26.02.2013 Views

A Mathematical Model of Bacterial Aerotaxis - Humboldt State ...

A Mathematical Model of Bacterial Aerotaxis - Humboldt State ...

A Mathematical Model of Bacterial Aerotaxis - Humboldt State ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>Mathematical</strong> <strong>Model</strong> <strong>of</strong> <strong>Bacterial</strong><br />

<strong>Aerotaxis</strong><br />

Bori Mazzag<br />

Department <strong>of</strong> Mathematics<br />

<strong>Humboldt</strong> <strong>State</strong> University<br />

Alex Mogilner<br />

Department <strong>of</strong> Mathematics<br />

University <strong>of</strong> California, Davis


• Chemotaxis and <strong>Aerotaxis</strong><br />

Outline


• Chemotaxis and <strong>Aerotaxis</strong><br />

Outline<br />

• Pattern formation in aerotaxis experiments<br />

(Zhulin et al. 1996)


• Chemotaxis and <strong>Aerotaxis</strong><br />

Outline<br />

• Pattern formation in aerotaxis experiments<br />

(Zhulin et al. 1996)<br />

• Our model


• Chemotaxis and <strong>Aerotaxis</strong><br />

Outline<br />

• Pattern formation in aerotaxis experiments<br />

(Zhulin et al. 1996)<br />

• Our model<br />

• Results


• Chemotaxis and <strong>Aerotaxis</strong><br />

Outline<br />

• Pattern formation in aerotaxis experiments<br />

(Zhulin et al. 1996)<br />

• Our model<br />

• Results<br />

• Significance and interpretation <strong>of</strong> our results


Concentration<br />

Conventional Chemotaxis<br />

t=t 0<br />

t= t 0 + Δ t<br />

Space


Chemotaxis and <strong>Aerotaxis</strong><br />

concentration<br />

chemotaxis<br />

aerotaxis<br />

Chemotaxis<br />

many attractants and repellents<br />

effector need not be metabolized<br />

external effector concentrations<br />

are monitored<br />

signaling:<br />

Tar, Tsr, Trg, Tap<br />

space<br />

<strong>Aerotaxis</strong><br />

oxygen is attractant and<br />

repellent<br />

oxygen is metabolized<br />

energy taxis − internal state<br />

monitored<br />

signaling: Tsr, Aer


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)<br />

observable


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)<br />

observable<br />

serves as memory


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)<br />

observable<br />

serves as memory<br />

allows sensing in a wide range<br />

<strong>of</strong> concentrations


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)<br />

observable<br />

serves as memory<br />

allows sensing in a wide range<br />

<strong>of</strong> concentrations<br />

methylation based


Adaptation in conventional chemotaxis<br />

Turning frequency<br />

add attractant<br />

remove<br />

attractant<br />

(Figure based on Bray, 1992)<br />

Fast excitation (phosphorylation)<br />

Slow adaptation (methylation)<br />

observable<br />

serves as memory<br />

allows sensing in a wide range<br />

<strong>of</strong> concentrations<br />

methylation based<br />

slow (1-3 seconds)


Keller-Segel chemotaxis model


Keller-Segel chemotaxis model<br />

∂b +<br />

∂t<br />

∂b− ∂t<br />

+ v∂b+<br />

∂x = σ− b − − σ + b +<br />

− v∂b−<br />

∂x = σ+ b + − σ − b −<br />

(1)<br />

(2)


Keller-Segel chemotaxis model<br />

∂b +<br />

∂t<br />

∂b− ∂t<br />

+ v∂b+<br />

∂x = σ− b − − σ + b +<br />

− v∂b−<br />

∂x = σ+ b + − σ − b −<br />

Let b = b + + b− , J(x, t) = v(b + (x, t) − b− (x, t)),<br />

σ0 = 1<br />

2 (σ+ + σ− ), ∆σ = 1<br />

2 (σ+ − σ− ).<br />

(1)<br />

(2)


