28.02.2013 Views

Line integrals - University of Alberta

Line integrals - University of Alberta

Line integrals - University of Alberta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

MATH 209—Calculus, III<br />

Volker Runde<br />

<strong>University</strong> <strong>of</strong> <strong>Alberta</strong><br />

Edmonton, Fall 2011


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong>, I<br />

The setting<br />

Let C be a smooth curve in R 2 given by the parametric<br />

equations<br />

or by the vector equation<br />

x = x(t), y = y(t), t ∈ [a, b]<br />

r(t) = x(t)i + y(t)j.<br />

We want to integrate a function f along C and define the line<br />

integral �<br />

C f (x, y) ds.<br />

Geometric interpretation<br />

If f ≥ 0, then �<br />

C f (x, y) ds is the area <strong>of</strong> the curtain with base<br />

C and whose height above (x, y) is f (x, y).


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong>, II<br />

The construction<br />

Divide [a, b] into n subintervals [tj−1, tj].<br />

Set xj = x(tj) and yj = y(tj). The corresponding points<br />

Pj(xj, yj) divide C into n subcurves with lengths ∆s1, . . . , ∆sn.<br />

) on each subcurve.<br />

Pick a support point Pj(x ∗ j<br />

Definition<br />

, y ∗<br />

j<br />

The line integral <strong>of</strong> f along C is defined as<br />

�<br />

C<br />

f (x, y) ds = lim<br />

n→∞<br />

n�<br />

j=1<br />

f (x ∗ j , y ∗<br />

j )∆sj.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong>, III<br />

Theorem<br />

For continuous f :<br />

�<br />

�<br />

� b<br />

�dx<br />

f (x, y) ds = f (x(t), y(t))<br />

dt<br />

C<br />

Important<br />

a<br />

� 2<br />

+<br />

� �2 dy<br />

dt.<br />

dt<br />

The value <strong>of</strong> the integral does not depend on the<br />

parametrization <strong>of</strong> C as long as C is traversed exactly once as<br />

t increases from a to b.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong>, IV<br />

To remember. . .<br />

Let s(t) be the length <strong>of</strong> the curve from r(a) to r(t). Then<br />

ds<br />

dt = s′ �<br />

�dx �2 � �2 dy<br />

(t) = + ,<br />

dt dt<br />

so that<br />

ds =<br />

� �dx<br />

dt<br />

� 2<br />

+<br />

� �2 dy<br />

dt.<br />

dt


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, I<br />

Example<br />

Let C be the right half <strong>of</strong> the circle x 2 + y 2 = 16.<br />

What is �<br />

C xy 4 ds?<br />

Set<br />

�<br />

x = 4 cos t, y = 4 sin t, t ∈<br />

Then:<br />

�<br />

C<br />

xy 4 � π<br />

2<br />

ds = 1024<br />

− π<br />

2<br />

π<br />

�<br />

, .<br />

2<br />

cos t sin 4 �<br />

t 16 sin2 t + 16 cos2 t dt<br />

− π<br />

2<br />

� π<br />

2<br />

= 4096<br />

− π<br />

cos t sin<br />

2<br />

4 � 1<br />

t dt = 4096<br />

−1<br />

�u=1<br />

= 4046<br />

5 u5<br />

�<br />

�<br />

�<br />

u 4 du<br />

u=−1<br />

= 8192<br />

5 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, II<br />

Example<br />

Let C be the line segment from (0, 0) to (1, 1).<br />

Evaluate �<br />

C xy ds.<br />

Set<br />

x = t, y = t, t ∈ [0, 1].<br />

Then:<br />

�<br />

C<br />

xy ds =<br />

� 1<br />

0<br />

t 2√ 1 + 1 dt = √ 2<br />

� 1<br />

0<br />

t 2 dt =<br />

√ 2<br />

3 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, III<br />

Example<br />

Let C be the line segment from (a, 0) to (b, 0).<br />

Evaluate �<br />

C f (x, y) ds for arbitrary continuous f .<br />

Set<br />

x = t, y = 0, t ∈ [a, b].<br />

Then: �<br />

C<br />

� b<br />

f (x, y) ds = f (t, 0) dt.<br />

a


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, IV<br />

Example<br />

Let C consist <strong>of</strong> the paraboloa y = x 2 from (0, 0) to (1, 1)<br />

