strong>in</strong>g a circular th<strong>in</strong> disk assumption <strong>and</strong> deriv<strong>in</strong>g<br />

the <strong>in</strong>cl<strong>in</strong>ation angle from the observed axis ratio of the dust. For the galaxies with<br />

dust lanes, <strong>in</strong>cl<strong>in</strong>ations were set at 80 ◦ (we do not observe disks below about 70 ◦ ,<br />

which we <strong>in</strong>terpret of the lower limit of the range of <strong>in</strong>cl<strong>in</strong>ations <strong>in</strong> systems where we<br />

see lanes). The measured axis ratios <strong>and</strong> derived <strong>in</strong>cl<strong>in</strong>ations are given <strong>in</strong> Table 4.1,<br />

along with dust masses.<br />

4.2.2 Flux distributions<br />

To model the observed gas k<strong>in</strong>ematics we first need a description of the <strong>in</strong>tr<strong>in</strong>sic<br />

emission l<strong>in</strong>e flux distribution, for which we make use of the flux profiles obta<strong>in</strong>ed<br />

from the Gaussian fits to our STIS spectroscopic results that we presented <strong>in</strong> Chapter<br />

3, Tables 3.5 to 3.25. We model the face on flux profile as a double exponential,<br />

151<br />

F(R) = F1e −R/R1 + F2e −R/R2 , (4.1)<br />

deriv<strong>in</strong>g the parameters assum<strong>in</strong>g an <strong>in</strong>f<strong>in</strong>itesimally th<strong>in</strong> disk, <strong>in</strong>cl<strong>in</strong>ed at the angle<br />

given <strong>in</strong> Table 4.1. We iterate a fit of the double exponential to the flux data, tak<strong>in</strong>g<br />

<strong>in</strong>to account the flux errors <strong>and</strong> convolution with the STIS PSF, aperture size <strong>and</strong><br />

pixel size.<br />

The STIS PSF was represented by a comb<strong>in</strong>ation of five Gaussians which represent


the PSF as<br />

PSF(r) =<br />

5�<br />

γi<br />

i=1 2πσ2 i<br />

152<br />

e −1<br />

� �2 r<br />

2 σi . (4.2)<br />

The parameters γi, <strong>and</strong> σi were obta<strong>in</strong>ed by fitt<strong>in</strong>g the STIS PSF us<strong>in</strong>g the T<strong>in</strong>y<br />

Tim software (Krist & Hook, 1999) <strong>and</strong> are listed <strong>in</strong> Table 4.2. Differences between<br />

the actual PSF <strong>and</strong> the analytical fit cause differences <strong>in</strong> the modeled k<strong>in</strong>ematics<br />

that are smaller than the errors <strong>in</strong> the data. We tested this by repeat<strong>in</strong>g all model<strong>in</strong>g<br />

us<strong>in</strong>g a s<strong>in</strong>gle Gaussian component to represent the PSF (see Section 4.2.6).<br />

4.2.3 Stellar lum<strong>in</strong>osity densities <strong>and</strong> mass distributions<br />

For the purposes of the dynamical model<strong>in</strong>g we use a three-dimensional parameteri-<br />

zation of the stellar lum<strong>in</strong>osity density (j). We assume that j is oblate <strong>and</strong> axisym-<br />

metric, i.e. there are isolum<strong>in</strong>osity spheroids with constant flatten<strong>in</strong>g q as a function<br />

of radius, <strong>and</strong> that j can be parameterized as<br />

j(R, z) = j0(m/a) α [1 + (m/a) 2 ] β , (4.3)<br />

m 2 ≡ R 2 + (z/q) 2<br />

(4.4)<br />

Where R <strong>and</strong> z are cyl<strong>in</strong>drical coord<strong>in</strong>ates from the major plane of the galaxy. α, β,<br />

a <strong>and</strong> j0 are free parameters. When viewed at an <strong>in</strong>cl<strong>in</strong>ation angle i, the projected


<strong>in</strong>tensity contours are aligned concentric ellipses with an axial ratio<br />

153<br />

q ′ ≡ cos 2 i + q 2 s<strong>in</strong> 2 i. (4.5)<br />

Values of q ′ , measured from the ellipticity of the isophotes <strong>in</strong> the WFPC2 images,<br />

are also listed <strong>in</strong> Table 4.1. Though the values of q ′ , <strong>and</strong> of the position angle of the<br />

major axis of the isophotes varies over the region <strong>in</strong> which we are <strong>in</strong>terested (Verdoes<br />

Kleijn et al., 1999), we do not expect this to have a significant impact on the results<br />

we derive (see Verdoes Kleijn et al., 2002b, <strong>and</strong> Section 4.2.6 below).<br />

We determ<strong>in</strong>ed the mean stellar flux profiles <strong>in</strong> the direction along the semi-<br />

m<strong>in</strong>or axis with least dust obscuration, <strong>in</strong> the reddest image observed by WFPC2<br />

(to m<strong>in</strong>imize the effects of both dust <strong>and</strong> emission l<strong>in</strong>es) for each galaxy. We then<br />

iteratively fit the model parameters to obta<strong>in</strong> the best fitt<strong>in</strong>g values for the parameters<br />

α, β, a <strong>and</strong> j0, these are shown <strong>in</strong> Table 4.3.<br />

We assume that the stellar mass density ρ(R, z) follows the lum<strong>in</strong>osity density<br />

distribution j(R, z) through a constant mass to light ratio (Υ) towards the center of<br />

the galaxy. No conclusive data exist about how Υ may change towards the center,<br />

though we observe changes <strong>in</strong> (V −I) (Verdoes Kleijn et al., 1999), much of this may<br />

be attributed to dust rather than to changes <strong>in</strong> the stellar population. The fit is not<br />

<strong>in</strong>credibly sensitive to this parameter until some distance from the nucleus where the


errors on the observed data preclude us for mak<strong>in</strong>g any strong statements about the<br />

fit <strong>in</strong> any case. Abnormally high values of Υ would be required to change the modeled<br />

velocity profiles <strong>in</strong> the central regions, <strong>and</strong> we f<strong>in</strong>d this scenario somewhat unlikely.<br />

Magorrian et al. (1998) give the relation shown <strong>in</strong> Equation 4.6 below as their<br />

best fit to the V b<strong>and</strong> mass-to-light ratio (ΥVgal ) for an early type galaxy with a given<br />

absolute magnitude (MVgal ). We use the st<strong>and</strong>ard relation based on Equation 2.45<br />

of B<strong>in</strong>ney & Merrifield (1998) to convert the mass-to-light ratio from the V to the I<br />

b<strong>and</strong> (Equation 4.7).<br />

154<br />

ΥVgal = 10−1.11+0.072(MV ⊙ −MV gal )<br />

, (4.6)<br />

ΥIgal = ΥVgal100.4[(V −I) −(V −I)gal] ⊙<br />

(4.7)<br />

We take values of (V −I)⊙ = 0.71; MV ⊙ = 4.77. Input data <strong>and</strong> calculated values<br />

of these parameters are shown <strong>in</strong> Table 4.4. We choose to use ΥIgal<br />

as the I-b<strong>and</strong><br />

stellar isophotes reduce the effects of dust on our results. For galaxies where we do<br />

not have all of the necessary observational data to determ<strong>in</strong>e Υ we use a typical value<br />

for early type galaxies of ΥIgal = 3.5. (The mean value for our sample galaxies where<br />

we can f<strong>in</strong>d Υ is ΥIgal = 4.1, slightly higher but compatible with this value).


4.2.4 Dynamical models<br />

As discussed above we assume that the gas is organized <strong>in</strong>to an <strong>in</strong>f<strong>in</strong>itesimally th<strong>in</strong>,<br />

settled, rotat<strong>in</strong>g disk which is located <strong>in</strong> the major (equatorial) plane of the galaxy,<br />

with a circularly symmetric flux distribution, F(R), as given <strong>in</strong> Section 4.2.2. The<br />

<strong>in</strong>cl<strong>in</strong>ations of the dust <strong>and</strong> gas are aga<strong>in</strong> assumed to be identical <strong>and</strong> were determ<strong>in</strong>ed<br />

as discussed earlier; the major axis was assumed to lie along the major axis of the<br />

galaxy, as the model requires a coplanar system.<br />

For each galaxy we generate three models where we compute the circular velocity<br />

Vc(R) from the comb<strong>in</strong>ed gravitational potential of the stars with a black hole with<br />

mass M• = 0, 1 × 10 8 M⊙, <strong>and</strong> 9 × 10 8 M⊙. The l<strong>in</strong>e of sight velocity profile of the<br />

gas at position (x, y) on the sky is a Gaussian with<br />

where<br />

155<br />

Mean = Vc(R) s<strong>in</strong>(ix/R), <strong>and</strong> (4.8)<br />

Sigma = σgas(R), (4.9)<br />

R = [x 2 + (y/ cosi) 2 ] 1/2<br />

(4.10)<br />

is the radius <strong>in</strong> the disk. We assume an isotropic model for the velocity dispersion,


with contributions from thermal <strong>and</strong> non-thermal motion:<br />

156<br />

σ 2 gas = σ2 th + σ2 tur , (4.11)<br />

σ 2 tur(R) = σt0 + σt1e −R/R1 . (4.12)<br />

We label the non-thermal motion as ‘turbulent’ but this is merely a label <strong>and</strong><br />

does not imply a source of the non-thermal motions. This functional form is used<br />

only so that we may provide a fit to the observed dispersion, <strong>and</strong> is not based on<br />

any underly<strong>in</strong>g physical mechanism. The temperature of the gas is not important.<br />

For T ∼ 10 4 K, σth ∼ 10 km s −1 which is always negligible <strong>in</strong> comparison to σtur.<br />

The <strong>in</strong>tr<strong>in</strong>sic l<strong>in</strong>e width is the dom<strong>in</strong>ant source of l<strong>in</strong>e broaden<strong>in</strong>g <strong>in</strong> the data, so<br />

we can fix values for the l<strong>in</strong>e widths from the above parameterization alone; models<br />

with different black hole masses <strong>and</strong> hence different amounts of rotational broaden<strong>in</strong>g<br />

will still have about the same f<strong>in</strong>al l<strong>in</strong>e widths because the <strong>in</strong>tr<strong>in</strong>sic l<strong>in</strong>e width is<br />

significantly larger than the rotational broaden<strong>in</strong>g at most locations, <strong>and</strong> the different<br />

sources of broaden<strong>in</strong>g effectively add <strong>in</strong> quadrature (see Barth et al., 2001).<br />

The predicted velocity profile for any given observation is obta<strong>in</strong>ed through a flux<br />

weighted convolution of the <strong>in</strong>tr<strong>in</strong>sic velocity profile with the PSF of the observation<br />

<strong>and</strong> the size of the aperture (van der Marel & van den Bosch, 1998). Aga<strong>in</strong> the PSF is<br />

represented by a sum of five Gaussians (see above, <strong>and</strong> Table 4.2). The convolutions


are described <strong>in</strong> Appendix A of van der Marel (1997) <strong>and</strong> were performed us<strong>in</strong>g Gauss-<br />

Legendre <strong>in</strong>tegration. A Gaussian is then fitted to each observed velocity profile. In<br />

this way we produce three model data sets (with three different black hole masses)<br />

that we may directly compare to the observed velocity data from Chapter 3.<br />

Some weaknesses exist <strong>in</strong> the model<strong>in</strong>g methodology we have adopted, particu-<br />

larly <strong>in</strong> the manner <strong>in</strong> which the flux profile across the slit is accounted for. These are<br />

discussed more fully by van der Marel & van den Bosch (1998) <strong>and</strong> Verdoes Kleijn<br />

et al. (2002b), <strong>and</strong> some improvements that may be made are discussed (<strong>and</strong> imple-<br />

mented) by Barth et al. (2001). However, these factors are small compared to the<br />

smoothness of the observed velocity profiles, so we need not concern ourselves with<br />

these details <strong>in</strong> our discussions here. Because of the unsettled nature of much of the<br />

observed velocity profiles we feel that it would be <strong>in</strong>appropriate to attempt to f<strong>in</strong>d<br />

‘best fitt<strong>in</strong>g’ models, when we do not underst<strong>and</strong> the majority of the motions <strong>in</strong> the<br />

gas.<br />

4.2.5 Locat<strong>in</strong>g the zero po<strong>in</strong>t velocities<br />

In order to compare the observed velocity field to the model predictions we must<br />

also account for the recessional velocity of the galaxy <strong>in</strong> the observations. The mean<br />

recessional velocity of the galaxy may vary somewhat from the mean value from<br />

157


various sources as quoted <strong>in</strong> Table 2.1. The sense of the rotation along the major<br />

axis is also a free parameter at this po<strong>in</strong>t (whether the velocities go from positive to<br />

negative, or negative to positive across the nucleus). For the majority of our sample<br />

stellar dynamics are not available, <strong>and</strong> if they were it is not necessarily clear that the<br />

gas closest to the nucleus must as a matter of course be rotat<strong>in</strong>g <strong>in</strong> the same direction<br />

as the stars.<br />

To fit both of these variables, we found the m<strong>in</strong>imum <strong>in</strong> the signal-to-noise<br />

weighted residuals between the observations <strong>and</strong> all three of the models, for both<br />

senses of the velocity. In Figures 4.1 to 4.18 we plot these values for various devi-<br />

ations of the recessional velocities from the quoted means <strong>and</strong> clear m<strong>in</strong>ima can be<br />

seen, which we take to be a reliable way of determ<strong>in</strong><strong>in</strong>g the recession velocity. In<br />

Table 4.5 the offset velocities (from the values <strong>in</strong> Table 2.1) are listed, along with an<br />

<strong>in</strong>dication of the sense of the direction of the rotation.<br />

4.2.6 Sensitivity to parameters<br />

The fit of the disk flux profile F(R) is the most sensitive to numerical noise <strong>and</strong><br />

leaves noticeable effects (‘numerical r<strong>in</strong>g<strong>in</strong>g’) <strong>in</strong> the output velocity profiles when<br />

not properly modeled. We found it necessary to work <strong>in</strong> double precision for all<br />

calculations at this stage <strong>in</strong> order to produce numerically stable results. We ran<br />

158


models <strong>in</strong>tegrat<strong>in</strong>g us<strong>in</strong>g 150 by 150 Gauss-Legendre quadrature (GL) po<strong>in</strong>ts (see<br />

Press et al., 1992), we found that <strong>in</strong>creas<strong>in</strong>g the number of grid po<strong>in</strong>ts beyond this<br />

limit had no effect on the result - <strong>in</strong>dicat<strong>in</strong>g to us that it is numerically stable. Aga<strong>in</strong>,<br />

150 by 150 GL po<strong>in</strong>ts were used to compute the velocity profiles, <strong>and</strong> found this to<br />

be numerically stable also (even with lower values <strong>in</strong> this case).<br />

We tested the effect of chang<strong>in</strong>g the STIS PSF by repeat<strong>in</strong>g the models us<strong>in</strong>g a<br />

s<strong>in</strong>gle Gaussian (γ1 = 1.00, σ1 = 0.0327) to represent the PSF <strong>in</strong>stead of the sum<br />

of five Gaussians. In Figure 4.19 we over-plot the results for the M• = 1 × 10 8 M⊙<br />

model for NGC 193 with each PSF, to illustrate that the differences are <strong>in</strong>significant<br />

compared to the r<strong>and</strong>om variations <strong>in</strong> the observed velocity profile. This is the case<br />

for all galaxies other than M84 <strong>and</strong> M87 which are much closer to us <strong>and</strong> so the PSF<br />

becomes an important factor <strong>in</strong> these models.<br />

Maciejewski & B<strong>in</strong>ney (2001) expla<strong>in</strong> many important difficulties that may be<br />

encountered when model<strong>in</strong>g spectra of galaxies obta<strong>in</strong>ed through a ‘wide’ slit. In<br />

this context wide may be judged by the steepness of the central velocity profile <strong>and</strong><br />

the size of the <strong>in</strong>strumental PSF. They found that the struggle between real velocity<br />

differences with<strong>in</strong> an object <strong>and</strong> offsets <strong>in</strong> velocity that arise because light is enter<strong>in</strong>g<br />

the slit from different positions <strong>and</strong> at different angles can cause the <strong>in</strong>tensity of<br />

159


light on the detector to have more than one peak, lead<strong>in</strong>g to potentially mislead<strong>in</strong>g<br />

phenomena <strong>in</strong> the velocity profiles. The effects become more pronounced if the slit is<br />

not well aligned with a k<strong>in</strong>ematic axis.<br />

Features due to the effects that Maciejewski & B<strong>in</strong>ney (2001) describe are clearly<br />

present <strong>in</strong> the closest examples that we observed: M84 <strong>and</strong> M87. In M87 two obser-<br />

vations were made offset by ∼ 0.1 pixels, which produced very different features <strong>in</strong><br />

the spectral rows closest to the nucleus (Figure 4.20). This highlights two problems:<br />

(i) that it is essential to know the location of the center of the galaxy, on smaller<br />

scales than the size of the spectroscopic slit, <strong>and</strong> (ii) f<strong>in</strong>e details <strong>in</strong> flux weight<strong>in</strong>g<br />

the observed velocities through the PSF may make large differences to the modeled<br />

velocity profiles - especially <strong>in</strong> nearby cases.<br />

We tested the effects of vary<strong>in</strong>g the mass to light ratio (Υ), axis ratio (q ′ ) <strong>and</strong><br />

<strong>in</strong>cl<strong>in</strong>ation angle (i) for two representative galaxies: NGC 193 (Figure 4.21) <strong>and</strong><br />

NGC 4335 (Figure 4.22). It is clear from those figures that the sensitivity to these<br />

parameters is quite low, particularly <strong>in</strong> the central region where we expect the models<br />

to best match the gas velocity profiles. Outside of the central region more variation<br />

is apparent, but this is generally smaller than the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the<br />

velocity profile, so would not <strong>in</strong>fluence any conclusions drawn from these data <strong>and</strong><br />

160


models. Pronounced differences can be produced by differences <strong>in</strong> the angle of the<br />

slits compared to the k<strong>in</strong>ematic major axis of the gas. This may pose problems <strong>in</strong><br />

morphologically complex systems where we have no way of a priori determ<strong>in</strong><strong>in</strong>g the<br />

k<strong>in</strong>ematic axes.<br />

4.3 Descriptions of <strong>in</strong>dividual galaxies<br />

For each galaxy we compare the three models we obta<strong>in</strong>ed for 0, 1 × 10 8 M⊙ <strong>and</strong><br />

9 × 10 8 M⊙ black holes to the observed velocities <strong>in</strong> all three slits. We do not model<br />

UGC 7115 (where we only have one spectroscopic slit, <strong>and</strong> relatively low signal to<br />

noise), nor NGC 3801 (where we are clearly not on the nucleus <strong>and</strong> not aligned with<br />

the k<strong>in</strong>ematic axis). We present the results <strong>in</strong> Figures 4.23 to 4.41 <strong>and</strong> describe each<br />

galaxy <strong>in</strong> turn below.<br />

NGC 193: This S0 galaxy has a complex dust morphology with two dist<strong>in</strong>ct dust<br />

systems clearly visible. The STIS slits were aligned parallel to the galaxy major axis,<br />

which is also almost perpendicular to the radio jets. The weighted mean observation<br />

- model residuals are plotted <strong>in</strong> Figure 4.1 <strong>and</strong> gives a m<strong>in</strong>imum at an offset of<br />

47 km s −1 , equivalent to a galaxy recessional velocity of 4390 km s −1 . The model<br />

velocity profiles for these observations are shown <strong>in</strong> Figure 4.23, two plots are shown,<br />

161


as an alternative fit by eye provides a more satisfactory description of the very central<br />

k<strong>in</strong>ematics. In the observed velocity profile a central velocity gradient is observed<br />

which seems as if it may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by<br />

a 1 × 10 8 M⊙ < M• < 9 × 10 8 M⊙ black hole. Further from the nucleus the gas<br />

appears to have a flat velocity profile, possibly <strong>in</strong>dicat<strong>in</strong>g that the rotation of this gas<br />

is not along this axis. Two dimensional mapp<strong>in</strong>g of the velocity field would make it<br />

possible to determ<strong>in</strong>e if this gas was <strong>in</strong> a k<strong>in</strong>ematic system related to the secondary<br />

dust component. There is a possible sign of a jet-disk <strong>in</strong>teraction <strong>in</strong> the velocity field<br />

of this galaxy which is described <strong>in</strong> §4.43 below.<br />

NGC 315: This elliptical galaxy has a nuclear dust disk. The STIS slits were<br />

aligned parallel to the galaxy major axis, which is almost co<strong>in</strong>cident with the dust<br />

disk axis. The weighted mean observation - model residuals are plotted <strong>in</strong> Figure 4.2<br />

<strong>and</strong> gives a m<strong>in</strong>imum at an offset of −137 km s −1 , equivalent to a galaxy recessional<br />

velocity of 4956 km s −1 . The model velocity profiles for these observations are shown<br />

<strong>in</strong> Figure 4.24. It is not clear that the modeled velocity profiles match any of the<br />

observed k<strong>in</strong>ematics <strong>in</strong> the nuclear region.<br />

