01.03.2013 Views

UD Prepregs for Load Carrying Structures in Infused - Hexcel.com

UD Prepregs for Load Carrying Structures in Infused - Hexcel.com

UD Prepregs for Load Carrying Structures in Infused - Hexcel.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0<br />

Sandia 210710


<strong>UD</strong> <strong>Prepregs</strong> <strong>for</strong> <strong>Load</strong> <strong>Carry<strong>in</strong>g</strong> <strong>Structures</strong><br />

<strong>in</strong> <strong>Infused</strong> Blades<br />

A presentation by Dr Chris Shennan<br />

R&T Manager<br />

<strong>Hexcel</strong> Corporation


Agenda<br />

2<br />

�Introduction to <strong>Hexcel</strong> <strong>in</strong> W<strong>in</strong>d Energy<br />

�Prepreg and <strong>in</strong>fusion technologies<br />

�Comb<strong>in</strong>ations of prepreg and <strong>in</strong>fusion<br />

�Examples<br />

� <strong>Prepregs</strong> <strong>in</strong> thick lam<strong>in</strong>ates<br />

� Comparison of mechanical properties from prepreg and <strong>in</strong>fusion<br />

� Case study – large scale trial<br />

�Conclusions<br />

Sandia 210710


Introduction to <strong>Hexcel</strong> <strong>in</strong> W<strong>in</strong>d Energy


<strong>Hexcel</strong>: Company Profile<br />

4<br />

�Lead<strong>in</strong>g global provider of advanced <strong>com</strong>posites<br />

�Primary markets: aerospace, defence and w<strong>in</strong>d energy<br />

�Net Sales of $1.108 billion <strong>in</strong> 2009<br />

�4,000 employees worldwide<br />

�Headquarters <strong>in</strong> Stam<strong>for</strong>d, CT, USA<br />

�Listed on NYSE<br />

�Manufactur<strong>in</strong>g <strong>in</strong> n<strong>in</strong>e countries, 18 locations<br />

Sandia 210710


<strong>Hexcel</strong> - Vertically Integrated<br />

5<br />

Sandia 210710


<strong>Hexcel</strong> <strong>in</strong> Global W<strong>in</strong>d Energy<br />

6<br />

� Market Leader <strong>for</strong> prepreg materials <strong>in</strong> W<strong>in</strong>d Energy<br />

� More than 65000 tons of prepreg products supplied s<strong>in</strong>ce early 1990s<br />

� Global Supply, Sales, Technical Support and R&T<br />

� Product development <strong>in</strong> close cooperation with key accounts<br />

Sandia 210710<br />

New plant <strong>for</strong> w<strong>in</strong>d energy at W<strong>in</strong>dsor<br />

Colorado 2009


Infusion and Prepreg Technologies<br />

What are prepregs?<br />

How do prepreg and <strong>in</strong>fusion processes <strong>com</strong>pare?


Impregnation of Fibre and Fabrics from Res<strong>in</strong><br />

8<br />

Sandia 210710<br />

Prepreg production is<br />

now highly <strong>in</strong>dustrialised<br />

<strong>for</strong> optimum cost and quality


Typical Prepreg Systems <strong>in</strong> W<strong>in</strong>d Energy<br />

9<br />

�Res<strong>in</strong> systems<br />

M9 290 J/g<br />

M9F 250 J/g<br />

M19 190 J/g<br />

�Product <strong>for</strong>ms (<strong>UD</strong>)<br />

Carbon 500-600 gsm<br />

Glass 1000-3000 gsm<br />

�Cure cycles (ramps, dwells + cure times)<br />

~4 (M19) to ~8 (M9) hours when optimised<br />

�Storage at +5 o C (6 month shelf life)<br />

Typical prepregs <strong>com</strong>b<strong>in</strong>e high areal weights,<br />

full impregnation, and low reaction enthalpies<br />

Sandia 210710


Prepreg and Infusion <strong>in</strong> W<strong>in</strong>d Energy<br />

10<br />

Infusion (epoxy)<br />

Worldwide Cumulative MW Installed<br />

160 000 total (2009)<br />

49%<br />

14%<br />

Sandia 210710<br />

37%<br />

Prepreg epoxy Infusion epoxy Infusion PE/VE<br />

The split between prepreg and <strong>in</strong>fusion <strong>for</strong> blade<br />

manufacture is similar<br />

Prepreg (epoxy)


Blade technology: Infusion versus Prepreg<br />

11<br />

Raw Material Cost ~ 3.0 (res<strong>in</strong> + glass NCF)<br />

€/kg<br />

€/m 3<br />

Infusion Prepreg<br />

Foam: 1600<br />

+<br />

Both technologies have their pros and cons<br />

Sandia 210710<br />

<strong>UD</strong>: 2.8 to 3.3/ Glass NCF ~ 4.0<br />

Foam: 1800<br />

-<br />

Tool<strong>in</strong>g Cost ++ --<br />

Capex Requirements + -<br />

Layup - +<br />

Cure Cycle - +<br />

Up to 20 hours Up to 10 hours<br />

Blade F<strong>in</strong>ish<strong>in</strong>g + -<br />

Health & Safety - +<br />

Waste & Scrap -- -<br />

Throughput & Quality Control -- ++<br />

Mechanical Per<strong>for</strong>mance - +


12<br />

Why not <strong>com</strong>b<strong>in</strong>e Prepreg and Infusion<br />

Technologies?


