28.02.2013 Views

Development of Spodoptera frugiperda on different hosts ... - UFRPE

Development of Spodoptera frugiperda on different hosts ... - UFRPE

Development of Spodoptera frugiperda on different hosts ... - UFRPE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Development</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> <strong>on</strong> <strong>different</strong><br />

<strong>hosts</strong> and damage to reproductive structures in cott<strong>on</strong><br />

Eduardo M. Barros 1 , Jorge B. Torres 1 *, John R. Rubers<strong>on</strong> 2 & Martin D. Oliveira 1<br />

1 Departmento de Agr<strong>on</strong>omia ⁄ Entomologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros<br />

S ⁄ N, Dois Irmãos, Recife, PE 31794-900, Brazil, and 2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia, Tift<strong>on</strong>,<br />

GA 31794, USA<br />

Accepted: 25 August 2010<br />

Key words: fall armyworm, host suitability, landscape ecology, ec<strong>on</strong>omic damage, color fiber cott<strong>on</strong>,<br />

Lepidoptera, Noctuidae<br />

Abstract The fall armyworm (FAW), <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (J.E. Smith) (Lepidoptera: Noctuidae), is a widespread<br />

pest species <str<strong>on</strong>g>of</str<strong>on</strong>g> various cultivated plants. The pest status <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW in cott<strong>on</strong> in the Cerrado<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Brazil has increased with the recent changes in cott<strong>on</strong> crop systems, such as double cropping<br />

and the use <str<strong>on</strong>g>of</str<strong>on</strong>g> cover or winter crops with n<strong>on</strong>-tillage cropping systems. In this study we investigated<br />

the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW <strong>on</strong> three major crops cultivated in the Cerrado – soybean, corn, and cott<strong>on</strong><br />

– and millet which has been integrated into the landscape as a cover crop. Further, the damage to various<br />

reproductive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants by FAW larvae was determined. Both studies were c<strong>on</strong>ducted<br />

under field c<strong>on</strong>diti<strong>on</strong>s. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae caged <strong>on</strong> millet plants was higher than <strong>on</strong><br />

other <strong>hosts</strong>. The FAW reared <strong>on</strong> millet also exhibited a net reproductive rate similar to that observed<br />

<strong>on</strong> corn, which was c<strong>on</strong>sidered the best host for FAW, and the highest intrinsic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase and<br />

lowest mean generati<strong>on</strong> time compared to all other <strong>hosts</strong>. In cott<strong>on</strong>, the low availability <str<strong>on</strong>g>of</str<strong>on</strong>g> bolls during<br />

the plant’s blooming stage resulted in higher square feeding, whereas infestati<strong>on</strong> during the<br />

plant’s boll stage resulted in higher loss <str<strong>on</strong>g>of</str<strong>on</strong>g> bolls and lower attack <strong>on</strong> squares. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> adults<br />

produced in a generati<strong>on</strong> was higher when plants were infested in the boll stage. The results indicated<br />

that FAW is a threat to cott<strong>on</strong> when bolls are available and can cause significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive<br />

structures. In additi<strong>on</strong>, based <strong>on</strong> the FAW performance feeding <strong>on</strong> millet, this cover crop can be<br />

am<strong>on</strong>g the reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW increasing pest status in subsequent crops.<br />

Introducti<strong>on</strong><br />

The management <str<strong>on</strong>g>of</str<strong>on</strong>g> polyphagous and mobile insect herbivores<br />

requires pest management systems to focus <strong>on</strong> areawide<br />

cropping systems and not simply <strong>on</strong> the major seas<strong>on</strong><br />

crop in a single field or farm (Abel et al., 2007; Wu, 2007;<br />

Herde, 2009). The exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food resources <str<strong>on</strong>g>of</str<strong>on</strong>g>fered<br />

in nearby crops and weeds in space, in crop rotati<strong>on</strong>s and<br />

sequences in time play important roles in the populati<strong>on</strong><br />

dynamics and outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> polyphagous herbivores. Thus,<br />

managing polyphagous pests relies <strong>on</strong> understanding their<br />

host use within and between crop seas<strong>on</strong>s, and includes<br />

*Corresp<strong>on</strong>dence: Jorge Braz Torres, Departmento de Agr<strong>on</strong>omia<br />

⁄ Entomologia, Universidade Federal Rural de Pernambuco, Rua.<br />

Dom Manoel de Medeiros s ⁄ n, Dois Irmãos, 52171-900 Recife, PE,<br />

Brazil. E-mail: jtorres@depa.ufrpe.br<br />

DOI: 10.1111/j.1570-7458.2010.01058.x<br />

cultivated and uncultivated plants that might serve as pest<br />

reservoirs.<br />

The fall armyworm (FAW), <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (J.E.<br />

Smith) (Lepidoptera: Noctuidae), is well known as a key<br />

pest <str<strong>on</strong>g>of</str<strong>on</strong>g> corn in the Americas. Further, FAW is a polyphagous<br />

species that uses important cultivated species <str<strong>on</strong>g>of</str<strong>on</strong>g> Poaceae<br />

as <strong>hosts</strong> and can reach pest status <strong>on</strong> several <str<strong>on</strong>g>of</str<strong>on</strong>g> them<br />

(e.g., rice, wheat, sorghum, and corn) (Luginbill, 1928;<br />

Sparks, 1979; Cruz, 1995; Capinera, 2002). Despite the<br />

preference for plants <str<strong>on</strong>g>of</str<strong>on</strong>g> the family Poaceae, FAW is<br />

increasingly becoming a pest <str<strong>on</strong>g>of</str<strong>on</strong>g> important broadleaf crops<br />

such as cott<strong>on</strong> and soybean in the Brazilian Cerrado, especially<br />

when they are cultivated after corn. There are several<br />

potential explanati<strong>on</strong>s for the increasing outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FAW in these broadleaf <strong>hosts</strong>, including reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

host-free window between crops (i.e., double cropping),<br />

and the use <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species as cover or winter crops, such<br />

as millet, that serve as pest reservoirs. This last possibility<br />

Ó 2010 The Authors Entomologia Experimentalis et Applicata 137: 237–245, 2010<br />

Entomologia Experimentalis et Applicata Ó 2010 The Netherlands Entomological Society 237


238 Barros et al.<br />

was under investigati<strong>on</strong> in this study. Coordinated planting<br />

to create a host-free period between crop seas<strong>on</strong>s is recommended<br />

as a preventive practice to manage pests.<br />

However, in areas with irrigati<strong>on</strong> and a favorable climate,<br />

as is the case in the Brazilian Cerrado, corn, soybean, and<br />

cott<strong>on</strong> can be double cropped. The revenue obtained per<br />

area cultivated overcomes at first glimpse the risks<br />

imposed by pest infestati<strong>on</strong>, overcoming therefore the<br />

benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> adopting ‘sanitati<strong>on</strong> windows’ or ‘host-free<br />

periods’ between cropping seas<strong>on</strong>s. As a result, polyphagous<br />

species such as armyworm species may exploit a<br />

diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>hosts</strong> to build populati<strong>on</strong>s outside <str<strong>on</strong>g>of</str<strong>on</strong>g> crop<br />

fields and migrate in high numbers into major crop areas<br />

(Nagoshi et al., 2008).<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW populati<strong>on</strong>s have shown that cropspecific<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW infestati<strong>on</strong>s is linked to host-related<br />

strains: the corn strain and rice strain (Pashley et al., 1985;<br />

Pashley, 1986; Busato et al., 2004; Meagher & Nagoshi,<br />

2004). The corn strain, for which corn is the preferred<br />

host, is the strain that also col<strong>on</strong>izes cott<strong>on</strong> fields (Martinelli<br />

et al., 2007). Thus, FAW can migrate am<strong>on</strong>g fields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corn and cott<strong>on</strong> and develop and reproduce in these unrelated<br />

crops (Nagoshi, 2009).<br />

The pest status <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW is usually associated with specific<br />

developmental stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the host plant. In corn, FAW<br />

initially col<strong>on</strong>izes plants during the vegetative whorl stage.<br />

