25.02.2013 Views

Monitoring Data Assessment report for the 3 original - M3-life: Project

Monitoring Data Assessment report for the 3 original - M3-life: Project

Monitoring Data Assessment report for the 3 original - M3-life: Project

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Modelling <strong>Monitoring</strong> Management<br />

<strong>Monitoring</strong> data assessment <strong>report</strong><br />

Application of integrative modelling and monitoring<br />

approaches <strong>for</strong> river basin management evaluation<br />

www.<strong>life</strong>-m3.eu<br />

The <strong>M3</strong> project is financed by LIFE+ Programme of <strong>the</strong> European Commission. The <strong>report</strong> does not necessarily express <strong>the</strong> views of <strong>the</strong> European Commission.


Contents<br />

1. Executive Summary ........................................................................................................... 2<br />

2. Introduction ........................................................................................................................ 4<br />

3. <strong>Monitoring</strong> design evaluation ............................................................................................. 7<br />

3.1. Criteria <strong>for</strong> an efficient monitoring ............................................................................ 8<br />

3.2. Load calculation methods ......................................................................................... 11<br />

3.3. Analysing grab sample data ..................................................................................... 12<br />

3.3.1. Cumulative distribution of discharge ................................................................. 12<br />

3.3.2. Rating curves and confidence intervals .............................................................. 13<br />

3.3.3. The influence of sampling frequency ................................................................. 16<br />

3.3.4. Conclusions and recommendations .................................................................... 17<br />

4. Regional survey: Delfland ................................................................................................ 18<br />

4.1. Pressures in Delfland ................................................................................................ 19<br />

4.1.1. Nitrogen and Phosphorus ................................................................................... 20<br />

4.1.2. Copper and Zinc ................................................................................................. 20<br />

4.1.3. Pesticides and glasshouse emissions .................................................................. 21<br />

4.2. Delfland Programs of Measures. .............................................................................. 26<br />

4.3. <strong>Monitoring</strong> in Delfland ............................................................................................. 27<br />

4.3.1. Surface water quality data .................................................................................. 27<br />

4.3.2. Sediment quality data ......................................................................................... 32<br />

4.3.3. Biological monitoring ........................................................................................ 40<br />

4.4. Delfland summary .................................................................................................... 42<br />

5. Regional survey: Erft ....................................................................................................... 47<br />

5.1. Pressures in <strong>the</strong> Erft Catchment ............................................................................... 48<br />

5.2. <strong>Monitoring</strong> in <strong>the</strong> Erft Catchment ............................................................................ 51<br />

5.2.1. Surface water quality data .................................................................................. 51<br />

5.2.2. Sediment quality data ......................................................................................... 60<br />

5.2.1. Biological survey data ........................................................................................ 65<br />

5.3. Erft summary ............................................................................................................ 69<br />

6. Regional survey: Luxembourg ......................................................................................... 73<br />

6.1. Pressures in Luxembourg ......................................................................................... 73<br />

6.2. Programs of measures .............................................................................................. 74<br />

6.3. <strong>Monitoring</strong> in Luxembourg ...................................................................................... 74<br />

6.3.1. Surface water quality data .................................................................................. 74<br />

6.3.2. Suspended matter quality data............................................................................ 83<br />

6.3.3. Biological survey data ........................................................................................ 85<br />

6.4. Luxembourg summary ............................................................................................. 87<br />

7. Comparison of Micro-pollutants results by Region ......................................................... 91<br />

8. References ........................................................................................................................ 94<br />

9. Appendices ....................................................................................................................... 96<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 1/109


1. EXECUTIVE SUMMARY<br />

Common deficits to monitoring concepts in <strong>the</strong> 3 evaluated regions<br />

Although EU-guidelines have been published to steer member states through different<br />

steps of WFD implementation, <strong>the</strong> documents remained vague on most quantitative<br />

aspects of evaluating pressures and adapting monitoring networks to provide a sound<br />

database <strong>for</strong> Program of Measures (POM) definition. A major reason <strong>for</strong> <strong>the</strong> lack of<br />

clarity in linking different steps are <strong>the</strong> large knowledge gaps in <strong>the</strong> relationship between<br />

morphological, ecological and chemical drivers leading to <strong>the</strong> endpoint metrics of good<br />

ecological status (including <strong>the</strong> appropriateness of those metrics). Regulators and river<br />

basin managers have traditionally been populated with distinct services of chemists and<br />

biologists with little common understanding of a holistic approach to address <strong>the</strong> WFD<br />

challenge to achieve good ecological status. Cause-effect relationships are still largely<br />

obscure and this translates in inconsequent monitoring that is ra<strong>the</strong>r motivated by<br />

minimal documentation compliance than a real result oriented search <strong>for</strong> causes of<br />

impairment. Left to <strong>the</strong>ir own devices, most regional stakeholders stick to a classical<br />

spot-analysis and threshold exceedance philosophy ra<strong>the</strong>r than an ecosystem approach as<br />

intended by <strong>the</strong> <strong>original</strong> idea of good ecological status. It has to be pointed out here that<br />

EU guidelines carry a good deal of contradictions in that respect. As a consequence it is<br />

to be expected that vaguely motivated POMs are in acute danger of failure, jeopardizing<br />

<strong>the</strong> goals of <strong>the</strong> WFD altoge<strong>the</strong>r.<br />

Based on this general background we have identified <strong>the</strong> following deficits in <strong>the</strong> 3<br />

evaluated regions.<br />

1. Link between pressures and monitoring concepts<br />

� Pressures that have been identified in <strong>the</strong> regions are censored in <strong>the</strong> sense that<br />

only obvious and commonly accepted pressures have been accounted <strong>for</strong><br />

(morphology, connectivity of streams, eutrophication)<br />

� Diffuse chemical pollution has in general not been addressed unless very obvious<br />

(e.g. horticulture in Delfland)<br />

� Pressures have not really been quantified in terms of loads or a sound immission<br />

characterization (exposure of biota)<br />

� Ranking of pressures seems to have relied on expert knowledge or “gut feeling”<br />

� <strong>Monitoring</strong> networks seem to follow ra<strong>the</strong>r historic river network locations than<br />

operational criteria of pressure localization.<br />

� <strong>Monitoring</strong> has generally not been used to validate initial pressure identification.<br />

� <strong>Monitoring</strong> design has not been intended to measure <strong>the</strong> success of POM<br />

� <strong>Monitoring</strong> eutrophication is still addressing nutrient threshold concepts instead<br />

of ecosystem properties.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 2/109


2. Pressures related to chemical pollution<br />

� There is an apparent lack in identifying substances related to diffuse chemical<br />

pressures<br />

� Analyte lists are not adapted to local immission situation, most often <strong>the</strong>y cover<br />

Priority and Dangerous substance lists (regardless of local relevance) completed by<br />

historically covered substances (mostly solvents and chlorinated products)<br />

� Some regions are making an ef<strong>for</strong>t in including locally applied pesticides<br />

� Micro-pollutants originating from urban pressures (surface runoff, WWTPs) are<br />

insufficiently addressed.<br />

3. Dynamics of pressure indicator occurrence<br />

� Regular grab sampling routines are <strong>the</strong> rule regardless of <strong>the</strong> targeted pollutant’s<br />

dynamics.<br />

� There’s a tendency to sample with great spatial detail, very low frequency and little<br />

apparent relation to <strong>the</strong> pollutants’ probable occurrence.<br />

� Fixed continuous monitoring stations are no real alternative: <strong>the</strong>y are maintenance<br />

intensive and cover an incomplete picture of pollution (particle-bound pollutants,<br />

micro-pollutants).<br />

4. Suitability <strong>for</strong> load calculation and model validation<br />

� Load calculation is most often impeded by <strong>the</strong> absence of close-by discharge gauges<br />

� Non-adapted sampling schemes can lead to large biases in load calculation, especially<br />

<strong>for</strong> particle-bound pollutants and substances which are strongly driven by recent<br />

application (pesticides).<br />

� Sampling frequency and analyte coverage are too low to validate emission models<br />

� Grab or spot sampling is not suited to validate water quality models in <strong>the</strong>ir<br />

description of ecosystem processes.<br />

� In absence of longitudinal profiles or tracer tests, transport and attenuation of<br />

pollutants in rivers cannot be truly validated in water quality models<br />

5. Link between chemical and ecological monitoring<br />

� <strong>Monitoring</strong> locations <strong>for</strong> chemicals and biota do not sufficiently coincide.<br />

� Infrequent grab samplings and <strong>the</strong> absence of ecological metrics (primary production,<br />

respiration) don’t allow <strong>for</strong> an appropriate exposure characterization.<br />

� In <strong>the</strong> absence of more in-depth pressure analysis locally adapted xenobiotic exposure<br />

is not covered.<br />

� The lack of representative and consistent chemical monitoring precludes any fruitful<br />

statistical analysis of chemical impairment causes.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 3/109


2. INTRODUCTION<br />

This first M 3 <strong>report</strong> examines existing monitoring programmes in <strong>the</strong> three study partner<br />

regions and assesses <strong>the</strong> value of <strong>the</strong>ir existing data <strong>for</strong> <strong>the</strong> purposes of meeting <strong>the</strong> objectives<br />

of <strong>the</strong> Water Framework Directive (WFD) and <strong>the</strong> M 3 project. In general, <strong>the</strong> WFD requires<br />

that EU member states meet <strong>the</strong> requirement of achieving good ecological status of <strong>the</strong>ir<br />

waterbodies by 2015, and that <strong>the</strong>y establish Programmes of Measures (PoMs) which are<br />

management interventions designed to reduce <strong>the</strong> impact of human activity and hence lead to<br />

an improvement in <strong>the</strong> condition of <strong>the</strong>ir water bodies. The WFD Common Implementation<br />

Strategy provides procedural guidance documents to assist water managers and practitioners<br />

with meeting <strong>the</strong> WFD objectives but leaves many practical questions on “who to do it" as<br />

well as <strong>the</strong> scientific background open.<br />

The M 3 project aims to provide demonstration monitoring programmes, modelling case<br />

studies and scenario testing to assist water managers and practitioners in applying <strong>the</strong> WFD<br />

and helping towards achieving <strong>the</strong> difficult goal set <strong>for</strong>th by Directive. The economic costs of<br />

meeting <strong>the</strong> objectives of <strong>the</strong> WFD are likely to be very high and may even be unattainable in<br />

<strong>the</strong> time-frame available. In order to ensure management actions are most effective it is of key<br />

importance that water managers have a structured approach to gaining an understanding of<br />

what <strong>the</strong> key pressures and impacts on <strong>the</strong>ir water bodies are and that <strong>the</strong>ir monitoring of<br />

emissions (inputs) and immission situations (exposure conditions within <strong>the</strong> water body)<br />

situations adequately characterises <strong>the</strong>se. Beyond this, managers need a strategy to assess <strong>the</strong><br />

effectiveness of <strong>the</strong>ir programmes of measures, and <strong>the</strong> PoMs <strong>the</strong>mselves need to be realistic<br />

and achievable and have a time-frame <strong>for</strong> implementation against which to test any<br />

improvement in condition. The monitoring needs to be set within an adaptive management<br />

framework so that <strong>the</strong> programme receives on-going re-evaluation to ensure that <strong>the</strong><br />

monitoring and PoMs are meeting <strong>the</strong> needs <strong>for</strong> <strong>the</strong> water body ecosystem.<br />

In assessing existing monitoring in relation to new objectives, such as <strong>the</strong> WFD, it is apparent<br />

that existing monitoring, in many cases, will not be sufficient to enable an adequate<br />

understanding of <strong>the</strong> key pressures and impacts on a water body and, consequently, it will not<br />

be possible to devise appropriate PoMs. Figure 2.1demonstrates typical monitoring pathways<br />

associated with general monitoring objectives. In general, existing monitoring may follow<br />

Paths 3 or 4 (Figure 2.1), <strong>for</strong> ambient or routine monitoring and “state of <strong>the</strong> environment”<br />

<strong>report</strong>ing. In this case a few water samples may be taken, often at low flow, to give an<br />

“indication” of system condition; <strong>the</strong>ir results may be compared against prior observations <strong>for</strong><br />

<strong>the</strong> same site, or against results <strong>for</strong> o<strong>the</strong>r similar water bodies. Very often <strong>the</strong>re will be no<br />

pressure-impact model <strong>for</strong> <strong>the</strong> system, and as will be shown later, occasional grab samples at<br />

low flow have little value in determining true system condition or <strong>the</strong> influence of pressures<br />

on <strong>the</strong> system.<br />

Pathways 1 and 2 (Figure 2.1) provide <strong>the</strong> components necessary to gain sufficient<br />

in<strong>for</strong>mation about water-body functioning, in order that meaningful PoMs may be devised,<br />

and Figure 2.2 provides a structural frame <strong>for</strong> ensuring that <strong>the</strong> necessary in<strong>for</strong>mation is<br />

ga<strong>the</strong>red by monitoring in order to gain an improved system understanding.<br />

As indicated in Figure 2.1, in order to devise appropriate PoMs and adequate monitoring, a<br />

valid conceptual model of <strong>the</strong> system functioning and key processes is required (e.g. Figure<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 4/109


2.2). A key prior requirement <strong>for</strong> such assessments is <strong>the</strong> ability to measure <strong>the</strong> driving<br />

variables and characteristics that impact on <strong>the</strong> system. It is necessary to<br />

� define <strong>the</strong> physical habitat and <strong>the</strong> upstream land uses that may determine <strong>the</strong><br />

condition at <strong>the</strong> location of interest.<br />

� determine <strong>the</strong> fluvial status, i.e. <strong>the</strong> relative river flow or water level, since many water<br />

quality and ecosystem factors and emissions are influenced by <strong>the</strong> flow conditions.<br />

� An adequate pressure impact model <strong>for</strong> <strong>the</strong> system is needed in order to decide what<br />

should be monitored and what is not so important.<br />

� A truly integrated approach to monitoring is required, such that <strong>the</strong> hydrometric team,<br />

<strong>the</strong> water quality officers and <strong>the</strong> biologists work toge<strong>the</strong>r to build a sound<br />

understanding and conceptual model of <strong>the</strong>ir system which <strong>the</strong>y update as <strong>the</strong>y gain<br />

new insights with experience.<br />

What is commonly observed with ambient monitoring or state of <strong>the</strong> environment monitoring,<br />

is that <strong>the</strong> timing and or location of monitoring components, i.e. flow, water quality, and<br />

biological surveys are not coincident, in which case it is not possible to say what <strong>the</strong> causal<br />

factors in <strong>the</strong> system are.<br />

Figure 2.1: Objective-based choice of water body monitoring components.<br />

If <strong>the</strong> system is adequately characterised it is <strong>the</strong>n possible to devise effective programmes of<br />

measures. This is where modelling comes in. Modelling offers <strong>the</strong> potential to examine <strong>the</strong><br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 5/109


impacts of management scenarios, i.e. PoMs, on <strong>the</strong> system, provided <strong>the</strong> system variability<br />

and sensitivity to pressures has been adequately characterised, and <strong>the</strong> model is capable of<br />

incorporating <strong>the</strong>se processes and sensitivities.<br />

Figure 2.2: Pressure and monitoring model <strong>for</strong> river management (modified from Wilkinson et al., 2007).<br />

Temporal and spatial scale issues are important in devising monitoring programmes. It is of<br />

no value to sample at ei<strong>the</strong>r a very high intensity or a low intensity, if <strong>the</strong> sampling frequency<br />

does not match <strong>the</strong> typical dynamics of <strong>the</strong> system under consideration. Figure 2.3 gives an<br />

example of <strong>the</strong> temporal variation in nitrate-nitrogen concentration from a clear-felled <strong>for</strong>estry<br />

area in Mid-Wales in <strong>the</strong> United Kingdom. In this case weekly sampling over 14 years<br />

highlights dynamic variations in nitrogen at three temporal scales:<br />

� <strong>the</strong> long-term (7 year) response from <strong>the</strong> beginning of tree harvesting, to when <strong>the</strong><br />

harvest impacts have subsided;<br />

� <strong>the</strong> seasonal response associated with <strong>the</strong> annual growth and decay cycle, and;<br />

� <strong>the</strong> rainfall-runoff event response that results in enhanced leaching of soil nitrogen into<br />

<strong>the</strong> river.<br />

A daily nitrogen dynamic may also have been observed if higher intensity sampling were<br />

undertaken over diurnal cycles.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 6/109


NO3_N NO3_N (mg/L) (mg/L)<br />

5.0 5.0<br />

4.0 4.0<br />

3.0 3.0<br />

2.0 2.0<br />

1.0 1.0<br />

0.0 0.0<br />

Apr-83 Apr-83<br />

Purturbation Purturbation response response (7 (7 years) years)<br />

Mar-84 Mar-84<br />

Apr-85 Apr-85<br />

Apr-86 Apr-86<br />

Apr-87 Apr-87<br />

Apr-88 Apr-88<br />

Apr-89 Apr-89<br />

Apr-90 Apr-90<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 7/109<br />

Apr-91 Apr-91<br />

Seasonal Seasonal cycle cycle (1 (1 year) year)<br />

Apr-92 Apr-92<br />

Apr-93 Apr-93<br />

Event Event responses responses<br />

(days) (days)<br />

Figure 2.3: Stream nitrate concentration (Afon Hore, Plynlimon, Wales) demonstrating response<br />

dynamics at three temporal scales (adapted from: Wilkinson et al, 1997).<br />

This provides an example of temporal dynamics <strong>for</strong> just one substance, and it can easily be<br />

recognised that grab water quality samples collected at some long time interval along <strong>the</strong><br />

above nitrogen time-series would most likely produce radically different results. This would<br />

also be <strong>the</strong> case <strong>for</strong> many o<strong>the</strong>r water quality variables, and especially those substances that<br />

are influenced by rainfall-runoff (storm) events, associated with runoff, combined sewer<br />

overflows (CSOs), or with strong affinity to <strong>the</strong> solid phase. In <strong>the</strong> latter case, <strong>the</strong>y may be<br />

characterised by low dry wea<strong>the</strong>r concentrations when <strong>the</strong>y settle and accumulate on river<br />

beds, and are subsequently turbulently stirred back into <strong>the</strong> flowing water during storm flows.<br />

Such substances include phosphorus and many micro-pollutants such as metals and persistent<br />

organic chemicals (POPs). There is little value in testing <strong>for</strong> <strong>the</strong>se substances under low flow<br />

conditions with occasional grab samples in <strong>the</strong> water column, since <strong>the</strong>y are unlikely to be<br />

present in concentrations that reflect <strong>the</strong> true degree of contamination of <strong>the</strong> system. Sediment<br />

samples, or suspended matter samples, as will be shown later, provide a far more reliable and<br />

valuable indication of <strong>the</strong> presence of <strong>the</strong>se substances.<br />

3. MONITORING DESIGN EVALUATION<br />

Characterizing <strong>the</strong> ecological and chemical status in a water body requires a profound<br />

understanding of its ecosystem functioning in order to be able to select <strong>the</strong> timing, <strong>the</strong><br />

location, and <strong>the</strong> medium of sampling that can provide unbiased and repeatable in<strong>for</strong>mation<br />

on <strong>the</strong> water body’s status. By setting good ecological status as a measure of <strong>the</strong> presence of a<br />

certain diversity and abundance of biota being present in a water body, <strong>the</strong> WFD inherently<br />

presumes that it is feasible to identify and quantify <strong>the</strong> causes of ecological status impairment.<br />

This claim <strong>for</strong> causality caught water managers and <strong>the</strong> supporting scientific community<br />

desperately unprepared to assess <strong>the</strong> complexity of <strong>the</strong> freshwater ecosystems with metrics<br />

that would make a controlled management realisable. Never<strong>the</strong>less by imposing such an<br />

integrative approach, <strong>the</strong> WFD fostered a new momentum in ecological and ecotoxicological<br />

research in surface and waters that, given <strong>the</strong> huge challenges, will prevail <strong>for</strong> some years if<br />

not decades.<br />

This <strong>report</strong> is about evaluating <strong>the</strong> appropriateness of monitoring schemes to in<strong>for</strong>m about <strong>the</strong><br />

evolution of pressures and hence <strong>the</strong> success of programs of measures. <strong>Monitoring</strong> <strong>the</strong><br />

ecological and chemical status is at <strong>the</strong> centre of <strong>the</strong> WFD implementation as <strong>the</strong>y are <strong>the</strong><br />

endpoint metrics of <strong>the</strong> whole endeavour. Realizing an unbiased monitoring should <strong>the</strong>re<strong>for</strong>e<br />

be regarded as a key element of successful implementation.<br />

Apr-94 Apr-94<br />

Apr-95 Apr-95<br />

Apr-96 Apr-96<br />

Apr-97 Apr-97


When <strong>for</strong>mulating this work point in <strong>the</strong> project proposal we had <strong>the</strong> conviction that<br />

traditional sampling methods neglected hydrological and ecosystem processes. During <strong>the</strong><br />

evaluation we rapidly gained certainty that monitoring and its current deficits are <strong>the</strong> core of<br />

<strong>the</strong> matter: poor ecosystem understanding and ecotoxicological shortcomings jeopardize a<br />

holistic approach of evaluating environmental health of water bodies.<br />

In <strong>the</strong> following we need to take a look at <strong>the</strong> criteria <strong>for</strong> an unbiased monitoring first, which<br />

are depending on its purpose. We <strong>the</strong>n will present ways of analyzing grab sample data and<br />

will enumerate current scientific deficits that impede efficient monitoring designs.<br />

3.1. Criteria <strong>for</strong> an efficient monitoring<br />

Good ecological status is <strong>the</strong> ultimate endpoint of <strong>the</strong> WFD. It requires a certain diversity and<br />

abundance of macroinvertebrates, diatoms and macrophytes to be classified as good.<br />

Although <strong>the</strong> metrics are in most cases still heavily focussed on saprobic, i.e. oxygen<br />

depleting pollution criteria, <strong>the</strong>y do reflect at least to some degree o<strong>the</strong>r chemical impairment.<br />

The chemical status, which is strongly related to <strong>the</strong> compliance with <strong>the</strong> priority substances<br />

list, is a complementary control set, which seems to follow more general chemical phasing out<br />

objectives than a true link to <strong>the</strong> causes of ecological status impairment. Both goals need a<br />

different perspective: While an ecotoxicological evaluation requires a representative time<br />

record of biota exposure to pollutants, phasing out of chemicals or reducing emissions in a<br />

catchment are based on load estimations which are strongly governed by discharge. The<br />

pollutant’s partitioning or speciation are of different relevance <strong>for</strong> both monitoring goals:<br />

while load calculations need total concentrations, ecotoxicology relies on bioavailable<br />

species. The differences and implications are detailed in <strong>the</strong> following.<br />

� <strong>Monitoring</strong> exposure in a water body<br />

This monitoring aims at collecting data on biota exposure to chemicals which should<br />

be representative in terms of <strong>the</strong> chemical species (phases) and <strong>the</strong> time-frame in<br />

which biota encounter <strong>the</strong> chemicals. The exposure should ideally characterize both<br />

ambient environment (water column, pore waters) and <strong>the</strong> contamination of <strong>the</strong> diet<br />

(biofilms, sediments). It raises questions on <strong>the</strong> bioavailability of pollutants and <strong>the</strong><br />

best way to mimic this with extraction or speciation methods.<br />

<strong>Monitoring</strong> should ideally cover periods which are relevant <strong>for</strong> <strong>the</strong> biota <strong>life</strong>-cycles<br />

(<strong>for</strong> instance: macroinvertebrates).<br />

� <strong>Monitoring</strong> emissions in a water body catchment<br />

This could also be paraphrased as source control monitoring. There are steadily<br />

flowing sources like ground water or WWTP outlets and event based emissions like<br />

surface run-off. If <strong>the</strong> aim is to reduce emissions, water managers should be able to<br />

quantify <strong>the</strong> loads that are passing certain knots in <strong>the</strong> hydrological network. Whe<strong>the</strong>r<br />

that needs to be at <strong>the</strong> immediate source or somewhere in <strong>the</strong> catchment is (amongst<br />

o<strong>the</strong>rs) a matter of <strong>the</strong> representativeness of emission loads. Steadily flowing<br />

emissions underlie a certain variability which can be seasonally driven or subject to<br />

day/night shifts. Event-triggered emissions are often governed by antecedent build-up<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 8/109


(or attenuation) of pollutants at <strong>the</strong> source. The rhythm and <strong>the</strong> intensity of events<br />

have a strong influence on <strong>the</strong> loads carried. Within flood waves <strong>the</strong>re can be<br />

substantial variation of pollutant concentrations due to source proximity, transport<br />

effects like kinematic wave effect, dispersion and sedimentation.<br />

� The link between loads and exposure<br />

The loads emitted in a catchment are only transient in <strong>the</strong> water column or bed<br />

sediment. In <strong>the</strong> annual time scale flood events only occupy a very short exposure time<br />

but carry a large contaminant load. Little is known about <strong>the</strong> activity of biota during<br />

<strong>the</strong>se extreme conditions and whe<strong>the</strong>r <strong>the</strong> exposure can be compared to quiescent<br />

mode conditions. Sediments can experience transient storage within a river stretch and<br />

induce an effect on biota during this time. Sediments of lower order rivers are in<br />

general exported out of a catchment within a year (with winter flood waves). Biofilms<br />

and sediments can also accumulate pollutants from <strong>the</strong> water column during low-flow<br />

and make <strong>the</strong>se accessible to biota via dietary uptake routes.<br />

� Choosing monitoring sites<br />

Exposure monitoring should logically be undertaken at locations of ecological status<br />

metrics. This does not mean every water body necessarily needs intensive exposure<br />

characterization. The process can be simplified using representative groupings of sites<br />

according to <strong>the</strong> analysis of pressures and impacts.<br />

The same applies to load calculation sites. These should be driven by spatial analysis<br />

of pressures and catchment properties (like geology, soils and land use). In addition,<br />

hydraulic effects such as dispersion and transport losses should be taken into account<br />

when considering <strong>the</strong> scale of <strong>the</strong> monitored catchment.<br />

The current practice of most regulators and water managers is still largely based on<br />

techniques aiming at water column spot sampling which have little capacity to characterize<br />

true exposure or loads. Sediment and suspended matter sampling suffer from biases due to<br />

temporal and spatial representativeness but also due to bioavailability of pollutant<br />

concentrations.<br />

Grab sampling in general has several drawbacks, both <strong>for</strong> exposure and load calculations.<br />

O<strong>the</strong>r sampling techniques might be better suited (see Table 3.1.).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 9/109


Table 3.1: Shortcomings <strong>for</strong> grab samplings and alternatives<br />

Type of pollution Drawbacks<br />

sampling<br />

grab<br />

Nutrient status Dissolved species<br />

like o-PO4 often at a<br />

minimum due to<br />

continuous uptake<br />

Pesticides Exposure is<br />

potentially highly<br />

variable, not assessed<br />

by grab sampling<br />

Urban runoff Grab sampling<br />

misses first flush<br />

Particle bound<br />

contaminants (water<br />

column)<br />

Sediment sampling<br />

(spot sampling).<br />

phenomena<br />

Pollutants with a high<br />

particle affinity fall<br />

below detection<br />

limits at base-flow<br />

(low suspended<br />

matter concentration)<br />

Spatial and temporal<br />

representativeness<br />

Alternative Comments<br />

River metabolism<br />

Online measurement<br />

Passive sampling<br />

with membranes<br />

Discharge triggered<br />

autosamplers<br />

Integrative sampling<br />

with silk nets or<br />

flow-through<br />

centrifuges<br />

Ecosystem metrics<br />

like Gross Primary<br />

production and<br />

ecosystem respiration<br />

are better indicators<br />

of impairment<br />

Provides mean<br />

exposure<br />

concentration; ability<br />

to representatively<br />

sample high-flow<br />

extreme<br />

concentration not<br />

known<br />

Needs events of<br />

different size to<br />

characterize inputs<br />

Collect superficial<br />

remobilizable<br />

sediments; to be<br />

checked <strong>for</strong><br />

ecological relevance<br />

No real alternatives Analyze spatial and<br />

temporal variability;<br />

sieve to


3.2. Load calculation methods<br />

A substantial body of literature has been published on <strong>the</strong> most accurate way to calculate<br />

loads from discrete samplings (Littlewood 1992, Preston et al. 1992, Coats et al. 2002, Johnes<br />

2007). These studies relied on intensively sampled sites and usually evaluate estimation<br />

methods (averaging, Beale’s ratio, rating curves) with decimated datasets as compared to <strong>the</strong><br />

full dataset (often daily values). The results are not very surprising: Averaging methods suffer<br />

strongly due to infrequent sampling while <strong>the</strong> accuracy of rating curves (with discharge as<br />

regressor) per<strong>for</strong>m well if stratified sampling approaches with more ef<strong>for</strong>t during high flows<br />

are included. In <strong>the</strong> end, <strong>the</strong> validity of <strong>the</strong> estimate is strongly related to sampling design.<br />

None of <strong>the</strong>se studies make any suggestions on how to plan sampling <strong>for</strong> optimal load<br />

accuracy and precision from scratch. This is because <strong>the</strong>y depend on intense measurement to<br />

provide in<strong>for</strong>mation on <strong>the</strong> fitness of sampling approach and load calculation method.<br />

For a water manger <strong>the</strong> following questions emerge:<br />

� To what extent does optimal sampling design depend on <strong>the</strong> substances to be<br />

quantified?<br />

� To what extent do <strong>the</strong> size of <strong>the</strong> catchment and <strong>the</strong> nature of <strong>the</strong> hydrologic network<br />

determine <strong>the</strong> dynamics of pollutant response?<br />

� How far away from a source are pollutant flows measurable with accuracy?<br />

� How many samples are needed to assess <strong>the</strong> true statistical distribution of a parameter?<br />

It is clear that, <strong>for</strong> example, suspended matter concentrations are much more variable than<br />

nitrate concentrations. Depending on <strong>the</strong> ranking of pressures sampling should be oriented<br />

towards <strong>the</strong> needs of <strong>the</strong> most critical components.<br />

Small homogeneous catchments hydrographs are quite flashy which increases <strong>the</strong> risk of<br />

missing phases of preferential conveyance with regular sampling. Catchments of intermediate<br />

size are probably <strong>the</strong> most problematic to sample as heterogeneity of precipitation (kinematic<br />

wave effects) and dispersion as well as transient sedimentation losses render timing and<br />

location of sampling most challenging.<br />

The evaluation of data needs much more care. Large rivers absorb smaller inputs and<br />

dispersion makes chemical signal variability much more predictable. The boundary between<br />

<strong>the</strong> different types of catchments is difficult to draw, since this aspect has not been<br />

investigated to any great extent in <strong>the</strong> literature.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 11/109


3.3. Analysing grab sample data<br />

Grab sampling has a lot of shortcomings when addressing <strong>the</strong> pollution of a surface water,<br />

especially when <strong>the</strong>y are infrequent. They do carry in<strong>for</strong>mation about <strong>the</strong> variability of<br />

parameters within a certain catchment but <strong>the</strong>re are no documented methods on how to<br />

systematically analyze grab sampling records. For that reason, an approach is proposed here<br />

which will raise questions of limits in accuracy and precision in characterizing exposure and<br />

substance flows in rivers.<br />

The method is based on <strong>the</strong> rating curve as an analytical tool, using confidence and prediction<br />

intervals <strong>for</strong> uncertainty evaluation. Its basic assumption is that pollutant concentration is<br />

mainly governed by hydrology. O<strong>the</strong>r influential parameters are expressed through <strong>the</strong><br />

variability in <strong>the</strong> confidence interval. The method combines <strong>the</strong> rating curve with cumulative<br />

distribution (CD) of discharge during <strong>the</strong> observation period to calculate an discharge<br />

weighted yearly average concentration with its 95% confidence interval. This average can be<br />

multiplied with <strong>the</strong> cumulated discharge to give <strong>the</strong> mass flow. It <strong>the</strong>re<strong>for</strong>e allows <strong>the</strong><br />

comparison of parameters <strong>for</strong> one site or between sites in an objective way.<br />

3.3.1. Cumulative distribution of discharge<br />

The basic question behind <strong>the</strong> cumulative distribution of discharge is <strong>the</strong> representativeness of<br />

samplings <strong>for</strong> hydrological situations. Is routine grab sampling systematically missing high<br />

flows? Are <strong>the</strong> samplings<br />

adequately distributed over <strong>the</strong><br />

different situations occurring<br />

during <strong>the</strong> observation period?<br />

For that purpose <strong>the</strong> discharge<br />

record (e.g. 15 min values) are<br />

sorted in ascending order and<br />

trans<strong>for</strong>med to a cumulative<br />

distribution. The discharge at<br />

sampling times are sorted in a<br />

same way and plotted toge<strong>the</strong>r<br />

with <strong>the</strong> overall discharge<br />

distribution. In that way it is<br />

possible to compare <strong>the</strong><br />

representativeness of sampling.<br />

Fig. 3.1 shows <strong>the</strong> data <strong>for</strong> a bimonthly<br />

sampling in<br />

Kautenbach/Luxembourg. The<br />

discharge distribution shows that<br />

half of <strong>the</strong> year a discharge of<br />

Cumulative distibution discharge<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Cumul discharge 2007<br />

Cumul sampling 2007<br />

0 5 10 15 20 25 30 35 40<br />

Discharge [m 3 /s]<br />

Figure 3.1: Cumulative distributions <strong>for</strong> discharge and discharge at<br />

sampling dates<br />

less than 2.5 m 3 /s prevails while only during 10% of <strong>the</strong> time a discharge of greater than 10<br />

m 3 /s has been recorded. The bimonthly sampling covers <strong>the</strong> discharge distribution quite well,<br />

a deviation to <strong>the</strong> left of <strong>the</strong> sampling distribution shows that <strong>the</strong>se situations are relatively<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 12/109


NO 3 [mg/l]<br />

42<br />

40<br />

38<br />

36<br />

34<br />

32<br />

30<br />

28<br />

oversampled. The distribution also shows that <strong>the</strong> high-flow extremes are not covered. The<br />

question that arises now is whe<strong>the</strong>r <strong>the</strong> variability of parameters at different discharge levels<br />

can be described by <strong>the</strong> sampling.<br />

3.3.2. Rating curves and confidence intervals<br />

Rating curves are used to determine <strong>the</strong> mean concentration at each discharge level and to<br />

calculate <strong>the</strong> corresponding confidence intervals. We use <strong>the</strong> allometric function because of<br />

its versatility. It is irrelevant if <strong>the</strong> coefficient of determination R 2 is high or not. At low R 2 an<br />

arithmetic mean is approximated but <strong>the</strong><br />

confidence intervals remain valid. Rating<br />

curves of conductivity, nitrate and total<br />

phosphorus are displayed Fig. 3.2-3.4).<br />

Conductivity is well suited to detect<br />

hydrological phenomena such as kinematic<br />

wave effects (values that don’t follow <strong>the</strong><br />

general dilution tendency). Nitrate seems to<br />

be mobilized from <strong>the</strong> low-permeability<br />

soils in <strong>the</strong> catchment, but <strong>the</strong> relationship is<br />

weak compared to <strong>the</strong> variability of <strong>the</strong> data.<br />

Total phosphorus is impacted by a low-flow<br />

source, but <strong>the</strong> relative variability is high.<br />

26<br />

Chi^2/DoF = 17.02603<br />

R^2 = 0.31282<br />

24<br />

a 29.63572 ±1.02001<br />

b 0.07706 ±0.02159<br />

22<br />

-2 0 2 4 6 8 10 12 14 16 18 20<br />

Discharge [m 3 /s]<br />

NO3<br />

<strong>Data</strong>: <strong>Data</strong>10_C<br />

Model: Allometric1<br />

Equation:<br />

y = a*x^b<br />

Weighting:<br />

y No weighting<br />

150<br />

-2 0 2 4 6 8 10 12 14 16 18 20<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 13/109<br />

P tot [mg/l]<br />

Conductivity [�S/cm]<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Discharge [m 3 /s]<br />

<strong>Data</strong>: <strong>Data</strong>10_B<br />

Model: Allometric1<br />

Equation:<br />

y = a*x^b<br />

Weighting:<br />

y No weighting<br />

Conductivity<br />

Chi^2/DoF = 2771.38269<br />

R^2 = 0.59143<br />

a 409.91065 ±12.4808<br />

b -0.15768 ±0.02478<br />

Figure 3.2: Rating curve <strong>for</strong> conductivity<br />

-2 0 2 4 6 8 10 12 14 16 18 20<br />

Discharge [m 3 /s]<br />

Figure 3.3: Rating curve <strong>for</strong> Nitrate Figure 3.4: Rating curve <strong>for</strong> Ptot<br />

Ptot<br />

<strong>Data</strong>: <strong>Data</strong>10_D<br />

Model: Allometric1<br />

Equation:<br />

y = a*x^b<br />

Weighting:<br />

y No weighting<br />

Chi^2/DoF = 0.01038<br />

R^2 = 0.62886<br />

a 0.33834 ±0.02305<br />

b -0.44689 ±0.07535


When plotting <strong>the</strong> relative uncertainties<br />

against <strong>the</strong> cumulative discharge distribution<br />

<strong>the</strong> error of concentration estimation at<br />

different discharges appears. All three<br />

compounds show higher estimate<br />

uncertainty at low and high flow with a<br />

minimum at intermediate discharges. While<br />

nitrate and conductivity are at a similar error<br />

level, <strong>the</strong> Ptot estimate is much more<br />

uncertain. This may in part be due to <strong>the</strong><br />

proximity to limit of detection. The<br />

approach allows <strong>for</strong> an objective evaluation<br />

of weaknesses in certain discharge ranges in<br />

terms of estimation error and<br />

representativeness.<br />

5<br />

0 5 10 15 20 25 30 35 40<br />

A water manager will be interested to measure <strong>the</strong> evolution of emission loads from year to<br />

year to document <strong>the</strong> effectiveness of <strong>the</strong> river basin management and programs of measures.<br />

Figure 3.4 shows <strong>the</strong> allometric fits of discharge-concentration curves (A+B) <strong>for</strong> 4 separate<br />

years and <strong>the</strong> corresponding 95% confidence error (C+D). The year 2005 had a smaller data<br />

set missing higher flow events which leads to much higher error <strong>for</strong> 2005 than <strong>for</strong> <strong>the</strong><br />

following years. Total phosphorus shows a clear difference in rating curve shape between<br />

2005-2006 and 2007-2008. This is mainly due to lower concentrations at low flow, a<br />

consequence of improved waste water treatment. The shape of <strong>the</strong> error curve also changes<br />

with lower error at high flows. It is questionable if <strong>the</strong> difference in high flow Ptot<br />

concentration is not a consequence of <strong>the</strong> choice of <strong>the</strong> function (steeper fit in 2005-2006).<br />

NO 3 [mg/l]<br />

C95 relative error [%]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Rating curves NO 3<br />

Discharge [m 3 /s]<br />

2005<br />

2006<br />

2007<br />

2008<br />

4<br />

-2 0 2 4 6 8 10 12 14 16 18 20<br />

Discharge [m 3 /s]<br />

C95 NO3 2005<br />

C95 NO3 2006<br />

C95 NO3 2007<br />

C95 NO3 2008<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 14/109<br />

Cumulative distibution<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Discharge [m 3 /s]<br />

Cumul discharge 2007<br />

Cumul sampling 2007<br />

C95 conductivity 2007<br />

C95 NO3 2007<br />

C95 Ptot 2007<br />

Figure 3.3: Cumulative distributions of discharge<br />

vs. C95 error of parameters<br />

P tot [mg/l]<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

A B<br />

C95 relative error [%]<br />

Rating Curves P tot<br />

0.0<br />

0 5 10 15 20 25 30 35 40<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

C95 Ptot 2005<br />

C95 Ptot 2006<br />

C95 Ptot 2007<br />

C95 Ptot 2008<br />

Discharge [m 3 /s]<br />

2005<br />

2006<br />

2007<br />

2008<br />

-2 0 2 4 6 8 10 12 14 16 18 20<br />

Discharge [m 3 /s]<br />

Figure 3.4: Rating curves (A+B) and error distributions <strong>for</strong> 2005-2008 <strong>for</strong> NO3 and Ptot<br />

C<br />

D<br />

30<br />

25<br />

20<br />

15<br />

10<br />

C95 relative error [%]


The weighted means are calculated by<br />

allocating <strong>the</strong> rating curve derived<br />

concentration and C95 proportionally to <strong>the</strong><br />

discharges of <strong>the</strong> cumulative distribution of<br />

every year. The error of nitrate is below 10 %<br />

while Ptot has 20% uncertainty in <strong>the</strong> weighted<br />

average. The trend <strong>for</strong> total phosphorus is<br />

clearly visible although not statistically<br />

significant (overlapping errors). The discharge<br />

weighted mean can be multiplied directly with<br />

<strong>the</strong> discharge sum over <strong>the</strong> observation period<br />

to produce <strong>the</strong> mass load.<br />

A separate dataset <strong>for</strong> suspended matter exists <strong>for</strong> <strong>the</strong> Kautenbach sampling location with<br />

monthly frequency but still a reasonable distribution (Fig.3.6). The C95 error distribution<br />

shows that estimate uncertainties <strong>for</strong> this parameter are much larger than <strong>for</strong> those previously<br />

discussed. At <strong>the</strong>se low sampling frequencies rating curves are depending more strongly on<br />

high flow values and can lead to strong deviations (as in 2006, Fig. 3.7.).<br />

Cumulative distribution<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Cumul discharge 2007<br />

SuspM CD sampling 2007<br />

SuspM error 2007<br />

0 5 10 15 20 25 30 35<br />

Discharge [m 3 /s]<br />

Suspended matter weighted annual means carry<br />

a high uncertainty with errors ranging from 40-<br />

100% (Fig. 3.8). The monitoring of erosion is<br />

<strong>the</strong>re<strong>for</strong>e strongly dependent on sampling<br />

strategy and needs a better coverage of high<br />

flow situations. If higher accuracy and precision<br />

is needed, <strong>the</strong> use of turbidity probes and<br />

autosampler devices is recommended.<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

C95 relative error [%]<br />

0<br />

0.0<br />

3 4 5 6 7<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 15/109<br />

NO 3 weighted mean [mg/l]<br />

Susp. Matter [mg/l]<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO 3 weighted mean CD current year<br />

P tot weigted mean CD current year<br />

Mean discharge [m 3 /s]<br />

Figure 3.5: Discharge weighted means <strong>for</strong> NO3 and Ptot<br />

100<br />

80<br />

60<br />

40<br />

20<br />

RC SuspM 2006<br />

RC SuspM 2007<br />

RC SuspM 2008<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Discharge [m 3 /s]<br />

