28.02.2013 Views

Autofluorescent Proteins with Excitation in the Optical ... - Tsien

Autofluorescent Proteins with Excitation in the Optical ... - Tsien

Autofluorescent Proteins with Excitation in the Optical ... - Tsien

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Animal Imag<strong>in</strong>g<br />

Transcription units conta<strong>in</strong><strong>in</strong>g mKate, dNeptune, or IFP1.1 followed by <strong>the</strong><br />

poliovirus IRES and a GFP cod<strong>in</strong>g sequence were constructed <strong>in</strong> pENTR1<br />

by standard methods, and <strong>the</strong>n recomb<strong>in</strong>ed <strong>in</strong>to pAd-CMV-DEST by <strong>the</strong><br />

Gateway system (Invitrogen). L<strong>in</strong>earized plasmid was used to transfect<br />

HEK293A cells for adenovirus production, followed by amplification and purification<br />

on FastTrap columns (Millipore) and elution <strong>in</strong>to HBSS + 10% glycerol.<br />

Serial dilutions onto HEK293A cells and GFP visualization were performed to<br />

assess titers. Injections, imag<strong>in</strong>g, and dissection were carried out <strong>in</strong> duplicate.<br />

Mice were anes<strong>the</strong>sized <strong>with</strong> ketam<strong>in</strong>e/xylaz<strong>in</strong>e, and <strong>the</strong>n <strong>in</strong>jected via <strong>the</strong> tail<br />

ve<strong>in</strong> <strong>with</strong> 50 mlof53 10 10 <strong>in</strong>fectious units per milliliter of purified adenoviruses.<br />

Five days later, mice were shaved on <strong>the</strong>ir ventral side and anes<strong>the</strong>sized <strong>with</strong><br />

ketam<strong>in</strong>e/xylaz<strong>in</strong>e. Images were acquired on a Maestro 1 animal fluorescence<br />

imag<strong>in</strong>g system (CRI) <strong>with</strong> <strong>in</strong>dicated excitation filters and a tunable liquid<br />

crystal emission filter of 40 nm bandwidth centered on <strong>the</strong> <strong>in</strong>dicated wavelengths.<br />

For quantification, off-animal dark counts were first subtracted, and<br />

<strong>the</strong>n mid-sagittal l<strong>in</strong>e <strong>in</strong>tensities were obta<strong>in</strong>ed <strong>in</strong> ImageJ <strong>with</strong> <strong>the</strong> Plot Profile<br />

function. Similar results were obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> duplicate samples for each condition.<br />

For <strong>the</strong> charts <strong>in</strong> Figure 3, l<strong>in</strong>e <strong>in</strong>tensities from duplicate conditions were<br />

averaged and background was def<strong>in</strong>ed as <strong>the</strong> mean mid-sagittal <strong>in</strong>tensity of<br />

un<strong>in</strong>fected liver, treatment-matched <strong>in</strong> terms of pre- or post-dissection condition.<br />

Def<strong>in</strong><strong>in</strong>g background as <strong>the</strong> mid-thoracic region of <strong>in</strong>fected animals gave<br />

similar results. For confocal imag<strong>in</strong>g, three randomly oriented freshly prepared<br />

liver slices were placed on a coverslip and imaged <strong>with</strong> a 403 water objective<br />

on a Zeiss LSM 5Live microscope. For each slice, fluorescence <strong>in</strong>tensities<br />

were measured from maximum <strong>in</strong>tensity projections of a ten section stack of<br />

total thickness of 40 mm. All animal procedures were performed accord<strong>in</strong>g<br />

to protocols approved by <strong>the</strong> University of California, San Diego, <strong>in</strong>stitutional<br />

animal care and use committee. For spectral unmix<strong>in</strong>g, <strong>the</strong> predicted Neptune<br />

distribution <strong>in</strong> <strong>the</strong> <strong>in</strong>frared image is removed based on <strong>the</strong> Neptune distribution<br />

<strong>in</strong> <strong>the</strong> far-red channel and <strong>the</strong> relative efficiencies <strong>in</strong> <strong>the</strong> two channels <strong>in</strong> detect<strong>in</strong>g<br />

Neptune, as calculated from <strong>the</strong> Neptune spectra.<br />

Crystallization and Ref<strong>in</strong>ement<br />

For crystallization, <strong>the</strong> His tag on <strong>the</strong> prote<strong>in</strong> was removed by TEV protease<br />

digestion. Crystals were grown by <strong>the</strong> sitt<strong>in</strong>g drop vapor diffusion method.<br />