During this period, the larvae are protected while feeding<br />

<strong>on</strong> the young leaves forming the leaf whorl. In host plants<br />

other than Poaceae that do not <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a whorl as a preferred<br />

and protected feeding site for FAW, the reproductive<br />

structures are targeted. Thus, in cott<strong>on</strong> plants the squares,<br />

blooms, and bolls are the preferred locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW.<br />

According to Ali et al. (1990), and our observati<strong>on</strong>s, newly<br />

eclosed FAW larvae start feeding <strong>on</strong> underside leaf surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong>, subsequently moving to squares and blooms,<br />

and finally move downward within the plant canopy to<br />

feed <strong>on</strong> bolls before pupating. Thus, the cott<strong>on</strong> plant<br />

becomes a favorable host due to the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> flowering<br />

and fruiting structures produced systematically from<br />

ca. 40 to 120 days after emergence. Thus, although low<br />

FAW densities occur in cott<strong>on</strong> fields, FAW is a very<br />

destructive pest in cott<strong>on</strong> because it feeds directly <strong>on</strong><br />

reproductive structures rather than <strong>on</strong> leaves.<br />

Thus, we can hypothesize that FAW col<strong>on</strong>izing cott<strong>on</strong><br />

fields at the blooming stage will complete a generati<strong>on</strong> in<br />

approximately 40–60 days after plant emergence, and<br />

develop a sec<strong>on</strong>d generati<strong>on</strong> during the predominance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

boll producti<strong>on</strong> from 60 to 90 days, whereas a third generati<strong>on</strong><br />

may occur during the boll maturati<strong>on</strong> stage. The<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> a large FAW populati<strong>on</strong> would not be<br />

expected early in the cott<strong>on</strong> seas<strong>on</strong>, as <strong>on</strong>ly leaves would<br />

be available for feeding. Therefore, the largest outbreak is<br />

expected to occur during the sec<strong>on</strong>d ⁄ third generati<strong>on</strong><br />

within cott<strong>on</strong> fields or from mass migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adults from<br />

nearby corn fields or from large populati<strong>on</strong>s generated<br />

from winter ⁄ cover crops. Thus, this study had two objectives:<br />

(1) to investigate the life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FAW fed corn [Zea mays L. (Poaceae)], millet [Pennisetum<br />

glaucum L. (Poaceae)], cott<strong>on</strong> [Gossypium hirsutum L.<br />

(Malvaceae)], and soybean [Glycine max L. Merril (Fabaceae)],<br />

and (2) to characterize the damage to cott<strong>on</strong> reproductive<br />

structures caused by FAW larvae during <strong>different</strong><br />

developmental stages <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong>.<br />

Materials and methods<br />

Insects<br />

The FAW col<strong>on</strong>y was initiated with larvae collected from<br />

corn fields (8 o 1¢S, 34 o 57¢W) at the Universidade Federal<br />

Rural de Pernambuco (<strong>UFRPE</strong>), Recife, Pernambuco<br />

State, Brazil, and reared with corn leaves to pupati<strong>on</strong>. The<br />

emerged adults were used to establish a laboratory col<strong>on</strong>y<br />

reared with artificial diet adapted from Greene et al.<br />

(1976). The larvae were reared using vials (2.5 cm in diameter<br />

· 8.5 cm high) c<strong>on</strong>taining the artificial diet and<br />

closed with cott<strong>on</strong> pads, and maintained at 25 ± 2 °Cand<br />

L12:D12 photoperiod. The adults were reared using PVC<br />

cages (15 cm in diameter · 22 cm high) with the inner<br />

surface covered with paper as an ovipositi<strong>on</strong> substrate and<br />

the upper opening closed with PVC plastic film. The cages<br />

were placed <strong>on</strong> plastic plates (17 cm in diameter) lined<br />

with paper towels. The adults were fed a 10% h<strong>on</strong>ey ⁄ water<br />

(wt/vol) soluti<strong>on</strong> soaked <strong>on</strong> cott<strong>on</strong> pads <str<strong>on</strong>g>of</str<strong>on</strong>g>fered in small<br />

plastic caps inside the cages and replaced every other day.<br />

All insects used in the studies were reared <strong>on</strong> artificial diet<br />

for more than five generati<strong>on</strong>s to avoid any potential<br />

c<strong>on</strong>diti<strong>on</strong>ing to a specific plant food.<br />

Life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW reared <strong>on</strong> <strong>different</strong> <strong>hosts</strong> in the<br />

field<br />

The development and reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW were investigated<br />

using corn, millet, cott<strong>on</strong>, and soybean plants cultivated<br />

in microparcels in the field. The microparcels<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> cement rings (100 cm in diameter · 50 cm<br />

high) filled with soil up to 5 cm below the upper edge.<br />

Each microparcel was established with five plants <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

same host species. The plants were planted <strong>on</strong> <strong>different</strong><br />

dates to obtain plants <str<strong>on</strong>g>of</str<strong>on</strong>g> the desired ages that could be<br />

infested at the same time. This procedure was adopted to<br />

allow for the simultaneous infestati<strong>on</strong> by FAW <str<strong>on</strong>g>of</str<strong>on</strong>g> the optimal<br />

phenological stage <str<strong>on</strong>g>of</str<strong>on</strong>g> the three test plant species. Thus,<br />

corn plants (variety BRS Caatingueiro and millet variety<br />

ADR 500) were infested 40 days after planting, whereas<br />

cott<strong>on</strong> plants (variety Deltapine Acala 90) were infested at


stage R4 (s<str<strong>on</strong>g>of</str<strong>on</strong>g>t bolls) and soybeans (variety BRS Sambaíba)<br />

at stage R3 ⁄ R4 (pods appearing). The five plants in each<br />

microparcel were c<strong>on</strong>fined using cylindrical cages<br />

(95 · 100 cm) made with nyl<strong>on</strong> mesh screen (2 mm<br />

openings) fastened <strong>on</strong> a cylindrical ir<strong>on</strong> structure set up<br />

over the cement rings. A zipper 60 cm l<strong>on</strong>g was fixed al<strong>on</strong>g<br />

the upper edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the cage to allow access to the cages.<br />