Figure 3.6: Figure Cumulative 3.7: Rating discharge curves <strong>for</strong> distribution <strong>the</strong> years <strong>for</strong> 2006-2008<br />

suspended matter sampling and C95 error distribution<br />

Suspended matter [mg/l]<br />

15<br />

10<br />

5<br />

0<br />

99%<br />

87%<br />

2006 2007 2008<br />

41%<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

P tot weighted mean [mg/l]<br />

Weighted annual mean SuspM<br />

Figure 3.8: Discharge weighted means <strong>for</strong> susp. matter


3.3.3. The influence of sampling frequency<br />

The Erfverband runs several online monitoring<br />

stations with automated analysis of some basic<br />

parameters and (dissolved) nutrients. Of <strong>the</strong> latter<br />

orthophosphate and ammonium often fell below<br />

detection limit which eliminated a<br />

straight<strong>for</strong>ward load calculation (censored data<br />

issue). The nitrate dataset was fit <strong>for</strong> use and<br />

different sampling frequencies were tested <strong>for</strong><br />

<strong>the</strong>ir effect on mean weighted load and relative<br />

error. For that purpose daily data were decimated<br />

to weekly, bimonthly and monthly pace. The<br />

cumulative distribution plots show that <strong>the</strong><br />

weekly sampling rate matches <strong>the</strong> daily reference<br />

very well, while monthly frequency misses <strong>the</strong><br />

upper 10% high flow situations (Fig. 3.9). There<br />

is very little difference in <strong>the</strong> rating curves but <strong>the</strong><br />

range covered and <strong>the</strong> C95 error distribution<br />

decreases from monthly to daily (Figs 3.10 &<br />

3.11).<br />

NO 3 -N [mg/l]<br />

8<br />

6<br />

4<br />

2<br />

Allometric fit NO3 daily<br />

Allometric fit NO3 weekly<br />

Allometric fit NO3 bi-monthly<br />

Allometric fit NO3 monthly<br />

6 8 10 12 14 16 18 20 22 24<br />

Discharge [m 3 /s]<br />

Figure 3.11: Rating curves <strong>for</strong> Nitrate at different<br />

sampling frequencies<br />

6 8 10 12 14 16 18 20 22 24<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 16/109<br />

Cumulative distribution<br />

Cumulative distribution discharge[-]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Discharge [m 3 /s]<br />

Cumul daily<br />

Cumul weekly<br />

Cumul monthly<br />

Cumul Bimonthly<br />

Figure 3.9: Cumulative discharge distribution<br />

<strong>for</strong> decimated sampling frequencies<br />

C95 rel error NO3 daily [%]<br />

C95 rel error NO3 weekly [%]<br />

C95 rel error NO3 bi-monthly [%]<br />

C95 rel error NO3 monthly [%]<br />

6 8 10 12 14 16 18 20 22 24<br />

Discharge [m 3 /s]<br />

Cumul daily<br />

Figure 3.10: Distributions of C95 error at<br />

different sampling frequencies<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

C95 relative error [%]


The weighted means <strong>for</strong> <strong>the</strong> different sampling frequencies differ only slightly but <strong>the</strong>ir<br />

confidence increases with higher pace. If one does <strong>the</strong> same exercise with he prediction<br />

interval <strong>the</strong> 4 cases don’t improve in<br />

precision (data not shown). This means that<br />

<strong>the</strong> ability to predict <strong>the</strong> true value is as bad<br />

with a daily sampling pace than with a<br />

monthly one. It also suggests that at least <strong>for</strong><br />

nitrate a monthly sampling frequency<br />

adequately pictures <strong>the</strong> true distribution of<br />

concentrations and <strong>the</strong> improvement of<br />

confidence of <strong>the</strong> mean of <strong>the</strong> rating curve is<br />

a sheer number effect. This questions <strong>the</strong><br />

usefulness of <strong>the</strong> “significant difference<br />

concept” <strong>for</strong> load calculations.<br />

It would have been interesting to run <strong>the</strong><br />

same experiment <strong>for</strong> turbidity but<br />

un<strong>for</strong>tunately <strong>the</strong>se data were biased by<br />

fouling of <strong>the</strong> optics.<br />

3.3.4. Conclusions and recommendations<br />

The obvious question of how often one has to sample to make reliable load calculations<br />

remains unanswered. The dependence on parameter properties and catchment scale needs to<br />

be investigated in order to give data supported advice to water managers. The data available<br />

in <strong>the</strong> <strong>M3</strong> project regions were not numerous enough to inquire fur<strong>the</strong>r on this subject.<br />

The following conclusions are drawn.<br />

Daily Weekly Bimonthly Monthly<br />

� Grab sampling is not adapted to characterize intermittent and strongly event-triggered<br />

pollution (e.g. CSO overflows). Grab samples tend to cover proportionally more<br />

descending flood-wave limbs and miss first-flush effects;<br />

� Integrative sampling methods like passive sampling devices or suspended matter<br />

collection methods are an alternative;<br />

� The use rating curves and cumulative distributions to evaluate <strong>the</strong> representativeness<br />

of sampling and <strong>the</strong> variability of concentrations at different discharges is suggested;<br />

� Sampling design has to be adapted to pollutant properties and hence <strong>the</strong>ir expected<br />

dynamics. It is not appropriate to address all pollutants with <strong>the</strong> same sampling<br />

scheme;<br />

� Bimonthly sampling frequency seems to be a minimum to guarantee an acceptable<br />

accuracy and precision <strong>for</strong> most pollutants. This needs to be fur<strong>the</strong>r investigated;<br />

� Care should be taken to have several repeats at higher flows (> 0.75 of <strong>the</strong> cumulative<br />

distribution). A minimum of 6 samples should be taken in this range at bimonthly<br />

pace.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 17/109<br />

Discharge weighted mean NO 3 -N value [mg/l]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4 %<br />

11.26 %<br />

15.33 %<br />

Sampling frequency<br />

27.6 %<br />

Figure 3.12: Discharge weighted means <strong>for</strong> different<br />

sampling frequencies


4. REGIONAL SURVEY: DELFLAND<br />

The Delfland system is different to <strong>the</strong> Erft and Luxembourg regions in that it does not<br />

con<strong>for</strong>m to hydrological norms, <strong>the</strong> system is entirely man-made based on <strong>the</strong> drainage and<br />

recovery of marginal coastal land (Map 4.1). The hydraulic system of boezems (drainage<br />

canals) and polders (land units below sea-level) is intensively managed to balance inputs of<br />

water from rain and wastewater discharges, while at <strong>the</strong> same time ensuring that <strong>the</strong> ingress of<br />

saline water is not encouraged (by over-pumping). The system does not, <strong>the</strong>re<strong>for</strong>e, have well<br />

defined catchments with a watershed and drainage network and flow in <strong>the</strong> drainage canals is<br />

not necessarily unidirectional since it may be necessary to pump water to or from where it is<br />

not wanted. The polder channels maintain <strong>the</strong> water table below <strong>the</strong> polder land surface,<br />

pumps lift water from <strong>the</strong> polder level up to <strong>the</strong> major drainage canal system of boezems,<br />

<strong>the</strong>se channels are pumped under appropriate conditions out to sea or into <strong>the</strong> Rhine estuary.<br />

Pumping data has been requested <strong>for</strong> <strong>the</strong> Delfland system and is still awaited.<br />

Table 4.1: Summary of WFD water bodies in Delfland.summarises <strong>the</strong> five WFD water<br />

bodies in Delfland (Map 4.1). The Ne<strong>the</strong>rlands opted <strong>for</strong> a water body typology based on<br />

abiotic descriptors such as geological substrate, channel depth, width and acid buffering<br />

capacity.<br />

Table 4.1: Summary of WFD water bodies in Delfland.<br />

Name<br />

Measurements WFD Classification<br />

Length (km)<br />

Area (Ha)<br />

Width (m)<br />

Channel<br />

substrate class<br />

East Boezem 71 33 2 to 17 50<br />

pebble<br />

%<br />

West Boezem 112 50 2 to 12 50<br />

pebble<br />

%<br />

Berkel Polder 11 3.8 2 to 5 50<br />

pebble<br />

%<br />

Hook of Holland 3 1.5 5 50 %<br />

and Saltpeat<br />

organic<br />

Polders<br />

material<br />

South Polder Delft 2.1 2 6 50 %<br />

border<br />

pebble<br />

Total 199 90<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 18/109<br />

Water depth<br />

class<br />

Channel width<br />

class (m)<br />

Buffering<br />

capacity<br />

(meq/L)<br />

WFD water<br />

body type<br />

> 3 m > 15 1 to 4 M7 – large deep<br />

canals<br />

< 3 m 8 to 15 1 to 4 <strong>M3</strong> – buffered<br />

regional canal<br />

< 3 m 8 to 15 1 to 4 <strong>M3</strong> – buffered<br />

regional canal<br />

< 3 m 8 to 15 M10 – fens<br />

waterways<br />

canals<br />

and<br />

< 3 m 8 to 15 1 to 4 <strong>M3</strong> – buffered<br />

regional canal


Map 4.1: Locations of <strong>the</strong> 5 named WFD water bodies in Delfland (as presented in HHRa, 2008).<br />

4.1. Pressures in Delfland<br />

The Delfland Water Board (Hoogheemraadschap van Delfland - HHR) identifies N and P and<br />

Cu and Zn as <strong>the</strong> key pressures in all water bodies (HHRa, 2008). Horticulture is a major<br />

industry in Delfland and a major contributor of emissions of N and P. Pesticide emissions<br />

from green houses are also a significant pressure. PAHs are ubiquitous in Delfland and <strong>the</strong><br />

HHR have not yet characterised <strong>the</strong>ir main sources (HHRa, 2008). Delfland WWTP<br />

emissions are discharged into <strong>the</strong> Rhein Estuary and do not directly contribute to <strong>the</strong> water<br />

body pollutant loadings. CSO emissions occur in Delfland and mainly result in odour<br />

complaints, fish-kill (due to oxygen depletion), and microbial contamination, but are not a<br />

major contributor of N (3%), P (6%), or Cu and Zn to total water body loads of <strong>the</strong>se<br />

substances (HHRa, 2008). Fur<strong>the</strong>r in<strong>for</strong>mation about Delfland pressures is provided below.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 19/109


4.1.1. Nitrogen and Phosphorus<br />

Control and reduction of N and P is one of <strong>the</strong> key objectives <strong>for</strong> HHR within <strong>the</strong> WFD with<br />

<strong>the</strong> intention to achieve a 50 % reduction in nitrogen concentrations in Delfland water bodies<br />

by 2015. In 2005 glasshouses accounted <strong>for</strong> around 50 % of <strong>the</strong> 1128 tons nitrogen load into<br />

<strong>the</strong> Delfland waterbodies and connection of <strong>the</strong> Delfland glasshouses to <strong>the</strong> waste water<br />

treatment system is expected to achieve a dramatic improvement in <strong>the</strong> nitrogen emissions<br />

situation (HHRb, 2008). Leaching from agricultural land accounts <strong>for</strong> a fur<strong>the</strong>r 30% of N<br />

emissions in Delfland and a reduction in agricultural activity (phasing-out of agriculture)<br />

combined with an organic manure policy, and <strong>the</strong> expanding urban area, are expected to<br />

reduce emissions from this source (HHRb, 2008).<br />

Figure 4.1: Emissions by source of nitrogen and phosphorus into <strong>the</strong> Delfland polder/boezem system,<br />

glasshouse horticulture accounts <strong>for</strong> around 50% of <strong>the</strong> total <strong>report</strong>ed 1128 tons of nitrogen and around<br />

42 % of <strong>the</strong> 120 tons of phosphorus.<br />

Denitrification is estimated (HHRb, 2008) to gas-off around a third of all nitrogen from <strong>the</strong><br />

Delfland system. Summer nitrogen concentrations are commonly around 6 mgN/l, <strong>the</strong><br />

improved scenarios are estimated to achieve <strong>the</strong> standard of 1.8 mg N/l in most areas o<strong>the</strong>r<br />

than central Delfland and <strong>the</strong> Delft area and <strong>the</strong> Schie (HHRb, 2008).<br />

The Delfland phosphorus emissions total around 120 tons per year, soil losses account <strong>for</strong><br />

around 45 % of emissions and glasshouses around 40 %. The connection of glasshouses to <strong>the</strong><br />

WWTP system, and <strong>the</strong> a<strong>for</strong>ementioned changes in agricultural activity, land area, and<br />

practices are expected to reduce average summer P concentrations, which are typically greater<br />

than 1 mgP/l, closer to <strong>the</strong> 0.3 mgP/l standard.<br />

4.1.2. Copper and Zinc<br />

Although copper and zinc are identified as a problem in <strong>the</strong> Delfland area, HHRa (2008)<br />

claim/state that since <strong>the</strong>se metals may come from a variety of sources and <strong>the</strong> relative extent<br />

of this is not currently known, it is difficult to determine objectives <strong>for</strong> improving <strong>the</strong>ir<br />

emission levels. A range of known sources of copper include building materials, vehicle brake<br />

linings, antifouling chemicals, copper baths, animal feed and manure, and fireworks. For zinc,<br />

galvanised building and road related structures, tyres, antifouling products, animal feed and<br />

manure, are all known sources. Given experiences elsewhere it might be expected that urban<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 20/109


unoff from built-up areas and road surfaces are <strong>the</strong> main sources of <strong>the</strong>se metals and<br />

consequently <strong>the</strong>ir control is not straight<strong>for</strong>ward.<br />

4.1.3. Pesticides and glasshouse emissions<br />

Pesticide emissions in Delfland are predominantly from glasshouses, although <strong>the</strong> use of<br />

herbicides to prevent weed growth on municipal paved surfaces is still a widespread practice<br />

and problem <strong>for</strong> water bodies. HHR also suggest that <strong>the</strong> connection of glasshouses to <strong>the</strong><br />

WWTP system would reduce direct regional emissions of pesticides, but that improved<br />

treatment technology would be required to reduce <strong>the</strong>ir concentration in effluents. Delfland<br />

WWTP effluent is discharged directly to <strong>the</strong> Rhine estuary, so <strong>the</strong>se emissions do not impact<br />

on <strong>the</strong> “inland” water bodies.<br />

Delfland had a little over 3000 glasshouses <strong>for</strong> horticulture in 2003/4 (Teunissen, 2005),<br />

which is approaching a third of all glasshouses in <strong>the</strong> Ne<strong>the</strong>rlands (>9600). A wide range of<br />

pesticides are used in glasshouse horticulture to control fungi, insects, root diseases.<br />

Pesticide emissions from glasshouses in <strong>the</strong> Ne<strong>the</strong>rlands are via <strong>the</strong> following main pathways<br />

(Teunissen 2005);<br />

� flushing or percolation of drainage water from ground cropped areas;<br />

� flushing or discharges drained from crops in artificial substrates;<br />

� discharges resulting from filter backwash;<br />

� direct vent escape of mist internal applications or drainage of condensate waters;<br />

� first-flush run-off of rainwater from <strong>the</strong> greenhouse;<br />

� atmospheric deposition.<br />

The pesticide situation in Delfland in relation to Glasshouse emissions is well documented<br />

and <strong>the</strong> following section provides fur<strong>the</strong>r in<strong>for</strong>mation on <strong>the</strong>se.<br />

Pesticides in Delfland<br />

Pesticide emissions from Delfland glasshouse horticulture are one of <strong>the</strong> major pressures <strong>for</strong><br />

<strong>the</strong> water board area. The following section introduces this subject regarding pesticide use<br />

and on ground practices and presents summaries of pesticide data <strong>for</strong> Delfland grab samples.<br />

Flushing and discharge of recirculating water used in pesticide application via <strong>the</strong> root<br />

environment is probably <strong>the</strong> most important role in polluting surface waters (WHD, 2008).<br />

Root environment pesticide treatments may include combinations of many different<br />

substances (Table 4.2). Tomatoes and paprika receive 7 to 8 out of 10 substances. Roses and<br />

gerbera pot plants 6 of 10 listed substances and <strong>the</strong> majority of gerbera growers use<br />

imidacloprid, through <strong>the</strong> root environment and 6% pymetrozine to control white-fly. These<br />

substances are also used <strong>for</strong> cucumber, tomato and eggplant <strong>for</strong> white-fly, and lice. For <strong>the</strong><br />

control of root diseases, in cucumber, tomato and peppers, propamocarb and etridiazol are<br />

used, <strong>for</strong> roses propamocarb, dimethomorph and metalaxyl, and <strong>for</strong> gerbera propamocarb and<br />

metalaxyl are applied.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 21/109


Table 4.2: Crops and numbers of growers using pesticides applied to <strong>the</strong> root environment (after WHD,<br />

2008).<br />

Cucumber<br />

Paprika<br />

Aubergine<br />

Root environment<br />

applications<br />

propamocarb 56 52 42 42 3 34 11 7<br />

imidacloprid 44 60 41<br />

34 94 8 4<br />

pymetrozine 44 28 55 38<br />

3 6<br />

Etridiazole<br />

44 10 40 30<br />

carbendazim 11 4 4 19 1 21 44 16 4<br />

Spinosad<br />

16 17<br />

4<br />

tolclophos-methyl<br />

27<br />

Metalaxyl<br />

13 33 4 4<br />

cyromazine 22<br />

4 26<br />

6<br />

dimethomorph 6 31 2<br />

With surface applications, powdery mildew in cucumbers is prevented using imazalil (72% of<br />

all use), and is applied with a proprietary smoke generator, which is also regularly used to<br />

control aphids in paprika growing houses. Deltamethrin and methomyl (Table 4.3) are used as<br />

part of crop rotation procedures (<strong>for</strong> vegetables and ornamentals) or are applied to products<br />

prior to delivery <strong>for</strong> auction (WHD, 2008).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 22/109<br />

Tomato<br />

Chrysan<strong>the</strong>mums<br />

Table 4.3: Crops and numbers of growers using pesticides applied aerially (after WHD, 2008).<br />

Cucumber<br />

Paprika<br />

Aubergine<br />

Aerial applications<br />

Abamectin 33 36 42 13 21 21 11 27 42<br />

Deltamethrin<br />

4 3<br />

33 7 6 2 27<br />

Methomyl 11 36 1 9 21 28<br />

17 4<br />

Pirimicarb 22<br />

56 2<br />

17 12<br />

Imazalil<br />

72<br />

2<br />

2 22<br />

Teunissen (2005) <strong>report</strong>ed on pesticide use in Ne<strong>the</strong>rlands glasshouse horticulture and<br />

summarised <strong>the</strong> mass of <strong>the</strong> products commonly used at that time (Table 4.4) and <strong>the</strong><br />

associated emission loads to surface waters from major glasshouse crop types (Table 4.5).<br />

While <strong>the</strong>se figures might not be accurate <strong>for</strong> <strong>the</strong> current situation, and <strong>the</strong> substances in use<br />

have changed due to various products being banned, <strong>the</strong>y give an indication of <strong>the</strong> intensity of<br />

pesticide use and <strong>the</strong> resultant fluxes to surface waters. Table 4.6reproduces data from<br />

Teunissen (2005) recording pesticide exceedances of threshold water quality standards<br />

(MTR), indicating <strong>the</strong> number of times greater than <strong>the</strong> MTR <strong>the</strong> worst observed<br />

concentrations were, in Delfland in <strong>the</strong> three to four years prior to <strong>the</strong> date of publication.<br />

Teunissen notes that pesticide usage varies according to emergent diseases as <strong>the</strong> seasons<br />

progress. Table 3.8 includes <strong>the</strong> year in which certain substances were banned from<br />

commercial use, and it is apparent that, where measured, some of <strong>the</strong>se are still being detected<br />

frequently in sediment dredge samples.<br />

Tomato<br />

Chrysan<strong>the</strong>mums<br />

Roses<br />

Roses<br />

Gerbera<br />

Gerbera<br />

Potpl.<br />

Potpl.<br />

Orchids<br />

Orchids


Table 4.4: Top 15 active substances with <strong>the</strong> greatest emissions to surface waters 1997.<br />

Emissions to Water Percentage of total emissions to<br />

Substance Usage (kg)<br />

(kg)<br />

water from glasshouses<br />

Etridiazol 13331 66.4 15.4<br />

Tolclofos-methyl 8774 46.6 10.8<br />

Propoxur* 581 26.9 6.2<br />

Propamocarb-HCl 13221 21.3 4.9<br />

Thiram1) 6726 18.7 4.3<br />

Daminozide 23227 18.3 4.2<br />

Methiocarb 16768 17.8 4.1<br />

Parathion* 5976 16.9 3.9<br />

Carbofuran 3150 15.8 3.7<br />

Oxamyl 1875 14.7 3.4<br />

Methomyl 5621 12.9 3<br />

Dichloorvos* 3430 12.1 2.8<br />

Cyromazine 841 11.6 2.7<br />

Mevinfos* 2188 11.3 2.6<br />

Fosethyl-aluminium 11091 10.1 2.3<br />

*denotes banned substances (after Lieffijn, 2000)<br />

Table 4.5: Crop related total emissions and equivalent areal emission rates 1997.<br />

Emissions to water<br />

Product Emissions to water (kg) Product<br />

(kg/Ha)<br />

Chrysan<strong>the</strong>mums 128.9 Chrysan<strong>the</strong>mums 173<br />

O<strong>the</strong>r plants 124.7 O<strong>the</strong>r plants 134<br />

Pot plants 68.2 Alstroemeria 64<br />

Rose 52.8 Rose 58<br />

Lily/Iris 11.4 Lily/Iris 52<br />

Fresia 11.3 Fresias 45<br />

Cucumber 9.2 Pot plants 34<br />

Alstroemeria 7.2 Anthurium 17<br />

Tomato 6.1 Orchids 13<br />

Paprika 3.2 Gerbera 10<br />

Orchids 2.6 Carnations 9<br />

Gerbera 2.1 Cucumber 9<br />

Anthurium 1.6 Aubergine 6<br />

Carnations 1.3 Tomato 4<br />

Aubergine<br />

(after Lieffijn, 2000)<br />

0.8 Paprika 2<br />

First flush and condensate waters are collected and reused by over 80% of glasshouse<br />

operating companies, and 60% of growers claim no discharges, but around 10% <strong>report</strong><br />

discharges to sewer and approaching 30% were still discharging directly to surface water<br />

(WHD, 2008). The majority of growers that discharge are substrate growers, whereas ground<br />

growers account <strong>for</strong> only 20% of companies discharging, and <strong>the</strong> volumes.<br />

The times of discharging are highly erratic. Table 4.7 indicates <strong>the</strong> number of growers that<br />

discharge pesticides to surface water or sewers at <strong>the</strong> given frequencies. Daily discharges are<br />

made by 28% of growers, 9% discharge weekly, 21% of growers discharge monthly, and 48%<br />

occasionally (WHD, 2008). The daily discharge volumes are relatively small (< 10 m 3 ) but<br />

occasional discharges, e.g. at <strong>the</strong> end of a particular crop cycle can be greater than 5000 m 3 .<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 23/109


Table 4.6: Exceedances of water quality objectives <strong>for</strong> specific pesticides at Delfland (2001-4) surface<br />

water monitoring sites and year at which certain substances were banned (after Teunissen, 2005).<br />

Substance Year banned Exceedance of MTR<br />

Bromofos-methyl 1992 5<br />

Carbofuran<br />

27<br />

Chloorfenvinvos<br />

990<br />

Chloorthalonil<br />

1088<br />

Diazinon 2001 12<br />

Dichloorvos 1999 78000<br />

Dieldrin 1985 2<br />

Endosulfansulfaat<br />

3<br />

a-Endosulfan 1988 2<br />

b-Endosulfan 1988 2<br />

Endrin 1987 14<br />

Etridiazol<br />

402<br />

Flutolanil 2004 8<br />

Heptenofos 1998 19<br />

Malathion<br />

18<br />

Mevinfos 1999 30<br />

Parathion-ethyl 2002 5297<br />

Parathion-methyl 2004 566<br />

Permethrin 2000 1067<br />

Pirimicarb<br />

14<br />

Pirimifosmethyl<br />

283<br />

Pyrazofos 2000 2<br />

Toclofosmethyl<br />

4<br />

Tolylflanide<br />

6<br />

Triazofos 1998 24<br />

Vinchlozolin<br />

1<br />

Table 4.7: The number of glasshouse growers that flush or discharge to surface water or sewer systems at<br />

given intervals and <strong>the</strong> substances present (after WHD, 2008).<br />

Pesticides applied to <strong>the</strong> root Number of companies and frequency of application<br />

environment<br />

daily weekly monthly occasional total<br />

azoxystrobin (Amistar) - - 2 - 2<br />

carbendazim 3 4 11 22 40<br />

cyromazine (Trigard) 1 - 2 11 14<br />

dimethomorph (Paraat) 1 2 6 4 13<br />

etridiazool (Aaterra) 5 3 7 23 38<br />

imidacloprid (Admire) 6 7 15 25 53<br />

mancozeb/metalaxyl<br />

(Fubol Gold/Ridomil)<br />

5 - 2 2 9<br />

propamocarb (Previcur) 7 4 14 33 58<br />

pymetrozine (Plenum) 5 - 8 25 38<br />

pyrimethanil (Scala) - 1 2 4 7<br />

spinosad (Conserve/Tracer) 3 - 4 12 19<br />

tolclofos-methyl (Rizolex) 3 2 4 3 12<br />

Table 4.8 provides responses from growers regarding <strong>the</strong> volumes of <strong>the</strong>ir discharges and<br />

<strong>the</strong>ir regularity, although WHD (2008) <strong>report</strong> that not all growers provided in<strong>for</strong>mation on<br />

<strong>the</strong>ir practices. The responses suggest that ornamental growers tend to discharge higher<br />

volumes than growers of vegetables.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 24/109


Table 4.8: Indicative discharge volumes <strong>for</strong> growers of ornamentals and vegetables at various repeat<br />

frequencies.<br />

Numbers of growers<br />

Vegetables Ornamentals<br />

Frequency < 10 m3 10 - 100 m3 > 100 m3 < 10 m3 10 - 100 m3 > 100 m3<br />

Daily 4 4 1 6 4 8<br />

Weekly no data no data no data 3 2 2<br />

Monthly 3 5 2 4 8 4<br />

Occasionally 8 15 13 3 13 no data<br />

Appendix V presents a tabular summary of pesticide data <strong>for</strong> Delfland grab water samples,<br />

including total numbers of analyses per substance, number and percentage positive detections,<br />

number of locations where each substance was tested <strong>for</strong> and detected. Average “site mean”<br />

concentrations are presented, and <strong>the</strong> concentration value <strong>for</strong> <strong>the</strong> location with <strong>the</strong> highest<br />

“site mean”. Site means were calculated <strong>for</strong> each location <strong>for</strong> all data available, excluding less<br />

than detection values, thus <strong>the</strong> site means only reflect those samples where positive detections<br />

were made. The table also indicates <strong>the</strong> year when certain substances were banned and <strong>the</strong><br />

literature source cited in this <strong>report</strong> that refers to each substance.<br />

The data indicate that HHR have analysed and detect a wider range of pesticides than those<br />

cited as being used in greenhouses by WHD (2008), Teunissen (2005) and Lijffen (2000), and<br />

<strong>the</strong>re also a number of substances, cited in <strong>the</strong> literature, that have not been tested <strong>for</strong> by<br />

HHR. A number of <strong>the</strong> banned substances had a relatively high level of detection; flutolanil<br />

13%, pyrimethanil 39%, dichlorvos 8%, diethyl-methyl-benzamide 23%, diazinon 11%,<br />

endosulphansulphate 19%, and o<strong>the</strong>rs were detected to a less often.<br />

Figure 4.2 presents <strong>the</strong> substances that are most frequently detected and/or have <strong>the</strong> highest<br />

site mean and average site mean concentrations; <strong>the</strong>se include many substances not listed by<br />

WHD, Teunissen or Lieffijn. For example, furalaxyl has <strong>the</strong> highest site mean at 5.6 μg/l.<br />

Iprodione and parathion-methyl also had high site mean values, but all three substances were<br />

infrequently detected.<br />

Some pesticides that were frequently detected often had low site mean concentrations (e.g.<br />

pirimicarb, toclophos-methyl, pirimethanyl, diethophencarb and diuron). The substances<br />

detected most frequently and with <strong>the</strong> highest concentrations tend to be those identified in <strong>the</strong><br />

literature (e.g. imidacloprid, carbendazim, dimethomorph, metalaxyl, etridiazol). Glyphosate<br />

is one substance which was commonly detected, and was present at 4 out of 5 locations where<br />

it was tested, <strong>the</strong> mean concentrations were also relatively high. An examination of <strong>the</strong><br />

correlation of <strong>the</strong> substance means, and <strong>the</strong>ir geographic location, shows that <strong>the</strong>re is great<br />

variability between substances, and some similarities in pesticide profiles between locations.<br />

There is good potential <strong>for</strong> a more detailed investigation of <strong>the</strong>se data. Many of <strong>the</strong> substances<br />

are very use specific, and <strong>the</strong> variability in occurrence in surface waters in Delfland suggests<br />

that <strong>the</strong>re is a high degree of operator/on-ground practice differences.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 25/109


Figure 4.2: Mean pesticide concentrations in Delfland, <strong>the</strong> number of sampling locations where each<br />

substance is detected and <strong>the</strong> percentage detection <strong>for</strong> each substance (substances marked * are<br />

mentioned in <strong>the</strong> literature cited above).<br />

4.2. Delfland Programs of Measures.<br />

Delfland has already outlined <strong>the</strong>ir programs of measures <strong>for</strong> contributing to <strong>the</strong> WFD<br />

objectives (HHRa, 2008) as follows:<br />

1. Measures <strong>for</strong> water treatment – improve sewer connections, upgrade sewer overflows,<br />

uncouple paved areas from foul sewer network. (Although sewer overflows are not<br />

considered to be a major pressure <strong>for</strong> nutrient and metal emissions, <strong>the</strong>y have a significant<br />

transient impact and are included amongst <strong>the</strong> PoMs <strong>for</strong> Delfland by HRRa (2008);<br />

2. Reduce agricultural land fertilisation, by 2015 N and P fertilizer application should be<br />

balanced with vegetative uptake;<br />

3. Construction of vegetated channel bank buffer strips to maximise nutrient uptake;<br />

4. Measures to increase water residence time within polders, this is known to maximise N<br />

and P uptake.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 26/109


Additional politically driven measures expected to contribute to <strong>the</strong> WFD goals <strong>for</strong> 2015<br />

include:<br />

5. The establishment of national standards <strong>for</strong> emissions from glasshouses, in particular N<br />

and P to be effective from 2010;<br />

6. Changes in flushing regimes of boezems to reduce N and P;<br />

7. Improve understanding of <strong>the</strong> eutrophic impacts of dredging, i.e. <strong>the</strong> resuspension of N<br />

and P associated with settled materials;<br />

8. Research into <strong>the</strong> impact of varying polder water levels to control N and P (process not<br />

specified).<br />

Exisiting monitoring in Delfland is well targeted <strong>for</strong> <strong>the</strong> identified pressures in <strong>the</strong> water<br />

board area, <strong>the</strong> following section describes <strong>the</strong> monitoring and identifies areas where<br />

improvements would enhance <strong>the</strong> existing programme.<br />

4.3. <strong>Monitoring</strong> in Delfland<br />

Delfland operates a comprehensive program of ecological and chemical monitoring which<br />

includes ambient monthly to weekly water quality grab sampling, biological surveys which<br />

are undertaken at around 5 yearly intervals, and analyses of dredge sediments provides a<br />

useful insight into <strong>the</strong> sinks and reservoirs of many micro-pollutants. The datasets provided to<br />

this project do not include any event-response based sampling. Existing HHR <strong>report</strong>s have<br />

highlighted some areas where fur<strong>the</strong>r knowledge is required, this is in <strong>the</strong> transport and fate of<br />

glasshouse pesticides and sourcing of PAH contamination (HRRa, 2008).<br />

4.3.1. Surface water quality data<br />

Delfland surface water quality data is grouped under four main monitoring <strong>the</strong>mes,<br />

Glasshouses, Urban Areas, Base Network and WFD <strong>Monitoring</strong> (Table 4.9).<br />

Glasshouse monitoring is <strong>the</strong> most intensive monitoring undertaken in Delfland, and a large<br />

suite of organic micropollutants, mainly pesticides, is analysed (see Appendix III).<br />

As identified in Section 4.1.3, <strong>the</strong> operational aspects of pesticide use in glasshouses mean<br />

that <strong>the</strong> emission of <strong>the</strong>se substances is significantly dependent on on-ground operational<br />

practices. Under <strong>the</strong>se circumstances it is clear that routine grab sampling is unlikely to<br />

capture emissions associated with transient applications of pesticide cocktails, or intra-crop<br />

clean-down dressings, or inter-seasonal sterilization operations. These operationally<br />

influenced emission episodes need carefully planned and targeted surveys which are guided<br />

by direct knowledge of application times, and if possible with <strong>the</strong> cooperation of glasshouse<br />

operators. The passive detector method proposed <strong>for</strong> pesticide detection in Luxembourg<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 27/109


would be well suited <strong>for</strong> this purpose and fur<strong>the</strong>r investigations might examine <strong>the</strong> utility of<br />

this approach.<br />

The Base network and urban areas are <strong>the</strong> least intensively monitored and have <strong>the</strong> smallest<br />

suite of contaminants analysed. An examination of <strong>the</strong> time-series of a common analyte,<br />

conductivity (it is measured at all sites), demonstrates <strong>the</strong> occurrence of sampling visits <strong>for</strong> a<br />

typical glasshouse, urban and WFD monitoring site in Delfland (Figure 4.3). In general,<br />

monthly sampling is undertaken, but more recently, sampling at <strong>the</strong> WFD sites was increased<br />

to <strong>for</strong>tnightly and <strong>the</strong>n from April 2009 to weekly sampling. Weekly sampling will increase<br />

<strong>the</strong> probability of sampling during rainfall runoff events, however, appropriate high frequency<br />

event sampling would be necessary to characterise storm event responses.<br />

Table 4.9: Number of water quality monitoring locations within specific monitoring schemes.<br />

<strong>Monitoring</strong> Theme Glasshouses Urban Areas Base network WFD monitoring<br />

Number of sites 21 (monthly) 14 (monthly9 12 (monthly9 3 (weekly)<br />

Electrical Conductivity (mS)<br />

1.9<br />

1.7<br />

1.5<br />

1.3<br />

1.1<br />

0.9<br />

0.7<br />

0.5<br />

Glasshouse OW058-001<br />

WFD OW111-000<br />

Base/Urban OW216-002<br />

Figure 4.3: Water quality sampling visits at three sites in Delfland, representing <strong>the</strong> main monitoring<br />

<strong>the</strong>mes (note that sampling frequency at <strong>the</strong> WFD sites has been increased from monthly to weekly).<br />

<strong>Data</strong> preparation issues with <strong>the</strong> Delfland datasets were relatively minor. Analyte names had<br />

to be translated into English and some date <strong>for</strong>matting issues had to be corrected. The main<br />

datasets provided <strong>for</strong> Delfland were surface water quality, sediment quality and benthic<br />

invertebrate data. The Delfland surface water quality dataset includes records <strong>for</strong> 52 sites<br />

(Map 4.2). The database includes some 347065 records <strong>for</strong> 5877 samples and includes 207<br />

analytes. Figure 3.3 provides a site by site breakdown of <strong>the</strong> numbers of records, samples and<br />

analytes. The purpose of this plot is to demonstrate <strong>the</strong> distribution of data and hence<br />

in<strong>for</strong>mation. Clearly, some sites have much more in<strong>for</strong>mation than o<strong>the</strong>rs. For example only<br />

half of <strong>the</strong> sites have more than 50 analytes tested <strong>for</strong>, and slightly fewer sites have more than<br />

50 samples taken, consequently only 8 locations have more than 20000 data records and most<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 28/109


sites have a factor of ten less. This difference is a consequence of <strong>the</strong> sampling program<br />

undertaken.<br />

An investigation of <strong>the</strong> occurrence of values at or below <strong>the</strong> analytical limit of detection,<br />

demonstrates that many substances tested <strong>for</strong> are not detected (Figure 4.4). Some of <strong>the</strong>se<br />

substances may be absent or tend to adsorb readily to particulates and are settled-out of <strong>the</strong><br />

water column. Analysis of Delfland dredge materials (Section 4.3.2, below) demonstrates that<br />

many of <strong>the</strong>se substances, infrequently detected in <strong>the</strong> water column, are present in channel<br />

sediments.<br />

Map 4.2: The location of sampling points and <strong>the</strong> Polder/Boezem system of Delfland, showing water<br />

quality grab sampling locations, macroinvertebrate survey points and channel dredging locations.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 29/109


Figure 4.4: Numbers of samples and analytes <strong>for</strong> surface water quality sites in <strong>the</strong> Delfland study area.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 30/109


Figure 4.5: The detection of substances analysed <strong>for</strong> in surface waters collected in <strong>the</strong> Delfland region (this<br />

in<strong>for</strong>mation is summarised in more detail in Appendix II).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 31/109


4.3.2. Sediment quality data<br />

The Delfland study partner provided sediment quality data <strong>for</strong> dredge materials sampled to<br />

assess <strong>the</strong> degree of contamination prior to removal and disposal. The boezems accumulate<br />

settled materials and need to be dredged on a regular basis to avoid water-logging of adjacent<br />

land, maintain drainage potential, and <strong>the</strong> fluvial capacity of <strong>the</strong> channels when pumping is<br />

necessary to draw away runoff from rainfall events. Sediment reservoirs of contaminants and<br />

nutrients in static water bodies such as <strong>the</strong> canals and drainage channels may represent source<br />

zones <strong>for</strong> resuspension and onward transport, and accumulated contaminated material must<br />

enter <strong>the</strong> food chain <strong>for</strong> functional organisms that feed in <strong>the</strong> bottom sediments.<br />

<strong>Data</strong> from 1995 to 2007 was initially collated. This includes around 689000 records <strong>for</strong> 6321<br />

samples taken from 259 areas. There are 136 analyte codes in <strong>the</strong> dataset. Figure 4.6 shows 37<br />

locations where more than 50 samples have been collected. Samples tend to be taken in<br />

Spring or early Summer (Figure 4.7).<br />

Figure 4.6: Numbers of dredge sediment samples from from locations where more than 50 samples have<br />

been analysed.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 32/109


Figure 4.7: Numbers of samples taken each month from all Delfland channel dredging locations between<br />

1995 and 2007.<br />

Heavy metals and organic micro-pollutants often attach, adsorb, or complex preferentially<br />

with particulate phase materials, and hence <strong>the</strong>y may be more readily detected in sediments<br />

than in water column grab samples. Figure 4.8 demonstrates <strong>the</strong> high levels of detection <strong>for</strong><br />

most substances. Section 4.3.2.1 demonstrates <strong>the</strong> relative detection of <strong>the</strong>se substances in<br />

sediment and water samples.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 33/109


Figure 4.8: Numbers of records per analyte and numbers of results greater than <strong>the</strong> analytical detection<br />

limit <strong>for</strong> sediment samples collected by <strong>the</strong> Delfland study partner between 1995 and 2007.<br />

The following sections provide some more analysis of <strong>the</strong> relative success of micro-pollutant<br />

detection in dredged materials compared to surface water grab samples, and also examine<br />

PAH profiles in dredge sediment samples, showing some patterns that may be useful to assist<br />

in tracing different sources of <strong>the</strong>se substances.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 34/109


4.3.2.1. Micro-pollutant Positive Results <strong>for</strong> water samples and dredge sediments<br />

of Delfland.<br />

The Delfland dataset includes both sediment and water column samples analysed <strong>for</strong> micropollutants<br />

providing an opportunity to compare <strong>the</strong> rates of positive detection, and highlight<br />

<strong>the</strong> inadequacy of grab water samples <strong>for</strong> indicating <strong>the</strong> presence of such contamination.<br />

The significance of settled particulate matter<br />

Heavy metals and persistent organic pollutants generally attach, adsorb, or complex with<br />

particulate phase materials, which tend to settle out of <strong>the</strong> water column under dry wea<strong>the</strong>r<br />

flow conditions. Consequently <strong>the</strong> detection of <strong>the</strong>se substances is much more reliable<br />

from sediments than <strong>the</strong> water column as demonstrated in <strong>the</strong> Delfland data:<br />

Group of substances % Detection in Dredge<br />

% Detection on Surface water<br />

Sediments<br />

grab samples<br />

Heavy metals >85 % 75 to 17 %<br />

PAHs >95 % 85%).<br />

Arsenic, nickel, zinc and copper had <strong>the</strong> highest detection rates in water samples (>75%), but<br />

lead, chromium, cadmium and mercury were detected in only 46 to 17 % of results in water<br />

samples, respectively. The high molecular weight PAHs were detected in greater than 95 % of<br />

sediment results, and less than 32 % of results <strong>for</strong> water samples, and <strong>the</strong> low molecular<br />

weight PAHs, which tend to be less abundant in <strong>the</strong> PAH mix, had relatively low detection in<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 35/109


sediments and were rarely detected in water. The majority of pesticides had between 60 and<br />

80 % recovery in sediment samples, but only a few substances had greater than 4 % recovery,<br />

with <strong>the</strong> majority being detected in around 0.5 to 2 % of water samples. The PCBs had<br />

positive results in between 66 and approaching 80 % of dredge sediment samples, but in water<br />

samples greater than 99 % of results were negative.<br />

These findings are not new, but <strong>the</strong>y graphically demonstrate that sampling <strong>the</strong> water column<br />

does not detect a range of substances which are detrimental in <strong>the</strong> aquatic environment. It<br />

fur<strong>the</strong>r raises a number of key points, relevant to sampling and monitoring throughout Europe<br />

within <strong>the</strong> Water Framework Directive and, pertinent to <strong>the</strong> <strong>M3</strong> project:<br />

� The immission situation <strong>for</strong> certain aquatic organisms that live in <strong>the</strong> benthic<br />

environment cannot be adequately characterised by water column sampling alone.<br />

This is especially likely to be <strong>the</strong> case in <strong>the</strong> Delfland region and o<strong>the</strong>r similar canal<br />

and drainage systems elsewhere, where normal hydrological behaviour and<br />

associated hydraulic flushing of channels does not occur;<br />

� Ambient or routine sampling is rarely adequate to characterise storm-event responses,<br />

when particulate associated substances are resuspended from bottom reservoirs within<br />

<strong>the</strong> channel. Storm event sampling and analysis of raw water samples will detect<br />

resuspended particulate associated substances (which may facilitate assessment of<br />

worst-case exposure to <strong>the</strong>se substances of water column dwelling organisms);<br />

� Sediment sampling and characterisation of typical contaminant levels in bottom<br />

sediments can assist in <strong>the</strong> assessment of pollutant loads, if suspended load and<br />

emissions are known. If suspended sediment is sampled through rainfall-runoff events<br />

and <strong>the</strong> average contaminant concentrations are well characterised <strong>the</strong>n ranges of<br />

anticipated storm related contaminant concentrations can be estimated;<br />

This issue is closely associated with <strong>the</strong> matter of estimating contaminant loads through<br />

catchments and drainage networks. The characterisation of storm response events and<br />

sediment associated contaminant levels is critical to determining fluxes of <strong>the</strong>se substances,<br />

and in addition <strong>the</strong>ir sources from emissions or from dry wea<strong>the</strong>r accumulated reservoirs<br />

within <strong>the</strong> channel.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 36/109