Comb<strong>in</strong>ations of Prepreg and Infusion Technologies<br />

13<br />

Proposal<br />

Use prepreg <strong>in</strong> load critical structures (spar caps or girders)<br />

Benefits<br />

Full impregnation (even <strong>in</strong> thickest structures, even with carbon)<br />

Choice of chemistry (reaction enthalpy) to suit cycle<br />

Low exotherm<br />

Benefits (to be demonstrated)<br />

Low porosity <strong>in</strong> lam<strong>in</strong>ate<br />

Fast cure cycle<br />

Maximum mechanical properties from pure <strong>UD</strong><br />

Sandia 210710


Comb<strong>in</strong>ations of Prepreg and Infusion Technologies<br />

14<br />

Three examples<br />

1. <strong>Prepregs</strong> <strong>in</strong> thick lam<strong>in</strong>ates<br />

2. Comparison of mechanical properties from prepreg and<br />

<strong>in</strong>fusion<br />

3. Case Study: Large scale trial of prepreg <strong>in</strong> a spar cap<br />

Sandia 210710


<strong>Prepregs</strong> <strong>in</strong> Thick Lam<strong>in</strong>ates<br />

Example 1


Cure Cycles Us<strong>in</strong>g Low Exotherm <strong>Prepregs</strong><br />

16<br />

5 plies<br />

Dry BB450<br />

60 prepreg plies<br />

11 biax layers<br />

~ 6 cm thick<br />

Sandia 210710<br />

M(1)9.1/32%/1200/G<br />

X 10


Top<br />

Middle<br />

Bottom<br />

Cure Cycles: Layup Configuration<br />

17<br />

Thermocouples<br />

Left Middle Right<br />

After cure<br />

Sandia 210710<br />

Vacuum bag<br />

Per<strong>for</strong>ated<br />

film (P3)<br />

Bleeder (2 plies)<br />

Peel ply<br />

Prepreg stack


Cure Cycles: Results<br />

18<br />

M9.1 M19.1<br />

Maximum temperature (°C)<br />

Tool surface<br />

In the middle<br />

125<br />

166<br />

112<br />

138<br />

Exotherm after (hours)<br />

4 6<br />

M19.1<br />

Sandia 210710<br />

Peak exotherm can be reduced<br />

by optimisation of<br />

matrix and cure cycle<br />

Cure cycles<br />

not optimised


Low Porosity <strong>in</strong> Thick Lam<strong>in</strong>ates<br />

19<br />

4 plies<br />

9 plies<br />

53 prepreg plies<br />

6 biax layers<br />

~ 6 cm thick<br />

Sandia 210710<br />

X 5<br />

Dry BB600<br />

M9.6F/32%/1600+CV/G


Low Porosity: Results<br />

20<br />

Fiber<br />

volume (%)<br />

Air content<br />

(%)<br />

51,9 0,2<br />

Very low porosities can be<br />

achieved with standard prepregs<br />

even <strong>in</strong> thick lam<strong>in</strong>ates<br />

Sandia 210710


Comparison of Mechanical Properties<br />

from Prepreg and Infusion<br />

Example 2


Mechanical Evaluation - Overview<br />

22<br />

Prepreg panel cured at 100°C<br />

Mechanical <strong>com</strong>parison<br />

Infusion panel cured at 100°C<br />

Sandia 210710<br />

Reference prepreg panel cured<br />

at 120°C under pressure<br />

(gives ultimate per<strong>for</strong>mance)<br />

Test Plies<br />

Tensile 0° 2<br />

Tensile 90°<br />

Compression 0° 2<br />

2<br />

4<br />

ILSS/ SBS 4<br />

IPS 2


Mechanical Evaluation - Trial Layup<br />

23<br />

Top view<br />

Side view<br />

4 Plies 2 Plies 2 Plies<br />

1300 mm 1700 mm 1000 mm<br />

TC Air temp<br />

Sandia 210710<br />

1000 mm<br />

0°<br />

90°<br />

TC


Mechanical Evaluation - Trials<br />

24<br />

Infusion:<br />

� Re<strong>in</strong><strong>for</strong>cement: LT1218 (stitched <strong>UD</strong>)<br />

� Res<strong>in</strong>: Hexion RIM 135<br />

Prepreg:<br />

� M9.1/32%/1200/G<br />

Res<strong>in</strong> flow<br />

Res<strong>in</strong> <strong>in</strong>let Res<strong>in</strong> outlet<br />

Flow medium Per<strong>for</strong>ated film: P1<br />

Peel ply<br />

Bleeder<br />

Peel ply<br />

Sandia 210710<br />

VAP Membrane<br />

Dry fabric<br />

Per<strong>for</strong>ated film: P3<br />

Prepreg and <strong>in</strong>fusion panels given the same cure of 6 hours at 100 o C


