24.02.2013 Views

IEC Acoustic Standard IEC 61400-11

IEC Acoustic Standard IEC 61400-11

IEC Acoustic Standard IEC 61400-11

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Part I <strong>Acoustic</strong> Testing Stepping Through the<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>11</strong> <strong>Standard</strong> Through Apparent<br />

Sound Power Level<br />

20<strong>11</strong> Small Wind<br />

Turbine Testing<br />

Workshop<br />

Arlinda Huskey<br />

28 July 20<strong>11</strong><br />

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


Relevant Document<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>11</strong> 2002-12 Wind Turbine<br />

Generator Systems – Part <strong>11</strong>: <strong>Acoustic</strong><br />

Noise Measurement Techniques 2.1<br />

Edition<br />

• Sound power levels<br />

• One-third octave levels<br />

• Tonality<br />

Note:<br />

lowercase spl = sound pressure level<br />

uppercase SPL = sound power level<br />

NATIONAL RENEWABLE ENERGY LABORATORY


1 Scope<br />

General description and purpose for the standard<br />

“enable noise emissions of a wind turbine”<br />

“methods appropriate to noise emissions assessment at<br />

locations close to the machine, in order to avoid errors<br />

due to sound propagation, but far enough away to allow<br />

for the finite source size”<br />

“standarisation of measurement procedures will also<br />

facilitate comparisons between different wind turbines<br />

“characterise in a consistent and accurate manner”<br />

“If, in some cases, less comprehensive measurements are<br />

needed, such measurements are made according to the<br />

relevant parts of the standard”<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

3


2 Normative References<br />

References to instrument standards for noise<br />

measurement equipment, defining accuracy<br />

requirements, filters, frequency, etc.<br />

Reference to power performance standard for wind speed<br />

derived from power<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

4


3 Definitions and 4 Symbols and Units<br />

3 Definitions and explanation for more important variables<br />

4 Definitions all variables used in the standard along with<br />

units<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

5


5 Outline of the Method<br />

Overview of the method<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

6


6 Instrumentation<br />

Required acoustic measurements<br />

Sound pressure levels<br />

One-third octave levels<br />

Narrowband spectra<br />

Can be met by different types of instruments<br />

Signal analyzer<br />

Laptop and software<br />

Handheld instruments, sound level meter<br />

Requirements<br />

Must met <strong>IEC</strong> Type 1 accuracy requirements and filters<br />

Frequency range<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

7


6 Instrumentation<br />

Microphone & preamplifier<br />

Size, diameter no larger than 13mm<br />

Measurement board<br />

Circular with diameter of at least 1m<br />

Made with acoustically hard material like plywood with<br />

thickness 12mm or metal with 2.5mm. A larger board is<br />

recommended for soft ground.<br />

Primary microphone windscreen<br />

One half of an open cell foam sphere with diameter of 90mm<br />

Secondary microphone windscreen<br />

Sold but expensive<br />

Example – wire frame hemispherical shape 450mm<br />

diameter covered with 13-25mm layer of open cell foam<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

8


6 Instrumentation<br />

<strong>Acoustic</strong>al calibrator<br />

Meet <strong>IEC</strong> 60942 class 1<br />

Example: 94dB at 1kHz calibrator<br />

Data recording/playback system<br />

Meet <strong>IEC</strong> 60651 for type 1, examples in Annex B<br />

Example: digital analog tape recorders, hard disk<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

9


6 Instrumentation<br />

Anemometers<br />

End to end deviation of ±0.2m/s in range of 4-12m/s<br />

Capable of synchronizing with acoustic data<br />

Power transducer<br />

Meet <strong>IEC</strong> 60688, same as power performance<br />

Wind direction<br />

Accuracy of ±6 o<br />

Camera<br />

Distance measurement<br />

Pressure<br />

Accuracy of ±1kPa<br />

Temperature<br />

Accuracy of ±1 o C<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

10


6 Instrumentation<br />

Traceable Calibration<br />

<strong>Acoustic</strong> calibrator 12 mo<br />

Microphone 24 mo<br />

Integrating sound level meter 24 mo<br />

Spectrum analyzer 36 mo<br />

Data recording/playback system 24 mo<br />

Anemometer 24 mo<br />

Power transducer 24 mo<br />

Exceptions<br />

Recalibrate after repair, damage, or suspect<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