Fall armyworm larvae were released at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 larvae<br />

per cage (50 larvae per plant). The releasing procedure<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> placing 50 larvae <strong>on</strong> leaf disks <str<strong>on</strong>g>of</str<strong>on</strong>g> the respective<br />

plant host. Then, the leaf disk was stapled <strong>on</strong>to the topmost<br />

fully developed leaf <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant. This number may<br />

sound excessive, but <strong>on</strong>e egg mass <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW can produce<br />

over 200 eggs (Cruz, 1995). These larvae were reared for<br />

48 h <strong>on</strong> the respective <strong>hosts</strong> in the laboratory prior to<br />

release to facilitate handling and counting the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

larvae to be released. The outer border <str<strong>on</strong>g>of</str<strong>on</strong>g> the microparcels<br />

was treated with tanglefoot BioStop Ò (Bioc<strong>on</strong>trole, São<br />

Paulo, SP, Brazil) to build a barrier against predators<br />

inside the cages.<br />

Evaluati<strong>on</strong>s were c<strong>on</strong>ducted <strong>on</strong> day 10 and day 18 after<br />

FAW larvae were released. The relative developmental success<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> FAW infesting the plants was determined by the<br />

number and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae surviving <strong>on</strong> day 10 and<br />

pupati<strong>on</strong> rate <strong>on</strong> day 18. The day 10 evaluati<strong>on</strong> c<strong>on</strong>sisted<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> harvesting the plants and collecting the larvae, which<br />

were then counted and weighed. During this evaluati<strong>on</strong><br />

six, six, five, and eight microparcels (replicati<strong>on</strong>s) cultivated<br />

with corn, millet, cott<strong>on</strong>, and soybean, respectively,<br />

were evaluated. The day 18 evaluati<strong>on</strong> (pupati<strong>on</strong> rate)<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> digging and sifting the soil in the microparcels<br />

to collect the pupae. To facilitate collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pupae, a<br />

plastic 2 mm mesh was placed 15 cm below the soil surface,<br />

encompassing the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the cement ring. The mesh<br />

was then covered with sifted soil prior to planting. Five<br />

holes <str<strong>on</strong>g>of</str<strong>on</strong>g> 1cmindiameterweremadeinthemeshto<br />

receive the seeds and to allow the main plant stem to<br />

develop. On day 18, five microparcels (replicati<strong>on</strong>s) were<br />

evaluated for each host plant treatment. The pupae were<br />

collected, separated by sex and divided into two groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

male and female pupae: <strong>on</strong>e group was reared in the laboratory<br />

and the other group returned to the soil inside the<br />

cages in the field to determine pupal viability in the field<br />

(adult emergence rate). The group <str<strong>on</strong>g>of</str<strong>on</strong>g> pupae kept in the<br />

laboratory was m<strong>on</strong>itored to assess reproductive parameters.<br />

Thus, in the laboratory 13 pairs (replicati<strong>on</strong>s) <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW<br />

adults were reared for each host plant. They were kept in<br />

PVC cages (10 cm in diameter · 15 cm high) lined with<br />

paper as an ovipositi<strong>on</strong> substrate, fed 10% h<strong>on</strong>ey ⁄ water<br />

soluti<strong>on</strong> and maintained in a climate chamber at 25 °C<br />

and L12:D12 photoperiod. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> accidental escapes,<br />

data analyses were ultimately run <strong>on</strong> 13, 12, 11, and 13<br />

Fall armyworm performance <strong>on</strong> <strong>different</strong> <strong>hosts</strong> 239<br />

females from corn, millet, soybean, and cott<strong>on</strong>,<br />

respectively. The cages were inspected daily to record<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> egg masses produced, eggs per egg mass, and<br />

adult mortality.<br />

Number and fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae <strong>on</strong> day 10, pupati<strong>on</strong><br />

rate (number <str<strong>on</strong>g>of</str<strong>on</strong>g> pupae per 250 larvae released) evaluated<br />

<strong>on</strong> day 18, adult emergence from field cages, preovipositi<strong>on</strong><br />

period, female l<strong>on</strong>gevity, and number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs produced<br />

were tested for normality (Kolmogorov D: normal<br />

test) and homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Bartlett’s test), and<br />

square root (x + 0.5) or log(x + 1) transformati<strong>on</strong>s were<br />

used when necessary; however, untransformed means are<br />

presented in tables and figures. The results were submitted<br />

to <strong>on</strong>e-way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA) and Tukey’s<br />

studentized range test, with B<strong>on</strong>ferr<strong>on</strong>i’s correcti<strong>on</strong>s for<br />

0.05 <str<strong>on</strong>g>of</str<strong>on</strong>g> significance level (a =0.05⁄ n, where ‘n’ represents<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> means in comparis<strong>on</strong> to hold the error level<br />

equal or lower than 0.05; Abdi, 2007) using SAS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

(SAS Institute, 2001).<br />

Data <strong>on</strong> development and viability (rate <str<strong>on</strong>g>of</str<strong>on</strong>g> adult emergence<br />

from field cages), adult reproducti<strong>on</strong> and survival,<br />

were used to estimate the net reproductive rate, mean generati<strong>on</strong><br />

time, and intrinsic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> natural increase, adapting<br />

the procedure written by Maia et al. (2000) using SAS<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (SAS Institute, 2001), which relies <strong>on</strong> a Jackknife<br />

method to estimate c<strong>on</strong>fidence intervals and to allow comparis<strong>on</strong>s<br />

between host plants tested.<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants in <strong>different</strong> stages<br />

caused by FAW infestati<strong>on</strong><br />

Cott<strong>on</strong> plants (variety BRS Rubi) that produce light brown<br />

fibers were cultivated in the field using microparcels as<br />

describe above. In this assay, however, three plants were<br />

grown per microparcel instead <str<strong>on</strong>g>of</str<strong>on</strong>g> five. All seeds were sown<br />

<strong>on</strong> the same day, but with <strong>different</strong> FAW infestati<strong>on</strong> dates.<br />

Caging <str<strong>on</strong>g>of</str<strong>on</strong>g> plants in the microparcels followed the same<br />

procedure as that used in the previous experiment and the<br />

infestati<strong>on</strong> rate was 50 ne<strong>on</strong>ate larvae per plant (i.e., 150<br />

larvae per microparcel).<br />

The experiment c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments evaluating the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW col<strong>on</strong>izati<strong>on</strong> at two <strong>different</strong> cott<strong>on</strong> plant<br />

stages (flowering and boll development). FAW col<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> fields can occur early in the blooming stage;<br />

therefore, cott<strong>on</strong> plants are susceptible to FAW attack sufficiently<br />

l<strong>on</strong>g to allow at least two FAW generati<strong>on</strong>s before<br />

boll maturati<strong>on</strong>. Thus, the experimental design was set up<br />

to infest plants at the blooming stage and evaluated<br />

20 days later. All released larvae had completed larval<br />

development by this point (hereafter referred to as ‘blooming<br />

stage and <strong>on</strong>e immature generati<strong>on</strong> = Blooming 1’).<br />

The pupae evaluated were maintained in the same cage to<br />

determine the entire immature period required to com-


240 Barros et al.<br />

plete development in each host plant under field<br />

c<strong>on</strong>diti<strong>on</strong>s. The subsequent treatment c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> infesting<br />

the plants at the blooming stage and evaluating 40 days<br />

later. Adults were allowed to emerge inside the cages and<br />

lay eggs to initiate a sec<strong>on</strong>d generati<strong>on</strong> <strong>on</strong> the same plants,<br />

so that a sec<strong>on</strong>d larval generati<strong>on</strong> was completed (hereafter<br />

referred to as ‘blooming stage and two immature generati<strong>on</strong>s<br />

= Blooming 2’). Finally, plants were infested at the<br />

boll stage and FAW populati<strong>on</strong>s evaluated after pupati<strong>on</strong><br />