One microliter of prote<strong>in</strong> at 10 mg/ml was mixed <strong>with</strong> 1 ml of 0.1 M HEPES<br />

(pH 7.0), 0.2 M CaCl2, and 20% PEG 6000 at 18 C. Crystals were cryoprotected<br />

<strong>with</strong> a mixture of 66.5% Paratone-N, 28.5% paraff<strong>in</strong> oil, and 5% glycerol<br />

(Sugahara and Kunishima, 2006) prior to immersion <strong>in</strong> liquid nitrogen.<br />

Data were collected at Beaml<strong>in</strong>e 8.3.1 at <strong>the</strong> Advanced Light Source, Lawrence<br />

Berkeley National Laboratory and processed <strong>with</strong> ELVES (Holton and<br />

Alber, 2004) and MOSFLM/SCALA (Evans, 2006; Leslie, 2006). The crystal<br />

structure was solved by molecular replacement us<strong>in</strong>g PHASER (McCoy<br />

et al., 2007) <strong>with</strong> mKate at pH 4.2 <strong>with</strong>out <strong>the</strong> chromophore (PDB 3BXA) as<br />

<strong>the</strong> search model. The structure was ref<strong>in</strong>ed <strong>with</strong> TLS parameters us<strong>in</strong>g<br />

PHENIX (Zwart et al., 2008), alternat<strong>in</strong>g <strong>with</strong> manual revision of <strong>the</strong> model<br />

us<strong>in</strong>g COOT (Emsley and Cowtan, 2004). No planarity restra<strong>in</strong>ts were applied<br />

to <strong>the</strong> chromophore dur<strong>in</strong>g ref<strong>in</strong>ement. Crystallographic data and ref<strong>in</strong>ement<br />

statistics are presented <strong>in</strong> Table 3. Structure validation was performed <strong>with</strong><br />

WHAT_CHECK (Hooft et al., 1996). Neptune and mKate (pH 7.0) (PDB file<br />

3BXB) were aligned and root mean square deviations were calculated us<strong>in</strong>g<br />

<strong>the</strong> align command <strong>in</strong> PyMol (http://www.pymol.org).<br />

ACCESSION NUMBERS<br />

Coord<strong>in</strong>ates have been deposited <strong>in</strong> <strong>the</strong> PDB <strong>with</strong> accession codes 3IP2.<br />

Sequences have been deposited <strong>in</strong> <strong>the</strong> EMBL Nucleotide Sequence Database<br />

<strong>with</strong> accession codes FN565568 (Neptune) and FN565569 (mNeptune), and<br />

<strong>in</strong> GenBank <strong>with</strong> accession codes GU189532 (Neptune) and GU189533<br />

(mNeptune).<br />

SUPPLEMENTAL DATA<br />

Supplemental Data <strong>in</strong>clude Supplemental Experimental Procedures, six<br />

figures, and four tables and can be found <strong>with</strong> this article onl<strong>in</strong>e at http://<br />

www.cell.com/chemistry-biology/supplemental/S1074-5521(09)00360-3.<br />

ACKNOWLEDGMENTS<br />

We thank Paul Ste<strong>in</strong>bach for assist<strong>in</strong>g <strong>with</strong> prote<strong>in</strong> photobleach<strong>in</strong>g and related<br />

analysis. We acknowledge <strong>the</strong> follow<strong>in</strong>g sources of support: <strong>the</strong> Jane Coff<strong>in</strong><br />

Childs Foundation and a Burroughs Wellcome Career Award for Medical<br />

Scientists (M.Z.L.), <strong>the</strong> University of California, San Diego, Chancellor’s Award<br />

for Undergraduate Research (M.R.M.), a Howard Hughes Medical Institute<br />

(HHMI) predoctoral fellowship (N.C.S.), a Canadian Institutes of Health<br />

Research postdoctoral fellowship (R.E.C.), <strong>the</strong> National Institutes of Health<br />

(NIH) Medical Scientist Tra<strong>in</strong><strong>in</strong>g Program and U.S. Army Breast Cancer<br />

Research Program (BCRP) grant W81XWH-05-01-0183 (T.A.A.), NIH grant<br />

R01 GM048958 (H-L.N., W.M., and T.A.), HHMI, NIH grants R01 GM086197<br />

and R37 NS027177, and BCRP grant W81XWH-05-01-0183 (R.Y.T.).<br />

Received: June 29, 2009<br />

Revised: October 5, 2009<br />

Accepted: October 12, 2009<br />

Published: November 24, 2009<br />

REFERENCES<br />

1178 Chemistry & Biology 16, 1169–1179, November 25, 2009 ª2009 Elsevier Ltd All rights reserved<br />

Chemistry & Biology<br />

Fluorescent <strong>Prote<strong>in</strong>s</strong> <strong>with</strong> Far-Red <strong>Excitation</strong><br />