162


NGC 383: This S0 galaxy has a nuclear dust disk. The STIS slits were aligned<br />

parallel to the galaxy major axis, 6 ◦ from the dust disk axis. The weighted mean<br />

observation - model residuals are plotted <strong>in</strong> Figure 4.3 <strong>and</strong> gives a m<strong>in</strong>imum at an<br />

offset of 120 km s −1 , equivalent to a galaxy recessional velocity of 5010 km s −1 . The<br />

model velocity profiles for these observations are shown <strong>in</strong> Figure 4.25. In the ob-<br />

served velocity profile a central velocity gradient is observed which seems as if it may<br />

correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by a M• > 9 × 10 8 M⊙ black<br />

hole, though the situation is very unclear, a second plot is shown which represents<br />

more closely the profile <strong>in</strong> the very central few spectra, but provides a less good fit<br />

<strong>in</strong> the outer parts.<br />

NGC 541: This cD S0 galaxy has a nuclear dust disk. The STIS slits were aligned<br />

to a mean of the position angles of the central isophotes measured from the WFPC2<br />

images, which vary considerably. The dust disk is almost round so no dust axis can<br />

be def<strong>in</strong>ed. The weighted mean observation - model residuals are plotted <strong>in</strong> Figure<br />

4.4 <strong>and</strong> gives a m<strong>in</strong>imum at an offset of 70 km s −1 , equivalent to a galaxy recessional<br />

velocity of 5428 km s −1 . The model velocity profiles for these observations are shown<br />

<strong>in</strong> Figure 4.26. It is not clear that the modeled velocity profiles match any of the<br />

observed k<strong>in</strong>ematics <strong>in</strong> the nuclear region.<br />

163


NGC 741: This E0 galaxy has no apparent nuclear dust. The STIS slits were<br />

aligned approximately parallel to the galaxy major axis. The weighted mean obser-<br />

vation - model residuals are plotted <strong>in</strong> Figure 4.5 <strong>and</strong> gives a m<strong>in</strong>imum at an offset<br />

of 30 km s −1 , equivalent to a galaxy recessional velocity of 5295 km s −1 . The model<br />

velocity profiles for these observations are shown <strong>in</strong> Figure 4.27. It is not clear that<br />

the modeled velocity profiles match any of the observed k<strong>in</strong>ematics <strong>in</strong> the nuclear<br />

region.<br />

UGC 1841: This elliptical galaxy has a nuclear dust disk. The STIS slits were<br />

aligned parallel to the galaxy major axis. The dust disk is almost round, so no dust<br />

axis can be def<strong>in</strong>ed. The weighted mean observation - model residuals are plotted<br />

<strong>in</strong> Figure 4.6 <strong>and</strong> gives a m<strong>in</strong>imum at an offset of 0 km s −1 , equivalent to a galaxy<br />

recessional velocity of 6360 km s −1 . The model velocity profiles for these observations<br />

are shown <strong>in</strong> Figure 4.28. It is not clear that the modeled velocity profiles match any<br />

of the observed k<strong>in</strong>ematics <strong>in</strong> the nuclear region.<br />

NGC 2329: This S0 galaxy has a nuclear dust disk. The STIS slits were aligned<br />

parallel to the galaxy major axis, which is 3 ◦ from the dust disk axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.7 <strong>and</strong> gives a m<strong>in</strong>imum<br />

164


at an offset of 80 km s −1 , equivalent to a galaxy recessional velocity of 5805 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.29. It is not<br />

clear that the modeled velocity profiles match any of the observed k<strong>in</strong>ematics <strong>in</strong> the<br />

nuclear region. A dip <strong>in</strong> the velocity is observed <strong>in</strong> one side slit at the position closest<br />

to the nucleus, <strong>and</strong> there is some sign of a peak <strong>in</strong> the other side slit profile. This<br />

may support an <strong>in</strong>flow or outflow model for the disk.<br />

NGC 2892: This elliptical galaxy has no apparent nuclear dust. The STIS slits<br />

were aligned approximately parallel to the galaxy major axis. The weighted mean<br />

observation - model residuals are plotted <strong>in</strong> Figure 4.8 <strong>and</strong> gives a m<strong>in</strong>imum at an<br />

offset of 37 km s −1 , equivalent to a galaxy recessional velocity of 6847 km s −1 . The<br />

model velocity profiles for these observations are shown <strong>in</strong> Figure 4.30. It is not clear<br />

that the modeled velocity profiles match any of the observed k<strong>in</strong>ematics <strong>in</strong> the nuclear<br />

region.<br />

NGC 3862: This elliptical galaxy has a nuclear dust disk. The STIS slits were<br />

aligned approximately perpendicular to the radio jets. The dust disk is almost round,<br />

so no dust axis can be def<strong>in</strong>ed. The weighted mean observation - model residuals are<br />

plotted <strong>in</strong> Figure 4.9 <strong>and</strong> gives a m<strong>in</strong>imum at an offset of 160 km s −1 , equivalent to<br />

165


a galaxy recessional velocity of 6490 km s −1 . The model velocity profiles for these<br />

observations are shown <strong>in</strong> Figure 4.31. It is not clear that the modeled velocity profiles<br />

match any of the observed k<strong>in</strong>ematics <strong>in</strong> the nuclear region.<br />

NGC 4261: This E2-3 galaxy has a nuclear dust disk. The STIS slits were aligned<br />

parallel to the galaxy major axis, 5 ◦ from the dust disk axis. Due to a po<strong>in</strong>t<strong>in</strong>g error,<br />

the center of the galaxy was not positioned well dur<strong>in</strong>g the observations <strong>and</strong> fell closest<br />

to one of the side slits. We are unable to constra<strong>in</strong> where the center fell precisely,<br />

however we show the model velocity profiles for the observations <strong>in</strong> that side slit alone<br />

<strong>in</strong> Figure 4.32. In the observed velocity profile a central velocity gradient is observed<br />

which seems as if it may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by a<br />

∼ 1 × 10 8 M⊙ black hole. We take this to be a lower limit on the mass as the galaxy<br />

nucleus may be beyond the observed slit positions.<br />

NGC 4335: This elliptical galaxy has a nuclear dust disk. The STIS slits were<br />

aligned parallel to the galaxy major axis, 11 ◦ from the dust disk axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.10 <strong>and</strong> gives a m<strong>in</strong>imum<br />

at an offset of 50 km s −1 , equivalent to a galaxy recessional velocity of 4723 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.33. The<br />

166


gas velocities are very well settled <strong>in</strong>to a smooth rotation curve, however no nuclear<br />

black hole is necessary to expla<strong>in</strong> the observed k<strong>in</strong>ematics. There is a possible sign<br />

of a jet-disk <strong>in</strong>teraction <strong>in</strong> the velocity field of this galaxy which is described <strong>in</strong> §4.43<br />

below.<br />

M84: This E1 galaxy has nuclear dust lane. The STIS slits were aligned approx-<br />

imately perpendicular to the radio jets, 25 ◦ from the dust lane axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.11 <strong>and</strong> gives a m<strong>in</strong>imum<br />

at an offset of −83 km s −1 , equivalent to a galaxy recessional velocity of 1072 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.34. In the<br />

observed velocity profile a central velocity gradient is observed which seems as if it<br />

may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by a M• > 9×10 8 M⊙ black<br />

hole. The proximity of this galaxy highlights many of the problems <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g<br />

spectra from nearby sources where the steep flux profile becomes more resolved <strong>and</strong><br />

issues relat<strong>in</strong>g to the PSF <strong>and</strong> precise position<strong>in</strong>g of the slits (which is not known)<br />

become important (see also Maciejewski & B<strong>in</strong>ney, 2001).<br />

NGC 4486: This elliptical galaxy has an irregular nuclear dust morphology. The<br />

STIS slits were aligned to trace morphological features <strong>in</strong> the emission l<strong>in</strong>e gas. The<br />

167


weighted mean observation - model residuals are plotted <strong>in</strong> Figure 4.12 <strong>and</strong> gives<br />

a m<strong>in</strong>imum at an offset of 63 km s −1 , equivalent to a galaxy recessional velocity<br />

of 1218 km s −1 . The model velocity profiles for these observations are shown <strong>in</strong><br />

Figure 4.35. In the observed velocity profile a central velocity gradient is observed<br />

which seems as if it may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by<br />

a M• > 9 × 10 8 M⊙ black hole. The proximity of this galaxy highlights many of<br />

the problems <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g spectra from nearby sources where the steep flux profile<br />

becomes more resolved <strong>and</strong> issues relat<strong>in</strong>g to the PSF <strong>and</strong> precise position<strong>in</strong>g of the<br />

slits (which is not known) become important (see also Maciejewski & B<strong>in</strong>ney, 2001).<br />

NGC 5127: This elliptical peculiar galaxy has a nuclear dust lane. The STIS slits<br />

were aligned parallel to the galaxy major axis, 20 ◦ from the dust axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.13 <strong>and</strong> gives a m<strong>in</strong>imum<br />

at an offset of 7 km s −1 , equivalent to a galaxy recessional velocity of 4837 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.36. In the<br />

observed velocity profile a central velocity gradient is observed which seems as if it<br />

may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by a 1 × 10 8 M⊙ < M• <<br />

9 × 10 8 M⊙ black hole.<br />

168


NGC 5141: This S0 galaxy has a nuclear dust lane. The STIS slits were aligned<br />

parallel to the galaxy major axis, 16 ◦ from the dust axis. The weighted mean obser-<br />

vation - model residuals are plotted <strong>in</strong> Figure 4.14 <strong>and</strong> gives a m<strong>in</strong>imum at an offset<br />

of −50 km s −1 , equivalent to a galaxy recessional velocity of 5253 km s −1 . The model<br />

velocity profiles for these observations are shown <strong>in</strong> Figure 4.37. The gas velocities<br />

are very well settled <strong>in</strong>to a smooth rotation curve, however no nuclear black hole is<br />

necessary to expla<strong>in</strong> the observed k<strong>in</strong>ematics.<br />

NGC 5490: This elliptical galaxy has a nuclear dust lane. The STIS slits were<br />

aligned parallel to the galaxy major axis, 43 ◦ from the dust disk axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.15 <strong>and</strong> gives a m<strong>in</strong>imum<br />

at an offset of −93 km s −1 , equivalent to a galaxy recessional velocity of 5697 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.38. It is not<br />

clear that the modeled velocity profiles match any of the observed k<strong>in</strong>ematics <strong>in</strong> the<br />

nuclear region. The fact that the dust disk <strong>and</strong> galaxy major axis are not co<strong>in</strong>cident<br />

by a sizeable angle also means that it is not clear what plane the gas will lie <strong>in</strong>, images<br />

of the emission l<strong>in</strong>e disks (Verdoes Kleijn et al., 1999) do not make this any clearer.<br />

169


NGC 7052: This elliptical galaxy has a nuclear dust disk. The STIS slits were<br />

aligned parallel to the galaxy major axis, 1 ◦ from the dust disk axis. The weighted<br />

mean observation - model residuals are plotted <strong>in</strong> Figure 4.16 <strong>and</strong> gives a m<strong>in</strong>imum<br />

at an offset of 280 km s −1 , equivalent to a galaxy recessional velocity of 4435 km s −1 .<br />

The model velocity profiles for these observations are shown <strong>in</strong> Figure 4.39. Two<br />

plots are shown as the velocity offset <strong>in</strong> this case was dom<strong>in</strong>ated by a large jump (∼<br />

1000 km s −1 ) <strong>in</strong> the observed profile, the second plot shows an offset that best matches<br />

the very central region. In the observed velocity profile a central velocity gradient<br />

is observed which seems as if it may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential<br />

generated by a 1 × 10 8 M⊙ < M• < 9 × 10 8 M⊙ black hole. The nature of the second<br />

velocity system is unknown, <strong>and</strong> generates far greater consequences for the velocity<br />

than the potential nuclear black hole.<br />

UGC 12064: This S0 galaxy has a nuclear dust disk. The STIS slits were aligned<br />

parallel to the dust disk major axis. The weighted mean observation - model residuals<br />

are plotted <strong>in</strong> Figure 4.17 <strong>and</strong> gives a m<strong>in</strong>imum at an offset of −83 km s −1 , equivalent<br />

to a galaxy recessional velocity of 5040 km s −1 . The model velocity profiles for these<br />

observations are shown <strong>in</strong> Figure 4.40. It is not clear that the modeled velocity<br />

profiles match any of the observed k<strong>in</strong>ematics <strong>in</strong> the nuclear region, though they may<br />

170


e compatible with a ∼ 9 × 10 8 M⊙. The very steep slope <strong>in</strong> the negative offset<br />

slit may <strong>in</strong>dicate that the position of the dynamical center is not co<strong>in</strong>cident by the<br />

center of the galaxy’s flux distribution (e.g. obscuration by nuclear dust). There is<br />

a possible sign of a jet-disk <strong>in</strong>teraction <strong>in</strong> the velocity field of this galaxy which is<br />

described <strong>in</strong> §4.43 below.<br />

NGC 7626: This elliptical peculiar galaxy has a nuclear dust lane. The STIS<br />

slits were aligned parallel to the galaxy major axis, 4 ◦ from the dust disk axis. The<br />

weighted mean observation - model residuals are plotted <strong>in</strong> Figure 4.18 <strong>and</strong> gives<br />

a m<strong>in</strong>imum at an offset of −47 km s −1 , equivalent to a galaxy recessional velocity<br />

of 3448 km s −1 . The model velocity profiles for these observations are shown <strong>in</strong><br />

Figure 4.41. In the observed velocity profile a central velocity gradient is observed<br />

which seems as if it may correspond to gas rotat<strong>in</strong>g <strong>in</strong> the potential generated by a<br />

1 × 10 8 M⊙ < M• < 9 × 10 8 M⊙ black hole. Away from the nucleus a clear twist <strong>in</strong><br />

the velocities can be seen, suggest<strong>in</strong>g the gas moves <strong>in</strong>to a dist<strong>in</strong>ct second system at<br />

larger radii. There is a possible sign of a jet-disk <strong>in</strong>teraction <strong>in</strong> the velocity field of<br />

this galaxy which is described <strong>in</strong> §4.43 below.<br />

171


4.4 Discussion<br />

In this section we will first discuss the central k<strong>in</strong>ematics of each galaxy <strong>and</strong> compare<br />

the black hole signatures that we observe to the predictions of the M − σ relation.<br />

Next we will discuss the settl<strong>in</strong>g of gas <strong>in</strong>to a th<strong>in</strong> disks <strong>in</strong> ellipticals <strong>and</strong> f<strong>in</strong>ally talk<br />

about some sources of unsettled motions <strong>in</strong> this family of galaxies.<br />

4.4.1 Description of the central k<strong>in</strong>ematics<br />

In some of the cases described above it is possible to attribute some of the observed<br />

motion <strong>in</strong> the gas to the presence of a supermassive black hole. Table 4.6 summa-<br />

rizes the galaxies status regard<strong>in</strong>g possible black hole signatures, as described <strong>in</strong> the<br />

previous section.<br />

In 6 of the 19 galaxies the modeled velocity profile gives no clear results as the<br />

non-rotational motions <strong>in</strong> the gas are too great. For 4 of the 13 rema<strong>in</strong><strong>in</strong>g galaxies<br />

we observe a signature compatible with a black hole <strong>in</strong> the range 1 × 10 8 M⊙ <<br />

M• < 9 × 10 8 M⊙, for 5 we observe k<strong>in</strong>ematic signatures that are compatible with<br />

M• ∼ > 9 × 108 M⊙. NGC 4261 has a profile compatible with an ∼ 1 × 10 8 M⊙ black<br />

hole, though these observations may not have been across the nucleus. Compatibility<br />

with these k<strong>in</strong>ematic signatures does not necessarily imply that we can state black<br />

172


hole masses for these galaxies. The scale of the r<strong>and</strong>om motions <strong>in</strong> these galaxies is<br />

so great that we have no reason to believe that the gas <strong>in</strong> the center is only affected<br />

by the smooth gravitational potential of the stars <strong>and</strong> central black hole. More likely<br />

is that these profiles are <strong>in</strong>dicat<strong>in</strong>g the presence of a supermassive black hole on these<br />

mass scales, but that the actual mass may vary considerably from any attempt to<br />

best fit the nuclear slope.<br />

The three rema<strong>in</strong><strong>in</strong>g galaxies are of some <strong>in</strong>terest: <strong>in</strong> NGC 4335 <strong>and</strong> NGC 5141 the<br />

gas is the more settled <strong>in</strong>to a smooth rotation curve than is the case for the majority<br />

of the galaxies (other than the very nearby M84 <strong>and</strong> M87), however <strong>in</strong> both of these<br />

cases we f<strong>in</strong>d that no black hole is necessary to expla<strong>in</strong> the observed k<strong>in</strong>ematics.<br />

In NGC 2329 the central slope of the rotation curve is very shallow compared even<br />

to the ‘no black hole’ model. This suggests that either the gas <strong>in</strong> this galaxy is <strong>in</strong> a<br />

different plane to the one that we were expect<strong>in</strong>g or that there is significant <strong>in</strong>flow<br />

through the disk which is not supported by rotation <strong>in</strong> the gravitational potential.<br />

If this is the case, then this type of motion could also be <strong>in</strong>fluential <strong>in</strong> other nuclei,<br />

particularly as we know that <strong>in</strong> these radio galaxies, the central eng<strong>in</strong>e is be<strong>in</strong>g actively<br />

fueled <strong>and</strong> generat<strong>in</strong>g jets. Possibly NGC 4335 <strong>and</strong> NGC 5141 also h<strong>in</strong>t at this; their<br />

slopes are also slightly too shallow (but with<strong>in</strong> the errors <strong>in</strong> all of the parameters<br />

173


used) for the zero black hole mass model. However we anticipate that a black hole is<br />

present <strong>in</strong> these galaxies mean<strong>in</strong>g the observed slope should be steeper if the disk is<br />

stable. If flow is tak<strong>in</strong>g place then it may be possible to detect the signature across<br />

the m<strong>in</strong>or axis, <strong>and</strong> <strong>in</strong>deed <strong>in</strong> Figure 4.29 (for NGC 2329) it is possible to see positive<br />

<strong>and</strong> negative velocity features <strong>in</strong> the side slit positions.<br />

In Table 4.6 we also list the black hole masses predicted by the relationship fit<br />

by Merritt & Ferrarese (2001). Though the k<strong>in</strong>ematics will not allow us to fit exact<br />

models for the black hole mass, we can see that the ranges derived from the k<strong>in</strong>e-<br />

matic signatures <strong>in</strong> the central regions lead to black hole masses that are generally<br />

compatible with the M• − σc relation. In Figure 4.46 we plot our results on top<br />

of the reliable black hole estimates <strong>and</strong> M• − σc relation as presented <strong>in</strong> Chapter<br />

1. Though the agreement is generally good (for galaxies where we give the range of<br />

masses 1×10 8 M⊙ < M• < 9×10 8 M⊙ <strong>and</strong> where M• ∼ > 9×108 M⊙ <strong>in</strong> particular), the<br />

galaxies with an upper limit around 1 × 10 8 M⊙ lie somewhat below their predicted<br />

values.<br />

4.4.2 Settl<strong>in</strong>g of the gas <strong>in</strong>to a th<strong>in</strong> disk<br />

In Steiman-Cameron & Durisen (1986) the authors present a summary of results<br />

relat<strong>in</strong>g to the settl<strong>in</strong>g of gas disks <strong>in</strong> elliptical galaxies. Through analytical <strong>and</strong><br />

174


numerical approaches they made the follow<strong>in</strong>g conclusions: (i) Settl<strong>in</strong>g is a local<br />

process, depend<strong>in</strong>g primarily on the local properties of the potential <strong>and</strong> the gas disk;<br />

(ii) m<strong>in</strong>imum settl<strong>in</strong>g times are on the order of two to three disk precession times<br />

which is equivalent to ten to a few tens of rotation periods; (iii) that the actively<br />

settl<strong>in</strong>g region is narrow, with a radial width of about 30% of its outer radius; <strong>and</strong><br />

(iv) radial <strong>in</strong>flow is enhanced dur<strong>in</strong>g the active settl<strong>in</strong>g period.<br />

This means that <strong>in</strong> our observations of gas disks <strong>in</strong> ellipticals we need not expect<br />

all of the gas to be settled, even if some portions of it are, <strong>and</strong> it may not be easy to<br />

identify which portions of the gas are settled <strong>and</strong> which are not without detailed 2D<br />

k<strong>in</strong>ematics. We might expect to see signs of <strong>in</strong>flow <strong>in</strong> the actively settl<strong>in</strong>g regions,<br />

which means as the gas settles it may appear to be unstable <strong>in</strong> the gravitational<br />

potential. This is possibly what we observe <strong>in</strong> NGC 2329.<br />

Steiman-Cameron & Durisen (1988) describe disks which settle through differen-<br />

tial precession <strong>and</strong> dissipation, pictur<strong>in</strong>g the disk as a cloud fluid, where cloud-cloud<br />

<strong>in</strong>teractions play an important role <strong>in</strong> the dissipation. In Chapter 5 we will see that<br />

this model is compatible with some of the k<strong>in</strong>ematic parameters of the gas. They<br />

found that gravitational <strong>and</strong> Coriolis forces will twist disks that are not <strong>in</strong> the major<br />

plane of the gravitation potential – compatible with observations discussed <strong>in</strong> the<br />