followed by the vertical line segment from (1, 1) to (1, 2).<br />

Find �<br />

C 2x ds.<br />

The curve C is not smooth, but piecewise smooth, i.e., <strong>of</strong> the<br />

form C = C1 ⊕ C2 with C1 and C2 smooth.<br />

C1: the parabola y = x 2 from (0, 0) to (1, 1):<br />

x = t, y = t 2 , t ∈ [0, 1].<br />

C2: the line segment from (1, 1) to (1, 2):<br />

r(t) = 〈1, 1〉 + t(〈1, 2〉 − 〈1, 1〉) = 〈1, 1 + t〉<br />

for t ∈ [0, 1], i.e., x = 1, y = 1 + t, and t ∈ [0, 1].


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, V<br />

Example (continued)<br />

Then:<br />

� �<br />

2x ds =<br />

C<br />

= 1<br />

4<br />

� 5<br />

1<br />

C1<br />

=<br />

�<br />

2x ds +<br />

� 1<br />

0<br />

√ u du+2 = u 3<br />

2<br />

C2<br />

2x ds<br />

2t � 1 + 4t 2 dt +<br />

6<br />

�<br />

�<br />

�<br />

�<br />

�<br />

u=5<br />

u=1<br />

� 1<br />

0<br />

+2 = 5√ 5 − 1<br />

6<br />

2dt<br />

+2 = 5√5 − 11<br />

.<br />

6


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Types <strong>of</strong> line <strong>integrals</strong>, I<br />

More line <strong>integrals</strong><br />

We call �<br />

C f (x, y) ds the line integral with respect to arclength.<br />

Suppose that C is given by the parametric equations<br />

Then<br />

so that<br />

x = x(t), y = y(t), t ∈ [a, b].<br />

dx<br />

dt = x ′ (t) and<br />

dy<br />

dt = y ′ (t),<br />

dx = x ′ (t) dt and dy = y ′ (t) dt.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Types <strong>of</strong> line <strong>integrals</strong>, II<br />

Definition<br />

The line <strong>integrals</strong> <strong>of</strong> f with respect to x and with respect to y,<br />

respectively, are defined as<br />

�<br />

C<br />

Shorthand<br />

�<br />

C<br />

� b<br />

f (x, y) dx := f (x(t), y(t))x ′ (t) dt;<br />

and<br />

�<br />

P(x, y) dx + Q(x, y) dy =<br />

�<br />

a<br />

C<br />

� b<br />

f (x, y) dy := f (x(t), y(t))y ′ (t) dt.<br />

C<br />

a<br />

�<br />

P(x, y) dx + Q(x, y) dy.<br />

C


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, VI<br />

Example<br />

Evaluate �<br />

(−5, −3) to (0, 2).<br />

Parametrize the curve as<br />

C y 2 dx + x dy where C is the line segment from<br />

r(t) = 〈−5, −3〉 + t(〈0, 2〉 − 〈−5, −3〉) = 〈−5 + 5t, −3 + 5t〉,<br />

so that<br />

x = −5 + 5t, y = −3 + 5t, t ∈ [0, 1].


