28.02.2013 Views

RhinoVax® is an Efficient Adjuvant in Oral Immunisation of ... - In Vivo

RhinoVax® is an Efficient Adjuvant in Oral Immunisation of ... - In Vivo

RhinoVax® is an Efficient Adjuvant in Oral Immunisation of ... - In Vivo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>in</strong> vivo 19: 375-382 (2005)<br />

Rh<strong>in</strong>oVax ® <strong>is</strong> <strong>an</strong> <strong>Efficient</strong> Adjuv<strong>an</strong>t <strong>in</strong> <strong>Oral</strong><br />

Immun<strong>is</strong>ation <strong>of</strong> Young Chickens <strong>an</strong>d Cholera<br />

Tox<strong>in</strong> B <strong>is</strong> <strong>an</strong> Effective <strong>Oral</strong> Primer <strong>in</strong> Subcut<strong>an</strong>eous<br />

Immun<strong>is</strong>ation with Freund’s <strong>In</strong>complete Adjuv<strong>an</strong>t<br />

SUSAN L. MAYO 1 , MÅNS TUFVESSON 1 , HANS-ERIK CARLSSON 1 ,<br />

FELIX ROYO 1 , SVEINBJÖRN GIZURARSON 2 <strong>an</strong>d JANN HAU 1<br />

1 Div<strong>is</strong>ion <strong>of</strong> Comparative Medic<strong>in</strong>e, Department <strong>of</strong> Neuroscience, Uppsala University, Uppsala, Sweden;<br />

2 Faculty <strong>of</strong> Pharmacy, University <strong>of</strong> Icel<strong>an</strong>d, Reykjavik, Icel<strong>an</strong>d<br />

Abstract. Forty-five approximately 50% <strong>in</strong>-bred 14-day-old<br />

White Leghorn female chickens (Gallus domesticus)<br />

orig<strong>in</strong>at<strong>in</strong>g from 11 hens were d<strong>is</strong>tributed <strong>in</strong>to 5 treatment<br />

groups conta<strong>in</strong><strong>in</strong>g one s<strong>is</strong>ter <strong>in</strong> each treatment group. Phase 1<br />

<strong>in</strong>volved oral adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> <strong>an</strong> <strong>an</strong>tigen, Bov<strong>in</strong>e Serum<br />

Album<strong>in</strong> (BSA), <strong>in</strong> comb<strong>in</strong>ation with various adjuv<strong>an</strong>t<br />

preparations, either Cholera Tox<strong>in</strong> B-subunit (CTB) <strong>an</strong>d/or<br />

Rh<strong>in</strong>oVax ® (RV). A positive control group received BSA<br />

emulsified <strong>in</strong> Freund’s <strong>In</strong>complete Adjuv<strong>an</strong>t (FIA) by<br />

subcut<strong>an</strong>eous <strong>in</strong>jection. All chickens responded with<br />

immunospecific IgA, IgM <strong>an</strong>d IgG <strong>an</strong>tibodies <strong>in</strong> their<br />

circulation. Classical parenteral immun<strong>is</strong>ation with FIA was<br />

generally the most potent mode <strong>of</strong> <strong>an</strong>tigen adm<strong>in</strong><strong>is</strong>tration. The<br />

highest immunospecific IgG concentrations recorded <strong>in</strong> the<br />

orally-immun<strong>is</strong>ed chickens were <strong>in</strong> the group immun<strong>is</strong>ed with<br />

20% RV as the adjuv<strong>an</strong>t. The concentration <strong>in</strong> th<strong>is</strong> group was<br />

approximately 5 times lower th<strong>an</strong> that recorded <strong>in</strong> the FIA<br />

group. For practical egg yolk polyclonal <strong>an</strong>tibody production<br />

purposes, the oral regime us<strong>in</strong>g 20% RV as adjuv<strong>an</strong>t seems <strong>an</strong><br />

attractive alternative to the more <strong>in</strong>vasive technique <strong>of</strong> <strong>in</strong>ject<strong>in</strong>g<br />

the <strong>an</strong>tigen <strong>in</strong> FIA emulsions. <strong>In</strong> Phase 2 all chickens were<br />

subjected to traditional subcut<strong>an</strong>eous immun<strong>is</strong>ation with a<br />

new <strong>an</strong>tigen, hum<strong>an</strong> IgG emulsified <strong>in</strong> FIA. The two groups <strong>of</strong><br />

chickens that had received CTB orally dur<strong>in</strong>g Phase 1<br />

responded with signific<strong>an</strong>tly higher immunospecific <strong>an</strong>tibody<br />

concentrations th<strong>an</strong> did the other chickens, <strong>in</strong>dicat<strong>in</strong>g that oral<br />

Correspondence to: Pr<strong>of</strong>essor J<strong>an</strong>n Hau, Div<strong>is</strong>ion <strong>of</strong> Comparative<br />

Medic<strong>in</strong>e, Department <strong>of</strong> Neuroscience, Uppsala University, BMC<br />

Box 572, 75123 Uppsala, Sweden. Tel: +46 18 471 46 22, Fax: +46<br />

18 50 17 40, e-mail: j<strong>an</strong>n.hau@bmc.uu.se<br />

Key Words: Adjuv<strong>an</strong>t, <strong>an</strong>imal welfare, chicken, cholera tox<strong>in</strong> B,<br />

Freund’s <strong>in</strong>complete adjuv<strong>an</strong>t, oral immun<strong>is</strong>ation, Rh<strong>in</strong>oVax ® .<br />

0258-851X/2005 $2.00+.40<br />

adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> CTB prior to traditional parenteral<br />

immun<strong>is</strong>ation may have a prim<strong>in</strong>g effect on the humoral<br />

immune system. The immunospecific <strong>an</strong>tibody response varied<br />

between the 11 families <strong>of</strong> chickens. There was no correlation<br />

between familial responsiveness to oral <strong>an</strong>d subcut<strong>an</strong>eous<br />

immun<strong>is</strong>ations. Families that were high responders to oral<br />

immun<strong>is</strong>ation were not high responders to parenteral<br />

immun<strong>is</strong>ation <strong>an</strong>d vice versa.<br />

Development <strong>of</strong> non-<strong>in</strong>vasive production methods for<br />

polyclonal <strong>an</strong>tibody production <strong>is</strong> attractive for <strong>an</strong>imal<br />

welfare reasons as well as for practical reasons because the<br />

production ceases to be a regulated procedure subject to<br />

laboratory <strong>an</strong>imal leg<strong>is</strong>lation. Studies dat<strong>in</strong>g back more th<strong>an</strong><br />

20 years demonstrated that IgG <strong>an</strong>tibodies could be<br />

harvested <strong>in</strong> generous qu<strong>an</strong>tities from the egg yolk <strong>of</strong><br />

immun<strong>is</strong>ed chickens (1). Replac<strong>in</strong>g mammals with egglay<strong>in</strong>g<br />

hens for <strong>an</strong>tibody production thus elim<strong>in</strong>ates the<br />

need for repeated blood sampl<strong>in</strong>g <strong>of</strong> the <strong>an</strong>imals. Chicken<br />