(hereafter referred to as ‘boll stage and <strong>on</strong>e immature generati<strong>on</strong><br />

= Boll 1’). Pupae were allowed to complete development<br />

in the same cage to evaluate the whole immature<br />

period. The infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants in the treatments during<br />

the blooming stage took place 45 days after planting,<br />

whereas infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants in the boll stage took place<br />

70 days after planting. Two c<strong>on</strong>trol treatments were set up<br />

to evaluate natural shedding: <strong>on</strong>e to be evaluated simultaneously<br />

with the Blooming 1 generati<strong>on</strong>; and the sec<strong>on</strong>d<br />

c<strong>on</strong>trol treatment to be evaluated simultaneously with the<br />

Blooming 2 and Boll 1 treatments, as both were evaluated<br />

at the same time. Each treatment was replicated five times<br />

(each replicate c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> microparcels with three plants)<br />

except for Boll 1, which had 10 replicati<strong>on</strong>s.<br />

Evaluati<strong>on</strong> c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> harvesting the plants from each<br />

microparcel and inspecting each whole plant to count<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> squares and bolls without damage, number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bolls damaged, and number <str<strong>on</strong>g>of</str<strong>on</strong>g> squares and bolls dropped.<br />

The cages were replaced <strong>on</strong> the microparcels to assess adult<br />

emergence. Estimates were obtained for complete developmental<br />

time, number <str<strong>on</strong>g>of</str<strong>on</strong>g> adults produced, and sex ratio.<br />

These results were tested for normality (Kolmogorov D:<br />

normal test) and homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Bartlett’s test),<br />

and square root transformati<strong>on</strong> (x + 0.5) was used when<br />

necessary; however, untransformed means are presented in<br />

tables and figures. The results were submitted to <strong>on</strong>e-way<br />

ANOVA through Proc GLM <str<strong>on</strong>g>of</str<strong>on</strong>g> SAS and Tukey’s studentized<br />

range test for mean comparis<strong>on</strong>s after B<strong>on</strong>ferr<strong>on</strong>i’s<br />

correcti<strong>on</strong>s for appropriate significance level according to<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> means compared (Abdi, 2007).<br />

The cott<strong>on</strong> plants exhibit natural shedding <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive<br />

structures, which can vary with plant variety and<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. For instance, under the c<strong>on</strong>diti<strong>on</strong>s<br />

for the regi<strong>on</strong> and the variety, about 66% <str<strong>on</strong>g>of</str<strong>on</strong>g> produced<br />

reproductive structures by cott<strong>on</strong> plants reach open<br />

bolls (Arruda et al., 2002). Thus, to avoid mistaking natural<br />

abscissi<strong>on</strong> exhibited by cott<strong>on</strong> plants for damage caused<br />

by FAW larvae, we corrected the lost reproductive structure<br />

counts observed in the microparcels <str<strong>on</strong>g>of</str<strong>on</strong>g> plants with<br />

FAW infestati<strong>on</strong> using their respective c<strong>on</strong>trols without<br />

infestati<strong>on</strong>. Therefore, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> squares remaining<br />

<strong>on</strong> the plant and those shed, and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> undamaged<br />

and damaged bolls in each treatment with FAW infestati<strong>on</strong><br />

for each replicati<strong>on</strong> were adjusted to the difference<br />

between treatments with and without FAW infestati<strong>on</strong>.<br />

Statistical significance <strong>on</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants reproductive<br />

structures in relati<strong>on</strong> to FAW was determined using<br />

the overlap rule for 95% CI <str<strong>on</strong>g>of</str<strong>on</strong>g> the treatment differences<br />

(Di Stefano, 2005).<br />

Results<br />

Life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW fed <strong>different</strong> <strong>hosts</strong> in the field<br />

The survivorship <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae <strong>on</strong> day 10 post-infestati<strong>on</strong><br />

was significantly higher for those caged <strong>on</strong> millet relative<br />

to the other host plants (F 3,21 = 3.09, P = 0.049),<br />

whereas results were similar am<strong>on</strong>g corn, soybean, and<br />

cott<strong>on</strong> (Table 1). Likewise, the viability <str<strong>on</strong>g>of</str<strong>on</strong>g> the larval stage,<br />

as determined by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pupae recovered <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

250 larvae initially released, differed significantly am<strong>on</strong>g<br />

host plants (F3,16 = 5.21, P = 0.011), with higher recovery<br />

<strong>on</strong> millet and soybean (Table 1). The weight gain <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW<br />

larvae after 10 days <strong>on</strong> the plants, however, did not differ<br />

significantly am<strong>on</strong>g the tested host plants (F 3,21 =0.36,<br />

P = 0.78) and ranged from 60 to 108 mg per larvae. Pupae<br />

maintained in cages in the field exhibited similar rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adult emergence, ranging from 71 to 80%, with the sex<br />

ratio varying from 45.7 to 47.4% <str<strong>on</strong>g>of</str<strong>on</strong>g> females.<br />

Adults that emerged from the group <str<strong>on</strong>g>of</str<strong>on</strong>g> pupae collected<br />

from the microparcels in the field and maintained<br />

throughout the adult stage in the laboratory to evaluate<br />

reproductive traits exhibited similar pre-ovipositi<strong>on</strong> periods<br />

(F 3,41 = 0.53, P = 0.66) and egg viability (F 3,41 =2.76,<br />

Table 1 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> host plant <strong>on</strong> survival and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> larvae <strong>on</strong> day 10 following release, pupati<strong>on</strong> rate at day 18 following<br />

release (250 48-h-old larvae caged <strong>on</strong> five plants <str<strong>on</strong>g>of</str<strong>on</strong>g> each plant species; cultivated in the field), and adult emergence. Mean temperature<br />

27 °C (range 22.4–36.6 °C) and mean r.h. 84% (range 29.9–100%)<br />

Host plants 1<br />

Larval survival (%) Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae (mg) Pupati<strong>on</strong> rate (%) Adult emergence (%)<br />

Cott<strong>on</strong> 21.3 ± 4.05b 67.0 ± 26.0a 16.9 ± 0.99b 77.0 ± 4.70a<br />

Millet 38.5 ± 6.83a 108.0 ± 54.0a 33.8 ± 6.37a 80.0 ± 6.40a<br />

Corn 24.3 ± 4.20b 60.0 ± 32.0a 18.0 ± 3.33b 71.0 ± 4.50a<br />

Soybean 20.5 ± 3.56b 91.0 ± 26.0a 32.5 ± 3.24a 72.0 ± 3.20a<br />

1 Means (± SE) within columns followed by the same letter do not differ significantly (Tukey’s test: P>0.05).


Table 2 Adult life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> caged <strong>on</strong> cott<strong>on</strong>, millet, corn, and soybean plants in the field. C<strong>on</strong>diti<strong>on</strong>s<br />

for larval and pupal stages in the field: mean temperature 27 °C (range 22.4–36.6 °C) and mean r.h. 84% (range 29.9–100%)<br />

Host plant No. eggs per female 1<br />

Female l<strong>on</strong>gevity 1<br />

P = 0.055), which ranged from 4.3 to 5.6 days and 49.6 to<br />

70.5%, respectively. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs produced per<br />

female, however, was significantly lower (F 3,41 =3.68,<br />

P = 0.019) for females reared <strong>on</strong> cott<strong>on</strong> (1 144.7 eggs per<br />

female) than females reared <strong>on</strong> the other three <strong>hosts</strong><br />