175


next section.<br />

Inflow is important <strong>in</strong> allow<strong>in</strong>g fuel to reach the central eng<strong>in</strong>e <strong>and</strong> processes that<br />

take place as the disk settles may be important <strong>in</strong> allow<strong>in</strong>g that <strong>in</strong>flow to occur -<br />

particularly turbulent viscosity <strong>in</strong> the disk or dynamical friction between clumps of<br />

gas (for example Wada, 2004; Shlosman et al., 1990).<br />

4.4.3 Drivers of unsettled motion<br />

There are several sources from which we might expect energy to get deposited <strong>in</strong>to the<br />

gas <strong>and</strong> drive motions out of the settled major plane. Amongst these are <strong>in</strong>teractions<br />

with the Jets, twists <strong>and</strong> warps <strong>in</strong> the disks <strong>and</strong> activity result<strong>in</strong>g from starbursts<br />

<strong>and</strong> mergers.<br />

Interactions with jets: In four of the sample galaxies we have located <strong>in</strong>stances<br />

where a disturbance occurs <strong>in</strong> the gas at the location correspond<strong>in</strong>g to the po<strong>in</strong>t<br />

where the position angle of the radio jet crosses the side slit positions. With the<br />

signal-to-noise of the data that we have available this may be merely a co<strong>in</strong>cidence<br />

(<strong>and</strong> the statistics are <strong>in</strong>deed very poor). However, we present these few examples<br />

here as possible h<strong>in</strong>ts that we may be able to track down at least one source of<br />

non-gravitational disturbance.<br />

176


In the positive offset slit of NGC 4335 a step <strong>in</strong> the velocity profile of ∼ 150 km<br />

s −1 occurs at the position that the jet would cross the disk, this is shown <strong>in</strong> Figure<br />

4.42. We show an image of the nuclear region of this galaxy with the direction of the<br />

jet <strong>in</strong>dicated <strong>in</strong> Figure 2.13.<br />

In the negative offset slit of NGC 7626 a velocity deviation of ∼ 300 km s −1 <strong>and</strong> a<br />

velocity dispersion deviation of ∼ 100 km s −1 occur at the jet location (Figure 4.43).<br />

We show an image of the nuclear region of this galaxy with the direction of the jet<br />

<strong>in</strong>dicated <strong>in</strong> Figure 2.21.<br />

In NGC 193, effects are seen <strong>in</strong> both side slits at the jet locations: on the negative<br />

offset side a velocity dispersion peak of ∼ 100 km s −1 is visible <strong>and</strong> <strong>in</strong> the positive<br />

slit a velocity dispersion peak of ∼ 70 km s −1 is accompanied by a small peak <strong>in</strong> the<br />

observed emission l<strong>in</strong>e flux (Figure 4.44). We show an image of the nuclear region of<br />

this galaxy with the direction of the jet <strong>in</strong>dicated <strong>in</strong> Figure 2.1.<br />

F<strong>in</strong>ally, <strong>in</strong> the positive offset slit of UGC 12064 (Figure 4.45) a velocity deviation<br />

of ∼ 200 km s −1 can be seen at the jet location. We show an image of the nuclear<br />

region of this galaxy with the direction of the jet <strong>in</strong>dicated <strong>in</strong> Figure 2.20.<br />

177


Non-circular morphologies: Twists <strong>and</strong> warps <strong>in</strong> the gas disk may lead to shifts<br />

<strong>in</strong> the plane <strong>and</strong> sense of the rotation, <strong>and</strong> may drive non-gravitational motions <strong>in</strong> the<br />

gas. The clearest evidence for a twist can be seen <strong>in</strong> the observations for NGC 7626<br />

(Figure 4.41) where the gas velocities appear to ‘turn over’ to a component rotat<strong>in</strong>g <strong>in</strong><br />

a very different direction. H<strong>in</strong>ts of similar profiles are seen <strong>in</strong> NGC 315, NGC 2892 <strong>and</strong><br />

NGC 4261. As we saw above form<strong>in</strong>g twists <strong>and</strong> warps may be a natural consequence<br />

of the disk not ly<strong>in</strong>g <strong>in</strong> the major plane of the galaxy.<br />

In NGC 193, NGC 541, UGC 1841, NGC 5490 <strong>and</strong> NGC 7052, it is likely that<br />

some of the observed features <strong>in</strong> the observed velocity profiles are due to the presence<br />

of multiple (possibly disconnected) k<strong>in</strong>ematic systems <strong>in</strong> the nuclei of these galaxies.<br />

Non-gravitational energy sources: Other sources of unsettled motions <strong>in</strong> the<br />

gas <strong>in</strong>clude activity from starbursts <strong>and</strong> mergers. It is extremely difficult to identify<br />

the consequences of these types of activity as they can be very irregularly dispersed<br />

through the galaxy <strong>and</strong> then mixed on dynamical timescales. However, if the settl<strong>in</strong>g<br />

time <strong>in</strong> the gas disk is long they may have long lived consequences for the motions <strong>in</strong><br />

the gas.<br />

178


4.5 Conclusions<br />

In this chapter we presented th<strong>in</strong> disk model velocity profiles of gas sitt<strong>in</strong>g <strong>in</strong> the<br />

stellar potential, <strong>and</strong> that potential <strong>in</strong>clud<strong>in</strong>g a 1 × 10 8 M⊙ <strong>and</strong> a 9 × 10 8 M⊙ black<br />

hole <strong>in</strong> our sample of 21 galaxies, apart from UGC 7115 (for which we have <strong>in</strong>sufficient<br />

reliable data, from only one observational slit) <strong>and</strong> NGC 3801 (where it is quite clear<br />

we are not observ<strong>in</strong>g the nucleus, which is highly dust obscured).<br />

In 6 of the 19 galaxies the modeled velocity profile gives no clear results as the<br />

non-rotational motions <strong>in</strong> the gas are too great. For 4 of the 13 rema<strong>in</strong><strong>in</strong>g galaxies<br />

we observe a signature compatible with a black hole <strong>in</strong> the range 1 × 10 8 M⊙ <<br />

M• < 9 × 10 8 M⊙, for 5 we observe k<strong>in</strong>ematic signatures that are compatible with<br />

M• ∼ > 9 × 108 M⊙. NGC 4261 has a profile compatible with an ∼ 1 × 10 8 M⊙ black<br />

hole, though this result is highly unreliable due to observational problems.<br />

Compatibility with these k<strong>in</strong>ematic signatures does not necessarily imply that we<br />

can state black hole masses for these galaxies. The scale of the r<strong>and</strong>om motions <strong>in</strong><br />

these galaxies is so great that we have no reason to believe that the gas <strong>in</strong> the center<br />

is only affected by the smooth gravitational potential of the stars <strong>and</strong> central black<br />

hole. More likely is that these profiles are <strong>in</strong>dicat<strong>in</strong>g the presence of a supermassive<br />

179


lack hole on these mass scales, but that the actual mass may vary considerably from<br />

any attempt to best fit the nuclear slope.<br />

The three rema<strong>in</strong><strong>in</strong>g galaxies are of some <strong>in</strong>terest, <strong>in</strong> NGC 4335 <strong>and</strong> NGC 5141 the<br />

gas is the more settled <strong>in</strong>to a smooth rotation curve than is the case for the majority<br />

of the galaxies (other than the very nearby M84 <strong>and</strong> M87), however <strong>in</strong> both of these<br />

cases we f<strong>in</strong>d that no black hole is necessary to expla<strong>in</strong> the observed k<strong>in</strong>ematics. In<br />

NGC 2329 the central slope of the rotation curve is very shallow compared even to<br />

the M• = 0 model. This suggests that either the gas <strong>in</strong> this galaxy is <strong>in</strong> a different<br />

plane to the one that we were expect<strong>in</strong>g or that there is significant <strong>in</strong>flow through<br />

the disk which is not supported by rotation <strong>in</strong> the gravitational potential.<br />

The M• −σc relation appears to be compatible with the observations that we have<br />

made here, other than for those three cases above. We are not satisfied, however, that<br />

we are able to put good limits on any of the black hole masses as various effects <strong>in</strong><br />

the gas reduces our ability to underst<strong>and</strong> the k<strong>in</strong>ematics of the central regions. The<br />

gas may not be settled <strong>in</strong>to a stable disk <strong>in</strong> the major plane of the galaxy, <strong>and</strong> the<br />

settl<strong>in</strong>g process may lead to <strong>in</strong>flow. In several nuclei we observe signs of k<strong>in</strong>ematic<br />

twists <strong>and</strong> warps <strong>and</strong> it is hard to accurately account for the consequences. Similar<br />

phenomena may go undetected <strong>in</strong> other nuclei. In four nuclei we observe (at very<br />

180


low statistical significance) possible signs of <strong>in</strong>teractions with the jet, which would<br />

add further confusion to the dynamical situation <strong>in</strong> the gas. F<strong>in</strong>ally, events <strong>in</strong> the<br />

evolution of the galaxy, such as mergers <strong>and</strong> episodes of star formation, could add<br />

motion to the gas that is unrelated to the galaxy’s potential.<br />

181


Table 4.1. Disk <strong>in</strong>cl<strong>in</strong>ations <strong>and</strong> dust masses.<br />

Galaxy i q ′ Mdust<br />

( ◦ ) (10 4 M⊙)<br />

(1) (2) (3) (4)<br />

NGC 193 70.0 0.95 13<br />

NGC 315 77.0 0.79 3<br />

NGC 383 40.0 0.89 48<br />

NGC 541 24.0 0.99 1<br />

NGC 741 60.0 1.00 0<br />

UGC 1841 11.0 1.00 1<br />

NGC 2329 47.0 0.89 5<br />

NGC 2892 60.0 0.92 0<br />

NGC 3862 8.0 1.0 2<br />

NGC 4261 63.0 0.79 1<br />

NGC 4335 66.0 0.81 58<br />

NGC 4374 80.0 0.82 1<br />

NGC 4486 60.0 0.91 < 1<br />

NGC 5127 80.0 0.91 6<br />

NGC 5141 80.0 0.73 3<br />

NGC 5490 80.0 0.87 < 1<br />

NGC 7052 73.0 0.71 5<br />

UGC 12064 57.0 1.00 · · ·<br />

NGC 7626 80.0 0.86 < 1<br />

Note. — Col. (1): Galaxy Name; Col. (2): Incl<strong>in</strong>ation<br />

angle (i) derived from the axis ratio of the dust disk, galaxies<br />

with dust lanes were set at an <strong>in</strong>cl<strong>in</strong>ation of 80 ◦ , shown<br />

<strong>in</strong> italic; Col. (3): The dust mass assum<strong>in</strong>g a screen of dust<br />

half-way <strong>in</strong> the galaxy<br />

References. — Measurements of these parameters is described<br />

<strong>in</strong> Verdoes Kleijn et al. (1999) (<strong>and</strong> Verdoes Kleijn<br />

et al., 2002a, for UGC 12064).<br />

182


Table 4.2. STIS PSF Parameters.<br />

Gaussian γi σi<br />

(1) (2) (3)<br />

1 0.674510 0.026922<br />

2 -0.606168 0.045302<br />

3 0.798732 0.066942<br />

4 0.084999 0.272356<br />

5 0.047927 0.860743<br />

Note. — T<strong>in</strong>y Tim (Krist &<br />

Hook, 1999) parameters to represent<br />

the STIS Po<strong>in</strong>t Spread Function<br />

(see text).<br />

183


Table 4.3. Lum<strong>in</strong>osity density fit parameters.<br />

Galaxy α β a j0<br />

(arcsec)<br />

(1) (2) (3) (4) (5)<br />

NGC 193 0.23 1.36 1.87 5.45<br />

NGC 315 0.44 22.29 18.3 1.27<br />

NGC 383 0.38 0.92 1.06 10.5<br />

NGC 541 1.14 5.57 8.95 0.35<br />

NGC 741 0.63 1.23 2.47 3.02<br />

UGC 1841 0.94 2.37 5.12 0.59<br />

NGC 2329 1.70 0.17 5.38 0.22<br />

NGC 2892 0.65 1.05 1.34 4.78<br />

NGC 3862 1.42 1.31 7.18 0.17<br />

NGC 4261 0.00 1.13 2.29 17.9<br />

NGC 4335 0.00 1.13 0.19 445.<br />

M84 0.87 -1.05 9.24 6.49<br />

NGC 4486 1.63 0.00 2.55 6.58<br />

NGC 5127 0.00 1.51 1.30 8.69<br />

NGC 5141 0.62 1.00 0.85 21.57<br />

NGC 5490 0.00 1.16 0.44 85.86<br />

NGC 7052 0.00 1.58 2.27 8.04<br />

UGC 12064 1.13 1.76 7.78 0.17<br />

NGC 7626 0.55 0.80 0.52 70.0<br />

Note. — Col. (1): Galaxy Name; Col. (2-<br />

5): Best fit parameters describ<strong>in</strong>g the stellar<br />

lum<strong>in</strong>osity distribution j through a relationship<br />

of the form j(R, z) = j0(m/a) α [1 + (m/a) 2 ] β<br />

(see text).<br />

184


Table 4.4. Mass to light ratio (Υ) estimates for sample galaxies.<br />

Galaxy MB (B − V ) (V − I) ΥV ΥI<br />

(1) (2) (3) (4) (5) (6)<br />

NGC 193 -20.73 1.02 6.30<br />

NGC 315 -22.35 1.08 8.32<br />

NGC 383 -22.02 1.02 1.87 7.80 2.68<br />

NGC 541 -21.46 0.85 1.24 6.91 4.24<br />

NGC 741 -22.50 1.06 1.38 8.51 4.59<br />

UGC 1841 -21.68 0.82 7.14<br />

NGC 2329 -21.75 0.90 1.29 7.32 4.29<br />

NGC 2892 -20.92<br />

NGC 3801 -20.65 0.84 1.50 6.04 2.92<br />

NGC 3862 -21.48 0.92 2.00 7.02 2.13<br />

UGC 7115 -20.87 1.00 6.43<br />

NGC 4261 -21.32 0.95 1.23 6.87 4.26<br />

NGC 4335 -20.69 0.95 6.19<br />

NGC 4374 -20.87 0.93 1.09 6.35 4.47<br />

NGC 4486 -22.01 0.93 1.27 7.67 4.58<br />

NGC 5127 -20.91 0.97 6.44<br />

NGC 5141 -20.75 0.92 1.13 6.22 4.22<br />

NGC 5490 -21.39 0.94 0.95 6.94 5.56<br />

NGC 7052 -21.02 0.97 6.56<br />

UGC 12064 -20.61 0.98 6.14<br />

NGC 7626 -21.56 1.06 1.12 7.28 4.99<br />

Note. — Col. (1): Galaxy name; Col. (2) The blue<br />

b<strong>and</strong> magnitude from the LEDA database (http://wwwobs.univ-lyon1.fr/hypercat).;<br />

Col. (3) The B-V color from<br />

LEDA; Col. (4) the V-I color from LEDA; Cols. (5-6)<br />

The V b<strong>and</strong> <strong>and</strong> I b<strong>and</strong> mass to light ratios respectively,<br />

calculated as described <strong>in</strong> the text.<br />

185


Table 4.5. Best fitt<strong>in</strong>g velocity offsets.<br />

Galaxy δv Sense vr<br />

(km s −1 ) (km s −1 )<br />

(1) (2) (3) (4)<br />

NGC 193 47 − 4390<br />

NGC 315 -137 − 4956<br />

NGC 383 120 − 5010<br />

NGC 541 -70 + 5428<br />

NGC 741 30 + 5295<br />

UGC 1841 0 + 6360<br />

NGC 2329 80 + 5805<br />

NGC 2892 37 − 6847<br />

NGC 3862 160 + 6490<br />

NGC 4335 50 + 4723<br />

NGC 4374 -83 + 1072<br />

NGC 4486 63 + 1218<br />

NGC 5127 7 + 4837<br />

NGC 5141 -50 + 5253<br />

NGC 5490 -93 − 5697<br />

NGC 7052 280 + 4435<br />

UGC 12064 -83 − 5040<br />

NGC 7626 -47 + 3448<br />

Note. — Col. (1): Galaxy name; Col.<br />

(2): The offset velocity from the mean value<br />

quoted <strong>in</strong> Table 2.1; Col. (3): The sense of<br />

the rotation, + <strong>in</strong>dicates the velocity profile<br />

runs from positive to negative velocities<br />

along the slit, - runs from negative to positive;<br />

Col. (4): The recession velocity of the<br />

galaxy corrected with the offsets <strong>in</strong> Col. (2).<br />

186


Table 4.6. <strong>Black</strong> hole signatures <strong>in</strong> the central k<strong>in</strong>ematics.<br />

Galaxy M•/10 8 M⊙ MMF01/10 8 M⊙<br />

(1) (2) (3)<br />

NGC 193 1 < M• < 9 · · ·<br />

NGC 315 Unclear 14.6<br />

NGC 383 M• > 9? 9.24<br />

NGC 541 Unclear 2.03<br />

NGC 741 Unclear 5.24<br />

UGC 1841 Unclear 18.6<br />

NGC 2329 M• < 1 Inflow? 4.92<br />

NGC 2892 Unclear · · ·<br />

NGC 3862 Unclear 4.66<br />

NGC 4261 M• ∼ 1* 7.75<br />

NGC 4335 M• < 1 3.9<br />

M84 M• > 9 7.30<br />

NGC 4486 M• > 9 22.5<br />

NGC 5127 1 < M• < 9 1.11<br />

NGC 5141 M• < 1 · · ·<br />

NGC 5490 Unclear 9.07<br />

NGC 7052 1 < M• < 9 3.62<br />

UGC 12064 M• ∼ 9 1.80<br />

NGC 7626 1 < M• < 9 2.72<br />

Note. — Col. (1): Galaxy Name; Col. (2):<br />

<strong>Black</strong> hole mass range that would generate a k<strong>in</strong>ematic<br />

signature compatible with the observations<br />

<strong>in</strong> the central part of the observed velocity profile.<br />

(see text); Col. (3): The black hole mass<br />

predicted by the M• − σc relationship of Merritt<br />

& Ferrarese (2001)<br />

187


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 47. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.1 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 193. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

negative to positive velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

188


weighted<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -137. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.2 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 315. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

negative to positive velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

189


weighted<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 120. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.3 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 383. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

190


weighted<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -70. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.4 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 541. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

191


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 30. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.5 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 741. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

192


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 0. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.6 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

UGC 1841. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g<br />

from positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

193


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 80. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.7 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 2329. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g<br />

from positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

194


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 37. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.8 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 2892. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g<br />

from negative to positive velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

195


weighted<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 160. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.9 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 3862. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g<br />

from positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

196


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 50. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.10 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 4335. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

197


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -83. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.11 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for M84.<br />

The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from positive to<br />

negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case), the light l<strong>in</strong>es<br />

show the values with the sense of the model velocities reversed. The three l<strong>in</strong>es <strong>in</strong><br />

each set represent the weighted-mean residuals between the data <strong>and</strong> the M• = 0<br />

(solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙ (dash-dot l<strong>in</strong>es)<br />

models.<br />

198


weighted<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 63. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.12 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 4486. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

199


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= 7. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.13 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 5127. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

200


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -50. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.14 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 5141. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

201


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -93. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.15 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 5490. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

negative to positive velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

202


weighted<br />

800<br />

600<br />

400<br />

200<br />

= 280. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.16 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 7052. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

203


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -83. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.17 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

UGC 12064. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g<br />

from negative to positive velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

204


weighted<br />

500<br />

400<br />

300<br />

200<br />

100<br />

= -47. km s -1<br />

-400 -200 0 200 400<br />

Velocity offset (km s -1 0<br />

)<br />

Figure 4.18 Data-Model weighted mean residuals with vary<strong>in</strong>g velocity offsets for<br />

NGC 7626. The dark l<strong>in</strong>es represent the models with the velocity field runn<strong>in</strong>g from<br />

positive to negative velocities (which produces the m<strong>in</strong>imum result <strong>in</strong> this case),<br />

the light l<strong>in</strong>es show the values with the sense of the model velocities reversed. The<br />

three l<strong>in</strong>es <strong>in</strong> each set represent the weighted-mean residuals between the data <strong>and</strong><br />

the M• = 0 (solid l<strong>in</strong>es), M• = 1 × 10 8 M⊙ (dashed l<strong>in</strong>es), <strong>and</strong> M• = 9 × 10 8 M⊙<br />

(dash-dot l<strong>in</strong>es) models.<br />

205


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC193 Central Slit (Vary<strong>in</strong>g PSF)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.19 The 1×10 8 M⊙ model for NGC 193 repeated us<strong>in</strong>g 1 Gaussian (solid l<strong>in</strong>e)<br />

<strong>and</strong> 5 Gaussians (dotted l<strong>in</strong>e) to represent the PSF (see text). Observed data po<strong>in</strong>ts<br />

<strong>and</strong> formal errors are also shown. NGC 193 is at a distance typical of the UGC FR-I<br />

sample members.<br />

206


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

Figure 4.20 Observed velocity profiles <strong>in</strong> the central slit position of NGC 4486 (M87)<br />

dur<strong>in</strong>g two different visits. Measured from the flux <strong>and</strong> velocity dispersion profiles<br />

the observations were separated by approximately 0.1 pixels. Large differences <strong>in</strong> the<br />

measured velocities <strong>in</strong> the very central pixels are readily apparent.<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