Keller-Segel chemotaxis model<br />

∂b +<br />

∂t<br />

∂b− ∂t<br />

+ v∂b+<br />

∂x = σ− b − − σ + b +<br />

− v∂b−<br />

∂x = σ+ b + − σ − b −<br />

Let b = b + + b− , J(x, t) = v(b + (x, t) − b− (x, t)),<br />

σ0 = 1<br />

2 (σ+ + σ− ), ∆σ = 1<br />

2 (σ+ − σ− ). By making the<br />

substitutions and adding 1 and 2, we get the equations:<br />

(1)<br />

(2)<br />

bt = −Jx<br />

(3)<br />

1<br />

Jt + J =<br />

2σ0<br />

1<br />

(−v<br />

2σ0<br />

2 bx + 2∆σvb) (4)


In small spatial gradients we can solve for J:<br />

J ≈ 1 2 ∂b<br />

(−v<br />

2σ0 ∂x<br />

+ 2∆σvb)


In small spatial gradients we can solve for J:<br />

J ≈ 1 2 ∂b<br />

(−v<br />

2σ0 ∂x<br />

+ 2∆σvb)<br />

Leading to the Keller-Segel (1970) equation:<br />

∂b<br />

∂t<br />

≈ ∂<br />

∂x (µ∂b<br />

∂x<br />

− χb) (5)


In small spatial gradients we can solve for J:<br />

J ≈ 1 2 ∂b<br />

(−v<br />

2σ0 ∂x<br />

+ 2∆σvb)<br />

Leading to the Keller-Segel (1970) equation:<br />

with<br />

(Grünbaum, 1999)<br />

∂b<br />

∂t<br />

≈ ∂<br />

∂x (µ∂b<br />

∂x<br />

µ = v2<br />

2σ0<br />

χ = v∆σ<br />

σ0<br />

− χb) (5)