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, VII<br />

Example (continued)<br />

Thus:<br />

�<br />

C<br />

y 2 dx + x dy =<br />

= 5<br />

= 5<br />

� 1<br />

0<br />

� 1<br />

0<br />

= − 5<br />

6 .<br />

(5t − 3) 2 5 dt +<br />

�<br />

25t 3<br />

� 1<br />

0<br />

25t 2 − 25t + 4 dt<br />

3<br />

− 25t2<br />

2<br />

�<br />

�<br />

+ 4t�<br />

�<br />

(5t − 5)5 dt<br />

t=1<br />

t=0<br />


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, VIII<br />

Example<br />

Evaluate �<br />

x = 4 − y 2 from (−5, −3) to (0, 2).<br />

The parametric equations are<br />

C y 2 dx + x dy where C is the arc <strong>of</strong> the parabola<br />

x = 4 − t 2 , y = t, t ∈ [−3, 2].


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, IX<br />

Example (continued)<br />

Then:<br />

�<br />

C<br />

y 2 dx + x dy =<br />

=<br />

� 2<br />

Important<br />

−3<br />

� 2<br />

−3<br />

−2t 3 − t 2 + 4 dt = − t4<br />

2<br />

t 2 � 2<br />

(−2t) dt + 4 − t<br />

−3<br />

2 dt<br />

− t3<br />

3<br />

�<br />

�<br />

+ 4t�<br />

�<br />

t=2<br />

t=−3<br />

= 40 5<br />

6 .<br />

Both currves in the last two examples have the same starting<br />

point and endpoint. Still, the two line <strong>integrals</strong> are different.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, X<br />

Example<br />

Evaluate �<br />

from (0, 2) to (−5, −3).<br />

Parametrize the curve as<br />

so that<br />

C y 2 dx + x dy where C is the line segment from<br />

r(t) = 〈0, 2〉 + t(〈−5, −3〉 − 〈0, 2〉) = 〈−5t, 2 − 5t〉,<br />

x = −5t, y = −5t + 2, t ∈ [0, 1].


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XI<br />

Example (continued)<br />

We obtain:<br />

�<br />

y 2 dx + x dy =<br />

C<br />

� 1<br />

0<br />

= −5<br />

= 5<br />

6 .<br />

(−5t + 2) 2 (−5) dt +<br />

� 1<br />

Note<br />

This is precisely the negative <strong>of</strong> �<br />

line segment from (−5, −3) to (0, 2).<br />

0<br />

25t 2 − 25t + 4 dt<br />

� 1<br />

0<br />

25t dt<br />

C y 2 dx + x dy where C is the


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Properties <strong>of</strong> line <strong>integrals</strong><br />

Definition<br />

If C is any curve in R 2 , we write −C for the curve with<br />

reversed orientation.<br />

Properties<br />

We have �<br />

and �<br />

−C<br />

−C<br />

but �<br />

−C<br />

�<br />

f (x, y) dx = − f (x, y) dx<br />

C<br />

�<br />

f (x, y) dy = − f (x, y) dy,<br />

C<br />

�<br />

f (x, y) ds =<br />

C<br />

f (x, y) ds.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> in R 3 , I<br />

