22.02.2013 Views

“Cost Reduction Strategies in Palm Oil Milling Process ... - Fedepalma

“Cost Reduction Strategies in Palm Oil Milling Process ... - Fedepalma

“Cost Reduction Strategies in Palm Oil Milling Process ... - Fedepalma

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>“Cost</strong> <strong>Reduction</strong> <strong>Strategies</strong> <strong>in</strong><br />

<strong>Palm</strong> <strong>Oil</strong> Mill<strong>in</strong>g <strong>Process</strong> &<br />

By: Sia Thiam Teck P.E., MBA<br />

Gen.Mgr (Mills & Projects)<br />

Southern Acids Group<br />

Malaysia<br />

Ma<strong>in</strong>tenance ”


Southern Acids Bhd (SAB) Group, Malaysia<br />

• Founded 1957 - small rubber estate<br />

• Now a fully-<strong>in</strong>tegrated company with:<br />

- OP plantations & mills <strong>in</strong> Malaysia & Indonesia<br />

- <strong>Palm</strong> <strong>Oil</strong> Ref<strong>in</strong>ery (1972)<br />

- Oleochemical Plant (1980)<br />

- Bulk Term<strong>in</strong>al handl<strong>in</strong>g PKE<br />

• Overseas markets <strong>in</strong> USA, Europe, Ch<strong>in</strong>a,<br />

Japan, Korea, Taiwan and Australia.


Outl<strong>in</strong>e of my Presentation<br />

1. Pros & cons of certa<strong>in</strong> Mill Mach<strong>in</strong>ery from<br />

po<strong>in</strong>t of view of an Operations Man<br />

2. Suggested improvements to mill<strong>in</strong>g process<br />

4. Discussion & Conclusion


mills.
Wear
and
tear
of
cages
is
also
<br />

significantly
reduced.
<br />

Grow<strong>in</strong>g
popularity
of
FFB
<br />

A. FFB Load<strong>in</strong>g Ramp/Marshall<strong>in</strong>g Yard<br />

transport
conveyors
‐
fruit
spillage
<br />

A1. Cages >10 t & Cage Indexers<br />

is
significantly
reduced.
<br />

A2. Cage wear & tear significantly reduced<br />

A3. Safety – no more wirerope accidents<br />

A4. FFB Transfer/Load<strong>in</strong>g conveyors:<br />

• Labour sav<strong>in</strong>gs, m<strong>in</strong>imal fruit spillage<br />

• “Ideal” cha<strong>in</strong> conveyor length?


A Well-designed FFB Conveyor System <strong>in</strong> Malaysia


allow<strong>in</strong>g
the
use
of
a
smaller‐pitch
<br />

cha<strong>in</strong>.
<br />

The
work<strong>in</strong>g
load
sets
a
lower
limit
<br />

on
pitch,
and
the
speed
sets
an
<br />

A5. Conveyor cha<strong>in</strong> sprockets – guidel<strong>in</strong>es<br />

upper
limit
(I
personally
would
<br />

• As big as possible given the application<br />

keep
conveyor
cha<strong>in</strong>
speeds
below
<br />

• Cha<strong>in</strong> pitch vs. work<strong>in</strong>g load<br />

• Cha<strong>in</strong> pitch vs. cha<strong>in</strong> speed<br />

1
m/s)
<br />

• Recommended cha<strong>in</strong> for Mills < 1 m/s<br />

• Dummy driven sprockets<br />

The
smaller
the
pitch,
the
less
the
<br />

noise,
wear
and
mechanical
losses.



Which conveyor will run smoother?


Use
of
dummy
driven
sprockets
<br />

especially
where
long
runs
of
cha<strong>in</strong>
<br />

conveyors
cannot
be
avoided,
is
<br />

known
to
prolong
cha<strong>in</strong>
life.
<br />

Dummy sprocket at “work”<br />

Dummy sprocket at rest


An example of splitt<strong>in</strong>g a long conveyor<br />

<strong>in</strong>to short manageable sections


use,
though
tradiIonal
Horizontal
<br />

Sterilizers
(HS)
are
sIll
the
most
<br />

popular.
Many
millers
are
sIll
wary
<br />

of
the
claims
of
higher
OER
and
<br />

B. Sterilization<br />

lower
runn<strong>in</strong>g
cost
of
the
CVS.
<br />

B1. Increas<strong>in</strong>g use of Cont<strong>in</strong>uous & Vertical Sterilizers (CVS)<br />

B2. Claims of higher OER & lower runn<strong>in</strong>g cost of CVS<br />

B3. Tilt<strong>in</strong>g Sterilizer (TS) – best of both worlds?