(Table 2). Likewise, l<strong>on</strong>gevity <str<strong>on</strong>g>of</str<strong>on</strong>g> females reared <strong>on</strong> cott<strong>on</strong><br />

was shorter than that <str<strong>on</strong>g>of</str<strong>on</strong>g> females reared <strong>on</strong> soybean<br />

(F3,41 = 4.20, P = 0.011), whereas females reared <strong>on</strong> millet<br />

and corn exhibited intermediate l<strong>on</strong>gevity not differing<br />

from either cott<strong>on</strong> or soybean (Table 2).<br />

The estimated life history characteristics based <strong>on</strong> data<br />

from larval and pupal development determined in the<br />

field, and egg producti<strong>on</strong> and egg viability in the laboratory<br />

for adults from field reared <strong>on</strong> the four host plants,<br />

resulted in higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive and intrinsic populati<strong>on</strong><br />

growth for individuals reared <strong>on</strong> millet than <strong>on</strong><br />

Fall armyworm performance <strong>on</strong> <strong>different</strong> <strong>hosts</strong> 241<br />

R o ($ ⁄ $) 2<br />

r m ($ ⁄ $*day) 2<br />

T (days) 2<br />

Cott<strong>on</strong> 1144.7 ± 132.7b 13.3 ± 1.11b 37.9 ± 4.39c 0.110 ± 0.007c 33.1 ± 1.45a<br />

Millet 1574.1 ± 177.6a 17.5 ± 1.13ab 90.5 ± 10.21a 0.166 ± 0.010a 27.1 ± 1.10c<br />

Corn 1604.2 ± 353.8a 15.5 ± 2.07ab 72.3 ± 15.95ab 0.141 ± 0.012b 30.3 ± 1.82b<br />

Soybean 1590.8 ± 381.7a 19.1 ± 0.62a 51.2 ± 12.29bc 0.131 ± 0.014b 30.0 ± 1.50b<br />

1 Means (± SE) within columns followed by the same letter do not differ significantly (Tukey’s test: P>0.05).<br />

2 Means (± 95% c<strong>on</strong>fidence intervals) within columns followed by the same letter do not differ significantly through pairwise comparis<strong>on</strong>s<br />

after Jackknife method (Maia et al., 2000). R o = net reproductive rate, r m = intrinsic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> increase, and T = mean<br />

generati<strong>on</strong> time.<br />

cott<strong>on</strong> plants, whereas those reared <strong>on</strong> corn and soybean<br />

exhibited intermediate values (Table 2). For the mean generati<strong>on</strong><br />

time, cott<strong>on</strong> plants produced the highest and millet<br />

the lowest (Table 2).<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants under <strong>different</strong><br />

stages caused by FAW infestati<strong>on</strong><br />

The infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants grown in the microparcels<br />

with 48-h-old FAW larvae during the blooming stage and<br />

allowed <strong>on</strong>e immature generati<strong>on</strong> caused significant loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> squares (F 1,8 = 17.62, P = 0.003; Figure 1A). The mean<br />

differences ( ± 95% CI) resulted in 7.7 ± 3.07 squares lost<br />

per plant more than the natural shedding observed in the<br />

c<strong>on</strong>trol treatments at 20 days after infestati<strong>on</strong>. In additi<strong>on</strong>,<br />

the infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae allowing two immature<br />

generati<strong>on</strong>s significantly increased the number <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

Figure 1 Means [± 95% c<strong>on</strong>fidence intervals (CI)] for differences <str<strong>on</strong>g>of</str<strong>on</strong>g> (A) squares lost, (B) damaged bolls, (C) squares remaining, and (D)<br />

undamaged bolls per plant between treatments (with infestati<strong>on</strong>) and c<strong>on</strong>trol treatment (without infestati<strong>on</strong>) in the field following release<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 150 48-h-old <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> larvae <strong>on</strong> three cott<strong>on</strong> plants per microparcel at blooming stage and allowed <strong>on</strong>e generati<strong>on</strong> (Blooming<br />

1), blooming stage with two FAW generati<strong>on</strong>s (Blooming 2), and boll stage and <strong>on</strong>e FAW generati<strong>on</strong> (Boll 1). CI not crossing the zero<br />

line indicate significant differences between treatments with and without infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW.


242 Barros et al.<br />

lost per plant (F 1,8 =17.62,P=0.003;Figure1C)with<br />

5 ± 3.50 squares lost across the two generati<strong>on</strong>s. Moreover,<br />

the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> squares in the two-generati<strong>on</strong> treatment<br />

was greater than that in the treatment with <strong>on</strong>e immature<br />

generati<strong>on</strong> during boll stage (F2,17 = 6.05, P = 0.010). On<br />

the other hand, infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 48-h-old FAW larvae <strong>on</strong> cott<strong>on</strong><br />

plants at the boll stage and allowing <strong>on</strong>e immature<br />

generati<strong>on</strong> did not result in significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> squares<br />

(F 1,13 = 1.49, P = 0.24) when compared to natural shedding<br />

found in the c<strong>on</strong>trol treatments (mean ± 95% CI:<br />

2 ± 2.62; Figure 1C).<br />

All treatments with FAW infestati<strong>on</strong> had damaged bolls<br />

and there was greater loss <str<strong>on</strong>g>of</str<strong>on</strong>g> bolls with infestati<strong>on</strong> at the<br />

blooming stage and with two immature generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FAW (F 2,17 = 69.87, P


et al., 2004), we found lower larval survival and 44% lower<br />

weight gain for larvae reared <strong>on</strong> corn compared to larvae<br />

reared <strong>on</strong> millet under field c<strong>on</strong>diti<strong>on</strong>s, indicating possible<br />

competiti<strong>on</strong> am<strong>on</strong>g larvae reared <strong>on</strong> corn plants. Thus,<br />

additi<strong>on</strong>al millet whorls possibly allow FAW larvae to<br />

develop with less competiti<strong>on</strong> than occurs when several<br />

larvae col<strong>on</strong>ize a single corn plant. In additi<strong>on</strong>, folds in the<br />

millet leaves near the leaf collar <str<strong>on</strong>g>of</str<strong>on</strong>g>fer shelter to FAW larvae<br />