Figure 4.9: Percentage of Delfland sediment and water sample results <strong>for</strong> micro-pollutants with<br />

positive detections.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 37/109


4.3.2.2. Delfland PAH Sediment Profiles<br />

The Delfland Water Board, in a recent <strong>report</strong> HHRa (2008) remarked that PAHs were not<br />

adequately characterised <strong>for</strong> surface waters to be able to assess <strong>the</strong>ir sources, but suggest that<br />

<strong>the</strong>ir levels are worst in <strong>the</strong> East Boezem, and link this with commercial shipping activities.<br />

PAHs are often derived from <strong>the</strong> incomplete combustion of liquid and solid fuels, e.g. from<br />

diesel fuel and wood or coal smoke, and enter surface waters via runoff from impervious<br />

surfaces. Sources from shipping may include marine coatings, lubricants and exhaust and<br />

bilge emissions (HHRa, 2008). The relative proportions of <strong>the</strong> PAH compounds, <strong>the</strong>ir<br />

geographical distribution may help identify differing emission sources (Wilkinson, 2007;<br />

Kochbach et al., 2006; Kennedy, 1999). An initial examination of <strong>the</strong> PAH relationships <strong>for</strong><br />

Delfland dredge sediment samples suggests two main sources materials, those high in<br />

naphthalene and those which are not (Figure 4.10). The 500 samples (out of 1890) with <strong>the</strong><br />

greatest naphthalene and pyrene are used in <strong>the</strong> analysis. This was done to eliminate samples<br />

close to detection limit, since <strong>the</strong> analytical discretisation interval (i.e. <strong>the</strong> jumps in data<br />

values) at very low values interferes with <strong>the</strong> substance inter-relationships. Anthracene,<br />

dibenzo(a,h)anthracene, fluorene, acenap<strong>the</strong>ne and acenapthylene were excluded from <strong>the</strong><br />

analysis because <strong>the</strong>ir concentrations were small relative to <strong>the</strong> resolution of <strong>the</strong> analytical<br />

method (i.e. <strong>the</strong> steps in values were too great).<br />

% Pyrene<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

y = -0.1862x + 17.42<br />

R² = 0.6536<br />

0.00 20.00 40.00 60.00 80.00 100.00<br />

% Napthalene<br />

Figure 4.10: Percentage pyrene against percentage naphthalene in Delfland dredge sediment samples.<br />

Figure 4.10 demonstrates <strong>the</strong> approximately 100 samples that were dominated by naphthalene<br />

in concentrations well above detection. The remaining 400 samples were dominated by <strong>the</strong><br />

o<strong>the</strong>r PAHs (and <strong>the</strong>se substances correlate highly with <strong>the</strong> sum of PAHs, Table 4.10)<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 38/109


Table 4.10: Correlation coefficient of each PAH as a predictor of <strong>the</strong> sum of PAHs in dredge sediment<br />

samples from Delfland.<br />

substance r 2 correlation sum of PAHs<br />

fluoran<strong>the</strong>ne 0.979<br />

pyrene 0.972<br />

phenanthrene 0.909<br />

benzo(b)fluoran<strong>the</strong>ne 0.927<br />

chrysene 0.968<br />

benzo(a)anthracene 0.925<br />

benzo(a)pyrene 0.911<br />

benzo(g.h.i)perylene 0.882<br />

indeno(1.2.3-c.d)pyrene 0.892<br />

benzo(k)fluoran<strong>the</strong>ne 0.916<br />

naphthalene 0.392<br />

Map 4.3 shows <strong>the</strong> locations of 885 of <strong>the</strong> dredge sediment samples <strong>for</strong> which point locations<br />

are available. Although samples with greater than 5 % naphthalene occur across Delfland, two<br />

distinct “hot-spots” are apparent where naphthalene makes up more than 60 % of <strong>the</strong> sum of<br />

PAHs.<br />

Map 4.3: Locations of dredge sediment samples highlighting where naphthalene dominates <strong>the</strong> PAH<br />

composition.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 39/109


Napthalene is well-known to be highly volatile and hence its use as an indicator <strong>for</strong> sourcing<br />

pollution might be questioned. In <strong>the</strong> case presented here, however, naphthalene is so<br />

dominant in certain samples, and <strong>the</strong> o<strong>the</strong>r PAHs in <strong>the</strong>se samples are in concentrations on<br />

average around 30-50 % lower than in <strong>the</strong> non-naphthalene samples. In this case, it is<br />

<strong>the</strong>re<strong>for</strong>e difficult to support <strong>the</strong> argument that <strong>the</strong> compositional differences are purely a<br />

function of differential volatilisation.<br />

Possible general PAH sources, that have already been suggested, are soot from vehicle<br />

exhaust emissions and materials used in commercial shipping. It is also likely that heavy fuel<br />

oils (bunker fuel) used to power large vessels will give a different PAH signature than<br />

common petrol (benzin), diesel (gas-oil) and jet-fuel (kerosene) combustion products.<br />

Naphthalene, specifically, is also used as a soil fumigant, however, fur<strong>the</strong>r analysis of it’s<br />

uses and potential sources in Delfland would need to be undertaken to establish <strong>the</strong> cause of<br />

<strong>the</strong> patterns seen in <strong>the</strong> dredge sediment samples.<br />

4.3.3. Biological monitoring<br />

The Delfland biological monitoring data includes results <strong>for</strong> 239 locations (Map 4.4) each<br />

surveyed twice in <strong>the</strong> period between 1997 and 2007. Surveying collects a wide range of<br />

in<strong>for</strong>mation on diatoms, phytoplankton, zooplankton, macrophytes and macroinvertebrates<br />

identified to species level, and this is combined with in<strong>for</strong>mation about <strong>the</strong> habitat and water<br />

chemistry to estimate a series of scores in <strong>the</strong> following areas (Franken et al., 2006):<br />

� Trophic condition - degree of eutrophication;<br />

� Saprobic status - oxygen status;<br />

� Comparative status - degree of correspondence of <strong>the</strong> animals/plants that occur in<br />

relation to <strong>the</strong> <strong>original</strong> type of water (<strong>for</strong> example ditch in clay,<br />

or canal in sand);<br />

� Acid status - condition of pH (determined using <strong>the</strong> animals/plants);<br />

� Brackishness - condition of salinity (determined using <strong>the</strong> animals/plants);<br />

� Management - management of <strong>the</strong> water body (<strong>for</strong> example straight edges,<br />

possibility <strong>for</strong> plants to grow on <strong>the</strong> banks);<br />

� Toxicology - degree to which <strong>the</strong> water is influenced by toxicological<br />

substances (<strong>for</strong> example hazardous substances like imacloprid).<br />

In <strong>the</strong> final scoring of a site, <strong>the</strong> worst result from each characteristic is used to summarise <strong>the</strong><br />

overall condition, in a “one-out, all-out” manner. Values are between 1 to 5; 1 being very<br />

poor, and 5 being very good condition. Table 4.11 is an excerpt of <strong>the</strong> summary table <strong>for</strong> <strong>the</strong><br />

biological scores <strong>for</strong> Delfland (translated into English).<br />

This scoring approach, which assigns a site to poor status on <strong>the</strong> basis on any one bad value,<br />

has <strong>the</strong> disadvantage that most sites score poorly <strong>for</strong> some reason or ano<strong>the</strong>r, when in reality<br />

<strong>the</strong>re may be aspects of <strong>the</strong> condition at a given location which are good and offer good<br />

ecological potential. It might be more appropriate to use a weighted combination of <strong>the</strong><br />

scores and hence provide a more tiered indication of ecological potential.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 40/109


Table 4.11 demonstrates that <strong>the</strong> sites presented generally have moderate to poor oxygen and<br />

nutrient status. Map 4.4 provides a total of all <strong>the</strong> scores showing those sites that score most<br />

poorly, <strong>the</strong>se mainly occur in an arc from west to north to east covering <strong>the</strong> most developed<br />

areas, i.e. those with <strong>the</strong> greatest urban area or percentage of greenhouse land-cover.<br />

Table 4.11: An excerpt of <strong>the</strong> EBEO-System ecological health scoring <strong>for</strong> sites in Delfland.<br />

Site number Location Xcoord Ycoord Year Water type Total Chemistry Structure Oxygen Trophic Toxicity Brackish Comparative Acid<br />

OW001-000 Kerstanje, spoorbrug 83351 448531 2000 KANAAL 1 3 1 2 2 4 3<br />

OW001-000 Kerstanje, spoorbrug 83351 448531 2004 KANAAL 2 3 2 2 2 3 4<br />

OW001B000 De Spieringw atering, Spieringw eteringw eg 82146 448779 2000 SLOOT 2 4 2 3 3 3 5 2 3<br />

OW001B000 De Spieringw atering, Spieringw eteringw eg 82146 448779 2004 SLOOT 2 4 2 3 2 5 5 2 5<br />

OW004-000 Kromme Zw eth, Noordlierw eg afbuiging 77028 445195 1998 KANAAL 1 4 1 3 2 5 1<br />

OW004-000 Kromme Zw eth, Noordlierw eg afbuiging 77028 445195 2002 KANAAL 2 4 2 2 3 5 1<br />

OW004-001 Zw eth, Dorpskade 80270 447486 2000 KANAAL 3 4 3 2 2 4 2<br />

OW004-001 Zw eth, Dorpskade 80270 447486 2004 KANAAL 3 4 3 2 2 4 3<br />

OW004-001 Zw eth, Dorpskade 80270 447486 2005 KANAAL 2 2 2 2 1 4 2<br />

OW004-002 Zeven gaten van Lingen 77497 445401 1998 SLOOT 2 4 2 3 2 5 5 2 3<br />

OW004-002 Zeven gaten van Lingen 77497 445401 2002 SLOOT 3 4 3 3 2 5 5 2 5<br />

OW005-000 Zw ethkanaal, rijksw eg N 213 74701 443818 1998 KANAAL 2 3 2 2 3 4 1<br />

OW005-000 Zw ethkanaal, rijksw eg N 213 74701 443818 2002 KANAAL 3 4 3 3 3 4 2<br />

OW006-003 Oranjekanaal, 700 m. tnv spoorbrug 72099 441918 1998 KANAAL 2 2 2 3 2 4 2<br />

OW006-003 Oranjekanaal, 700 m. tnv spoorbrug 72099 441918 2002 KANAAL 3 4 3 2 2 5 3<br />

OW006-016 Oude Spui, einde w eg bij schuur 72522 441981 1998 SLOOT 2 3 2 3 1 2 5 2 3<br />

OW006-016 Oude Spui, einde w eg bij schuur 72522 441981 2002 SLOOT 2 4 2 2 2 3 5 2 3<br />

OW007-000 De Strijp, Zw aansheul 75588 446164 1999 SLOOT 1 2 1 3 2 3 5 2 2<br />

OW007-000 De Strijp, Zw aansheul 75588 446164 2003 SLOOT 1 3 1 2 2 3 5 2 3<br />

OW007-001 Verlengde Strijp, Veilingw eg 77480 444629 1998 KANAAL 2 4 2 3 2 4 1<br />

OW007-001 Verlengde Strijp, Veilingw eg 77480 444629 2002 KANAAL 1 4 1 3 2 5 2<br />

OW008-000 Naaldw ijksevaart, Verdilaan 74308 445529 1999 KANAAL 2 4 2 2 2 5 2<br />

OW008-000 Naaldw ijksevaart, Verdilaan 74308 445529 2003 KANAAL 2 4 2 2 3 4 2<br />

OW008-002 Zijsloot Naaldw ijkse Vaart, singel Waterlelie 73220 445630 1999 SLOOT 1 3 1 3 1 2 5 2 3<br />

OW008-002 Zijsloot Naaldw ijkse Vaart, singel Waterlelie 73220 445630 2003 SLOOT 2 4 2 3 2 3 4 2 3<br />

Map 4.4: Locations of <strong>the</strong> biological survey sites in Delfland which have <strong>the</strong> poorest combined score (red<br />

spots). Green spots indicate those sites with <strong>the</strong> best scores.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 41/109


An in<strong>for</strong>mative fur<strong>the</strong>r examination of <strong>the</strong>se data would be to link <strong>the</strong> biology, water and<br />

sediment quality data to reveal <strong>the</strong> presence and extent of <strong>the</strong> various pressures in relation to<br />

<strong>the</strong> biological status.<br />

The following section provides a summary of <strong>the</strong> findings <strong>for</strong> Delfland.<br />

4.4. Delfland summary<br />

An overview is provided <strong>for</strong> <strong>the</strong> study partner regions. Since so much in<strong>for</strong>mation has been<br />

provided <strong>the</strong> summary <strong>for</strong> each region has generated a large amount of material. For this<br />

reason quick look-up tables with in<strong>for</strong>mation about <strong>the</strong> driving <strong>for</strong>ces, stresses and impacts in<br />

each region and <strong>the</strong>ir nature in terms of spatial extent and temporal dynamics have been<br />

provided along with a more elaborated narrative.<br />

Figure 4.11 provides a key to <strong>the</strong> symbols used in <strong>the</strong> data summary tables. The temporal<br />

dynamics symbols are intended to give an “indication” of <strong>the</strong> nature of emissions, and <strong>the</strong><br />

variability of <strong>the</strong> analyte concentrations, and <strong>the</strong> quality of grab sampling in relation to <strong>the</strong><br />

system being sampled. The good, moderate, poor smileys are intended to be interpreted in <strong>the</strong><br />

context of <strong>the</strong>ir subject heading, and generally indicate what is bad/worse/poor/inadequate,<br />

moderate, and good.<br />

Figure 4.11: Key to <strong>the</strong> data/monitoring summary tables.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 42/109


The Delfland summary<br />

The Delfland monitoring programme offers a well balanced monitoring situation in relation to<br />

<strong>the</strong> pressures identified. Table 4.12 presents <strong>the</strong> basic overview of pressures and impacts, and<br />

associated monitoring. The following text provides a summary of some general and specific<br />

points relevant to <strong>the</strong> data situation and monitoring in Delfland.<br />

� Greenhouses present a key stress in Delfland, due to nutrient and pesticide emissions<br />

o Emissions are intermittent and <strong>the</strong>ir composition, timing and volume is closely<br />

related to <strong>the</strong> grower’s practices, which in turn are driven by <strong>the</strong> cycles of<br />

crops, <strong>the</strong> nature of <strong>the</strong> crops, <strong>the</strong>ir pests and seasons and cycles of cropping.<br />

Different crops require different pesticide dressings and different pests require<br />

different cocktails of chemicals, and greenhouse disinfection between crops<br />

requires a major clean-down of facilities;<br />

o In general suites of analytes <strong>for</strong> pesticides appear to be well targeted, but <strong>the</strong>se<br />

will change over time as some products are banned and new products enter <strong>the</strong><br />

market;<br />

o<br />

Greenhouse emissions require some targeted sampling in cooperation with<br />

willing growers – this would entail sampling during <strong>the</strong> wash down of<br />

facilities, and at times when different pesticide applications are being made;<br />

� Basic physico-chemical water quality monitoring is carried out at all sites, but<br />

coverage of certain micro-pollutants namely <strong>the</strong> polycyclic aromatic hydrocarbon<br />

(PAHs) is limited to a small number of sites (in water samples). It is not certain<br />

whe<strong>the</strong>r PAHs are specifically a problem in Delfland, but are ubiquitous as ano<strong>the</strong>r<br />

aspect of general water body contamination. Since <strong>the</strong>se substances are on <strong>the</strong> priority<br />

list, greater attention to <strong>the</strong>ir sources and impact should be provided. The dredge data<br />

shows significant PAH compositional variation and this variability may offer some<br />

emission source diagnostic potential;<br />

� Limits of detection <strong>for</strong> many micro-pollutants in grab water quality samples are rarely<br />

exceeded, this can mean that <strong>the</strong>y are absent, or it may be that sampling does not occur<br />

when <strong>the</strong>y are emitted and/or resuspended from channel sediments (see following<br />

point);<br />

� Dredge sediment analysis data augments <strong>the</strong> water quality data in a useful way, in that<br />

it provides an indication of <strong>the</strong> material entering and settling in <strong>the</strong> boezem channels.<br />

This material is available into <strong>the</strong> food-web and impacts on <strong>the</strong> stream biota, and may<br />

be entrained if channel flows ever locally increase sufficiently. Many substances that<br />

are rarely detected by surface water monitoring (as mentioned above) are found in <strong>the</strong><br />

dredge samples;<br />

� A large amount of model application work with SOBEK to characterise <strong>the</strong> hydraulic<br />

behaviour of <strong>the</strong> polder/boezem system has already been undertaken. The linkages<br />

with water quality and loads of contaminants are not fully developed. Since rainfall<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 43/109


events result in pumping responses to drain <strong>the</strong> polders, sampling to establish <strong>the</strong><br />

extent of sediment remobilisation in <strong>the</strong> region of pumping stations, as well as to<br />

establish fluxes of materials up and through <strong>the</strong> system out into <strong>the</strong> Rhein and North<br />

Sea is needed.<br />

� Although monitoring may be adequate to provide a basic characterisation of indicators<br />

of certain stresses in <strong>the</strong> Delfland channels, in order to meet <strong>the</strong> purposes of <strong>the</strong><br />

M 3 /WFD objectives <strong>the</strong> existing datasets should be augmented by event-based and<br />

diurnal cycle monitoring to adequately characterise substance emission loads and<br />

immission characteristics and transport fluxes. (In general, dynamic modelling<br />

requires high intensity monitoring to provide sufficient data to build, calibrate and<br />

validate models, be<strong>for</strong>e scenario testing can be carried out);<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 44/109


Table 4.12: Pressure and monitoring summary table <strong>for</strong> Delfland.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 45/109


assessed? Not yet. Although, simple improvements in emissions may be adequate to observe measureable ecological improvements.<br />

<strong>Data</strong> suited <strong>for</strong> modelling?<br />

Can PoM objectives be<br />

Due to <strong>the</strong> above, without pumping in<strong>for</strong>mation and detailed observation estimation of loads is very difficult.<br />

The existing SOBEC hydrodynamic modelling may be used with <strong>the</strong> available WQ data, however, any conclusions about <strong>the</strong> value of this work have yet to be<br />

Is flow available at or nearby?<br />

<strong>Data</strong> adequate to estimate<br />

loads?<br />

The "hydrological" nature of <strong>the</strong> Delfland water-bodies means that conventional uni-directional flow estimates are not available. The system is completely<br />

Do WQ and biology sites match?<br />

No additional comments<br />

5. O<strong>the</strong>r questions relevant to <strong>M3</strong> objectives and WFD issues (where additional comment is required)<br />

indiv idual discharge episodes)<br />

appropriate <strong>for</strong> <strong>the</strong> dynamics of <strong>the</strong><br />

emissions and immission situation<br />

associated with each pressure?<br />

below <strong>the</strong> limit of detection. (Not<br />

targeted or sufficient to capture<br />

Spatial cov erage good. Pesticide<br />

lev els in ambient samples are generally<br />

Spatial cov erage captures<br />

main drainage network.<br />

Not directly monitored. As abov e As abov e<br />

4. Is <strong>the</strong> spatial and temporal<br />

frequency of monitoring<br />

Ambient monthly grab sampling can represent <strong>the</strong> general situation, but will not characterise rainfall related runoff and flushing of substances.<br />

winter, efficiency of leaf clearing<br />

in autumn.<br />

not tend to cause major episodic<br />

changes unless a major plant<br />

failure occurs<br />

spills can result in sporadic<br />

emissions<br />

pesticides, spills, and wash down of plant<br />

and equipment can result in episodic<br />

emissions<br />

Application of weedkillers in<br />

public spaces, road salting in<br />

plant operations do cause<br />

fluctuations in quality, but <strong>the</strong>y do<br />

down, flushing and o<strong>the</strong>r<br />

uncontrolled activ ities, and<br />

pesticides with (longer dynamic – days,<br />

weeks). Seasonal dressings of fertilisers and<br />

different phases of growth or crop type.<br />

Major “clean-down” of glasshouses<br />

between crops or seasons<br />

particulate matter, no microbial<br />

contaminants.<br />

Spatially extensiv e, effectiv ely<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 46/109<br />

(hours to days). Sporadic<br />

spillage potential (hours).<br />

v ariation. Rainfall response CSO<br />

emissions (hours to days). WWTP<br />

days). Sporadic spillage<br />

potential (hours). Washing<br />

bound P and pesticides (days). Percolation<br />

of mobile substances such as N and certain<br />

and do any practice based fractors<br />

influence emission patterns?<br />

urbanisation. Episodic rainfallev<br />

ent response based emissions<br />

(daily, weekly to months). Pesticide<br />

dressings to suit different problems at<br />

Temporally relativ ely constant with<br />

often significant diurnal load<br />

Episodic rainfall-ev ent response<br />

based emissions (hours to<br />

discharges etc. Episodic rainfall-runoff of<br />

turbidity and associated substances, i.e.<br />

3. What are <strong>the</strong> spatio-temporal<br />

characteristics of <strong>the</strong> emissions,<br />

diffuse, but v arying in intensity<br />

according to degree of<br />

Localised point-source emissions (100s<br />

meters). Routine and episodic emissions<br />

Spatially limited point sources with<br />

effects spanning 100s to 10s km.<br />

Spatially limited to industrial<br />

areas, can be extensiv e.<br />

Generally diffuse sources, but specific point<br />

emissions present due to hard-standing<br />

substances associated with <strong>the</strong><br />

pressures / emissions?<br />

of pesticides measured, including<br />

v arious <strong>report</strong>ed as commonly used in<br />

Ne<strong>the</strong>rlands greenhouses.<br />

2. Are <strong>the</strong> measured analytes<br />

adapted to <strong>the</strong> contaminants and<br />

Most phys-chem parameters and<br />

nutrients measured. A v ery wide range<br />

Cu, Ni, Zn (not Pb), no organic<br />

micro-pollutants,<br />

turbidity/clarity, oxygen<br />

depleting substances,<br />

substances, <strong>the</strong>rmal pollution,<br />

particulate matter<br />

No micro-pollutants, oxygen<br />

depleting substances, eutrophying<br />

As urban areas. Yes - Nutrients, microbial contaminants,<br />

turbidity, pesticides analysed. Specificity o<br />

pesicides needs checking<br />

impacts and associated<br />

substances?<br />

litter, microbial contamination,<br />

oils, PAHs<br />

substances, <strong>the</strong>rmal pollution,<br />

particulate matter<br />

Type of pressure present Greenhouse Horticulture Urban areas, road systems Waste water treatment facilities Industrial areas Farmland, grazed and cultivated<br />

Pesticides, fertilisers, organic matter, Heav y metals, pesticides, Endochrine disruptors, oxygen Heav y metals, solv ents, oils, Nutrients, microbial contaminants, turbidity,<br />

1. What common pressures /<br />

turbidity<br />

turbidity, particulate matter, depleting substances, eutrophying PAHs<br />

pesticides<br />

emissions exist and what are <strong>the</strong>ir


5. REGIONAL SURVEY: ERFT<br />

The second <strong>M3</strong> study partner is <strong>the</strong> Erftverband who manage all matters relating to water in<br />

<strong>the</strong> Erft catchment, river system and groundwater bodies. Erftverband, a non-profit<br />

organisation, which under public law, is responsible <strong>for</strong> <strong>the</strong> management of groundwater,<br />

water supply, waste water and surface water. The Federal German State of North Rhine-<br />

Westphalia, within whose borders <strong>the</strong> Erft river system lies, is <strong>the</strong> responsible authority<br />

regarding <strong>report</strong>ing under <strong>the</strong> water framework directive to <strong>the</strong> EU.<br />

The Erft catchment covers an area of 1930 km² and has a total river length of 682 km which is<br />

subdivided into 92 water bodies. The human population is 529,000 and land use is dominated<br />

by farmland, <strong>for</strong>est and pasture (Figure 5.1).<br />

Landuse Area (Ha) % area sum<br />

Arable farmland 109894.7 55.01 55.0<br />

Woodland and Forest 33171 16.60 71.6<br />

Pasture 15834 7.93 79.5<br />

Residential area 11203 5.61 85.1<br />

Industrial and Commercial area 10031 5.02 90.2<br />

Open cast mines 6738 3.37 93.5<br />

Mixed use areas 5050 2.53 96.1<br />

Horticulture 1839 0.92 97.0<br />

All o<strong>the</strong>r uses 6007 3.01 100.0<br />

Residential<br />

area, 5.61<br />

Mixed use<br />

Open cast areas, 2.53<br />

mines, 3.37<br />

Industrial and<br />

Commercial<br />

area, 5.02<br />

Pasture, 7.93<br />

Woodland<br />

and Forest,<br />

16.60<br />

Horticulture,<br />

0.92<br />

All o<strong>the</strong>r<br />

uses, 3.01<br />

Arable<br />

farmland,<br />

55.01<br />

Figure 5.1: Land use in <strong>the</strong> Erft catchment.<br />

There are 7 water body classifications <strong>for</strong> <strong>the</strong> Erft catchment (Figure 5.2), lowland<br />

watercourses dominate, with gravelly lowland watercourses (types 16 and 17) accounting <strong>for</strong><br />

over 40% of <strong>the</strong> water bodies. One third of <strong>the</strong> 92 water bodies are classified as heavily<br />

modified because of e.g. housing or dams, hydropower plants or altered hydrological regime<br />

due to mining activities. There are five artificial water bodies with a total length of 50km,<br />

mainly mill streams and canals. The Erft is classified as heavily modified or artificial <strong>for</strong><br />

about 80% of its length (http://www.niederrhein.nrw.de/erft/kap_4/kap_4_2.html), although this is not<br />

strongly represented by <strong>the</strong> water body classifications to which <strong>the</strong>y have been assigned.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 47/109


Erft - types of water bodies<br />

18<br />

20%<br />

19<br />

13%<br />

17<br />

21%<br />

5<br />

2%<br />

5.1<br />

13%<br />

16<br />

20%<br />

7<br />

11%<br />

type no.<br />

(%)<br />

description<br />

5 (2%) siliceous submountainous streams rich<br />

in coarse material<br />

5.1 (13%) siliceous submountainous streams rich<br />

in fine material<br />

7 (11%) carbonate submountainous streams<br />

rich in coarse material<br />

16 (20%) gravelly lowland streams<br />

17 (21%) gravelly lowland rivers<br />

18 (20%) loess-loamy lowland streams<br />

19 (13%) small lowland water courses in river<br />

valleys<br />

Figure 5.2: The proportions of WFD water body types in <strong>the</strong> Erft catchment as assigned by MUNLV.<br />

5.1. Pressures in <strong>the</strong> Erft Catchment<br />

The main pressures identified by <strong>the</strong> North Rhine-Westphalian Ministerium für Umwelt und<br />

Naturschutz, Landwirtschaft und Verbraucherschutz (MUNLV) in <strong>the</strong> process of <strong>the</strong> WFD<br />

include:<br />

� physico-chemical pressures: communal and industrial discharges, diffuse pollution by<br />

agriculture, sump water discharges of lignite open pit mining and heavy metal<br />

contamination by <strong>for</strong>mer ore mining activities;<br />

� quantitative pressures: sump water discharges (500 million m 3 of groundwater per year<br />

is pumped into <strong>the</strong> Erft to keep open cast lignite mines dry);<br />

� morphology: transverse structures (which impound suspended material and reduce <strong>the</strong><br />

upstream passage of fish).<br />

Of <strong>the</strong>se identified pressures, 54% are related to morphology, i.e. transverse structures, flow<br />

regulation, backwater effects or fish passage. A fur<strong>the</strong>r 37% are emissions quality related (e.g.<br />

waste water treatment plants, erosion) or emissions quantity and quality (e.g. rain water and<br />

sump water discharges, and inflows from tributaries). Pressures related to abstractions and<br />

emissions quantity alone (abstraction and cooling water discharge) account <strong>for</strong> 3% of<br />

pressures, while 6% are not clearly specified (labelled as “unknown” or “o<strong>the</strong>r significant<br />

anthropogenic pressure”). Water abstractions from <strong>the</strong> Erft are used to irrigate intensive fruit<br />

and vegetable production areas. Water supply <strong>for</strong> domestic and industrial uses (620 million<br />

m 3 per year) comes predominantly from groundwater sources.<br />

Mine groundwater drainage contributes 7 m 3 /sec to <strong>the</strong> mean runoff of 10 m 3 /sec at <strong>the</strong> mouth<br />

of <strong>the</strong> Erft, and of <strong>the</strong> 500 million m 3 discharged, around one half of this water is discharged<br />

to <strong>the</strong> middle reaches of <strong>the</strong> river (Christoffels, 2008).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 48/109


Erftverband operates 42 waste water treatment plants (WWTPs) serving a population<br />

equivalent of 1.2 million people and <strong>the</strong> <strong>report</strong>ed reduction in nitrogen and phosphorus from<br />

waste water are approximately 76% <strong>for</strong> nitrogen and 91% <strong>for</strong> phosphorus.<br />

Since agricultural land accounts <strong>for</strong> around 63 % of <strong>the</strong> Erft catchment area (Figure 5.1), <strong>the</strong><br />

majority of which is arable farmland, agricultural landuse can be expected to be a significant<br />

pressure in <strong>the</strong> Erft Catchment. Major cropping groups on this land are wheat, rye, barley and<br />

sugar beet (Christoffels, 2008). Figure 5.3 presents some water quality status maps <strong>report</strong>ed<br />

by MUNLV, <strong>the</strong>se indicate <strong>the</strong> river network status <strong>for</strong> total nitrogen, total phosphorus,<br />

oxygen, zinc and 2 pesticides, isoproturon and metribuzin. The maps demonstrate that <strong>the</strong><br />

river network shows nitrogen impacts throughout <strong>the</strong> agricultural area. The status <strong>for</strong><br />

phosphorus is not indicated to be as bad, but this may be a consequence of <strong>the</strong> monitoring<br />

accuracy. Oxygen status is generally acceptable, but zinc is elevated through a good part of<br />

<strong>the</strong> main river valley, which coincides with <strong>the</strong> main motorway (autobahn) route. The<br />

pesticide isoproturon is elevated along most of <strong>the</strong> main Erft channel. Metribuzin is elevated<br />

mainly in <strong>the</strong> Finkelbach, which also has elevated nitrogen, phosphorus and marginally<br />

impacted oxygen status. In <strong>the</strong> presentation of <strong>the</strong> online monitoring carried-out by<br />

Erftverband, Christoffels (2008), describes <strong>the</strong> pressures related to specific monitoring<br />

locations in more detail (see Section 5.2.1.2 below). Figure 5.4 indicates <strong>the</strong> areas where <strong>the</strong><br />

likelihood of high levels of phosphorus erosion and nitrogen leaching exist.<br />

The next section presents a little background on <strong>the</strong>about <strong>the</strong> administrative arrangements<br />

pertinent to <strong>the</strong> Erft system and introduces and describes <strong>the</strong> datasets held by Erftverband and<br />

presented <strong>for</strong> <strong>the</strong> <strong>M3</strong> project.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 49/109


Figure 5.3: Maps of river status <strong>for</strong> 2004 as <strong>report</strong>ed by MUNLV showing results <strong>for</strong> a variety of<br />

parameters indicating nutrients N and P, and oxygen, zinc and two example pesticides, isoproturon and<br />

metribuzin.<br />

Leaching (N) Erosion (P)<br />

Figure 5.4: The potential <strong>for</strong> diffuse pollution by leaching (nitrogen) and erosion (phosphorus) in <strong>the</strong> Erft<br />

catchment (downloaded from http://193.159.219.153/bestandsaufn/daten/erft/abb/abb3_1_3_1 & 2.pdf).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 50/109


5.2. <strong>Monitoring</strong> in <strong>the</strong> Erft Catchment<br />

Christoffels (2008) lists <strong>the</strong> main pressures on <strong>the</strong> Erft system as highlighted in <strong>the</strong> section<br />

above, <strong>the</strong>se are agriculture, coal mining discharges, WWTP emissions, abstractions <strong>for</strong><br />

irrigation and aquatic uses. Recreation is also an important use of <strong>the</strong> Erft, with fishing and<br />

boating being two recreational activities quoted (Christoffels, 2008). The monitoring strategy<br />

in <strong>the</strong> Erft is aimed at quantifying river condition in respect to <strong>the</strong>se pressures and uses of <strong>the</strong><br />

river system.<br />

The existing monitoring locations are not specifically located to meet objectives associated<br />

with <strong>the</strong> WFD (operational, surveillance and investigative monitoring). Of <strong>the</strong> total of 124<br />

monitoring locations operated by Erftverband, only 59 directly characterise a WFD water<br />

body. The o<strong>the</strong>r locations are side-streams and multiple locations within water-bodies.<br />

Erftverband monitors biological and physico-chemical parameters with grab samples and<br />

operates five online monitoring stations. Sediment grab samples are also collected along <strong>the</strong><br />

Erft mainstream, as discussed below.<br />

5.2.1. Surface water quality data<br />

5.2.1.1. Grab samples<br />

Water quality grab samples from <strong>the</strong> Erft system are collected at least twice a year at <strong>the</strong><br />

beginning of <strong>the</strong> growing season in spring and in Autumn at <strong>the</strong> end of <strong>the</strong> season. Samples<br />

are tested <strong>for</strong> a range of up to 125 analytes falling into 10 groups (Table 5.1). On average, 186<br />

samples are collected each year but only 9 locations are sampled 5 times or more often per<br />

year (Figure 5.6). 28 sites are sampled 3 times a year, 21 sites 2 times a year and one site has<br />

irregular sampling. As Christoffels (2008) notes, <strong>the</strong> grab water quality samples are only a<br />

valid “snap-shot” <strong>for</strong> <strong>the</strong> moment of sampling, and suggests that <strong>the</strong>y are insufficient on <strong>the</strong>ir<br />

own to characterise <strong>the</strong> highly dynamic processes occurring in <strong>the</strong> river, and that biological<br />

examinations give a better integrated reflection of longer-term conditions. Online monitoring<br />

in <strong>the</strong> Erft is intended to characterise <strong>the</strong> true dynamics of <strong>the</strong> system (see below).<br />

The parameters tested <strong>for</strong> in <strong>the</strong> grab samples (Table 5.1) give an instantaneous indication of<br />

<strong>the</strong> oxygen status, nutrient conditions, WWTP impacts, major ion chemistry, as well as, heavy<br />

metals, microbial indicators, and organic micro pollutants. In this sense <strong>the</strong> analyte suite is<br />

well adapted to characterise <strong>the</strong> pressures and impacts on <strong>the</strong> system, it is merely <strong>the</strong> sampling<br />

frequency which is, as acknowledged by Christoffels (2008), not suited to provide a<br />

characterisation of system dynamics.<br />

In terms of <strong>the</strong> bulk of grab sample data, a total of 1241 grab samples were collected in <strong>the</strong><br />

time period January 2003 to August 2009 and 74,673 measurements/analyses per<strong>for</strong>med.<br />

Figure 5.5 provides a site by site breakdown of <strong>the</strong> numbers of records, samples and analytes.<br />

For example <strong>the</strong>re are two sites with nearly 80 samples each but very few records in <strong>the</strong><br />

database. These locations are used to determine <strong>the</strong> effects of <strong>the</strong> flood retention basin<br />

Eicherscheid and are tested only <strong>for</strong> temperature, pH, conductivity, ammonium and<br />

phosphorus. Most sites have 20 or 14 samples taken and are tested <strong>for</strong> around 50 analytes.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 51/109


Table 5.1: Water quality parameter groupings of Erftverband analyses and general % greater than <strong>the</strong><br />

detection limit.<br />

Parameter grouping number of example analytes no. of % > detection limit<br />

analytes<br />

records<br />

general parameters 27 temperature, DO, hardness,<br />

suspended solids<br />

21,466 99,7%<br />

organoleptic parameters 5 smell, colour 6,009 100%<br />

oxygen depleting substances 4 BOD, TOC 4,314 68%<br />

nitrogen compounds 6 Norg, NH4-N 6,586 39%<br />

phosphorus 3 total P, ortho-phosphate 2,475 63%<br />

salt content 4 conductivity, chloride 3,397 100%<br />

Metals 20 iron, cadmium, nickel 20,510 35%<br />

hygiene-relevant param. 4 E. coli, bacteria count 1,616 99,9%<br />

organic halogen compounds 1 AOX 232 77%<br />

pesticides & pharmaceuticals 51 Atrazine, Diclofenac 13,023 4.7%<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

500<br />

0<br />

0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

N. records<br />

751<br />

735<br />

330<br />

314<br />

325<br />

754<br />

621<br />

630<br />

633<br />

771<br />

776<br />

310<br />

641<br />

337<br />

624<br />

628<br />

769<br />

645<br />

631<br />

616<br />

615<br />

622<br />

626<br />

629<br />

642<br />

647<br />

637<br />

635<br />

623<br />

625<br />

634<br />

639<br />

644<br />

768<br />

774<br />

327<br />

752<br />

332<br />

608<br />

614<br />

331<br />

313<br />

336<br />

607<br />

609<br />

329<br />

360<br />

361<br />

328<br />

340<br />

341<br />

356<br />

357<br />

753<br />

323<br />

326<br />

620<br />

7950<br />

666<br />

N. samples<br />

751<br />

735<br />

330<br />

314<br />

325<br />

754<br />

621<br />

630<br />

633<br />

771<br />

776<br />

310<br />

641<br />

337<br />

624<br />

628<br />

769<br />

645<br />

631<br />

616<br />

615<br />

622<br />

626<br />

629<br />

642<br />

647<br />

637<br />

635<br />

623<br />

625<br />

634<br />

639<br />

644<br />

768<br />

774<br />

327<br />

752<br />

332<br />

608<br />

614<br />

331<br />

313<br />

336<br />

607<br />

609<br />

329<br />

360<br />

361<br />

328<br />

340<br />

341<br />

356<br />

357<br />

753<br />

323<br />

326<br />

620<br />

7950<br />

666<br />

N. analytes<br />

751<br />

735<br />

330<br />

314<br />

325<br />

754<br />

621<br />

630<br />

633<br />

771<br />

776<br />

310<br />

641<br />

337<br />

624<br />

628<br />

769<br />

645<br />

631<br />

616<br />

615<br />

622<br />

626<br />

629<br />

642<br />

647<br />

637<br />

635<br />

623<br />

625<br />

634<br />

639<br />

644<br />

768<br />

774<br />

327<br />

752<br />

332<br />

608<br />

614<br />

331<br />

313<br />

336<br />

607<br />

609<br />

329<br />

360<br />

361<br />

328<br />

340<br />

341<br />

356<br />

357<br />

753<br />

323<br />

326<br />

620<br />

7950<br />

666<br />

Figure 5.5: Numbers of database records, samples and analytes <strong>for</strong> surface water quality sites in <strong>the</strong> Erft<br />

study area.<br />

As can be seen in Figure 5.7, most samples are collected during <strong>the</strong> first three quarters of each<br />

year with very few samples collected during October, November and December.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 52/109


average nr. of samples/ year<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

620<br />

7950<br />

314<br />

337<br />

735<br />

751<br />

325<br />

330<br />

754<br />

616<br />

631<br />

637<br />

310<br />

615<br />

621<br />

622<br />

623<br />

624<br />

625<br />

626<br />

628<br />

629<br />

630<br />

633<br />

634<br />

635<br />

639<br />

641<br />

642<br />

644<br />

645<br />

647<br />

768<br />

769<br />

771<br />

774<br />

776<br />

327<br />

313<br />

331<br />

332<br />

336<br />

607<br />

608<br />

609<br />

614<br />

752<br />

323<br />

326<br />

328<br />

329<br />

340<br />

341<br />

356<br />

357<br />

360<br />

361<br />

753<br />

666<br />

sampling location<br />

Figure 5.6: Average numbers of samples taken annually from Erftverband sampling locations.<br />

Samples per month<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

4 5<br />

25<br />

37<br />

2<br />

37<br />

15<br />

17<br />

37<br />

2<br />

7 11 16<br />

2<br />

37<br />

15<br />

52<br />

35<br />

2<br />

3<br />

4<br />

2<br />

7<br />

2<br />

19<br />

43<br />

2<br />

36<br />

37<br />

15<br />

17<br />

2<br />

2<br />

7<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 53/109<br />

19<br />

43<br />

2<br />

38<br />

15<br />

17<br />

37<br />

2<br />

2<br />

7<br />

25<br />

37<br />

2 5<br />

48<br />

17<br />

37<br />

2<br />

2<br />

7<br />

20<br />

37<br />

8<br />

37<br />

16<br />

17<br />

37<br />

2<br />

5<br />

4<br />

Jan 03<br />

Mrz 03<br />

Mai 03<br />

Jul 03<br />

Sep 03<br />

Nov 03<br />

Jan 04<br />

Mrz 04<br />

Mai 04<br />

Jul 04<br />

Sep 04<br />

Nov 04<br />

Jan 05<br />

Mrz 05<br />

Mai 05<br />

Jul 05<br />

Sep 05<br />

Nov 05<br />

Jan 06<br />

Mrz 06<br />

Mai 06<br />

Jul 06<br />

Sep 06<br />

Nov 06<br />

Jan 07<br />

Mrz 07<br />

Mai 07<br />

Jul 07<br />

Sep 07<br />

Nov 07<br />

Jan 08<br />

Mrz 08<br />

Mai 08<br />

Jul 08<br />

Sep 08<br />

Nov 08<br />

Jan 09<br />

Mrz 09<br />

Mai 09<br />

Jul 09<br />

Figure 5.7: Water quality sampling ef<strong>for</strong>t by Erftverband by month (i.e. numbers of grab samples taken<br />

per month).<br />

Out of <strong>the</strong> 51 pesticides and pharmaceuticals measured only 30 were above detection limit in<br />

water samples (Figure 5.8). Concerning pesticides, Isoproturon (winter and summer cereals)<br />

and Diuron (herbicide used on roads) were detected most often but still in only 30% of<br />

samples. These last two are also classified as priority substances under <strong>the</strong> WFD. Most<br />

measurements above detection limit in <strong>the</strong> pharmaceutical group were <strong>for</strong> Pentoxifyllin (a<br />

blood circulation drug) and Diclofenac (an analgesic).<br />

Erftverband is <strong>the</strong> only M 3 study partner to analyse <strong>for</strong> dissolved metals as well as total<br />

metals. Elevated levels of iron and manganese occur mainly in <strong>the</strong> lower reaches of <strong>the</strong> Erft<br />

and are due to mining activities and mine drainage water discharges. Ano<strong>the</strong>r major source<br />

<strong>for</strong> metals, especially Mn, Zn, Ni and Cd is <strong>the</strong> Burgfeyer Stollen, a disused gallery<br />

discharging into <strong>the</strong> Veybach in <strong>the</strong> south-western part of <strong>the</strong> Erft region.<br />

