22.02.2013 Views

Trujillo, Eduardo - World Bamboo

Trujillo, Eduardo - World Bamboo

Trujillo, Eduardo - World Bamboo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012<br />

<strong>Bamboo</strong> (Guadua angustifolia) fibres<br />

for STRONG-light composite materials<br />

Ir. <strong>Eduardo</strong> <strong>Trujillo</strong><br />

Ir. Lina Osorio<br />

Dr. Aart Van Vuure<br />

Prof. Jan Ivens<br />

Prof. Ignaas Verpoest


<strong>Bamboo</strong> fibres<br />

<strong>Bamboo</strong> fibre<br />

composites<br />

The future<br />

Conclusions<br />

Content<br />

• Extraction<br />

• Properties<br />

• Discontinuity of the fibre<br />

• Properties<br />

• Applications<br />

• Pros and cons<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 2


<strong>Bamboo</strong> fibres<br />

<strong>Bamboo</strong> fibre<br />

composites<br />

The future<br />

Conclusions<br />

Content<br />

• Extraction<br />

• Properties<br />

• Discontinuity of the fibre<br />

• Properties<br />

• Applications<br />

• Pros and cons<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 2


Why bamboo?<br />

• Fast growing<br />

•Natural growing<br />

plant<br />

•Environmental benefits<br />

1 hectare of bamboo sequesters 62<br />

tons of CO2/year 1 hectar of young forest sequesters 15<br />

tons CO2/year J.Jansen, Technical Univ. Eindhoven, 2000<br />

•Specie Guadua<br />

angustifolia<br />

21 cm/day<br />

Resource<br />

Final height in 6 months<br />

Maturity in 4-6 years<br />

Enormous capacity of<br />

renovation without reseed<br />

Prevention of the erosion<br />

Increases the organic<br />

material in the soil<br />

Capture CO 2<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 3<br />

One of the largest bamboo<br />

species on the world<br />

Large size – Good<br />

properties


<strong>Bamboo</strong> fibre extraction process<br />

Extraction methods for bamboo fibres<br />

• Steam explosion High pressure and T° (several times)<br />

• Chemical extraction NaOH (high concentrations)<br />

• Combination of chemical and mechanical<br />

• Mechanical extraction<br />

<strong>Bamboo</strong> fibre without<br />

extraction process<br />

K.U.Leuven<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 4<br />

Primary fibre


Strength (MPa)<br />

850<br />

750<br />

650<br />

550<br />

450<br />

350<br />

250<br />

150<br />

<strong>Bamboo</strong> fibre extraction process<br />

Strength comparison between different bamboo<br />

fibre extraction techniques<br />

Chemical extraction<br />

Mechanical<br />

(rolling mill machine)<br />

Steam<br />

explosion<br />

0 100 200 300 400 500 600<br />

Extraction method<br />

Mechanical process<br />

(in some cases chemical<br />

process is required)<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 5<br />

K.U.Leuven<br />

process<br />

Grip<br />

Tensile test<br />

• No chemicals are used<br />

• Room temperature<br />

<strong>Bamboo</strong><br />

fibre<br />

New extraction process:<br />

• Not previous preparation of the<br />

raw material (e.g. retting)<br />

• Continuous process


<strong>Bamboo</strong> fibre extraction process<br />

Stiffness comparison between different bamboo<br />

fibre extraction techniques<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 6<br />

Grip<br />

Tensile test<br />

<strong>Bamboo</strong><br />

fibre


<strong>Bamboo</strong> fibre extraction process<br />

<strong>Bamboo</strong> fibres<br />

<strong>Bamboo</strong> Industry Development Co., (2011)<br />

<strong>Bamboo</strong> fibre technology group (2011)<br />

from different sources<br />

Industry Scientific papers<br />

Hiroyuki Kinoshita et al, 2009 S. Shibata et al, 2008<br />

Keiji Ogawa et al, 2008<br />

R. Rowell 2008<br />

10 mm<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 7<br />

O. Yamashita et al, 2007<br />

0.5 mm<br />

KU Leuven fibres<br />

5 mm<br />

Kazuya Okubo et al, 2004


Fibre<br />

Growing<br />

cycle<br />

(days)<br />

Biomass waste<br />

(Ton) to produce<br />

1 Ton of fibre<br />

Fibre yield<br />

(kg/hectare)<br />

Flax 85-120 - 1100*<br />

Sisal Continuous 25*<br />

3360*<br />

600-1200**<br />

Ramie 45-60 - 550*<br />

Jute 120-150 20*<br />

2200*<br />

1600-2000**<br />

Kenaf 150-180 -<br />

1700*<br />

2300**<br />

Hemp 130-180 - 1225*<br />

Cotton 180-200 - 790*<br />

Abaca Continuous 48* 3000*<br />

500-1000**<br />

Henequen - 1500*<br />

<strong>Bamboo</strong><br />

(G. angust.)<br />

Continuous ~11 - 14 ~1045 - 3120<br />

Source:<br />

Fibre yield after extraction<br />

* R. M Rowell, (2008)<br />

* * Wallenberger, F. And Weston, N., (2004)<br />

<strong>Bamboo</strong> fibre extraction process<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 8<br />