207


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

100<br />

-100<br />

-200<br />

-300<br />

NGC193 Central Slit (Vary<strong>in</strong>g M/L)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

0<br />

100<br />

NGC193 Central Slit (Vary<strong>in</strong>g q’)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC193 Central Slit (Vary<strong>in</strong>g i)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.21 Vary<strong>in</strong>g Υ (top), q ′ (middle) <strong>and</strong> i (bottom) <strong>in</strong> models of the velocity<br />

profile of NGC 193. Models with M• = 1 × 10 8 M⊙ are shown <strong>in</strong> each case. Top:<br />

shows data plus models with Υ = 2, 4, <strong>and</strong> 6; Middle: shows data plus models with<br />

q ′ = 0.95, 0.85, <strong>and</strong> 0.75; Bottom: shows data plus models with i = 65 ◦ , 75 ◦ , <strong>and</strong><br />

85 ◦ . Def<strong>in</strong>itions of the parameters are given <strong>in</strong> the text.<br />

208


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

300<br />

200<br />

100<br />

-100<br />

-200<br />

NGC4335 Central Slit (Vary<strong>in</strong>g M/L)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

0<br />

NGC4335 Central Slit (Vary<strong>in</strong>g q’)<br />

-300<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

NGC4335 Central Slit (Vary<strong>in</strong>g i)<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.22 Vary<strong>in</strong>g Υ (top), q ′ (middle) <strong>and</strong> i (bottom) <strong>in</strong> models of the velocity<br />

profile of NGC 4335. Models with M• = 1 × 10 8 M⊙ are shown <strong>in</strong> each case. Top:<br />

shows data plus models with Υ = 2, 4, <strong>and</strong> 6; Middle: shows data plus models with<br />

q ′ = 0.95, 0.85, <strong>and</strong> 0.75; Bottom: shows data plus models with i = 65 ◦ , 75 ◦ , <strong>and</strong><br />

85 ◦ . Def<strong>in</strong>itions of the parameters are given <strong>in</strong> the text.<br />

209


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC193 Central Slit: ∆v = 47 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC193 Central Slit: ∆v = 90 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.23 The observed velocity profiles of NGC 193 for each of the three observed<br />

slit positions: (left) offset by the velocity <strong>and</strong> slope calculated <strong>in</strong> §4.2.5 <strong>and</strong> (right)<br />

with a velocity offset of 90 km s −1 , <strong>and</strong> the velocity field runn<strong>in</strong>g from positive to<br />

negative, which provides a more mean<strong>in</strong>gful fit (judged by the author). The velocities<br />

are shown shaded accord<strong>in</strong>g to the relative signal-to-noise of each spectrum, formal<br />

errors from the fit are also <strong>in</strong>dicated (see Chapter 3). The three solid l<strong>in</strong>es show<br />

model velocity profiles for no black hole, a 1 × 10 8 M⊙ black hole <strong>and</strong> a 9 × 10 8 M⊙<br />

(the steeper l<strong>in</strong>es from models with the greatest black hole mass). See text for details<br />

of the models. The dashed vertical l<strong>in</strong>es give a rough approximation of the sphere of<br />

<strong>in</strong>fluence of a black hole based on the mass estimate from the M• − σ relation <strong>and</strong><br />

the size of the r<strong>and</strong>om motions observed.<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

210


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

NGC315 Central Slit: ∆v = -137 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

Figure 4.24 The observed velocity profiles of NGC 315 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

211


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

NGC383 Central Slit: ∆v = 120 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

NGC383 Central Slit: ∆v = 220 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

Figure 4.25 The observed velocity profiles of NGC 383 for each of the three observed<br />

slit positions: (left) offset by the velocity <strong>and</strong> slope calculated <strong>in</strong> §4.2.5 <strong>and</strong> (right)<br />

with a velocity offset of 220 km s −1 , which provides a more mean<strong>in</strong>gful fit (judged<br />

by the author), extra power <strong>in</strong> the velocity field <strong>in</strong> the side slit position may result<br />

from the nucleus ly<strong>in</strong>g off center across the width of the central slit. The velocities<br />

are shown shaded accord<strong>in</strong>g to the relative signal-to-noise of each spectrum, formal<br />

errors from the fit are also <strong>in</strong>dicated (see Chapter 3). The three solid l<strong>in</strong>es show<br />

model velocity profiles for no black hole, a 1 × 10 8 M⊙ black hole <strong>and</strong> a 9 × 10 8 M⊙<br />

(the steeper l<strong>in</strong>es from models with the greatest black hole mass). See text for details<br />

of the models. The dashed vertical l<strong>in</strong>es give a rough approximation of the radius of<br />

<strong>in</strong>fluence of a black hole based on the mass estimate from the M• − σ relation <strong>and</strong><br />

the size of the r<strong>and</strong>om motions observed.<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

212


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC541 Central Slit: ∆v = -70 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.26 The observed velocity profiles of NGC 541 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

213


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

NGC741 Central Slit: ∆v = 30 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.27 The observed velocity profiles of NGC 741 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

214


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

UGC01841 Central Slit: ∆v = 0 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.28 The observed velocity profiles of UGC 1841 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

215


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

NGC2329 Central Slit: ∆v = 80 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.29 The observed velocity profiles of NGC 2329 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

216


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

NGC2892 Central Slit: ∆v = 37 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.30 The observed velocity profiles of NGC 2892 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

217


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

NGC3862 Central Slit: ∆v = 160 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.31 The observed velocity profiles of NGC 3862 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

218


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC4261 Central Slit: ∆v = 0 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

Figure 4.32 The observed velocity profiles of NGC 4261 for the positive offset slit<br />

position – which lies closest to the nucleus (though it may not <strong>in</strong>clude the k<strong>in</strong>ematic<br />

center of the galaxy). The velocities are shown shaded accord<strong>in</strong>g to the relative signalto-noise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter<br />

3). The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

219


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

NGC4335 Central Slit: ∆v = 50 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.33 The observed velocity profiles of NGC 4335 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

220


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

200<br />

0<br />

-200<br />

200<br />

0<br />

-200<br />

M84 Central Slit: ∆v = -83 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

Figure 4.34 The observed velocity profiles of M84 for each of the three observed slit<br />

positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-to-noise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3). The<br />

three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙ black<br />

hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black hole<br />

mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

221


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

NGC4486 Central Slit: ∆v = 63 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

Figure 4.35 The observed velocity profiles of NGC 4486 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

222


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

200<br />

0<br />

-200<br />

-400<br />

200<br />

0<br />

-200<br />

-400<br />

NGC5127 Central Slit: ∆v = 7 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.36 The observed velocity profiles of NGC 5127 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

223


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

NGC5141 Central Slit: ∆v = -50 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.37 The observed velocity profiles of NGC 5141 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

224


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

NGC5490 Central Slit: ∆v = -93 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.38 The observed velocity profiles of NGC 5490 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

225


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

NGC7052 Central Slit: ∆v = 280 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Position along slit (arcsec)<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

-1000<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

-1000<br />

NGC7052 Central Slit: ∆v = 550 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

Figure 4.39 The observed velocity profiles of NGC 7052 for each of the three observed<br />

slit positions: (left) offset by the velocity <strong>and</strong> slope calculated <strong>in</strong> §4.2.5 <strong>and</strong> (right)<br />

with a velocity offset of 550 km s −1 , <strong>and</strong> the velocity field runn<strong>in</strong>g from negative<br />

to positive, which provides a more mean<strong>in</strong>gful fit to the nuclear region (judged by<br />

the author), the velocity fit <strong>in</strong> §4.2.5 was strongly <strong>in</strong>fluenced by the large velocity<br />

feature at ∼ 0. ′′ 15 from the nucleus. The velocities are shown shaded accord<strong>in</strong>g to the<br />

relative signal-to-noise of each spectrum, formal errors from the fit are also <strong>in</strong>dicated<br />

(see Chapter 3). The three solid l<strong>in</strong>es show model velocity profiles for no black hole,<br />

a 1 × 10 8 M⊙ black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the<br />

greatest black hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es<br />

give a rough approximation of the radius of <strong>in</strong>fluence of a black hole based on the<br />

mass estimate from the M• −σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

-1000<br />

226


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

UGC12064 Central Slit: ∆v = -83 km s -1<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-0.4 -0.2 0.0 0.2 0.4 0.6<br />

Position along slit (arcsec)<br />

Figure 4.40 The observed velocity profiles of UGC 12064 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-to-noise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3). The<br />

three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙ black<br />

hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black hole<br />

mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

227


<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

<strong>Gas</strong> Radial Velocity (km s -1 )<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

NGC7626 Central Slit: ∆v = -47 km s -1<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

-ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

+ve offset slit position<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Position along slit (arcsec)<br />

Figure 4.41 The observed velocity profiles of NGC 7626 for each of the three observed<br />

slit positions. The velocities are shown shaded accord<strong>in</strong>g to the relative signal-tonoise<br />

of each spectrum, formal errors from the fit are also <strong>in</strong>dicated (see Chapter 3).<br />

The three solid l<strong>in</strong>es show model velocity profiles for no black hole, a 1 × 10 8 M⊙<br />

black hole <strong>and</strong> a 9 × 10 8 M⊙ (the steeper l<strong>in</strong>es from models with the greatest black<br />

hole mass). See text for details of the models. The dashed vertical l<strong>in</strong>es give a rough<br />

approximation of the radius of <strong>in</strong>fluence of a black hole based on the mass estimate<br />

from the M• − σ relation <strong>and</strong> the size of the r<strong>and</strong>om motions observed.<br />

228


v r (km s −1 )<br />

5000<br />

4800<br />

4600<br />

4400<br />

v r<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

300<br />

200<br />

100<br />

0<br />

σ gas<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

1.75<br />

1.25<br />

0.75<br />

0.25<br />

-0.25<br />

-0.75<br />

-1<br />

9<br />

7<br />

5<br />

3<br />

1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

[NII] 6585 Flux<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-0.1<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

[NII]/Hα<br />

229<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 4.42 NGC 4335: velocity, velocity dispersion, flux <strong>and</strong> flux ratio data (see<br />

Figure 3.1, panel (c) for details). The vertical dash-dot l<strong>in</strong>es <strong>in</strong> the side slit positions<br />

<strong>in</strong>dicate the projected position of the radio jet.


v r (km s −1 )<br />

3800<br />

3600<br />

3400<br />

3200<br />

v r<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

400<br />

300<br />

200<br />

100<br />

0<br />

σ gas<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-1<br />

9<br />

7<br />

5<br />

3<br />

1<br />

0.9<br />

0.7<br />

0.5<br />

0.3<br />

0.1<br />

[NII] 6585 Flux<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-0.1<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

[NII]/Hα<br />

230<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 4.43 NGC 7626: velocity, velocity dispersion, flux <strong>and</strong> flux ratio data (see<br />

Figure 3.1, panel (c) for details). The vertical dash-dot l<strong>in</strong>es <strong>in</strong> the side slit positions<br />

<strong>in</strong>dicate the projected position of the radio jet.


v r (km s −1 )<br />

4700<br />

4600<br />

4500<br />

4400<br />

4300<br />

4200<br />

4100<br />

v r<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

σ gas<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

[NII] 6585 Flux<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-0.1<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

[NII]/Hα<br />

231<br />

X = -0.2<br />

X = 0.0<br />

X = +0.2<br />

-1.01 -0.34 0.34 1.01<br />

Y (arcsec)<br />

Figure 4.44 NGC 193: velocity, velocity dispersion, flux <strong>and</strong> flux ratio data (see Figure<br />

3.1, panel (c) for details). The vertical dash-dot l<strong>in</strong>es <strong>in</strong> the side slit positions <strong>in</strong>dicate<br />

the projected position of the radio jet.


v r (km s −1 )<br />

5300<br />

5200<br />

5100<br />

5000<br />

4900<br />

4800<br />

v r<br />

X = -0.1<br />

X = 0.0<br />

X = +0.1<br />

-0.51 -0.17 0.17 0.51<br />

Y (arcsec)<br />

σ gas (km s −1 )<br />

600<br />

400<br />

200<br />

0<br />

σ gas<br />

X = -0.1<br />

X = 0.0<br />

X = +0.1<br />

-0.51 -0.17 0.17 0.51<br />

Y (arcsec)<br />

F (10 −14 ergs s −1 cm −2 Hz −1 )<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

22.5<br />

17.5<br />

12.5<br />

7.5<br />

2.5<br />

-2.5<br />

4.5<br />

3.5<br />

2.5<br />

1.5<br />

0.5<br />

[NII] 6585 Flux<br />

X = -0.1<br />

X = 0.0<br />

X = +0.1<br />

-0.5<br />

-0.51 -0.17 0.17 0.51<br />

Y (arcsec)<br />

[NII] 6585/Hα<br />

10.0<br />

1.0<br />

0.1<br />

[NII]/Hα<br />

232<br />

X = -0.1<br />

X = 0.0<br />

X = +0.1<br />

-0.51 -0.17 0.17 0.51<br />

Y (arcsec)<br />

Figure 4.45 UGC 12064: velocity, velocity dispersion, flux <strong>and</strong> flux ratio data (see<br />

Figure 3.1, panel (c) for details). The vertical dash-dot l<strong>in</strong>es <strong>in</strong> the side slit positions<br />

<strong>in</strong>dicate the projected position of the radio jet.


M BH (M Sun)<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

60 70 80 90100 200 300 400<br />

σ c (km s -1 )<br />

Figure 4.46 Measured black hole masses (MBH) as a function of central stellar velocity<br />

dispersion (σc) for reliable determ<strong>in</strong>ations summarized by Trema<strong>in</strong>e et al. (2002). The<br />

l<strong>in</strong>e <strong>in</strong>dicates the fit M• = 1.3 ×10 8 M⊙(σc/200) 4.72 . (*) <strong>in</strong>dicates masses determ<strong>in</strong>ed<br />

from stellar dynamical model<strong>in</strong>g; (◦) <strong>in</strong>dicates masses determ<strong>in</strong>ed from gas k<strong>in</strong>ematics;<br />

<strong>and</strong> (△) <strong>in</strong>dicates masses determ<strong>in</strong>ed from MASER k<strong>in</strong>ematics. Potential black<br />

holes estimated from the central gas k<strong>in</strong>ematic signatures <strong>in</strong> the UGC FR-I galaxies<br />

(see text) are <strong>in</strong>dicated <strong>in</strong> bold (see Table 4.6). (×) <strong>in</strong>dicates published black hole<br />

mass measurements for the UGC FR-I galaxies (see Chapter 2).<br />

233


Chapter 5<br />

Nuclear gas k<strong>in</strong>ematics <strong>and</strong> central<br />

eng<strong>in</strong>es<br />

5.1 Introduction<br />

Given the discoveries by Kormendy & Richstone (1995) of a connection between black<br />

hole mass <strong>and</strong> host galaxy lum<strong>in</strong>osity, <strong>and</strong> the tighter correlations between the black<br />

hole mass <strong>and</strong> host k<strong>in</strong>ematics (Gebhardt et al., 2000a; Ferrarese & Merritt, 2000) it<br />

is of <strong>in</strong>terest to <strong>in</strong>vestigate how the global properties of the emission l<strong>in</strong>e gas relate<br />

to the properties of the host galaxy <strong>and</strong> central eng<strong>in</strong>e <strong>in</strong> the hopes of uncover<strong>in</strong>g<br />

connections between these systems.<br />

In §3.5 we <strong>in</strong>troduced two parameters to estimate the k<strong>in</strong>ematic properties of<br />

the central 100 pc of each galaxy, along the central slit (Equations 3.4 <strong>and</strong> 3.5).<br />

234


We showed that the mean dispersions are consistent with be<strong>in</strong>g drawn from a s<strong>in</strong>gle<br />

population (a probability of P = .93 from a Kolmogorov-Smirnov test) <strong>and</strong> the ∆100pc<br />

is consistent with rotation (i.e. the mean velocities are higher on one side of the nucleus<br />

than the other along the major axis) for all cases other than where the dust disks<br />

are very face on or the central dust morphologies are very complex. We suggested<br />

that this evidence shows that these systems, whether we do or do not see signs of<br />

rotation, represent the same type of k<strong>in</strong>ematic systems, with observational effects<br />

such as <strong>in</strong>cl<strong>in</strong>ation <strong>and</strong> dust properties limit<strong>in</strong>g our ability to detect the rotation <strong>in</strong><br />

those systems where we do not. We concluded that a model of a rotat<strong>in</strong>g gas disk<br />

with significant r<strong>and</strong>om motions is compatible with all of the observations.<br />

In this chapter we will progress from our earlier work to produce parameters that<br />

improve the reliability of our description of the k<strong>in</strong>ematic state of the gas <strong>in</strong> each<br />

nucleus. We discuss the k<strong>in</strong>ematics of systems that we are view<strong>in</strong>g from different<br />

<strong>in</strong>cl<strong>in</strong>ations to identify global trends. We then go on to <strong>in</strong>vestigate correlations be-<br />

tween these parameters <strong>and</strong> what they can tell us about the k<strong>in</strong>ematic state of the<br />

gas, before go<strong>in</strong>g on to compare the gas <strong>and</strong> stellar k<strong>in</strong>ematics.<br />

In §5.3 we discuss some properties most closely related to the central eng<strong>in</strong>es <strong>in</strong><br />

each nucleus: we discuss the broad l<strong>in</strong>es that we identified <strong>in</strong> Chapter 3 <strong>in</strong> more depth,<br />

235


<strong>and</strong> search for correlations with other properties of the central eng<strong>in</strong>e that might<br />

<strong>in</strong>dicate a connection between M• (the black hole mass) <strong>and</strong>/or ˙ M, the accretion<br />

rate (or at least the central eng<strong>in</strong>e fuel<strong>in</strong>g rate) <strong>in</strong> the nucleus. We also extend<br />

the earlier work of Verdoes Kleijn et al. (2002a), correlat<strong>in</strong>g fluxes <strong>in</strong> the nucleus of<br />

each galaxy, out to the X-ray regime. F<strong>in</strong>ally we will discuss connections between<br />

k<strong>in</strong>ematic parameters <strong>and</strong> the properties of the central eng<strong>in</strong>es.<br />

5.2 Global k<strong>in</strong>ematic parameterizations<br />

In order to more reliably parameterize the k<strong>in</strong>ematics <strong>in</strong> the nucleus of each galaxy,<br />

we now def<strong>in</strong>e three weighted-mean parameters: (i) the difference <strong>in</strong> the weighted<br />

mean gas velocity with<strong>in</strong> 100 pc on each side of the nucleus:<br />

�⎛<br />

�<br />

�<br />

∆100 = �⎝<br />

�<br />

�<br />

� vj<br />

j<br />

236<br />

/<br />

dvj<br />

�<br />

⎞ �<br />

1 � vk ⎠ − /<br />

dvj dvk<br />

�<br />

�<br />

1<br />

dvk<br />

� �<br />

����<br />

; (5.1)<br />

j<br />

(ii) the mean velocity dispersion of the gas with<strong>in</strong> 100 pc of the nucleus:<br />

σ100 = �<br />

i<br />

σi<br />

dσi<br />

� �<br />

i<br />

k<br />

1<br />

dσi<br />

k<br />

� −1<br />

; (5.2)<br />

<strong>and</strong> (iii) an estimator of the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the gas velocity profile


with<strong>in</strong> 100 pc of the nucleus:<br />

�<br />

N−1 � �<br />

�<br />

�<br />

�<br />

i=2<br />

ɛ100 =<br />

� vi−1<br />

dvi−1<br />

+ vi+1<br />

� �<br />

1<br />

/ +<br />

dvi+1 dvi−1<br />

1<br />

�<br />

dvi+1<br />

N−1<br />

�<br />

i=2<br />

1<br />

dvi<br />

These parameters are def<strong>in</strong>ed over the region such that<br />

�<br />

�<br />

�<br />

− vi�<br />

�<br />

· 1<br />

dvi<br />

237<br />

. (5.3)<br />

|xi| ≤ 100pc, (5.4)<br />

−100pc ≤ xj < 0pc, <strong>and</strong> (5.5)<br />

0pc < xk ≤ 100pc. (5.6)<br />

vj are the gas velocities <strong>and</strong> σj are the gas velocity dispersions measured <strong>in</strong> each<br />

spectrum j; dvj <strong>and</strong> dσj are their respective formal errors. All of the parameters<br />

were measured along the central slit position only (<strong>and</strong> <strong>in</strong> the negative offset slit only<br />

for NGC 4261, which appears to be closer to the nucleus of that galaxy). We give<br />

the values of these parameters for each galaxy <strong>in</strong> Table 5.1. We do not <strong>in</strong>clude the<br />

galaxies NGC 741 or NGC 5490 <strong>in</strong> the discussions <strong>in</strong> this chapter as both of these<br />

galaxies have very low signal to noise out to 100 pc so provide very unreliable data.<br />

In the follow<strong>in</strong>g discussions where we describe ‘no-correlation’ we have tested that<br />

the probability of a l<strong>in</strong>ear correlation P ≪ .0001 from a χ 2 test of the best fitt<strong>in</strong>g<br />

straight l<strong>in</strong>e.