– several larvae were found at this locati<strong>on</strong> <strong>on</strong> day 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> larval<br />

evaluati<strong>on</strong>.<br />

Soybean and cott<strong>on</strong> plants produce a larger foliage area<br />

compared to corn, allowing larvae to be more diffuse and<br />

reduce potential competiti<strong>on</strong>. Thus, the lower performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae <strong>on</strong> cott<strong>on</strong> and soybean leaves is<br />

related to the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves as food for early larval stages<br />

col<strong>on</strong>izing these plants. According to Ali & Luttrell (1990),<br />

the lower survival <str<strong>on</strong>g>of</str<strong>on</strong>g> nenoate FAW larvae fed cott<strong>on</strong> is<br />

resp<strong>on</strong>sible for the lower success <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW col<strong>on</strong>izing cott<strong>on</strong><br />

fields. Similarly, FAW larvae reared individually under laboratory<br />

c<strong>on</strong>diti<strong>on</strong>s and fed ad libitum with corn, millet,<br />

soybean, or cott<strong>on</strong> leaves performed better <strong>on</strong> corn and<br />

millet than <strong>on</strong> soybean or cott<strong>on</strong> (Sá et al., 2009; Barros<br />

et al., 2010).<br />

The lower performance <str<strong>on</strong>g>of</str<strong>on</strong>g> ne<strong>on</strong>ate FAW feeding <strong>on</strong><br />

either cott<strong>on</strong> leaves or bolls, when available, have some<br />

possible explanati<strong>on</strong>s. First, cott<strong>on</strong> leaves c<strong>on</strong>tain several<br />

antiherbivory sec<strong>on</strong>dary compounds such as gossypol, a<br />

sesquiterpene aldehyde that c<strong>on</strong>fers resistance against<br />

herbivory, delaying larval development, and reducing<br />

weight gain and survival (M<strong>on</strong>tand<strong>on</strong> et al., 1987; Stipanovic<br />

et al., 2006). Sec<strong>on</strong>d, the ne<strong>on</strong>ate larvae that avoid<br />

feeding <strong>on</strong> leaves move to the bolls, where they feed <strong>on</strong><br />

bracts and try to bore into the bolls. However, young larvae<br />

are unable to penetrate the boll walls, especially during<br />

the maturati<strong>on</strong> stage. In our field evaluati<strong>on</strong>, we found<br />

several bolls with destroyed bracts and external feeding<br />

scars, but without entry openings. This indicates that as<br />

the boll wall hardens with maturati<strong>on</strong> it becomes increasingly<br />

difficult for FAW larvae to bore into the boll. Ali<br />

et al. (1990) and Luttrell & Mink (1999) observed that<br />

FAW larvae fed <strong>on</strong> cott<strong>on</strong> leaves until the sec<strong>on</strong>d instar,<br />

when they moved to reproductive structures. The movement<br />

required through the plant canopy seeking reproductive<br />

structures may impose an energy use that also<br />

affects their performance. It is important to highlight that<br />

the FAW moths lay eggs <strong>on</strong> leaves in the plant top when<br />

infesting species <str<strong>on</strong>g>of</str<strong>on</strong>g> Poaceae and the hatching larvae move<br />

to the whorls where they complete the development. All<br />

these c<strong>on</strong>diti<strong>on</strong>s diminish the larval performance. For<br />

instance, Luttrell & Mink (1999) estimated that <strong>on</strong>ly<br />

0.07% <str<strong>on</strong>g>of</str<strong>on</strong>g> ne<strong>on</strong>ate FAW larvae successfully col<strong>on</strong>ized cott<strong>on</strong><br />

plants in the field. S<str<strong>on</strong>g>of</str<strong>on</strong>g>t bolls, however, are suitable food<br />

Fall armyworm performance <strong>on</strong> <strong>different</strong> <strong>hosts</strong> 243<br />

for FAW larvae. When FAW larvae bore into s<str<strong>on</strong>g>of</str<strong>on</strong>g>t bolls they<br />

exhibit development comparable to top host plants such as<br />

corn and millet. Fall armyworm larvae fed <strong>on</strong>ly s<str<strong>on</strong>g>of</str<strong>on</strong>g>t bolls<br />

performed significantly better than larvae fed <strong>on</strong>ly cott<strong>on</strong><br />

leaves or leaves plus mature bolls (Barros et al., 2010).<br />

Life history characteristics estimate the instantaneous<br />

populati<strong>on</strong> growth for a species under specific experimental<br />

c<strong>on</strong>diti<strong>on</strong>s (Maia et al., 2000; Greenberg et al., 2001).<br />

Thus, under the microparcel c<strong>on</strong>diti<strong>on</strong>s in the field, we<br />

can c<strong>on</strong>clude that millet, a cover or winter crop used in the<br />

Cerrado, was the best host for FAW larvae based <strong>on</strong> the net<br />

reproductive rate (Ro) and the intrinsic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

increase (rm) (Table 2). Furthermore, cott<strong>on</strong> is capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sustaining the pest in the field, though not as productively<br />

as host as millet and corn. This leads us to the observati<strong>on</strong><br />

that FAW is a sporadic pest <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> and that outbreaks<br />

in cott<strong>on</strong> will depend <strong>on</strong> other envir<strong>on</strong>mental and biological<br />

phenomena such as the temporary availability <str<strong>on</strong>g>of</str<strong>on</strong>g> preferred<br />

<strong>hosts</strong> nearby (e.g., millet) that functi<strong>on</strong> as sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

FAW populati<strong>on</strong>s for cott<strong>on</strong> fields (Johns<strong>on</strong>, 1987; Nagoshi<br />

et al., 2008; Nagoshi, 2009). Based <strong>on</strong> our results and<br />

those reported by Ali & Luttrell (1990) and Ali et al.<br />

(1990), the low survival <str<strong>on</strong>g>of</str<strong>on</strong>g> ne<strong>on</strong>ate larvae and delayed larval<br />

development <strong>on</strong> cott<strong>on</strong> are the main explanati<strong>on</strong>s for<br />

the sporadic occurrence and unpredictable status <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW<br />

as a cott<strong>on</strong> pest, despite the large number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs (in<br />

masses) that can be laid <strong>on</strong> cott<strong>on</strong> plants.<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> plants under <strong>different</strong><br />

stages caused by FAW infestati<strong>on</strong><br />

According to the results, FAW larvae cause significant loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> squares <strong>on</strong>ly when plants are infested early in the<br />

seas<strong>on</strong> and young bolls are available. The infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cott<strong>on</strong> plants in the blooming stage resulted in losses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

squares that did not differ from natural abscissi<strong>on</strong> in<br />

microparcels without infestati<strong>on</strong>, indicating that FAW<br />

preferred bolls over leaves or squares when they are available.<br />

This is also verified by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> squares remaining<br />

<strong>on</strong> the plants infested at the boll stage, or at the<br />

Blooming 2. These results suggest that during the sec<strong>on</strong>d<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae caged <strong>on</strong> plants, when bolls were<br />

available, the larvae switched to feed <strong>on</strong> bolls, leaving the<br />

new squares undamaged.<br />

The infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW larvae in cott<strong>on</strong> plants at<br />

blooming stage showed delayed development compared to<br />

infestati<strong>on</strong> at the boll stage or the average <str<strong>on</strong>g>of</str<strong>on</strong>g> two generati<strong>on</strong>s.<br />

At blooming stage the larvae had access <strong>on</strong>ly to<br />

leaves or squares. This c<strong>on</strong>firms that young bolls are the<br />

most suitable structures for FAW larval feeding in cott<strong>on</strong>.<br />

The white mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>different</strong>iating fiber in the interior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bolls prior to boll maturity seems to be a suitable food for<br />

FAW, in additi<strong>on</strong> to the shelter that the boll affords to the


244 Barros et al.<br />

larva. According to Meyer et al. (2004) young cott<strong>on</strong> bolls<br />

before seed maturati<strong>on</strong> do not c<strong>on</strong>tain gossypol, as the<br />

seeds have not yet developed. Thus, FAW moths col<strong>on</strong>izing<br />

cott<strong>on</strong> fields in early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> boll development will<br />

find suitable food for their larvae that survive and move to<br />

the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t bolls.<br />

Although low performance is found for FAW larvae<br />

infesting cott<strong>on</strong> plants in the blooming stage, development<br />

and survival were sufficient to permit the populati<strong>on</strong> to<br />

increase after completing two immature generati<strong>on</strong>s, <strong>on</strong>ly<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which occurred when bolls were abundant. It is also<br />

important to note that few bolls were available during the<br />

infestati<strong>on</strong> at Blooming 1 compared to the infestati<strong>on</strong> at<br />