6


Why bamboo fibres?<br />

Stress (MPa)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

<strong>Bamboo</strong> fibres show some<br />

similarities with glass fibres<br />

Typical Stress - Strain curve<br />

for single bamboo fibre<br />

Strain (%)<br />

Fibre properties<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 9<br />

• The same linear elastic behaviour under<br />

tensile load<br />

• Brittle fibres (strain ~ 2%)<br />

• Specific properties are comparable with<br />

glass fibre<br />

Density Glass fibre: 2.5 (g/cm3)<br />

Density bamboo fibre: 1.4 (g/cm3)<br />

(<br />

Roughness of the bamboo fibre (Veeco profilometer)<br />

σ<br />

ρ<br />

,<br />

E<br />

ρ<br />

)


Weibull distribution<br />

Fibre properties<br />

“m” value = 8.3<br />

Fibre “m” Reference<br />

Jute 6 Shaha, et al 2011<br />

Jute<br />

Coir<br />

3-4<br />

9-3<br />

Defroid,et al 2010<br />

Span length:<br />

15mm - 35mm<br />

Flax 3 - 4 Baillie, et al 2007<br />

Jute 2-1 Xia, et al, 2009<br />

Span length:<br />

5mm- 20mm<br />

Shape factor (m) � indicator of the variation in the data: the bigger the value the smaller<br />

the variation in the data.<br />

Manmade fibres usually 5 and 15,<br />

Natural fibres (larger variation in their properties) between 1 and 6<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 10<br />

(Baillie, 2007).


Fibre bundle test<br />

Fibre bundle test<br />

Strain measurement<br />

Fibre properties<br />

Failure of the bundle<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 11<br />

Shape parameter<br />

(m)<br />

1 cm width<br />

Failure bundle tensile results<br />

σ f<br />

(MPa)<br />

4 cm span length<br />

E<br />

(GPa)<br />

5.7 640±45 49±11


<strong>Bamboo</strong> fibres<br />

<strong>Bamboo</strong> fibre<br />

composites<br />

The future<br />

Conclusions<br />

Content<br />

• Extraction<br />

• Properties<br />

• Discontinuity of the fibre<br />

• Properties<br />

• Applications<br />

• Pros and cons<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 12


<strong>Bamboo</strong> fibres Curing time<br />

Reinforcement<br />

Resin Hardener<br />

Matrix<br />

<strong>Bamboo</strong> fibre composites<br />

Unidirectional<br />

disposition of<br />

the fibres<br />

(UD)<br />

+<br />

Force<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 13<br />

=<br />

<strong>Bamboo</strong> fibre / epoxy composite


Discontinuity of the fibre<br />

Continuous UD<br />

prepreg<br />

<strong>Bamboo</strong> fibre composites<br />

Node<br />

Internode<br />

Continuous and discontinuos UD prepreg<br />

Discontinuous UD<br />

prepreg<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 14<br />

Discontinuity of the fibre<br />

Walter Liese<br />

1998<br />

UD bamboo fibre - TP tape<br />

Length of<br />

internodes<br />

(± 25 cm)


Unidirectional discontinuous BF/epoxy composites<br />

Fibre patterns<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 15


Unidirectional discontinuous BF/epoxy composites<br />

Experimental results: Tensile stifness<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 16<br />

bundles<br />

Efficiency factor:<br />

92% ± 6


Unidirectional discontinuous BF/epoxy composites<br />

Experimental results: Tensile strength<br />

bundles<br />

Good agreement with “The local load sharing (LLS) model”<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 17<br />