5.2.1 Effects of <strong>in</strong>cl<strong>in</strong>ation<br />

We use the dust disk axis ratio (b/a) or dust lane width : length ratio as an <strong>in</strong>dicator<br />

of the <strong>in</strong>cl<strong>in</strong>ation of the nuclear gas <strong>and</strong> dust. In Figures 5.1, 5.2 <strong>and</strong> 5.3 we plot<br />

∆100, σ100 <strong>and</strong> ɛ100 respectively aga<strong>in</strong>st this dust axis ratio parameter. This leads<br />

naturally to the most edge on systems be<strong>in</strong>g plotted at the left (where the galaxies<br />

with dust lanes are found) to face on systems at the right (which <strong>in</strong>clude face on<br />

disks where we are unable to pick up the rotation profile). The fact that systems<br />

with dust lanes <strong>and</strong> dust disks form a cont<strong>in</strong>uum <strong>in</strong> all of these parameters suggests<br />

that the lanes observed may be the edges of highly <strong>in</strong>cl<strong>in</strong>ed dust disks rather than<br />

be<strong>in</strong>g physically dist<strong>in</strong>ct types of systems. Verdoes Kleijn et al. (1999) found that dust<br />

lanes <strong>and</strong> disks may represent dist<strong>in</strong>ct physical systems, primarily based on <strong>in</strong>creased<br />

irregular structure observed <strong>in</strong> lane systems <strong>and</strong> misalignments with the major axes.<br />

It is possible that if the dust is <strong>in</strong>deed <strong>in</strong> two dist<strong>in</strong>ct morphological types, that the<br />

gas forms <strong>in</strong>to a k<strong>in</strong>ematically similar system <strong>in</strong> either case. In the light of evidence<br />

relat<strong>in</strong>g to the settl<strong>in</strong>g of the gas perpendicular to the disk presented below, it is<br />

also possible that the observed irregularities <strong>in</strong> dust lane systems orig<strong>in</strong>ate from less<br />

settled motions out of the plane of the disk.<br />

238<br />

In Figure 5.1 it is possible to see a decreas<strong>in</strong>g upper envelope to the value of ∆100


as face on disks are approached; the observed velocity difference is smaller, which is<br />

as we would expect. The face on disks do not, however, sit at a value of ∆100 = 0,<br />

<strong>in</strong>dicat<strong>in</strong>g that there may be motions perpendicular to the plane of the disk across<br />

the nuclei of these galaxies (for example precession of the disk), which may <strong>in</strong>dicate<br />

they are not settled <strong>in</strong>to the major plane of the galaxy. However, we cannot rule<br />

out the possibility that they are simply amongst the fastest rotators <strong>in</strong> the sample<br />

– the small number statistics do not present strong constra<strong>in</strong>ts. L<strong>in</strong>es are <strong>in</strong>dicated<br />

where we approximately project the ‘<strong>in</strong>tr<strong>in</strong>sic’ ∆<strong>in</strong>t through <strong>in</strong>cl<strong>in</strong>ation us<strong>in</strong>g the<br />

relationship:<br />

�<br />

�<br />

�<br />

�<br />

∆obs ≈ ∆<strong>in</strong>t s<strong>in</strong> i ≈ ∆<strong>in</strong>t × 1 −<br />

239<br />

� �2 b<br />

, (5.7)<br />

a<br />

Two outliers are labeled <strong>in</strong> the figure: NGC 383 <strong>and</strong> UGC 7115 which, despite<br />

be<strong>in</strong>g fairly face on, have large values of ∆100. In the case of NGC 383 it seems<br />

that the observed rotation is compatible with the fastest rotat<strong>in</strong>g sample members<br />

that are viewed edge on. Those fastest edge-on galaxies are NGC 4486 <strong>and</strong> M84,<br />

which are both nearby so that ∆100 <strong>in</strong>cludes a great deal more of the resolved central<br />

velocities, which makes comparisons with other galaxies less mean<strong>in</strong>gful, <strong>and</strong> thus<br />

leaves NGC 383 as an outlier. The large values of ∆100 may be an <strong>in</strong>dicator that the<br />

gas <strong>in</strong> these two galaxies is <strong>in</strong>deed rotat<strong>in</strong>g very fast, that there are gas systems present<br />

that are very poorly described by the th<strong>in</strong> disk model, or that the dust distribution


is not a good <strong>in</strong>dicator of the gas distribution for these galaxies.<br />

In Figure 5.2 we show the weighted mean velocity dispersion (σ100) as a function<br />

of the axis ratio. Here it is clear that there is no relationship between this parameter<br />

<strong>and</strong> the <strong>in</strong>cl<strong>in</strong>ation. We <strong>in</strong>terpret this to mean that the velocity dispersion is fairly<br />

evenly distributed three-dimensionally, so is not just a consequence of observ<strong>in</strong>g the<br />

organized motions from different angles, but is an <strong>in</strong>tr<strong>in</strong>sic property of the gas with<strong>in</strong><br />

the disks. The slight rise seen from the lowest to highest dust ratios is likely a<br />

consequence of the σ100 parameter pick<strong>in</strong>g up more of the organized motion, but this<br />

is a small effect. As mentioned <strong>in</strong> §4.2.4, gas at T ∼ 10 4 K would have a thermal<br />

velocity dispersion of σth ∼ 10 km s −1 , which is well below the m<strong>in</strong>imum observed<br />

dispersion <strong>in</strong> any of the galaxies, <strong>in</strong>dicat<strong>in</strong>g that non-thermal r<strong>and</strong>om motions are<br />

present (<strong>and</strong> important) <strong>in</strong> all of the gas disks.<br />

We aga<strong>in</strong> highlight the galaxy NGC 383, which also sits high <strong>in</strong> the velocity<br />

dispersion distribution. The fact that this galaxy is high <strong>in</strong> both parameters may<br />

<strong>in</strong>dicate that the gas is <strong>in</strong> a state far from be<strong>in</strong>g satisfactorily represented by a settled<br />

th<strong>in</strong> disk.<br />

We show the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the gas velocity profile, as parameterized<br />

by ɛ100 <strong>in</strong> Figure 5.3. Here we observe that, for the most part, ɛ100 is not a function of<br />

240


the <strong>in</strong>cl<strong>in</strong>ation of the dust disk. Other than two outliers that we <strong>in</strong>dicate (NGC 7052<br />

<strong>and</strong> UGC 7115), it seems that the mean po<strong>in</strong>t-to-po<strong>in</strong>t variations sit between ∼<br />

20 km s −1 (comparable to the expected velocity errors <strong>in</strong> the data, see Chapter 3)<br />

<strong>and</strong> ∼ 80 km s −1 , other than <strong>in</strong> face on systems. In the face on systems it seems<br />

that we may pick up motions perpendicular to the plane of the disk. These motions<br />

could <strong>in</strong>dicate that while the disk is settl<strong>in</strong>g <strong>in</strong>to a preferred plane <strong>in</strong> the gravitational<br />

potential of the galaxy, that the motions perpendicular to that plane have not yet<br />

settled out <strong>in</strong>to a smooth disk, <strong>and</strong> that the settl<strong>in</strong>g time for these motions may be<br />

long compared to other dynamical time-scales <strong>in</strong> the disk.<br />

The outlier NGC 7052 has a very high value of ɛ100 due to the very large (∼<br />

1000 km s −1 ) break <strong>in</strong> the velocity profile along the central slit <strong>in</strong> this galaxy (see<br />

Figures 4.39 <strong>and</strong> 3.20). This is not a true po<strong>in</strong>t-to-po<strong>in</strong>t variation, but may be due<br />

to a second dynamical system <strong>in</strong> the gas; this parameter is tak<strong>in</strong>g on a very different<br />

mean<strong>in</strong>g for this galaxy, so the data po<strong>in</strong>t is not representative. In UGC 7115, the fact<br />

that both ɛ100 <strong>and</strong> ∆100 are high could <strong>in</strong>dicate that there are considerable motions<br />

<strong>in</strong> the gas <strong>in</strong> this galaxy out of the plane of the disk. Unfortunately as only one slit<br />

position was observed for this galaxy (see Chapter 3), we have no two-dimensional<br />

<strong>in</strong>formation about the k<strong>in</strong>ematics, which we would need <strong>in</strong> order to <strong>in</strong>terpret these<br />

motions further.<br />

241


Comparisons of the form σ 2 /v 2 are typically used as <strong>in</strong>dicators of the energy divi-<br />

sion between r<strong>and</strong>om <strong>and</strong> systematic motions <strong>and</strong> <strong>in</strong> Figure 5.4 we show σ100 2 /∆ 2 100.<br />

We notice that the dust lane systems all lie near the bottom of the distribution –<br />

compatible with the idea that here we are pick<strong>in</strong>g up the motions from edge on disks<br />

– <strong>and</strong> that the irregular systems sit near the top of the distribution – compatible with<br />

the suggestion that galaxies with less regular nuclear morphologies would be prone to<br />

have greater r<strong>and</strong>om motions. The profile shows an upward slope as we move from<br />

edge on to face on systems <strong>and</strong> we are able to see less of the organized motion. The<br />

three outly<strong>in</strong>g galaxies from earlier discussions are aga<strong>in</strong> highlighted, though none<br />

are outliers here. This is <strong>in</strong>terest<strong>in</strong>g for NGC 383 as it confirms that though the<br />

organized <strong>and</strong> r<strong>and</strong>om motions are both large, the partition of energy is not unusual.<br />

5.2.2 Correlations between k<strong>in</strong>ematic parameters<br />

Figure 5.5 shows σ100 as a function of ∆100. We can pick out no apparent relation-<br />

ship between the two. We made a division at ∆100 = 180 km s −1 <strong>in</strong>to low-∆100 <strong>and</strong><br />

high-∆100 systems. The low-∆100 systems have a mean σ100 = 233 ± 98 km s −1 <strong>and</strong><br />

the high-∆100 systems have a mean σ100 = 232 ± 85 km s −1 . The two groups have a<br />

probability of P = .61 (from a Kolmogorov-Smirnov statistic) of be<strong>in</strong>g drawn from<br />

the same population, i.e. there is no dist<strong>in</strong>ction <strong>in</strong> velocity dispersion <strong>in</strong> systems<br />

242


where we observe smaller <strong>and</strong> larger organized motions. This result does not signif-<br />

icantly change if we exclude the two outly<strong>in</strong>g results from above, highlighted aga<strong>in</strong><br />

here. Though the distribution now looks tighter for the high-∆100 systems, the two<br />

distributions are still not significantly different.<br />

We also note that <strong>in</strong> all of the systems where ∆100 dom<strong>in</strong>ates over σ100 that we<br />

observe rotation, <strong>and</strong> that all of the dust lane (i.e. the most edge on) systems lie<br />

<strong>in</strong> this regime. These systems are the ones where the a larger portion of the gas<br />

k<strong>in</strong>etic energy is <strong>in</strong> organized rotational motion <strong>in</strong> the disk <strong>and</strong> likely more strongly<br />

gravitationally bound, rather than below the l<strong>in</strong>e where a larger fraction of the k<strong>in</strong>etic<br />

energy is <strong>in</strong> r<strong>and</strong>om motions, <strong>and</strong> the gas may not be so well gravitationally bound.<br />

In §5.2.1, we noted that the face on systems appear to have higher ɛ100 than do<br />

the edge on systems, <strong>and</strong> commented that this could be due to dissipations organiz<strong>in</strong>g<br />

the motion <strong>in</strong> the preferred plane only, with motions <strong>in</strong> other directions tak<strong>in</strong>g longer<br />

to settle <strong>in</strong>to the disk. This result is supported by an apparent upper envelope to the<br />

value of ɛ100 as a function of ∆100 that we show <strong>in</strong> Figure 5.6. We must here ignore the<br />

two outliers NGC 7052 <strong>and</strong> UGC 7115, which we feel confident <strong>in</strong> do<strong>in</strong>g for reasons<br />

described above. The descend<strong>in</strong>g upper limit on the value of ɛ100 <strong>in</strong>dicates that <strong>in</strong><br />

the systems where we observe more of the rotational motion, we are able to see less<br />

243


‘disorganized’ po<strong>in</strong>t-to-po<strong>in</strong>t motions. Aga<strong>in</strong>, the systems where we do not observe<br />

rotation (empty symbols) tend to lie towards the top of the envelope <strong>and</strong> <strong>in</strong>clude<br />

the face on disks. NGC 383, highlighted earlier, does not lie outside expectations -<br />

<strong>in</strong>dicat<strong>in</strong>g it is settl<strong>in</strong>g just as the other disks are but with considerably higher energy.<br />

From Figure 5.7 we can appreciate that the values of ɛ100 are consistently lower<br />

than the values of σ100 though these two parameters show no particular relationship<br />

beyond that. This <strong>in</strong>dicates to us that the small scale 3D r<strong>and</strong>om motions, as seen<br />

<strong>in</strong> the velocity dispersion, are a more significant k<strong>in</strong>ematic factor <strong>in</strong> the disks than<br />

larger scale po<strong>in</strong>t-to-po<strong>in</strong>t motions. This would be compatible with a picture where<br />

the gas is made up of turbulent cells, where the cells are settl<strong>in</strong>g <strong>in</strong>to a disk <strong>and</strong> los<strong>in</strong>g<br />

their r<strong>and</strong>om bulk motions to rotation, while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g at least a large portion of<br />

their <strong>in</strong>tr<strong>in</strong>sic turbulence. Numerical simulations of the gas <strong>in</strong> the nuclei of galaxies<br />

suggest that clumpy turbulent structures may be a common feature of systems where<br />

active fuel<strong>in</strong>g of the central eng<strong>in</strong>e is tak<strong>in</strong>g place (see e.g. Wada, 2004, for a recent<br />

review).<br />

5.2.3 Relationships to the stellar k<strong>in</strong>ematics<br />

We described the central stellar velocity dispersion σc <strong>in</strong> Chapter 2, <strong>and</strong> values of that<br />

parameter were given <strong>in</strong> Table 2.3. We rem<strong>in</strong>d the reader here that σc is measured<br />

244


on scales of 1/8 the Effective radius of each galaxy, which is larger than the nuclear<br />

regions we discuss <strong>in</strong> this dissertation. Correlations between σc <strong>and</strong> M• may be valid<br />

for radio galaxies (§4.4.1) other than for a few examples; <strong>in</strong> the follow<strong>in</strong>g discussions<br />

we will use σc as an approximate proxy for M•.<br />

In Figure 5.8 we see no relationship whatsoever between the value of ∆100 <strong>and</strong> the<br />

central stellar velocity dispersion, nor is the correlation improved if we <strong>in</strong>vestigate one<br />

particular dust-morphology group at a time. ∆100 is not a good tracer of the central<br />

potential (it is, of course, subject to effects of the <strong>in</strong>cl<strong>in</strong>ation at the very least).<br />

Figure 5.9 shows that the velocity dispersion of the gas is closely related to the<br />

velocity dispersion of the stars. This probably implies that the stellar velocity dis-<br />

persion drives the gas velocity dispersion to some extent, <strong>and</strong> may be an important<br />

factor <strong>in</strong> why the velocity dispersion of the gas rema<strong>in</strong>s high, <strong>and</strong> does not settle <strong>in</strong>to<br />

a cold th<strong>in</strong> disk. In a similar data set to our own for 54 spiral galaxies 1 where the<br />

stellar velocity dispersions are lower, the emission l<strong>in</strong>e gas dispersions are also low (D.<br />

Axon, Private Communication), <strong>in</strong>dicat<strong>in</strong>g that some factors driv<strong>in</strong>g this relationship<br />

may apply between morphological types. Straight l<strong>in</strong>e fits are shown <strong>in</strong>clud<strong>in</strong>g all the<br />

data <strong>and</strong> also with the four identified high outliers excluded. The fits have reduced-<br />

1 The spiral sample is described by Hughes et al. (2003), ∼ 65% of the galaxies show some k<strong>in</strong>d<br />

of activity.<br />

245


χ 2 parameters = 0.25 <strong>and</strong> 0.81 respectively, <strong>in</strong>dicat<strong>in</strong>g a good fit <strong>in</strong> the latter case.<br />

NGC 383 <strong>and</strong> UGC 7115 have already been identified as somewhat unusual, so it may<br />

be reasonable to exclude them once more.<br />

In Figure 5.10 we see aga<strong>in</strong> that the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the motion are<br />

smaller than the velocity dispersions, <strong>and</strong> aga<strong>in</strong> the motion is not correlated with σc.<br />

This <strong>in</strong>dicates to us that these po<strong>in</strong>t-to-po<strong>in</strong>t motions are not driven by the large-scale<br />

gravitational potential of the galaxy <strong>and</strong> black hole, nor by the r<strong>and</strong>om motions of<br />

the stars <strong>in</strong> this region (as σc is measured on large scales it <strong>in</strong>cludes any comparable<br />

po<strong>in</strong>t-to-po<strong>in</strong>t motions if such motions exist).<br />

We show the parameter σ100 2 /∆ 2 100 once more, now as a function of σc, <strong>in</strong> Figure<br />

5.11. Aga<strong>in</strong> no correlation exists between this pair of parameters, though this tells<br />

us that the velocity dispersion of the stars, though driv<strong>in</strong>g the velocity dispersion of<br />

the gas, does not have strong consequences for the division of k<strong>in</strong>etic energy <strong>in</strong> the<br />

gas over the rotational motion <strong>in</strong> the gravitational potential.<br />

5.3 The central eng<strong>in</strong>es<br />

In this section we discuss the broad components that we found improved the fit to the<br />

very central spectra <strong>in</strong> §3.3.2 further, as we anticipate that these broad components<br />

246


may have some connections with the central eng<strong>in</strong>es. We next discuss correlations<br />

between the nuclear fluxes across many different wave-b<strong>and</strong>s, <strong>and</strong> then correlations<br />

between properties of the host galaxies <strong>and</strong> central eng<strong>in</strong>es.<br />

5.3.1 Are the Broad L<strong>in</strong>es physical?<br />

In Chapter 3 (§3.3.2) we showed that fits to the very central spectra improved with<br />

the <strong>in</strong>clusion of a broad component which we attributed to either a physical broad<br />

l<strong>in</strong>e region or an artifact of fitt<strong>in</strong>g to an asymmetrical l<strong>in</strong>e shape (§3.5.3). It is likely<br />

that both of these factors do <strong>in</strong>deed play a role.<br />

Whittle (1985) found relationships between narrow-l<strong>in</strong>e widths <strong>and</strong> shapes (of<br />

[O III]) <strong>and</strong> the radio properties of the galaxies. If modifications to the velocity pro-<br />

file of the narrow l<strong>in</strong>es <strong>in</strong> the nuclear regions can occur (e.g. from jet <strong>in</strong>teractions <strong>and</strong><br />

outflows) then this may <strong>in</strong>deed modify the l<strong>in</strong>e profiles so that a broad component<br />

would improve the fit. Deeper observations of the sample nuclei are necessary before<br />

we can perform multi-Gaussian fits, such as those described <strong>in</strong> §3.5.4, which would<br />

enable us to better disentangle light from broad emission l<strong>in</strong>e regions to modifica-<br />

tions of the narrow l<strong>in</strong>e shapes, though the results <strong>in</strong> that section suggest models<br />

with a comb<strong>in</strong>ation of asymmetric profiles <strong>and</strong> a broad component provide the best<br />

representation of the central spectra.<br />

247


Barth et al. (1999) found polarized Hα broad l<strong>in</strong>e emission <strong>in</strong> the nucleus of<br />

NGC 315, <strong>and</strong> fit a profile of FWHM 3200 km s −1 <strong>in</strong> polarized light. This gives<br />

σBL ∼ 1400 km s −1 which is certa<strong>in</strong>ly compatible with our earlier measurement of<br />

1790 km s −1 where the errors were likely to be large. They also made observations<br />

of NGC 4261, but were unable to readily separate a broad component; this matches<br />

our f<strong>in</strong>d<strong>in</strong>gs shown <strong>in</strong> Table 3.27 that the broad l<strong>in</strong>e <strong>in</strong> NGC 4261 was a less strong<br />

detection than the one <strong>in</strong> NGC 315.<br />

Barth, et al.’s f<strong>in</strong>d<strong>in</strong>gs suggests that at least some of the broad emission we see<br />

orig<strong>in</strong>ates <strong>in</strong> physical broad-l<strong>in</strong>e regions. The broad emission comes from systems<br />

closest to the central eng<strong>in</strong>e, as expected from the AGN unified model paradigm<br />

(Urry & Padovani, 1995). The two primary sources to drive the broad l<strong>in</strong>e width are<br />

therefore the gravitational potential <strong>in</strong> the central region (which is dom<strong>in</strong>ated by M•<br />

<strong>in</strong> this regime) <strong>and</strong> the activity of the central eng<strong>in</strong>e (which is dom<strong>in</strong>ated by ˙ M). We<br />

will revisit this issue later.<br />

For the 11 galaxies where we were able to detect a broad component we measured<br />

the k<strong>in</strong>ematic properties of the Broad <strong>and</strong> Narrow l<strong>in</strong>es, these were presented <strong>in</strong><br />

Table 3.28. Cross-correlat<strong>in</strong>g the velocity dispersions of these l<strong>in</strong>es with the central<br />

stellar velocity dispersion (σc) we f<strong>in</strong>d that neither the narrow nor broad component<br />