15<br />

37<br />

9<br />

7<br />

50


Isoproturon<br />

Diuron<br />

Chloridazon<br />

Metamitron<br />

Metazachlor<br />

Metolachlor<br />

Atrazin<br />

Metribuzin<br />

Simazin<br />

Desethylatrazin<br />

Hexazinon<br />

Terbuthylazin<br />

Metoxuron<br />

Metobromuron<br />

Chloroxuron<br />

Linuron<br />

Chlortoluron<br />

Sebuthylazin<br />

Methabenzthiazuron<br />

Desethylterbuthylazin<br />

Propazin<br />

Monuron<br />

Monolinuron<br />

Desisopropylatrazin<br />

Cyanazin<br />

Terbutryn<br />

Prometryn<br />

Pentoxifyllin<br />

Diclofenac<br />

MCPA<br />

Mecoprop (=MCPP)<br />

Carbamazepin<br />

Ibuprofen<br />

Naproxen<br />

Dichlorprop<br />

Fenoprofen<br />

Clofibrinsäure<br />

2,4-D<br />

2,4,5-T<br />

MCPB<br />

Fenoprop<br />

2,4-DB<br />

Metalaxyl<br />

Terbumeton<br />

Tebuconazol<br />

Flurtamon<br />

Fluroxypyr<br />

Ethofumesat<br />

Carbetamid<br />

Bromacil<br />

Gemfibrozil<br />

> L.o.D<br />

Records<br />

pesticides and pharmaceuticals<br />

0 50 100 150 200 250 300 350 400<br />

numbers of results<br />

total manganese<br />

total iron<br />

total nickel<br />

total zinc<br />

total lead<br />

total cobalt<br />

total copper<br />

total cadmium<br />

total chromium<br />

diss. manganese<br />

diss. iron<br />

diss. nickel<br />

diss. zinc<br />

diss. cobalt<br />

diss. cadmium<br />

diss. copper<br />

diss. lead<br />

diss. chromium<br />

total mercury<br />

total arsenic<br />

metals<br />

0 200 400 600 800 1000 1200<br />

numbers of results<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 54/109<br />

> L.o.D<br />

Records<br />

Figure 5.8: Total records and results greater than <strong>the</strong> limit of detection <strong>for</strong> pesticides, pharmaceuticals<br />

and metals in Erft water quality grab samples.<br />

To recap, <strong>the</strong> grab samples provide a well pressure-adapted but very sparse snap-shot of water<br />

quality conditions in <strong>the</strong> Erft water-bodies. At <strong>the</strong> o<strong>the</strong>r extreme, online monitoring offers a<br />

major contrast, with a switch in philosophy from many locations sampled infrequently to a<br />

few locations with a very high intensity observations.<br />

5.2.1.2. Online data<br />

The Erftverband operates 6 online measurement stations in <strong>the</strong> Erft system, four of <strong>the</strong>m are<br />

along <strong>the</strong> Erft and one (Metternich) is located in <strong>the</strong> River Swist (Table 5.2). These stations<br />

are aimed at complimenting <strong>the</strong> multiple location grab sampled data (see above), by providing<br />

measurements at an intensity that facilitates <strong>the</strong> description of diurnal cycles in water quality


and <strong>the</strong> impact of rainfall-runoff / flood wave events and <strong>the</strong> associated dynamic variations in<br />

water quality (Christoffels (2008). Two methods of online monitoring are distinguished; “insitu”<br />

stations make measurements directly in <strong>the</strong> flowing water <strong>for</strong> a limited range of<br />

parameters; “on-site” stations collect and pump water to a monitoring station that may use<br />

reagent based analyses <strong>for</strong> a wider range of parameters beyond those which are measured insitu.<br />

In-situ stations are visited on a weekly basis <strong>for</strong> maintenance and to download data.<br />

A key issue with <strong>the</strong> installation and use of online approaches is <strong>the</strong> necessity to protect, what<br />

is often expensive, equipment from damage by flood debris, boating, or acts of vandalism.<br />

This often limits <strong>the</strong> location of such stations to sites that limit <strong>the</strong> potential <strong>for</strong> flood damage,<br />

and which have limited or no public access or that are o<strong>the</strong>rwise protected. The majority of<br />

<strong>the</strong> on-site stations are located on <strong>for</strong>mer WWTP sites and are hence secure.<br />

Christoffels (2008) summaries <strong>the</strong> advantages and disadvantages of on-site stations compared<br />

to in-situ stations. Advantages include:<br />

� Greater protection from outside interference;<br />

� Less impact of wea<strong>the</strong>r conditions;<br />

� Ease of operation and maintenance;<br />

� Use of reagents af<strong>for</strong>ds wider parameter set.<br />

Disadvantages include:<br />

� High operating costs;<br />

� Lack of mobility;<br />

� Risk of water quality trans<strong>for</strong>mations en-route from river to station.<br />

Figure 5.9 presents a schematic representation of <strong>the</strong> Erft online monitoring zones and<br />

relationship between <strong>the</strong> stations, <strong>the</strong> stream network and <strong>the</strong> presence of WWTP emissions.<br />

Table 5.2 summarises <strong>the</strong> pressures and parameters associated with each monitoring station.<br />

The Euskirchen monitoring zone includes three measurement stations, <strong>the</strong> Veybach at<br />

Mechernich, <strong>the</strong> Erft at Eicherscheid and at Euskirchen itself. The Veybach station is an “insitu”<br />

station and is located at <strong>the</strong> outlet of <strong>the</strong> Burgfeyer Stollen, <strong>the</strong> outlet of a disused mine<br />

containing ores rich in Ni, Zn, Co and Cd. The purpose of <strong>the</strong> station is to monitor potential<br />

disturbances in <strong>the</strong> mine and possible discharges of toxic mine-water.<br />

The Veybach in-situ monitor is a YSI sensor, and <strong>the</strong> first of this kind to be installed in <strong>the</strong><br />

Erft system. The sensor is located in <strong>the</strong> stilling well of mine outlet and was installed in April<br />

2002. It recorded oxygen, conductivity and water depth until April 2003, since <strong>the</strong>n it has<br />

additionally recorded turbidity, pH and temperature. The instrument is a compact water-proof<br />

unit which includes power cells, data logger and all instruments, and can be immersed and<br />

kept out of site, and is hence much less prone to interference and vandalism (Christoffels,<br />

2008). This also improves <strong>the</strong> potential <strong>for</strong> exact siting of <strong>the</strong> probe and <strong>the</strong> two month<br />

operational period reduces <strong>the</strong> need <strong>for</strong> maintenance (Christoffels, 2008), although care is<br />

required to ensure that fouling of optical instruments does not impinge on data quality.<br />

The second in-siu station is in <strong>the</strong> Erft headwaters and is sited downstream of a flood<br />

retention basin at a location prone to algal blooms in summer and poor oxygenation<br />

conditions. The outlet of <strong>the</strong> euskirchen zone is monitored by an on-site station at Euskirchen<br />

and this site captures <strong>the</strong> impacts of five WWTPs and also measures Ni in order to monitor<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 55/109


<strong>the</strong> downstream transport of drainage from <strong>the</strong> Burgfeyer Stollen in <strong>the</strong> Veybach, as well as,<br />

onward impacts from <strong>the</strong> upper Erft.<br />

Figure 5.9: Schematic representation of <strong>the</strong> online monitoring stations in <strong>the</strong> Erft system, showing<br />

monitoring zones, whe<strong>the</strong>r stations are “in-situ” or “on-site”, and <strong>the</strong> location of WWTPs.<br />

The Metternich Zone includes <strong>the</strong> River Swist and is monitored near to it’s confluence with<br />

<strong>the</strong> Erft using an on-site monitoring station. The main impacts in <strong>the</strong> catchment are from <strong>the</strong><br />

sewer network and WWTPs of <strong>the</strong> suburbs of Bonn. As indicated in Figure 5.3 (above) <strong>the</strong><br />

Swist suffers from poor nitrogen, phosphorus and pesticide contamination.<br />

Mining pressures and impacts dominate <strong>the</strong> Bergheim monitoring zone, which also includes a<br />

high density of WWTPs. Rotbach and Bleibach (Blei is German <strong>for</strong> lead) also drain <strong>for</strong>mer<br />

metals mine workings and contribute lead to <strong>the</strong> channel sediments (see later, Section 5.2.2).<br />

The largest mine drainage emission also enters <strong>the</strong> Erft at this point. The online monitoring<br />

station is an on-site station and is located downstream of <strong>the</strong> mine drainage discharge. This<br />

discharge accounts <strong>for</strong> 50 % of all mine drainage in <strong>the</strong> Erft system and is necessary to keep<br />

<strong>the</strong> open-cast lignite (brown coal) mining operations dry. The discharge drains groundwater<br />

which is high in iron (which is additionally monitored at this location), <strong>the</strong> iron once oxidised<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 56/109


in <strong>the</strong> river to iron oxyhydroxide dominates <strong>the</strong> sediment composition in <strong>the</strong> Erft from this<br />

location downstream (see Section 5.2.2).<br />

The final online monitored location on <strong>the</strong> Erft is an on-site station located at Münchrath<br />

village, major pressures in this zone are three large WWTPs. The Gillbach and Norf<br />

tributaries of <strong>the</strong> Erft are downstream of <strong>the</strong> monitoring site and is not included because no<br />

suitable secure location was available to site <strong>the</strong> instrumentation and analysis cabin.<br />

Table 5.2: Locations of online measurement stations and <strong>the</strong> pressures and monitored parameters at each<br />

site.<br />

<strong>Monitoring</strong><br />

zone<br />

Euskirchen Metternich Bergheim Münchrath<br />

Station name Erft @<br />

Eicherscheid<br />

Veybach @<br />

Mechernich<br />

Erft @<br />

Euskirchen<br />

Swist @<br />

Metternich<br />

Erft @<br />

Bergheim<br />

Erft @<br />

Münchrath<br />

Type of station In-situ In-situ On-site On-site On-site On-site<br />

Main pressures /<br />

reasons <strong>for</strong><br />

monitoring<br />

identified by<br />

Erftverband<br />

Main pressure<br />

identified by<br />

NRW (MUNLV)<br />

Downstream of<br />

flood storage<br />

basin; low<br />

oxygen, algal<br />

blooms<br />

WWTP,<br />

(rain water)<br />

discharges,<br />

cooling water,<br />

abstraction,<br />

morphology<br />

At disused<br />

mine<br />

“Burgfeyer<br />

Stollen” outlet;<br />

Zn, Ni, Co, Cd<br />

WWTPs, CSOs,<br />

Veybach<br />

heavy metals<br />

(Ni)<br />

WWTP,<br />

(rain water)<br />

discharge,<br />

abstraction,<br />

morphology,<br />

upper reaches,<br />

inflow of<br />

tributary<br />

Sewer<br />

networks and<br />

WWTPs of<br />

Bonn suburbs<br />

discharges,<br />

morphology,<br />

unknown<br />

Lignite mine<br />

discharge (inc.<br />

Fe), high<br />

density of<br />

WWTPs<br />

WWTP,<br />

rain water<br />

discharge,<br />

morphology,<br />

upper reaches<br />

solar radiation in<br />

preparation<br />

x<br />

air<br />

temperature<br />

x x x x x x<br />

water<br />

temperature<br />

x x x x x x<br />

O2 concentr. x x x x x x<br />

O2 saturation x x x x x x<br />

pH X x x x x x<br />

conductivity X x x x x x<br />

turbidity<br />

NH4-N x<br />

NO3-N x<br />

o-PO4-P<br />

Fe tot<br />

Ni tot<br />

Biomonitor<br />

Chl a<br />

water level<br />

in<br />

preparation<br />

in<br />

preparation<br />

x x x x x<br />

x x x x<br />

x x x x<br />

x x x x<br />

x<br />

3 large WWTPs,<br />

Erft catchment<br />

outlet<br />

morphology,<br />

o<strong>the</strong>r<br />

significant<br />

anthrop.<br />

influences,<br />

upper reaches<br />

The parameters shown in Table 5.2 are recorded as five minute averages of values polled<br />

every 5 seconds. Table 5.3 provides a summary of data availability <strong>for</strong> two example online<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 57/109<br />

X<br />

X


stations, <strong>the</strong> Erft at Bergheim and at Münchrath. The percentage availability of <strong>the</strong> data is<br />

quite variable, but generally above 70 %, excepting some parameters and specific years, e.g.<br />

conductivity at Bergheim. It is not clear why <strong>the</strong> low availability of data occurs, although<br />

instrumental monitoring often suffers from low reliability, however, in this case regular<br />

maintenance and downloading of data should be followed-up by data visualisation to capture<br />

any problems shortly after <strong>the</strong>y occur, and hence reduce <strong>the</strong> duration of holes in <strong>the</strong> data sets.<br />

For orthophosphate and ammonium ions in solution, <strong>the</strong> low levels of availability are a<br />

consequence of <strong>the</strong> low concentrations encountered, less than <strong>the</strong> sensitivity of <strong>the</strong> analytical<br />

method. They may also result from <strong>the</strong> exhaustion of reagents, but this, again, would be an<br />

issue of maintenance. In <strong>the</strong> analysis presented in Section 2 of this <strong>report</strong>, Gallé found that <strong>the</strong><br />

online turbidity records suffered from drift associated with optical fouling of <strong>the</strong> instrument.<br />

Gallé suggests that <strong>the</strong>se data may be of limited validity <strong>for</strong> <strong>the</strong> purposes of <strong>the</strong> analysis<br />

carried-out in Section 2. This does not invalidate <strong>the</strong> data. It is often possible to reconstruct<br />

missing data periods based on autocorrelation with o<strong>the</strong>r variables, and problems due to<br />

sensor drift can be corrected provided that <strong>the</strong> operator appropriately flags <strong>the</strong> data to show<br />

that it has been corrected.<br />

Table 5.3: Summary of <strong>the</strong> percentage availability of various parameters measured at two example online<br />

monitoring stations in <strong>the</strong> Erft system <strong>for</strong> 2004 onwards.<br />

air<br />

conduc<br />

temper<br />

temper tivity turbidit<br />

o-PO4- ammon<br />

ature<br />

ature [uS/cm y oxygen nitrate P ium<br />

Year [°C] pH [°C] ] [TE(F)] [mg/l] [mg/l] [mg/l] [mg/l]<br />

Water quality station 1: Erft at Bergheim<br />

2004 100.0% 97% 97.5% 95.3% 96.8% 97.5% 85.5% 48.7% 87.4%<br />

2005 100.0% 99.9% 100.0% 85.1% 57.1% 98.1% 91.3% 52.9% 80.5%<br />

2006 99.5% 99.5% 99.5% 0.2% 77.2% 99.4% 85.3% 64.0% 74.4%<br />

2007 90.3% 86.1% 88.3% 68.5% 77.0% 88.0% 85.9% 55.1% 84.7%<br />

2008 97.5% 85.8% 86.0% 86.0% 73.5% 85.9% 85.3% 66.8% 65.9%<br />

2009 99.0% 99.0% 99.0% 98.7% 95.8% 99.0% 96.7% 98.9% 95.7%<br />

mean 97.7% 94.6% 95.0% 72.3% 79.6% 94.6% 88.3% 64.4% 81.4%<br />

Water quality station 3: Erft at Münchrath<br />

2004 93.9% 93.6% 93.6% 91.9% 78.4% 92.8% 93.5% 58.1% 29.1%<br />

2005 78.0% 77.1% 77.5% 76.8% 76.3% 77.5% 76.9% 48.9% 11.0%<br />

2006 96.3% 99.8% 99.8% 99.8% 99.3% 96.0% 99.4% 64.7% 25.2%<br />

2007 79.0% 73.9% 79.6% 79.6% 77.9% 79.4% 79.0% 36.4% 19.7%<br />

2008 91.2% 93.8% 93.8% 84.5% 93.4% 93.8% 90.4% 22.8% 18.1%<br />

2009 85.7% 85.8% 85.8% 83.4% 79.8% 85.5% 83.4% 23.8% 29.3%<br />

mean 87.4% 87.3% 88.4% 86.0% 84.2% 87.5% 87.1% 42.4% 22.1%<br />

Figure 5.10 and Figure 5.11 show online monitoring results <strong>for</strong> nutrient responses over<br />

seasonal cycles at Bergheim and also <strong>the</strong> influence of a combined sewer overflow on<br />

dissolved oxygen, turbidity and ammonium-N concentration. In addition, <strong>the</strong>se stations permit<br />

an examination of diurnal variations in concentration. Although <strong>the</strong> six stations do not<br />

characterise every water body in <strong>the</strong> Erft catchment, <strong>the</strong>y characterise <strong>the</strong> main Erft River at<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 58/109


important nodes along <strong>the</strong> system and allow <strong>the</strong> impact of major pressures to be observed in<br />

<strong>the</strong> dynamic variation of a range of relevant parameters.<br />

Figure 5.10: Time series of nutrient concentrations <strong>for</strong> <strong>the</strong> Erft at Bergheim (as presented by Christoffels,<br />

2008).<br />

Figure 5.11: Time series of dissolved oxygen, turbidity and ammonium-N concentrations <strong>for</strong> <strong>the</strong> Erft at<br />

Bergheim, showing <strong>the</strong> impact of a combined sewer overflow following intense rainfall (as presented by<br />

Christoffels, 2008).<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 59/109


Christoffels (2008) highlights some general advantages of <strong>the</strong> continuous monitoring system,<br />

<strong>the</strong>se are:<br />

� an ability to observe short and longer term changes in water quality as <strong>the</strong>y occur (and<br />

hence make appropriate investigations and remedial management actions);<br />

� a greater ability to observe <strong>the</strong> direct impacts of water management practices;<br />

� an enhanced ability to per<strong>for</strong>m effectiveness monitoring <strong>for</strong> remedial management<br />

actions.<br />

In addition to <strong>the</strong> water quality analyses carried-out, Erftverband also collect annual grab<br />

samples of river channel sediments in <strong>the</strong> Erft. Since mining has been such a major activity in<br />

<strong>the</strong> Erft system, <strong>the</strong> river sediments through <strong>the</strong>ir metals composition provide an integrated<br />

record of <strong>the</strong> impact of mine related emissions into <strong>the</strong> Erft, and <strong>the</strong>se data compliment <strong>the</strong><br />

grab samples and online data as shown in <strong>the</strong> next section.<br />

5.2.2. Sediment quality data<br />

Sediment sample data have been provided by Erftverband <strong>for</strong> 38 locations spanning 100 km<br />

along <strong>the</strong> Erft river (Table 5.4). Sampling surveys took place in 2001, 2002, 2004 and 2008.<br />

The material collected was classification into 11 particle size classes, and <strong>the</strong> following<br />

parameters were quantified at all locations: calcium, cadmium, cobalt, chromium, copper,<br />

iron, manganese, nickel, phosphorus, lead, zinc and mercury.<br />

The Erftverband sediment data <strong>for</strong> <strong>the</strong> Erft River has been analysed <strong>for</strong> a range of metals. The<br />

profiles of <strong>the</strong> metals concentrations in sediments along <strong>the</strong> river reflect <strong>the</strong> nature of<br />

emissions, or inputs, to <strong>the</strong> river from various sources related to past and current mining<br />

activities in <strong>the</strong> catchment. These contaminated sediments contribute to <strong>the</strong> pressures on<br />

organisms feeding on <strong>the</strong> river bed, such as <strong>the</strong> macroinvertebrates, and <strong>the</strong> low abundance of<br />

pollutant sensitive species appears to coincide with <strong>the</strong> contaminated sediments.<br />

This section of <strong>the</strong> <strong>report</strong> provides a brief initial assessment of <strong>the</strong>se data.<br />

Figure 5.12 includes a longitudinal profile showing <strong>the</strong> changes in concentrations of<br />

substances in sediment samples sieved at <strong>the</strong> 63 micron size fraction, <strong>for</strong> <strong>the</strong> parameters listed<br />

above. Erftverband provided data <strong>for</strong> two profiles <strong>for</strong> 2004 and 2008, <strong>the</strong>se were provided as<br />

concentrations in mg/kg and have been converted to <strong>the</strong> molar concentrations (in order to<br />

assess <strong>the</strong> relative numbers of atoms of each substance). The relative contribution of each<br />

substance to <strong>the</strong> sum of <strong>the</strong> measured substances was estimated and is helpful to illustrate <strong>the</strong><br />

changing sediment composition.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 60/109


Table 5.4: Description of <strong>the</strong> locations of Erft sediment sampling locations<br />

Site Description of Location<br />

Distance from<br />

S-1<br />

S – 1 Erft<strong>for</strong>king above Schönau left branch 0.0<br />

S – 2 Erft be<strong>for</strong>e Barrage Eicherscheid 5.0<br />

S – 3 Erft above Bad Muenstereifel be<strong>for</strong>e bridge at <strong>the</strong> pool 7.0<br />

S – 4 Erft be<strong>for</strong>e military base above Fa.Greven above 10.5<br />

Iversheimer<br />

S – 5 Erft above Iversheimer 10.8<br />

S – 6 Kuchenheimer mill-race above Fa.Kalff 16.5<br />

S – 7 Erft at <strong>the</strong> sugar factory Euskirchen 21.8<br />

S – 8 Erft above Veybach 23.0<br />

S – 9 Erft in Euskirchen below Veybach confluence 24.7<br />

S – 10 Erft be<strong>for</strong>e military base Bodenheim 26.3<br />

S – 11 Erft be<strong>for</strong>e military base Ottensheim 27.5<br />

S – 12 Erft below weir Hausweiler 29.5<br />

S - 13 Erft on military base Steinrausche 33.5<br />

S - 14 Erft in Bliesheim above bridge Weilerswist mill-race branch 37.8<br />

S – 15 Erft above weir at km 55.4, below Rotbach tributary 44.6<br />

S - 16 Greater Erft branch at Brüggen 46.4<br />

S - 17 Erft be<strong>for</strong>e military base Brüggen, Türnich mill-race branch 46.6<br />

S - 18 Guech ditch be<strong>for</strong>e entrance into <strong>the</strong> Erft 49.0<br />

S - 19 Erft, junction Kaltes Wasser 50.7<br />

S - 20 Little Erft on <strong>the</strong> Horrem-Sindorf road 55.8<br />

S - 21 Erft flood channel on <strong>the</strong> Horrem-Sindorf road 55.8<br />

S - 22 Greater Erft on <strong>the</strong> Horrem-Sindorf road 55.8<br />

S - 23 Connecting channel Erft / Erft flood channel at <strong>the</strong> 63.0<br />

fishpond<br />

S - 24 Erft flood channel above confluence with Erft at Paffendorf 64.5<br />

S - 25 Erft in Bedburg at <strong>the</strong> sugar factory 67.8<br />

S - 26 Erft below Bedburg 69.4<br />

S - 27 Erft below RWE Frimmersdorf, Gustorf Mill 77.8<br />

S - 28 Pond water at <strong>the</strong> Erft Gustorf 78.5<br />

S - 29 Erft above Grevenbroich 80.3<br />

S - 30 Mühlenerft in Grevenbroich 80.8<br />

S - 31 Erft in Wevelinghoven, Kottmann Mill 84.4<br />

S - 32 Erft at <strong>the</strong> Hemmerden town park 84.9<br />

S - 33 Erft at Untermühle 86.0<br />

S - 34 Erftmäander at Wevelinghoven WWTP 87.8<br />

S - 35 Erft at Grabenmeisterei Münchrath 90.4<br />

S - 36 Erft at Reuschenberg town park 95.9<br />

S - 37 Erft below Gnadenthaler Mill 98.0<br />

S - 38 Erft be<strong>for</strong>e confluence at Grimlinghausen-Neuss, Rhein<br />

Strasse<br />

99.5<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 61/109


Concentration of constituents (mg/kg = p.p.m)<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Ca Fe+P<br />

Cd,Co,Ni,Zn Pb<br />

Cu Cr<br />

100 x Hg<br />

0 20 40 60 80 100<br />

Distance from S1 (km)<br />

Figure 5.12: Locations of sediment sample sites and associated profiles of sediment concentrations<br />

showing three entry points where specific metals emissions result in elevated sediment concentrations<br />

which may be localised (e.g. lead at site 15) or continue <strong>for</strong> some distance downstream (e.g Zn etc at site 9,<br />

and iron at site 23).<br />

Calcium and iron are <strong>the</strong> dominant measured constituents of <strong>the</strong> sediments and are indicators<br />

<strong>for</strong> <strong>the</strong> natural mineral wea<strong>the</strong>ring source material (calcium) and <strong>for</strong> mining operation<br />

emissions (iron), <strong>the</strong>y account <strong>for</strong> between 75 and 99 % of <strong>the</strong> measured constituents. The<br />

longitudinal surveys provide a useful indication of <strong>the</strong> changing emission/immission situation<br />

in <strong>the</strong> Erft. In general, with distance downstream <strong>the</strong> proportion of iron increases and that of<br />

calcium decreases, demonstrating <strong>the</strong> increasing impact of mining related emissions. Zinc,<br />

nickel, cobalt and cadmium are highly autocorrelated, as shown later, suggesting a common<br />

source (<strong>the</strong> Burgfeyer Stollen disused mine in Veybach), <strong>the</strong> sum of <strong>the</strong>se substances account<br />

<strong>for</strong> up to around 20 % of <strong>the</strong> measured constituents from sample location 9 to 14. Lead also<br />

increased at location 9, but to a greater extent at location 15, suggesting a source of additional<br />

lead, but not zinc and its correlates. Between sites 22 and 23 <strong>the</strong> sump water discharge that<br />

drains groundwater from <strong>the</strong> open cast lignite mining area enters <strong>the</strong> Erft at Bergheim. The<br />

calcium concentration continues to decline with distance downstream, but <strong>the</strong><br />

iron/phosphorus concentration increases sharply, and with it so do <strong>the</strong> concentrations of<br />

copper and lead.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 62/109<br />

9<br />

15<br />

23


Inter-annual variation<br />

Figure 5.13 shows <strong>the</strong> correlation of constituents in Erft river sediments, <strong>for</strong> <strong>the</strong> 63 micron<br />

size fraction, collected during <strong>the</strong> years 2004 and 2008.<br />

Iron and phosphorus in Erft sediments were highly autocorrelated (Figure 5.14 a & b) and<br />

have been lumped toge<strong>the</strong>r in subsequent analyses. Their profile did not vary greatly between<br />

<strong>the</strong> two survey years (Figure 5.13 and Figure 5.14a), although <strong>the</strong> absolute concentrations did<br />

vary between years. Since <strong>the</strong> lignite mine sump-water discharge at Bergheim is <strong>the</strong> single<br />

largest input of iron in <strong>the</strong> Erft, it is possible that <strong>the</strong> oxidising iron molecules collect (adsorb)<br />

phosphorus. As previously mentioned, zinc, nickel, cobalt and cadmium, sourced from <strong>the</strong><br />

Burgfeyer Stollen, in <strong>the</strong> Veybach were highly auto-correlated (Figure 5.15a) and <strong>the</strong>ir<br />

profiles varied between years to a greater extent than that <strong>for</strong> iron and phosphorus (Figure<br />

5.13). This may be a consequence of hydrometeorological variability and its impact on<br />

sediment flushing from <strong>the</strong> Burgfeyer Stollen mine working.<br />

The profiles of <strong>the</strong> o<strong>the</strong>r analysed metals varied to an even greater extent, suggesting greater<br />

variations in source over time and space. These variations may be a consequence of<br />

hydrometeorological variations between years driving <strong>the</strong> runoff and transport of <strong>the</strong>se<br />

substances. It is beyond <strong>the</strong> scope and remit of this current <strong>report</strong> to undertake an in depth<br />

investigation of this.<br />

Iron + Phosphorus 2008 (nMoles/kkg)<br />

3500.0<br />

3000.0<br />

2500.0<br />

2000.0<br />

1500.0<br />

1000.0<br />

500.0<br />

0.0<br />

y = 0.5298x + 495.86<br />

R² = 0.8533<br />

0.0 1000.0 2000.0 3000.0 4000.0 5000.0<br />

Iron + Phosphorus 2004 (mMoles/kg)<br />

Zn, Ni, Co, Cd 2008 (nMoles/kkg)<br />

y = 1.4789x + 13.671<br />

R² = 0.8157<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 63/109<br />

400.0<br />

350.0<br />

300.0<br />

250.0<br />

200.0<br />

150.0<br />

100.0<br />

50.0<br />

0.0<br />

0.0 100.0 200.0<br />

Zn, Ni, Co, Cd 2004 (mMoles/kg)<br />

Figure 5.13: Relationships between sediment metals concentrations and between monitored years.<br />

Calcium, Iron and Phosphorus (and Chromium)<br />

As mentioned above iron and phosphorus (Fe+P) concentrations in Erft sediments were<br />

highly autocorrelated (Figure 5.14 b) and are summed in this analysis. The relationship<br />

between calcium (Ca) and Fe+P shows a “mutual exclusivity”, i.e. when <strong>the</strong>re is a high Ca<br />

concentration <strong>the</strong>re is alow Fe+P concentration and vice versa (Figure 5.14c). When <strong>the</strong><br />

samples are represented as <strong>the</strong> percentage composition by mass Ca and Fe+P are inversely<br />

related (Figure 5.14d).


When X-Y plotting <strong>the</strong> proportional relationships <strong>for</strong> <strong>the</strong> various parameters against each<br />

o<strong>the</strong>r, it became apparent that <strong>the</strong>re was something unusual with <strong>the</strong> proportion of Chromium<br />

(Cr) (Figure 5.14e), which does not exhibit an apparent relationship with any of <strong>the</strong><br />

parameters. This apparent “relationship” of Cr with Ca and Fe+P (Figure 5.14a, d & e) occurs<br />

as a consequence of <strong>the</strong> fact that Cr is relatively invariant in concentration (Figure 5.14a), and<br />

hence its variation as a proportion of <strong>the</strong> measured constituents is merely an artefact of <strong>the</strong><br />

relative increases and decreases in Ca and Fe+P. As indicated by Figure 5.14a Cr is closely<br />

related to <strong>the</strong> iron and phosphorus upstream of <strong>the</strong> sump water discharge which indicates that<br />

<strong>the</strong> sump water does not contribute significantly to Erft sediment chromium loads.<br />

Iron + Phosphorus (nMoles/kg)<br />

Calcium (nMoles/kg)<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2004 2008<br />

23<br />

a. b.<br />

3000.0<br />

2500.0<br />

2000.0<br />

1500.0<br />

1000.0<br />

500.0<br />

0.0<br />

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76<br />

0.0 2000.0 4000.0 6000.0<br />

Iron + Phosphorus (mMoles/kg)<br />

% Calcium<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

23<br />

fe+p<br />

cr<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 64/109<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

Chromium (mMoles/kg)<br />

y = -0.921x + 90.441<br />

R² = 0.9279<br />

Phosphorus (mMoles/kg)<br />

0.0 20.0 40.0 60.0 80.0 100.0<br />

350.0<br />

300.0<br />

250.0<br />

200.0<br />

150.0<br />

100.0<br />

c. d. e.<br />

% Iron + Phosphorus<br />

% Chromium<br />

50.0<br />

0.0<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

0.0 20.0 40.0 60.0 80.0 100.0<br />

% Iron + Phosphorus<br />

y = 0.074x + 7.313<br />

R² = 0.8575<br />

0.0 2000.0 4000.0 6000.0<br />

Iron (mMoles/kg)<br />

Figure 5.14: The relationship between calcium and iron plus phosphorus, and <strong>the</strong> “apparent” relationship<br />

with chromium.<br />

Lead and Cadmium, Cobalt, Nickel and Zinc<br />

Figure 5.15a demonstrates <strong>the</strong> high degree of autocorrelation between zinc, nickel, cobalt and<br />

cadmium. Nickel and zinc correlate with an R 2 of 0.99, suggesting that <strong>the</strong>se metals have <strong>the</strong><br />

same source in all samples, and cobalt and cadmium are only slightly less well correlated, and<br />

must essentially be derived from <strong>the</strong> same source material. Location 9 is downstream of <strong>the</strong><br />

confluence with <strong>the</strong> Veybach which delivers a large increase in sediment Zn, Ni, Co and Cd<br />

derived from a disused mine gallery, <strong>the</strong> Burgfeyer Stollen (Figure 5.15b). The increase in<br />

lead is only small (Figure 5.15b). Lead increases sharply below <strong>the</strong> confluence with <strong>the</strong><br />

Rotbach (which is fed by <strong>the</strong> appropriately named “Bleibach” or “Lead Stream”) at site S15,<br />

from which point zinc and its correlates and lead continue downstream with close ratios


(Figure 5.15b to d). Although under some circumstances lead is known to have a high affinity<br />

<strong>for</strong> iron oxyhydroxides, in this situation, <strong>the</strong> sediment variations in lead and iron appear to be<br />

largely independent and hence <strong>the</strong> influencing sources and processes can be assumed to be<br />

different.<br />

% Cd, o, Ni, Zn<br />

Zinc<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

0<br />

9<br />

2004 2008<br />

cd,co,ni,zn<br />

pb<br />

15<br />

Nickel<br />

R² = 0.9902<br />

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73<br />

9<br />

15<br />

a.<br />

b.<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

% Lead<br />

Cd, Co, Ni, Zn<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

R² = 0.9749<br />

Source with low<br />

Pb relative to Cd,<br />

Co, Ni and Zn<br />

0.1 1.0 10.0 100.0<br />

Figure 5.15: Major changes and inputs of zinc and its correlates, and lead.<br />

Cobalt<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 65/109<br />

Nickel<br />

Lead<br />

c.<br />

% Cd, Co, Ni, Zn<br />

Cadmium<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

100.0<br />

10.0<br />

1.0<br />

0.1<br />

5<br />

0<br />

y = 7.642x 0.8346<br />

R² = 0.9189<br />

Nickel<br />

0.0 0.1 1.0 10.0<br />

A compositional analysis of this kind is a useful step in highlighting changes in emissions and<br />

immissions situations and in identifying sources <strong>for</strong> certain substances. A fur<strong>the</strong>r step in this<br />

process is to identify <strong>the</strong> degree to which <strong>the</strong> concentrations of metals present in sediments<br />

are toxic to aquatic organisms. The association of phosphorus with iron is also in<strong>for</strong>mative.<br />

While bound with iron salts, <strong>the</strong> P may be unavailable, but “transverse structures”, i.e. weirs<br />

and locks, create quiescent zones where accumulated decomposing organic material is likely<br />

to lead to <strong>the</strong> seasonal development of anaerobic conditions and <strong>the</strong> solubilisation of iron,<br />

manganese and associated metals and phosphorus, which may contribute to both eutrophic<br />

and toxic pressures <strong>for</strong> aquatic <strong>life</strong>. The Erft sediment samples were not analysed <strong>for</strong> organic<br />

micro-pollutants; since <strong>the</strong>se tend to bind to particulates, it would be in<strong>for</strong>mative to include<br />

analyses <strong>for</strong> an appropriate range of <strong>the</strong>se in future surveys.<br />

5.2.1. Biological survey data<br />

Erftverband carry out surveying <strong>for</strong> macroinvertebrates at 62 locations (see Table 5.5), 24 of<br />

<strong>the</strong>m along <strong>the</strong> main Erft, where macrophyte surveys are also conducted. 274 surveys were<br />

made in <strong>the</strong> 6 years <strong>for</strong> which data has been provided (2003-08). Up to <strong>the</strong> end of 2004, all<br />

locations were sampled once a year, after that, only 29 sites were sampled annually, while 10<br />

sites in 8 water courses were discontinued. Fur<strong>the</strong>r in<strong>for</strong>mation about <strong>the</strong> macroinvertebrate<br />

survey data is presented in Section 6.5.<br />

% Lead<br />

R² = 0.964<br />

d.


Erft Macroinvertebrate Survey Results and Metals Profiles<br />

Macroinvertebrates are identified to <strong>the</strong> species level and from <strong>the</strong>ir counts, a number of<br />

metrics are calculated (Table 5.5), <strong>the</strong>se include <strong>the</strong> total number of taxa found and <strong>the</strong><br />

saprobic index, which responds to <strong>the</strong> oxygen sensitivity of <strong>the</strong> organisms present. An<br />

abundance score is calculated and a measure of scatter (both not shown here). In addition to<br />

<strong>the</strong>se metrics, <strong>for</strong> this <strong>report</strong>, <strong>the</strong> % EPT (mayfly (Ephemeroptera), stonefly larvae<br />

(Plecoptera) and caddisfly (Trichoptera) ) has been estimated, and <strong>the</strong> percentage of total taxa<br />

that are EPT (EPTrichness/Ntaxa %). Since EPT are particularly sensitive to pollution, this is<br />

a useful additional measure. The ratio of EPT to total taxa accounts <strong>for</strong> <strong>the</strong> fact that some sites<br />

may have low EPT, but EPT may dominate <strong>the</strong> count, <strong>the</strong>re<strong>for</strong>e <strong>the</strong> EPT alone gives <strong>the</strong><br />

impression of an absence of intolerant species, when, in fact <strong>the</strong>y dominate <strong>the</strong> community<br />

structure.<br />

Figure 5.16 shows <strong>the</strong> distribution of macroinvertebrate scores EPTrichness/Ntaxa (%) and<br />

sediment �metals (Fe, Zn, Ni, Pb, Co, Cd) + phosphorus. As is commonly observed, <strong>the</strong><br />

greatest proportion of EPT is observed in <strong>the</strong> upper reaches of <strong>the</strong> catchment where pollution<br />

levels tend to be less than in <strong>the</strong> lower reaches. The entry of <strong>the</strong> iron rich sump water<br />

discharge at point 23 is clearly seen (<strong>for</strong> locations refer to Figure 5.12), however, <strong>the</strong><br />

proportion of EPT was already reduced well upstream of this point. As discussed above <strong>the</strong>re<br />

are distinct increases in metals inputs at locations 9 (zinc, nickel, cobalt and cadmium) and 15<br />

(lead) (Figure 5.12), and <strong>the</strong> EPT proportions downstream of <strong>the</strong>se locations are certainly<br />

reduced. Having said this, <strong>the</strong>re are a great many o<strong>the</strong>r potential factors involved and o<strong>the</strong>r<br />

pollutants that impact on sensitive macroinvertebrate species. This simple illustration merely<br />

demonstrates <strong>the</strong> increase in contamination and decrease in sensitive species numbers with<br />

distance through <strong>the</strong> catchment. Iron and phosphorus are not actually toxic, however <strong>the</strong>ir<br />

presence in elevated concentrations in <strong>the</strong> sediments indicates some degree of disturbance<br />

from a “natural” condition and hence reduction in capacity to support a full range of<br />

macroinvertebrate taxa, and it is well known that nutrient enrichment and oxygen depletion<br />

result in a loss of sensitive macroinvertebrate species. The saprobic index appeared to be<br />

relatively insensitive to pollution indicators, and it is suggested that <strong>the</strong> raw macroinvertebrate<br />

data be fur<strong>the</strong>r interrogated with respect to o<strong>the</strong>r metrics. Metrics that take account of species<br />

tolerance to pollution and relative abundance might be of greater value as measures of<br />

ecological health, <strong>for</strong> example <strong>the</strong> BWMP score (Friedrich et al., 1996), ASPT (Armitage et<br />

al., 1983), SIGNAL (Chessman et al., 1997), or MCI (Stark and Maxted, 2007).<br />

Since a key aim of <strong>the</strong> WFD is to improve river ecological health, <strong>the</strong> choice of a pollution<br />

sensitive index <strong>for</strong> macroinvertebrate community structure in <strong>the</strong> Erft, combined with a more<br />

detailed examination of <strong>the</strong> water and sediment quality data might be helpful to identify<br />

strong causal factors associated with <strong>the</strong> loss of sensitive species.<br />

A summary of <strong>the</strong> Erft monitoring programme is presented in <strong>the</strong> following section.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 66/109


Table 5.5: Summary macroinvertebrate metrics <strong>for</strong> <strong>the</strong> Erft system <strong>for</strong> 2008, including additional EPT<br />

metrics calculated <strong>for</strong> this <strong>report</strong>.<br />

River /<br />

Stream<br />

Elsdorfer Fliessenoberhalb Einmündung Escher Fliessen e3 12 2.26 II-III 2.04 8.3<br />

Elsdorfer Fliessenan der Strasse Niederembt - Glesch e4 14 2.34 II-III 0 0.0<br />

Erft oberhalb Schönau 1 24 1.62 I-II 30.61 62.5<br />

Erft am Mühlenstau Iversheim 3 25 1.62 I-II 30.61 60.0<br />

Erft vor Zuckerfabrik Euskirchen 5 23 2 II 22.45 47.8<br />

Erft oberhalb Veybachmündung 6 23 2.05 II 22.45 47.8<br />

Erft Kuchenheimer Mühlengraben vor der Mündung 10 19 1.93 II 14.29 36.8<br />

Erft bei Klein-Vernich 11 11 1.9 II 14.29 63.6<br />

Erft in Bliesheim 13 8 1.89 (II) 10.2 62.5<br />

Erft Strassenbrücke Gymnich/ Brüggen 15 17 2.28 II-III 16.33 47.1<br />

Erft Grosse Erft in Thorr 18 20 2.26 II-III 10.2 25.0<br />

Erft Strasse Sindorf/Horrem 19 26 2.21 II 22.45 42.3<br />

Erft Kleine Erft, Brücke Bergheim 20 15 2.19 II 10.2 33.3<br />

Erft unterhalb Bedburg 25 13 2.25 II-III 8.16 30.8<br />

Erft an der Gustorfer Mühle 28 12 2.35 II-III 4.08 16.7<br />

Erft an der Obermühle W evelinghoven 29 8 2.16 II 4.08 25.0<br />

Erft am Pegel Neubrück 31 12 2.17 II 8.16 33.3<br />

Erft in Neuss-Reuschenberg 34 6 2.15 II 4.08 33.3<br />

Erft unterhalb W iebacheinleitung 20b 16 2.19 II 10.2 31.3<br />

Erft 1 km unterhalb Paffendorf 21b 12 2.31 II-III 6.12 25.0<br />

Finkelbach vor Mündung 23=f3 3 2.45 II-III 2.04 33.3<br />

Finkelbach unterhalb Güsten f1 14 2.42 II-III 8.16 28.6<br />

Jüchener Bach unterhalb Jüchen bei Herberath j1 13 2.29 II-III 6.12 23.1<br />

Jüchener Bach bei Bedburgdyck j2 11 2.28 II-III 2.04 9.1<br />

Jüchener Bach unterhalb Glehn j3 12 2.54 II-III 6.12 25.0<br />

Neffelbach vor Mündung 16=nf4 11 2.37 II-III 4.08 18.2<br />

Neffelbach unterhalb Juntersdorf nf1 23 1.83 II 22.45 47.8<br />

Neffelbach unterhalb KA Bessenich in Sievernich nf2 14 2.44 II-III 8.16 28.6<br />