Efficiency factor:<br />

79% ± 4


Unidirectional discontinuous BF/epoxy composites<br />

Experimental results: Flexural strength<br />

Flexural strength (MPa)<br />

Flexural stiffness (GPa)<br />

Natural fibres composites<br />

Thermoset matrix<br />

Flexural strength<br />

1 2 3 4 5 6 7 8 9 10 11<br />

1 2 3<br />

Natural fibres composites<br />

Thermoset matrix<br />

Flexural stiffness<br />

4 5 6 7 8 9 10<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 18<br />

1. <strong>Bamboo</strong> (G. ang.) + Epoxy (Vf: 40%)<br />

2. Flax + Epoxy (Vf: 40%)<br />

3. Jute + Epoxy (Vf: 40%)<br />

4. Jute + Vinylester (Vf: 35%)<br />

5. Hemp + Epoxy (Vf: 35%)<br />

6. Sisal + Epoxy (Vf: 37%)<br />

7. Kenaf + Cashew nut Shell (Vf: 64%)<br />

8. <strong>Bamboo</strong> + Polyester (Vf: 15%)<br />

9. Kenaf + Polyester (Vf: 60%)<br />

10. Hemp + Polyester (Vf: 60%)<br />

11. Hemp + Cashew nut Shell (Vf: 65%)<br />

1. <strong>Bamboo</strong> (G. ang.) + Epoxy (Vf: 40)<br />

2. Flax + Epoxy (Vf: 40%)<br />

3. Jute + Epoxy (Vf: 40%)<br />

4. Jute + Vinylester (Vf: 35%)<br />

5. Hemp + Epoxy (Vf: 35%)<br />

6. Sisal + Epoxy (Vf: 37%)<br />

7. Kenaf + Cashew nut Shell (Vf: 64%)<br />

8. Kenaf + Polyester² (Vf: 60%)<br />

9. Hemp + Polyester (Vf: 60%)<br />

10. Hemp + Cashew nut Shell (Vf: 65%)<br />

Force<br />

3 point bending test<br />

. . .<br />

. .<br />

.<br />

.<br />

.


<strong>Bamboo</strong> fibres<br />

<strong>Bamboo</strong> fibre<br />

composites<br />

The future<br />

Conclusions<br />

Content<br />

• Extraction<br />

• Properties<br />

• Discontinuity of the fibre<br />

• Properties<br />

• Applications<br />

• Pros and cons<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 19


Applications<br />

Continuous<br />

tape<br />

Continuous “tape” of aligned bamboo fibres to make composite materials<br />

This “tape” is<br />

currently used in<br />

composites<br />

industry<br />

Glass fibre Carbon fibre<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 20


Continuous<br />

“Tape”<br />

Further Hi- Tech<br />

applications<br />

• Broader range of applications<br />

• High adaptability to existing<br />

composites technologies<br />

• Green choice<br />

Semi-esructural<br />

composites market<br />

Applications<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 21<br />

Picture: http://www.ircomas.org<br />

Picture: http://www.ircomas.org<br />

Picture: JEC - 2011<br />

Fotobron: http://www.lineo.eu/


Lighter cars … reduce energy consumption!<br />

Sorce: KULeuven: De Moor Jozef, 2008<br />

Applications<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 22<br />

In all moving applications, the<br />

energy consumption<br />

is + proportional to the<br />

mass…<br />

… hence mass reduction<br />

is needed !!!


The 4 phases in the life of a product and their relative importance<br />

In the total life cycle, these 4 aspects have a different impact,<br />

depending on the application area<br />

In “moving”<br />

Applications<br />

Source: Ashby, M. et al. Materials engineering, science, processing and design (2007)<br />

applications the use<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 23<br />

efficiency is most important


Energy content of natural fibres<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

lignocellulosic<br />

fibres<br />

mat<br />

Applications<br />

energy ( MJ/kg)<br />

mat<br />

glass fibre carbon fibre<br />

Hemp can store about 0.75 kg of CO 2<br />

energy ( MJ/kg)<br />

per kg of fibres during growth<br />

Hemp releases 10 MJ/kg upon incineration (with energy recovery)<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 24


Moisture absorption<br />

170°C<br />

Disadvantages<br />

Thermal degradation (bamboo fibres)<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 25<br />

150°C


Conclusions<br />

Good mechanical properties for bamboo fibres were obtained by using a novel<br />

green mechanical extraction process<br />

Composites based on extracted long bamboo fibres and epoxy resin were<br />

successfully produced<br />

Performance in terms of strength and stiffness reach: 78% and 95% of the<br />

theoretical value (ROM)<br />

Future work: Research in progress - further technology development is<br />

required<br />

<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 26


<strong>World</strong> <strong>Bamboo</strong> Congress – Antwerp Belgium April 10-15, 2012 27<br />

Thank you!


Annexes


2.2 Results for single bamboo fibre tensile test<br />

Tensile strength (MPa)<br />

Tensile properties of single bamboo fibres<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2. Fibre properties<br />

5 10 25 40<br />

Gauge length (mm)<br />

Tensile strength Young´s modulus<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Young´s modulus (GPa)


Comparison with other studies (bamboo fibres)<br />

Strength vs Modulus from some studies on bamboo technical fibres<br />

Grip<br />

Tensile test<br />

<strong>Bamboo</strong><br />

fibre


<strong>Bamboo</strong> fibre extraction process<br />

Fibre extraction<br />

• In line process (continuous)<br />

• No seasonal resource (“all<br />

year harvesting”)<br />

• High fibre extraction yield<br />

Competitive<br />

Price<br />

Target value


Ligth RTM<br />

Advantages:<br />

•Accurate determination of Vf<br />

• Control of the thickness<br />

• Two flat surfaces<br />

•Easy positioning (stacking) of the fibres<br />

Test and samples:<br />

• ASTM 3039 (tensile test)<br />

• Dimensions: Length: 26 cm, width: 2.5 cm, thickness: 1.8 mm<br />

• Vf: ~45%<br />

• 6 samples / pattern


170°C<br />

150°C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!