<strong>11</strong>


7 Measurements and Measurement Positions<br />

<strong>Acoustic</strong> measurement positions<br />

One required measurement position but 3 optional<br />

Downwind is the reference position<br />

Data ±15 o relative to the wind direction<br />

Horizontal distance for a horizontal axis turbine<br />

R o = H + D/2<br />

To minimize influence due to the edges of the measurement<br />

board, lay flat on ground and level edges or gaps with soil<br />

Inclination angle should be 25 o to 40 o<br />

Minimize reflections from nearby structures, less than 0.2dB<br />

Adjust the board to meet these requirements<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

12


7 Measurements and Measurement Positions<br />

Wind speed and direction measurement positions<br />

Upwind at a height between 10m and rotor centre<br />

Horizontal distance of 2D-4D from rotor centre<br />

Allowable region for met tower for measured wind speed<br />

During test measurements, anemometer must not be in the<br />

wake of any structure including the turbine<br />

Anemometer and wind vane should not interfere with each<br />

other<br />

Other wordage about nacelle anno, not as important for<br />

small wind turbines<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

13


7 Measurements and Measurement Positions<br />

<strong>Acoustic</strong> measurements<br />

The following information will be determined at integer wind<br />

speeds of 6, 7, 8, 9, and 10m/s<br />

- the apparent sound power levels<br />

- the one-third octave band levels<br />

- the tonality (not required for AWEA)<br />

Optional measurements<br />

- directivity<br />

- infrasound<br />

- low-frequency noise<br />

- impulsivity<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

14


7 Measurements and Measurement Positions<br />

<strong>Acoustic</strong> measurement requirements<br />

Calibration of measurement chain at least before and after<br />

or if microphone is moved<br />

Record data for later analysis<br />

Omit data with interruptions in the background (cars, plane)<br />

Collect turbine and background data under similar conditions<br />

Cover as broad a range of wind speeds<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

15


7 Measurements and Measurement Positions<br />

A-weighted sound pressure level<br />

At least 30 1-minute averaged measurements with wind speed<br />

when the turbine is operating (AWEA mod:10-sec)<br />

At least 3 measurements per wind speed bin. (For statistical<br />

purposes/good practice if using 10-second averages then 10<br />

points per wind speed bin)<br />

At least 30 minutes of background (turbine not operating)<br />

covering the same as turbine measurements<br />

A-weighted one-third octave levels<br />

At least 3 spectra measured over 1-minute for each integer<br />

wind speed and covering centre frequencies of 50Hz-10kHz<br />

(same as above modify for 10-second averages)<br />

Background covers the same requirements<br />

A-weighted narrowband<br />

At least 2 minutes closest to the integer wind speed<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

16


7 Measurements and Measurement Positions<br />

Non-acoustic measurements: wind direction<br />

Method 1: determination of wind speed from the electric<br />

output and the power curve (not covering since not<br />

applicable to all small wind turbines)<br />

Method 2: determination of wind speed with an anemometer<br />

(AWEA mod)<br />

Adjust wind speed to 10m height and reference roughness<br />

length (covered in section 8)<br />

Measurement by anemometer at a height between 10m and<br />

hub height<br />

Wind speed data collected and arithmetically averaged over<br />

the same period as the acoustic measurements<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

17


7 Measurements and Measurement Positions<br />

Non-acoustic measurements: wind direction<br />

Wind direction measurements must be within 15 degrees of<br />

nacelle azimuth position with respect to upwind<br />

Arithmetically averaged over the same period as acoustic<br />

measurements<br />

Non-acoustic measurements: Other<br />

Air temperature and pressure measured and recorded at<br />

least every 2 hours<br />

Optionally turbulence as discussed in Annex C<br />

Rotor speed and pitch angle are recommended<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