Abbyad, P., Childs, W., Shi, X., and Boxer, S.G. (2007). Dynamic Stokes<br />

shift <strong>in</strong> green fluorescent prote<strong>in</strong> variants. Proc. Natl. Acad. Sci. USA 104,<br />

20189–20194.<br />

Baird, G.S., Zacharias, D.A., and <strong>Tsien</strong>, R.Y. (2000). Biochemistry, mutagenesis,<br />

and oligomerization of DsRed, a red fluorescent prote<strong>in</strong> from coral.<br />

Proc. Natl. Acad. Sci. USA 97, 11984–11989.<br />

Chalfie, M., and Ka<strong>in</strong>, S.R. (2006). Green Fluorescent Prote<strong>in</strong>: Properties,<br />

Applications, and Protocols (Hoboken, NJ: Wiley-Interscience).<br />

Col<strong>in</strong>, M., Moritz, S., Schneider, H., Capeau, J., Coutelle, C., and Brahimi-<br />

Horn, M.C. (2000). Haemoglob<strong>in</strong> <strong>in</strong>terferes <strong>with</strong> <strong>the</strong> ex vivo luciferase lum<strong>in</strong>escence<br />

assay: consequence for detection of luciferase reporter gene expression<br />

<strong>in</strong> vivo. Gene Ther. 7, 1333–1336.<br />

Emsley, P., and Cowtan, K. (2004). Coot: model-build<strong>in</strong>g tools for molecular<br />

graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.<br />

Evans, P. (2006). Scal<strong>in</strong>g and assessment of data quality. Acta Crystallogr. D<br />

Biol. Crystallogr. 62, 72–82.<br />

Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., and <strong>Tsien</strong>, R.Y.<br />

(2000). The structure of <strong>the</strong> chromophore <strong>with</strong><strong>in</strong> DsRed, a red fluorescent<br />

prote<strong>in</strong> from coral. Proc. Natl. Acad. Sci. USA 97, 11990–11995.<br />

Henderson, J.N., Ai, H.W., Campbell, R.E., and Rem<strong>in</strong>gton, S.J. (2007). Structural<br />

basis for reversible photobleach<strong>in</strong>g of a green fluorescent prote<strong>in</strong> homologue.<br />

Proc. Natl. Acad. Sci. USA 104, 6672–6677.<br />

Holton, J., and Alber, T. (2004). Automated prote<strong>in</strong> crystal structure determ<strong>in</strong>ation<br />

us<strong>in</strong>g ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542.<br />

Hooft, R.W., Vriend, G., Sander, C., and Abola, E.E. (1996). Errors <strong>in</strong> prote<strong>in</strong><br />

structures. Nature 381, 272.<br />

Lakowicz, J.R. (2006). Pr<strong>in</strong>ciples of Fluorescence Spectroscopy (New York:<br />

Spr<strong>in</strong>ger).<br />

Leslie, A.G. (2006). The <strong>in</strong>tegration of macromolecular diffraction data. Acta<br />

Crystallogr. D Biol. Crystallogr. 62, 48–57.<br />

Li, H., Robertson, A.D., and Jensen, J.H. (2005). Very fast empirical prediction<br />

and rationalization of prote<strong>in</strong> pKa values. <strong>Prote<strong>in</strong>s</strong> 61, 704–721.<br />

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., W<strong>in</strong>n, M.D., Storoni, L.C.,<br />

and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr.<br />

40, 658–674.<br />

Ntziachristos, V. (2006). Fluorescence molecular imag<strong>in</strong>g. Annu. Rev. Biomed.<br />

Eng. 8, 1–33.<br />

Ormo, M., Cubitt, A.B., Kallio, K., Gross, L.A., <strong>Tsien</strong>, R.Y., and Rem<strong>in</strong>gton, S.J.<br />

(1996). Crystal structure of <strong>the</strong> Aequorea victoria green fluorescent prote<strong>in</strong>.<br />

Science 273, 1392–1395.<br />

Petersen, J., Wilmann, P.G., Beddoe, T., Oakley, A.J., Devenish, R.J., Prescott,<br />

M., and Rossjohn, J. (2003). The 2.0-A crystal structure of eqFP611,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!