Nordkanal Unterhalb Einmündung Juchener Bach nk1 9 2.47 II-III 2.04 11.1<br />

Nordkanal unterhalb Kläranlage Nordkanal nk2 7 2.26 II-III 4.08 28.6<br />

Nordkanal an der Stadthalle in Neuss nk3 11 2.32 II-III 6.12 27.3<br />

Norf am Derikumer Hof 35=no1 13 2.48 II-III 4.08 15.4<br />

Rotbach vor Mündung 14=r4 15 2.34 II-III 4.08 13.3<br />

Rotbach oberhalb Eicks r1 14 1.65 I-II 14.29 50.0<br />

Rotbach bei Lövenich oberhalb Vlattener Bach r2 25 2.14 II 14.29 28.0<br />

Rotbach unterhalb Bleibach r3 12 2.19 II 8.16 33.3<br />

Swist vor Mündung 12=s6 13 2.18 II 8.16 30.8<br />

Swist oberhalb Meckenheim s1 21 2.13 II 16.33 38.1<br />

Swist Strassenbrücke Miel/Buschhoven s3 18 2.3 II-III 14.29 38.9<br />

Veybach vor Mündung 7=v4 4 1.91 II 8.16 100.0<br />

Veybach bei Breitenbenden v2 21 1.59 I-II 24.49 57.1<br />

Location<br />

description<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 67/109<br />

Location<br />

N taxa<br />

Saprobic<br />

index<br />

Water<br />

classification<br />

% EPT<br />

PET richness /<br />

N taxa %


Figure 5.16:<br />

(triangles) (mg/kg) in <strong>the</strong> Erft system <strong>for</strong> 2008.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 68/109


5.3. Erft summary<br />

<strong>Monitoring</strong> in <strong>the</strong> Erft system offers extremes of intensity. There are a few sites with highly<br />

intense monitoring of a few instrumented variables and many sites with grab sampling <strong>for</strong> a<br />

wider range of analytes, but at very low temporal intensity. Sediment samples analysed <strong>for</strong><br />

metals provide an indication of <strong>the</strong> impacts of mine drainage waters in <strong>the</strong> Erft main channel,<br />

and biological surveys present an end-point condition with macroinvertebrate survey data.<br />

General summary narrative <strong>for</strong> Erft<br />

� Pressures and impacts in <strong>the</strong> Erft system include <strong>the</strong> common sources such as WWTPs<br />

and CSO emissions and agricultural activities but also less common ones such as<br />

drainage water from existing and closed mines. Transverse structures, i.e. weirs <strong>for</strong><br />

river regulation and navigation are also listed under WFD as a stress;<br />

� Erftverband grab sampling occurs twice or three times a year at 84% of <strong>the</strong> sites, this<br />

is effectively a random spot sample and may provide some indication of <strong>the</strong> low-flow<br />

immission situation, but requires supplementary monitoring beyond <strong>the</strong> 6 online<br />

monitoring stations in order to characterise <strong>the</strong> dynamic behaviour in Erft water<br />

bodies;<br />

� Sediment sampling along <strong>the</strong> Erft River assesses mainly metals and phosphorus and<br />

<strong>the</strong> particulate fractions with which <strong>the</strong>se substances are dominantly associated. There<br />

is no testing <strong>for</strong> organic micro-pollutants in <strong>the</strong>se samples which are well known to<br />

accumulate in sediments. The frequency of sampling may not capture short term<br />

dynamic variations in sediment concentration, but <strong>the</strong> sediment signal can in any case<br />

be expected to integrate and attenuate out any short timescale variations;<br />

� Continuous monitoring data may be suitable <strong>for</strong> at-a-point modelling and flux<br />

estimation, but large distances between sampling sites can mean that conditions and<br />

dynamics at one site are often quite different at ano<strong>the</strong>r in relation to <strong>the</strong> channel<br />

situation and <strong>the</strong> sources and types of emissions. Since <strong>the</strong> grab sampling is at a very<br />

low frequency, <strong>the</strong>se data are also insufficient to facilitate meaningful load or flux<br />

estimations or to carry out modelling.<br />

Specific comments<br />

� Online data characterise large portions of <strong>the</strong> main Erft catchment but <strong>the</strong> observations<br />

may not be transferrable to <strong>the</strong> many small component water bodies, and grab samples are<br />

too infrequent to characterise water body conditions - <strong>the</strong>y nei<strong>the</strong>r characterise <strong>the</strong><br />

emissions or immission situations nor are <strong>the</strong>y sufficient to estimate loads or fluxes. These<br />

observations highlight <strong>the</strong> need to undertake supplementary monitoring in a wider range<br />

of smaller water bodies to characterise <strong>the</strong>ir behaviour as set out in <strong>the</strong> M 3 field work<br />

programme, including diurnal and event based monitoring and using passive collectors;<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 69/109


� Water and sediment quality analyses do not include PAHs, and only 8 of 33 priority<br />

substances (4 metals, 4 pesticides) in water samples are monitored. Inclusion of a<br />

selection of indicator parameters would provide in<strong>for</strong>mation about <strong>the</strong> degree of<br />

contamination by <strong>the</strong>se substances;<br />

� In <strong>the</strong> upper reaches of Neffelbach, Rotbach and Veybach only two samples per year<br />

(March and June) are collected. Five measurements a year are only undertaken where<br />

<strong>the</strong>se water courses end. Hygiene parameters or pesticides are not measured in <strong>the</strong> upper<br />

reaches, only oxygen depleting substances, nitrogen and phosphorus;<br />

� <strong>Assessment</strong> of PAHs in mining sump-water may be of interest, since brown coal may be<br />

high in <strong>the</strong>se substances, assessment in sediments would also be useful to characterise<br />

<strong>the</strong>ir longitudinal distribution in <strong>the</strong> Erft system.<br />

The third partner region in <strong>the</strong> M 3 project is Luxembourg which has some similarities to <strong>the</strong><br />

Erft, although mining influences are minimal. WWTP pollution and agriculture are <strong>the</strong> main<br />

pressures. The next section of <strong>the</strong> <strong>report</strong> presents <strong>the</strong> data and monitoring situation <strong>for</strong><br />

Luxembourg.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 70/109


Stress and monitoring summary table <strong>for</strong> Erftverband.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 71/109


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 72/109


6. REGIONAL SURVEY: LUXEMBOURG<br />

The river systems of Luxembourg generally flow in a nor<strong>the</strong>rly direction to <strong>the</strong> Mosel and on<br />

to <strong>the</strong> Rhine system. The bulk of <strong>the</strong> human population and industrial industry is focussed in<br />

<strong>the</strong> sou<strong>the</strong>rn central parts of <strong>the</strong> country where <strong>the</strong> rivers are small streams rising in generally<br />

gentle rolling country. Consequently <strong>the</strong> demand on <strong>the</strong>se resources is greatest in this area, <strong>for</strong><br />

water supply and <strong>for</strong> <strong>the</strong> drainage of treated sewage effluent and CSO emissions. Effluent and<br />

CSO discharges can be a large component of both dry wea<strong>the</strong>r and wet wea<strong>the</strong>r river flows.<br />

As <strong>the</strong> streams grow into small rivers <strong>the</strong>y pass into different geological zones where <strong>the</strong><br />

delivery of groundwater return flows considerably increases <strong>the</strong> flow and dilutes <strong>the</strong> water<br />

arriving from <strong>the</strong> populated areas, so <strong>for</strong> most pollutants water quality and stream ecological<br />

health improves in a downstream direction.<br />

6.1. Pressures in Luxembourg<br />

Luxembourg has not realized <strong>the</strong> analysis of impacts and pressures as required in 2004 up to<br />

now. It shows that <strong>the</strong> Luxembourgish Water Management Administration has –at least in <strong>the</strong><br />

past – not grasped <strong>the</strong> interconnection of <strong>the</strong> different steps of <strong>the</strong> WFD implementation.<br />

Despite <strong>the</strong> lack of a pressure analysis, a monitoring network has been introduced in 2006 and<br />

a river basin management plan published by <strong>the</strong> end of 2009. Under <strong>the</strong>se premises it is of no<br />

surprise that monitoring and POMs sticked to sectorial interests (WWTPs, Ecology) and<br />

lacked a balanced integrative approach.<br />

Pressures in one of <strong>the</strong> main catchments in Luxembourg, <strong>the</strong> Alzette (1072 km 2 ) have been<br />

submitted to a more in depth analysis during a research project on regional substance flow<br />

analysis by CRTE in 2002-2006. The Alzette catchment is <strong>the</strong> most heavily impacted due to<br />

high urban pressure. From this project a few main pressures can mentioned here:<br />

� High input ratio of wastewater to receiving rivers in <strong>the</strong> sou<strong>the</strong>rn catchment<br />

o Non-con<strong>for</strong>mity of a number of WWTPs with more than 10’000 PE<br />

o High impact of xenobiotics, such as pharmaceuticals to be expected<br />

� Dominant combined sewer systems with very limited retention structures<br />

o High CSO inputs during summer storms (bacterial contamination, metals)<br />

� Distinct background from steel industry and o<strong>the</strong>r discontinued activities<br />

o Oxyanions (V,Mo) and PAH ubiquitous in sou<strong>the</strong>rn Alzette catchment<br />

� Intensive agriculture with substantial nutrient and pesticide losses<br />

o NO3 levels with a median of 25-30 in ground and surface waters<br />

o Seasonal pesticide peaks durind low- and high flow<br />

o Soil erosion poorly managed (P input)<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 73/109


Nor<strong>the</strong>rn and Eastern Luxembourg are more strongly influenced by agricultural impacts. The<br />

Moselle might suffer from stronger vineyard pesticide inputs but this has not been<br />

investigated.<br />

6.2. Programs of measures<br />

The river Basin Management Plan is very strongly focussing on <strong>the</strong> upgrading of waste water<br />

works, where Luxembourg has a substantial delay and sewer networks (including retention<br />

structures). A limited ef<strong>for</strong>t is being invested in <strong>the</strong> elimination of transverse structures or<br />

river restoration. Agricultural emissions are intended to be tackled by means of EU common<br />

policy instruments and <strong>the</strong> Nitrate directive (which Luxembourg currently doesn’t comply to).<br />

6.3. <strong>Monitoring</strong> in Luxembourg<br />

Three groupings of sample and survey data are available <strong>for</strong> Luxembourg; surface water grab<br />

samples at 303 locations, macroinvertebrate surveys at 109 locations, and suspended matter<br />

surveys at 4 locations. The following sections summarise <strong>the</strong> monitoring in each monitoring<br />

group.<br />

6.3.1. Surface water quality data<br />

Water quality data from <strong>the</strong> Luxembourg Gestion de l’eau routine monitoring of streams and<br />

rivers has been provided to CRTE as output from <strong>the</strong>ir LIMS type database system. The<br />

LIMS export <strong>for</strong> <strong>the</strong> entire Gestion de l’eau database, as provided, has 116,212 records<br />

covering 303 sampling locations (Figure 6.1). 103 analytes are <strong>report</strong>ed <strong>for</strong> a period spanning<br />

January 2005 to May 2009. The majority of <strong>the</strong> samples were collected <strong>for</strong> ambient routine<br />

monitoring. This means that <strong>the</strong>re are samples from high flow periods at only a few locations.<br />

At <strong>the</strong>se more frequently sampled sites trace constituents which are often associated with<br />

particulate matter were generally less than <strong>the</strong> limit of detection (as discussed below). Dry<br />

wea<strong>the</strong>r routine or ambient sampling provides only minimal in<strong>for</strong>mation about stream<br />

condition, is not useful <strong>for</strong> determining fluxes of contaminants, and provides little in<strong>for</strong>mation<br />

about process dynamics and interactions. The following text summarises <strong>the</strong> examination of<br />

<strong>the</strong> water quality dataset.<br />

Number of samples, analytes and records<br />

Figure 6.1 presents ranked cover of sample numbers, numbers of analytes and numbers of<br />

records <strong>for</strong> <strong>the</strong> Luxembourg dataset. Only a small number of sampling locations have a<br />

relatively large number of samples (Table 6.1), around 220 out of 305 sampling locations<br />

having less than 10 samples. Table 6.2 summarises specific locations with greater than 37<br />

water quality samples. The table also indicates which sites have river discharge measurements<br />

nearby, biological surveys and suspended matter data.<br />

Table 6.1: Frequency of sampling at Luxembourg Gestion de l’eau sampling locations (2005-2009).<br />

Number of samples > 1 > 10 > 20 > 40 > 60 > 80<br />

Number of locations 305 83 42 23 12 7<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 74/109


Figure 6.1: Water quality sampling locations in Luxembourg, sites with greater than 29 samples.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 75/109


Table 6.2: Luxembourg sampling locations with greater than 37 water quality samples, availability of<br />

river discharge, biological survey data, and suspended matter surveys.<br />

Site code<br />

River<br />

Location<br />

name<br />

L100011A01 Alzette Alzette at Esch/Alzette<br />

frontière<br />

Biological<br />

surveys<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 76/109<br />

Discharge<br />

Suspended<br />

matter<br />

samples<br />

Water Quality<br />

samples<br />

2005<br />

2006<br />

2007<br />

2008<br />

80 21 18 17 18 6<br />

L100011A09 Alzette at Hespérange Yes 79 20 18 17 18 6<br />

L100011A15 Alzette<br />

Heisdorf<br />

at Steinsel-<br />

Yes 43 13 1 12 12 5<br />

L100011A21 Alzette at Ettelbruck 10 Yes 39 120 22 32 27 30 9<br />

L104030A11 Mamer Mamer amont<br />

Yes 45 12 2 13 13 5<br />

confluent<br />

Mersch<br />

Alzette à<br />

L105030A04 Eisch Eisch at Stein<strong>for</strong>t 56 12 13 13 13 5<br />

L105030A12 Eisch at Mersch 7 Yes 56 12 13 13 13 5<br />

L106030A12 Attert Attert<br />

Berg<br />

aval Colmar- 9 76 20 17 16 17 6<br />

L110030A11 Wiltz Wiltz at Kautenbach.<br />

Yes 40 108 20 31 23 26 8<br />

aval<br />

Clerve<br />

embouchure<br />

L110040A03 Clerve Clerve<br />

Clervaux<br />

amont<br />

62 14 15 14 14 5<br />

L112010A01 Sûre Sûre at Martelange Yes 71 16 17 17 15 6<br />

L112010A02 Sûre at Bigonville Yes 40 3 7 14 13 3<br />

L112010A04 Sûre amont Esch sur<br />

Sûre<br />

Yes 71 16 17 17 15 6<br />

L112010A07 Sûre at Dirbach 41 11 5 12 11 2<br />

L112010A09 Sûre at Bourscheid 2 Yes 47 11 11 12 11 2<br />

L112010A10<br />

moulin<br />

Sûre aval Michelau Yes 47 11 11 12 11 2<br />

L112010A11 Sûre at Erpeldange 7 Yes 48 11 11 12 12 2<br />

L112010A22 Sûre at Rosport Yes 38 9 5 12 10 2<br />

L112010A23 Sûre at Born Yes 40 11 5 12 10 2<br />

L112010A24 Sûre at Wasserbillig 9 63 115 39 19 26 24 7<br />

L122020A07 Our Our at Vianden 8 Yes 43 7 7 13 12 4<br />

L144030A09 Ernz<br />

Noire<br />

Ernz Noire at Grundhof 8 65 14 15 15 15 6<br />

L202030A12 Syre Syre at Mertert 7 65 14 15 15 15 6<br />

L300030A06 Chiers Chiers at Rodange 8 34 84 19 15 18 25 7<br />

An investigation of sampling dates relative to recorded river flow heights and volumes helps<br />

to assess whe<strong>the</strong>r coverage of wet wea<strong>the</strong>r flows and first flushes was suitable <strong>for</strong> load<br />

estimation. Figure 6.3 provides examples of sites listed in Table 6.2 that have been sampled,<br />

ei<strong>the</strong>r frequently, or infrequently. The plots show where sampling occurred relative to <strong>the</strong><br />

flow condition in <strong>the</strong> river. This gives an indication of how many samples were collected<br />

during dry wea<strong>the</strong>r flow and how many during storm runoff events. The most intensively<br />

monitored sites offer some potential <strong>for</strong> <strong>the</strong> estimation of loads.<br />

2009


L100011A21<br />

L110030A11<br />

L106030A12<br />

L100011A01<br />

L112010A01<br />

L144030A09<br />

L105030A04<br />

L112010A11<br />

L112010A09<br />

L122020A07<br />

L112010A07<br />

L112010A23<br />

L112010A12<br />

L299010A03<br />

L122030A02<br />

L110040A08<br />

L122030A01<br />

L122020A04<br />

L100011A03<br />

L112010A03<br />

L106030A06<br />

L112010A21<br />

L106030A11<br />

L122020A06<br />

L122020A03<br />

L122020A01<br />

L100011A16<br />

L104030A06<br />

L100011A18<br />

L100011A12<br />

L100011A08<br />

L100011A04<br />

L110030A12<br />

L106030A10<br />

L141030A05<br />

L106030A08<br />

L105030A08<br />

L110030A03<br />

L110040A01<br />

L110040A07<br />

L110030A02<br />

L104030A09-1<br />

N. samples<br />

N. samples<br />

0 50 100 150<br />

L100011A21<br />

L110030A11<br />

L106030A12<br />

L100011A01<br />

L112010A01<br />

L144030A09<br />

L105030A04<br />

L112010A11<br />

L112010A09<br />

L122020A07<br />

L112010A07<br />

L112010A23<br />

L112010A12<br />

L299010A03<br />

L122030A02<br />

L110040A08<br />

L122030A01<br />

L122020A04<br />

L100011A03<br />

L112010A03<br />

L106030A06<br />

L112010A21<br />

L106030A11<br />

L122020A06<br />

L122020A03<br />

L122020A01<br />

L100011A16<br />

L104030A06<br />

L100011A18<br />

L100011A12<br />

L100011A08<br />

L100011A04<br />

L110030A12<br />

L106030A10<br />

L141030A05<br />

L106030A08<br />

L105030A08<br />

L110030A03<br />

L110040A01<br />

L110040A07<br />

L110030A02<br />

L104030A0…<br />

N. analytes<br />

N. analytes<br />

0 20 40 60 80 100<br />

L100011A21<br />

L110030A11<br />

L106030A12<br />

L100011A01<br />

L112010A01<br />

L144030A09<br />

L105030A04<br />

L112010A11<br />

L112010A09<br />

L122020A07<br />

L112010A07<br />

L112010A23<br />

L112010A12<br />

L299010A03<br />

L122030A02<br />

L110040A08<br />

L122030A01<br />

L122020A04<br />

L100011A03<br />

L112010A03<br />

L106030A06<br />

L112010A21<br />

L106030A11<br />

L122020A06<br />

L122020A03<br />

L122020A01<br />

L100011A16<br />

L104030A06<br />

L100011A18<br />

L100011A12<br />

L100011A08<br />

L100011A04<br />

L110030A12<br />

L106030A10<br />

L141030A05<br />

L106030A08<br />

L105030A08<br />

L110030A03<br />

L110040A01<br />

L110040A07<br />

L110030A02<br />

L104030A09-1<br />

N. records<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

Figure 6.2: Numbers of samples, analytes and date records <strong>for</strong> 82 of 305 (27 % of) sampling locations in<br />

Luxembourg where 10 or more samples have been collected.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 77/109<br />

N. records


Rvier Discharge (m3/sec)<br />

Rvier Discharge (m3/sec)<br />

Rvier Discharge (m3/sec)<br />

Rvier Discharge (m3/sec)<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

Alzette - Ettelbrück<br />

Susp matter<br />

WQ - Ettelbrück (n=120)<br />

MI (bio) survey<br />

Jan-2005 Jul-2005 Jan-2006 Jul-2006 Jan-2007 Jul-2007 Jan-2008 Jul-2008<br />

500.0<br />

400.0<br />

300.0<br />

200.0<br />

100.0<br />

0.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

Sûre - Rosport<br />

Susp matter<br />

WQ - u/s Wasserbillig (n=115)<br />

MI (bio) survey<br />

Jan-2005 Jul-2005 Jan-2006 Jul-2006 Jan-2007 Jul-2007 Jan-2008 Jul-2008<br />

Wiltz - Q d/s Kautenbach<br />

Susp matter - L110030A12<br />

WQ - u/s Clerve confluence (n=108)<br />

MI (bio) survey<br />

Jan-2005 Jul-2005 Jan-2006 Jul-2006 Jan-2007 Jul-2007 Jan-2008 Jul-2008<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

Attert - Reichelange<br />

WQ - STEP, Everlange (n=17)<br />

MI (bio) survey<br />

Jan-2005 Jul-2005 Jan-2006 Jul-2006 Jan-2007 Jul-2007 Jan-2008 Jul-2008<br />

Figure 6.3: Discharge time-series <strong>for</strong> frequently and infrequently sampled sites showing <strong>the</strong> occurrence of<br />

water quality samples, suspended matter and macroinvertebrate surveys.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 78/109


Figure 6.4 demonstrates <strong>the</strong> influence of bathing waters monitoring in relation to seasonal<br />

sampling ef<strong>for</strong>t; <strong>the</strong> greatest number of sites are sampled during <strong>the</strong> summer months. In <strong>the</strong><br />

winter months, only <strong>the</strong> 17 most intensely monitored locations (Figure 6.1 and Table 6.2)<br />

were regularly sampled, whereas, in summer (June to August) around 130 locations were<br />

routinely sampled.<br />

Locations sampled per month<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

18<br />

19<br />

01/02/2005<br />

01/03/2005<br />

57<br />

107<br />

01/04/2005<br />

01/05/2005<br />

130<br />

127<br />

01/06/2005<br />

01/07/2005<br />

158<br />

71<br />

01/08/2005<br />

01/09/2005<br />

17<br />

24<br />

01/10/2005<br />

01/11/2005<br />

17<br />

17<br />

17<br />

17<br />

01/12/2005<br />

01/01/2006<br />

01/02/2006<br />

01/03/2006<br />

45<br />

114<br />

01/04/2006<br />

01/05/2006<br />

147<br />

133<br />

146<br />

73<br />

34<br />

17<br />

15<br />

18<br />

18<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 79/109<br />

16<br />

43<br />

132<br />

131<br />

142<br />

176<br />

73<br />

19<br />

19<br />

17<br />

22<br />

21<br />

Figure 6.4: Plot of number of locations sampled per month against month.<br />

01/06/2006<br />

01/07/2006<br />

01/08/2006<br />

01/09/2006<br />

01/10/2006<br />

01/11/2006<br />

01/12/2006<br />

01/01/2007<br />

01/02/2007<br />

01/03/2007<br />

16<br />

82<br />

72<br />

150<br />

134<br />

142<br />

105<br />

19<br />

19<br />

19<br />

16<br />

Appendix VII provides an overview summary table of <strong>the</strong> water quality grab sampling data<br />

<strong>for</strong> Luxembourg. The table is ranked in descending order of <strong>the</strong> most frequently sampled sites<br />

and shows <strong>the</strong> number of samples taken in <strong>the</strong> years 2005 to 2009 inclusive. The table fur<strong>the</strong>r<br />

indicates <strong>the</strong> sampling <strong>the</strong>mes that comprise <strong>the</strong> totals <strong>for</strong> each year. Cells coloured green<br />

indicate <strong>the</strong> greatest numbers of samples, those in red show those years and sites with <strong>the</strong><br />

least samples. The table clearly demonstrates that <strong>the</strong>re are many sites with few samples and<br />

few sites with many samples.<br />

Percentage Cover of Analytes in Luxembourg data<br />

A broad suite of analytes has been collected. The maximum number of analytes at any one<br />

location was just over 90, with most sites having around 40 to 60 analytes measured.<br />

Appendix V and VI demonstrate <strong>the</strong> ranges of parameters analysed relative to <strong>the</strong> sampling<br />

<strong>the</strong>mes of <strong>the</strong> Luxembourg Water Agency. The green cells demonstrate <strong>the</strong> <strong>the</strong>mes and<br />

substances that are most commonly tested.<br />

The basic physicochemical tests and analyses <strong>for</strong> inorganic macronutrients, and oxygen status<br />

related determinants appear to have been made on most samples. These include pH,<br />

temperature and electrical conductivity. Major cations and anions are recorded <strong>for</strong> most<br />

records, as well as nutrients and measures of oxygen status and demand. Iron and manganese<br />

are generally present in solution at higher concentrations in waters of poor oxygen status; <strong>the</strong>y<br />

were measured in less than 50% of samples.<br />

It is important to note that <strong>the</strong> number of suspended sediment and turbidity data is relatively<br />

low. Coverage <strong>for</strong> suspended solids was almost completely absent and turbidity was assessed<br />

<strong>for</strong> around a third of samples (suspended solids is a key vector <strong>for</strong> contaminants, and analyses<br />

of particulate bound metals is necessary to determine realistic metals concentrations in<br />

polluted freshwaters).<br />

01/04/2007<br />

01/05/2007<br />

01/06/2007<br />

01/07/2007<br />

01/08/2007<br />

01/09/2007<br />

01/10/2007<br />

01/11/2007<br />

01/12/2007<br />

01/01/2008<br />

01/02/2008<br />

01/03/2008<br />

01/04/2008<br />

01/05/2008<br />

01/06/2008<br />

01/07/2008<br />

01/08/2008<br />

01/09/2008<br />

01/10/2008<br />

01/11/2008<br />

01/12/2008<br />

01/01/2009<br />

16<br />

16<br />

01/02/2009<br />

01/03/2009<br />

83<br />

65<br />

01/04/2009<br />

01/05/2009<br />

0<br />

01/06/2009


Cover <strong>for</strong> micropollutants is less complete (Appendix V and VI), with common heavy metals<br />

being analysed <strong>for</strong> in around a third of all samples. O<strong>the</strong>r contaminant metals were only<br />

analysed <strong>for</strong> in around 20 % of samples. Measurements of micropollutants and indices of<br />

biological condition are only present <strong>for</strong> a very small proportion of samples.<br />

Positive detection of substances in Luxembourg Water Quality samples<br />

Figure 6.5 provides a quick look-up indication of <strong>the</strong> results <strong>for</strong> analytes in <strong>the</strong> Luxembourg<br />

dataset that were commonly or rarely tested <strong>for</strong>, and which generally had mainly positive<br />

results or not. In general, <strong>the</strong> common physical and chemical tests and analytes have positive<br />

results as would be expected. It is <strong>the</strong> micropollutants that have a low proportion of positive<br />

detections.<br />

The substances rarely tested <strong>for</strong> and commonly with few positive detections were <strong>the</strong> heavy<br />

metals and <strong>the</strong> organic micropollutants; largely PAHs (which are generally by-products of<br />

combustion) and a range of solvent and some pesticides. The pattern of detections in surface<br />

water samples is very similar to that in <strong>the</strong> o<strong>the</strong>r study regions, and a comparison is provided<br />

in Section 6.1. Section 6.7 gives a more detailed summary of <strong>the</strong> Luxembourg data in relation<br />

limits of detection.<br />

The Luxembourg “Priority Substances” data set exists <strong>for</strong> priority substances at 7 locations in<br />

Luxembourg water courses (Figure 6.6). These data provided to CRTE <strong>for</strong> this project span<br />

<strong>the</strong> period 2000 to <strong>the</strong> end of 2006 (Figure 6.7). The PAH data are included in <strong>the</strong> separately<br />

provided general Water Agency dataset (Figure 6.5) and most of <strong>the</strong>se have few positive<br />

detections. As repeatedly stated, <strong>the</strong> need <strong>for</strong> more comprehensive sediment and particulate<br />

phase testing <strong>for</strong> micropollutants is necessary to characterise <strong>the</strong> immissions situation <strong>for</strong><br />

<strong>the</strong>se substances.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 80/109


Cond.<br />

pH<br />

NO2<br />

NH4<br />

Sulfate-SO4<br />

Nitrate-NO3<br />

Chloride-Cl<br />

Temp °C<br />

P_tot<br />

BOD_5<br />

DO(%sat)<br />

DO<br />

Sodium-Na<br />

Potassium-K<br />

Hardness (H#CO3) °Fr<br />

PO4-P<br />

Cote NH4 (IPO)<br />

Organic Pollution Index<br />

Cote o-PO4 (IPO)<br />

Cote NO2 (IPO)<br />

Cote BOD-5 (IPO)<br />

Magnesium-Mg<br />

Calcium-Ca<br />

Total hardness<br />

Iron-Fe<br />

Turbidity visual obs.<br />

Sum cations<br />

Sum anions<br />

Charge balance<br />

Manganèse-Mn<br />

Pheopigments<br />

Chlorophylle-a<br />

Indice biochim.<br />

Cote Sat O2 (Indice biochim.)<br />

Cote BOD-5 (Indice biochim.)<br />

Cote NH4 (Indice biochim.)<br />

Zinc-Zn<br />

Nickel-Ni<br />

Lead-Pb<br />

Copper-Cu<br />

Chromium-Cr<br />

Cadmium-Cd<br />

Turbidity<br />

Alkalinity<br />

Hardness (H#CO3) meq./L<br />

Intestinal enterococci<br />

E.coli<br />

Above DL<br />

No. of results<br />

0 500 1000 1500 2000 2500 3000 3500<br />

0 500 1000 1500 2000 2500 3000 3500<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 81/109<br />

Boron-B<br />

Arsenic-As<br />

Mercury-Hg<br />

Total coli<strong>for</strong>ms<br />

Total Xylène<br />

Vanadium-V<br />

Silver-Ag<br />

Fluoranthène<br />

Benzo(k)fluoranthène<br />

Benzo(b)fluoranthène<br />

Benzo(a)pyrène<br />

Indeno(1.2.3.c.d)pyrène<br />

Benzo(g.h.i)pérylène<br />

Tétrachloroéthylène<br />

Faecal coli<strong>for</strong>ms<br />

Fluoride-F<br />

Toluène<br />

Tétrachlorométhane<br />

Ethylbenzène<br />

Dichlorométhane<br />

Chloro<strong>for</strong>m<br />

Benzène<br />

1.1.1-Trichloroéthane<br />

Silicon-Si<br />

Suspended solids<br />

Cote Macrozoobenthos<br />

Diatom poll.sens.ind.<br />

Diatom biological index<br />

Trichloroéthylène<br />

Mineralisation rate<br />

Macrophyte bio. Index<br />

Hardness (H#CO3) mg/L<br />

TOC<br />

Pyrène<br />

Phenantrène<br />

Fluorène<br />

Chrysène<br />

Benzo(a)anthracène<br />

Anthracène<br />

Acenaphtène<br />

Dibenzo(a.h)anthracène<br />

HCO3<br />

Free cyanide-CN<br />

COD<br />

Above DL<br />

No. of<br />

results<br />

Figure 6.5: Total number of results (blue) and number of positive results (red) in <strong>the</strong> Luxembourg<br />

surface water quality dataset download.


Number of Samples<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2000 2001 2002 2003 2004 2005 2006<br />

Figure 6.6: Number and location code of “priority substances” samples per year.<br />

Acénaphtène<br />

Anthracène<br />

Benzo (a) anthracène<br />

Benzo (a) pyrène<br />

Benzo (b) fluoranthène<br />

Benzo (ghi) pérylène<br />

Benzo (k) fluoranthène<br />

Chrysène<br />

Dibenzo(a,h)anthracène<br />

Fluoranthène<br />

Fluorène<br />

Indéno (1.2.3 cd) pyrène<br />

Méthyl (2) fluoranthène<br />

Méthyl (2) naphtalène<br />

Naphtalène<br />

Phénanthrène<br />

Pyrène<br />

Biphényl<br />

Di(ethylhexyl)phtalate<br />

Phosphate de tributyle<br />

1-1-2-2 Tetrachloroéthane<br />

1-2 Dichloroéthane<br />

1-4 Dichlorobenzène<br />

Benzène<br />

Décabromodiphénylé<strong>the</strong>r<br />

Dichloroaniline (s)<br />

Dichlorométhane<br />

Hexachlorobutadiène<br />

Tetrachloroéthylène<br />

Tetrachlorure de Carbone<br />

Trichloréthylène<br />

Trichlorobenzène 1,2,3<br />

Trichlorobenzène 1,2,4<br />

Trichlorobenzène 1,3,5<br />

4-nonyl phénol<br />

4-tert-octyl phénol<br />

2-3 Dichloroaniline<br />

2-4 Dichloroaniline<br />

2-5 Dichloroaniline<br />

2-6 Dichloroaniline<br />

3-4 Dichloroaniline<br />

3-5 Dichloroaniline<br />

4 chloro 2 nitroaniline<br />

Pentabromodiphénylé<strong>the</strong>r<br />

0 50 100 150 200 250 300<br />

42<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

42<br />

Number of Records<br />

150<br />

162<br />

162<br />

168<br />

186<br />

186<br />

210<br />

204<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

224<br />

221<br />

228<br />

228<br />

Number of records<br />

N > L.o.D<br />

228<br />

263<br />

263<br />

263<br />

263<br />

263<br />

263<br />

262<br />

263<br />

263<br />

263<br />

2,3,4-Trichlorophénol<br />

2,3,5-Trichlorophénol<br />

2,3,6-Trichlorophénol<br />

2,4,5-Trichlorophénol<br />

2,4,6-Trichlorophénol<br />

3,4,5-Trichlorophénol<br />

L300030A06<br />

L112010A24<br />

L100011A21<br />

L100011A09<br />

L106030A12<br />

L110030A11<br />

L100011A01<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 82/109<br />

Alachlor<br />

Atrazine<br />

Bentazone<br />

Chlordane<br />

Chlordane béta (trans)<br />

Chlorfenvinphos<br />

Chloroalcanes C10-C13 (51,5%)<br />

Chloroalcanes C10-C13 (55,5%)<br />

Chloroalcanes C10-C13 (63%)<br />

Chlorobenzène<br />

Chloro<strong>for</strong>me<br />

Chlorpyrifos éthyl<br />

Chlorpyrifos méthyl<br />

Chorotoluron<br />

Delta HCH<br />

Désethyl atrazine<br />

Dichlorvos<br />

Diclobényl<br />

Diuron<br />

Endosulfan a<br />

Gamma HCH<br />

Hexachlorobenzène<br />

Isoproturon<br />

Metalaxyl<br />

Métazachlor<br />

Metolachlor<br />

Pentachlorophénol<br />

Simazine<br />

Tributylétain<br />

Trichlorfon<br />

Trifluraline<br />

0 100 200 300<br />

30<br />

42<br />

42<br />

42<br />

42<br />

42<br />

42<br />

42<br />

42<br />

Number of Records<br />

84<br />

78<br />

84<br />

186<br />

186<br />

186<br />

186<br />

186<br />

204<br />

196<br />

228<br />

228<br />

228<br />

228<br />

Number of records<br />

N > L.o.D<br />

Figure 6.7: Number of results (blue) and positive results (red) <strong>for</strong> <strong>the</strong> Luxembourg priority<br />

substance water quality data.<br />

228<br />

228<br />

227<br />

226<br />

228<br />

228<br />

228<br />

228<br />

228<br />

228<br />

222<br />

228<br />

227<br />

263


6.3.2. Suspended matter quality data<br />

The Water Agency in Luxembourg recently provided <strong>the</strong>ir data <strong>for</strong> suspended matter quality<br />

<strong>for</strong> four locations (Table 6.3). The sample material was collected using <strong>the</strong> continuous<br />

throughflow centrifugation method collecting material <strong>for</strong> each sample over a 24 hour period.<br />

Figure 6.3 shows <strong>the</strong> occurrence of surveys <strong>for</strong> three of <strong>the</strong> locations (red spots) relative to <strong>the</strong><br />

river flow values. These surveys have successfully collected samples during elevated flows<br />

and also provide dry-wea<strong>the</strong>r (low flow) samples. These data provide a useful supplement to<br />

<strong>the</strong> concurrent surface water samples. Due that late arrival of <strong>the</strong>se data, a comparison with<br />

<strong>the</strong> water samples has not yet been carried-out. It may be of interest to examine <strong>the</strong> relative<br />

high and low flow composition of <strong>the</strong> material, certain differences in composition might be<br />

expected. The examination of suspended matter composition in Luxembourg rivers is of<br />

interest, since it highlights one of <strong>the</strong> key shortcomings of <strong>the</strong> grab sampling water quality<br />

programme. There are almost no suspended solids analyses carried-out at any of <strong>the</strong> sampling<br />

locations. At <strong>the</strong> very least suspended solids data are required <strong>for</strong> those sites where<br />

suspended matter analysis is carried-out in order to be able to relate <strong>the</strong>se to <strong>the</strong> general<br />

suspended matter concentrations. The following text provides a description of <strong>the</strong> suspended<br />

matter data and presents mean concentrations.<br />

In general, <strong>the</strong> samples show frequent positive detections (green cells in Table 6.3) of PAHs<br />

and metals, but most o<strong>the</strong>r substances are rarely detected; a similar pattern to that observed in<br />

surface water samples. This is unlike <strong>the</strong> results <strong>for</strong> Delfland, where dredge sediment samples<br />

have frequent positive detections of most substances compared to water samples. The low<br />

detection levels may be related to <strong>the</strong> substances tested <strong>for</strong> and <strong>the</strong>ir use, and whe<strong>the</strong>r changes<br />

in substances used <strong>for</strong> various purposes means that <strong>the</strong> list of analytes should be reviewed on<br />

a regular basis. The absence of substances may also relate to <strong>the</strong> nature of <strong>the</strong> solids collected<br />

by <strong>the</strong> methods, and without a more detailed examination of <strong>the</strong> data it is not possible to make<br />

a useful conclusion from <strong>the</strong> table of means presented.<br />

Of <strong>the</strong> concentrations presented iron is <strong>the</strong> most abundant component measured, this is similar<br />

to <strong>the</strong> sediment samples <strong>for</strong> <strong>the</strong> Erft River. Phosphorus is <strong>the</strong> second most abundant<br />

component, which was also <strong>the</strong> case <strong>for</strong> <strong>the</strong> Erft samples. The PAHs are <strong>the</strong> next most<br />

abundant group of measured substances, and <strong>the</strong> metals are in much lower concentrations,<br />

except <strong>for</strong> zinc. Zinc is a an important component of <strong>the</strong> tyre making process, iron, <strong>the</strong> o<strong>the</strong>r<br />

metals and PAHs are also common constituents of road runoff, but without a more detailed<br />

examination of <strong>the</strong> data caution is appropriate be<strong>for</strong>e making any speculative conclusions<br />

about <strong>the</strong> nature of this material.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 83/109


Table 6.3: Summary of data <strong>for</strong> suspended matter collected at four sites in Luxembourg, showing <strong>the</strong><br />

geometric mean (in mg/kg unless o<strong>the</strong>rwise stated), number of results and number of positive results.<br />

Geometric means Chiers at<br />

Rodange<br />

positive results<br />

Wiltz at<br />

Kautenbach<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 84/109<br />

positive results<br />

Sûre at<br />

Wasserbillig<br />

positive results<br />

Alzette at<br />

Ettelbruck<br />

Substance 2007-9 n 2006-9 n 2005-9 n 2006-9 n<br />

Percentage water 71.7 34 34 64.7 40 40 69.7 63 63 65.1 39 39<br />

Dry residue % 27.4 34 34 34.1 40 40 28.4 63 63 33.5 39 39<br />

Grainsize > 2 mm % 7.4 35 1 1.90 37 1 28.7 46 1 36 0<br />

Total organic carbon 137469 34 34 49046 40 40 28586 63 63 46118 38 38<br />

Iron 47389 34 34 36388 40 40 31478 63 63 35684 39 39<br />

Total Phosphorus 5109 34 34 1704 40 40 2639 63 63 2806 39 39<br />

Manganese 1622 34 34 1760 40 40 2613 63 63 1658 39 39<br />

Zinc 708.3 34 34 419.7 40 40 292.4 63 63 408.8 39 39<br />

Copper 106.3 34 34 66.47 40 40 43.00 63 63 56.12 39 39<br />

Chromium 79.24 34 34 159.8 40 40 60.00 63 63 62.47 39 39<br />

Lead 65.08 34 34 49.19 40 40 42.33 63 63 53.74 39 39<br />

Nickel 58.18 34 34 73.76 40 40 45.27 63 63 37.52 39 39<br />

Arsenic 24.84 34 34 12.15 40 40 11.64 63 62 14.95 39 39<br />

Tin 11.74 12 11 3.990 12 12 3.907 12 11 5.924 12 12<br />

Fluoran<strong>the</strong>ne 2.017 34 33 2.490 40 40 1.934 59 59 2.305 39 39<br />

Benzo (b) fluoran<strong>the</strong>ne 1.623 34 33 1.986 40 39 1.456 59 58 1.640 39 39<br />

Indeno (1,2,3-c,d) pyrene 1.350 34 30 1.523 40 39 1.227 59 53 1.250 39 37<br />

Benzo (a) pyrene 1.288 34 33 1.638 40 40 1.204 59 58 1.395 39 39<br />

Cadmium 1.210 34 28 1.534 40 40 0.693 63 35 0.735 39 28<br />

Benzo (k) fluoran<strong>the</strong>ne 1.206 34 33 1.411 40 40 0.956 59 58 1.221 39 39<br />

Benzo (g,h,i) perylene 1.016 34 32 1.141 40 40 0.974 59 56 0.958 39 39<br />

Ugilec 141 0.370 34 1 40 0 0.250 60 1 0.240 39 1<br />

Mercury 0.156 34 31 0.194 40 37 0.124 63 48 0.111 39 32<br />

Anthracene 0.111 34 26 40 40 0.137 63 35 0.144 39 35<br />

Pentachlorophenol 0.061 34 1 0.023 40 1 0.030 63 3 0.061 39 2<br />

PCB 180 0.018 34 1 40 0 0.011 63 2 0.012 39 1<br />

PCB 138 0.016 34 5 40 0 0.013 63 2 0.016 39 1<br />

PCB 153 0.016 34 6 40 0 0.016 63 2 0.015 39 1<br />

4-nonylphenol 35 0 41 0 2.400 63 2 40 0<br />

1,2,4-trichlorobenzene 35 0 41 0 0.280 64 1 40 0<br />

PCB 101 0.015 34 2 40 0 0.012 63 1 39 0<br />

PCB 118 0.015 34 1 40 0 63 0 39 0<br />

PCB 52 0.011 34 1 40 0 63 0 39 0<br />

Lindane (gamma HCH) 34 0 40 0 0.006 63 2 39 0<br />

Tributyl-tin 0.0001 35 1 41 0 64 1 40 0<br />

1,1-dichloroethane 13 0 13 0 13 0 13 0<br />

1,2,3-trichlorobenzene 35 0 41 0 64 0 40 0<br />

1,3,5-trichlorobenzene 35 0 41 0 64 0 40 0<br />

4-tert-octylphenol 35 0 41 0 63 0 40 0<br />

Aldrin 12 0 12 0 12 0 12 0<br />

DDT-4,4' 12 0 12 0 12 0 12 0<br />

Dieldrin 12 0 12 0 12 0 12 0<br />

Endosulfan alpha 12 0 12 0 12 0 12 0<br />

Hexachlorobenzene 34 0 40 0 49 0 39 0<br />

Hexachlorobutadiene 34 0 40 0 63 0 39 0<br />

Isodrin 12 0 12 0 12 0 12 0<br />

Isoproturon 13 0 13 0 13 0 13 0<br />

Naphtalene 34 0 40 0 63 0 39 0<br />

PCB 126 11 0 35 0 13 0 11 0<br />

PCB 28 34 0 40 0 63 0 39 0<br />

Pentachlorobenzene 34 0 40 0 62 0 39 0<br />

positive results


Suspended matter is clearly a significant source of micro-pollutants, and <strong>the</strong>ir impact of<br />

stream biota has been <strong>the</strong> subject of considerable research ef<strong>for</strong>t. In <strong>the</strong> next section a<br />

summary of <strong>the</strong> macroinvertebrate survey data is provided.<br />

6.3.3. Biological survey data<br />

In Luxembourg an adaptation of <strong>the</strong> French IBGN methodology is used to quantify stream<br />

macroinvertebrate (MI) community status. The IBGN is an abundance and sensitivity<br />

weighted macroinvertebrate community index and <strong>the</strong> macroinvertebrate in<strong>for</strong>mation is<br />

summarised at <strong>the</strong> family level. At each sampling location 8 habitat patches are sampled to<br />

ensure that areas with abundant organisms are not missed (Friberg et al., 2006). Since 1999 up<br />

to 10 samplings of a total of 109 locations have been made, and each year a sub-set of around<br />