18


8 Data Reduction Procedures<br />

Wind speed<br />

Wind speeds measured at height z shall be corrected to a<br />

wind speed at reference conditions by assuming wind<br />

profiles<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

z Oref reference roughness length, 0.05m<br />

z O roughness length<br />

H rotor centre height<br />

z ref reference height, 10m<br />

z anemometer height<br />

Roughness length z O can be calculated or estimated using Table 1<br />

in the standard<br />

19


8 Data Reduction Procedures<br />

Correction for background noise<br />

Background correction is used for sound pressure levels, onethird<br />

octave levels, and tonality<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

L s equivalent continuous sound pressure level of<br />

wind turbine operating alone<br />

L s+n equivalent continuous sound pressure level of<br />

wind turbine plus background noise<br />

L n background equivalent continuous sound<br />

pressure level<br />

If difference between Ls+n and Ln is greater than 6dBA use equation<br />

If between 3-6dBA then use correction of 1.3dBA and marked with<br />

an asterisk “*”. Cannot be used for sound power level calculation.<br />

If difference less than 3dBA, cannot report and report “turbine noise<br />

was less than background”<br />

20


8 Data Reduction Procedures<br />

Apparent sound power levels<br />

Preferred method from the standard is a 4 th order regression.<br />

AWEA mod is to bin data by wind speed into 1m/s bins and<br />

one point on both sides of the integer wind speed<br />

To get integer value, interpolate/extrapolate between bins<br />

This is done for total noise and background, then background<br />

correct integer value<br />

Calculate the apparent sound power levels for each integer<br />

wind speeds<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

L aeq,c,k background corrected A-weighted sound pressure level at<br />

integer wind speed k and under reference conditions<br />

R 1 slant distance from rotor centre to microphone<br />

S O reference area, 1m 2<br />

21


A little breather before we move to looking at data<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Questions?<br />

22


Look at NoiseLab<br />

Setup<br />

Calibration<br />

Recording<br />

Clips<br />

Analysis<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

23


Listen to turbine data<br />

EW50 background<br />

EW50 turbine, normal operation<br />

EW50 interruption<br />

VT10 turbine, normal operation<br />

VT10 turbine, unloaded<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

24


Filtering for Valid Data<br />

– Listen for interrupting noises (cars, other turbines, airplanes)<br />

– Transitions<br />

– Wind direction or yaw direction outside of ±15 degrees from<br />

microphone board<br />

– Plot sound pressure vs. wind speed or power or rotor speed<br />

– Look for outliers, verify if they are “real”<br />

Rotor<br />

Wind<br />

Wind<br />

Turb or<br />

Time Power Speed Temperature Speed Pressure Direction Availability Leq WD ok? Back<br />

13:36:35 -156 0 10 8 80 228 0 41 -10 Back<br />

13:36:45 -156 0 10 6 80 240 0 40 -10 Back<br />

13:36:55 -156 0 10 8 80 226 0 39 -10 Back<br />

13:37:05 -156 0 10 9 80 225 0 40 -10 Back<br />

13:37:15 -156 0 10 8 80 220 0 40 -10 Back<br />

13:37:25 -156 0 10 9 80 221 0 39 -10 Back<br />

13:37:35 -156 0 10 10 80 228 0 41 -10 Back<br />

13:37:45 -156 0 10 10 80 221 0 41 -10 Back<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

25


Outliers?<br />

sound pressure level (dB A)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

0 2 4 6 8 10 12 14<br />

wind speed (m/s)<br />

26


Binning and Averaging<br />

After binning by 10 meter wind speed,<br />

for each bin that has enough data in the<br />

bin<br />

– Arithmetically average wind speed,<br />

most likely will not be at the bin center<br />

but close<br />

– Energy average sound pressure<br />

levels<br />

– For each bin you have an average<br />

wind speed and sound pressure level<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