As in R 2 . . .<br />

�<br />

f (x, y, z) ds<br />

C<br />

�<br />

� b<br />

�dx<br />

= f (x(t), y(t), z(t))<br />

dt<br />

and. . .<br />

a<br />

� 2<br />

+<br />

� �2 dy<br />

+<br />

dt<br />

� �2 dz<br />

dt<br />

dt


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> in R 3 , II<br />

As in R 2 . . . (continued)<br />

and. . .<br />

�<br />

P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz<br />

C<br />

� b<br />

= P(x(t), y(t), z(t))x ′ (t) dt<br />

a<br />

� b<br />

+ Q(x(t), y(t), z(t))y ′ (t) dt<br />

a<br />

� b<br />

+ R(x(t), y(t), z(t))z<br />

a<br />

′ (t) dt.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XII<br />

Example<br />

Let C be the helix given by<br />

Then:<br />

�<br />

C<br />

x = cos t, y = sin t, z = t, t ∈ [0, 2π].<br />

y sin z ds =<br />

= √ 2<br />

� 2π<br />

0<br />

� 2π<br />

0<br />

sin 2 �<br />

t sin2 t + cos2 t + 1 dt<br />

� 2π<br />

sin 2 t dt = 1<br />

√ 1 − cos 2t dt<br />

2 0<br />

= 1<br />

� � �<br />

sin 2t �t=2π<br />

√ t − �<br />

2 2 � = √ 2π.<br />

t=0


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XIII<br />

Example<br />

Let C = C1 ⊕ C2 with:<br />

C1 = line segment from (2, 0, 0) to (3, 4, 5),<br />

C2 = line segment from (3, 4, 5) to (3, 4, 0).<br />

Evaluate<br />

�<br />

y dx + z dy + x dz<br />

C �<br />

�<br />

= y dx + z dy + x dz +<br />

C1<br />

C2<br />

y dx + z dy + x dz.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XIV<br />

Example (continued)<br />

Parametrize C1:<br />

i.e.,<br />

Thus:<br />

�<br />

r(t) = 〈2, 0, 0〉 + t(〈3, 4, 5〉 − 〈2, 0, 0〉) = 〈2 + t, 4t, 5t〉,<br />

C1<br />

x = 2 + t, y = 4t, z = 5t, t ∈ [0, 1].<br />

y dx +z dy +x dz =<br />

=<br />

� 1<br />

0<br />

� 1<br />

0<br />

4t dt +4<br />

� 1<br />

0<br />

5t dt +5<br />

10 + 29t dt = 10t + 29t2<br />

2<br />

� 1<br />

0<br />

t=1<br />

�<br />

�<br />

�<br />

�<br />

t=0<br />

2+t dt<br />

= 49<br />

2 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XV<br />

Example (continued)<br />

Parametrize C2:<br />

Thus:<br />

All in all:<br />

x = 3, y = 4, z = 5 − 5t, t ∈ [0, 1].<br />

�<br />

C2<br />

�<br />

y dx + z dy + x dz = −15<br />

C<br />

y dx + z dy + x dz = 49<br />

2<br />

� 1<br />

0<br />

dt = −15.<br />

− 15 = 19<br />

2 .


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, I<br />

Problem<br />

Let F = Pi + Qj + Rk be a continuous vector field on R 3 which<br />

moves a particle along a smooth curve C. What is the work W<br />

done?<br />

Easy case<br />

If F is constant and moves the particle along a line segment<br />

from P to Q,<br />

W = F · D,<br />

where D = −→<br />

PQ is the displacement vector.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, II<br />

The general case<br />

Divide C into n subarcs Pj−1, Pj with lengths ∆sj by dividing<br />

the parameter interval [a, b] into n subintervals <strong>of</strong> equal length.<br />

, y ∗ ) on the j-th subarc, and let<br />

Choose a point P∗ j (x ∗ j j , z∗ j<br />

t∗ j ∈ [tj−1, tj] be the corresponding parameter.<br />

If ∆sj is small: as the particle moves from Pj−1 to Pj, it<br />

), the unit<br />

proceeds approximately in the direction <strong>of</strong> T(t∗ j<br />

tangent vector to C at P∗ j (x ∗ j , y ∗<br />

j , z∗ j ).


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, III<br />

The general case (continued)<br />

If Wj is the work to move the particle from Pj−1 to Pj, then<br />

Hence,<br />

and thus<br />

W = lim<br />

n→∞<br />

Wj ≈ F(x ∗ j , y ∗<br />

j , z ∗ j ) · ∆sjT(t ∗ j ).<br />

W ≈<br />

n�<br />

j=1<br />

n�<br />

j=1<br />

F(x ∗ j , y ∗<br />

j , z ∗ j ) · ∆sjT(t ∗ j ),<br />

F(x ∗ j , y ∗<br />

j , z ∗ j ) · ∆sjT(t ∗ j )<br />

�<br />

=<br />

C<br />

F(x, y, z) · T(x, y, z) ds.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, IV<br />