Mechanical Evaluation – Reference<br />

25<br />

� M9.1/32%/1200/G<br />

� 8 bars<br />

� Cure cycle:<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

00:00:00<br />

00:25:00<br />

00:50:00<br />

01:15:00<br />

01:40:00<br />

02:05:00<br />

02:30:00<br />

Def<strong>in</strong>es ultimate per<strong>for</strong>mance of prepreg<br />

02:55:00<br />

03:20:00<br />

03:45:00<br />

Sandia 210710<br />

04:10:00<br />

04:35:00<br />

05:00:00<br />

05:25:00<br />

05:50:00


Mechanical Evaluation: Results<br />

Panel<br />

Characterisation:<br />

Mechanical results:<br />

26<br />

* normalised to FV=60%<br />

Reference Prepreg Infusion<br />

Fiber volume (%) 70,1 65,3 58,9<br />

Air volume (%) 0 1.55 1.45<br />

Tg (DSC) (°C) 127,1 124,8 74,2<br />

Test<br />

Standard test<br />

method<br />

Plies<br />

Prepreg reference<br />

Strength (MPa) Modulus (GPa)<br />

Prepreg<br />

Strength (MPa) Modulus (GPa)<br />

Infusion<br />

Strength (MPa) Modulus (GPa)<br />

Tensile 0° *<br />

Tensile 90°<br />

EN ISO 527<br />

2<br />

2<br />

1241<br />

48<br />

48.7<br />

16.9<br />

1109<br />

28.93<br />

47.7<br />

14.29<br />

979<br />

47.75<br />

46<br />

12.61<br />

Compression 0° * ISO 14126 2 1144 51.8 771.3 45.35 657.3 49.73<br />

ILSS/ SBS ISO 14130 4 75.3 53.4 51.7<br />

Flexural 0° * ISO 14125 4 1557 42.7 1315 37.7 1131 33.2<br />

IPS EN 6031 2 45.1 6.4 36.5 4.8 43.2 3.5<br />

Sandia 210710<br />

100MPa= 14.5ksi


Mechanical Evaluation: Results<br />

27<br />

Strength MPa<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Prepreg consistently delivers<br />

superior mechanical per<strong>for</strong>mance<br />

Tensile Compression ILSS/ SBS Flexural<br />

Sandia 210710<br />

Prepreg Reference<br />

Prepreg 100C<br />

Infusion 100C


Case Study<br />

Large Scale Trial of Prepreg <strong>in</strong> a Spar Cap<br />

Example 3


Use of Prepreg <strong>for</strong> Spar Cap Construction<br />

29<br />

Sandia 210710<br />

Pre-cured spar cap <strong>in</strong>fused to <strong>for</strong>m<br />

the <strong>com</strong>plete shell


Case Study: Carbon Girder at Half Scale<br />

30<br />

Carbon spar caplength 25 m<br />

Carbon spar cap width 0,40 m<br />

Carbon spar cap thickness 22 mm<br />

Number of plies 43<br />

Material M9.6/32%/500 + 8P/C<br />

AC controlled shelter<br />

25°C<br />

40 % HR<br />

Heated and<br />

regulated<br />

mould<br />

Peel ply<br />

<strong>UD</strong> carbon prepreg<br />

<strong>UD</strong> prepregs are ideally<br />

suited to automated layup<br />

Sandia 210710<br />

Mould temp<br />

Exotherm peak 105°C<br />

Lam<strong>in</strong>ate<br />

temperature


Case Study: Results<br />

Spar cap Tg 106°C<br />

Average porosity 0,24 %<br />

Highest porosity value 0,8 % (1 po<strong>in</strong>t out of 135)<br />

Lowest porosity value 0 % ( 19 po<strong>in</strong>ts out of 135)<br />

Res<strong>in</strong> content 30 %<br />

31<br />

porosity level 0,27 %<br />

Typical cross section of<br />

cured lam<strong>in</strong>ate<br />

Sandia 210710<br />

Cohesive break<br />

Good adhesion of <strong>in</strong>fused glass<br />

on prepreg carbon lam<strong>in</strong>ate


Conclusions<br />

32<br />

�Typical prepregs <strong>in</strong> w<strong>in</strong>d energy <strong>com</strong>b<strong>in</strong>e high areal weights, full<br />

impregnation and low enthalpy<br />

�These result <strong>in</strong> the follow<strong>in</strong>g:<br />

� Fast lay down of heavy weight structures, ideally suited to<br />

automation<br />

� Reliable low porosity, even <strong>in</strong> thick lam<strong>in</strong>ates<br />

� Short cure cycles<br />

�The same is true of both carbon and glass<br />

�Typical <strong>UD</strong> prepregs can have significantly higher mechanical<br />

properties than their <strong>in</strong>fused equivalents<br />

The use of <strong>UD</strong> prepregs <strong>in</strong> load bear<strong>in</strong>g structures enhances<br />

mechanical properties, reliability and productivity<br />

Sandia 210710

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!