01.03.2013 Views

download - Department of Biological Sciences

download - Department of Biological Sciences

download - Department of Biological Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I,.<br />

,I*li k<br />

i ( Inns, III d B ‘slonissns P d’na sat<br />

s. H fl It asnjLI 54 ns Iii 1 ,_ c. ‘An 1<br />

M ‘r F )1 an Ft r sat II K n and<br />

51 n (tssa HanK ii, H 2 Apis 1 5°<br />

F-lot K n t-ftnK r F scrssFie l)92<br />

INTRASPECIFIC SHEEI. ARIATION IX THREE SPECIES<br />

OF ROCKY SHORE GASTROPODS FROM HONG KONG:<br />

CORRELA [IONS AMONG HABI IA IS AND<br />

A (OMPARISON 1’ UI H ‘I EMPERA [F SPE( IFS<br />

A Richard Paltrier<br />

<strong>Department</strong> sit iooioe’ 1 ni\elsit\ <strong>of</strong> Aiheita, Edmonton. Alberta T6G 2EQ<br />

and<br />

Bamf Id Marine Station, Bamfield, British C thimbi i VOR IBO<br />

Canada<br />

4BS TRACT<br />

lo det rrninc if suf ropieal ga tropods exhibited magnitudes and patterns <strong>of</strong> intraspecific<br />

morphological sa iation comparable to those <strong>of</strong> m re thoroughly studted te riperate<br />

spec ie. I col Ie ted three specics <strong>of</strong> rock’ hore gasri opods born a total <strong>of</strong> e ie en in<br />

teitidal sites along the shores ol Hone Kong Tsso species ssere predatory muric ids 1/otis<br />

nit i ,o and T 1 0re \1s>11,o i and the third \ cis a common. herbis 01 OUS troch id<br />

lIt’iit c/SOt/U ‘ji’t I e\anlined Ii aits sensiti\ c to pollution Ics eE (penN sI/Ct ti aitc<br />

relate to desiccation iesistanccfsusceptibility to dislodgment (aperture area projected<br />

area, shell capacity I and traits related to predation intensity/resistance (number <strong>of</strong> re<br />

paired shell injuries apertural tooth height. lip thickness development <strong>of</strong> shell sculpture.<br />

shell weight and occupied \olume)<br />

For both Ps1it fast ‘ro a and T leuft <strong>of</strong>uma masc uhinized teniales ss crc rno C<br />

common at C ape d’Aguilai than at any other site. pcrhap because ot its proximit\ to<br />

major shippine lanes. \lore samples ilong Hong Kong’s southern shores ssould he re<br />

gun-ed to suh’tantiate this pattern F-rn traits xnhcie data could be compared quantitati\ ely.<br />

both T lot tdera and Wi,nod nit la/no exhibited ma6nitudes <strong>of</strong> shell s ariation com<br />

parable to those <strong>of</strong> tei iperate species The trcquencs <strong>of</strong> repaired hell injuric also<br />

compared favourahls with published values for rocky shore spec es from the \orth<br />

Atlnti Hence H ng Kongca<br />

5trcpods did ao app a tss he unusual ‘a cithr rc pcct<br />

Of ‘ome intcest. he rclatis e variahll1t\ <strong>of</strong> morphological traits sas stgniticantls oi—<br />

re ated hetss CCI1 I lot i in to and If ia/an, traits more ‘ ai iahic ci 1 10,1tt it al ‘SI<br />

649


650 A. RICHARD PALMER<br />

tended to be more variable in 34. la/no, In addition, the species found oser a broader<br />

range <strong>of</strong> sites 1. /aciecra> v as most s ariable. shi1e the species found at the fewest<br />

site, T. leiIteasroma) s as least ariable. ss ith 11. labia in betseen.<br />

L sing regression techniques. I compared shell traits both among populations and<br />

among species. \perturc si/c exhibited the most striking s ariation among habitats: for<br />

both Thais lavii,’e,a and 1on’ dotzta labia, populations from more wase exposed shores<br />

had proportionally larger apertures. These taxonomicallx and ecologically distant spe<br />

cies thus exhibited similar morphological responses over a wave exposure gradient,<br />

Somes hat surprisingly. I found little cs idencc ot correlated responses to s ariation in<br />

predation intensity. In both species. the relanse development <strong>of</strong> defensise attributes \as<br />

not significantly correlated ss ith shell repair frequenc among sites. In addition, the onl<br />

significant correlation <strong>of</strong> comparable detensise traits between species as a negative<br />

one thicker lipped 7. clasi’era were geneially tound on shores sith thinner lipped 34.<br />

labia. Thus wave action and predation risk did not appear equally capable <strong>of</strong> inducing<br />

shell sariation in these species. The interspecitic comparisons resealed that both T.<br />

c/al ii.era and 31. labio displayed a remarkahl similar eighi <strong>of</strong> shell per unit body<br />

ss eight and per unit shell capacity. Hence. in spite <strong>of</strong> their different sizes and shapes.<br />

these tsso species ins esied in roughly equis alent amounts ot shell to protect the same<br />

body mass or living space.<br />

INTRODICTft)N<br />

Most e\tcnsise studies ot intraspecific variation in the shell morphology ol rocky shore<br />

eastropods have focused on species trom temperate latitudes, mainly muricids (Kincaid<br />