Temporal assay with Azospirillum brazilense<br />

(s ) −1<br />

Reversal frequency<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0%<br />

oxygen<br />

0.5%<br />

oxygen<br />

30 60 90 120<br />

Time(s)<br />

21%<br />

oxygen


−1<br />

Reversal frequency (s )<br />

0.7<br />

0.1<br />

Membrane potential and turning frequency<br />

0%<br />

oxygen<br />

0.5%<br />

oxygen<br />

30 60<br />

Time (s)<br />

90<br />

21%<br />

oxygen<br />

120


−1<br />

Reversal frequency (s )<br />

0.7<br />

0.1<br />

Membrane potential and turning frequency<br />

0%<br />

oxygen<br />

0.5%<br />

oxygen<br />

30 60<br />

Time (s)<br />

90<br />

21%<br />

oxygen<br />

120<br />

Electrode potential (mV)<br />

−80<br />

−60<br />

0.5 %<br />

1%<br />

5%<br />

25 50<br />

Time (min)<br />

0.5%


Capillary size:<br />

50 × 2 × 0.1mm<br />

Oxygen concentration in band:<br />

0.3 − 0.5µM<br />

Band width: 0.2 mm<br />

Time <strong>of</strong> band formation:<br />

50 sec - 3 min<br />

Spatial assay


Capillary size:<br />

50 × 2 × 0.1mm<br />

Oxygen concentration in band:<br />

0.3 − 0.5µM<br />

Band width: 0.2 mm<br />

Time <strong>of</strong> band formation:<br />

50 sec - 3 min<br />

Spatial assay


8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

Dashed line:path <strong>of</strong> bacteria<br />

Solid line: turning frequency<br />

−2<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Time<br />

Monte-Carlo simulation


8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

Dashed line:path <strong>of</strong> bacteria<br />

Solid line: turning frequency<br />

−2<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Time<br />

Monte-Carlo simulation<br />

constant velocity, v<br />

turning frequency<br />

in band: σ = 0<br />

cell leaves band<br />

at random time, τ<br />

outside the band<br />

σ jumps to c<br />

characteristic time<br />

<strong>of</strong> adaptation: ta<br />

adaptation: σ = ce −t−τ<br />

ta


<strong>Model</strong>ing goals and assumptions<br />

Goal: create a mathematical model which reproduces sharp<br />

aerotactic band formation in spatial assays with Azospirillum<br />

brazilense


<strong>Model</strong>ing goals and assumptions<br />

Goal: create a mathematical model which reproduces sharp<br />

aerotactic band formation in spatial assays with Azospirillum<br />

brazilense<br />

Assumptions:<br />

• bacterial swimming is one-dimensional<br />

and it has constant velocity


<strong>Model</strong>ing goals and assumptions<br />

Goal: create a mathematical model which reproduces sharp<br />

aerotactic band formation in spatial assays with Azospirillum<br />

brazilense<br />

Assumptions:<br />

• bacterial swimming is one-dimensional<br />

and it has constant velocity<br />

• no bacterial reproduction


<strong>Model</strong>ing goals and assumptions<br />

Goal: create a mathematical model which reproduces sharp<br />

aerotactic band formation in spatial assays with Azospirillum<br />

brazilense<br />

Assumptions:<br />

• bacterial swimming is one-dimensional<br />

and it has constant velocity<br />

• no bacterial reproduction<br />

• oxygen concentration is fixed at the open end <strong>of</strong> the capillary


<strong>Model</strong>ing goals and assumptions<br />

Goal: create a mathematical model which reproduces sharp<br />

aerotactic band formation in spatial assays with Azospirillum<br />

brazilense<br />

Assumptions:<br />

• bacterial swimming is one-dimensional<br />

and it has constant velocity<br />

• no bacterial reproduction<br />

• oxygen concentration is fixed at the open end <strong>of</strong> the capillary<br />