The general case (continued)<br />

Let C be given by the vector equation<br />

Then:<br />

Thus:<br />

�<br />

C<br />

r(t) = x(t)i + y(t)j + z(t)k, t ∈ [a, b].<br />

T(t) = r′ (t)<br />

|r ′ (t)| .<br />

� b<br />

F · T ds = F(r(t)) ·<br />

a<br />

r′ (t)<br />

|r ′ (t)| |r′ (t)| dt<br />

� b<br />

= F(r(t)) · r ′ (t) dt = · · ·<br />

a


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, V<br />

The general case (continued)<br />

� b<br />

· · · = F(r(t)) · r ′ (t) dt<br />

a<br />

� b<br />

= P(x(t), y(t), z(t))x ′ (t) dt<br />

a<br />

� b<br />

+ Q(x(t), y(t), z(t))y ′ (t) dt<br />

a<br />

� b<br />

+ R(x(t), y(t), z(t))z<br />

a<br />

′ (t) dt<br />

�<br />

= P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.<br />

C


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

<strong>Line</strong> <strong>integrals</strong> <strong>of</strong> vector fields, VI<br />

Definition<br />

Let F = Pi + Qj + Rk be a continuous vector field on R 3 , and<br />

let C be a smooth curve given by the vector function r(t) for<br />

t ∈ [a, b]. The line integral <strong>of</strong> F along C is<br />

�<br />

C<br />

� b<br />

F · dr = F(r(t)) · r<br />

a<br />

′ (t) dt<br />

�<br />

= P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.<br />

C


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XVI<br />

Example<br />

A force field<br />

F(x, y) = x sin yi + yj<br />

moves a particle from (−1, 1) to (2, 4) along the parabola<br />

y = x 2 . Compute the total work W .<br />

Parametrize C as<br />

Then:<br />

and<br />

r(t) = ti + t 2 j, t ∈ [−1, 2].<br />

r ′ (t) = i + 2tj<br />

F(r(t)) = t sin(t 2 )i + t 2 j.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XVII<br />

Example (continued)<br />

Thus:<br />

�<br />

W =<br />

=<br />

C<br />

� 2<br />

−1<br />

F · dr =<br />

� 2<br />

−1<br />

(t sin(t 2 )i + t 2 j) · (i + 2tj) dt<br />

t sin(t 2 ) + 2t 3 dt = 1<br />

2<br />

cos u<br />

�<br />

�<br />

= − �<br />

2<br />

u=4<br />

+<br />

u=1<br />

15<br />

2<br />

� 4<br />

1<br />

sin u du + t4<br />

2<br />

�<br />

�<br />

�<br />

�<br />

t=2<br />

t=−1<br />

1<br />

= (15 − cos 4 + cos 1).<br />

2


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XVIII<br />

Example<br />

Let<br />

and let C be given by<br />

i.e., by<br />

Thus:<br />

and<br />

F(x, y, z) = xyi + yzj + zxk,<br />

x = t, y = t 2 , z = t 3 , t ∈ [0, 1].<br />

r(t) = ti + t 2 j + t 3 k, t ∈ [0, 1].<br />

r ′ (t) = i + 2tj + 3t 2 k<br />

F(r(t)) = t 3 i + t 5 j + t 4 k.


MATH 209—<br />

Calculus,<br />

III<br />

Volker Runde<br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 2<br />

Types <strong>of</strong> line<br />

<strong>integrals</strong><br />

<strong>Line</strong> <strong>integrals</strong><br />

in R 3<br />

<strong>Line</strong> <strong>integrals</strong><br />

<strong>of</strong> vector fields<br />

Examples, XIX<br />

Example (continued)<br />

Therefore:<br />

�<br />

C<br />

F · dr =<br />

=<br />

� 1<br />

0<br />

� 1<br />

0<br />

= t4<br />

4<br />

= 27<br />

28 .<br />

t 3 + 2t 6 + 3t 6 dt<br />

t 3 + 5t 6 dt<br />

+ 5t7<br />

7<br />

�<br />

�<br />

�<br />

�<br />

t=1<br />

t=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!