IgG (tr<strong>an</strong>sovari<strong>an</strong> IgG <strong>is</strong> <strong>of</strong>ten termed IgY) differs<br />

somewhat from mammali<strong>an</strong> IgA with respect to a number<br />

<strong>of</strong> physico-chemical properties <strong>an</strong>d immunochemical assays<br />

<strong>of</strong>ten have to be modified slightly (2), but functional<br />

properties, as for example avidity, are similar to that <strong>of</strong><br />

rabbit <strong>an</strong>tibodies (3).<br />

Adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> <strong>an</strong> <strong>an</strong>tigen, <strong>of</strong>ten <strong>in</strong> comb<strong>in</strong>ation with<br />

<strong>an</strong> adjuv<strong>an</strong>t, by the traditional routes, multiple <strong>in</strong>tradermal,<br />

subcut<strong>an</strong>eous or <strong>in</strong>tramuscular <strong>in</strong>jections, causes a certa<strong>in</strong><br />

degree <strong>of</strong> d<strong>is</strong>comfort to the chickens associated with<br />

capture, h<strong>an</strong>dl<strong>in</strong>g, restra<strong>in</strong>t <strong>an</strong>d the <strong>in</strong>jections themselves.<br />

For some time it has thus been <strong>an</strong> ambition to develop<br />

reasonably efficient oral immun<strong>is</strong>ation protocols by test<strong>in</strong>g<br />

<strong>an</strong>tigens mixed with commercially available adjuv<strong>an</strong>ts to<br />

produce <strong>an</strong> acceptable systemic <strong>an</strong>tibody response. We have<br />

tested a number <strong>of</strong> adjuv<strong>an</strong>ts <strong>an</strong>d demonstrated that oral<br />

375


adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> <strong>an</strong>tigens (hum<strong>an</strong> IgG) mixed with<br />

adjuv<strong>an</strong>ts (Cholera Tox<strong>in</strong> B-subunit (CTB) or Rh<strong>in</strong>oVax ®<br />

(RV)) to egg-lay<strong>in</strong>g hens c<strong>an</strong> <strong>in</strong>deed <strong>in</strong>duce a systemic<br />

immune response (4). From studies <strong>of</strong> mammals, CTB <strong>is</strong><br />

known to be a potent oral adjuv<strong>an</strong>t (5-7) <strong>an</strong>d <strong>in</strong>tr<strong>an</strong>asal,<br />

<strong>in</strong>tra-<strong>in</strong>test<strong>in</strong>al <strong>an</strong>d oral adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> CTB to chickens<br />

has been reported to potentiate the humoral immune<br />

response (8-10). RV <strong>is</strong> a pegylated mono/di-glyceride, which<br />

has been used successfully as a nasally-adm<strong>in</strong><strong>is</strong>tered<br />

adjuv<strong>an</strong>t <strong>in</strong> cl<strong>in</strong>ical trials <strong>in</strong> <strong>an</strong>imals <strong>an</strong>d hum<strong>an</strong>s result<strong>in</strong>g <strong>in</strong><br />

a systemic IgG response (11, 12). These studies illustrate the<br />

potential <strong>of</strong> oral immun<strong>is</strong>ation as a non-<strong>in</strong>vasive alternative<br />

mode <strong>of</strong> <strong>an</strong>tigen adm<strong>in</strong><strong>is</strong>tration. Comb<strong>in</strong>ed with the harvest<br />

<strong>of</strong> <strong>an</strong>tibodies from chicken eggs, oral immun<strong>is</strong>ation may<br />

completely elim<strong>in</strong>ate d<strong>is</strong>comfort from <strong>an</strong>imals used for<br />

polyclonal <strong>an</strong>tibody production.<br />

The aims <strong>of</strong> the present study were to: i) optim<strong>is</strong>e oral<br />

immun<strong>is</strong>ation protocols focus<strong>in</strong>g on CTB <strong>an</strong>d RV as<br />

adjuv<strong>an</strong>ts, ii) ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the genetic contribution to<br />

the between <strong>an</strong>imal variation <strong>in</strong> immune response, <strong>an</strong>d iii)<br />

test if chicken responsiveness to oral immun<strong>is</strong>ation <strong>is</strong><br />

correlated with responsiveness to traditional (subcut<strong>an</strong>eous)<br />

immun<strong>is</strong>ation.<br />

Materials <strong>an</strong>d Methods<br />

Animals <strong>an</strong>d husb<strong>an</strong>dry. A total <strong>of</strong> 45 (one chicken died<br />

spont<strong>an</strong>eously on day 3 after arrival at the <strong>an</strong>imal house)<br />

approximately 50% <strong>in</strong>-bred (40%-60% homozygosity), one-day-old<br />

White Leghorn female chickens (Gallus domesticus) from Lövsta<br />

Poultry Facility <strong>of</strong> the Swed<strong>is</strong>h Agricultural University, Uppsala,<br />

Sweden, were acclimat<strong>is</strong>ed for two weeks. The chickens orig<strong>in</strong>ated<br />

from 11 hens (A, B, C, D, E, F, G, H, I, J <strong>an</strong>d K), which were<br />

mated with the same cock. Five chickens from each hen (A to E)<br />

were d<strong>is</strong>tributed among the 5 treatment groups so that there was<br />

one s<strong>is</strong>ter <strong>in</strong> each treatment group. Chickens from hens which had<br />

less th<strong>an</strong> 5 <strong>of</strong>fspr<strong>in</strong>g (F to K) were d<strong>is</strong>tributed evenly among the<br />

treatment groups to make a total <strong>of</strong> 9 chickens per treatment group<br />

from 9 different hens (9 blocks). Each chicken was <strong>in</strong>dividually<br />

marked with a numbered alum<strong>in</strong>ium tag clipped to its w<strong>in</strong>g. They<br />

were group-housed on the floor <strong>in</strong> a pen with wood shav<strong>in</strong>gs<br />

(Tapvei, Oy, Kaavi, F<strong>in</strong>l<strong>an</strong>d) as bedd<strong>in</strong>g, <strong>in</strong> a temperature<br />

controlled room with a heat<strong>in</strong>g lamp provid<strong>in</strong>g a horizontal<br />

temperature gradient from 25ÆC to 35ÆC <strong>in</strong> the pen for the first<br />

week after hatch<strong>in</strong>g <strong>an</strong>d 25ÆC for later rear<strong>in</strong>g, with 8 hours dark<br />

<strong>an</strong>d 16 hours artificial light cycle. Food gr<strong>an</strong>ules (batch # 55102,<br />