Boll Stage or at Blooming 2. At the Blooming 2 stage, a sec<strong>on</strong>d<br />

immature generati<strong>on</strong> occurred during the predominance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t boll producti<strong>on</strong> by the plants.<br />

Our results indicate that successful c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW in<br />

the Brazilian Cerrado will depend <strong>on</strong> tracking the populati<strong>on</strong>s<br />

across crop systems during and across seas<strong>on</strong>s c<strong>on</strong>sidering<br />

the species <str<strong>on</strong>g>of</str<strong>on</strong>g> plants used for double cropping and<br />

for cover crops in no-tillage planting systems. The use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

millet as a cover crop will <str<strong>on</strong>g>of</str<strong>on</strong>g>fer an excellent winter host for<br />

FAW to build populati<strong>on</strong>s when not limited by winter<br />

temperatures, from which FAW can col<strong>on</strong>ize the major<br />

summer crops such as corn, soybean, and cott<strong>on</strong> that compose<br />

the Cerrado landscape. The timing <str<strong>on</strong>g>of</str<strong>on</strong>g> early maturati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> corn and soybean ( 90–110 days) overlaps with<br />

the most favorable stage <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> (pre-maturati<strong>on</strong> boll<br />

stage) for FAW. The need for area-wide and crop-system<br />

management to deal with FAW is not a new c<strong>on</strong>cept<br />

(Sparks, 1986). Polyphagous, mobile species all impose<br />

similar needs to address management across landscapes.<br />

This has been addressed for Helicoverpa armigera Hübner<br />

in China and Australia (Wu, 2007; Herde, 2009), and<br />

recently for plant bugs in the USA (Abel et al., 2007).<br />

The slow development <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW feeding <strong>on</strong>ly <strong>on</strong> cott<strong>on</strong><br />

leaves suggests that the outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> FAW in cott<strong>on</strong> at the<br />

boll stage will result from <strong>on</strong>e to two previous generati<strong>on</strong>s<br />

within cott<strong>on</strong> fields if <strong>on</strong>ly cott<strong>on</strong> is the source host. Otherwise,<br />

the outbreak can be in advance from mass migrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adults from nearby <strong>hosts</strong> during the maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

crops and weeds that dominate the Cerrado landscape<br />

(e.g., corn, soybean, and pasture). Egg producti<strong>on</strong> by FAW<br />

was high irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> host used previously (Table 2),<br />

which helps to compensate for low survival <str<strong>on</strong>g>of</str<strong>on</strong>g> young larvae<br />

and, hence, the relatively high numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving larvae<br />

are able to cause significant damage to available bolls. Possible<br />

mass migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adults seems to be an interesting<br />

hypothesis testable by tracking larval populati<strong>on</strong> in the<br />

crops and adult migrati<strong>on</strong> am<strong>on</strong>g the crops. Although<br />

corn is c<strong>on</strong>sidered the preferred host, FAW infests a large<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivated and uncultivated plants that are<br />

comm<strong>on</strong> in the Cerrado. These host plants can sustain<br />

FAW populati<strong>on</strong>s and functi<strong>on</strong> as a reservoir between seas<strong>on</strong>s.<br />

Moreover, millet used as a winter cover crop provides<br />

a highly suitable host for FAW, superior to corn based <strong>on</strong><br />

our results. Thus, FAW can find suitable developmental<br />

<strong>hosts</strong> year-round in the Cerrado if temperature does not<br />

impose developmental or survival limitati<strong>on</strong>s.<br />

Acknowledgements<br />

The authors acknowledge the support given, in the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research grants provided to the authors, by the agencies<br />

FACEPE (Fundação de Amparo a Ciência e Tecnologia do<br />

Estado de Pernambuco) and CNPq (C<strong>on</strong>selho Naci<strong>on</strong>al<br />

de Desenvolvimento Científico e Tecnológico), and<br />

research funds provided by FINEP (Financiadora de Estudos<br />

e Projetos).<br />

References<br />

Abdi H (2007) The B<strong>on</strong>fer<strong>on</strong>ni and S ˇ idák correcti<strong>on</strong>s for multiple<br />

comparis<strong>on</strong>s. Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Measurement and Statistics,<br />

Vol. 2 (ed. by N Salkind), pp. 540–542. Sage Publicati<strong>on</strong>s,<br />

Thousand Oaks, CA, USA.<br />

Abel CA, Snodgrass GL & Gore J (2007) A cultural method for<br />

the area-wide c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> tarnished plant bug Lygus lineolaris,in<br />

cott<strong>on</strong>. Area-Wide C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Insect Pests from Research to<br />

Field Implementati<strong>on</strong>, Vol. 1 (ed. by MJB Vreysen, AS Robins<strong>on</strong><br />

& J Hendrichs), pp. 497–504. Springer, Dordrecht, The<br />

Netherlands.<br />

Ali A & Luttrell RG (1990) Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> fall armyworm (Lepidoptera:<br />

Noctuide) immatures <strong>on</strong> cott<strong>on</strong>. Florida Entomologist<br />

73: 459–465.<br />

Ali A, Luttrell RG & Pitre HN (1990) Feeding sites and distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fall armyworm (Lepidoptera: Noctuidae) larvae <strong>on</strong> cott<strong>on</strong>.<br />

Envir<strong>on</strong>mental Entomology 19: 1060–1067.<br />

Arruda FP, Andrade AP, Silva IF, Pereira IE & Guimarães MAM<br />

(2002) Emissão ⁄ Abscisão de estruturas reprodutivas do algodoeiro<br />

herbáceo cv CNPA 7H: efeito do estresse hídrico. Revista<br />

Brasileira de Engenharia Agrícola 6: 21–27.<br />

Barros EM, Torres JB & Bueno AF (2010) Oviposição, desenvolvimento<br />

e reproduçãode<str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (J.E. Smith)<br />

(Lepidoptera: Noctuidae) em diferentes hospedeiros de importância<br />

ec<strong>on</strong>ômica. Neotropical Entomology 39 (in press).<br />

Busato GR, Grutzmacher AD, Oliveira AC, Vieira EA, Zimmer<br />

PD et al. (2004) Análise da estrutura e diversidade molecular<br />

de populações de <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (J.E. Smith) (Lepidoptera:<br />

Noctuidae) associadas às culturas do milho e arroz no<br />

Rio Grande do Sul. Neotropical Entomology 33: 709–716.<br />

Capinera JL (2002) Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetable Pests, Vol. 1. Academic<br />

Press, San Diego, CA, USA.<br />

Cruz I (1995) A Lagarta-do-Cartucho na Cultura do Milho. Embrapa<br />

Milho e Sorgo, Sete Lagoas, MG, Brasil (Circular Técnica<br />

21).