wind<br />

Aweighted<br />

sound<br />

pressure<br />

count speed level 10 0.1*spl<br />

n spl<br />

1 <strong>11</strong>.9 50.59 <strong>11</strong>4551<br />

2 <strong>11</strong>.6 50.88 122462<br />

3 <strong>11</strong>.3 48.13 65013<br />

4 10.4 46.49 44566<br />

5 10.0 45.95 39355<br />

6 9.1 45.57 36058<br />

7 9.6 45.73 374<strong>11</strong><br />

8 8.3 44.36 27290<br />

82.2 Sum 486705<br />

10.3 Sum/n 60838<br />

log10 4.78<br />

10*log10 47.8


Bin Centers<br />

Bin wind speed averages likely will not<br />

be at the center so interpolate (or<br />

extrapolate at the ends) to get bin<br />

centers<br />

– Extrapolate 6 and 7 m/s bins to get<br />

the bin center at 6 m/s<br />

– Interpolate 6 and 7 m/s bins to get the<br />

bin center at 7 m/s<br />

– Interpolate 8 and 9 m/s bins to get the<br />

bin center at 8 and 9 m/s<br />

– Interpolate 9 and 10 m/s bins to get<br />

the bin center at 10 m/s<br />

Find turbine and background bin center<br />

values<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

WS bin WS avg count spl avg<br />

6 6.02 16 48.0<br />

7 7.28 25 47.8<br />

8 7.95 47 50.4<br />

9 9.10 64 52.5<br />

10 10.20 55 55.7<br />

WS bin slope offset int spl<br />

6 -0.16 49.0 48.0<br />

7 -0.16 49.0 47.8<br />

8 1.83 35.9 50.5<br />

9 1.83 35.9 52.3<br />

10 2.91 26.0 55.1


Background Correction<br />

Calculate the background corrected<br />

sound pressure level<br />

spl<br />

corr<br />

�<br />

10 * log<br />

10<br />

Must have 6 dB separation between<br />

turbine and background noise to report<br />

sound power level<br />

– cannot report 7 m/s sound power level<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�0.1* splturb<br />

� �0.1* splback<br />

� 10 �<br />

��<br />

�10 �<br />

��<br />

WS<br />

bin<br />

Turb<br />

spl<br />

Back<br />

spl<br />

CORR<br />

spl<br />

Diff<br />

6 48.0 41.4 46.9 6.6<br />

7 46.7 42.8 45.4 3.8<br />

8 50.7 44.3 49.6 6.4<br />

9 52.3 45.0 51.4 7.4<br />

10 55.0 46.4 54.4 8.6


Sound Power Level<br />

Calculate the sound power level for each<br />

bin using the sound pressure levels,<br />

slant distance (distance from rotor center<br />

to microphone), and reference area (S o<br />

= 1 m 2 )<br />

SPL<br />

�<br />

SPL = 82.8 dB A<br />

spl corr = 46.9 dB A<br />

slant distance, R = 35.1 m<br />

S o = 1 m 2<br />

spl corr<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�<br />

6<br />

�<br />

10lg<br />

�<br />

�<br />

�<br />

�<br />

2<br />

4�<br />

R<br />

S0<br />

�<br />

�<br />

�<br />

�<br />

WS<br />

bin<br />

CORR<br />

spl<br />

Diff SPL<br />

6 46.9 6.6 82.8<br />

7 45.4 3.8 *<br />

8 49.6 6.4 85.4<br />

9 51.4 7.4 87.3<br />

10 54.4 8.6 90.2


NATIONAL RENEWABLE ENERGY LABORATORY<br />

Questions?<br />

Before we move onto one-third octaves<br />

31


One-Third Octave Levels<br />

Concepts are the same but averaging and correcting on the onethird<br />

octave bands.<br />

– Take three minutes of one-third octave data closest to the integer<br />

wind speed for turbine and background<br />

– Arithmetically average wind speeds and energy average the onethird<br />

octave spectra by band (i.e. 20, 25, 31.5 Hz)<br />

– Extrapolate or interpolate to get integer values<br />

– Background correct by band if there is a 6 dB separation. There is<br />

a standard correction for differences between 3 and 6 dB. Cannot<br />

background correct for differences lower than 3 dB. Note: There<br />

can be negative numbers. There can be bands where the<br />

background levels greater than the turbine levels.<br />

WS bin 20 25 31.5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250<br />

Turb 10.0 16.4 18.6 20.2 23.6 23.4 25.9 28.7 31.2 33.1 35.4 45.4 55.0 39.9 39.5 41.9 41.6 42.2 42.4 42.1<br />