248


is well correlated with σc (correlation coefficients .49 <strong>and</strong> .46 respectively). Though<br />

we described above how the velocity dispersion on scales of 100 pc was driven by the<br />

velocity dispersion of the stars, it seems that this driver is not the dom<strong>in</strong>ant factor<br />

<strong>in</strong> the nuclear region.<br />

As we may use σc as an approximate proxy for M• the poor correlation above <strong>in</strong>-<br />

dicates that the gas does not show signs of orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> an isotropic gravitationally-<br />

driven source <strong>in</strong> the nuclear region. If the broad l<strong>in</strong>e orig<strong>in</strong>ated from a disk <strong>in</strong> the<br />

central region then it might be expected that a correlation between σc <strong>and</strong> σBL/ s<strong>in</strong> i<br />

may exit, but these two parameters correlate with a similar cross-correlation coeffi-<br />

cient of .48, though we can not rule out the possibility that the nuclear disk is at a<br />

very different <strong>in</strong>cl<strong>in</strong>ation to the outer regions.<br />

5.3.2 Correlation of nuclear fluxes<br />

Verdoes Kleijn et al. (2002a) present correlations between the nuclear fluxes <strong>in</strong> the<br />

radio <strong>and</strong> optical regimes for each galaxy, we presented those nuclear fluxes <strong>in</strong> Table<br />

2.2, along with newly determ<strong>in</strong>ed X-ray fluxes. In Table 5.2 we show that the X-ray<br />

flux also correlates well with the other nuclear fluxes. We show the flux parameters<br />

plotted aga<strong>in</strong>st each other <strong>in</strong> Figure 5.12. Though we have only five X-ray data po<strong>in</strong>ts<br />

at this stage so the statistical significance is still low, it is a strong h<strong>in</strong>t that, as one<br />

249


might expect, the X-ray flux orig<strong>in</strong>ates from the same physical processes <strong>in</strong> (or close<br />

to) the central eng<strong>in</strong>e or jet bases as the other nuclear fluxes. We expla<strong>in</strong> the tighter<br />

correlation between X-ray <strong>and</strong> radio fluxes <strong>in</strong> that these two parameters are the least<br />

likely to be contam<strong>in</strong>ated by stellar light.<br />

In Figure 5.13 we show the Spectral Energy Distributions (SEDS) for the 5 sample<br />

galaxies where we have data at each wavelength, which do show fairly similar shapes<br />

as implied by the above correlations. In Figure 5.14 we show data for the nucleus of<br />

M87 (from Perlman et al., 2001) along with a set of emission mechanisms illustrative of<br />

the type that may be present <strong>in</strong> the central eng<strong>in</strong>e (di Matteo et al., 2000) <strong>and</strong> would<br />

produce correlations between the nuclear fluxes (e.g. various synchrotron models from<br />

jets, <strong>and</strong> Advection Dom<strong>in</strong>ated Accretion Flows with dom<strong>in</strong>ant outflows or dom<strong>in</strong>ant<br />

disks). Our data represent the outl<strong>in</strong>e shape of these models well, <strong>and</strong> more detailed<br />

analysis <strong>and</strong> model<strong>in</strong>g may yield <strong>in</strong>formation about the relative contributions of jets<br />

<strong>and</strong> disks <strong>in</strong> the nuclear light.<br />

5.3.3 Correlations between host galaxy <strong>and</strong> central eng<strong>in</strong>e<br />

In Table 5.3 we show the cross-correlation coefficients between Broad <strong>and</strong> Narrow<br />

l<strong>in</strong>e widths <strong>and</strong> the X-ray <strong>and</strong> VLBA lum<strong>in</strong>osities <strong>in</strong> the nucleus. The correlations<br />

between the X-ray <strong>and</strong> <strong>Radio</strong> fluxes <strong>and</strong> σBL suggest that the Broad L<strong>in</strong>e width may<br />

250


e primarily driven by the central eng<strong>in</strong>e, <strong>and</strong> so ˙ M may be the more important<br />

factor rather than M•. This is supported by the poor correlation between σc <strong>and</strong> σBL<br />

discussed above. Some component of the broad l<strong>in</strong>e may be driven by the central<br />

mass, but it certa<strong>in</strong>ly seems here that the more important factor may be the energy<br />

released by processes <strong>in</strong> the central eng<strong>in</strong>e.<br />

That there is no relationship between σBL <strong>and</strong> σc or the emission fluxes from the<br />

nucleus <strong>and</strong> σc suggests that there is no connection of the form<br />

˙M<br />

M•<br />

251<br />

= f, (5.8)<br />

(where aga<strong>in</strong> we use σc as a proxy for black hole mass, M•), which would be the<br />

case if the central eng<strong>in</strong>e was be<strong>in</strong>g fueled at some particular fraction of the Edd<strong>in</strong>gton<br />

lum<strong>in</strong>osity <strong>in</strong> FR-I galaxies. In a sample of radio loud <strong>and</strong> radio quiet quasars <strong>and</strong><br />

radio galaxies, Dunlop et al. (2003) found that the maximum <strong>and</strong> m<strong>in</strong>imum limits<br />

of the emission may be set by the black hole mass, but that the emission was not<br />

at a particular fraction of the Edd<strong>in</strong>gton lum<strong>in</strong>osity. This also implies that while<br />

the velocity dispersion of the stars drives the velocity dispersion of the gas, it is not<br />

directly related to the present day fuel<strong>in</strong>g rate of the central eng<strong>in</strong>e by that gas.<br />

Model<strong>in</strong>g of the broad l<strong>in</strong>e could provide further h<strong>in</strong>ts towards the connections<br />

between galaxy <strong>and</strong> central eng<strong>in</strong>e, but deeper observations would be required to get


a good h<strong>and</strong>le on the properties of the broad l<strong>in</strong>es <strong>in</strong> our sample nuclei.<br />

5.4 Conclusions<br />

In this chapter we characterized the k<strong>in</strong>ematics of the nuclear regions through three<br />

parameters, measured with<strong>in</strong> 100 pc of the nucleus, along the central slit position<br />

observed: σ100, the weighted mean gas velocity dispersion; ∆100, the difference <strong>in</strong><br />

weighted mean velocity on each side of the nucleus; <strong>and</strong> ɛ100, an estimator of the<br />

weighted mean po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the velocity profile.<br />

We showed that the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the velocity profiles are largest<br />

perpendicular to the preferred plane of rotation <strong>in</strong> the nuclei, <strong>in</strong>dicat<strong>in</strong>g that these<br />

motions orig<strong>in</strong>ate from velocity components that are not yet settled <strong>in</strong>to a th<strong>in</strong> disk<br />

configuration. We found that the velocity dispersion is distributed fairly evenly <strong>in</strong><br />

all orientations, so likely orig<strong>in</strong>ates from <strong>in</strong>tr<strong>in</strong>sically isotropic r<strong>and</strong>om motions. We<br />

found that there may be bulk motions of the entire disk, as the difference <strong>in</strong> mean<br />

velocities on each side of the nucleus does not vanish (<strong>and</strong> rema<strong>in</strong>s larger than the<br />

size of the typical errors) even <strong>in</strong> face on systems.<br />

Investigat<strong>in</strong>g relationships between these k<strong>in</strong>ematic parameters we confirmed that<br />

we can observe greater po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> systems where we observe less<br />

252


organized rotation. This supports the picture described above, <strong>and</strong> the view that<br />

dispersive effects are less efficient perpendicular to the plane of the disk, so settl<strong>in</strong>g<br />

may be slow, which supports the picture we developed for the nuclei of these galaxies<br />

<strong>in</strong> Chapter 4.<br />

Compar<strong>in</strong>g to the central stellar velocity dispersion, as discussed <strong>in</strong> Chapters 1<br />

<strong>and</strong> 2, we found that the stellar velocity dispersion <strong>and</strong> the gas velocity dispersions<br />

are closely related, imply<strong>in</strong>g that the stellar dispersion drives some of the r<strong>and</strong>om<br />

motions <strong>in</strong> the gas. This has possible implications for fuel<strong>in</strong>g of the black hole, <strong>and</strong><br />

connections between the stellar velocity dispersion <strong>and</strong> central eng<strong>in</strong>e.<br />

We presented some evidence that the broad components used <strong>in</strong> earlier fits (Chap-<br />

ter 3) may orig<strong>in</strong>ate from physical broad-l<strong>in</strong>e regions <strong>in</strong> the galaxy. We also showed<br />

that newly obta<strong>in</strong>ed X-ray fluxes are correlated with other fluxes <strong>in</strong> the nuclear re-<br />

gions, extend<strong>in</strong>g the correlations found by Verdoes Kleijn et al. (2002a) to a new<br />

wavelength regime. F<strong>in</strong>ally we found correlations between the broad l<strong>in</strong>e width <strong>and</strong><br />

the VLBA <strong>and</strong> X-ray lum<strong>in</strong>osities <strong>in</strong>dicat<strong>in</strong>g that the activity of the central eng<strong>in</strong>e<br />

may be responsible for driv<strong>in</strong>g a large component of the dispersion <strong>in</strong> this gas, rather<br />

than it be<strong>in</strong>g due to gravitational motion around the black hole. As we cannot con-<br />

firm that the M• − σc relation applies to all radio galaxies, we can not determ<strong>in</strong>e if<br />

253


the activity <strong>in</strong> the central eng<strong>in</strong>e is also related to the black hole mass, however such<br />

a relationship does not appear to exist. More detailed observations <strong>and</strong> model<strong>in</strong>g of<br />

the broad l<strong>in</strong>e may shed some light on this issue <strong>in</strong> future.<br />

254


Table 5.1. Weighted mean k<strong>in</strong>ematic parameters.<br />

Galaxy ∆100 σ100 ɛ100<br />

(km s −1 ) (km s −1 ) (km s −1 )<br />

(1) (2) (3) (4)<br />

NGC 193 158 228 100<br />

NGC 315 141 333 73<br />

NGC 383 235 399 60<br />

NGC 541 135 182 127<br />

UGC 1841 87 392 137<br />

NGC 2329 56 149 32<br />

NGC 2892 96 370 56<br />

NGC 3801 52 157 27<br />

NGC 3862 82 182 90<br />

UGC 7115 291 287 192<br />

NGC 4261 143 224 28<br />

NGC 4335 214 166 18<br />

M84 381 229 45<br />

NGC 4486 438 313 33<br />

NGC 5127 124 105 31<br />

NGC 5141 152 145 31<br />

NGC 7052 242 178 194<br />

UGC 12064 86 327 69<br />

NGC 7626 331 190 65<br />

Mean 181 240 74<br />

StDev 112 92 54<br />

Note. — Col. (1): Galaxy Name; Cols. (2-4):<br />

Weighted mean k<strong>in</strong>ematic parameters with<strong>in</strong><br />

100 pc of the brightest po<strong>in</strong>t <strong>in</strong> the nucleus of<br />

each galaxy. See text for def<strong>in</strong>itions.<br />

255


Table 5.2. Correlation of X-ray flux with other nuclear flux parameters.<br />

Parameter X-raysoft X-rayhard<br />

Inuc .74 .12<br />

Vnuc .94 .50<br />

VLBApeak .99 .76<br />

VLApeak .95 .89<br />

Note. — Cross-correlation coefficients<br />

are shown between each parameter<br />

pair. See Chapter 2, Table<br />

2.2 <strong>and</strong> discussion for a description<br />

<strong>and</strong> list<strong>in</strong>g of all of the parameters<br />

used.<br />

256


Table 5.3. Correlations between k<strong>in</strong>ematic parameters <strong>and</strong> nuclear fluxes.<br />

σNL σBL VLBApeak X-raysoft X-rayhard<br />

σNL 1.00 .39 .31 -.38 -.42<br />

σBL 1.00 .70 .69 .86<br />

VLBApeak 1.00 .99 .76<br />

X-raysoft 1.00 .75<br />

X-rayhard<br />

1.00<br />

Note. — Cross-correlation coefficients between nuclear narrow<br />

(σNL) <strong>and</strong> broad (σBL) l<strong>in</strong>e velocity dispersions <strong>and</strong> nuclear<br />

flux parameters (see Chapter 2, fluxes were then corrected<br />

for distance)<br />

257


∆ 100 (km s -1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

NGC383<br />

UGC7115<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dust axis ratio (b/a or width/length)<br />

Figure 5.1 Difference <strong>in</strong> weighted mean velocity with<strong>in</strong> 100 pc on each side of the<br />

nucleus (∆100, see text) along the central slit of each galaxy as a function of dust disk<br />

axis ratio (b/a) or dust lane width : length ratio, which is an <strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation.<br />

The solid l<strong>in</strong>es <strong>in</strong>dicate <strong>in</strong>tr<strong>in</strong>sic values of ∆100 approximately projected for vary<strong>in</strong>g<br />

<strong>in</strong>cl<strong>in</strong>ations with ∆<strong>in</strong>t = 100, 250 <strong>and</strong> 400 km s −1 . The different k<strong>in</strong>ematic classes <strong>and</strong><br />

dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent rotators:<br />

with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty symbols<br />

represent non-rotators: with dust disks (◦), with dust lanes (�) or with no-dust or<br />

irregular dust (△).<br />

258


σ100 (km s -1 −−−<br />

)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

NGC383<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dust axis ratio (b/a or width/length)<br />

Figure 5.2 Weighted mean gas velocity dispersion (σ100) along the central slit of each<br />

galaxy as a function of dust disk axis ratio (b/a) or dust lane width : length ratio,<br />

which is an <strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation. The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies<br />

(see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent rotators: with dust<br />

disks (•), with dust lanes (�) or with irregular dust (�); Empty symbols represent<br />

non-rotators: with dust disks (◦), with dust lanes (�) or with no-dust or irregular<br />

dust (△).<br />

259


ε 100 (km s -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGC7052 UGC7115<br />

0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dust axis ratio (b/a or width/length)<br />

Figure 5.3 Weighted mean po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> gas velocity (ɛ100) along the<br />

central slit as a function of dust disk axis ratio (b/a) or dust lane width : length ratio,<br />

which is an <strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation. The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies<br />

(see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent rotators: with dust<br />

disks (•), with dust lanes (�) or with irregular dust (�); Empty symbols represent<br />

non-rotators: with dust disks (◦), with dust lanes (�) or with no-dust or irregular<br />

dust (△).<br />

260


−−− 2 2<br />

σ100 / ∆100<br />

100.00<br />

10.00<br />

1.00<br />

0.10<br />

NGC7052<br />

NGC383<br />

UGC7115<br />

0.01<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Dust axis ratio (b/a or width/length)<br />

Figure 5.4 σ100 2 /∆2 100 as a function of dust disk axis ratio (b/a) or dust lane width :<br />

length ratio, which is an <strong>in</strong>dicator of <strong>in</strong>cl<strong>in</strong>ation. The different k<strong>in</strong>ematic classes <strong>and</strong><br />

dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent rotators:<br />

with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty symbols<br />

represent non-rotators: with dust disks (◦), with dust lanes (�) or with no-dust or<br />

irregular dust (△).<br />

261


σ100 (km s -1 −−−<br />

)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

NGC383<br />

UGC7115<br />

0 100 200 300 400 500<br />

∆100 (km s -1 0<br />

)<br />

Figure 5.5 σ100 as a function of ∆100 for the sample nuclei (see text for def<strong>in</strong>itions).<br />

The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters. The different k<strong>in</strong>ematic<br />

classes <strong>and</strong> dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent<br />

rotators: with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty<br />

symbols represent non-rotators: with dust disks (◦), with dust lanes (�) or with<br />

no-dust or irregular dust (△).<br />

262


ε 100 (km s -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGC7052<br />

NGC383<br />

UGC7115<br />

0 100 200 300 400 500<br />

∆100 (km s -1 0<br />

)<br />

Figure 5.6 ɛ100 as a function of ∆100 for the sample nuclei (see text for def<strong>in</strong>itions).<br />

The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters. The different k<strong>in</strong>ematic<br />

classes <strong>and</strong> dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent<br />

rotators: with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty<br />

symbols represent non-rotators: with dust disks (◦), with dust lanes (�) or with<br />

no-dust or irregular dust (△).<br />

263


ε 100 (km s -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NGC7052 UGC7115<br />

NGC383<br />

0 100 200 300<br />

σ100 (km s<br />

400 500<br />

-1 0<br />

−−−<br />

)<br />

Figure 5.7 ɛ100 as a function of σ100 for the sample nuclei (see text for def<strong>in</strong>itions).<br />

The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters. The different k<strong>in</strong>ematic<br />

classes <strong>and</strong> dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent<br />

rotators: with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty<br />

symbols represent non-rotators: with dust disks (◦), with dust lanes (�) or with<br />

no-dust or irregular dust (△).<br />

264


∆ 100 (km s -1 )<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0 100 200 300 400 500<br />

Stellar velocity dispersion: σc (km s -1 0<br />

)<br />

Figure 5.8 ∆100 (see text) for each nucleus as a function of the central stellar velocity<br />

dispersion (σc, see Chapter 2). The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters.<br />

The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies (see Chapter 3) are<br />

<strong>in</strong>dicated. Filled symbols represent rotators: with dust disks (•), with dust lanes<br />

(�) or with irregular dust (�); Empty symbols represent non-rotators: with dust disks<br />

(◦), with dust lanes (�) or with no-dust or irregular dust (△).<br />

265


σ100 (km s -1 −−−<br />

)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

UGC7115<br />

NGC383<br />

UGC12064<br />

UGC1841<br />

0 100 200 300 400 500<br />

Stellar velocity dispersion: σc (km s -1 0<br />

)<br />

Figure 5.9 σ100 (see text) for each nucleus as a function of the central stellar velocity<br />

dispersion (σc, see Chapter 2). The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters.<br />

The dash-dot <strong>and</strong> dotted l<strong>in</strong>es are straight l<strong>in</strong>e fits with all of the data<br />

<strong>in</strong>cluded, <strong>and</strong> exclud<strong>in</strong>g the four labeled po<strong>in</strong>ts, respectively. The different k<strong>in</strong>ematic<br />

classes <strong>and</strong> dust morphologies (see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent<br />

rotators: with dust disks (•), with dust lanes (�) or with irregular dust (�); Empty<br />

symbols represent non-rotators: with dust disks (◦), with dust lanes (�) or with<br />

no-dust or irregular dust (△).<br />

266


ε 100 (km s -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

UGC7115<br />

NGC7052<br />

0 100 200 300 400 500<br />

Stellar velocity dispersion: σc (km s -1 0<br />

)<br />

Figure 5.10 ɛ100 (see text) for each nucleus as a function of the central stellar velocity<br />

dispersion (σc, see Chapter 2). The solid l<strong>in</strong>e <strong>in</strong>dicates a 1:1 ratio of the two parameters.<br />

The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies (see Chapter 3) are<br />

<strong>in</strong>dicated. Filled symbols represent rotators: with dust disks (•), with dust lanes<br />

(�) or with irregular dust (�); Empty symbols represent non-rotators: with dust disks<br />

(◦), with dust lanes (�) or with no-dust or irregular dust (△).<br />

267


−−− 2 2<br />

σ100 / ∆100<br />

100.00<br />

10.00<br />

1.00<br />

0.10<br />

0 100 200 300 400 500<br />

Stellar velocity dispersion: σc (km s -1 0.01<br />

)<br />

Figure 5.11 σ1002 /∆2 100 (see text) for each nucleus as a function of the central stellar<br />

velocity dispersion (σc, see Chapter 2). The different k<strong>in</strong>ematic classes <strong>and</strong> dust morphologies<br />

(see Chapter 3) are <strong>in</strong>dicated. Filled symbols represent rotators: with dust<br />

disks (•), with dust lanes (�) or with irregular dust (�); Empty symbols represent<br />

non-rotators: with dust disks (◦), with dust lanes (�) or with no-dust or irregular<br />

dust (△).<br />

268


V-B<strong>and</strong><br />

I-B<strong>and</strong><br />

VLA Peak<br />

VLBA Peak<br />

10 -16<br />

10 -17<br />

10 -18<br />

10 -16<br />

10 -17<br />

1000<br />

100<br />

10 -14<br />

10 -14<br />

10<br />

1000<br />

100<br />

10 -14<br />

10<br />

10 -14<br />

10 -13<br />

Soft X-Ray<br />

10 -13<br />

Soft X-Ray<br />

10 -13<br />

Soft X-Ray<br />

10 -13<br />

Soft X-Ray<br />

10 -12<br />

10 -12<br />

10 -12<br />

10 -12<br />

V-B<strong>and</strong><br />

I-B<strong>and</strong><br />

VLA Peak<br />

VLBA Peak<br />

10 -16<br />

10 -17<br />

10 -18<br />

10 -16<br />

10 -17<br />

1000<br />

100<br />

10 -14<br />

10 -14<br />

10<br />

10 -14<br />

10 -14<br />

10 -13<br />

Hard X-Ray<br />

10 -13<br />

Hard X-Ray<br />

10 -13<br />

Hard X-Ray<br />

10 -13<br />

Hard X-Ray<br />

Figure 5.12 Pairs of nuclear flux parameters are shown, plotted aga<strong>in</strong>st the Soft (left<br />

panels) <strong>and</strong> Hard (right panels) X-ray fluxes. From top to bottom we show V -B<strong>and</strong>,<br />