40 locations is sampled (Table 6.4). Only 32 locations have been surveyed on more than 32<br />

occasions, and 27 locations have more than 7 survey results.<br />

Table 6.4: Numbers of locations in Luxembourg where IBGN macroinvertebrate surveys were<br />

undertaken showing that <strong>the</strong> variability in IBGN has been small (higher IBGN indicates better condition).<br />

Year Tot Sites Sites > 7 Mean IBGN<br />

1999 31 28 10.2<br />

2000 34 27 11.5<br />

2001 44 28 12<br />

2002 47 26 12.9<br />

2003 38 27 12.7<br />

2004 42 28 11.7<br />

2005 42 28 11<br />

2006 39 20 12.1<br />

2007 24 5 10<br />

Site by site examination of <strong>the</strong> IBGN results demonstrates that <strong>the</strong> year by year variations are<br />

relatively small. This suggests that a small sample size may still provide a valid indication of<br />

condition. In Luxembourg, however, <strong>the</strong> most frequently sampled sites are those with <strong>the</strong><br />

highest IBGN score and hence those showing <strong>the</strong> least evidence of human disturbance (Figure<br />

6.8). Low IBGN sites are not often sampled and have little water quality in<strong>for</strong>mation.<br />

Luxembourg has 62 sites with macroinvertebrate (MI) and water quality data, 36 of <strong>the</strong>se<br />

locations have just one WQ sample. Figure 6.9 demonstrates <strong>the</strong> coincidence of Luxembourg<br />

sites with greater than 20 water quality samples or greater than 7 macroinvertebrate surveys.<br />

The general message in this figure is that only 16 locations have relatively frequent water<br />

quality and MI surveys, and of <strong>the</strong> sites with frequent MI surveys, a significant number have<br />

few water quality determinations. Table 6.2 lists <strong>the</strong> sampling locations with <strong>the</strong> most water<br />

quality records, numbers of biological surveys and proximity to river discharge<br />

measurements, and Figure 6.3 shows when marcoinvertebrate surveys were made relative to<br />

river flows and water quality samples. The correspondence of water quality monitoring<br />

locations and macroinvertebrate survey sites in Luxembourg is not ideal. Considering <strong>the</strong><br />

pressure and monitoring model (Figure 2.2), <strong>the</strong> macroinvertebrate survey results represent an<br />

end-point of ecosystem condition, and water quality is one causal factor in determining this<br />

end condition.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 85/109


Ideally, water quality and biological survey locations need to coincide to maximise <strong>the</strong><br />

predictive value of <strong>the</strong> two measures.<br />

Average IBGN and N_mi surveys<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

L110040A-08<br />

L107030A-09<br />

L110030A-12<br />

L122020A-07<br />

L202030A-12<br />

L112010A-05<br />

L112010A-12<br />

L144030A-09.1<br />

L140030A-03<br />

L106030A-12<br />

L105030A-12.1<br />

L110030A-02<br />

L106036A-01<br />

L103030A-07<br />

L106030A-06<br />

L110036A-01<br />

L202030A-08.1<br />

L141030A-02<br />

L106030A-02.1<br />

L106030A-01<br />

L106033A-01.1<br />

L102030A-04<br />

L100011A-18.1<br />

L107030A-05<br />

L110044A-03<br />

L201033A-01<br />

L202031A-02<br />

L110046A-01<br />

L122020A-04<br />

L106030A-08<br />

L141030A-10<br />

L144031A-01<br />

L200030A-11<br />

L105031A-01<br />

L103030A-01<br />

L105030A-06<br />

L144032A-01<br />

L112010A-21<br />

L101030A-10<br />

L200031A-01<br />

L100011A-03<br />

L202040A-01<br />

L200030A-06<br />

L144030A-05.1<br />

L100011A-04.1<br />

L102030A-01<br />

L201031A-01<br />

L101030A-03<br />

L105030A-01<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 86/109<br />

N_mi<br />

IBGN_ave<br />

N. samples<br />

Figure 6.8: Average IBGN score (green), number of biological surveys (N_mi, red), and number of water<br />

quality samples (blue) <strong>for</strong> Luxembourg monitoring locations.<br />

L112010A-09<br />

L112010A-17<br />

L106030A-01<br />

L122020A-04<br />

L110040A-04<br />

L106030A-06<br />

L100011A-18.1<br />

L107030A-09<br />

L140030A-06<br />

L110030A-12<br />

L141030A-13.1<br />

L100011A-14.1<br />

L201030A-06<br />

L200030A-11<br />

L102030A-04<br />

L103030A-07<br />

L108030A-02<br />

L100011A-21<br />

L112010A-24<br />

L300030A-06.1<br />

L106030A-12<br />

L202030A-12<br />

L144030A-09.1<br />

L105030A-12.1<br />

L112010A-11<br />

L122020A-07<br />

L112010A-02<br />

L112010A-12<br />

L110040A-08<br />

L112010A-05<br />

L100011A-03<br />

L112010A-18<br />

L104030A-10<br />

Number of macroinvertebrate surveys<br />

-14 WQ Samples -12 -10Macroinvertebrate -8 -6 -4 Samplings -2 0 2 4 6 8 10 12<br />

< 7 biological surveys ,<br />

>= 20 water samples<br />

> = 7 biological surveys ,<br />

< 20 water samples<br />

>= 7 biological surveys ,<br />

> = 20 water samples<br />

0 20 40 60 80 100 120 140 160 180 200 220 240 260<br />

Number of water quality samples<br />

Figure 6.9: Correspondence of macroinvertebrate surveys and water quality sampling in Luxembourg<br />

(sites with >= 20 WQ samples, and / or, >= 7 MI surveys).<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Numbers of WQ samples


Water quality, macroinvertebrate and suspended matter data are currently being investigated<br />

to examine potential relationships in Luxembourg between pressures and impacts, and this<br />

analysis is being used to guide <strong>the</strong> M 3 monitoring strategy in Luxembourg.<br />

6.4. Luxembourg summary<br />

Many sites are monitored in Luxembourg, but monitoring is dominated by a small number of<br />

frequently sampled sites, where general water quality parameters and in some cases micropollutants<br />

are analysed. The majority of <strong>the</strong> sites have only been sampled between one and<br />

five times a year over <strong>the</strong> past 5 years. A number of monitoring <strong>the</strong>mes exist and any site can<br />

have sampling under one or more of <strong>the</strong>se schemes, <strong>the</strong>re<strong>for</strong>e, monitoring is not site/pressure<br />

specific. It would be better to have each pressure accounted <strong>for</strong> in a single monitoring suite<br />

<strong>for</strong> each site. For this reason <strong>the</strong> monitoring summary table provides in<strong>for</strong>mation on each<br />

sampling <strong>the</strong>me as well as <strong>for</strong> <strong>the</strong> combined <strong>the</strong>mes which at some sites add up to give<br />

relatively intense monitoring.<br />

General summary narrative <strong>for</strong> Luxembourg<br />

� Residential areas, industry and agriculture all exert a significant stress on <strong>the</strong> small<br />

streams and rivers of central and sou<strong>the</strong>rn Luxembourg.<br />

� Basic physico-chemical water quality monitoring is carried out at all sites, but<br />

coverage of micro-pollutants is limited to 7 sites;<br />

� In general <strong>the</strong>re is a good geographical correspondence between biological survey and<br />

water quality monitoring locations, it is <strong>the</strong> frequency of monitoring which is an issue.<br />

Some locations have regular biological survey but infrequent water quality sampling<br />

and vice versa, which means that few sites have both good biological and water<br />

quality monitoring coverage thus <strong>the</strong> association of ecological health and water quality<br />

is not facilitated;<br />

� Flow gauging coverage addresses most of <strong>the</strong> major rivers and associated water<br />

quality monitoring sites, but <strong>the</strong> majority of <strong>the</strong> minor sampling locations have no<br />

flow estimates in <strong>the</strong>ir vicinity;<br />

� Testing <strong>for</strong> suspended solids was almost completely absent and turbidity was assessed<br />

<strong>for</strong> only around a third of samples. Suspended solids is a key vector <strong>for</strong> contaminants,<br />

and analyses of particulate bound metals is necessary to determine realistic metals<br />

concentrations in polluted freshwaters;<br />

� At a small number of sites, water sampling is sufficiently intensive to af<strong>for</strong>d basic<br />

estimates of material fluxes <strong>for</strong> some substances. At most sites data are too sparse and<br />

give an inadequate coverage of rainfall response events. The calibration of models <strong>for</strong><br />

water quality and load estimation should be possible <strong>for</strong> certain substances where <strong>the</strong><br />

short-term dynamic variation of those substances is not large with respect to <strong>the</strong> longer<br />

term average concentration; this limits <strong>the</strong> value of <strong>the</strong> data. At <strong>the</strong> more intensively<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 87/109


monitored sites, existing monitoring needs to be supplemented with targeted event<br />

response sampling, especially <strong>for</strong> particulate associated substances.<br />

Some specific comments<br />

� The data entry and input problems with <strong>the</strong> Luxembourg site and analyte names can be<br />

overcome by having site names linked automatically to location codes, and/or having pulldowns<br />

<strong>for</strong> each input field, additional in<strong>for</strong>mation can be provided in a comments column;<br />

� Sampling many sites infrequently can give an indication of conditions, but this is highly<br />

dependent on <strong>the</strong> prevailing conditions. Stratified sampling which increases in intensity<br />

during storm events leads to a more statistically robust characterisation of conditions at a<br />

site;<br />

� Many micro-pollutants are quite industry specific, <strong>the</strong> choice of analytes needs to be<br />

tailored to suit <strong>the</strong> industries and activities present in a catchment in order to effectively<br />

characterise <strong>the</strong> stress exerted by <strong>the</strong> emitting processes, and beyond this to identify<br />

programs of measures to reduce <strong>the</strong>se stresses.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 88/109


Table 6.5: Stress and monitoring summary <strong>for</strong> Luxembourg.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 89/109


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 90/109


7. COMPARISON OF MICRO-POLLUTANTS RESULTS BY REGION<br />

The differences between micro-pollutant testing of water samples between <strong>the</strong> study regions<br />

is presented. General findings are as follows:<br />

� Numbers of samples and analyses varied greatly, Delfland had made <strong>the</strong> greatest<br />

number of analyses <strong>for</strong> <strong>the</strong> widest range of analytes, and <strong>the</strong>se were most relevant to<br />

<strong>the</strong> stresses in Delfland;<br />

� Few substances were tested <strong>for</strong> in all regions;<br />

� Percentage detection between regions was comparably low;<br />

� Mean concentrations <strong>for</strong> <strong>the</strong> same substances in tests where <strong>the</strong> results were greater<br />

than detection limit varied greatly between regions;<br />

� Too few results were greater than detection limit to af<strong>for</strong>d a meaningful comparison of<br />

<strong>the</strong> situation between regions.<br />

A large range of micro-pollutants are monitored in <strong>the</strong> partner regions and <strong>the</strong> comparability<br />

of monitoring between <strong>the</strong> partner regions has been investigated. Of <strong>the</strong> 225 substances<br />

analysed in water quality samples from <strong>the</strong> three regions, only 31 of <strong>the</strong>se are tested <strong>for</strong> in<br />

more than two regions and only 7 in all three regions. Delfland tested <strong>for</strong> 159 substances,<br />

Erftverband looked <strong>for</strong> 52 substances, and Luxembourg analyzed <strong>for</strong> 90. Infrequent grab<br />

sampling in <strong>the</strong> Erft system and Luxembourg, very low recovery rates (Table 7.1), and<br />

different limits of analytical detection and <strong>report</strong>ing, mean that a comparison from region to<br />

region is almost meaningless. A far greater number of analyses have been carried-out in<br />

Delfland, but even here <strong>the</strong> rates of recovery were very low (Table 7.1). Table 7.1 also<br />

presents mean values <strong>for</strong> those substances tested <strong>for</strong> in more than one region (excluding PAHs<br />

and metals), and Figure 7.1 reproduces <strong>the</strong> arithmetic mean concentrations <strong>for</strong> results greater<br />

than <strong>the</strong> limit of detection, <strong>the</strong> numbers of records greater than detection limit <strong>for</strong> each region<br />

is included with <strong>the</strong> variable name. Figure 7.1 is provided to demonstate <strong>the</strong> variability in<br />

results <strong>for</strong> <strong>the</strong> substances presented. A surprising result is <strong>the</strong> apparently high values in<br />

Luxembourg samples. Of all of <strong>the</strong> regions, Delfland appears to have <strong>the</strong> most targetted<br />

selection of priority substance analytes, and this is not surprising given <strong>the</strong> density of<br />

glasshouses and <strong>the</strong> intensity of chemical use by growers. In Luxembourg and Erft, <strong>the</strong> use of<br />

<strong>the</strong>se chemicals will be less intense and localised.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 91/109


Arithmetic mean concentration (ug/L)<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

d e l<br />

Figure 7.1: Mean concentrations of micro-pollutants at all locations by region.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 92/109


Table 7.1: Micro-pollutant comparison <strong>for</strong> water quality samples from <strong>the</strong> three study partner regions.<br />

Substance Reported L.o.D<br />

Delfland Erftverband Luxembourg<br />

Total records<br />

n > L.o.D<br />

% > L.o.D<br />

Arithmetric mean (c ><br />

L.o.D)<br />

diuron 0.02/0.1 739 226 30.6 0.038 0.050 251 62 24.7 0.105 0.050 228 45 19.7 0.340<br />

lindane 0.010 3003 136 4.5 0.011 0.005 228 14 6.1 0.033<br />

hexachlorobutadiene 0.002/0.006 2520 90 3.6 0.005 0.005 204 2 1.0 0.780<br />

isoproturon 0.02/0.1 733 91 12.4 0.021 0.050 251 70 27.9 0.185 0.050 42 0 0.0 na<br />

delta-hexachlorocyclohexane0.002/0.006 2478 65 2.6 0.004 0.005 228 1 0.4 0.170<br />

metazachlor 0.010 2091 39 1.9 0.053 0.050 251 9 3.6 0.237 0.050 0 0 0.0 na<br />

atrazine 0.010 2119 14 0.7 0.024 0.050 251 9 3.6 0.061 0.030 228 14 6.1 0.200<br />

metoxuron 0.010 678 20 2.9 0.019 0.050 251 1 0.4 0.050<br />

bentazone 0.050 73 13 17.8 0.098 0.050 228 6 2.6 0.337<br />

chloro<strong>for</strong>m 0.100 55 3 5.5 0.100 0.5/2.5 263 13 4.9 3.815<br />

trichlorobenzene 0.002/0.15 173 11 6.4 0.056 0.030 504 2 0.4 0.125<br />

simazine 0.010 2120 10 0.5 0.071 0.050 251 4 1.6 0.205 0.050 228 0 0.0 na<br />

desethylatrazine 0.010 745 0 0.0 na 0.050 251 3 1.2 0.237 0.050 227 4 1.8 0.165<br />

chloridazon 0.010 1511 1 0.1 0.060 0.050 251 15 6.0 0.174<br />

metamitron 0.050 1447 1 0.1 0.350 0.050 251 12 4.8 0.182<br />

metolachlor 0.050 251 10 4.0 0.173 0.050 228 0 0.0 na<br />

metribuzin 0.02/0.05 763 0 0.0 na 0.050 251 2 0.8 0.080<br />

pentachlorophenol 0.01/0.05 38 0 0.0 na 0.005 222 27 12.2 0.015<br />

alachlor 0.030 54 0 0.0 na 0.005 228 0 0.0 na<br />

chlordane 0.010 38 0 0.0 na 0.010 228 0 0.0 na<br />

chlorotoluron 0.010 55 0 0.0 na 0.050 251 0 0.0 na<br />

trifluralin 0.010 54 0 0.0 na 0.030 42 0 0.0 na<br />

metalaxyl 0.050 1423 636 44.7 0.373 0.050 65 0 0.0 na 0.100 228 0 0.0 na<br />

dichlorv os 0.004/0.01 2948 247 8.4 0.163 0.025 226 0 0.0 na<br />

benzene 0.100 20 2 10.0 0.100 10/5/0.5 263 0 0.0 na<br />

chlorfenv inphos 0.008/0.02 3065 20 0.7 0.068 0.02/0.05 84 0 0.0 na<br />

linuron 0.020 678 85 12.5 0.066 0.050 251 0 0.0 na<br />

ethofumesate 0.010 745 2 0.3 0.020 0.100 66 0 0.0 na<br />

tributyltin 0.005 25 1 4.0 0.006 0.030 84 0 0.0 na<br />

hexachlorobenzene 0.002/0.006 2521 8 0.3 0.003 0.005 42 0 0.0 na<br />

Reported L.o.D<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 93/109<br />

Total records<br />

n > L.o.D<br />

% > L.o.D<br />

Arithmetric mean (c ><br />

L.o.D)<br />

Reported L.o.D<br />

Total records<br />

n > L.o.D<br />

% > L.o.D<br />

Arithmetric mean (c ><br />

L.o.D)


8. REFERENCES<br />

Armitage, P.D., Moss, D, Wright, J.F., and Furse, M.T. 1983. The Per<strong>for</strong>mance of a new<br />

Biological Water Quality Score System Based on Macroinvertebrates Over a Wide Range of<br />

Unpolluted Running-Water Sites. Water Res. 17:333-47.<br />

Chessman, BC Growns, JE & Kotlash, AR 1997, 'Objective derivation of macroinvertebrate<br />

family sensitivity grade numbers <strong>for</strong> <strong>the</strong> SIGNAL biotic index: Application to <strong>the</strong> Hunter<br />

River system, New South Wales', Marine and Freshwater Research, vol. 48, pp. 159-172.<br />

Christoffels, E 2008 Online <strong>Monitoring</strong> of Water Quality on <strong>the</strong> River Erft. E-WAter. Official<br />

Publication of <strong>the</strong> European Water Association (EWA), EWA 2008 ISSN 1994-8549.<br />

Coats R, Liu F, Goldman CR 2002. A monte Carlo test of load calculation methods, Lake<br />

Tahoe Basin, Cali<strong>for</strong>nia-Nevada. J. Am. Wat. Resour.. Assoc38:719-730.<br />

Franken R, Gardeniers J and Peeters E. 2006. Handboek Nederlandse Ecologische<br />

Beoordelingssystemen (Ebeo-Systemen) Deel A. Filosofie En Beschrijving Van De<br />

Systemen. STOWA, Utrecht, maart 2006, STOWA rapportnummer 2006-04<br />

ISBN 90.5773.259.9<br />

Friberg N, Sandin L, Furse M T, Søren E L, Clarke R T and Haase P. 2006. Comparison of<br />

macroinvertebrate monitoring methods in Europe. In Furse M T, Hering D, Brabec K,<br />

Buffagni A, Sandin L, and Verdonschot P F M (eds), The Ecological Status of European<br />

Rivers: Evaluation and Intercalibration of <strong>Assessment</strong> Methods. Hydrobiologia 566:365-378.<br />

Springer Verlag.<br />

Friedrich, G., Chapman, D., and Beim, A. 1996. The Use of Biological Material in Water<br />

Quality <strong>Assessment</strong>s: A Guide to <strong>the</strong> Use of Biota, Sediments and Water in Environmental<br />

<strong>Monitoring</strong>, 2nd ed. Deborah Chapman (ed.). E & FN Spon, New York.<br />

WHD 2008. Emissiereductie van gewasbeschermingsmiddelen vanuit de glastuinbouw.<br />

Sammenvattingrapport. Waterschap van Hollandse Delta.<br />

HHRa 2008. Schoon water om van te genieten: Gebiedsrapportage van de detailanalyse van<br />

de Europese Kaderrichtlijn water. Hoogheemraadschap van Delfland, Phoenixstraat, 32,<br />

2601 DB Delft, The Ne<strong>the</strong>rlands. Drukkerij Stimuka, Rijswijk.<br />

HHRb 2008. Schoon water om van te genieten: Technisch achtergrondrapportage.<br />

Hoogheemraadschap van Delfland, Phoenixstraat, 32,<br />

2601 DB Delft, The Ne<strong>the</strong>rlands. Drukkerij Stimuka, Rijswijk.<br />

Johnes P 2007. Uncertainties in annual riverine phosphorus load estimation: Impact of load<br />

estimation methodology, sampling frequency, baseflow index and catchment population<br />

density. J. Hydrol. 332: 247-258<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 94/109


Kochbach A, Yttri KE, Cassee FR, Schwarze PE, Namorket E. 2006. Physicochemical<br />

characterisation of combustion particles from vehicle exhaust and residential wood smoke.<br />

Particle and Fibre Technology 2006 3:1.<br />

Kennedy P. 1999 The Effects of Road Transport on Freshwater and Marine Ecosystems.<br />

Kingett Mitchell Ltd. Contract <strong>report</strong> to NZ Ministry of Transport.<br />

Lieffijn, H et al. Schatting van de emissie van bestrijdingsmiddelen uit de glastuinbouw.<br />

Een nulmeting (1997) ten behoeve van het Milieuconvenant Glastuinbouw en Milieu.<br />

LNV Directie Kennis (voorheen: Expertisecentrum LNV). Ede, 2000.<br />

Littlewood IG. 1992. Estimating contaminant loads in rivers. A review. IH Report no. 117,<br />

Institute of Hydrology, Walling<strong>for</strong>d.<br />

Preston SD, Bierman VJ Jr., Silliman SE 1992. Impact of flow variability on error in<br />

estimation of tributary mass loads. J. Environ. Engrg. 118:402-419<br />

Stark JD, Maxted JR 2007. A biotic index <strong>for</strong> New Zealand’s soft-bottomed streams. New<br />

Zealand Journal of Marine and Freshwater Research 41(1).<br />

Teunissen RJM. 2005. Emissies van gewasbeschermingsmiddelen uit de glastuinbouw. RIZA<br />

rapport 2005.019. ISBN 9036957044. Lelystad, The Ne<strong>the</strong>rlands. November 2005.<br />

WHD. 2008. Emissiereductie van gewasbeschermingsmiddelen vanuit de glastuinbouw.<br />

Report of Waterschap Hollandse Delta, The Ne<strong>the</strong>rlands. Retrieved on 3 March 2010 from:<br />

http://www.wshd.nl/organisatie/publicaties/publicaties/publicaties_0/plannen_handboeken/rap<br />

port.<br />

Wilkinson J, Souter N, and Fairwea<strong>the</strong>r P 2007. Best Practice Framework <strong>for</strong> <strong>the</strong> <strong>Monitoring</strong><br />

and Evaluation of Water-Dependent Ecosystems. 1. Framework, DWLBC Report 2007/12,<br />

Government of South Australia, through Department of Water, Land and Biodiversity<br />

Conservation, Adelaide. Retrieved on 31 July 2007 from:<br />

www.dwlbc.sa.gov.au/assets/files/ki_dwlbc_<strong>report</strong>_2007_12.pdf<br />

Wilkinson J., Reynolds B. and Neal C. 1997. The impact of conifer harvesting and replanting<br />

on upland water quality, R&D Progress Report to EA P2i502/6&7.<br />

Diagrams retreived from <strong>the</strong> internet<br />

http://www.niederrhein.nrw.de/erft/kap_1/kap_1_5.html<br />

http://www.niederrhein.nrw.de/erft/kap_3/kap_3_1_3.html<br />

http://www.niederrhein.nrw.de/erft/kap_4/kap_4_2.html<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 95/109


9. APPENDICES<br />

Appendix I. Summary of data holdings by project partners.<br />

Water quality Stage - Discharge<br />

Luxembourg<br />

Aim<br />

Surveillance River quality<br />

Number of spots<br />

Frequency of<br />

sampling<br />

n/ year<br />

Period<br />

Start date-End date, no<br />

enddate =ongoing<br />

Period consitent<br />

in<br />

frequency/para<br />

meters?<br />

y= yes i=interruptions<br />

p=parameter changes<br />

h= historic (given up)<br />

Operational<br />

WWTP efficiency<br />

O<strong>the</strong>rs<br />

CSO 1 15 2004-2005 h f X<br />

Eutrophication 1 12 2009- y i-l X<br />

Floodevents 3 12 2005-2006 h f X X<br />

Low-flow susp.<br />

Matter<br />

Sediments<br />

6 12 2002-2004 h l<br />

Pesticides: river &<br />

WWTP<br />

3 4 2009- i l X<br />

Online/continuous Discharge 20 15 min 1997- (14);<br />

2002- (6)<br />

i i 20<br />

Water quality 1 6 hours 1997-2000 h i<br />

Erft<br />

Surveillance<br />

River quality<br />

WWTP efficiency<br />

O<strong>the</strong>rs<br />

CSO 2 ca. 20 (event- 2002-2008<br />

specific)<br />

p f X X<br />

Operational<br />

Eutrophication 70 3 1963 - p i X X<br />

Floodevents 70 3 1963 - p i X X<br />

Low-flow susp.<br />

Matter<br />

70 3 1963 - p i X X<br />

Sediments 40 1 1985 - y i X X<br />

Online/continuous Discharge 40 5 min ca. 1970 -<br />

Water quality 6 5 min 1992 - p i X X<br />

Delft<br />

influent/effluents<br />

measurements<br />

3 4 2005-2007 y i<br />

Surveillance<br />

WWTP<br />

OSPAR 2 12 2006ongoing<br />

y i 50<br />

Boundaries control 11 12 2006- y i 50<br />

Operational Base network 9 12 1994- y i 50<br />

MTR 60 12 2006- i i 50<br />

Waterquality urban<br />

environment<br />

17 12 2006- y i 50<br />

Online/continuous<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 96/109<br />

Type of sampling<br />

l= low-flow; i= independent<br />

of discharge; f=floodevents<br />

Waterquality<br />

greenhouse<br />

environment<br />

22 12 1994 i i 50<br />

EKR waterquality 10 12 2006- y i 50<br />

Waterquality 240 every 3-4<br />

years 1/3 of<br />

sampling<br />

points, 4- 6<br />

1994 i i 50<br />

times a year<br />

Water quality (salt) 1 15 min 2008- 1 online 50cm<br />

Beukelsbrug<br />

ongoing<br />

Emission<br />

greenhouses<br />

(waalblok)<br />

2 continiously march-june<br />

2007<br />

14 autosampl<br />

er<br />

Water height<br />

Discharge


Physical and Oxygen demand related analytes<br />

Conductivity<br />

X= yes Blank =no<br />

Temperature<br />

Luxembourg<br />

pH<br />

Turbidity<br />

Susp. Matter<br />

X X X X X X<br />

X X X X X X<br />

X X X X X X<br />

X X X X X X X<br />

X X X X X X X X<br />

X X X X X X<br />

Erft<br />

X X X X X X X X<br />

X X X X X X X X X X<br />

X X X X X X X X X X<br />

X X X X X X X X X X<br />

X X X X X<br />

Delft<br />

X X X X X X<br />

X X X X X<br />

X X X X X X<br />

X X X X X X<br />

X X X X X X X<br />

X X X X X X<br />

X X X X X X X X<br />

X X X X X X<br />

X X X X X<br />

X X X X X X X X X<br />

Oxygen<br />

BOD<br />

COD<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 97/109<br />

POC<br />

DOC


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 98/109<br />

Appendix II. Numbers of results <strong>for</strong> each analyte <strong>for</strong> Delfland Water Quality grab<br />

samples<br />

OW043-002<br />

OW062-008<br />

OW058-001<br />

OW021-003<br />

OW006-003<br />

OW203-111<br />

OW202-000<br />

OW090-000<br />

OW004-001<br />

OW056-000<br />

OW907-010<br />

OW116-012<br />

OW119-000<br />

OW115-012<br />

OW110-000<br />

OW215-024<br />

OW301-001<br />

OW221A012<br />

OW080-002<br />

OW047-001<br />

OW310-000<br />

OW306-023<br />

OW306-022<br />

OW015-003<br />

OW111-000<br />

OW221A013<br />

OW215-026<br />

OW210-003<br />

OW411-014<br />

OW008-002<br />

OW213B024<br />

OW306B012<br />

OW220-010<br />

OW207-002<br />

OW221A023<br />

OW069-000<br />

OW215-032<br />

OW216-002<br />

OW208-016<br />

OW015-012<br />

OW218-200<br />

OW217-000<br />

OW202-322<br />

OW220-000<br />

OW050-002<br />

OW413-001<br />

OW211-000<br />

OW401-003<br />

OW208-000<br />

OW208-001<br />

OW221A000<br />

OW202-100<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Basic network<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

WFD monitoring point<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

zeros 20<br />

22<br />

27<br />

27<br />

28<br />

51<br />

51<br />

52<br />

54<br />

54<br />

63<br />

74<br />

75<br />

75<br />

75<br />

75<br />

77<br />

78<br />

78<br />

79<br />

80<br />

81<br />

83<br />

86<br />

88<br />

88<br />

88<br />

92<br />

113<br />

125<br />

177<br />

177<br />

178<br />

178<br />

179<br />

179<br />

179<br />

180<br />

181<br />

181<br />

181<br />

181<br />

181<br />

182<br />

183<br />

183<br />

183<br />

184<br />

184<br />

193<br />

193<br />

193<br />

Analyte name Par_code zeros<br />

n<br />

8083<br />

7261<br />

7585<br />

6510<br />

6416<br />

6784<br />

6079<br />

6379<br />

6577<br />

6432<br />

796<br />

5223<br />

5339<br />

5333<br />

5204<br />

5042<br />

5135<br />

5232<br />

5139<br />

5417<br />

5117<br />

5282<br />

5036<br />

5198<br />

5067<br />

4635<br />

3013<br />

2447<br />

881<br />

980<br />

910<br />

812<br />

824<br />

367<br />

964<br />

905<br />

829<br />

938<br />

878<br />

810<br />

288<br />

177<br />

123<br />

270<br />

554<br />

554<br />

537<br />

842<br />

233<br />

92<br />

92<br />

79<br />

Visible surface condition VUIL 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Wea<strong>the</strong>r WEERGSHD 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Fluidflowingwaters STROMSTR 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Oxygen O2 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Conductivity GELDHD 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Temperature T 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Acidity pH 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Clarity ZICHT 0 2369 82 62 68 67 67 77 61 55 72 58 13 56 55 55 54 54 54 55 55 75 55 66 55 59 58 48 44 56 41 42 47 41 42 21 51 48 42 47 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Kjeldahlnitrogen NKj 0 2230 66 54 64 65 65 54 56 53 57 54 11 54 55 54 54 55 53 53 54 66 53 65 53 59 50 45 42 56 41 41 44 39 40 23 49 45 42 45 45 41 18 10 6 17 29 29 30 43 15 6 6 6<br />

totalphosphate P 0 2229 66 54 64 65 65 54 56 53 57 54 11 54 55 54 54 55 53 53 54 66 53 65 53 59 50 45 42 56 41 41 44 39 40 23 49 45 42 45 45 41 18 10 6 17 29 29 30 43 15 6 6 5<br />

nitrogen N 0 2215 66 54 64 65 65 54 56 53 57 54 11 54 55 54 54 55 52 52 53 64 52 64 52 58 50 45 42 56 41 41 44 39 40 21 49 45 42 45 45 41 16 10 6 15 29 29 31 43 15 6 6 5<br />

chloride Cl 3 1939 64 49 60 60 63 48 48 48 63 50 9 48 47 48 48 48 47 47 48 62 47 59 47 53 35 40 36 49 35 34 38 34 34 17 43 39 36 39 38 36 12 4 4 12 22 22 24 36 9 0 0 0<br />

Ortho-phosphate PO4 3 1929 61 48 60 60 60 48 48 48 49 48 9 48 48 48 48 49 47 47 48 60 47 59 47 53 36 40 36 50 36 35 39 34 35 17 44 40 36 40 39 36 12 4 4 12 23 23 24 37 9 0 0 0<br />

ammonium NH4 3 1929 61 48 60 60 60 48 48 48 49 48 9 48 48 48 48 49 47 47 48 60 47 59 47 53 36 40 36 50 36 35 39 34 35 17 44 40 36 40 39 36 12 4 4 12 23 23 24 37 9 0 0 0<br />

totalnitrateandnitrite sNO3NO2 3 1918 61 48 60 60 60 48 48 48 49 48 9 48 48 48 48 50 47 47 48 60 47 59 47 53 35 40 36 50 35 34 38 34 34 17 43 39 36 39 38 36 12 4 4 12 22 22 24 36 9 0 0 0<br />

Copper Cu 3 1864 94 95 91 94 65 54 92 53 54 55 6 25 42 43 25 46 10 4 1 0 1 1 0 0 91 85 65 30 39 40 43 39 39 11 44 44 43 43 44 41 7 10 6 5 28 28 24 41 6 6 6 5<br />

Nickel Ni 4 1809 94 95 91 94 65 54 91 53 54 55 6 25 42 43 25 42 10 0 1 0 1 1 0 0 91 81 65 30 39 41 39 39 39 7 40 40 43 40 40 41 7 6 2 5 28 28 24 29 6 6 6 5<br />

Zinc Zn 5 1861 94 95 91 94 65 54 91 53 54 55 6 25 42 43 25 46 10 4 0 0 1 0 0 0 91 85 65 30 39 40 43 39 39 11 44 44 43 43 44 41 7 10 6 5 28 28 24 41 6 6 6 5<br />

Calcium Ca 5 308 23 22 21 21 20 18 22 18 5 5 4 3 2 2 2 3 3 1 4 3 2 2 1 9 22 23 11 0 3 1 4 3 2 3 2 1 2 1 1 3 2 1 1 2 1 1 1 0 1 0 0 0<br />

suspendedmatter ZS 6 1752 48 48 48 48 48 48 48 48 49 48 4 48 48 48 48 40 47 47 48 48 47 47 47 48 35 40 36 24 34 34 38 34 34 4 43 39 36 39 38 36 0 4 4 0 22 22 24 36 0 0 0 0<br />

Bicarbonate HCO3 6 382 28 29 25 26 25 0 31 1 13 6 6 3 8 3 2 15 5 2 5 5 4 4 1 0 36 28 12 9 5 1 3 5 4 4 1 1 3 1 1 5 4 1 1 4 1 1 2 0 2 0 0 0<br />

Sulfate SO4 6 279 26 22 21 20 23 0 23 1 7 8 4 2 2 2 3 4 3 2 3 6 2 2 1 0 22 23 12 1 3 1 3 3 2 3 1 1 2 1 1 3 2 1 1 2 1 1 1 0 1 0 0 0<br />

Biochemicaloxygendemandover5days BZV5 13 750 30 29 2 25 0 29 29 25 30 29 0 3 24 25 0 29 2 4 2 4 0 0 4 0 24 29 25 13 23 23 27 23 23 4 25 28 25 28 27 25 0 3 3 0 11 11 0 25 0 0 0 0<br />

Biochemicaloxygendemandofureaallythio BZV5a 16 511 16 17 0 16 4 17 16 16 17 17 0 6 17 17 4 17 0 7 0 0 0 0 0 0 22 16 17 17 16 17 16 16 16 2 16 16 17 16 17 16 0 2 1 0 17 17 0 17 0 0 0 0<br />

Nitrate NO3 18 472 27 26 0 19 0 23 22 19 28 26 0 12 20 21 4 24 2 20 0 0 0 0 1 0 20 24 12 23 1 0 4 12 14 5 4 4 0 24 4 0 1 2 2 1 0 0 0 21 0 0 0 0<br />

Nitrite NO2 18 471 27 26 0 19 0 23 22 19 28 26 0 12 20 21 4 24 2 20 0 0 0 0 1 0 19 24 12 23 1 0 4 12 12 5 4 4 0 24 4 0 1 3 3 1 0 0 0 21 0 0 0 0<br />

Magnesium Mg 19 220 21 21 21 21 20 0 20 0 2 2 4 2 2 2 1 2 2 0 2 2 2 2 0 0 21 21 8 0 2 0 1 2 2 2 0 0 2 0 0 2 2 0 0 2 0 0 1 0 1 0 0 0<br />

Sodium Na 19 220 21 21 21 21 20 0 20 0 2 2 4 2 2 2 1 2 2 0 2 2 2 2 0 0 21 21 8 0 2 0 1 2 2 2 0 0 2 0 0 2 2 0 0 2 0 0 1 0 1 0 0 0<br />

Chlorophyll-a CHLFa 21 435 22 31 0 6 6 37 38 27 37 31 5 12 12 0 6 17 0 9 6 6 0 0 0 7 29 16 19 17 5 5 11 1 2 0 5 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dimethoate Dmtat 22 1375 53 54 51 53 53 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

simazine simzne 22 1375 53 54 51 53 53 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

atrazine atzne 22 1374 53 53 51 53 53 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbofuran cbfrn 22 1347 51 51 49 42 42 54 51 53 54 54 6 54 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

flutolanil flutlnl 22 1347 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

procimidon procmdn 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

iprodione ipDon 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylazinphos C1yazfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylbromophos C1yBrfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylazinphos C2yazfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylbromophos C2yBrfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylparathion C2ypton 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diazinon Daznn 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

malathion malton 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimiphos-methyl pirmfC1y 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

parathion-methyl ptonC1y 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrazophos pyrazfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolclophos-methyl tolcfsC1y 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptenophos heptnfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

mevinphos mevfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorfenvinphos Clfvfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloorvinphos T4Clvfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

triazophos Tazfs 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenthion fenton 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

disulfoton Dsftn 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.6-dichloorbenzamide 26DClBenAd 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bupirimate buprmt 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorpropham Clpfm 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorothalonil Cltlnl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dimethomorph Dmtmf 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

etridiazol eTDazl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenpropimorph fenppmf 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Metazachlor metzCl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimicarb pirmcb 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

prosulfocarb prosfcb 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Terbutryn terbtne 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolylfluanide tolfande 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

vinclozolin vinczln 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bitertanol bittnl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metalaxyl mlxl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

N.N-diethyl-3-methylbenzamide DEET 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Diethofencarb Detfcb 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-dimethylaminosulphotoluidide DMST 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dodemorph dodmf 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

furalaxyl furlxl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metamitron mtmtn 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrimethanil pyrmtnl 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chloridazon Clidzn 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-hydroxy-2.5.6-trichloorisoftalonitril HTI 22 1346 51 51 49 42 42 54 51 53 54 54 6 53 54 54 54 55 54 55 54 54 54 54 53 54 44 40 23 26 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlorvos DClVS 23 1228 48 48 47 48 48 48 46 48 48 48 4 47 48 48 48 49 48 49 48 48 48 48 47 48 36 35 23 26 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlobenil DCIBNL 23 1199 46 45 45 37 37 48 46 48 48 48 4 47 48 48 48 49 48 49 48 48 48 48 47 48 36 35 23 26 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trans-permethrin tpermtn 23 1083 41 42 40 41 41 42 39 41 42 42 6 41 42 42 42 42 42 43 42 42 42 42 41 42 44 40 23 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diuron Durn 24 739 53 54 51 53 53 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Isoproturon iptrn 24 733 52 52 50 52 52 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Aldicarb alDcb 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldicarbsulphon alDcbsfn 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbendazim cbedzm 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

imidacloprid imdcpd 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indoxacarb indxcb 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

linuron linrn 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methomyl metml 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarb metocb 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulphon metocbsfn 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulfoxide metocbsO 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metoxuron metxrn 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

propoxur propxr 24 678 41 41 39 41 41 29 38 24 18 18 6 19 18 18 18 18 18 18 18 18 18 18 17 18 44 40 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Somphaeophytins s_FEO 24 378 22 30 0 6 6 34 30 24 30 30 5 12 6 0 6 17 0 9 6 6 0 0 0 7 15 15 18 17 5 5 11 1 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-endosulfan aedsfn 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

gamma-hexachlorocyclohexane(lindane) cHCH 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endrin endn 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

hexachlorobenzene HCB 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hexachlorobutadiene HxClbtDen 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.5.5'-pentachlorobiphenyl PCB101 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.3'.4.4'.5-pentachlorobiphenyl PCB118 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5'-hexachloorbiphenyl PCB138 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.4'.5.5'-hexachloorbiphenyl PCB153 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5.5'-heptachloorbiphenyl PCB180 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.5.5'-tetrachloorbiphenyl PCB52 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichlorodiphenyltrichloroethane 44DDT 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4.4'-Trichlorobiphenyl PCB28 27 829 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorobenzene PeClBen 27 828 53 36 52 36 36 36 12 36 36 36 3 36 36 36 36 24 36 36 35 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-endosulfan bedsfn 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloorethane 24DDD 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloorethane 44DDD 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloore<strong>the</strong>ne 44DDE 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-hexachlorocyclohexane aHCH 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldrin aldn 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-hexachlorocyclohexane bHCH 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dieldrin dieldn 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpCl 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

telodrin teldn 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endosulfansulphate endsfSO4 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

delta-hexachlorocyclohexane dHCH 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloore<strong>the</strong>ne 24DDE 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichlorodiphenyltrichloroethane 24DDT 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

isodrin idn 27 807 53 36 52 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpClepO 27 798 48 36 48 25 25 36 12 36 36 36 3 36 36 36 36 24 36 36 36 36 36 36 36 36 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somaldrin.dieldrin.endrinandisodrin sdrin4 27 735 44 34 44 34 33 33 11 33 34 34 3 32 29 32 31 22 29 32 33 31 33 31 31 31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum-a.b.candd-HCH sHCH4 27 726 41 32 41 34 33 33 11 33 34 34 3 32 29 32 30 22 29 32 33 31 33 31 31 31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum2.4'-and4.4'-DDT sDDT 27 724 44 33 44 33 33 33 11 32 34 34 3 32 27 32 31 20 31 32 31 31 33 31 29 29 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cypermethrin cypmtn 27 263 10 9 9 1 1 12 12 12 12 12 0 12 12 12 12 13 12 12 12 12 12 12 12 12 0 0 0 13 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sumdemetonisomers sdmtn 27 262 10 9 9 1 1 12 12 12 12 12 0 12 12 12 12 13 12 12 12 12 12 12 12 12 0 0 0 12 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlordane Cldn 28 611 28 28 28 17 17 28 12 29 29 29 0 29 29 29 29 17 29 29 29 29 29 29 29 29 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Lead Pb 29 651 93 66 90 66 65 12 62 12 12 13 6 1 0 1 0 0 1 0 1 0 1 1 0 0 57 52 36 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)pyrene BaP 38 642 53 54 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(b)fluoran<strong>the</strong>ne BbF 38 642 53 54 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(g.h.i)perylene BghiPe 38 642 53 54 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indeno(1.2.3-c.d)pyrene InP 38 642 53 54 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

naphthalene Naf 38 642 53 54 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

anthracene Ant 38 641 53 54 52 52 52 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(k)fluoran<strong>the</strong>ne BkF 38 641 53 53 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluoran<strong>the</strong>ne Flu 38 641 53 53 52 52 53 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaph<strong>the</strong>ne AcNe 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaftyleen AcNy 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)anthracene BaA 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrysene Chr 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibenzo(a.h)anthracene DBahAnt 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phenanthrene Fen 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluorene Fle 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrene Pyr 38 593 44 44 43 42 42 54 52 53 54 54 4 0 0 0 0 0 0 0 0 0 0 0 0 0 44 40 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrome Cr 38 388 60 37 60 37 36 12 36 12 12 12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 24 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cadmium Cd 39 396 65 37 64 37 36 12 36 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mercury Hg 39 181 41 12 40 12 12 12 13 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dissolvedorganiccarbon DOC 41 187 22 21 22 21 22 1 22 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalorganiccarbon TOC 42 168 19 20 20 19 20 0 19 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

arsenic As 42 120 12 12 12 12 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichlorobenzene TClBen 42 118 13 13 13 13 13 0 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Potassium K 46 7 1 1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bentazone bentzn 47 73 11 17 17 11 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chlorophenoxyaceticacid MCPA 47 73 11 17 17 11 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chloorfenoxypropionzuur MCPP 47 73 11 17 17 11 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Chlorpyriphos Clprfs 47 59 12 12 11 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