Back 10.1 16.4 18.7 20.2 24.1 22.2 24.3 28.7 30.0 30.9 32.8 36.9 34.8 35.3 34.6 34.6 35.0 34.4 34.7 33.8<br />

Integer Turb 10 16.4 18.7 20.3 23.6 23.4 25.9 28.8 31.3 33.1 35.4 45.4 55.1 40.0 39.6 42.0 41.7 42.2 42.5 42.1<br />

Integer Back 10 16.2 18.4 20.0 24.0 22.2 24.3 28.6 30.0 30.9 32.7 36.7 34.7 35.2 34.5 34.5 34.8 34.3 34.6 33.6<br />

Difference 10 0.2 0.3 0.3 -0.4 1.3 1.6 0.2 1.3 2.2 2.7 8.7 20.4 4.8 5.1 7.5 6.8 7.9 7.9 8.5<br />

Back Corr 10 44.8 55.1 38.7 38.3 41.1 40.7 41.5 41.7 41.5<br />

NATIONAL RENEWABLE ENERGY LABORATORY


One-Third Octave Levels<br />

Sound pressure level [dB(A)]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Frequency [Hz]<br />

5 m/s<br />

6 m/s<br />

7 m/s<br />

8 m/s<br />

9 m/s<br />

10 m/s


That was quick and easier than I thought…<br />

Right?<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Questions?<br />

Before we move onto tonality<br />

34


Tonality<br />

To begin<br />

– Two minutes of FFT spectra data closest to the integer wind speed<br />

for turbine and background<br />

– Turbine narrowband analysis use 10-second spectra<br />

– Background spectra are energy averaged into one spectrum for<br />

use later in the turbine analysis<br />

– For each turbine 10-second spectrum identify possible tones. For<br />

each possible tone:<br />

• Determine critical bandwidth<br />

• Classify spectral lines in the critical band<br />

• Determine tone level<br />

• Determine masking level and correct for background<br />

• Determine tonality<br />

• Determine if the tone is reportable or “audible”<br />

NATIONAL RENEWABLE ENERGY LABORATORY


What Is Considered a Possible Tone?<br />

sound pressure level (dB A)<br />

-10<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

frequency (Hz)<br />

Technically – it is a peak with adjacent lines with lower amplitudes<br />

Analyze possible tones


Determine Critical Bandwidth<br />

Calculate the critical bandwidth<br />

Critical<br />

Bandwidth<br />

For this possible tone at 249 Hz (f c = 249), the critical<br />

bandwidth is 104.43 Hz<br />

Center critical bandwidth around the peak. For this<br />

example 196.8 to 301.2 Hz.<br />

This will not symmetrically fit due to the resolution. How<br />

to specifically deal with this is not covered in the<br />

standard.<br />

For our purposes, the critical bandwidth is 102 Hz<br />

covering the lines from 198 to 300 Hz<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�<br />