I-B<strong>and</strong>, VLA Peak flux <strong>and</strong> VLBA Peak flux (flux parameters are given <strong>in</strong> Table 2.2).<br />

The dash-dot l<strong>in</strong>e shows the best fitt<strong>in</strong>g power law relationship. The cross-correlation<br />

coefficients between the parameters shown are listed <strong>in</strong> Table 5.2.<br />

1000<br />

100<br />

10<br />

10 -12<br />

10 -12<br />

10 -12<br />

10 -12<br />

269


log Lum<strong>in</strong>osity (erg s -1 )<br />

44<br />

42<br />

40<br />

38<br />

36<br />

8 10 12 14 16 18<br />

log Frequency (Hz)<br />

Figure 5.13 Nuclear Spectral Energy Distributions for 5 of the UGC FR-I sample<br />

galaxies for which data exists. We <strong>in</strong>clude 1.6 GHz VLBA, HST/WFPC2 V <strong>and</strong> I<br />

b<strong>and</strong> <strong>and</strong> Ch<strong>and</strong>ra X-ray data po<strong>in</strong>ts. (◦ - NGC 315; � - NGC 383; � - UGC 1841;<br />

• - NGC 4261; △ - M84)<br />

270


42<br />

41<br />

40<br />

39<br />

38<br />

M87 nuclear SED<br />

37<br />

8 10 12 14 16 18<br />

Figure 5.14 M87 Nuclear SED: Data from Perlman et al. (2001). The dotted<br />

<strong>and</strong> short-dashed l<strong>in</strong>es are Kardashev-Pacholczyk <strong>and</strong> Cont<strong>in</strong>uous Injection synchrotron<br />

fits to the spectrum respectively. The long-dashed <strong>and</strong> dot-dashed l<strong>in</strong>es are<br />

ADAF+Outflow <strong>and</strong> ADAF+Disk models respectively (Quataert & Narayan, 2001;<br />

di Matteo et al., 2000), with thanks to Tiziana Di Matteo. The ADAF models are<br />

templates for illustration <strong>and</strong> are not fits to the data.<br />

271


Chapter 6<br />

Conclusions<br />

We beg<strong>in</strong> by summariz<strong>in</strong>g the results presented through this dissertation, plac<strong>in</strong>g<br />

those conclusions <strong>in</strong> the context of the questions asked <strong>in</strong> the <strong>in</strong>troduction. We then<br />

go on to discuss future directions <strong>in</strong> this field.<br />

6.1 Summary<br />

In the <strong>in</strong>troduction we posed four specific questions relat<strong>in</strong>g to the work undertaken<br />

<strong>in</strong> this thesis:<br />

• What is the nature of the spectra observed from the nuclei of nearby radio<br />

galaxies?<br />

• What can be said about the masses of the black holes <strong>in</strong> these radio galaxies<br />

272


ased on the gas k<strong>in</strong>ematics?<br />

• How is the gas organized <strong>in</strong> the central regions?<br />

• What connections can be found between the central eng<strong>in</strong>es <strong>and</strong> that gas?<br />

Here we summarize the conclusions we came to through this dissertation <strong>in</strong> the<br />

context of those questions.<br />

What is the nature of the spectra observed from the nuclei of nearby<br />

radio galaxies? In Chapter 3, we presented medium resolution spectra obta<strong>in</strong>ed<br />

us<strong>in</strong>g STIS on board the HST for the 21 galaxies <strong>in</strong> the UGC FR-I sample (Chapter<br />

2), us<strong>in</strong>g three parallel adjacent spectroscopic slit positions to map the gas k<strong>in</strong>ematics.<br />

We f<strong>in</strong>d that the gas <strong>in</strong> all of the nuclei is compatible with a s<strong>in</strong>gle k<strong>in</strong>ematic<br />

description: a rotat<strong>in</strong>g gas disk, where r<strong>and</strong>om motions are always important. We<br />

see patterns rem<strong>in</strong>iscent of rotation <strong>in</strong> 67% of the nuclei, <strong>in</strong> the rema<strong>in</strong>der of the<br />

galaxies the non-detection is accounted for by either face on morphologies or complex<br />

central morphologies (Chapter 3).<br />

We f<strong>in</strong>d that the <strong>in</strong>clusion of an additional broad component improves the fit to<br />

the spectrum <strong>in</strong> 62% of the galaxies, <strong>in</strong> the vic<strong>in</strong>ity of the Hα + [N II] complex. The<br />

273


detection of the broad component is flux limited. The broad components have a mean<br />

velocity dispersion of 1349 ±345km s −1 <strong>and</strong>, assum<strong>in</strong>g an orig<strong>in</strong> <strong>in</strong> Hα are redshifted<br />

by an average of 486 ± 443km s −1 (Chapter 3). The broad components could be<br />

a consequence of non-Gaussian l<strong>in</strong>e profiles with w<strong>in</strong>gs or from physical broad l<strong>in</strong>e<br />

regions (Chapter 5).<br />

What can be said about the masses of the black holes <strong>in</strong> these radio galaxies<br />

based on the gas k<strong>in</strong>ematics? In Chapter 4, we compared the observed profiles<br />

to model profiles from th<strong>in</strong> gas disks <strong>in</strong> gravitational potentials <strong>in</strong>clud<strong>in</strong>g no black<br />

hole, <strong>and</strong> 1 × 10 8 M⊙ <strong>and</strong> 9 × 10 8 M⊙ black holes.<br />

In 6 of 19 galaxies for which we produced th<strong>in</strong> disk models we could not identify<br />

any of the observed k<strong>in</strong>ematics with the models. For 3 of the rema<strong>in</strong><strong>in</strong>g 13 galaxies<br />

we observed a signature compatible with a black hole <strong>in</strong> the range 1×10 8 M⊙ < M• <<br />

9 ×10 8 M⊙, for 5 we observe k<strong>in</strong>ematic signatures compatible with M• ∼ > 9 ×108 M⊙.<br />

NGC 4261 has a profile compatible with a ∼ 1×10 8 M⊙ black hole, though this result<br />

is highly unreliable due to observational problems. These masses are compatible with<br />

the predictions of the M• − σc relationship of Merritt & Ferrarese (2001), however<br />

we do not consider them to be reliable mass determ<strong>in</strong>ations as we f<strong>in</strong>d unsettled<br />

motions <strong>in</strong> the gas play a very significant role <strong>in</strong> the observed k<strong>in</strong>ematics. The three<br />

274


ema<strong>in</strong><strong>in</strong>g galaxies may be of particular <strong>in</strong>terest: NGC 4335 <strong>and</strong> NGC 5141 have the<br />

most settled observed velocity profiles out to 100 pc, however <strong>in</strong> both of these cases<br />

we f<strong>in</strong>d that no black hole is necessary to fit the observed k<strong>in</strong>ematics; <strong>in</strong> NGC 2329<br />

the central slope is very shallow compared to all rotat<strong>in</strong>g th<strong>in</strong> disk models, suggest<strong>in</strong>g<br />

that <strong>in</strong>flow could be important (Chapter 4).<br />

How is the gas organized <strong>in</strong> the central regions? In Chapter 5, we used<br />

weighted mean parameters with<strong>in</strong> 100 pc of the center of each nucleus to describe the<br />

k<strong>in</strong>ematic state of the gas.<br />

We showed that the po<strong>in</strong>t-to-po<strong>in</strong>t variations <strong>in</strong> the velocity profiles are largest<br />

perpendicular to the preferred plane of rotation <strong>in</strong> the nuclei, <strong>in</strong>dicat<strong>in</strong>g that these<br />

motions orig<strong>in</strong>ate from velocity components that have not settled <strong>in</strong>to a th<strong>in</strong> disk<br />

configuration. We found that the velocity dispersion is distributed fairly evenly <strong>in</strong> all<br />

orientations, so likely orig<strong>in</strong>ates from <strong>in</strong>tr<strong>in</strong>sically isotropic r<strong>and</strong>om motions. Even<br />

<strong>in</strong> face on systems we observe differences <strong>in</strong> the mean velocities on either side of the<br />

nucleus, <strong>in</strong>dicat<strong>in</strong>g we may be observ<strong>in</strong>g bulk motions of the disk. From this set of<br />

evidence we conclude that the gas disks are not <strong>in</strong>tr<strong>in</strong>sically settled <strong>and</strong> are probably<br />

not well settled <strong>in</strong>to the major plane of the galaxy potential (Chapter 5).<br />

275


What connections can be found between the central eng<strong>in</strong>es <strong>and</strong> that gas?<br />

We showed that the nuclear fluxes are well correlated from radio to x-ray wavelengths,<br />

suggest<strong>in</strong>g a common source for the emission <strong>in</strong> the central eng<strong>in</strong>e, either from the<br />

accretion disk or from the jet bases. These fluxes appear to correlate with the broad<br />

l<strong>in</strong>e velocity dispersion, though with fairly small number statistics (Chapter 5).<br />

We found that the mean gas velocity dispersion with<strong>in</strong> 100 pc of the nucleus is<br />

closely related to the mean stellar velocity dispersion, imply<strong>in</strong>g that the stellar dis-<br />

persion drives the r<strong>and</strong>om motions <strong>in</strong> the gas (or that both sets of motion, though<br />

measured on very different scales, are governed by a common factor). This has possi-<br />

ble implications for the fuel<strong>in</strong>g <strong>and</strong> growth of the black hole, <strong>and</strong> connections between<br />

the stellar velocity dispersion <strong>and</strong> central eng<strong>in</strong>e (Chapter 5).<br />

6.2 Future directions<br />

We have conv<strong>in</strong>c<strong>in</strong>gly found that the gas disks <strong>in</strong> the nuclei of nearby radio galaxies<br />

are not well settled, <strong>and</strong> are not necessarily ly<strong>in</strong>g <strong>in</strong> the major planes of the galactic<br />

potentials. These unsettled motions have important implications for mass models<br />

based on gas dynamics <strong>in</strong> galaxies.<br />

276<br />

The M• − σc relation is now becom<strong>in</strong>g a common estimator of black hole masses


<strong>in</strong> nearby galaxies, <strong>and</strong> is be<strong>in</strong>g used to calibrate other <strong>in</strong>dicators of black hole mass<br />

(such as the use of particular emission l<strong>in</strong>e widths), which may be applied more<br />

distantly <strong>in</strong> the universe. 25% of the ‘good’ black hole determ<strong>in</strong>ations available to<br />

date (Trema<strong>in</strong>e et al., 2002) are based on gas dynamics, so underst<strong>and</strong><strong>in</strong>g the gas<br />

systems <strong>in</strong> the nuclei of galaxies is key <strong>in</strong> ensur<strong>in</strong>g that the M• − σc relation is built<br />

on strong foundations so that it can reliably be applied with the level of assurance<br />

that appears to be becom<strong>in</strong>g common practice.<br />

Progress <strong>in</strong> expla<strong>in</strong><strong>in</strong>g the motions that we observe can be made by mapp<strong>in</strong>g the<br />

spectra over a larger area of the nuclei, either through the use of multiple spectro-<br />

scopic slit positions, or by us<strong>in</strong>g more recently developed <strong>in</strong>tegral field spectrographs<br />

which can produce three-dimensional (x,y,λ) maps of large areas simultaneously. The<br />

<strong>in</strong>struments of choice at the time of writ<strong>in</strong>g are STIS on HST for long slit spectra<br />

(Brown et al., 2002), or SAURON on the William Herschell Telescope <strong>and</strong> OASIS on<br />

the Canada-France-Hawaii Telescope for <strong>in</strong>tegral field spectroscopy.<br />

This field is already somewhat saturated with large data sets (particularly from<br />

STIS on HST), of which the analysis has proven somewhat treacherous. Before con-<br />

t<strong>in</strong>u<strong>in</strong>g to gather <strong>in</strong>creas<strong>in</strong>gly large data sets it is important to address what we could<br />

hope to learn. Many of the exist<strong>in</strong>g data were gathered along the same l<strong>in</strong>es as the<br />

277


strategy used to obta<strong>in</strong> the data discussed <strong>in</strong> this thesis (Chapter 3) by plac<strong>in</strong>g adja-<br />

cent parallel slits on each nucleus, <strong>in</strong> order to seek the k<strong>in</strong>ematic signatures of nuclear<br />

black holes.<br />

The multiple-slit approach with STIS has several drawbacks that have become<br />

clear from study<strong>in</strong>g these data. (i) The slit width selection has no happy medium:<br />

With 0. ′′ 1 slits, the HST acquisition seems unable to reliably place the nucleus <strong>in</strong> the<br />

center of the central slit; the flux profile can be highly asymmetrical across the central<br />

slit, <strong>and</strong> very uneven <strong>in</strong> the side slits. With 0. ′′ 2 slits (or larger) the spatial resolution<br />

<strong>in</strong> the direction across the slit is comparatively poor, which becomes an issue when the<br />

slits are not precisely aligned with the k<strong>in</strong>ematic axes (e.g. Maciejewski, 2004). (ii)<br />

the position angle of the k<strong>in</strong>ematic axes is not a priori known; choices are made based<br />

on the nuclear morphologies of the stars, gas <strong>and</strong> dust however we have found that<br />

the gas may not be k<strong>in</strong>ematically settled <strong>in</strong> the planes that we expect, <strong>and</strong> may not be<br />

settled <strong>in</strong> a s<strong>in</strong>gle preferred k<strong>in</strong>ematic coord<strong>in</strong>ate system. (iii) The flux distributions<br />

are not mapped with sufficient detail <strong>in</strong> comparison to the spatial resolution of the<br />

spectra, so the distribution of light as it enters the slits is not well known, <strong>and</strong> the<br />

placement of the slits compared to the global flux distribution is not sufficiently well<br />

known. (Barth et al., 2001, found that represent<strong>in</strong>g the nuclear emission flux better<br />

than by us<strong>in</strong>g a sum of Gaussians they were able to reproduce a good deal more<br />

278


of the features observed <strong>in</strong> the velocity profiles. Know<strong>in</strong>g the flux distributions at<br />

higher spatial resolutions than the spectra are obta<strong>in</strong>ed at will yield models with far<br />

stronger constra<strong>in</strong><strong>in</strong>g power).<br />

Integral field data may suffer from related problems, <strong>in</strong> that we would also expect<br />

the exact placement of the flux, on sub-pixel scales where it is steep, to have conse-<br />

quences <strong>in</strong> the observed k<strong>in</strong>ematics <strong>and</strong> the relationship between dispersion axes <strong>and</strong><br />

k<strong>in</strong>ematic axes will also be important, though now on a pixel-by-pixel level rather<br />

than along the length of the slit.<br />

Observed velocity profiles are convolved with all of the factors described above,<br />

<strong>and</strong> the ‘raw k<strong>in</strong>ematic data’ from observations is therefore likely to be somewhat<br />

mislead<strong>in</strong>g about the true velocity profiles <strong>in</strong> the gas. Models are forced to have<br />

an almost backwards approach to deconvolv<strong>in</strong>g these factors, by <strong>in</strong>stead mak<strong>in</strong>g con-<br />

volved predictions based on the chosen <strong>in</strong>put models. This means that the underly<strong>in</strong>g<br />

velocity profile is never seen, which necessarily makes the choice of model somewhat<br />

hard (worse still, at this po<strong>in</strong>t, the state-of-the-art generally relies on a th<strong>in</strong>, circular<br />

disk model settled <strong>in</strong> the major plane of the galaxy).<br />

The galaxies for which th<strong>in</strong> gas disk model<strong>in</strong>g is considered to provide reliable<br />

estimates of the black hole mass tend to be those few <strong>in</strong>dividual members of samples<br />

279


where the gas appears to be <strong>in</strong> a smooth, well ordered velocity profile. Consider<strong>in</strong>g<br />

that we have found unsettled motions to play such a significant role <strong>in</strong> many nuclei,<br />

we should probably question the safety of these assumptions. We may very well be<br />

miss<strong>in</strong>g a lot of the unsettled motions <strong>in</strong> these galaxies, for example <strong>in</strong>flow or outflow<br />

could produce effects resembl<strong>in</strong>g (or cancel<strong>in</strong>g out) rotation <strong>and</strong>, at a m<strong>in</strong>imum, the<br />

consequences of flow <strong>in</strong> model velocity profiles should be <strong>in</strong>vestigated.<br />

The two galaxies <strong>in</strong> our own sample for which the gas appears to be well settled,<br />

NGC 4335 <strong>and</strong> NGC 5141, appear to require ‘no black hole’ to expla<strong>in</strong> the central<br />

k<strong>in</strong>ematics (no black hole here implies a M• < 1 × 10 8 M⊙). However, these galaxies<br />

are not particularly unusual <strong>in</strong> their other properties, so how they would contrive to<br />

have a smaller than usual black hole, yet still have nuclear <strong>and</strong> large scale properties<br />

(e.g. the production of radio jets, typical velocity dispersions, etc...) comparable to<br />

other radio galaxies is somewhat questionable. I feel that it is somewhat more likely<br />

that the black hole is of a more typical size, <strong>and</strong> that we do not observe the full<br />

k<strong>in</strong>ematic signature as it is softened by the effects of flow <strong>in</strong> the gas. This conceivably<br />

h<strong>in</strong>ts that if regular flow can be set up then other motions can be dissipated more<br />

quickly result<strong>in</strong>g <strong>in</strong> velocity profiles that appear smother, though hydrodynamical<br />

models would be required to test that possibility.<br />

280


From the work presented <strong>in</strong> this dissertation it is clear that one should not gen-<br />

erally expect the gas to be settled, or to be <strong>in</strong> a th<strong>in</strong> disk. Furthermore it seems<br />

unreasonable to expect the gas to be coplanar with the major plane of the galaxy<br />

potential (<strong>and</strong> possibly even with the plane of the dust, if the gas <strong>and</strong> dust are not<br />

necessarily well coupled). Moreover, we observe warps, twists <strong>and</strong> other less expli-<br />

cable unsettled motions <strong>in</strong> the gas, suggest<strong>in</strong>g that any representation by a s<strong>in</strong>gle<br />

k<strong>in</strong>ematic system may not be appropriate. In those cases where we do not directly<br />

observe this type of feature, it is always possible that these characteristics occur non<br />

the less, but possibly on smaller scales than can be observed or <strong>in</strong> planes for which<br />

we do not gather k<strong>in</strong>ematical data. (we of course only ever have a 1 dimensional<br />

k<strong>in</strong>ematic view of these three dimensional systems).<br />

Gather<strong>in</strong>g data sets that improve the spatial coverage of the nuclear k<strong>in</strong>ematics<br />

will help identify k<strong>in</strong>ematic patterns <strong>in</strong> the gas <strong>and</strong> trace them on larger scales, so<br />

that we may be able to underst<strong>and</strong> how they fit <strong>in</strong>to the galaxy’s structure. If we<br />

underst<strong>and</strong> the consequences of the physical systems driv<strong>in</strong>g features <strong>in</strong> the k<strong>in</strong>emat-<br />

ics of samples of galaxies, then we should be able to estimate how they effect the<br />

constra<strong>in</strong><strong>in</strong>g power of models that we develop to represent the situation <strong>in</strong> <strong>in</strong>dividual<br />

nuclei (<strong>and</strong> hence the limits that we can place on the determ<strong>in</strong>ation of the black<br />

hole masses). It is unlikely no matter how sophisticated observational <strong>and</strong> model<strong>in</strong>g<br />

281


techniques become that strict limits will be able to be placed on black hole masses of<br />

<strong>in</strong>dividual galaxies, but we can certa<strong>in</strong>ly do a better job of underst<strong>and</strong><strong>in</strong>g the limita-<br />

tions <strong>in</strong>volved, <strong>and</strong> underst<strong>and</strong> the dynamics of the nuclear regions far better, which<br />

likely has implications for the connections between central eng<strong>in</strong>es <strong>and</strong> their host<br />

galaxies. It is here that <strong>in</strong>creas<strong>in</strong>g the body of available data (<strong>in</strong> particular improved<br />

spatial coverage) will have value.<br />

Future comparisons between the stellar <strong>and</strong> gas k<strong>in</strong>ematics should also produce<br />

<strong>in</strong>terest<strong>in</strong>g results relat<strong>in</strong>g to the connections between the various k<strong>in</strong>ematic systems<br />

<strong>in</strong> an active galaxy. We showed <strong>in</strong> Chapter 5 that the stellar <strong>and</strong> gas velocity dis-<br />

persions seem related, <strong>and</strong> trac<strong>in</strong>g this relationship on larger scales, <strong>and</strong> comb<strong>in</strong><strong>in</strong>g<br />

models of stars <strong>and</strong> gas sitt<strong>in</strong>g <strong>in</strong> the same potential, could teach us how these sys-<br />

tems are connected. This is of <strong>in</strong>terest first because it seems reasonable to assume<br />

that the gas provides a good avenue for the stellar k<strong>in</strong>ematics <strong>and</strong> the central eng<strong>in</strong>e<br />

to develop connections (such as the M• − σc relation); <strong>and</strong> second as a calibration<br />

check between those galaxies where the black hole mass is determ<strong>in</strong>ed from stellar<br />

dynamics <strong>and</strong> where the black hole mass is determ<strong>in</strong>ed through gas dynamics. At the<br />

time of writ<strong>in</strong>g, there is not a s<strong>in</strong>gle example for which the black hole mass has been<br />

reliably determ<strong>in</strong>ed by both methods.<br />

282


Compar<strong>in</strong>g samples of active <strong>and</strong> quiescent galaxies, or samples where the level of<br />

activity is different (e.g. between FR-I <strong>and</strong> FR-II galaxies) could help to expla<strong>in</strong> how<br />

some galaxies are active <strong>and</strong> others are not. The gas <strong>and</strong> dust is the most obvious<br />

source of readily available fuel for the central eng<strong>in</strong>e, <strong>and</strong> how the fuel<strong>in</strong>g differs <strong>in</strong><br />

active <strong>and</strong> quiescent galaxies with apparently similar nuclear morphologies is of great<br />