A modified Vertical Sterilizer <strong>in</strong> Malaysia


advantages
of
both
CVS
and
HS
<br />

systems,
the
TilIng
Sterilizer
(TS)
is
<strong>in</strong>
<br />

my
op<strong>in</strong>ion,
the
most
user
friendly
as
<br />

the
design
lends
itself
to
ease
of
steam
<br />

penetraIon
and
opImal
uIlizaIon
of
<br />

space
conta<strong>in</strong>ed
with<strong>in</strong>
the
vessel.
<br />

Tilt<strong>in</strong>g Steriliser <strong>in</strong> Horizontal Position


Tilt<strong>in</strong>g Sterilizer <strong>in</strong><br />

Incl<strong>in</strong>ed Position


<strong>in</strong>
press
fibre.


<br />

For
ease
of
ma<strong>in</strong>tenance
of
the
<br />

Press,
the
Digester
should
be
offset
<br />

or
posiIoned
away
from
the
<br />

C. Press<strong>in</strong>g<br />

centre‐l<strong>in</strong>e
of
the
Press.
<br />

C1. Press capacity: P15 or P20 or P25?<br />

Re‐<strong>in</strong>troducIon
of
heat
<strong>in</strong>sulaIon
<br />

C2. Press ma<strong>in</strong>tenance - position<strong>in</strong>g of Digester vs. Press<br />

layer
Crude
<strong>Oil</strong>
Tank
and
associated
<br />

C3. Re-<strong>in</strong>troduce heat <strong>in</strong>sulation at Crude <strong>Oil</strong> Tank<br />

pip<strong>in</strong>g
to
m<strong>in</strong>imize
downstream
re‐<br />

C4. Re-<strong>in</strong>troduce Rotor pump for crude oil transfer?<br />

heaIng
which
can
lead
to
oil
<br />

emulsificaIon.



Nozzle
Bowl
Centrifuge
–
some
mills
<br />

claim
that
certa<strong>in</strong>
high
capacity

<br />

centrifuge
designs
cannot
handle
<br />

sludge
with
oil
content
>
12%.
<br />

D. Clarification<br />

Gravity
flow
of
oil/sludge
as
far
as
<br />

possible
–
higher
risk
of
oil
<br />

D1. Siz<strong>in</strong>g up Vertical Clarifier Tank – bypass <strong>Oil</strong> Purifier<br />

emulsificaIon
when
there
is
excessive
<br />

D2. Drawback of 12 nozzle 8 tph Sludge Centrifuge<br />

- cannot handle sludge with oil content > 12%<br />

pump<strong>in</strong>g
especially
with
centrifugal
<br />

pumps.
<br />

D3. Gravity flow of oil/sludge as far as possible<br />

– reduced risk of oil emulsification


Claybath
or
Hydrocyclone
due
to
lower
<br />

wear‐and‐tear
rate
(no
pump
<br />

<strong>in</strong>volved!)
<br />

Whole
<strong>in</strong>dustry
as
a
whole
should
<br />

E. Kernel Recovery Station<br />

work
towards
lower<strong>in</strong>g
markeIng
<br />

specificaIon
of
Dirt
<strong>in</strong>
Kernel
to
<br />

E1. Re<strong>in</strong>troduce Nut Dry<strong>in</strong>g/Cool<strong>in</strong>g<br />

– higher Nut Crack<strong>in</strong>g Efficiency & Kernel Ext Rate<br />

facilitate
the
entry
of
its
downstream
<br />

E2. Use of Paddlewheel-type Claybath Separator<br />

- lower wear-and-tear (no pump!)<br />

byproduct
PKE
<strong>in</strong>to
a
potenIally
new
<br />

big
market
–
poultry
feed.
<br />

E3. Use of Shaftless Nut Polish<strong>in</strong>g Drum<br />

- lower <strong>in</strong>cidence of downtime due to shaft breakage<br />

E4. Lower<strong>in</strong>g quality specification of Dirt <strong>in</strong> Kernel<br />

- a potentially new big market: poultry feed.