Odal L<strong>an</strong>tmän, Uppsala, Sweden) free <strong>of</strong> <strong>an</strong>imal prote<strong>in</strong> <strong>an</strong>d tap<br />

water were available ad libitum. The average body weight <strong>of</strong> the<br />

chickens, at 15 days <strong>of</strong> age, was 128.3g (± 4.56g) at the start <strong>of</strong> the<br />

experiment. Body weight was recorded at every immun<strong>is</strong>ation <strong>an</strong>d<br />

blood-sampl<strong>in</strong>g event.<br />

Treatment groups <strong>an</strong>d immun<strong>is</strong>ation scheme: The immun<strong>is</strong>ation<br />

protocol cons<strong>is</strong>ted <strong>of</strong> two Phases, 1 <strong>an</strong>d 2. Phase 1 <strong>in</strong>volved<br />

adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> <strong>an</strong> <strong>an</strong>tigen, Bov<strong>in</strong>e Serum Album<strong>in</strong> (BSA), <strong>in</strong><br />

comb<strong>in</strong>ation with various adjuv<strong>an</strong>t preparations, either Cholera<br />

Tox<strong>in</strong> B- subunit (CTB) <strong>an</strong>d/or Rh<strong>in</strong>oVax ® (RV), given by oral<br />

376<br />

<strong>in</strong> vivo 19: 375-382 (2005)<br />

route, except for the treatment <strong>of</strong> the positive control group which<br />

received Freund’s <strong>In</strong>complete Adjuv<strong>an</strong>t (FIA) by subcut<strong>an</strong>eous<br />

(s.c.) <strong>in</strong>jection.<br />

There were 5 treatment groups with 9 chickens each <strong>in</strong> group 1<br />

(BSA+20% RV), group 2 (BSA+CTB), group 3<br />

(BSA+CTB+RV) <strong>an</strong>d group 5 (100%RV), <strong>an</strong>d 8 chickens <strong>in</strong><br />

group 4 (BSA+FIA). The immunogen mixture was adm<strong>in</strong><strong>is</strong>tered<br />

by gavage to the pharynx at 200 Ìl/chicken. All chickens were<br />

immun<strong>is</strong>ed on days 0, 14 <strong>an</strong>d 28. They were 15 days old when first<br />

immun<strong>is</strong>ed (day 0). The treatment groups were:<br />

Group 1: 2 mg BSA <strong>an</strong>d 20% RV. RV (S<strong>of</strong>tigen ® from Sasol Gmbh,<br />

Witten, Germ<strong>an</strong>y) was added to a concentration <strong>of</strong> 1:5 (v:v) <strong>in</strong> a<br />

BSA (Sigma, Sweden, Cat. No. A-4503) solution (10mg/ml<br />

phosphate-buffered sal<strong>in</strong>e (PBS), pH 8.0).<br />

Group 2: BSA <strong>an</strong>d CTB glutaraldehyde-conjugated. BSA <strong>an</strong>d CTB<br />

(Sigma, Cat. No. C9930) were conjugated (1:1 molar ratio) with<br />

glutaraldehyde. The protocol was based on v<strong>an</strong> der Heijden <strong>an</strong>d<br />

co-workers (13). Briefly, CTB (conta<strong>in</strong><strong>in</strong>g ≤0.5% Cholera Tox<strong>in</strong><br />

A-subunit) <strong>an</strong>d BSA d<strong>is</strong>solved <strong>in</strong> PBS (pH 8.0) were mixed, after<br />

which glutaraldehyde was slowly added to a concentration <strong>of</strong> 15<br />

mM. The mixture was gently stirred for one hour at room<br />

temperature. The reaction was stopped by add<strong>in</strong>g glyc<strong>in</strong>e to reach<br />

a glyc<strong>in</strong>e concentration <strong>of</strong> at least 60 mM. The mixture was<br />

dialysed aga<strong>in</strong>st PBS overnight at room temperature.<br />

Group 3: BSA <strong>an</strong>d CTB <strong>an</strong>d 20% RV glutaraldehyde-conjugated.<br />

BSA <strong>an</strong>d CTB (1:1 molar ratio) <strong>an</strong>d 20% RV were conjugated with<br />

glutaraldehyde as described <strong>in</strong> Group 2.<br />

Group 4: 1 mg BSA with FIA (positive control). A solution <strong>of</strong> 10 mg<br />

BSA d<strong>is</strong>solved <strong>in</strong> 1 ml PBS was emulsified <strong>in</strong> 1 ml <strong>of</strong> FIA (Sigma).<br />

Chickens were immun<strong>is</strong>ed s.c. with 200 Ìl on days 0, 14 <strong>an</strong>d 28.<br />

Group 5: 2 mg BSA <strong>an</strong>d 100% RV. RV was added to a concentration<br />

<strong>of</strong> 1:1 (v:v) <strong>in</strong> a BSA solution (10mg/ml PBS, pH 8.0).<br />

<strong>In</strong> Phase 2, <strong>an</strong>other <strong>an</strong>tigen, hum<strong>an</strong> IgG emulsified with FIA,<br />

was adm<strong>in</strong><strong>is</strong>tered by s.c. <strong>in</strong>jection to all chickens <strong>in</strong> all treatment<br />

groups <strong>of</strong> Phase 1, 14 days after the last oral immun<strong>is</strong>ation, i.e. 42<br />

days after the first immun<strong>is</strong>ation was given (42 dpi). On the last<br />

blood sampl<strong>in</strong>g <strong>in</strong> Phase 1, at 42 dpi, Phase 2 was <strong>in</strong>itiated. Each<br />

chicken <strong>in</strong> every treatment group was immun<strong>is</strong>ed s.c. (4 sites on the<br />

breast with 200Ìl <strong>of</strong> 200Ìg hum<strong>an</strong> IgG emulsified <strong>in</strong> FIA).<br />

<strong>In</strong>jections were given on days 0 <strong>an</strong>d 14.<br />

Collection <strong>of</strong> blood <strong>an</strong>d serum samples. All chickens were bled<br />

(us<strong>in</strong>g a 23-G needle on a 2.5 ml syr<strong>in</strong>ge) from the w<strong>in</strong>g ve<strong>in</strong> (1.0<br />

ml) before every oral or s.c. immun<strong>is</strong>ation. Blood sampl<strong>in</strong>g was<br />

done every fortnight, at the same time when immun<strong>is</strong>ation<br />

treatments were given, i.e. for Phase 1 on days 14, 28 <strong>an</strong>d 42, <strong>an</strong>d<br />

for Phase 2, on days 14 <strong>an</strong>d 28 after the <strong>in</strong>itial s.c. <strong>in</strong>jection (dpsi).<br />

Serum samples were collected from centrifuged clotted blood <strong>an</strong>d<br />

stored at –20ÆC until <strong>an</strong>alys<strong>is</strong>. On the f<strong>in</strong>al day <strong>of</strong> sampl<strong>in</strong>g, the<br />

chickens were exs<strong>an</strong>gu<strong>in</strong>ated by cardiac puncture dur<strong>in</strong>g<br />

<strong>an</strong>aesthesia with 400 Ìl Ketam<strong>in</strong>e (Ketalar, Park-Dav<strong>is</strong>/Warner<br />

Lambert, Sweden) (50mg/ml) <strong>an</strong>d 200 Ìl Xylaz<strong>in</strong>e (Rompun Vet,<br />

Bayer, Sweden) (20mg/ml), <strong>in</strong>jected <strong>in</strong>tramuscularly.<br />