<strong>in</strong>terest <strong>in</strong> underst<strong>and</strong><strong>in</strong>g the activity <strong>in</strong> galaxies. Currently it seems that models are<br />

not sophisticated enough to pick up differences between active <strong>and</strong> quiescent systems<br />

– as mentioned previously detailed models are restricted to those galaxies where the<br />

velocity profile appears smoothest, so we may miss all of the features that differentiate<br />

the level of fuel<strong>in</strong>g that occurs, which may be quite subtle effects. It is also possible<br />

that the effects that lead to fuel<strong>in</strong>g may always be too modest to detect above the<br />

scale of unsettled motions, but that is also of <strong>in</strong>terest <strong>in</strong> terms of the trigger<strong>in</strong>g of<br />

activity <strong>in</strong> galaxies <strong>and</strong> the evolution of activity throughout cosmic evolution.<br />

These thoughts are no doubt an <strong>in</strong>complete representation of what will happen<br />

as this field progresses, <strong>and</strong> many more issues <strong>in</strong> this field will be addresses over the<br />

com<strong>in</strong>g years. New <strong>in</strong>strumentation, particularly telescopes able to work at higher<br />

spatial resolutions <strong>and</strong> <strong>in</strong>tegral field spectrographs, will provide rich new <strong>in</strong>formation<br />

for the exploration <strong>and</strong> underst<strong>and</strong><strong>in</strong>g of the nuclear regions of radio galaxies, both<br />

nearby <strong>and</strong> further afield.<br />

283


REFERENCES<br />

Adams, F. C., Graff, D. S., & Richstone, D. O. 2001, ApJ, 551, L31<br />

Bacon, R., Emsellem, E., Combes, F., Cop<strong>in</strong>, Y., Monnet, G., & Mart<strong>in</strong>, P. 2001,<br />

AA, 371, 409<br />

Balcells, M., Morganti, R., Oosterloo, T., Perez-Fournon, I., & Gonzales-Serrano, J. I.<br />

1995, A&A, 302, 665<br />

Barth, A. J., Filippenko, A. V., & Moran, E. C. 1999, ApJ, 525<br />

Barth, A. J., Sarzi, M. R., Rix, H.-W., Ho, L. C., Filippenko, A. V., & Sargent, W.<br />

L. W. 2001, ApJ, 555, 39<br />

Baum, S. A., Zirbel, E. L., & O’Dea, C. P. 1995, ApJ, 451, 88<br />

Beckman, J. E. 2001, <strong>in</strong> ASP Conference Series, Vol. 249, The Central Kiloparsec of<br />

Starbursts <strong>and</strong> AGN: The La Palma Connection, ed. J. H. Knapen, J. E. Beckman,<br />

I. Shlosman, & T. J. Mahoney (San Francisco, CA: The Astronomical Society of<br />

the Pacific), 11<br />

B<strong>in</strong>ney, J., & Merrifield, M. 1998, Galactic Astronomy (Pr<strong>in</strong>ceton, NJ: Pr<strong>in</strong>ceton<br />

University Press)<br />

Biretta, J. A., ed. 1996, WFPC2 Instrument H<strong>and</strong>boov, 4th edn. (Baltimore, MD:<br />

STScI)<br />

Biretta, J. A., Sparks, W. B., & Macchetto, F. 1999, ApJ, 520, 621<br />

Bower, G. A., Green, R. F., Bender, R., Gebhardt, K., Lauer, T. R., Magorrian, J.,<br />

Richstone, D. O., Danks, A., Gull, T., Hutch<strong>in</strong>gs, J., Joseph, C., Kaiser, M. E.,<br />

Weistrop, D., Woodgate, B., Nelson, C., & Malumuth, E. M. 2001, ApJ, 550, 75<br />

284


Bower, G. A., Green, R. F., Danks, A., Gull, T., Heap, S., Hutch<strong>in</strong>gs, J., Joseph, C.,<br />

Kaiser, M. E., Kimble, R., Kraemer, S., Weistrop, D., Woodgate, B., L<strong>in</strong>dler, D.,<br />

Hill, R. S., Malumuth, E. M., Baum, S., Sarajed<strong>in</strong>i, V., Heckman, T. M., Wilson,<br />

A. S., & Richstone, D. O. 1998, ApJ, 492, L111<br />

Bridle, A. H. 1984, AJ, 89, 979<br />

Bridle, A. H., & Perley, R. A. 1984, ARA&A, 22, 319<br />

Brown, T., Davies, J., Diaz-Miller, R., Downes, R., Dressel, L., Espey, B., Goudfrooij,<br />

P., Hodge, P., Kim Quijano, J., Kriss, J., Leitherer, C., Michell, G., Mobasher, B.,<br />

Potter, M., Proffitt, C., Sahu, K., Stys, D., Valenti, J., & Walborn, N. 2002, <strong>in</strong><br />

HST STIS Data H<strong>and</strong>book, 4th edn., ed. B. Mobasher (Baltimore, MD: STScI)<br />

Burke, B. F., & Graham-Smith, F. 1997, <strong>Radio</strong> Astronomy (Cambridge, UK: Cambridge<br />

University Press)<br />

Capetti, A., de Ruiter, H. R., Fanti, R., Morganti, R., Parma, P., & Ulrich, M.-H.<br />

2000, A&A, 362, 871<br />

Cappellari, M., Verolme, E. K., van der Marel, R. P., Verdoes Kleijn, G. A., Ill<strong>in</strong>gworth,<br />

G. D., Franx, M., Carollo, C. M., & de Zeeuw, P. T. 2002, ApJ, 578, 787<br />

Chakrabarty, D., & Saha, P. 2001, AJ, 122, 232<br />

Condon, J. J., & Broderick, J. J. 1988, AJ, 96, 30<br />

Cretton, N., & van den Bosch, F. 1999, ApJ, 514, 704<br />

Davies, R. L., Burste<strong>in</strong>, D., Dressler, A., Faber, S. M., Lynden-Bell, D.; Terlevich,<br />

R. J., & Wegner, G. 1987, ApJS, 64, 581<br />

de Koff, S., Best, P., Baum, S. A., Sparks, W., Röttger<strong>in</strong>g, H., Miley, G., Golombek,<br />

D., Macchetto, F., & Martel, A. 2000, ApJS, 129, 33<br />

di Matteo, T., Quatarert, E., Alln, S. W., Narayan, R., & Fabian, A. C. 2000, MN-<br />

RAS, 311, 507<br />

Di Nella, H., Garcia, A., Garnier, R., & Paturel, G. 1995, A& AS, 113, 151<br />

Doptia, M. A., Koratkar, A. P., Allen, M. G., Tsvetanov, Z. I., Ford, H. C., Bicknell,<br />

G. V., & Sutherl<strong>and</strong>, R. S. 1997, ApJ, 490, 202<br />

285


Dunlop, J. S., McLure, R. J., Kukula, M. J., Baum, S. A., O’Dea, C. P., & Hughes,<br />

D. H. 2003, MNRAS, 340, 1095<br />

Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P<br />

Ferrarese, L., Ford, H. C., & Jaffe, W. 1996, ApJ, 470, 444<br />

Ferrarese, L., & Merritt, D. 2000, ApJL, 539, 13<br />

Ferrarese, L. C., & Ford, H. C. 1999, ApJ, 515, 583<br />

Ford, H. C., Harms, R. J., Tsvetanov, Z. I., Hartig, G. F., Dressel, L. L., Kriss, G. A.,<br />

Bohl<strong>in</strong>, R. C., Davidsen, A. F., Margon, B., & Kochhar, A. K. 1994, ApJ, 435, L27<br />

Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V.,<br />

Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J.,<br />

P<strong>in</strong>kney, J., Richstone, D., & Trema<strong>in</strong>e, S. 2000a, ApJL, 539, 13<br />

Gebhardt, K., Richstone, D., Kormendy, J., Lauer, T. R., Ajhar, E. A., Bender, R.,<br />

Dressler, A., Faber, S. M., Grillmair, C., Magorrian, J., & Trema<strong>in</strong>e, S. 2000b, AJ,<br />

119, 1157<br />

Gebhardt, K., Richstone, D., Trema<strong>in</strong>e, S., Lauer, T. R., Bender, R., Bower, G.,<br />

Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Grillmair, C., Ho, L. C.,<br />

Kormendy, J., Magorrian, J., & P<strong>in</strong>kney, J. 2003, ApJ, 583, 92<br />

Ghez, A. M., Kle<strong>in</strong>, B. L., Morris, M., & Beckl<strong>in</strong>, E. E. 1998, ApJ, 509, 678<br />

Ghez, A. M., Salim, S., Hornste<strong>in</strong>, S. D., Tanner, A., Ris, M. M., Beckl<strong>in</strong>, E. E., &<br />

Duchene, G. 2003, ArXiv Astrophysics e-pr<strong>in</strong>ts, astro-ph/0306130<br />

Goudfrooij, P., Hansen, L., Jørgensen, H. E., & Nørgaard-Nielsen, H. U. 1994, A&<br />

AS, 105, 341<br />

Greenhill, L. J., & Gw<strong>in</strong>n, C. R. 1997, Ap&SS, 248, 261<br />

Haehnelt, M. G., & Kauffmann, G. 2000, MNRAS, 318, L35<br />

Harms, R. J., Ford, H. C., Tsvetanov, Z. I., Hartig, G. F., Dressel, L. L., Kriss, G. A.,<br />

Bohl<strong>in</strong>, R., Davidsen, A. F., Margon, B., & Kochhar, A. K. 1994, ApJL, 435, 35<br />

Heckman, T. M., Van Breugel, W., Miley, G. K., & Butcher, H. R. 1983, AJ, 88,<br />

1077<br />

286


Herrnste<strong>in</strong>, J. R., Moran, J. M., Greenhill, L. J., Diamond, P. J., Inoue, M., Nakai,<br />

N., Miyoshi, M., Henkel, C., & Riess, A. 1999, Nature, 400, 539<br />

Ho, L. C., Filippenko, A. V., Sargent, W. L. W., & Peng, C. Y. 1997, ApJS, 112, 391<br />

Hughes, M. A., Alonso-Herrero, A., Axon, D., Scarlata, C., Atk<strong>in</strong>son, J., Batcheldor,<br />

D., B<strong>in</strong>ney, J., Capetti, A., Carollo, C. M., Dressel, L., Gerssen, J., Macchetto, D.,<br />

Maciejewski, W., Marconi, A., Merrifield, M., Ruiz, M., Sparks, W., Stiavelli, M.,<br />

Tsvetanov, Z., & van der Marel, R. 2003, AJ, 126, 742<br />

Jaffe, W., Ford, H. C., Ferrarese, L., & Dressel, L. 1993, Nature, 364, 213<br />

Jørgensen, I., Franx, M., & Kjærgaard, P. 1995, MNRAS, 276, 1341<br />

Kimble, et al. 1998, ApJ, 492, 83<br />

Kormendy, J., & Bender, R. 1999, ApJ, 522, 772<br />

Kormendy, J., Bender, R., Evans, A. S., & Richstone, D. 1998, AJ, 115, 1823<br />

Kormendy, J., Bender, R., Richstone, D., Ajhar, E. A., Dressler, A., Faber, S. M.,<br />

Gebhardt, K., Grillmair, C., Lauer, T. R., & Trema<strong>in</strong>e, S. 1996, ApJL, 459, L57<br />

Kormendy, J., & Richstone, D. 1995, ARA& A, 33, 581<br />

Krist, J., & Hook, R. 1999, The T<strong>in</strong>y Tim User’s Guide (Baltimore, MD: STScI)<br />

Krolik, J. H. 1999, Active Galactic Nuclei, Pr<strong>in</strong>ceton Series <strong>in</strong> Astrophysics (Pr<strong>in</strong>ceton,<br />

NJ: Pr<strong>in</strong>ceton University Press)<br />

La<strong>in</strong>e, S., van der Marel, R. P., Lauer, T. R., Postman, M., O’Dea, C. P., & Owen,<br />

F. N. 2003, AJ, 125, 478<br />

Lynden-Bell, D. 1969, Nature, 223, 690<br />

Lynden-Bell, D. 2001, <strong>in</strong> ASP Conference Series, Vol. 249, The Central Kiloparsec of<br />

Starbursts <strong>and</strong> AGN: The La Palma Connection, ed. J. H. Knapen, J. E. Beckman,<br />

I. Shlosman, & T. J. Mahoney (San Francisco, CA: The Astronomical Society of<br />

the Pacific), 212<br />

Macchetto, F., Marconi, A., Axon, D. J., Capetti, A., Sparks, W., & Crane, P. 1997,<br />

ApJ, 489, 579<br />

287


Maciejewski, W. 2004, <strong>in</strong> Carnegie Observatories Astrophysics Series, Vol. 1, Coevolution<br />

of <strong>Black</strong> <strong>Holes</strong> <strong>and</strong> <strong>Galaxies</strong>, ed. L. C. Ho (Cambridge: Cambridge University<br />

Press), <strong>in</strong> press<br />

Maciejewski, W., & B<strong>in</strong>ney, J. 2001, MNRAS, 323, 831<br />

Magorrian, J., Trema<strong>in</strong>e, S., Richstone, D., Bender, R., Bower, G., Dressler, A.,<br />

Faber, S. M., Gebhardt, K., Green, R., & Grillmair, C. 1998, AJ, 115, 2285<br />

Martel, A. R., Turner, N. J., Sparks, W. B., & Baum, S. A. 2000, ApJS, 130<br />

Melia, F., & Falcke, H. 2001, ARAA, 39, 309<br />

Merritt, D., & Ferrarese, L. 2001, ApJ, 547, 140<br />

Nilson, P. 1973, The Uppsala General Catalogue of <strong>Galaxies</strong> [UGC] (Uppsala: Astronomiska<br />

Observatorium)<br />

Noel-Storr, J., Baum, S. A., Verdoes Kleijn, G., van der Marel, R. P., O’Dea, C. P.,<br />

de Zeeuw, P. T., & Carollo, C. M. 2003, ApJS, 148, 419<br />

Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae <strong>and</strong> active galactic nuclei<br />

(Mill Valley, CA: University Science Books)<br />

Ostriker, J. P. 2000, Phys. Rev. Lett., 84, 5258<br />

Owen, F. N., & Ledlow, M. J. 1997, ApJS, 108, 41<br />

Perlman, E. S., Sparks, W. B., Radomski, J., Packham, C., Fisher, R. S., P<strong>in</strong>a, R.,<br />

& Biretta, J. A. 2001, ApJ, 561, L51<br />

Philips, M. M., Jenk<strong>in</strong>s, C. R., Dopita, M. A., Sadler, E. M., & B<strong>in</strong>ette, L. 1986, AJ,<br />

91, 1062<br />

Ph<strong>in</strong>ney, E. S. 1994, <strong>in</strong> Mass-Transfer Induced Activity <strong>in</strong> <strong>Galaxies</strong> (Cambridge:<br />

Cambridge University Press), 1<br />

P<strong>in</strong>kney, J., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko,<br />

A. V., Green, R., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J.,<br />

Richstone, D., & Trema<strong>in</strong>e, S. 2003, ApJ, 596, 903<br />

Press, W. H., Teukolsky, S. A., Vetterl<strong>in</strong>g, W. T., & Flannery, B. P. 1992, Numerical<br />

Recipies <strong>in</strong> Fortran, 2nd edn. (Cambridge: Cambridge University Press)<br />

288


Quataert, E., & Narayan, R. 2001, ApJ, 561, L51<br />

Rees, M. 1984, ARA& A, 22, 471<br />

Rees, M., Begelman, M., Bl<strong>and</strong>ford, R., & Ph<strong>in</strong>ney, E. 1982, Nature, 295, 17<br />

Reid, M. J., Menten, K. M., Genzel, R., Ott, T., Schoedel, R., Eckart, A., & Brunthaler,<br />

A. 2003, ArXiv Astrophysics e-pr<strong>in</strong>ts, astro-ph/0304095<br />

Sarzi, M., Rix, H.-W., Shields, J. C., Rudnick, G., Ho, L. C., McIntosh, D. H.,<br />

Filippenko, A. V., & Sargent, W. L. W. 2001, ApJ, 550, 65<br />

Schmitt, H. R., Pr<strong>in</strong>gle, J. E., Clarke, C. J., & K<strong>in</strong>ney, A. L. 2002, ApJ, 575, 150<br />

Shlosman, I., Begelman, M. C., & Frank, J. 1990, Nature, 345, 679<br />

Silk, J., & Rees, M. J. 1998, A&A, 331, L1<br />

Solórzano-Iñarrea, C., Tadhunter, C. N., & Axon, D. J. 2001, MNRAS, 323, 965<br />

Steiman-Cameron, T. Y., & Durisen, R. H. 1986, <strong>in</strong> Structure <strong>and</strong> Dynamics of<br />

Elliptical <strong>Galaxies</strong>, IAU Symposium 127, ed. P. T. de Zeeuw (Norwell, MA: Kluwer<br />

Academic Publishers), 403<br />

Steiman-Cameron, T. Y., & Durisen, R. H. 1988, ApJ, 325, 26<br />

Sulentic, J. W., Marziani, P., & Dultz<strong>in</strong>-Hacyan, D. 2000, ARA& A, 38, 521<br />

Tomita, A., Aoki, K., Watanabe, M., Takata, T., & Ichikawa, S. 2000, AJ, 120, 123<br />

Tonry, J. L., & Davis, M. 1981, ApJ, 246, 666<br />

Tran, H. D., Tsvetanov, Z., Ford, H. C., Davies, J., Jaffe, W., van den Bosch, F. C.,<br />

& Rest, A. 2001, AJ, 121, 2928<br />

Trauger, J. T. 1994, ApJ, 435, L3<br />

Trema<strong>in</strong>e, S. 1995, AJ, 110, 628<br />

Trema<strong>in</strong>e, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko,<br />

A. V., Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R.,<br />

Magorrian, J., P<strong>in</strong>kney, J., & Richstone, D. 2002, ApJ, 574, 740<br />

Urry, C. M., & Padovani, P. 1995, PASP, 107, 803<br />

289


Valluri, M., Merritt, D., & Emsellem, E. 2004, ApJ, 602, 66<br />

van der Marel, R. P. 1997, <strong>in</strong> The 1997 HST Calibration Workshop, ed. S. Casertano,<br />

R. Jedrzejewski, T. Keyes, & M. Stevens (Baltimore, MD: STScI), 443<br />

van der Marel, R. P., & van den Bosch, F. C. 1998, AJ, 116, 2220<br />

van Dokkum, P. G., & Franx, M. 1995, AJ, 110, 2027<br />

Verdoes Kleijn, G., & de Zeeuw, P. T. 2004, <strong>in</strong> International Astronomical Union<br />

Symposium, Vol. 222, The <strong>in</strong>terplay among <strong>Black</strong> <strong>Holes</strong>, Stars <strong>and</strong> ISM <strong>in</strong> Galactic<br />

Nuclei, ed. T. Storchi-Bergman, L. C. Ho, & H. R. Schmitt (Cambridge: Cambridge<br />

University Press), <strong>in</strong> preparation<br />

Verdoes Kleijn, G. A., Baum, S. A., de Zeeuw, P. T., & O’Dea, C. P. 1999, AJ, 118,<br />

2592<br />

—. 2002a, AJ, 123, 1334<br />

Verdoes Kleijn, G. A., van der Marel, R. P., de Zeuww, P. T., Noel-Storr, J., & Baum,<br />

S. A. 2002b, AJ, 124, 2524<br />

Verolme, E. K., Cappellari, M., Cop<strong>in</strong>, Y., van der Marel, R. P., Bacon, R., Bureau,<br />

M., Davies, R. L., Miller, B. M., & de Zeeuw, P. T. 2002, MNRAS, 335, 517<br />

Wada, K. 2004, <strong>in</strong> Carnegie Observatories Astrophysics Series, Vol. 1, Coevolution of<br />

<strong>Black</strong> <strong>Holes</strong> <strong>and</strong> <strong>Galaxies</strong>, ed. L. C. Ho (Cambridge: Cambridge University Press),<br />

<strong>in</strong> press<br />

Wagner, S. J., Bender, R., & Mollenhof, C. 1988, A& A, 195, L5<br />

Wallerste<strong>in</strong>, G., Gilroy, K. K., Zethson, T., Johansson, S., & Hamann, F. 2001, PASP,<br />

113, 1210<br />

Whittle, M. 1985, MNRAS, 213, 33<br />

Xu, C., Baum, S. A., O’Dea, C. P., Wrobel, J. M., & Condon, J. J. 2000, AJ, 120,<br />

2950<br />

290

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!