� � f �<br />

c<br />

� 25 � 75�1�<br />

1,<br />

4�<br />

�<br />

� �1000�<br />

� � �<br />

2<br />

�<br />

�<br />

�<br />

�<br />

�<br />

0,<br />

69<br />

Freq (Hz) spl (dB A)<br />

198 25.30<br />

201 25.50<br />

204 26.02<br />

207 29.15<br />

210 32.15<br />

213 37.62<br />

216 39.88<br />

219 39.75<br />

222 39.86<br />

225 41.20<br />

228 40.31<br />

231 42.48<br />

234 43.87<br />

237 42.31<br />

240 43.43<br />

243 43.21<br />

246 43.50<br />

249 45.44<br />

252 41.22<br />

255 35.09<br />

258 30.45<br />

261 29.38<br />

264 30.78<br />

267 27.78<br />

270 26.37<br />

273 26.79<br />

276 27.61<br />

279 28.68<br />

282 27.74<br />

285 27.67<br />

288 27.38<br />

291 27.10<br />

294 27.68<br />

297 27.91<br />

300 27.46


Calculate L 70% for Classification<br />

Within each critical band every spectral line is classified<br />

as tone, masking, or neither<br />

Calculate L 70% level<br />

The energy average of the 70% of spectral lines in the<br />

critical band with the lowest spl levels<br />

L 70% = 33.13 dB A<br />

Calculate the criterion level, L 70% + 6 dB A = 39.13 dB A<br />

sound pressure level (dB A)<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