Enzyme-l<strong>in</strong>ked immunosorbent assay (ELISA) qu<strong>an</strong>tification <strong>of</strong><br />

immunospecific chicken <strong>an</strong>ti-BSA IgG, IgM <strong>an</strong>d IgA <strong>an</strong>tibodies.<br />

<strong>In</strong>direct ELISA was used to qu<strong>an</strong>tify the immunospecific <strong>an</strong>ti-BSA<br />

IgG <strong>an</strong>tibody <strong>in</strong> chicken serum. Microtiter plates (Nunc, Roskilde,<br />

Denmark) were coated with 100 Ìg/ml BSA prote<strong>in</strong> st<strong>an</strong>dard<br />

(Sigma Cat. # P-0834) <strong>in</strong> carbonate buffer (pH 9.6, 100 Ìl/well) <strong>an</strong>d<br />

<strong>in</strong>cubated overnight at 4ÆC <strong>in</strong> a mo<strong>is</strong>t chamber. The plates were


washed four times <strong>in</strong> PBS-Tween-20 (pH 7.4) <strong>in</strong> between each step.<br />

After coat<strong>in</strong>g <strong>an</strong>d wash<strong>in</strong>g, the plates were <strong>in</strong>cubated with the<br />

chicken serum samples diluted 1:100. As st<strong>an</strong>dard series, a pool <strong>of</strong><br />

serum from <strong>an</strong>other batch <strong>of</strong> chickens previously immun<strong>is</strong>ed with<br />

BSA emulsified <strong>in</strong> FIA (n=4) was diluted 2-fold start<strong>in</strong>g at 1:2,000<br />

to 1:512,000, for IgG; 1:4 to 1:4,096 for IgM; <strong>an</strong>d 1:64 to 1:65,536<br />

for IgA. The st<strong>an</strong>dard serum pool was def<strong>in</strong>ed as conta<strong>in</strong><strong>in</strong>g 100<br />

arbitrary units (AU)/ml. The IgG <strong>an</strong>tibody was detected with<br />

horserad<strong>is</strong>h peroxidase (HRP)-conjugated rabbit <strong>an</strong>ti-chicken IgG<br />

(1:10,000, Sigma); for IgM <strong>an</strong>tibody, HRP-conjugated goat <strong>an</strong>tichicken<br />

IgM (1:10,000, Nordic Immunology Lab, Tilburg, The<br />

Mayo et al: Rh<strong>in</strong>oVax ® <strong>an</strong>d Cholera Tox<strong>in</strong> B <strong>in</strong> Immun<strong>is</strong>ation<br />

Figure 1. Me<strong>an</strong> serum <strong>an</strong>ti-BSA IgA concentration. BSA <strong>an</strong>tigen mixed w/ adjuv<strong>an</strong>ts (FIA,Freund's <strong>In</strong>complete Adjuv<strong>an</strong>t; CTB, Cholera Tox<strong>in</strong> Bsubunit;<br />

RV, Rh<strong>in</strong>oVax). Error bars = SEM; n=9<br />

Figure 2. Me<strong>an</strong> serum <strong>an</strong>ti-BSA IgM concentration. BSA <strong>an</strong>tigen mixed w/ adjuv<strong>an</strong>ts (FIA,Freund's <strong>In</strong>complete Adjuv<strong>an</strong>t; CTB, Cholera Tox<strong>in</strong> Bsubunit;<br />

RV, Rh<strong>in</strong>oVax). Error bars = SEM; n=9<br />

Netherl<strong>an</strong>ds); <strong>an</strong>d for IgA <strong>an</strong>tibody, HRP-conjugated goat <strong>an</strong>tichicken<br />

IgA (1:1000, Nordic Immunology Lab). An OPD-substrate<br />

(100 Ìl/well, Kem-En-Tec, Copenhagen, Denmark) was used for<br />

colour development. Treated plates were <strong>in</strong>cubated for 15 m<strong>in</strong>utes<br />

<strong>in</strong> the dark at room temperature to react, after which the reaction<br />

was stopped with 1 M H 2 SO 4 (150 Ìl/well). The plates were read <strong>in</strong><br />

<strong>an</strong> ELISA reader (Mult<strong>is</strong>k<strong>an</strong> RC, Labsystems, Sweden) at 492 nm.<br />

S<strong>in</strong>ce we have experienced unspecific b<strong>in</strong>d<strong>in</strong>g to BSA which c<strong>an</strong>not<br />

be elim<strong>in</strong>ated by various block<strong>in</strong>g protocols (14), only values with<br />

OD read<strong>in</strong>gs > me<strong>an</strong> <strong>of</strong> serum from sal<strong>in</strong>e-treated control chickens<br />

(n=4) + 1 st<strong>an</strong>dard deviation were considered positive. The<br />

377


sensitivity <strong>of</strong> the assay based on controls was 0.094AU/ml for IgG,<br />

13.65 AU/ml for IgM <strong>an</strong>d 2.15 AU/ml for IgA. The <strong>in</strong>ter-assay<br />

coefficient <strong>of</strong> variation for IgG was 3.4%, 4.7% for IgM <strong>an</strong>d 5.8%<br />

for IgA. The <strong>in</strong>tra-assay coefficients <strong>of</strong> variation for IgG, IgM <strong>an</strong>d<br />

IgA were 2.5%, 4.5% <strong>an</strong>d 5.1%, respectively.<br />

ELISA qu<strong>an</strong>tification <strong>of</strong> chicken <strong>an</strong>ti-hum<strong>an</strong> immunoglobul<strong>in</strong>-G IgG.<br />

Microtitre plates were coated with 1 mg/ml hum<strong>an</strong> IgG (Sigma) <strong>in</strong><br />

carbonate buffer (pH 9.6, 100 Ìl/well) <strong>an</strong>d <strong>in</strong>cubated overnight at<br />

4ÆC <strong>in</strong> a mo<strong>is</strong>t chamber. The plates were washed four times <strong>in</strong><br />

PBS-Tween-20 (pH 7.4) <strong>in</strong> between each step. The plates were<br />

<strong>in</strong>cubated for 1 hour at room temperature (RT) with 1% Ltryptoph<strong>an</strong><br />

(Sigma), washed <strong>an</strong>d <strong>in</strong>cubated for 1 hour with the<br />

chicken serum samples (diluted to fix the st<strong>an</strong>dard curve). After<br />

wash<strong>in</strong>g, the plates were blocked with 1:500 rabbit <strong>an</strong>ti-hum<strong>an</strong> IgG<br />

(Sigma) for 1 hour at room temperature. IgY purified from egg<br />

yolk <strong>of</strong> chickens s.c. immun<strong>is</strong>ed with hum<strong>an</strong> IgG emulsified with<br />

FIA was used as st<strong>an</strong>dard (4). The IgY st<strong>an</strong>dard preparation was<br />

diluted 2-fold start<strong>in</strong>g at 1:1,040 to 1: 104,000. The st<strong>an</strong>dard serum<br />

pool was def<strong>in</strong>ed to conta<strong>in</strong> 100 AU/ml. The IgG <strong>an</strong>tibody was<br />

detected with HRP-conjugated rabbit <strong>an</strong>ti-chicken IgG (1:10,000,<br />