• no slow adaptation


∂r<br />

∂t<br />

∂l<br />

∂t<br />

Our model<br />

= −v ∂r<br />

∂x − frlr + flrl<br />

= v ∂l<br />

∂x + frlr − flrl


∂r<br />

∂t<br />

∂l<br />

∂t<br />

Our model<br />

= −v ∂r<br />

∂x − frlr + flrl<br />

= v ∂l<br />

∂x + frlr − flrl<br />

∂L<br />

∂t = D∂2 L<br />

− k(r + l)<br />

∂x2


∂r<br />

∂t<br />

∂l<br />

∂t<br />

Our model<br />

= −v ∂r<br />

∂x − frlr + flrl<br />

= v ∂l<br />

∂x + frlr − flrl<br />

∂L<br />

∂t = D∂2 L<br />

− k(r + l)<br />

∂x2 r(0, t) = l(0, t)<br />

r(l, t) = l(l, t)<br />

L(0, t) = L0<br />

∂L<br />

�<br />

�<br />

� = 0<br />

∂x x=l


Proton Motive Force (PMF)<br />

High left−to−right<br />

turning rate<br />

~<br />

Lmin No turning<br />

L min<br />

L max<br />

~<br />

Lmax Turning rates<br />

High right−to−left<br />

turning rate


Proton Motive Force (PMF)<br />

High left−to−right<br />

turning rate<br />

~<br />

Lmin No turning<br />

L min<br />

L max<br />

~<br />

Lmax Turning rates<br />

High right−to−left<br />

turning rate<br />

~<br />

L max<br />

L max<br />

L min<br />

~<br />

L min<br />

C c c C<br />

C C c c<br />

C<br />

C<br />

flr<br />

frl


Proton Motive Force (PMF)<br />

High left−to−right<br />

turning rate<br />

~<br />

Lmin No turning<br />

L min<br />

L max<br />

frl =<br />

~<br />

Lmax Turning rates<br />

High right−to−left<br />

turning rate<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

~<br />

L max<br />

L max<br />

L min<br />

~<br />

L min<br />

C c c C<br />

C C c c<br />

C, L < ˜ Lmin<br />

c, ˜ Lmin < L < Lmin<br />

c, Lmin < L < Lmax<br />

C, Lmax < L < ˜ Lmax<br />

C, ˜ Lmax < L<br />

C<br />

C<br />

flr<br />

frl


Parameters and nondimensionalization<br />

Measurement Dim. quantity Non-dim. value<br />

Length 2 mm 1<br />

Time 10 sec 1<br />

Oxygen conc. 1 µM<br />

<strong>Bacterial</strong> conc.<br />

ml<br />

2 · 10<br />

1<br />

7cells<br />

Speed<br />

ml<br />

40<br />

1<br />

µm<br />

0.2<br />

sec<br />

−9 m2<br />

sec<br />

Diffusion coeff. 2 · 10 0.01<br />

Turning frequency 1sec−1 10<br />

4 · 10−3 Rate <strong>of</strong> O2 consump. 3 · 10 −11 µM<br />

(cell)(sec)


Numerical results<br />

Invasion <strong>of</strong> oxygen: x � √ Dt, Escape <strong>of</strong> bacteria: x � vt


Numerical results<br />

Invasion <strong>of</strong> oxygen: x � √ Dt, Escape <strong>of</strong> bacteria: x � vt<br />

t � D<br />

v 2 � 5 sec, x � vt0 � 100µm → ∆x = 50µm, ∆t = 0.01


2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Bacteria: solid line, oxygen: dotted line, t=0 s<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Numerical results<br />

Invasion <strong>of</strong> oxygen: x � √ Dt, Escape <strong>of</strong> bacteria: x � vt<br />

t � D<br />

v 2 � 5 sec, x � vt0 � 100µm → ∆x = 50µm, ∆t = 0.01


2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Bacteria: solid line, oxygen: dotted line, t=0 s<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Numerical results<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Invasion <strong>of</strong> oxygen: x � √ Dt, Escape <strong>of</strong> bacteria: x � vt<br />

t � D<br />

v 2 � 5 sec, x � vt0 � 100µm → ∆x = 50µm, ∆t = 0.01<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Bacteria: solid line, oxygen: dotted line, t=5 s


7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Bacteria: solid line, oxygen: dotted line, t=15 s<br />

0<br />

0 5 10 15 20 25 30 35 40


7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Bacteria: solid line, oxygen: dotted line, t=15 s<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Bacteria: solid line, oxygen: dotted line, t=50 s<br />

0<br />

0 5 10 15 20 25 30 35 40


7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Bacteria: solid line, oxygen: dotted line, t=15 s<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Bacteria: solid line, oxygen: dotted line, t=180 s<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Bacteria: solid line, oxygen: dotted line, t=50 s<br />

0<br />

0 5 10 15 20 25 30 35 40


Numerical experiments with ˜ Lmax and ˜ Lmin<br />

10<br />

8<br />

6<br />

4<br />

2<br />

10<br />

8<br />

6<br />

4<br />

2<br />

~<br />

L max<br />

~<br />

L max<br />

=4%<br />

=7%<br />

~<br />

Lmin<br />

=0%<br />

0.5 1 1.5 2<br />

~<br />

Lmin<br />

=0.5%<br />

~<br />

Lmin<br />

=0%<br />

~<br />

L max<br />

=7%<br />

0.5 1 1.5 2


10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

d<br />

Quasi steady state solution<br />

h<br />

0.5 1 1.5 2<br />

B<br />

b 0<br />

� L0<br />

kb0<br />

• d ≈<br />

d ≈ 0.8 mm for L0 = 0.2 and<br />

d ≈ 1.7 mm for L0 = 1<br />

• h ≈ 2Lmax<br />

�<br />

kb0<br />

kb0 L0<br />

h ≈ 0.4mm for L0 = 0.2 and<br />

h ≈ 0.2mm for L0 = 1


Summary <strong>of</strong> results<br />

• model supports the notion <strong>of</strong> a novel gradient sensing mechanism