1.2-dichloroethane 12DClC2a 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4-dichlorophenol 24DClFol 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorotoluron Cltlrn 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dichloromethane DClC1a 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Carbontetrachloride(tetra) T4ClC1a 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloroe<strong>the</strong>ne(a) T4ClC2e 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trichlorobenzene TCB 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloromethane(chloro<strong>for</strong>m) TClC1a 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloroe<strong>the</strong>ne(Tri) TClC2e 47 55 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Alachlor alCl 47 54 11 11 10 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somchloorfenvinvos s_CFVP 47 54 11 11 10 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trifluralin TFLURLN 47 54 11 11 10 11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorophenol PeClFol 47 38 4 10 10 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Amino-methyl-phosphonate AMPA 47 31 7 7 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gluphosinate GLUFSNT 47 31 7 7 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

glyphosate glyfst 47 31 7 7 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tributyltin TC4ySn 47 25 4 9 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Benzene Ben 47 20 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibutyltin DC4ySn 47 20 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sompentachlooranilinen s_PCAn 47 20 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-chloroaniline 4ClAn 47 19 4 4 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bis(2-ethylhexyl)phthalate(DOP/DEHP) DEHP 47 19 4 4 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thermotolerantcoli<strong>for</strong>ms THERMTCL 49 44 10 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalcoli<strong>for</strong>ms TTCLI 49 36 10 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phosphamidon fosfmdn 49 18 0 6 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metribuzin metbzn 49 18 0 6 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Escherichiacoli E_COLI 50 22 11 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Intestinalenterococci INTTNLETRCCN 50 21 10 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 99/109<br />

Appendix III. Numbers of positive detections <strong>for</strong> each analyte <strong>for</strong> Delfland Water<br />

Quality grab samples<br />

OW043-002<br />

OW062-008<br />

OW058-001<br />

OW021-003<br />

OW006-003<br />

OW203-111<br />

OW202-000<br />

OW090-000<br />

OW004-001<br />

OW056-000<br />

OW907-010<br />

OW116-012<br />

OW119-000<br />

OW115-012<br />

OW110-000<br />

OW215-024<br />

OW301-001<br />

OW221A012<br />

OW080-002<br />

OW047-001<br />

OW310-000<br />

OW306-023<br />

OW306-022<br />

OW015-003<br />

OW111-000<br />

OW221A013<br />

OW215-026<br />

OW210-003<br />

OW411-014<br />

OW008-002<br />

OW213B024<br />

OW306B012<br />

OW220-010<br />

OW207-002<br />

OW221A023<br />

OW069-000<br />

OW215-032<br />

OW216-002<br />

OW208-016<br />

OW015-012<br />

OW218-200<br />

OW217-000<br />

OW202-322<br />

OW220-000<br />

OW050-002<br />

OW413-001<br />

OW211-000<br />

OW401-003<br />

OW208-000<br />

OW208-001<br />

OW221A000<br />

OW202-100<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Basic network<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

WFD monitoring point<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

zeros 20<br />

22<br />

27<br />

27<br />

28<br />

51<br />

51<br />

52<br />

54<br />

54<br />

63<br />

74<br />

75<br />

75<br />

75<br />

75<br />

77<br />

78<br />

78<br />

79<br />

80<br />

81<br />

83<br />

86<br />

88<br />

88<br />

88<br />

92<br />

113<br />

125<br />

177<br />

177<br />

178<br />

178<br />

179<br />

179<br />

179<br />

180<br />

181<br />

181<br />

181<br />

181<br />

181<br />

182<br />

183<br />

183<br />

183<br />

184<br />

184<br />

193<br />

193<br />

193<br />

Analyte name Par_code zeros<br />

n<br />

8083<br />

7261<br />

7585<br />

6510<br />

6416<br />

6784<br />

6079<br />

6379<br />

6577<br />

6432<br />

796<br />

5223<br />

5339<br />

5333<br />

5204<br />

5042<br />

5135<br />

5232<br />

5139<br />

5417<br />

5117<br />

5282<br />

5036<br />

5198<br />

5067<br />

4635<br />

3013<br />

2447<br />

881<br />

980<br />

910<br />

812<br />

824<br />

367<br />

964<br />

905<br />

829<br />

938<br />

878<br />

810<br />

288<br />

177<br />

123<br />

270<br />

554<br />

554<br />

537<br />

842<br />

233<br />

92<br />

92<br />

79<br />

Visible surface condition VUIL 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Wea<strong>the</strong>r WEERGSHD 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Fluidflowingwaters STROMSTR 0 2402 85 72 68 67 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 45 56 42 43 47 41 42 21 52 48 42 48 46 41 19 11 8 18 30 30 31 42 16 7 7 6<br />

Oxygen O2 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Conductivity GELDHD 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Temperature T 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Acidity pH 0 2398 85 72 68 66 70 78 61 55 74 61 13 56 55 55 54 55 54 55 55 78 55 66 55 60 58 48 44 56 42 43 47 41 42 21 51 48 42 48 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Clarity ZICHT 0 2369 82 62 68 67 67 77 61 55 72 58 13 56 55 55 54 54 54 55 55 75 55 66 55 59 58 48 44 56 41 42 47 41 42 21 51 48 42 47 46 41 19 11 7 18 30 30 31 42 16 7 7 6<br />

Kjeldahlnitrogen NKj 0 2230 66 54 64 65 62 53 56 39 57 54 7 54 55 54 54 55 53 53 53 66 53 65 51 59 50 45 42 56 41 41 44 39 40 23 49 45 42 45 45 41 18 10 6 17 29 29 30 43 15 6 6 6<br />

totalphosphate P 0 2229 66 54 64 65 64 40 56 49 57 54 5 54 55 54 54 55 53 53 54 66 53 65 53 59 50 45 42 56 41 41 44 39 40 23 49 45 42 45 45 41 18 10 6 17 29 29 30 43 15 6 6 5<br />

nitrogen N 0 2215 66 54 64 65 65 53 56 53 57 54 11 54 55 54 54 55 52 52 53 64 52 64 52 58 50 45 42 56 41 41 44 39 40 21 49 45 42 45 45 41 16 10 6 15 29 29 31 43 15 6 6 5<br />

chloride Cl 3 1939 64 49 60 60 63 48 48 48 63 50 9 48 47 48 48 48 47 47 48 62 47 59 46 53 35 40 36 49 35 34 38 34 34 17 43 39 36 39 38 36 12 4 4 12 22 22 24 36 9 0 0 0<br />

Ortho-phosphate PO4 3 1929 61 46 60 60 53 15 44 35 49 48 0 48 48 48 48 49 47 47 48 59 47 59 47 53 34 38 36 10 30 35 22 33 35 17 31 40 2 30 22 36 6 4 4 12 23 23 24 37 9 0 0 0<br />

ammonium NH4 3 1929 36 19 28 25 38 13 37 12 36 24 1 22 34 18 28 32 32 41 35 53 35 29 28 17 24 30 27 11 16 27 27 23 29 12 9 26 24 33 33 31 11 4 4 9 20 21 17 37 4 0 0 0<br />

totalnitrateandnitrite sNO3NO2 3 1918 61 48 60 58 60 18 47 48 49 48 9 48 48 48 48 50 47 47 48 58 47 59 47 39 25 38 36 22 14 31 21 24 27 14 24 37 29 28 24 14 12 4 4 11 13 16 17 24 7 0 0 0<br />

Copper Cu 3 1864 94 95 91 93 64 4 69 45 50 51 6 25 42 42 25 46 10 4 1 0 1 1 0 0 74 77 63 6 4 29 17 7 31 7 16 38 30 35 4 4 7 7 4 5 16 17 23 18 6 4 6 5<br />

Nickel Ni 4 1809 94 94 91 94 63 43 91 41 54 54 6 25 42 42 25 42 10 0 1 0 1 1 0 0 91 81 65 30 39 41 39 39 39 7 40 40 43 40 40 41 7 6 2 5 28 28 24 29 6 6 6 5<br />

Zinc Zn 5 1861 94 84 91 94 55 2 87 10 54 54 0 25 42 42 25 46 10 4 0 0 1 0 0 0 61 83 64 2 9 39 37 13 32 11 23 44 38 31 37 5 7 9 6 5 25 17 23 26 6 4 6 5<br />

Calcium Ca 5 308 23 22 21 21 20 18 22 18 5 5 4 3 2 2 2 3 3 1 4 3 2 2 1 9 22 23 11 0 3 1 4 3 2 3 2 1 2 1 1 3 2 1 1 2 1 1 1 0 1 0 0 0<br />

suspendedmatter ZS 6 1752 35 48 48 46 46 39 48 13 49 48 1 48 48 48 48 40 46 46 43 46 47 47 34 48 35 39 34 23 34 30 34 28 24 4 31 26 36 38 35 13 0 4 4 0 13 16 24 12 0 0 0 0<br />

Bicarbonate HCO3 6 382 28 29 25 26 25 0 31 1 13 6 6 3 8 3 2 15 5 2 5 5 4 4 1 0 36 28 12 9 5 1 3 5 4 4 1 1 3 1 1 5 4 1 1 4 1 1 2 0 2 0 0 0<br />

Sulfate SO4 6 279 26 22 21 20 23 0 23 1 7 8 4 2 2 2 3 4 3 2 3 6 2 2 1 0 22 23 12 1 3 1 3 3 2 3 1 1 2 1 1 3 2 1 1 2 1 1 1 0 1 0 0 0<br />

Biochemicaloxygendemandover5days BZV5 13 750 27 27 2 25 0 29 29 19 30 29 0 3 24 24 0 29 2 4 2 4 0 0 4 0 24 29 25 13 23 22 25 23 23 4 24 24 24 27 26 25 0 3 3 0 11 10 0 23 0 0 0 0<br />

Biochemicaloxygendemandofureaallythio BZV5a 16 511 12 16 0 16 4 17 16 11 15 17 0 6 17 17 4 17 0 7 0 0 0 0 0 0 22 16 17 17 16 17 16 15 16 2 15 12 17 15 17 15 0 2 1 0 17 17 0 16 0 0 0 0<br />

Nitrate NO3 18 472 27 26 0 19 0 10 21 19 28 26 0 12 20 21 4 24 2 20 0 0 0 0 1 0 15 23 12 11 0 0 2 10 12 5 3 4 0 18 2 0 1 2 2 1 0 0 0 13 0 0 0 0<br />

Nitrite NO2 18 471 1 0 0 1 0 0 9 0 9 10 0 1 16 14 3 3 2 12 0 0 0 0 1 0 1 7 2 0 0 0 0 4 1 0 0 1 0 1 0 0 0 0 3 0 0 0 0 1 0 0 0 0<br />

Magnesium Mg 19 220 21 21 21 21 20 0 20 0 2 2 4 2 2 2 1 2 2 0 2 2 2 2 0 0 21 21 8 0 2 0 1 2 2 2 0 0 2 0 0 2 2 0 0 2 0 0 1 0 1 0 0 0<br />

Sodium Na 19 220 21 21 21 21 20 0 20 0 2 2 4 2 2 2 1 2 2 0 2 2 2 2 0 0 21 21 8 0 2 0 0 2 2 2 0 0 2 0 0 2 2 0 0 2 0 0 1 0 1 0 0 0<br />

Chlorophyll-a CHLFa 21 435 8 19 0 4 5 30 38 10 36 31 0 12 12 0 6 17 0 8 5 4 0 0 0 6 28 14 18 17 5 5 6 0 2 0 2 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dimethoate Dmtat 22 1375 1 4 1 6 2 0 8 0 4 4 0 10 1 4 3 13 6 38 4 0 3 1 2 1 1 7 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

simazine simzne 22 1375 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

atrazine atzne 22 1374 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbofuran cbfrn 22 1347 3 8 20 10 26 0 15 3 9 9 1 12 9 18 10 13 19 9 16 2 16 21 10 7 2 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

flutolanil flutlnl 22 1347 0 0 20 0 1 0 0 1 0 23 1 0 0 3 0 1 13 0 9 1 3 18 13 9 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

procimidon procmdn 22 1346 0 3 0 0 3 0 6 0 4 3 0 0 19 7 2 2 13 36 5 0 9 5 9 1 0 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

iprodione ipDon 22 1346 1 0 4 0 4 0 0 1 0 4 0 2 2 9 4 1 5 3 8 0 3 16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylazinphos C1yazfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylbromophos C1yBrfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylazinphos C2yazfs 22 1346 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylbromophos C2yBrfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylparathion C2ypton 22 1346 0 0 2 0 0 0 0 0 0 0 0 2 0 1 0 0 2 0 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diazinon Daznn 22 1346 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 8 0 3 0 0 0 4 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

malathion malton 22 1346 0 0 0 0 1 0 1 0 0 1 0 1 0 2 1 1 0 1 0 1 1 2 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimiphos-methyl pirmfC1y 22 1346 2 1 4 0 5 1 2 1 11 8 0 13 2 3 7 4 16 36 2 1 5 16 1 1 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

parathion-methyl ptonC1y 22 1346 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrazophos pyrazfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolclophos-methyl tolcfsC1y 22 1346 1 1 30 9 23 0 6 0 20 33 1 33 11 43 17 7 31 0 47 1 29 47 42 8 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptenophos heptnfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

mevinphos mevfs 22 1346 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorfenvinphos Clfvfs 22 1346 0 0 1 0 0 1 0 0 0 0 0 0 0 13 0 0 1 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloorvinphos T4Clvfs 22 1346 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

triazophos Tazfs 22 1346 0 0 1 0 0 2 1 0 0 2 0 1 1 5 0 1 1 0 2 0 3 3 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenthion fenton 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

disulfoton Dsftn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.6-dichloorbenzamide 26DClBenAd 22 1346 20 3 4 5 4 9 5 2 12 6 0 7 6 4 10 6 3 2 9 7 3 3 5 6 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bupirimate buprmt 22 1346 0 2 0 0 0 0 5 0 2 1 1 1 3 0 2 14 0 19 0 0 0 2 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorpropham Clpfm 22 1346 0 0 4 1 1 0 0 0 0 3 0 1 0 5 2 0 0 0 1 0 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorothalonil Cltlnl 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dimethomorph Dmtmf 22 1346 14 12 19 30 17 0 15 3 36 23 1 37 32 16 28 9 15 40 30 2 36 35 25 18 1 19 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

etridiazol eTDazl 22 1346 1 1 23 15 21 0 6 1 20 29 0 33 13 38 36 26 27 3 24 1 21 39 22 13 1 2 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenpropimorph fenppmf 22 1346 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Metazachlor metzCl 22 1346 0 0 1 0 1 1 1 3 1 1 0 0 2 1 2 0 3 5 1 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimicarb pirmcb 22 1346 14 22 46 30 31 1 47 3 47 48 1 43 46 52 51 50 51 50 51 3 54 51 51 41 6 20 17 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

prosulfocarb prosfcb 22 1346 1 1 0 1 2 1 1 2 0 1 0 2 1 2 2 2 1 0 1 1 1 1 3 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Terbutryn terbtne 22 1346 0 0 0 0 0 1 1 1 0 0 0 0 2 0 0 0 0 0 0 0 1 1 1 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolylfluanide tolfande 22 1346 2 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

vinclozolin vinczln 22 1346 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 4 0 7 0 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bitertanol bittnl 22 1346 0 2 6 6 12 0 4 0 3 5 0 10 3 20 9 2 3 4 8 1 6 5 6 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metalaxyl mlxl 22 1346 1 1 36 29 23 0 9 2 31 30 1 35 35 28 42 3 31 38 43 3 38 45 37 30 7 13 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

N.N-diethyl-3-methylbenzamide DEET 22 1346 12 16 7 9 9 38 30 17 18 9 1 4 13 11 10 16 10 15 8 15 3 3 6 8 8 8 7 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Diethofencarb Detfcb 22 1346 1 9 22 15 22 1 21 0 16 27 1 23 22 46 41 14 30 39 18 2 9 38 18 20 1 14 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-dimethylaminosulphotoluidide DMST 22 1346 0 2 6 2 9 0 2 0 1 6 0 1 5 10 5 3 3 6 2 0 1 7 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dodemorph dodmf 22 1346 0 0 0 0 0 0 0 0 0 1 0 8 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

furalaxyl furlxl 22 1346 0 0 4 2 1 0 1 0 1 5 0 0 1 3 2 4 17 4 1 0 1 8 3 5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metamitron mtmtn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrimethanil pyrmtnl 22 1346 11 12 34 34 26 0 19 2 36 41 1 20 25 22 37 11 17 12 28 3 12 38 40 24 12 21 8 5 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chloridazon Clidzn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-hydroxy-2.5.6-trichloorisoftalonitril HTI 22 1346 1 0 9 0 6 0 0 0 0 4 0 1 2 6 1 0 13 1 2 0 3 1 4 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlorvos DClVS 23 1228 0 0 0 0 4 0 0 0 2 0 0 0 3 3 0 6 0 2 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlobenil DCIBNL 23 1199 15 4 4 5 3 6 7 3 16 10 0 13 3 8 12 3 6 7 11 12 7 6 10 10 3 3 4 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trans-permethrin tpermtn 23 1083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diuron Durn 24 739 36 42 26 24 27 3 9 18 1 0 4 0 1 0 0 0 1 1 0 6 0 1 0 0 12 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Isoproturon iptrn 24 733 5 16 9 10 18 2 2 14 1 0 2 1 0 1 1 1 0 0 2 0 0 0 1 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Aldicarb alDcb 24 678 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldicarbsulphon alDcbsfn 24 678 2 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbendazim cbedzm 24 678 24 24 26 23 28 2 18 18 3 7 5 6 6 7 7 1 5 4 6 2 5 7 6 5 11 15 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

imidacloprid imdcpd 24 678 39 31 39 40 32 6 35 1 18 17 2 16 17 18 17 17 17 17 18 2 18 18 17 17 27 37 21 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indoxacarb indxcb 24 678 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

linuron linrn 24 678 0 3 9 1 7 2 7 1 4 0 0 1 3 8 7 6 2 5 4 0 1 5 0 0 0 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methomyl metml 24 678 0 3 19 12 18 0 7 1 2 3 0 6 5 11 6 3 3 5 2 0 4 7 1 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarb metocb 24 678 1 1 6 3 5 1 2 0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 0 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulphon metocbsfn 24 678 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulfoxide metocbsO 24 678 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metoxuron metxrn 24 678 1 1 6 0 2 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

propoxur propxr 24 678 1 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Somphaeophytins s_FEO 24 378 7 22 0 6 4 15 28 8 29 28 1 12 5 0 6 15 0 9 4 5 0 0 0 5 11 12 15 10 5 5 6 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-endosulfan aedsfn 27 829 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

gamma-hexachlorocyclohexane(lindane) cHCH 27 829 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endrin endn 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

hexachlorobenzene HCB 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hexachlorobutadiene HxClbtDen 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.5.5'-pentachlorobiphenyl PCB101 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.3'.4.4'.5-pentachlorobiphenyl PCB118 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5'-hexachloorbiphenyl PCB138 27 829 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.4'.5.5'-hexachloorbiphenyl PCB153 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5.5'-heptachloorbiphenyl PCB180 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.5.5'-tetrachloorbiphenyl PCB52 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichlorodiphenyltrichloroethane 44DDT 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4.4'-Trichlorobiphenyl PCB28 27 829 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorobenzene PeClBen 27 828 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-endosulfan bedsfn 27 807 1 0 4 0 1 0 0 2 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloorethane 24DDD 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloorethane 44DDD 27 807 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloore<strong>the</strong>ne 44DDE 27 807 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-hexachlorocyclohexane aHCH 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldrin aldn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-hexachlorocyclohexane bHCH 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dieldrin dieldn 27 807 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpCl 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

telodrin teldn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endosulfansulphate endsfSO4 27 807 3 1 25 0 3 0 0 2 0 3 0 2 7 10 1 1 5 1 3 1 2 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

delta-hexachlorocyclohexane dHCH 27 807 2 0 3 0 1 0 0 2 0 1 0 0 1 1 2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloore<strong>the</strong>ne 24DDE 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichlorodiphenyltrichloroethane 24DDT 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

isodrin idn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpClepO 27 798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somaldrin.dieldrin.endrinandisodrin sdrin4 27 735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum-a.b.candd-HCH sHCH4 27 726 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum2.4'-and4.4'-DDT sDDT 27 724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cypermethrin cypmtn 27 263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sumdemetonisomers sdmtn 27 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlordane Cldn 28 611 28 28 28 17 17 27 11 28 28 28 0 28 28 28 28 17 28 28 28 28 28 28 28 28 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Lead Pb 29 651 56 32 57 21 27 0 17 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 16 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)pyrene BaP 38 642 4 46 13 0 2 0 1 1 3 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(b)fluoran<strong>the</strong>ne BbF 38 642 3 41 18 0 5 0 2 0 4 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(g.h.i)perylene BghiPe 38 642 5 38 9 0 1 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indeno(1.2.3-c.d)pyrene InP 38 642 1 40 12 0 1 0 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

naphthalene Naf 38 642 1 2 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

anthracene Ant 38 641 0 20 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(k)fluoran<strong>the</strong>ne BkF 38 641 1 34 3 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluoran<strong>the</strong>ne Flu 38 641 2 44 19 1 17 0 18 3 22 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaph<strong>the</strong>ne AcNe 38 593 2 1 2 2 3 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaftyleen AcNy 38 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)anthracene BaA 38 593 0 36 3 0 1 0 1 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrysene Chr 38 593 1 38 15 0 3 0 2 0 7 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibenzo(a.h)anthracene DBahAnt 38 593 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phenanthrene Fen 38 593 4 30 7 5 9 2 11 4 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluorene Fle 38 593 3 10 2 4 7 1 15 2 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrene Pyr 38 593 5 39 11 0 8 0 11 2 18 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrome Cr 38 388 11 17 11 11 9 3 18 3 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cadmium Cd 39 396 44 29 53 25 25 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 21 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mercury Hg 39 181 13 10 14 7 7 2 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dissolvedorganiccarbon DOC 41 187 22 21 22 21 22 1 22 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 21 21 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalorganiccarbon TOC 42 168 19 20 20 19 20 0 19 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

arsenic As 42 120 12 11 12 12 8 7 12 10 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichlorobenzene TClBen 42 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Potassium K 46 7 1 1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bentazone bentzn 47 73 1 1 2 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chlorophenoxyaceticacid MCPA 47 73 2 4 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chloorfenoxypropionzuur MCPP 47 73 3 4 4 10 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Chlorpyriphos Clprfs 47 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

1.2-dichloroethane 12DClC2a 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4-dichlorophenol 24DClFol 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorotoluron Cltlrn 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dichloromethane DClC1a 47 55 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Carbontetrachloride(tetra) T4ClC1a 47 55 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloroe<strong>the</strong>ne(a) T4ClC2e 47 55 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trichlorobenzene TCB 47 55 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloromethane(chloro<strong>for</strong>m) TClC1a 47 55 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloroe<strong>the</strong>ne(Tri) TClC2e 47 55 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Alachlor alCl 47 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somchloorfenvinvos s_CFVP 47 54 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trifluralin TFLURLN 47 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorophenol PeClFol 47 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Amino-methyl-phosphonate AMPA 47 31 7 7 7 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gluphosinate GLUFSNT 47 31 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

glyphosate glyfst 47 31 6 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tributyltin TC4ySn 47 25 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Benzene Ben 47 20 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibutyltin DC4ySn 47 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sompentachlooranilinen s_PCAn 47 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-chloroaniline 4ClAn 47 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bis(2-ethylhexyl)phthalate(DOP/DEHP) DEHP 47 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thermotolerantcoli<strong>for</strong>ms THERMTCL 49 44 10 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalcoli<strong>for</strong>ms TTCLI 49 36 10 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phosphamidon fosfmdn 49 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metribuzin metbzn 49 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Escherichiacoli E_COLI 50 22 11 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Intestinalenterococci INTTNLETRCCN 50 21 10 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 100/109<br />

Appendix IV. Percentage positive detections <strong>for</strong> each analyte <strong>for</strong> Delfland Water<br />

Quality grab samples<br />

OW043-002<br />

OW062-008<br />

OW058-001<br />

OW021-003<br />

OW006-003<br />

OW203-111<br />

OW202-000<br />

OW090-000<br />

OW004-001<br />

OW056-000<br />

OW907-010<br />

OW116-012<br />

OW119-000<br />

OW115-012<br />

OW110-000<br />

OW215-024<br />

OW301-001<br />

OW221A012<br />

OW080-002<br />

OW047-001<br />

OW310-000<br />

OW306-023<br />

OW306-022<br />

OW015-003<br />

OW111-000<br />

OW221A013<br />

OW215-026<br />

OW210-003<br />

OW411-014<br />

OW008-002<br />

OW213B024<br />

OW306B012<br />

OW220-010<br />

OW207-002<br />

OW221A023<br />

OW069-000<br />

OW215-032<br />

OW216-002<br />

OW208-016<br />

OW015-012<br />

OW218-200<br />

OW217-000<br />

OW202-322<br />

OW220-000<br />

OW050-002<br />

OW413-001<br />

OW211-000<br />

OW401-003<br />

OW208-000<br />

OW208-001<br />

OW221A000<br />

OW202-100<br />

Percentage<br />

recovery by site<br />

and analyte, 2005<br />

to 2009 Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Basic network<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

Glass-houses<br />

WFD monitoring point<br />

WFD monitoring point<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

Urban areas monitoring<br />

Urban areas monitoring<br />

Basic network<br />

Urban areas monitoring<br />

Basic network<br />

Basic network<br />

Basic network<br />

Basic network<br />

zeros 20<br />

22<br />

27<br />

27<br />

28<br />

51<br />

51<br />

52<br />

54<br />

54<br />

63<br />

74<br />

75<br />

75<br />

75<br />

75<br />

77<br />

78<br />

78<br />

79<br />

80<br />

81<br />

83<br />

86<br />

88<br />

88<br />

88<br />

92<br />

113<br />

125<br />

177<br />

177<br />

178<br />

178<br />

179<br />

179<br />

179<br />

180<br />

181<br />

181<br />

181<br />

181<br />

181<br />

182<br />

183<br />

183<br />

183<br />

184<br />

184<br />

193<br />

193<br />

193<br />

Analyte name Par_code zeros<br />

n<br />

8083<br />

7261<br />

7585<br />

6510<br />

6416<br />

6784<br />

6079<br />

6379<br />

6577<br />

6432<br />

796<br />

5223<br />

5339<br />

5333<br />

5204<br />

5042<br />

5135<br />

5232<br />

5139<br />

5417<br />

5117<br />

5282<br />

5036<br />

5198<br />

5067<br />

4635<br />

3013<br />

2447<br />

881<br />

980<br />

910<br />

812<br />

824<br />

367<br />

964<br />

905<br />

829<br />

938<br />

878<br />

810<br />

288<br />

177<br />

123<br />

270<br />

554<br />

554<br />

537<br />

842<br />

233<br />

92<br />

92<br />

79<br />

Visible surface condition VUIL 0 2402 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Wea<strong>the</strong>r WEERGSHD 0 2402 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Fluidflowingwaters STROMSTR 0 2402 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Oxygen O2 0 2398 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Conductivity GELDHD 0 2398 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Temperature T 0 2398 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Acidity pH 0 2398 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Clarity ZICHT 0 2369 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Kjeldahlnitrogen NKj 0 2230 100 100 100 100 95 98 100 74 100 100 64 100 100 100 100 100 100 100 98 100 100 100 96 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

totalphosphate P 0 2229 100 100 100 100 98 74 100 92 100 100 45 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

nitrogen N 0 2215 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

chloride Cl 3 1939 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 0 0<br />

Ortho-phosphate PO4 3 1929 100 96 100 100 88 31 92 73 100 100 0 100 100 100 100 100 100 100 100 98 100 100 100 100 94 95 100 20 83 100 56 97 100 100 70 100 6 75 56 100 50 100 100 100 100 100 100 100 100 0 0 0<br />

ammonium NH4 3 1929 59 40 47 42 63 27 77 25 73 50 11 46 71 38 58 65 68 87 73 88 74 49 60 32 67 75 75 22 44 77 69 68 83 71 20 65 67 83 85 86 92 100 100 75 87 91 71 100 44 0 0 0<br />

totalnitrateandnitrite sNO3NO2 3 1918 100 100 100 97 100 38 98 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 74 71 95 100 44 40 91 55 71 79 82 56 95 81 72 63 39 100 100 100 92 59 73 71 67 78 0 0 0<br />

Copper Cu 3 1864 100 100 100 99 98 7 75 85 93 93 100 100 100 98 100 100 100 100 100 0 100 100 0 0 81 91 97 20 10 73 40 18 79 64 36 86 70 81 9 10 100 70 67 100 57 61 96 44 100 67 100 100<br />

Nickel Ni 4 1809 100 99 100 100 97 80 100 77 100 98 100 100 100 98 100 100 100 0 100 0 100 100 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

Zinc Zn 5 1861 100 88 100 100 85 4 96 19 100 98 0 100 100 98 100 100 100 100 0 0 100 0 0 0 67 98 98 7 23 98 86 33 82 100 52 100 88 72 84 12 100 90 100 100 89 61 96 63 100 67 100 100<br />

Calcium Ca 5 308 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 0 0 0<br />

suspendedmatter ZS 6 1752 73 100 100 96 96 81 100 27 100 100 25 100 100 100 100 100 98 98 90 96 100 100 72 100 100 98 94 96 100 88 89 82 71 100 72 67 100 97 92 36 0 100 100 0 59 73 100 33 0 0 0 0<br />

Bicarbonate HCO3 6 382 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 0 0 0<br />

Sulfate SO4 6 279 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0 100 0 0 0<br />

Biochemicaloxygendemandover5days<br />

BZV5 13 750 90 93 100 100 0 100 100 76 100 100 0 100 100 96 0 100 100 100 100 100 0 0 100 0 100 100 100 100 100 96 93 100 100 100 96 86 96 96 96 100 0 100 100 0 100 91 0 92 0 0 0 0<br />

Biochemicaloxygendemandofureaallythio<br />

BZV5a 16 511 75 94 0 100 100 100 100 69 88 100 0 100 100 100 100 100 0 100 0 0 0 0 0 0 100 100 100 100 100 100 100 94 100 100 94 75 100 94 100 94 0 100 100 0 100 100 0 94 0 0 0 0<br />

Nitrate NO3 18 472 100 100 0 100 0 43 95 100 100 100 0 100 100 100 100 100 100 100 0 0 0 0 100 0 75 96 100 48 0 0 50 83 86 100 75 100 0 75 50 0 100 100 100 100 0 0 0 62 0 0 0 0<br />

Nitrite NO2 18 471 4 0 0 5 0 0 41 0 32 38 0 8 80 67 75 13 100 60 0 0 0 0 100 0 5 29 17 0 0 0 0 33 8 0 0 25 0 4 0 0 0 0 100 0 0 0 0 5 0 0 0 0<br />

Magnesium Mg 19 220 100 100 100 100 100 0 100 0 100 100 100 100 100 100 100 100 100 0 100 100 100 100 0 0 100 100 100 0 100 0 100 100 100 100 0 0 100 0 0 100 100 0 0 100 0 0 100 0 100 0 0 0<br />

Sodium Na 19 220 100 100 100 100 100 0 100 0 100 100 100 100 100 100 100 100 100 0 100 100 100 100 0 0 100 100 100 0 100 0 0 100 100 100 0 0 100 0 0 100 100 0 0 100 0 0 100 0 100 0 0 0<br />

Chlorophyll-a CHLFa 21 435 36 61 0 67 83 81 100 37 97 100 0 100 100 0 100 100 0 89 83 67 0 0 0 86 97 88 95 100 100 100 55 0 100 0 40 75 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dimethoate Dmtat 22 1375 2 7 2 11 4 0 16 0 7 7 0 19 2 7 6 24 11 69 7 0 6 2 4 2 2 18 26 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

simazine simzne 22 1375 0 0 0 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

atrazine atzne 22 1374 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbofuran cbfrn 22 1347 6 16 41 24 62 0 29 6 17 17 17 22 17 33 19 24 35 16 30 4 30 39 19 13 5 15 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

flutolanil flutlnl 22 1347 0 0 41 0 2 0 0 2 0 43 17 0 0 6 0 2 24 0 17 2 6 33 25 17 2 0 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

procimidon procmdn 22 1346 0 6 0 0 7 0 12 0 7 6 0 0 35 13 4 4 24 65 9 0 17 9 17 2 0 10 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

iprodione ipDon 22 1346 2 0 8 0 10 0 0 2 0 7 0 4 4 17 7 2 9 5 15 0 6 30 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylazinphos C1yazfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methylbromophos C1yBrfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylazinphos C2yazfs 22 1346 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylbromophos C2yBrfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

ethylparathion C2ypton 22 1346 0 0 4 0 0 0 0 0 0 0 0 4 0 2 0 0 4 0 0 0 4 4 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diazinon Daznn 22 1346 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 15 0 5 0 0 0 7 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

malathion malton 22 1346 0 0 0 0 2 0 2 0 0 2 0 2 0 4 2 2 0 2 0 2 2 4 4 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimiphos-methyl pirmfC1y 22 1346 4 2 8 0 12 2 4 2 20 15 0 25 4 6 13 7 30 65 4 2 9 30 2 2 0 10 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

parathion-methyl ptonC1y 22 1346 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 5 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrazophos pyrazfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolclophos-methyl tolcfsC1y 22 1346 2 2 61 21 55 0 12 0 37 61 17 62 20 80 31 13 57 0 87 2 54 87 79 15 2 3 9 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptenophos heptnfs 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 7 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

mevinphos mevfs 22 1346 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorfenvinphos Clfvfs 22 1346 0 0 2 0 0 2 0 0 0 0 0 0 0 24 0 0 2 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloorvinphos T4Clvfs 22 1346 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

triazophos Tazfs 22 1346 0 0 2 0 0 4 2 0 0 4 0 2 2 9 0 2 2 0 4 0 6 6 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenthion fenton 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

disulfoton Dsftn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.6-dichloorbenzamide 26DClBenAd 22 1346 39 6 8 12 10 17 10 4 22 11 0 13 11 7 19 11 6 4 17 13 6 6 9 11 2 8 13 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bupirimate buprmt 22 1346 0 4 0 0 0 0 10 0 4 2 17 2 6 0 4 25 0 35 0 0 0 4 0 0 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorpropham Clpfm 22 1346 0 0 8 2 2 0 0 0 0 6 0 2 0 9 4 0 0 0 2 0 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorothalonil Cltlnl 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dimethomorph Dmtmf 22 1346 27 24 39 71 40 0 29 6 67 43 17 70 59 30 52 16 28 73 56 4 67 65 47 33 2 48 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

etridiazol eTDazl 22 1346 2 2 47 36 50 0 12 2 37 54 0 62 24 70 67 47 50 5 44 2 39 72 42 24 2 5 26 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fenpropimorph fenppmf 22 1346 2 0 0 0 0 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Metazachlor metzCl 22 1346 0 0 2 0 2 2 2 6 2 2 0 0 4 2 4 0 6 9 2 2 0 0 4 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pirimicarb pirmcb 22 1346 27 43 94 71 74 2 92 6 87 89 17 81 85 96 94 91 94 91 94 6 100 94 96 76 14 50 74 19 100 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

prosulfocarb prosfcb 22 1346 2 2 0 2 5 2 2 4 0 2 0 4 2 4 4 4 2 0 2 2 2 2 6 4 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Terbutryn terbtne 22 1346 0 0 0 0 0 2 2 2 0 0 0 0 4 0 0 0 0 0 0 0 2 2 2 6 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tolylfluanide tolfande 22 1346 4 2 0 0 0 2 0 2 0 2 0 0 0 0 2 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

vinclozolin vinczln 22 1346 0 0 2 0 0 2 0 0 0 0 0 0 2 2 0 0 7 0 13 0 0 2 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bitertanol bittnl 22 1346 0 4 12 14 29 0 8 0 6 9 0 19 6 37 17 4 6 7 15 2 11 9 11 4 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metalaxyl mlxl 22 1346 2 2 73 69 55 0 18 4 57 56 17 66 65 52 78 5 57 69 80 6 70 83 70 56 16 33 4 0 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

N.N-diethyl-3-methylbenzamide DEET 22 1346 24 31 14 21 21 70 59 32 33 17 17 8 24 20 19 29 19 27 15 28 6 6 11 15 18 20 30 19 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Diethofencarb Detfcb 22 1346 2 18 45 36 52 2 41 0 30 50 17 43 41 85 76 25 56 71 33 4 17 70 34 37 2 35 13 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-dimethylaminosulphotoluidide DMST 22 1346 0 4 12 5 21 0 4 0 2 11 0 2 9 19 9 5 6 11 4 0 2 13 8 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dodemorph dodmf 22 1346 0 0 0 0 0 0 0 0 0 2 0 15 2 0 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

furalaxyl furlxl 22 1346 0 0 8 5 2 0 2 0 2 9 0 0 2 6 4 7 31 7 2 0 2 15 6 9 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metamitron mtmtn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrimethanil pyrmtnl 22 1346 22 24 69 81 62 0 37 4 67 76 17 38 46 41 69 20 31 22 52 6 22 70 75 44 27 53 35 19 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chloridazon Clidzn 22 1346 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-hydroxy-2.5.6-trichloorisoftalonitril<br />

HTI 22 1346 2 0 18 0 14 0 0 0 0 7 0 2 4 11 2 0 24 2 4 0 6 2 8 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlorvos DClVS 23 1228 0 0 0 0 8 0 0 0 4 0 0 0 6 6 0 12 0 4 2 2 0 2 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlobenil DCIBNL 23 1199 33 9 9 14 8 13 15 6 33 21 0 28 6 17 25 6 13 14 23 25 15 13 21 21 8 9 17 8 0 67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trans-permethrin tpermtn 23 1083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

diuron Durn 24 739 68 78 51 45 51 10 24 75 6 0 67 0 6 0 0 0 6 6 0 33 0 6 0 0 27 23 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Isoproturon iptrn 24 733 10 31 18 19 35 7 5 58 6 0 33 5 0 6 6 6 0 0 11 0 0 0 6 0 2 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Aldicarb alDcb 24 678 0 0 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldicarbsulphon alDcbsfn 24 678 5 2 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

carbendazim cbedzm 24 678 59 59 67 56 68 7 47 75 17 39 83 32 33 39 39 6 28 22 33 11 28 39 35 28 25 38 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

imidacloprid imdcpd 24 678 95 76 100 98 78 21 92 4 100 94 33 84 94 100 94 94 94 94 100 11 100 100 100 94 61 93 91 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indoxacarb indxcb 24 678 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

linuron linrn 24 678 0 7 23 2 17 7 18 4 22 0 0 5 17 44 39 33 11 28 22 0 6 28 0 0 0 3 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methomyl metml 24 678 0 7 49 29 44 0 18 4 11 17 0 32 28 61 33 17 17 28 11 0 22 39 6 6 0 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarb metocb 24 678 2 2 15 7 12 3 5 0 6 6 0 0 6 6 0 0 6 0 0 0 0 6 0 0 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulphon metocbsfn 24 678 2 0 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

methiocarbsulfoxide metocbsO 24 678 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metoxuron metxrn 24 678 2 2 15 0 5 0 3 0 6 6 0 0 0 6 6 0 0 0 0 0 0 17 0 0 0 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

propoxur propxr 24 678 2 5 5 5 2 3 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 6 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Somphaeophytins s_FEO 24 378 32 73 0 100 67 44 93 33 97 93 20 100 83 0 100 88 0 100 67 83 0 0 0 71 73 80 83 59 100 100 55 0 0 0 33 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-endosulfan aedsfn 27 829 0 0 8 0 0 0 0 0 0 0 0 0 0 3 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

gamma-hexachlorocyclohexane(lindane)<br />

cHCH 27 829 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endrin endn 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

hexachlorobenzene HCB 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hexachlorobutadiene HxClbtDen 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.5.5'-pentachlorobiphenyl PCB101 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.3'.4.4'.5-pentachlorobiphenyl PCB118 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5'-hexachloorbiphenyl PCB138 27 829 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.4.4'.5.5'-hexachloorbiphenyl PCB153 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.3.4.4'.5.5'-heptachloorbiphenyl PCB180 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.2'.5.5'-tetrachloorbiphenyl PCB52 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichlorodiphenyltrichloroethane<br />

44DDT 27 829 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4.4'-Trichlorobiphenyl PCB28 27 829 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorobenzene PeClBen 27 828 4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-endosulfan bedsfn 27 807 2 0 8 0 4 0 0 6 0 3 0 0 3 3 3 4 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloorethane 24DDD 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloorethane 44DDD 27 807 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4.4'-dichloordifenyldichloore<strong>the</strong>ne 44DDE 27 807 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

alpha-hexachlorocyclohexane aHCH 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aldrin aldn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

beta-hexachlorocyclohexane bHCH 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dieldrin dieldn 27 807 0 0 0 0 4 0 8 0 0 0 0 0 0 0 3 0 14 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpCl 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

telodrin teldn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

endosulfansulphate endsfSO4 27 807 6 3 48 0 12 0 0 6 0 8 0 6 19 28 3 4 14 3 8 3 6 8 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

delta-hexachlorocyclohexane dHCH 27 807 4 0 6 0 4 0 0 6 0 3 0 0 3 3 6 0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichloordifenyldichloore<strong>the</strong>ne 24DDE 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4'-dichlorodiphenyltrichloroethane<br />

24DDT 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

isodrin idn 27 807 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

heptachlor HpClepO 27 798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somaldrin.dieldrin.endrinandisodrin sdrin4 27 735 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum-a.b.candd-HCH sHCH4 27 726 0 0 0 0 0 0 9 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sum2.4'-and4.4'-DDT sDDT 27 724 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cypermethrin cypmtn 27 263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sumdemetonisomers sdmtn 27 262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlordane Cldn 28 611 100 100 100 100 100 96 92 97 97 97 0 97 97 97 97 100 97 97 97 97 97 97 97 97 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Lead Pb 29 651 60 48 63 32 42 0 27 0 17 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 31 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)pyrene BaP 38 642 8 85 25 0 4 0 2 2 6 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(b)fluoran<strong>the</strong>ne BbF 38 642 6 76 35 0 9 0 4 0 7 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(g.h.i)perylene BghiPe 38 642 9 70 17 0 2 0 2 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

indeno(1.2.3-c.d)pyrene InP 38 642 2 74 23 0 2 0 2 2 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

naphthalene Naf 38 642 2 4 0 0 2 0 0 0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

anthracene Ant 38 641 0 37 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(k)fluoran<strong>the</strong>ne BkF 38 641 2 64 6 0 2 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluoran<strong>the</strong>ne Flu 38 641 4 83 37 2 32 0 35 6 41 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 13 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaph<strong>the</strong>ne AcNe 38 593 5 2 5 5 7 0 4 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

acenaftyleen AcNy 38 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

benzo(a)anthracene BaA 38 593 0 82 7 0 2 0 2 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrysene Chr 38 593 2 86 35 0 7 0 4 0 13 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibenzo(a.h)anthracene DBahAnt 38 593 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phenanthrene Fen 38 593 9 68 16 12 21 4 21 8 22 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 25 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

fluorene Fle 38 593 7 23 5 10 17 2 29 4 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 30 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pyrene Pyr 38 593 11 89 26 0 19 0 21 4 33 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chrome Cr 38 388 18 46 18 30 25 25 50 25 67 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 33 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

cadmium Cd 39 396 68 78 83 68 69 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75 88 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mercury Hg 39 181 32 83 35 58 58 17 8 0 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dissolvedorganiccarbon DOC 41 187 100 100 100 100 100 100 100 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalorganiccarbon TOC 42 168 100 100 100 100 100 0 100 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

arsenic As 42 120 100 92 100 100 67 58 100 83 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichlorobenzene TClBen 42 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Potassium K 46 7 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bentazone bentzn 47 73 9 6 12 0 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chlorophenoxyaceticacid MCPA 47 73 18 24 35 55 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2-methyl-4-chloorfenoxypropionzuur MCPP 47 73 27 24 24 91 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Chlorpyriphos Clprfs 47 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

1.2-dichloroethane 12DClC2a 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2.4-dichlorophenol 24DClFol 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

chlorotoluron Cltlrn 47 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dichloromethane DClC1a 47 55 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Carbontetrachloride(tetra) T4ClC1a 47 55 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tetrachloroe<strong>the</strong>ne(a) T4ClC2e 47 55 9 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trichlorobenzene TCB 47 55 0 9 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloromethane(chloro<strong>for</strong>m) TClC1a 47 55 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

trichloroe<strong>the</strong>ne(Tri) TClC2e 47 55 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Alachlor alCl 47 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

somchloorfenvinvos s_CFVP 47 54 0 0 10 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Trifluralin TFLURLN 47 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pentachlorophenol PeClFol 47 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Amino-methyl-phosphonate AMPA 47 31 100 100 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gluphosinate GLUFSNT 47 31 14 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

glyphosate glyfst 47 31 86 43 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

tributyltin TC4ySn 47 25 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Benzene Ben 47 20 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

dibutyltin DC4ySn 47 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sompentachlooranilinen s_PCAn 47 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4-chloroaniline 4ClAn 47 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

bis(2-ethylhexyl)phthalate(DOP/DEHP)<br />

DEHP 47 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thermotolerantcoli<strong>for</strong>ms THERMTCL 49 44 100 0 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Totalcoli<strong>for</strong>ms TTCLI 49 36 100 0 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

phosphamidon fosfmdn 49 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

metribuzin metbzn 49 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Escherichiacoli E_COLI 50 22 100 0 0 0 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Intestinalenterococci INTTNLETRCCN 50 21 100 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


AppendixV. Table G.PPQ. Pesticide means <strong>for</strong> Delfland grab water samples,<br />

including total analyses per substance, number and percentage positive results,<br />

number of locations where substances were analysed and also detected, average of<br />

<strong>the</strong> “site mean” concentrations, and <strong>the</strong> concentration value <strong>for</strong> <strong>the</strong> location with<br />

<strong>the</strong> greatest site mean, <strong>the</strong> year <strong>the</strong> substance was banned and <strong>the</strong> literature<br />

source cited in this <strong>report</strong> that refers to each substance.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 101/109


Appendix VI. Summary of Erft online data <strong>for</strong> <strong>the</strong> Erft at Bergheim.<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 102/109


Appendix VII. Numbers of results <strong>for</strong> each analyte <strong>for</strong> each Luxembourg Water<br />

Quality sampling <strong>the</strong>me<br />

site Control of surface waters<br />

zeros 39<br />

Bathing waters m onitoring<br />

39<br />

Eutrophication<br />

51<br />

Basic monitoring + bacteriology<br />

50<br />

Priority substances<br />

Full monitoring<br />

Fisheries monitoring<br />

Basic monitoring<br />

Priority substances + euttrophication<br />

<strong>Monitoring</strong><br />

Moselle Saar Protection Comission (ICPMS)<br />

26<br />

53<br />

65<br />

58<br />

20<br />

18<br />

39<br />

ICPMS and eutrophication<br />

47<br />

<strong>Monitoring</strong> Moselle Saar<br />

54<br />

Full monitoring + bacteriology<br />

55<br />

Diatom index / pollution sensitivity indices<br />

90<br />

Macroinvertebrate surveys<br />

91<br />

Priority substances and surface water monitoring<br />

52<br />

EU campaign (Water Framework Directive)<br />

60<br />

Macrophyte biological index<br />

89<br />

pollution<br />

contrôle (influence sur captage SES)<br />

n<br />

Par_code zeros<br />

Cond. 3 3069 797 588 553 190 93 154 216 169 70 123 71 15 15 6 0 0 3 3 0 2 1<br />

NH4 3 3066 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 2 1<br />

pH 3 3066 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 2 1<br />

NO2 3 3066 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 2 1<br />

Chloride-Cl 4 3064 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 0 1<br />

Nitrate-NO3 4 3064 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 0 1<br />

Sulfate-SO4 4 3064 797 588 553 190 93 154 216 169 70 123 68 15 15 6 0 0 3 3 0 0 1<br />

P_tot 4 3063 797 588 553 190 93 154 216 169 70 121 68 15 15 6 0 0 3 3 0 2 0<br />

Temp °C 4 3063 797 588 553 190 93 154 216 169 70 121 68 15 15 6 0 0 3 3 0 2 0<br />

Sodium-Na 4 2807 797 588 553 190 93 125 0 169 70 109 68 15 15 6 0 0 3 3 0 2 1<br />

Potassium-K 4 2807 797 588 553 190 93 125 0 169 70 109 68 15 15 6 0 0 3 3 0 2 1<br />

BOD_5 5 3060 796 588 553 190 93 154 216 169 70 121 68 15 15 6 0 0 3 3 0 0 0<br />

DO 5 3051 796 588 544 190 93 154 216 169 70 121 68 15 15 6 0 0 3 3 0 0 0<br />

DO(%sat) 5 3051 796 588 544 190 93 154 216 169 70 121 68 15 15 6 0 0 3 3 0 0 0<br />

Hardness (H#CO3) °Fr 5 2805 797 588 553 190 93 125 0 169 70 109 68 15 15 6 0 0 3 3 0 0 1<br />

Magnesium-Mg 5 2644 797 588 537 149 82 102 0 137 70 71 68 15 15 6 0 0 3 3 0 0 1<br />

Calcium-Ca 5 2635 797 588 537 149 82 93 0 137 70 71 68 15 15 6 0 0 3 3 0 0 1<br />

PO4-P 6 2802 797 588 553 190 93 125 0 169 70 107 68 15 15 6 0 0 3 3 0 0 0<br />

Total hardness 6 2545 797 588 497 190 77 37 0 96 70 88 68 15 15 0 0 0 3 3 0 0 1<br />

Cote NH4 (IPO) 7 2717 796 588 550 190 58 125 0 169 63 84 67 15 0 6 0 0 3 3 0 0 0<br />

Organic Pollution Index 7 2710 797 588 544 190 58 125 0 169 63 82 67 15 0 6 0 0 3 3 0 0 0<br />

Cote NO2 (IPO) 7 2709 796 588 544 190 58 125 0 169 63 82 67 15 0 6 0 0 3 3 0 0 0<br />

Cote BOD-5 (IPO) 7 2709 796 588 544 190 58 125 0 169 63 82 67 15 0 6 0 0 3 3 0 0 0<br />

Cote o-PO4 (IPO) 7 2709 796 588 544 190 58 125 0 169 63 82 67 15 0 6 0 0 3 3 0 0 0<br />

Chlorophylle-a 7 1312 16 5 447 190 69 154 32 143 63 90 67 15 15 6 0 0 0 0 0 0 0<br />

Pheopigments 7 1312 16 5 447 190 69 154 32 143 63 90 67 15 15 6 0 0 0 0 0 0 0<br />

Chromium-Cr 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Zinc-Zn 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Nickel-Ni 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Lead-Pb 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Cadmium-Cd 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Copper-Cu 8 1167 323 96 0 19 93 128 245 0 70 77 77 15 15 6 0 0 3 0 0 0 0<br />

Iron-Fe 9 1583 578 99 0 19 32 207 320 0 88 91 103 19 15 12 0 0 0 0 0 0 0<br />

Manganèse-Mn 10 1474 570 96 0 19 0 207 320 0 22 91 103 19 15 12 0 0 0 0 0 0 0<br />

Charge balance 11 1480 539 420 322 0 34 0 0 0 63 16 67 15 0 0 0 0 0 3 0 0 1<br />

Sum anions 11 1480 539 420 322 0 34 0 0 0 63 16 67 15 0 0 0 0 0 3 0 0 1<br />

Sum cations 11 1480 539 420 322 0 34 0 0 0 63 16 67 15 0 0 0 0 0 3 0 0 1<br />

Indice biochim. 11 1250 257 168 238 190 24 125 0 169 0 70 0 0 0 6 0 0 3 0 0 0 0<br />

Cote BOD-5 (Indice biochim.) 11 1250 257 168 238 190 24 125 0 169 0 70 0 0 0 6 0 0 3 0 0 0 0<br />

Cote Sat O2 (Indice biochim.) 11 1250 257 168 238 190 24 125 0 169 0 70 0 0 0 6 0 0 3 0 0 0 0<br />

Cote NH4 (Indice biochim.) 11 1242 257 168 232 190 24 125 0 169 0 68 0 0 0 6 0 0 3 0 0 0 0<br />

Turbidity 12 1091 336 252 240 0 7 0 116 0 63 5 69 0 0 0 0 0 0 3 0 0 0<br />

Alkalinity 12 940 243 420 169 0 14 0 0 0 27 10 44 11 0 0 0 0 0 2 0 0 0<br />

Hardness (H#CO3) meq./L 12 932 242 420 161 0 14 0 0 0 27 11 44 11 0 0 0 0 0 2 0 0 0<br />

Total Hardness meq. 12 932 242 420 161 0 14 0 0 0 27 11 44 11 0 0 0 0 0 2 0 0 0<br />

Boron-B 13 434 6 36 0 0 109 0 76 0 106 14 84 0 0 0 0 0 3 0 0 0 0<br />

Arsenic-As 13 343 6 36 0 0 93 0 58 0 70 14 63 0 0 0 0 0 3 0 0 0 0<br />

Vanadium-V 13 304 6 36 0 0 93 0 58 0 70 14 24 0 0 0 0 0 3 0 0 0 0<br />

Silver-Ag 13 304 6 36 0 0 93 0 58 0 70 14 24 0 0 0 0 0 3 0 0 0 0<br />

E.coli 14 726 7 535 1 140 0 0 0 9 0 20 0 0 14 0 0 0 0 0 0 0 0<br />

Intestinal enterococci 14 726 7 535 1 140 0 0 0 9 0 20 0 0 14 0 0 0 0 0 0 0 0<br />

Mercury-Hg 14 321 0 0 0 0 93 0 0 0 70 57 68 15 15 0 0 0 3 0 0 0 0<br />

Total coli<strong>for</strong>ms 14 319 1 135 1 140 0 0 0 9 0 19 0 0 14 0 0 0 0 0 0 0 0<br />

Total Xylène 14 317 0 0 0 0 90 0 0 0 70 57 68 15 15 0 0 0 0 0 0 2 0<br />

Faecal coli<strong>for</strong>ms 14 228 1 44 1 140 0 0 0 9 0 19 0 0 14 0 0 0 0 0 0 0 0<br />

Fluoride-F 16 192 0 0 0 0 93 12 0 0 70 14 0 0 0 0 0 0 3 0 0 0 0<br />

Silicon-Si 16 161 0 0 0 0 0 0 0 0 14 43 74 15 15 0 0 0 0 0 0 0 0<br />

Sampling time 17 141 0 0 0 0 0 0 0 0 0 43 68 15 15 0 0 0 0 0 0 0 0<br />

Suspended solids 17 141 0 0 0 0 0 0 0 0 0 43 68 15 15 0 0 0 0 0 0 0 0<br />

Indeno(1.2.3.c.d)pyrène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Benzo(k)fluoranthène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Fluoranthène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Benzo(a)pyrène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Benzo(b)fluoranthène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Benzo(g.h.i)pérylène 18 299 0 0 0 0 152 0 0 0 133 14 0 0 0 0 0 0 0 0 0 0 0<br />

Tétrachloroéthylène 18 248 0 0 0 0 128 0 0 0 100 20 0 0 0 0 0 0 0 0 0 0 0<br />

Chloro<strong>for</strong>m 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

1.1.1-Trichloroéthane 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Toluène 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Benzène 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Dichlorométhane 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Ethylbenzène 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Tétrachlorométhane 18 174 0 0 0 0 90 0 0 0 70 14 0 0 0 0 0 0 0 0 0 0 0<br />

Trichloroéthylène 18 100 0 0 0 0 52 0 0 0 40 8 0 0 0 0 0 0 0 0 0 0 0<br />

Diatom biological index 19 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 4 0 0<br />

Diatom poll.sens.ind. 19 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 4 0 0<br />

Cote Macrozoobenthos 20 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 141 0 0 0 0 0<br />

Macrophyte bio. Index 20 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0<br />

Hardness (H#CO3) mg/L 20 34 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0<br />

TOC 20 32 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0<br />

Dibenzo(a.h)anthracène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Fluorène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Acenaphtène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Anthracène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Benzo(a)anthracène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Chrysène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Phenantrène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

Pyrène 20 28 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0<br />

HCO3 20 17 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0<br />

Discharge 20 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0<br />

Free cyanide-CN 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

COD 20 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

25987<br />

19730<br />

16668<br />

6330<br />

5380<br />

5207<br />

5132<br />

4917<br />

4826<br />

4330<br />

3458<br />

671<br />

566<br />

234<br />

200<br />

141<br />

120<br />

93<br />

72<br />

81<br />

22<br />

76<br />

16<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 103/109


Appendix VIII. Numbers of results <strong>for</strong> analytes in simplified Luxembourg Water<br />

Quality sampling <strong>the</strong>mes<br />

site Surface water monitoring<br />

zeros 34<br />

n<br />

Par_code zeros<br />

Cond. 1 3069 803 725 588 286 350 216 101 0<br />

NH4 1 3066 803 725 588 286 350 216 98 0<br />

NO2 1 3066 803 725 588 286 350 216 98 0<br />

pH 1 3066 803 725 588 286 350 216 98 0<br />

Chloride-Cl 1 3064 801 725 588 286 350 216 98 0<br />

Nitrate-NO3 1 3064 801 725 588 286 350 216 98 0<br />

Sulfate-SO4 1 3064 801 725 588 286 350 216 98 0<br />

P_tot 1 3063 802 725 588 284 350 216 98 0<br />

Temp °C 1 3063 802 725 588 284 350 216 98 0<br />

BOD_5 1 3060 799 725 588 284 350 216 98 0<br />

DO 1 3051 799 716 588 284 350 216 98 0<br />

DO(%sat) 1 3051 799 716 588 284 350 216 98 0<br />

Potassium-K 2 2807 803 725 588 272 321 0 98 0<br />

Sodium-Na 2 2807 803 725 588 272 321 0 98 0<br />

Hardness (H#CO3) °Fr 2 2805 801 725 588 272 321 0 98 0<br />

PO4-P 2 2802 800 725 588 270 321 0 98 0<br />

Cote NH4 (IPO) 2 2717 799 722 588 205 321 0 82 0<br />

Organic Pollution Index 2 2710 800 716 588 203 321 0 82 0<br />

Cote BOD-5 (IPO) 2 2709 799 716 588 203 321 0 82 0<br />

Cote NO2 (IPO) 2 2709 799 716 588 203 321 0 82 0<br />

Cote o-PO4 (IPO) 2 2709 799 716 588 203 321 0 82 0<br />

Magnesium-Mg 2 2644 801 677 588 223 257 0 98 0<br />

Calcium-Ca 2 2635 801 677 588 223 248 0 98 0<br />

Total hardness 2 2545 801 596 588 235 227 0 98 0<br />

Iron-Fe 2 1583 578 0 99 211 238 320 137 0<br />

Charge balance 3 1480 540 325 420 113 0 0 82 0<br />

Sum anions 3 1480 540 325 420 113 0 0 82 0<br />

Sum cations 3 1480 540 325 420 113 0 0 82 0<br />

Manganèse-Mn 2 1474 570 0 96 113 238 320 137 0<br />

Chlorophylle-a 1 1312 16 590 5 222 350 32 97 0<br />

Pheopigments 1 1312 16 590 5 222 350 32 97 0<br />

Cote BOD-5 (Indice biochim.) 3 1250 260 407 168 94 321 0 0 0<br />

Cote Sat O2 (Indice biochim.) 3 1250 260 407 168 94 321 0 0 0<br />

Indice biochim. 3 1250 260 407 168 94 321 0 0 0<br />

Cote NH4 (Indice biochim.) 3 1242 260 401 168 92 321 0 0 0<br />

Cadmium-Cd 2 1167 326 0 96 240 153 245 107 0<br />

Chromium-Cr 2 1167 326 0 96 240 153 245 107 0<br />

Copper-Cu 2 1167 326 0 96 240 153 245 107 0<br />

Lead-Pb 2 1167 326 0 96 240 153 245 107 0<br />

Nickel-Ni 2 1167 326 0 96 240 153 245 107 0<br />

Zinc-Zn 2 1167 326 0 96 240 153 245 107 0<br />

Turbidity 2 1091 336 243 252 75 0 116 69 0<br />

Alkalinity 3 940 243 171 420 51 0 0 55 0<br />

Hardness (H#CO3) meq./L 3 932 242 163 420 52 0 0 55 0<br />

Total Hardness meq. 3 932 242 163 420 52 0 0 55 0<br />

E.coli 2 726 7 10 535 20 140 0 14 0<br />

Intestinal enterococci 2 726 7 10 535 20 140 0 14 0<br />

Boron-B 3 434 9 0 36 229 0 76 84 0<br />

Arsenic-As 3 343 9 0 36 177 0 58 63 0<br />

Mercury-Hg 5 321 3 0 0 220 0 0 98 0<br />

Total coli<strong>for</strong>ms 2 319 1 10 135 19 140 0 14 0<br />

Total Xylène 5 317 2 0 0 217 0 0 98 0<br />

Silver-Ag 3 304 9 0 36 177 0 58 24 0<br />

Vanadium-V 3 304 9 0 36 177 0 58 24 0<br />

Benzo(a)pyrène 7 299 0 0 0 299 0 0 0 0<br />

Benzo(b)fluoranthène 7 299 0 0 0 299 0 0 0 0<br />

Benzo(g.h.i)pérylène 7 299 0 0 0 299 0 0 0 0<br />

Benzo(k)fluoranthène 7 299 0 0 0 299 0 0 0 0<br />

Fluoranthène 7 299 0 0 0 299 0 0 0 0<br />

Indeno(1.2.3.c.d)pyrène 7 299 0 0 0 299 0 0 0 0<br />

Tétrachloroéthylène 7 248 0 0 0 248 0 0 0 0<br />

Faecal coli<strong>for</strong>ms 2 228 1 10 44 19 140 0 14 0<br />

Fluoride-F 5 192 3 0 0 177 12 0 0 0<br />

1.1.1-Trichloroéthane 7 174 0 0 0 174 0 0 0 0<br />

Benzène 7 174 0 0 0 174 0 0 0 0<br />

Chloro<strong>for</strong>m 7 174 0 0 0 174 0 0 0 0<br />

Dichlorométhane 7 174 0 0 0 174 0 0 0 0<br />

Ethylbenzène 7 174 0 0 0 174 0 0 0 0<br />

Tétrachlorométhane 7 174 0 0 0 174 0 0 0 0<br />

Toluène 7 174 0 0 0 174 0 0 0 0<br />

Silicon-Si 6 161 0 0 0 57 0 0 104 0<br />

Cote Macrozoobenthos 7 141 0 0 0 0 0 0 0 141<br />

Sampling time 6 141 0 0 0 43 0 0 98 0<br />

Suspended solids 6 141 0 0 0 43 0 0 98 0<br />

Diatom biological index 7 104 0 0 0 0 0 0 0 104<br />

Diatom poll.sens.ind. 7 104 0 0 0 0 0 0 0 104<br />

Trichloroéthylène 7 100 0 0 0 100 0 0 0 0<br />

Macrophyte bio. Index 7 64 0 0 0 0 0 0 0 64<br />

Hardness (H#CO3) mg/L 7 34 0 0 0 0 0 0 34 0<br />

TOC 7 32 0 0 0 0 0 0 32 0<br />

Acenaphtène 7 28 0 0 0 28 0 0 0 0<br />

Anthracène 7 28 0 0 0 28 0 0 0 0<br />

Benzo(a)anthracène 7 28 0 0 0 28 0 0 0 0<br />

Chrysène 7 28 0 0 0 28 0 0 0 0<br />

Dibenzo(a.h)anthracène 7 28 0 0 0 28 0 0 0 0<br />

Fluorène 7 28 0 0 0 28 0 0 0 0<br />

Phenantrène 7 28 0 0 0 28 0 0 0 0<br />

Pyrène 7 28 0 0 0 28 0 0 0 0<br />

HCO3 7 17 0 0 0 0 0 0 17 0<br />

Discharge 7 3 0 3 0 0 0 0 0 0<br />

COD<br />

Free cyanide-CN<br />

7<br />

7<br />

2<br />

2<br />

2<br />

2<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

26145<br />

Eutrophication<br />

50<br />

21678<br />

Bathing waters monitoring<br />

39<br />

19730<br />

Priority substances<br />

10<br />

14536<br />

Full monitoring etc..<br />

49<br />

11771<br />

Fisheries monitoring<br />

65<br />

5132<br />

Moselle_Saar<br />

35<br />

4695<br />

Biological surveys<br />

88<br />

413<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 104/109


Appendix IX. Numbers of samples <strong>for</strong> Luxembourg sites, years and Water Quality<br />

sampling <strong>the</strong>mes<br />

Bio survey<br />

Location name Site code<br />

Ettelbruck L100011A21 bio Q 120 22 32 27 30 9 10 4 2 5 0 0 0 0 0 0 7 22 10 6 2 0 4 4 4 1 4 0 0 0 0 1 2 2 2 1 0 0 9 13 5<br />

amont Wasserbillig L112010A24 bio 115 39 19 26 24 7 10 8 5 7 3 0 5 12 10 2 8 6 6 6 2 0 0 0 1 0 7 0 0 0 0 0 0 0 0 0 14 0 3 0 0<br />

Kautenbach. aval embouchure Clerve L110030A11 Q 108 20 31 23 26 8 10 4 2 4 0 0 0 0 0 0 7 24 9 6 2 0 1 1 1 0 2 0 0 0 0 1 1 2 2 1 0 1 9 13 5<br />

grousse Brill L300030A06 bio 84 19 15 18 25 7 10 8 4 4 0 0 0 0 0 0 7 5 6 6 2 0 2 1 2 0 2 0 0 0 0 0 0 0 0 0 0 0 7 13 5<br />

Esch/Alzette frontière L100011A01 80 21 18 17 18 6 11 8 7 7 3 0 0 0 0 0 7 5 6 6 2 0 5 4 5 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hespérange L100011A09 Q 79 20 18 17 18 6 10 8 7 7 3 0 0 0 0 0 7 5 6 6 2 0 5 4 5 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Colmar-Berg L106030A12 bio 76 20 17 16 17 6 10 8 7 7 3 0 0 0 0 0 7 6 6 6 2 0 3 3 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Martelange L112010A01 Q 71 16 17 17 15 6 10 12 12 11 5 0 5 5 3 1 1 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Liefrange L112010A04 Q 71 16 17 17 15 6 10 12 12 11 5 0 5 5 3 1 1 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Grundhof L144030A09 bio 65 14 15 15 15 6 11 12 12 11 5 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

amont Fielsmillen L202030A12 bio 65 14 15 15 15 6 11 12 12 11 5 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Rittefenn L110040A03 62 14 15 14 14 5 10 12 12 11 5 0 0 0 0 0 1 0 0 0 0 0 3 2 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Stein<strong>for</strong>t L105030A04 56 12 13 13 13 5 11 12 12 11 5 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Reckange L105030A12 bio Q 56 12 13 13 13 5 11 12 12 11 5 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Wilspull L112010A11 bio Q 48 11 11 12 12 2 0 0 0 1 0 0 11 12 11 2 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bourscheid moulin L112010A09 bio Q 47 11 11 12 11 2 0 0 0 0 0 0 11 12 11 2 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Michelau L112010A10 Q 47 11 11 12 11 2 0 0 0 0 0 0 11 12 11 2 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont confluent Alzette à Mersch L104030A11 Q 45 12 2 13 13 5 11 1 12 11 5 0 0 0 0 0 1 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Steinsel-Heisdorf L100011A15 Q 43 13 1 12 12 5 9 1 12 11 5 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Vianden L122020A07 bio Q 43 7 7 13 12 4 1 0 0 0 0 0 5 11 9 3 1 0 0 1 0 0 0 0 0 0 4 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Dirbach L112010A07 41 11 5 12 11 2 0 0 0 0 0 0 5 12 11 2 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Born L112010A23 bio Q 40 11 5 12 10 2 0 0 0 0 0 0 5 12 10 2 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Moulin de Bigonville L112010A02 Q 40 3 7 14 13 3 0 0 0 0 0 0 5 12 11 2 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Rosport L112010A22 Q 38 9 5 12 10 2 0 0 0 0 0 0 5 12 10 2 1 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Ingeldorf L112010A12 bio Q 29 7 7 8 5 2 0 0 0 0 0 0 5 6 3 1 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Bettendorf L112010A15 Q 29 7 7 8 5 2 0 0 0 0 0 0 5 6 3 1 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

pont Misère L112010A03 Q 28 7 7 7 5 2 0 0 0 0 0 0 5 5 3 1 0 1 0 0 0 0 0 0 0 0 6 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Remerschen - vir beim Steg L299010A02 28 5 5 11 5 2 0 0 0 0 0 0 5 11 5 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Remerschen - lënks beim Steg L299010A03 28 5 5 11 5 2 0 0 0 0 0 0 5 11 5 2 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

hannen am Eck L122030A02 26 8 5 6 5 2 1 0 0 0 0 0 5 6 5 2 2 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mersch L100011A17 Q 25 5 6 6 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 4 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Remerschen - riets beim Steg L299010A01 25 2 5 11 5 2 0 0 0 0 0 0 5 11 5 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

vir beim Steg L122030A01 23 5 5 6 5 2 1 0 0 0 0 0 5 6 5 2 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

route d'Oberpallen L106030A01 bio 22 5 5 5 5 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 3 3 1 4 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Reisdorf L112010A17 bio 21 6 5 6 3 1 0 0 0 0 0 0 5 6 3 1 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Camping Heiderscheidergrund L112010A05 bio Q 20 5 5 6 3 1 0 0 0 0 0 0 5 6 3 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dillingen L112010A18 bio 20 5 5 6 3 1 0 0 0 0 0 0 5 6 3 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval step Clervaux L110040A04 bio 19 5 5 4 4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 2 0 4 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Kautenbach L110040A08 bio 19 5 5 4 4 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 2 0 4 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Weilerbach L112010A19 Q 19 5 5 5 3 1 0 0 0 0 0 0 5 5 3 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Echternach L112010A21 bio Q 19 5 5 5 3 1 0 0 0 0 0 0 5 5 3 1 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bissen L106030A11 Q 18 3 3 5 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 0 0 0 0 0 2 2 1 0 0 0 0 0<br />

entre Ouren et Rodershausen L122020A04 bio Q 18 5 6 3 3 1 1 0 0 0 0 0 6 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont step Esch/Schifflange L100011A03 bio 17 4 4 4 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Bettembourg L100011A07 Q 17 4 4 4 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont step Beggen L100011A13 Q 17 4 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Lintgen-Gosseldange L100011A16 17 4 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Essingen L100011A19 17 4 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Everlange (amont step) L106030A06 bio 17 5 0 5 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 1 4 0 0 0 0 1 0 2 2 1 0 0 0 0 0<br />

amont Bissen L106030A10 Q 17 5 5 3 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 3 3 1 4 0 0 0 0 1 1 0 0 0 0 0 0 0 0<br />

Ouren L122020A01 bio 17 5 5 3 3 1 1 0 0 0 0 0 5 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Tintesmühle L122020A02 bio Q 17 5 5 3 3 1 1 0 0 0 0 0 5 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Rodershausen L122020A03 Q 17 5 5 3 3 1 1 0 0 0 0 0 5 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Untereisenbach L122020A05 Q 17 5 5 3 3 1 1 0 0 0 0 0 5 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Stolzembourg L122020A06 Q 17 5 5 3 3 1 1 0 0 0 0 0 5 3 3 1 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 105/109<br />

Flow<br />

Total samps<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

All programs Eutrophication Bathing waters monitoring<br />

Priority substances Surface water monitoringFull monitoring etc.. Fisheries monitoring Moselle_Saar


Noertzange L100011A04 bio 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Fennange L100011A05 bio Q 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Roeser L100011A08 bio Q 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont step Bonnevoie L100011A11 Q 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 4 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Pulvermühle L100011A12 Q 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Beringen L100011A18 bio Q 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Colmar-Berg L100011A20 16 3 4 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gosseldange L104030A10 bio Q 15 1 12 1 1 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thillsmillen L104030A06 bio 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Baafeltsbréck (aval Hobscheid) L105030A08 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Rédange (amont step) L106030A03 13 3 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Useldange L106030A08 bio 13 3 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Boevange L106030A09 13 3 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Warken L107030A09 bio Q 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

pont Weidingen L110030A07 13 3 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 2 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Kautenbach. amont embouchure Clerve L110030A12 bio Q 13 3 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 2 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

pont vers Schiltzberg (Koedange) L141030A05 bio 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Reisdorf L141030A13 bio 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Blumenthal L144030A05 bio 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Syren-Mout<strong>for</strong>t L202030A02 bio 13 3 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

Walferdange L100011A14 bio Q 12 3 0 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Grümmelscheid L110030A03 bio 12 2 3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Seltz L140030A06 bio 11 3 2 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 2 2 2 1 0 0 0 0 0<br />

amont Troisvierges L110040A01 bio 10 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Camping Maulusmillen L110040A05 10 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Wilwerwiltz L110040A07 10 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Goebelsmühle L112010A08 9 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 2 2 1 0 0 0 0 0<br />

Obercorn. rue des champs L300030A01 bio 8 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Biff (amont step) L300030A03 bio 8 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Linger L300030A04 8 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Pétange (amont step) L300030A05 8 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Lasauvage. près du terrain de foot L300032A01 7 4 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hesperange L101530A01 5 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hagen L105031A01 bio 5 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Diekirch L112010A13 bio 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Altwies L200030A06 bio 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Mondorf L200030A07 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Emerange L200030A11 bio 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Schengen L299001A01 5 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Grevenmacher L299001A03 5 1 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

près de l'embouchure à Linger L300031A02 5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Sprinkange L101030A01 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Bettange L101030A03 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Reckange L101030A05 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Wickrange L101030A07 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bergem L101030A09 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Noertzange L101030A10 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Rumelange frontière L102030A01 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont à Kayl L102030A03 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont confluent Alzette. Noertzange L102030A04 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dudelange frontière L103030A01 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval étang Arbed L103030A03 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Giebel L103030A05 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

entrée souterrain amont Bettembourg L103030A06 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

sortie souterrain aval Bettembourg L103030A07 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 106/109


<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 107/109<br />

Garnich L104030A01 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Holzem L104030A02 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval step Mamer L104030A05 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Kopstal L104030A08 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Clemency L105030A01 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont Grass L105030A02 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont Hagen L105030A03 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Eischen L105030A06 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Septfontaines L105030A09 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dondelange L105030A10 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Nidderpallenermillen L106036A01 bio 4 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mertzig L107030A04 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Oberfeulen L107030A05 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Welscheid L107030A08 Q 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Park & Ride Hollerich L108030A01 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Parc Minigolf L108030A03 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

station de Schimpach L110030A01 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Schleif L110030A02 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont Niederwiltz L110030A06 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont aval Tutschenmillen L110030A08 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval SIDA. aval Himmelbach L110030A09 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Heiderscheidergrund L112012A01 bio 4 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bavigne L112015A01 4 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Brandenbourg L140030A03 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Bastendorf L140030A05 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Tandel L140031A01 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Eisenborn L141030A02 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Imbringen L141030A03 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Supp L141030A06 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Larochette L141030A08 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Medernach L141030A10 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hessemillen (=Rte vers Eppeldorf) L141030A12 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gonderange L144030A02 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Junglinster L144030A04 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Blumenthal L144030A06 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Aspelt L200030A02 4 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Ehnen L201030A06 bio 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Syren L202030A01 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Schrassig L202030A03 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mensdorf (aval SIAS) L202030A06 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Olingen L202030A08 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

am. Manternach (av.step) L202030A11 bio 4 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

rond-point Foetz. Dumontshaff L100930A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Felleschmillen (Eischen) L105032A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Rédange. Schummeschmillen L106030A04 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Betzemillen. aval Boevange L106031A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Boevange/Attert L106032A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Useldange L106033A01 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Roudbach L106035A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Grosbous L107030A02 3 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Cessange L108031A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Laangert. ennert Helfent L108032A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Merkholtz- Halte L110030A10 3 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Sak L110032A01 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Merkholz L110033A01 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Schimpach L110034A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Oberwampach L110035A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Basbellain L110040A02 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Drauffelt L110040A06 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Lellingen L110041A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Drauffelt L110042A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Sassel L110044A04 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Schlinder L112011A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Dell L140030A01 3 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval camping Bleesbréck L140030A07 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mëllerdall L144032A01 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Echternach. dir. Chapelle L146030A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Girst L147030A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Ehnen L201031A01 bio 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Munsbach L202030A05 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Fausermillen L202031A02 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Manternach L202032A01 bio 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Wecker L202036A01 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Remich L299001A02 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Wasserbillig L299001A04 3 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Mamer L104031A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thillsmillen L104032A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Lintgen L104530A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Rédange L106037A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

route d'Oberpallen L106038A01 bio 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Holtz (route de Perlé) L106039A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Niederpallen L106040A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Niederfeulen L107031A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Oberfeulen L107032A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Mertzig L107033A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

près de Hanff L108030A02 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Hensenal. aval Eschweiler L110031A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Brillsbësch/Conzefenn L110043A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Trëtterbaach L110045A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Ueschdrefermillen L112014A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Surré L112016A01 bio 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pt. aval Surré (Bauschelt) L112016A02 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Schiebech. LBN 58 L122022A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Gilsdorf L140033A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Château Grondhaff L144031A02 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Frisange L200030A01 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Aspelt L200031A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Ahn (aval step) L201032A01 bio 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Dreiborn - option 2 L201033A01 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Biwer L202033A01 bio 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Boudlerbach L202035A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Olingen L202037A01 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Bauerebech. bei Roodt/Syr L202038A01 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

pont aval Bous L203030A01 bio 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Stadtbredimus L203030A02 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Herdermillen L203031A01 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Echternach. Brill L145030A01 2 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

?? L110043A02 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

amont Grondmillen L112013A01 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Baerburenerkapp. LB 180 L112017A01 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Landscheid L140032A01 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Ferme Schorlemer - Camping Leiser L144030A 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Ernster L144030A01 bio 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Müllerthal L144030A08 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Haller L144031A01 bio 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

aval Wollefsmillen L148030A02 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Oenneschtmillen L201030A04 bio 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Aval Ehnen L201031A07 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Appendix X. Limits of detection <strong>for</strong> substances in Luxembourg Water Quality Samples<br />

Table A8.1 Limits of detection (units µg/l) with methodological references <strong>for</strong> measured<br />

polynuclear aromatic hydrocarbons in Luxembourg Gestion de l’eau water quality samples.<br />

SoP-305-HMW_PAH Raw Filtered<br />

Fluoranthène 1.0 0.002 L1606-FLUORA<br />

Pyrene 1.0 0.002 L1607-PYRE<br />

Benzo(a)anthracène 1.0 0.002 L1608-BENANTH<br />

Chrysène 1.0 0.002 L1609-CHRY<br />

Benzo(b)fluoranthène 1.0 0.002 L1611-BENBFLUOR<br />

Benzo(k)fluoranthène 1.0 0.002 L1612-BENKFLUOR<br />

Benzo(a)pyrène 1.0 0.002 L1613-BENPYT<br />

Dibenzo(a,h)anthracène 1.0 0.004 L1614-DBENANT<br />

Benzo(g,h,i)pérylène 1.0 0.002 / 0.004 L1615-BENPER<br />

Indeno(1,2,3,c,d)pyrène 1.0 0.002 / 0.004 L1616-INDENO<br />

SoP-305-LMW_PAH<br />

Acenaphtène - 0.002 L1602-ACNAP<br />

Anthracène - 0.002 L1605-ANTHR<br />

Fluorène - 0.002 L1603-FLUORENE<br />

Phenantrène - 0.010 L1604-PHENAN<br />

Table A8.2 Limits of detection (units µg/l) with methodological references <strong>for</strong> solvents and<br />

degreasants in Luxembourg Gestion de l’eau water quality samples.<br />

SoP-303 DL April 05 to April 06 Analysis reference DL May-Jun 06 and July<br />

06 onwards<br />

Analysis reference<br />

1,1,1-Trichloroéthane 10 L1306-111TCLET 5 / 1 L2120-111TCLET<br />

Benzène 10 L1501-BEN 1 L2130-BEN<br />

Chloro<strong>for</strong>me 10 L1305-TCLME 1 L2115-TCLME<br />

Dichlorométhane 10 L1303-DCLME 5 / 1 L2110-DCLME<br />

Ethylbenzène 10 L1506-ETBEN 1 L2165-ETBEN<br />

Tétrachloroéthylène 10 L1317-TETRACLET 1 L2155-TETRACLET<br />

Tétrachlorométhane 10 L1307-TCLME 1 L2125-TCLME<br />

Toluène 10 L1502-TOL 5 / 1 L2150-TOL<br />

Trichloroéthylène 10 L1308-TCLET 1 L2140-TCLET<br />

Xylènes totaux 10 L1505-XYLTOT 3 / 1 L2176-XYLTOT<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 108/109


Table A8.3 Limits of detection (units mg/l) with methodological references <strong>for</strong> metals in water<br />

quality samples from Luxembourg.<br />

Element n, records n % <strong>for</strong> element n < d.l. % < L.o.D L.o.D<br />

Ag-MS 214 70,4 207 96,7 0.005<br />

Ag-OES 90 29,6 90 100,0 0.005<br />

As-FIAS 179 52,2 63 35,2 0.001<br />

As-MS 164 47,8 132 80,5 0.01<br />

B-209 17 3,9 1 5,9 0.05<br />

B-223 66 15,2 16 24,2 0.05<br />

B-MS 344 79,3 132 38,4 0.01<br />

B-OES 7 1,6 4 57,1 0.10<br />

Cd-MS 157 13,5 155 98,7 0.0005<br />

Cd-GFAAS 1010 86,5 1000 99,0 0.0001<br />

Cr-OES 515 44,2 508 98,6 0.01<br />

Cr-MS 651 55,8 647 99,4 0.005<br />

Cu-GFAAS 32 2,7 10 31,3 0.002<br />

Cu-OES 484 41,5 472 97,5 0.01<br />

Cu-MS 651 55,8 644 98,9 0.01<br />

Fe-MS 931 58,8 0 0,0 0.01<br />

Fe-OES 652 41,2 11 1,7 0.01<br />

Mn-MS 836 56,7 3 0,4 0.01<br />

Mn-OES 638 43,3 21 3,3 0.005<br />

Hg-FIMS 321 100 311 96,9 0.0005<br />

Ni-MS 651 55,8 125 19,2 0.002<br />

Ni-OES 515 44,2 504 97,9 0.005<br />

Pb-MS 651 55,8 361 55,5 0.001<br />

Pb-OES 515 44,2 513 99,6 0.005<br />

V-MS 214 70,4 210 98,1 0.01<br />

V-OES 90 29,6 90 100,0 0.1<br />

Zn-MS 651 55,8 409 62,8 0.01<br />

Zn-OES 516 44,2 420 81,4 0.01/0.005<br />

<strong>Monitoring</strong> data assessment <strong>report</strong> M 3 109/109

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!