Sigma). An OPD-substrate (100 Ìl/well, Kem-En-Tec,<br />

Copenhagen, Denmark) was used for colour development. Treated<br />

plates were <strong>in</strong>cubated for 15 m<strong>in</strong>utes <strong>in</strong> the dark at room<br />

temperature to react after which the reaction was stopped with<br />

1 M H 2 SO 4 (150 Ìl/well). The plates were read <strong>in</strong> <strong>an</strong> ELISA reader<br />

(Mult<strong>is</strong>k<strong>an</strong> RC) at 492 nm. <strong>In</strong>ter- <strong>an</strong>d <strong>in</strong>tra-assays coefficient<br />

variations were 1.35% <strong>an</strong>d 1.51%, respectively.<br />

Stat<strong>is</strong>tical <strong>an</strong>alyses. Data were <strong>an</strong>alysed by ANOVA <strong>an</strong>d<br />

correlations with Excel (Micros<strong>of</strong>t) s<strong>of</strong>tware programme. P values<br />


The difference <strong>in</strong> me<strong>an</strong> serum <strong>an</strong>ti-BSA IgG concentration<br />

for the chickens immun<strong>is</strong>ed with 20%RV+BSA was<br />

signific<strong>an</strong>t between 14 dpi <strong>an</strong>d 28 dpi <strong>an</strong>d between 14 dpi <strong>an</strong>d<br />

42 dpi. There was, however, no difference <strong>in</strong> concentrations<br />

between 28 dpi <strong>an</strong>d 42 dpi (Figure 3).<br />

Immunospecific chicken IgG response to subsequent<br />

immun<strong>is</strong>ation with hum<strong>an</strong> IgG emulsified <strong>in</strong> FIA (Phase 2).<br />

The me<strong>an</strong> <strong>an</strong>ti-hum<strong>an</strong> IgG concentrations <strong>in</strong> the chickens <strong>of</strong><br />

Mayo et al: Rh<strong>in</strong>oVax ® <strong>an</strong>d Cholera Tox<strong>in</strong> B <strong>in</strong> Immun<strong>is</strong>ation<br />

Figure 4. Me<strong>an</strong> serum <strong>an</strong>ti-hum<strong>an</strong> IgG IgG concentration. Anti-hum<strong>an</strong> IgG <strong>an</strong>tigen emulsified w/ FIA. Error bars = SEM; n=9<br />

Figure 5. Me<strong>an</strong> serum <strong>an</strong>ti-BSA IgG concentration, grouped per family; each family conta<strong>in</strong>s one chicken from each treatment group. Error bars =<br />

SEM; n=5<br />

the five treatment groups follow<strong>in</strong>g subsequent s.c.<br />

immun<strong>is</strong>ation with hum<strong>an</strong> IgG are shown <strong>in</strong> Figure 4. The<br />

concentrations <strong>in</strong>creased from 14 dpi to 28 dpi <strong>in</strong> all chickens.<br />

The concentrations <strong>of</strong> the chickens which had received CTB<br />

<strong>in</strong> Phase 1 (groups 2 <strong>an</strong>d 3) were signific<strong>an</strong>tly higher th<strong>an</strong> the<br />

concentrations <strong>of</strong> the chickens <strong>in</strong> the other groups<br />

Family variation <strong>in</strong> <strong>an</strong>tibody response <strong>in</strong> Phases 1 <strong>an</strong>d 2. Each<br />

treatment group conta<strong>in</strong>ed a s<strong>is</strong>ter from the <strong>of</strong>fspr<strong>in</strong>g <strong>of</strong> 11<br />

379


hens (A-K) <strong>an</strong>d a signific<strong>an</strong>t difference between families with<br />

regard to immunospecific <strong>an</strong>tibody concentration follow<strong>in</strong>g<br />

immun<strong>is</strong>ation was recorded (Figures 5 <strong>an</strong>d 6). With respect<br />

to decl<strong>in</strong><strong>in</strong>g me<strong>an</strong> immune response after oral immun<strong>is</strong>ation,<br />

the families had the follow<strong>in</strong>g order: H,B,K,A,C,J,E,D,I,G,F<br />

(Figure 5) <strong>an</strong>d after classical immun<strong>is</strong>ation the order was<br />

A,G,C,F,B,H,K,J,D,I,E (Figure 6).<br />

Body weight ga<strong>in</strong>. There were no signific<strong>an</strong>t differences <strong>in</strong><br />

body weight ga<strong>in</strong> dur<strong>in</strong>g the study period between treatment<br />

groups.<br />

D<strong>is</strong>cussion<br />

<strong>In</strong> the search for effective oral adjuv<strong>an</strong>ts potentiat<strong>in</strong>g a<br />

humoral immune response <strong>in</strong> chickens a steadily <strong>in</strong>creas<strong>in</strong>g<br />

number <strong>of</strong> c<strong>an</strong>didate adjuv<strong>an</strong>ts have been tested. Sodium<br />

fluoride <strong>an</strong>d Quillaja sapon<strong>in</strong> both exhibit some<br />

adjuv<strong>an</strong>ticity (15-17), <strong>an</strong>d RV <strong>an</strong>d CTB both stimulate the<br />

humoral immune system when adm<strong>in</strong><strong>is</strong>tered with the<br />

<strong>an</strong>tigen orally (4, 14). RV has the adv<strong>an</strong>tage <strong>of</strong> be<strong>in</strong>g<br />

completely non-toxic <strong>an</strong>d approved for use <strong>in</strong> the hum<strong>an</strong><br />

(Europe<strong>an</strong> Pharmacopoeia 01/2002:1443 p. 1497).<br />

We have recently found that even very young chickens<br />

(14 days old) respond with <strong>an</strong> immunospecific immune<br />

response to oral immun<strong>is</strong>ation (14), <strong>an</strong>d <strong>in</strong> Phase 1 <strong>of</strong> the<br />

present study, all chickens responded with <strong>an</strong><br />

immunospecific IgA response aga<strong>in</strong>st BSA. Of the orally-<br />

<strong>in</strong> vivo 19: 375-382 (2005)<br />

Figure 6. Me<strong>an</strong> serum <strong>an</strong>ti-hum<strong>an</strong> IgG IgG concentration, grouped per family; each family conta<strong>in</strong>s one chicken from each treatment group. Error bars<br />

= SEM; n=5<br />

380<br />

immun<strong>is</strong>ed chickens, the ones <strong>in</strong> group 3 immun<strong>is</strong>ed with<br />

CTB+RV responded with the highest concentrations<br />

comparable to the concentrations recorded <strong>in</strong> the group 4<br />

chickens immun<strong>is</strong>ed s.c. with FIA. The comb<strong>in</strong>ation <strong>of</strong><br />