198<br />

201<br />

204<br />

207<br />

210<br />

213<br />

216<br />

219<br />

222<br />

225<br />

228<br />

231<br />

234<br />

237<br />

240<br />

243<br />

246<br />

249<br />

252<br />

255<br />

258<br />

261<br />

264<br />

267<br />

270<br />

273<br />

276<br />

279<br />

282<br />

285<br />

288<br />

291<br />

294<br />

297<br />

300<br />

frequency (Hz)<br />

Freq (Hz) spl (dB A) 10^0.1*spl<br />

198 25.30 338.67<br />

201 25.50 354.59<br />

204 26.02 399.88<br />

270 26.37 433.42<br />

273 26.79 477.90<br />

291 27.10 512.81<br />

288 27.38 546.63<br />

300 27.46 557.78<br />

276 27.61 576.47<br />

285 27.67 584.37<br />

294 27.68 586.63<br />

282 27.74 594.64<br />

267 27.78 599.23<br />

297 27.91 617.72<br />

279 28.68 737.67<br />

207 29.15 822.10<br />

261 29.38 866.01<br />

258 30.45 <strong>11</strong>08.94<br />

264 30.78 <strong>11</strong>97.30<br />

210 32.15 1642.39<br />

255 35.09 3231.56<br />

213 37.62 5781.61<br />

219 39.75 9447.28<br />

222 39.86 9678.80<br />

216 39.88 9733.16<br />

228 40.31<br />

225 41.20<br />

252 41.22<br />

237 42.31<br />

231 42.48<br />

243 43.21<br />

240 43.43<br />

246 43.50<br />

234 43.87<br />

249 45.44<br />

sum/n 2057.10<br />

10*log10 33.13


Classify ‘Masking’<br />

A line is classified as ‘masking’ if its level is less<br />

than the criterion level L 70% + 6 dB.<br />

L pn,avg is then the energy average of all ‘masking’<br />

lines.<br />

sound pressure level (dB A)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

L pn,avg = 30.<strong>11</strong> dB A<br />

198<br />

201<br />

204<br />

207<br />

210<br />

213<br />

216<br />

219<br />

222<br />

225<br />

228<br />

231<br />

234<br />

237<br />

240<br />

243<br />

246<br />

249<br />

252<br />

255<br />

258<br />

261<br />

264<br />

267<br />

270<br />

273<br />

276<br />

279<br />

282<br />

285<br />

288<br />

291<br />

294<br />

297<br />

300<br />

frequency (Hz)<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

masking<br />

L pn,avg<br />

Freq (Hz) spl (dB A) Classification 10^0.1*spl<br />

198 25.30 masking 338.7<br />

201 25.50 masking 354.6<br />

204 26.02 masking 399.9<br />

207 29.15 masking 822.1<br />

210 32.15 masking 1642.4<br />

213 37.62 masking 5781.6<br />

216 39.88 0<br />

219 39.75 0<br />

222 39.86 0<br />

225 41.20 0<br />

228 40.31 0<br />

231 42.48 0<br />

234 43.87 0<br />

237 42.31 0<br />

240 43.43 0<br />

243 43.21 0<br />

246 43.50 0<br />

249 45.44 0<br />

252 41.22 0<br />

255 35.09 masking 3231.56<br />

258 30.45 masking <strong>11</strong>08.94<br />

261 29.38 masking 866.01<br />

264 30.78 masking <strong>11</strong>97.30<br />

267 27.78 masking 599.23<br />

270 26.37 masking 433.42<br />

273 26.79 masking 477.90<br />

276 27.61 masking 576.47<br />

279 28.68 masking 737.67<br />

282 27.74 masking 594.64<br />

285 27.67 masking 584.37<br />

288 27.38 masking 546.63<br />

291 27.10 masking 512.81<br />

294 27.68 masking 586.63<br />

297 27.91 masking 617.72<br />

300 27.46 masking 557.78<br />

sum/n 1025.83<br />

10*log10 30.<strong>11</strong>


Classify ‘Tone’<br />

A line is classified as ‘tone’ if its level exceeds L pn,avg + 6 dB A = 36.<strong>11</strong> dB A<br />

Where there are several lines classified as ‘tone’, the line having the greatest<br />

level is identified. Adjacent lines are then only classified as ‘tone’ if their levels<br />

are within 10 dB A of this level.<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

sound pressure level (dB A)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

198<br />

201<br />

204<br />

207<br />

210<br />

213<br />

216<br />

219<br />

222<br />

225<br />

228<br />

231<br />

234<br />

237<br />

240<br />

243<br />

246<br />

249<br />

252<br />

255<br />

258<br />

261<br />

264<br />

267<br />

270<br />

273<br />

276<br />

279<br />

282<br />

285<br />

288<br />

291<br />

294<br />

297<br />

300<br />

frequency (Hz)<br />

masking<br />

tone<br />

L pn,avg + 6


Determination of Tone Level<br />

The sound pressure level of the tone L pt, is determined<br />

by energy summing all spectral lines classified as ‘tone’<br />

spl<br />

sum<br />

� 10 * log<br />

If there are more than 2 lines then a correction must be<br />

applied for using the Hanning window. Divide the<br />

energy sum by 1.5.<br />

L pt = 51.88 dB A<br />

n<br />

10 �<br />

i�1<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

10<br />

0.<br />

1*<br />

spl<br />

i<br />

Freq (Hz) spl (dB A) Classification 10^0.1*spl<br />

198 25.30 0.0<br />

201 25.50 0.0<br />

204 26.02 0.0<br />

207 29.15 0.0<br />

210 32.15 0.0<br />

213 37.62 tone 5781.6<br />

216 39.88 tone 9733.2<br />

219 39.75 tone 9447.3<br />

222 39.86 tone 9678.8<br />

225 41.20 tone 13176.0<br />

228 40.31 tone 10750.3<br />

231 42.48 tone 17696.5<br />

234 43.87 tone 24360.8<br />

237 42.31 tone 17038.8<br />

240 43.43 tone 22031.6<br />

243 43.21 tone 20962.0<br />

246 43.50 tone 22364.2<br />

249 45.44 tone 34958.8<br />

252 41.22 tone 13247.8<br />

255 35.09 0.0<br />

258 30.45 0.0<br />

261 29.38 0.0<br />

264 30.78 0.0<br />

267 27.78 0.0<br />

270 26.37 0.0<br />

273 26.79 0.0<br />

276 27.61 0.0<br />

279 28.68 0.0<br />

282 27.74 0.0<br />

285 27.67 0.0<br />

288 27.38 0.0<br />

291 27.10 0.0<br />

294 27.68 0.0<br />

297 27.91 0.0<br />

300 27.46 0.0<br />

sum/1.5 154151.80<br />

Lpt 51.88


Correction for Background<br />

Remember the 2-minute background spectrum?<br />

Look at the same critical band (198 to 300 Hz) and<br />

ensure the tone does not originate from background<br />

Calculate the background noise level by taking the<br />

energy sum of the same critical band if the difference is<br />

more than 6 dB A. Otherwise, “influenced by<br />

background”<br />

Correct masking level L pn,ave with background level<br />

spl<br />

corr<br />

Background level = 23.03 dB A<br />

L pn,ave = 30.<strong>11</strong><br />

�<br />

10 * log<br />

10<br />

L pn, corr = 23.03 dB A<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�0.1* splturb<br />