Summary <strong>of</strong> results<br />

• model supports the notion <strong>of</strong> a novel gradient sensing mechanism<br />

• distance between the band and the meniscus, d is predicted to<br />

depend on external oxygen concentration, L0


Summary <strong>of</strong> results<br />

• model supports the notion <strong>of</strong> a novel gradient sensing mechanism<br />

• distance between the band and the meniscus, d is predicted to<br />

depend on external oxygen concentration, L0<br />

• width <strong>of</strong> bacterial band, h, is independent <strong>of</strong> L0 in steady state and<br />

dependent on L0 in the quasi steady state


Summary <strong>of</strong> results<br />

• model supports the notion <strong>of</strong> a novel gradient sensing mechanism<br />

• distance between the band and the meniscus, d is predicted to<br />

depend on external oxygen concentration, L0<br />

• width <strong>of</strong> bacterial band, h, is independent <strong>of</strong> L0 in steady state and<br />

dependent on L0 in the quasi steady state<br />

• numerical values <strong>of</strong> d, h, bacterial density and time <strong>of</strong> pattern<br />

formation agrees with experimental values


Summary <strong>of</strong> results<br />

• model supports the notion <strong>of</strong> a novel gradient sensing mechanism<br />

• distance between the band and the meniscus, d is predicted to<br />

depend on external oxygen concentration, L0<br />

• width <strong>of</strong> bacterial band, h, is independent <strong>of</strong> L0 in steady state and<br />

dependent on L0 in the quasi steady state<br />

• numerical values <strong>of</strong> d, h, bacterial density and time <strong>of</strong> pattern<br />

formation agrees with experimental values<br />

• model allows estimates for ˜ Lmax and ˜ Lmin which are experimentally<br />

difficult to obtain


Slow adaptation<br />

Fast adapation<br />

Chemotactic models<br />

Keller−Segel equation<br />

Advection equation<br />

Small spatial gradient<br />

No tractable model<br />

Our model<br />

Large spatial gradient


z<br />

z<br />

Receptor model<br />

Taylor and Johnson<br />

(1998)<br />

fast<br />

slow<br />

PMF<br />

PMF


Thank you!<br />

Bori Mazzag<br />

Mathematics Department<br />

<strong>Humboldt</strong> <strong>State</strong> University<br />

1 Harpst St, Arcata CA 95521<br />

(707) - 826 5349<br />

bcm9@humboldt.edu


Equilibrium position for fast moving part: ˜zf = z0 f + c1p<br />

For slow moving part: ˜zs = z0 s + c1p = z0 f − ∆z + c1p<br />

Proton motive force: p = ±kt + c0


Equilibrium position for fast moving part: ˜zf = z0 f + c1p<br />

For slow moving part: ˜zs = z0 s + c1p = z0 f − ∆z + c1p<br />

Proton motive force: p = ±kt + c0<br />

System <strong>of</strong> equations describing position <strong>of</strong> parts:<br />

dzs<br />

dt<br />

zf ≈ ˜zf(p(t))<br />

= 1<br />

τ (˜zs(p(t) − zs)


Equilibrium position for fast moving part: ˜zf = z0 f + c1p<br />

For slow moving part: ˜zs = z0 s + c1p = z0 f − ∆z + c1p<br />

Proton motive force: p = ±kt + c0<br />

System <strong>of</strong> equations describing position <strong>of</strong> parts:<br />

Solution:<br />

dzs<br />

dt<br />

zf ≈ ˜zf(p(t))<br />

= 1<br />

τ (˜zs(p(t) − zs)<br />

zf = z 0 f + c0c1 ± c1kt<br />

zs = z 0 f + c1c0 − ∆z ± c1k(t − τ) + z0e −t/τ<br />

z 0 f : ground state (fast) z0 s: ground state (slow) τ: adaptation time

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!