RV with CTB thus seems to have a synerg<strong>is</strong>tic effect on<br />

the immunospecific IgA response. A similar effect was<br />

seen with respect to the immunospecific IgM response.<br />

All chickens responded well <strong>an</strong>d chickens immun<strong>is</strong>ed with<br />

the RV-CTB comb<strong>in</strong>ation exhibited the highest<br />

immunospecific IgM <strong>an</strong>ti-BSA concentrations as<br />

compared to the other orally-treated <strong>an</strong>imals. Moreover,<br />

the me<strong>an</strong> IgA <strong>an</strong>d IgM concentrations for the RV+CTBtreated<br />

chickens were similar to those <strong>of</strong> the chickens<br />

immun<strong>is</strong>ed s.c. with FIA (group 4), which had<br />

signific<strong>an</strong>tly higher concentrations th<strong>an</strong> the chickens <strong>in</strong><br />

groups 1, 2 <strong>an</strong>d 5.<br />

For practical polyclonal <strong>an</strong>tibody production purposes<br />

IgG <strong>is</strong> the import<strong>an</strong>t immunoglobul<strong>in</strong> class, because it <strong>is</strong><br />

tr<strong>an</strong>sferred from the circulation <strong>of</strong> the chicken <strong>in</strong>to the egg<br />

yolk, after which it <strong>is</strong> termed IgY. Twenty % RV was the<br />

most efficient oral adjuv<strong>an</strong>t <strong>in</strong> the present study <strong>an</strong>d the<br />

concentrations <strong>of</strong> the chickens immun<strong>is</strong>ed with th<strong>is</strong> adjuv<strong>an</strong>t<br />

were signific<strong>an</strong>tly higher th<strong>an</strong> the concentrations recorded<br />

<strong>in</strong> the other orally-immun<strong>is</strong>ed treatment groups. The dose<br />

<strong>of</strong> RV also has <strong>an</strong> <strong>in</strong>fluence on the result<strong>in</strong>g <strong>an</strong>tibody<br />

concentration. <strong>In</strong> a previous study (14), we used lower doses<br />

<strong>of</strong> RV <strong>an</strong>d observed lower concentrations th<strong>an</strong> when us<strong>in</strong>g<br />

the present dose.


Twenty % RV was more potent th<strong>an</strong> 100% RV, probably<br />

because water <strong>is</strong> a necessary factor for keep<strong>in</strong>g the correct<br />

three-dimensional structure when the <strong>an</strong>tigen (BSA) <strong>is</strong><br />

presented for the <strong>an</strong>tigen-present<strong>in</strong>g cells. The chemical<br />

structure <strong>of</strong> RV <strong>is</strong> very similar to the asylglycerides that are<br />

found as breakdown products <strong>in</strong> <strong>in</strong>flamed t<strong>is</strong>sue; these<br />

compounds stimulate the macrophages through the Fc<br />

receptor (but not through C3b) <strong>an</strong>d affect the production <strong>of</strong><br />

arachidonic acid. They are found to augment the <strong>an</strong>tigen<br />

presentation cells <strong>an</strong>d dendritic cells <strong>an</strong>d stimulate the cytok<strong>in</strong>e<br />

production between macrophages <strong>an</strong>d B- <strong>an</strong>d T-cells (18, 19).<br />

Classical immun<strong>is</strong>ation with s.c. adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> the<br />

<strong>an</strong>tigen emulsified <strong>in</strong> FIA was approximately 5 times more<br />

potent th<strong>an</strong> oral immun<strong>is</strong>ation with 20% RV. From a<br />

scientific po<strong>in</strong>t <strong>of</strong> view th<strong>is</strong> may seem d<strong>is</strong>appo<strong>in</strong>t<strong>in</strong>g, but the<br />

practical application aspects are encourag<strong>in</strong>g. Traditional<br />

immun<strong>is</strong>ation with adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> the <strong>an</strong>tigen-adjuv<strong>an</strong>t<br />

mixture through <strong>in</strong>jections should be under the auspices <strong>of</strong><br />

laboratory <strong>an</strong>imal leg<strong>is</strong>lation <strong>an</strong>d regulations. By contrast,<br />

oral immun<strong>is</strong>ation methods, when comb<strong>in</strong>ed with the use <strong>of</strong><br />

eggs as the <strong>an</strong>tibody source, are non-<strong>in</strong>vasive <strong>an</strong>d not<br />

different from other agricultural procedures. As a<br />

consequence, the chickens do not have to be housed <strong>in</strong><br />

facilities approved for hous<strong>in</strong>g laboratory <strong>an</strong>imals, <strong>an</strong>d there<br />

<strong>is</strong> no requirement for personal <strong>an</strong>d project licenses <strong>an</strong>d staff<br />

with special<strong>is</strong>t competence <strong>in</strong> laboratory <strong>an</strong>imal science.<br />

<strong>In</strong> Phase 2 <strong>of</strong> th<strong>is</strong> study, all chickens <strong>in</strong> the five groups<br />

produced immunospecific IgG <strong>an</strong>tibodies when parenterally<strong>in</strong>jected<br />

with <strong>an</strong>other <strong>an</strong>tigen – hum<strong>an</strong> IgG. The chickens <strong>in</strong><br />

groups 2 <strong>an</strong>d 3, which had received CTB orally <strong>in</strong> Phase 1,<br />

produced signific<strong>an</strong>tly higher immunospecific IgG<br />

concentrations th<strong>an</strong> did the chickens <strong>in</strong> the other groups.<br />

Th<strong>is</strong> <strong>in</strong>dicates that CTB seems to act as a prim<strong>in</strong>g agent <strong>in</strong><br />

<strong>an</strong>imals subsequently immun<strong>is</strong>ed by traditional s.c.<br />

adm<strong>in</strong><strong>is</strong>tration <strong>of</strong> <strong>an</strong>tigen <strong>an</strong>d FIA. Th<strong>is</strong> confirms the<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> mammals <strong>of</strong> Hornqu<strong>is</strong>t <strong>an</strong>d Lycke (20), who<br />

reported that oral prim<strong>in</strong>g with keyhole limpet hemocy<strong>an</strong><strong>in</strong><br />

(KLH) adm<strong>in</strong><strong>is</strong>tered with CTB followed by parenteral<br />

immun<strong>is</strong>ation with KLH+CTB <strong>in</strong>duced <strong>an</strong> <strong>in</strong>crease <strong>in</strong><br />

primed KLH-specific T-cells compared with non-primed<br />

<strong>an</strong>imals. <strong>In</strong> contrast, if chickens are primed with <strong>an</strong>tigen<br />

alone, they may respond with a lower serum IgG response<br />

follow<strong>in</strong>g subsequent parenteral immun<strong>is</strong>ation (15).<br />

The mammali<strong>an</strong> <strong>an</strong>tibody response to most <strong>an</strong>tigens<br />

seems to be genetically determ<strong>in</strong>ed <strong>an</strong>d under polygenic<br />

control <strong>in</strong>volv<strong>in</strong>g h<strong>is</strong>tocompatibility <strong>an</strong>tigens (21,22).<br />