� �0.1* splback<br />

� 10 �<br />

��<br />

�10 �<br />

��<br />

Freq (Hz) spl (dB A) 10^0.1*spl<br />

198 6.651 4.62<br />

201 7.221 5.27<br />

204 7.710 5.90<br />

207 8.941 7.84<br />

210 9.224 8.36<br />

213 7.170 5.21<br />

216 6.567 4.54<br />

219 6.220 4.19<br />

222 6.058 4.03<br />

225 6.0<strong>11</strong> 3.99<br />

228 6.661 4.64<br />

231 7.248 5.31<br />

234 7.962 6.26<br />

237 8.537 7.14<br />

240 8.857 7.69<br />

243 9.650 9.23<br />

246 9.775 9.50<br />

249 7.935 6.22<br />

252 7.621 5.78<br />

255 8.037 6.36<br />

258 8.231 6.65<br />

261 8.132 6.50<br />

264 7.866 6.12<br />

267 6.957 4.96<br />

270 6.399 4.36<br />

273 6.146 4.12<br />

276 5.996 3.98<br />

279 6.050 4.03<br />

282 5.735 3.75<br />

285 6.019 4.00<br />

288 6.291 4.26<br />

291 7.187 5.23<br />

294 7.742 5.95<br />

297 8.222 6.64<br />

300 9.165 8.25<br />

sum 200.86<br />

10*log10 23.03


Determination of Masking Level<br />

Calculate the masking level, L pn<br />

� critical bandwidth �<br />

Lpn � Lpn,<br />

corr �10<br />

* log10<br />

�<br />

�<br />

�effective<br />

noisebandwidth<br />

�<br />

Where for our case<br />

critical bandwidth = 300 – 198 = 102 Hz<br />

effective noise bandwidth = 1.5 * resolution = 4.5 Hz<br />

Masking level<br />

L pn = 36.58 dB A<br />

NATIONAL RENEWABLE ENERGY LABORATORY


Determination of Tonality<br />

The difference between the masking level and tone level is the tonality ∆L tn<br />

For the one critical band analyzed<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�L<br />

� L �L<br />

tn<br />

pn<br />

∆L tn = 51.88 - 36.58 = 15.30<br />

pt


Determination of Tonality<br />

The difference between the masking level and tone level is the tonality ∆L tn<br />

For the one critical band analyzed<br />

∆L tn = 15.30<br />

There will be 12 spectra to analyze the same peak and get a ∆L tn value for<br />

each spectrum<br />

For spectra where there are no tones use the following value<br />

The 12 resulting ∆L tn are energy averaged to one ∆L k<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

�L<br />

� L �L<br />

tn<br />

pt<br />

� critical bandwidth �<br />

�L<br />

tn<br />

� �10<br />

* log10<br />

�<br />

�<br />

�effective<br />

noisebandwidth<br />

�<br />

pn


Determination of Audibility<br />

For each value ∆L k, a frequency dependent correction must be applied to<br />

compensate for the response of the human ear to tones of different frequencies<br />

The tonal audibility, ∆L a,k<br />

Where<br />

For tonal audibilities meeting the condition<br />

The values of ∆L a,k are reported<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

L<br />

ΔL<br />

� �L<br />

�L<br />

a<br />

�<br />

a,k<br />

k<br />

a<br />

� � f �<br />

�2<br />

� lg�1�<br />

� �<br />

��<br />

� 502�<br />

Δ<br />

L a,k<br />

�<br />

�3.<br />

0<br />

2.<br />

5<br />

�<br />

�<br />

��


Tonality can be complicated and there is a<br />

flowchart in the standard to help<br />

NATIONAL RENEWABLE ENERGY LABORATORY<br />

Questions?<br />

We are done!<br />

Do you think you could do a noise analysis now?<br />

For questions beyond the workshop:<br />

Arlinda Huskey<br />

arlinda.huskey@nrel.gov<br />

303-384-6987<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!