Cruz I & M<strong>on</strong>teiro MAR (2004) C<strong>on</strong>trole Biológico da Lagarta<br />

do Cartucho do Milho <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> Utilizando o<br />

Parasitóide de Ovos Trichogramma pretiosum. Embrapa Milho<br />

e Sorgo, Sete Lagoas MG, Brasil (Comunicado Técnico 98).<br />

Cruz I & Turpin FT (1983) Yield impact <str<strong>on</strong>g>of</str<strong>on</strong>g> larval infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fall armyworm <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (J.E. Smith) to midwhorl<br />

growth stage <str<strong>on</strong>g>of</str<strong>on</strong>g> corn. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Entomology<br />

76: 1052–1054.<br />

Davis FM, Williams WP, Chang YM, Baker GT & Hedin PA<br />

(1999) Differential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fall armyworm larvae (Lepidoptera:<br />

Noctuidae) reared <strong>on</strong> three phenotypic regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> whorl<br />

leaves from a resistant and a susceptible maize hybrid. Florida<br />

Entomologist 82: 248–254.<br />

Di Stefano J (2005) Effect size estimates and c<strong>on</strong>fidence intervals:<br />

an alternative focus for the presentati<strong>on</strong> and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ecological data. New Trends in Ecology Research, Vol. 1 (ed.<br />

by AR Burk), pp. 71–102. Nova Science, New York, NY, USA.<br />

Greenberg SM, Sappingt<strong>on</strong> TW, Legaspi BC, Liu TX & Sétamou<br />

M (2001) Feeding and life history <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> exigua<br />

(Lepidoptera: Noctuidae) <strong>on</strong> <strong>different</strong> host plants. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Entomological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America 94: 566–575.<br />

Greene GL, Leppla NC & Dickers<strong>on</strong> WA (1976) Velvetbean caterpillar:<br />

a rearing procedure and artificial medium. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ec<strong>on</strong>omic Entomology 69: 487–488.<br />

Herde R (2009) Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Helicoverpa armigera to Agricultural<br />

Envir<strong>on</strong>ments Diversified through Compani<strong>on</strong> Planting.<br />

MPhil Thesis, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Queensland, Brisbane,<br />

Queensland, Australia.<br />

Johns<strong>on</strong> SF (1987) Migrati<strong>on</strong> and the life history strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> fall<br />

armyworm, <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> in the Western Hemisphere.<br />

Insect Science and its Applicati<strong>on</strong> 8: 543–549.<br />

Luginbill P (1928) The Fall Armyworm. USDA Technical Bulletin,<br />

Washingt<strong>on</strong> DC, USA 34: 1–91.<br />

Luttrell RG & Mink JS (1999) Damage to cott<strong>on</strong> fruiting structures<br />

by the fall armyworm, <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (Lepidoptera:<br />

Noctuide). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cott<strong>on</strong> Science 3: 35–44.<br />

Maia AHN, Luiz AJB & Campanhola C (2000) Statistical inference<br />

<strong>on</strong> associated fertility life table parameters using Jackknife<br />

technique: computati<strong>on</strong>al aspects. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Entomology<br />

93: 511–518.<br />

Martinelli S, Clark PL, Zucchi MI, Silva MC, Foster JE & Omoto<br />

C (2007) Genetic structure and molecular variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g><br />

<str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> (Lepidoptera: Noctuidae) collected in maize<br />

and cott<strong>on</strong> fields in Brazil. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomological Research<br />

97: 225–231.<br />

Meagher RL & Nagoshi RN (2004) Populati<strong>on</strong> dynamics and<br />

occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g> host strains in southern<br />

Florida. Ecological Entomology 29: 614–620.<br />

Fall armyworm performance <strong>on</strong> <strong>different</strong> <strong>hosts</strong> 245<br />

Meagher RL, Nagoshi RN, Stuhl C & Mitchell ER (2004) Larval<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> fall armyworm (Lepidoptera: Noctuidae) <strong>on</strong><br />

<strong>different</strong> cover crop plants. Florida Entomologist 87: 454–460.<br />

Meyer R, Vorster S & Dubery IA (2004) Identificati<strong>on</strong> and quantificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gossypol in cott<strong>on</strong> by using packed micro-tips columns<br />

in combinati<strong>on</strong> with HPLC. Analytical and Bioanalytical<br />

Chemistry 380: 719–724.<br />

M<strong>on</strong>tand<strong>on</strong> R, Stipanovic RD, Williams HJ, Sterling WL & Vins<strong>on</strong><br />

SB (1987) Nutriti<strong>on</strong>al indices and excreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gossypol by Alabama<br />

argillacea (Hübner) and Heliothis virescens (F.) (Lepidoptera:<br />

Noctuidae) fed glanded and glandless cotyled<strong>on</strong>ary<br />

cott<strong>on</strong> leaves. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Entomology 80: 32–36.<br />

Nagoshi RN (2009) Can the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> corn acreage predict fall<br />

armyworm (Lepidoptera: Noctuidae) infestati<strong>on</strong> levels in<br />

nearby cott<strong>on</strong>? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Entomology 102: 210–218.<br />

Nagoshi RN, Meagher RL, Flanders K, Gore J, Jacks<strong>on</strong> R et al.<br />

(2008) Using haplotypes to m<strong>on</strong>itor the migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fall<br />

armyworm (Lepidoptera: Noctuidae) corn-strain populati<strong>on</strong>s<br />

from Texas and Florida. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Entomology<br />

101: 742–749.<br />

Pashley DP (1986) Host-associated genetic <strong>different</strong>iati<strong>on</strong> in fall<br />

armyworm (Lepidoptera: Noctuidae): A sibling species complex?<br />

Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> the Entomological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America 79: 898–<br />

904.<br />

Pashley DP, Johns<strong>on</strong> SJ & Sparks AN (1985) Genetic populati<strong>on</strong><br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> migratory moths: the fall armyworm (Lepidoptera:<br />

Noctuidae). Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> the Entomological Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

America 78: 756–762.<br />

Sá VGM, F<strong>on</strong>seca BVC, Boregas KGB & Waquil JM (2009) Sobrevivência<br />

e desenvolvimento larval de <str<strong>on</strong>g>Spodoptera</str<strong>on</strong>g> <str<strong>on</strong>g>frugiperda</str<strong>on</strong>g><br />

(J.E. Smith) (Lepidoptera: Noctuide) em hospedeiros alternativos.<br />

Neotropical Entomology 38: 108–115.<br />

SAS Institute (2001) SAS ⁄ STAT User’s Guide, Versi<strong>on</strong> 8.02, TS<br />

Level 2MO. SAS Institute, Cary, NC, USA.<br />

Sparks AN (1979) A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the biology <str<strong>on</strong>g>of</str<strong>on</strong>g> the fall armyworm.<br />

Florida Entomologist 62: 82–87.<br />

Sparks AN (1986) Fall armyworm (Lepidoptera: Noctuidae):<br />

potential for area-wide management. Florida Entomologist 69:<br />

603–614.<br />

Stipanovic RD, Lopez-Junior JD, Dowd MK, Puckhaber LS &<br />

Duke SE (2006) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> racemic and (+) and ()) gossypol <strong>on</strong><br />

the survival and development <str<strong>on</strong>g>of</str<strong>on</strong>g> Helicoverpa zea larvae. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Ecology 32: 959–968.<br />

Wu KM (2007) management strategy for cott<strong>on</strong> bollworm Helicoverpa<br />

armigera in China. Area-Wide C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Insect Pests<br />

from Research to Field Implementati<strong>on</strong>, Vol. 1 (ed. by MJB<br />

Vreysen, AS Robins<strong>on</strong> & J Hendrichs), pp. 559–565. Springer,<br />

Dordrecht, The Netherlands.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!