Outbred stocks like rabbits, although selected through<br />

generations for high <strong>an</strong>tibody response, have been<br />

documented to exhibit a remarkable <strong>in</strong>ter-<strong>in</strong>dividual<br />

variation <strong>in</strong> their immune response (23). The immune<br />

response <strong>in</strong> chickens has also been demonstrated to be<br />

subject to genetic variation (24-25) <strong>an</strong>d there was a clear<br />

<strong>an</strong>d signific<strong>an</strong>t between family variation <strong>in</strong> humoral immune<br />

Mayo et al: Rh<strong>in</strong>oVax ® <strong>an</strong>d Cholera Tox<strong>in</strong> B <strong>in</strong> Immun<strong>is</strong>ation<br />

response <strong>in</strong> the present study. We expected that those<br />

<strong>in</strong>dividuals belong<strong>in</strong>g to a family who responded well to <strong>an</strong><br />

oral treatment would also have a good response to a<br />

subsequent s.c. treatment. However, th<strong>is</strong> was not the case.<br />

<strong>In</strong> spite <strong>of</strong> the small scale <strong>of</strong> the present study, th<strong>is</strong> <strong>in</strong>dicates<br />

that chicken l<strong>in</strong>es selected for a good humoral immune<br />

response to parenteral immun<strong>is</strong>ation may not necessarily<br />

respond equally well to oral immun<strong>is</strong>ation <strong>an</strong>d vice versa.<br />

<strong>In</strong> summary, all orally-immun<strong>is</strong>ed chickens produced<br />

immunospecific IgA, IgM <strong>an</strong>d IgG <strong>an</strong>tibodies. Compared<br />

with the chickens classically immun<strong>is</strong>ed with the <strong>an</strong>tigen<br />

emulsified <strong>in</strong> FIA <strong>an</strong>d <strong>in</strong>jected s.c., the orally-immun<strong>is</strong>ed<br />

chickens’ immunospecific IgG response was approximately<br />

five times lower. For practical production purposes, oral<br />

immun<strong>is</strong>ation may be <strong>an</strong> attractive alternative to parenteral<br />

immun<strong>is</strong>ation because it <strong>is</strong> non-<strong>in</strong>vasive <strong>an</strong>d thus not subject<br />

to laboratory <strong>an</strong>imal leg<strong>is</strong>lation <strong>an</strong>d regulation. The genetic<br />

control <strong>of</strong> the humoral immune response seems to be<br />

dependent on the mode <strong>of</strong> <strong>an</strong>tigen adm<strong>in</strong><strong>is</strong>tration.<br />

Acknowledgements<br />

Th<strong>is</strong> project received generous fund<strong>in</strong>g from the Swed<strong>is</strong>h National<br />

Board for Laboratory Animal Science <strong>an</strong>d the Swed<strong>is</strong>h Research<br />

Council for Environment, Agricultural Sciences <strong>an</strong>d Spatial Pl<strong>an</strong>n<strong>in</strong>g<br />

(FORMAS). The <strong>In</strong>ternational Foundation for Ethical Research<br />

(IFER) k<strong>in</strong>dly provided a fellowship gr<strong>an</strong>t for Sus<strong>an</strong> Mayo.<br />

References<br />

1 Jensenius JC, Andersen I, Hau J, Crone M <strong>an</strong>d Koch C: Eggs:<br />

conveniently packaged <strong>an</strong>tibodies. Methods for purification <strong>of</strong><br />

yolk IgG. J Immunol Meth 46: 63-68, 1981.<br />

2 Bollen LS <strong>an</strong>d Hau J: Chicken eggs <strong>in</strong> polyclonal <strong>an</strong>tibody<br />

production. Sc<strong>an</strong>d J Lab Animal Sci suppl. 1: 85-91, 1996.<br />

3 Bollen LS, Crowley A, Stodulski G <strong>an</strong>d Hau J: Antibody<br />

production <strong>in</strong> rabbits <strong>an</strong>d chickens immun<strong>is</strong>ed with hum<strong>an</strong> IgG.<br />

A compar<strong>is</strong>on <strong>of</strong> concentration <strong>an</strong>d avidity development <strong>in</strong><br />

rabbit serum, chicken serum <strong>an</strong>d egg yolk us<strong>in</strong>g three different<br />

adjuv<strong>an</strong>ts. J Immunol Meth 191: 113-120, 1996 .<br />

4 Persdotter-Hedlund G <strong>an</strong>d Hau J: <strong>Oral</strong> immun<strong>is</strong>ation <strong>of</strong><br />

chickens us<strong>in</strong>g cholera tox<strong>in</strong> B subunit <strong>an</strong>d Rh<strong>in</strong>oVax ® as<br />

adjuv<strong>an</strong>ts results <strong>in</strong> high <strong>an</strong>tibody concentration <strong>in</strong> the egg yolk.<br />

<strong>In</strong> <strong>Vivo</strong> 15: 381-384, 2001.<br />

5 Elson CO <strong>an</strong>d Eald<strong>in</strong>g W: Generalized <strong>an</strong>d mucosal immunity<br />

<strong>in</strong> mice after mucosal stimulation with cholera tox<strong>in</strong>. J<br />

Immunology 132(6): 2736-2741, 1984.<br />

6 Lycke N <strong>an</strong>d Holmgren J: Strong adjuv<strong>an</strong>t properties <strong>of</strong> cholera<br />

tox<strong>in</strong> on gut mucosal immune responses to orally presented<br />

<strong>an</strong>tigen. Immunology 59: 301, 1986.<br />

7 Holmgren J, Lycke N <strong>an</strong>d Czerk<strong>in</strong>sky C: Cholera tox<strong>in</strong> <strong>an</strong>d<br />

cholera B subunit as oral-mucosal adjuv<strong>an</strong>t <strong>an</strong>d <strong>an</strong>tigen vector<br />

systems. Vacc<strong>in</strong>e 11(12): 1179-1184, 1993.<br />

8 Takada A <strong>an</strong>d Kida H: Protective immune response <strong>of</strong> chickens<br />

aga<strong>in</strong>st Newcastle d<strong>is</strong>ease, <strong>in</strong>duced by <strong>in</strong>tr<strong>an</strong>asal vacc<strong>in</strong>ation<br />

with <strong>in</strong>activated virus. Vet Microbiol 50: 17, 1996.<br />

381


9 Vervelde L, J<strong>an</strong>se EM, Vermeulen AN <strong>an</strong>d Jeur<strong>is</strong>sen SHM:<br />

<strong>In</strong>duction <strong>of</strong> a local <strong>an</strong>d systemic immune response us<strong>in</strong>g<br />

cholera tox<strong>in</strong> as vehicle to deliver <strong>an</strong>tigen <strong>in</strong> the lam<strong>in</strong>a propria<br />

<strong>of</strong> the chicken <strong>in</strong>test<strong>in</strong>e. Vet Immunol Immunopathol 62: 261-<br />

272 1998.<br />

10 Girard F, Péry P, Naciri M <strong>an</strong>d Quére P: Adjuv<strong>an</strong>t effect <strong>of</strong><br />

cholera tox<strong>in</strong> on systemic <strong>an</strong>d mucosal immune response <strong>in</strong><br />

chickens <strong>in</strong>fected with E. tenella or given recomb<strong>in</strong><strong>an</strong>t parasitic<br />