Cu>ers
followed
by
Presses
to
prepare
<br />

and
condiIon
the
EFB
for
fuel<strong>in</strong>g
the
<br />

boiler
<br />

Upgrade
to
boilers
with
taller
furnaces
<br />

and
which
are
also
equipped
with
<br />

F. Power Station<br />

mov<strong>in</strong>g
grate
to
allow
for
25%
mix<strong>in</strong>g
<br />

F1. Use of EFB Shredders/Cutters followed by Press<strong>in</strong>g<br />

– supplementary fuel for boiler<br />

of
resulIng
EFB
fibre
with
<br />

F2. Upgrade of boilers (taller furnaces + mov<strong>in</strong>g grate)<br />

- 25% mix<strong>in</strong>g <strong>in</strong>to conventional boiler fuel<br />

convenIonal
process
fibre,
as
boiler
<br />

fuel.
<br />

F3. Boiler Ma<strong>in</strong>tenance<br />

- Automatic Blowdown Systems<br />

- Quarterly/Half-yearly waterside <strong>in</strong>spection


Indonesia,
is
probably
not
be<strong>in</strong>g
<br />

treated
with
respect
by
many
mill
<br />

eng<strong>in</strong>eers.
The
failure
to
provide
<br />

adequate
space
for
sludge
dry<strong>in</strong>g
beds
<br />

or
the
absence
of
con5nuous
de‐<br />

G. Effluent Treatment<br />

sludg<strong>in</strong>g
very
o`en
results
<strong>in</strong>
loss
of
<br />

G1. Cont<strong>in</strong>uous de-sludg<strong>in</strong>g of Anaerobic Ponds<br />

retenIon
Ime
and
digesIon
efficiency,
<br />

G2. Provision of space for Sludge Dry<strong>in</strong>g Beds<br />

lead<strong>in</strong>g
to
a
deterioraIon
<strong>in</strong>
quality
of
<br />

G3. Zero Discharge – utilization for BioCompost<strong>in</strong>g Plant<br />

the
f<strong>in</strong>al
discharge.
<br />

G4. In-situ Desludg<strong>in</strong>g – yet to be conclusively proven?


from
a
poorly
run
greas<strong>in</strong>g
or
<br />

lubricaIon
program.
And
<strong>in</strong>variably,
<br />

the
primary
cause
is
the
<strong>in</strong>adequate
<br />

a>enIon
given
to
this
important
<br />

aspect
of

PrevenIve
/
Scheduled
<br />

H. Conclud<strong>in</strong>g Remarks<br />

Ma<strong>in</strong>tenance.
Is
it
not
Ime
for
us
to
<br />

upli`
the
status
of
the
<strong>Oil</strong>y
Man
?
<br />

H1. Inadequate focus on Lubrication / <strong>Oil</strong>y Man?<br />

H2. High crop season: Mill runs 24 hrs, FFB evacuation<br />

from estate?


<strong>in</strong>volv<strong>in</strong>g
methane
emission
avoidance
<br />

or
reducIon
through
the
uIlizaIon
of
<br />

POME
for
the
Fibre
ComposIng
<br />

process,
with
or
without
carbon
credit.
<br />

Another
opIon
is
captur<strong>in</strong>g
methane/<br />

H. Conclud<strong>in</strong>g Remarks (cont’d)<br />

biogas
for
uIlizaIon
<strong>in</strong>
gas
eng<strong>in</strong>es
to
<br />

produce
green
electricity.
<br />

H3. Is cost everyth<strong>in</strong>g?<br />

- Corporate Social Responsibility (CSR)<br />

Unfortunately,
such
environment‐<br />

- Carbon Footpr<strong>in</strong>t<br />

- reduce/avoid methane emission – Biocompost<strong>in</strong>g Plant<br />

- trap & utilize biogas – electricity generation<br />

friendly
techniques
has
been
rather
<br />

slow
<strong>in</strong>
com<strong>in</strong>g
‐
out
of
the
400+

mills
<br />

<strong>in</strong>
Malaysia,
only
4%
has
started
<br />

captur<strong>in</strong>g
methane
from
the
POME



Settl<strong>in</strong>g Pond of a well-run Effluent Plant <strong>in</strong> Indonesia


MUCHO GRACIAS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!