<strong>an</strong>tigen per os. Vacc<strong>in</strong>e 17: 1516-1524, 1999.<br />

11 Gizurarson S <strong>an</strong>d Gudmunsdottir V: Antigen delivery system.<br />

<strong>In</strong>ternational Patent 1999; No.: WO 99/02186.<br />

12 Jakobsen H, Sael<strong>an</strong>d E, Gizurarson S, Schulz D <strong>an</strong>d Jonsdottir<br />

I: <strong>In</strong>tr<strong>an</strong>asal immun<strong>is</strong>ation with pneumoccocal polysaccahride<br />

conjugated vacc<strong>in</strong>es protects mice aga<strong>in</strong>st <strong>in</strong>vasive pneumoccocal<br />

<strong>in</strong>fections. <strong>In</strong>fect Immunol 67: 4128-4133, 1999.<br />

13 V<strong>an</strong> der Heijden PJ, Bi<strong>an</strong>chi AT, Dol M, Pals JW, Stok W <strong>an</strong>d<br />

Bokhout BA: M<strong>an</strong>ipulation <strong>of</strong> <strong>in</strong>test<strong>in</strong>al immune response<br />

aga<strong>in</strong>st ovalbum<strong>in</strong> by cholera tox<strong>in</strong> <strong>an</strong>d its B-subunit <strong>in</strong> mice.<br />

Immunology 72: 89-93, 1991.<br />

14 Mayo SL, Persdotter-Hedlund G, Tufvesson M <strong>an</strong>d Hau J:<br />

Systemic immune response <strong>of</strong> young chickens orally immun<strong>is</strong>ed<br />

with bov<strong>in</strong>e serum album<strong>in</strong>. <strong>In</strong> <strong>Vivo</strong> 17: 261-268, 2003.<br />

15 Hoshi S, Saito N, Kus<strong>an</strong>agi K, Ihara T <strong>an</strong>d Ueda S: Adjuv<strong>an</strong>t<br />

effects <strong>of</strong> fluoride on oral immun<strong>is</strong>ation <strong>of</strong> chickens. Vet<br />

Immunol Immunopathol 63: 253-263, 1998.<br />

16 Hoshi S, Uch<strong>in</strong>o A, Saito N, Kus<strong>an</strong>agi K, Ihara T <strong>an</strong>d Ueda S:<br />

Compar<strong>is</strong>on <strong>of</strong> adjuv<strong>an</strong>ts with respect to serum IgG <strong>an</strong>tibody<br />

response <strong>in</strong> orally immun<strong>is</strong>ed chickens. Comp Immunol<br />

Microbio <strong>In</strong>fect D<strong>is</strong> 22: 63-69, 1999.<br />

17 Wik<strong>in</strong>gsson LD <strong>an</strong>d Sjöholm I: Polyacryl starch microparticles<br />

as adjuv<strong>an</strong>t <strong>in</strong> oral immun<strong>is</strong>ation, <strong>in</strong>duc<strong>in</strong>g mucosal <strong>an</strong>d<br />

systemic immune response <strong>in</strong> mice. Vacc<strong>in</strong>e 20(27-28): 3355-<br />

3363, 2002.<br />

18 W<strong>an</strong>ten GJA, J<strong>an</strong>ssen FP <strong>an</strong>d Naber AH: Saturated<br />

triglycerides <strong>an</strong>d fatty acids activate neutrophils depend<strong>in</strong>g on<br />

carbon cha<strong>in</strong> length. Eur J Cl<strong>in</strong> <strong>In</strong>vest 32: 285, 2002.<br />

382<br />

<strong>in</strong> vivo 19: 375-382 (2005)<br />

19 K<strong>is</strong>himoto S, Gokoh M, Oka S, Muramatsu M, Kajirawa T,<br />

Waku K <strong>an</strong>d Sugiura T: 2-Arach<strong>in</strong>odonoglycerol <strong>in</strong>duces the<br />

migration <strong>of</strong> HL-60 cells differentiated <strong>in</strong>to macrophage-like<br />

cells <strong>an</strong>d hum<strong>an</strong> peripheral blood monocytes through<br />

c<strong>an</strong>nab<strong>in</strong>oid CB2 receptor-dependent mech<strong>an</strong><strong>is</strong>m. J Biol Chem<br />

278: 24469, 2003.<br />

20 Hornqu<strong>is</strong>t E <strong>an</strong>d Lycke N: Cholera tox<strong>in</strong> adjuv<strong>an</strong>t greatly<br />

promotes <strong>an</strong>tigen prim<strong>in</strong>g <strong>of</strong> T-cells. Eur J Immunol 23(9):<br />

2136-2143, 1993.<br />

21 Long DA: The <strong>in</strong>fluence <strong>of</strong> the thyroid gl<strong>an</strong>d upon immune<br />

responses <strong>of</strong> different species to bacterial <strong>in</strong>fection. CIBA<br />

Found Colloq Endocr<strong>in</strong>ol 10: 287, 1957.<br />

22 Lifschitz R, Schwartz M <strong>an</strong>d Mozes E: Specificity <strong>of</strong> genes<br />

controll<strong>in</strong>g immune responsiveness to (T,G)-A-L <strong>an</strong>d (Phe, G)-<br />

A-L. Immunol 41: 339, 1980.<br />

23 Harboe NMG <strong>an</strong>d <strong>In</strong>gild A: Immun<strong>is</strong>ation, <strong>is</strong>olation <strong>of</strong><br />

immunoglobul<strong>in</strong>s <strong>an</strong>d <strong>an</strong>tibody concentration determ<strong>in</strong>ation.<br />

Sc<strong>an</strong>d J Immunol 17 Suppl. 10: 245, 1983.<br />

24 Gehad AE, Mashaly MM, Siegel HS, Dunn<strong>in</strong>gton EA <strong>an</strong>d<br />

Siegel PB: Effect <strong>of</strong> genetic selection <strong>an</strong>d MHC haplotypes on<br />

lymphocyte proliferation <strong>an</strong>d <strong>in</strong>terleuk<strong>in</strong>-2 like activity <strong>in</strong><br />

chicken l<strong>in</strong>es selected for high <strong>an</strong>d low <strong>an</strong>tibody production<br />

aga<strong>in</strong>st sheep red blood cells. Vet Immunol Immunopathol 68:<br />

13-24, 1999.<br />

25 Al-Murr<strong>an</strong>i WK, Al-Rawi IK <strong>an</strong>d Ra<strong>of</strong> NM: Genetic res<strong>is</strong>t<strong>an</strong>ce<br />

to Salmonella typhimurium <strong>in</strong> two l<strong>in</strong>es <strong>of</strong> chickens selected as<br />

res<strong>is</strong>t<strong>an</strong>t <strong>an</strong>d sensitive on the bas<strong>is</strong> <strong>of</strong> heterophil/lymphocyte<br />

ratio. Br Poultry Sci 43(4): 501-507, 2002.<br />

Received October 18, 2004<br />

Accepted J<strong>an</strong>uary 20, 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!