1951’ Luckens 1970’ Phillips aol 1973 Kitching and lockwood 1974: Crothers 1985,<br />

Appleton and Palmcr 1988: Palmer 1990) and littorinids (Nesskiik and Doyle 1975:<br />

Smith 1081: Johannessin 1986. Scele 1Q86: Janson. I 9%”7>• A few have examined<br />

tropical or subtiopical species Struhaker 1968: Palmer 1979: Hamilton 1980: Wel<br />

lingttin and Kurs 1 Q2: Fni 1989e Coupled ith the much higher ds ersity and<br />

ri latis ely locr ahundance t tropical pccies i \ erinej 1978: 1987) one is left oh<br />

the iriprc s on that ampcrttc species arc tntrinsi ally more vriable morphologically<br />

t n trapcal ‘Ic adire c a u t’m. howes . ‘mi>ar saolpling intensity and<br />

cluanttiitis tcchniq es has e to be applied as er a comparable range <strong>of</strong> habitats<br />

Among rocky shorc nastropods exhihmting pronounced mntiaspecitic ariation. shell<br />

form c’rrc!ates most conimon>y ss ith the Iescl <strong>of</strong> ss atcr movement and the intensity <strong>of</strong><br />

pi’daiion i’. shell-breakmg predators Kmtching r at. 1966: Struhsaker 196%: C’othcrs<br />

l98: Joha nessori 1986: ttrr 1 988hi Ithough it may also orrelate sith growth rate<br />

nd fxd a ilabmliey (\ermeij 1980: Well ngton and Kuris 1983: Kmp and Bertnss<br />

1 83 Ap eton and Palirer 1988> Ia determine sshether suhtmpmral gastropods exhibit<br />

romparable magnitudes and dir ciions ot intraspecific morpholoomcal s ariation in re<br />

S(iisC to a s ari:ihle ens irinineni. I condu ted a quantitative ‘tud at such varmaton iO<br />

threc specIes at rock\ shore gasiropds from the shores <strong>of</strong> Hong Kong: the prcdator<br />

IilCrc its The/I !a\ ., ii K tister and 1 ?‘o 6 arc ‘anna Hoiten. and the herhs orius<br />

ti cl id Won Santa alto L


Collection dtes<br />

JHAIS AND WO’VODONT SHEILVRIATION 651<br />

N4 4TERI LS AND MEl HODS<br />

Snails were collected during low tides from a total <strong>of</strong> eleven sites within use different<br />

geographic regions along the shores <strong>of</strong> Hong Kond between 12 and 21 pril 1989.<br />

I Cape d’ \guilar, exposed (CDI) 114 l5’43 E. 22 1302 N (approximate). Thais<br />

clas igera and Monodorna labia were collected from the upper 75 cm <strong>of</strong> the<br />

S’Iegahalanas sokano zone in cres ices and on shelves on a steep bedrock shore along<br />

the southeast edge <strong>of</strong> the cape. Because <strong>of</strong> high swell and a poor low tide, only the<br />

upper shore could be collected. I. kuteo stoma were collected from a high pool where<br />

they appeared to havc been thrown during storms as no food was available, and the<br />

shells appeared bleached ompared to those from CD2. This sample <strong>of</strong> I l’4tentf ma<br />

may not hase bcen representative <strong>of</strong> those present intertidally.<br />

2. Cape d Aguilar intermediate (CD2) 114 1 5’43’ E, 22 1302 N (approximate).<br />

T daiigcra I kutro.stoma, and W. lah,. were collected from the upper 50cm <strong>of</strong><br />

the il’ft ç’ahalanus solcuno zone in cres ices and on shelses on a steep bedrock shore<br />

at southernmost tip <strong>of</strong> the cape.<br />

3. Ping Chau, exposed bc ch (PCI) 114 2C07 E, 22 32’22” N. I’ clavigeia and I<br />

leuteosk ma were collected at mid shore from among Tetradita on bedrock ledges<br />

and crevices at the southernmost end <strong>of</strong> the island,<br />

4 Ping Chau, high pools (PC2) 114 607’ F, 22 3222 N. T davigcia and I.<br />

lcutost via vere collected from among a dense cover <strong>of</strong> what appeared to be<br />

(‘hthamalus intermingled with articulated corallme algae on a bedrock ledge just abose<br />

water line <strong>of</strong> a laige t depool into which wave continued to break even during low<br />

tide Most snails were rapidly growing juveniles and young adults, and hence this<br />

sample may n t have r Ileeted the adult form in these pools accurately M. labto were<br />

sparse here, and only a few individu ls were found amone a rather larger number <strong>of</strong><br />

mid ard upper ch re tide pools examined Most <strong>of</strong> those found w re small<br />

5 Hoi Ha Wan exposed HEI 1) 114 20’2( E d 8 51 N I c/as ig i a and 4,4. lahio<br />

were collected from he middle a id upper portions <strong>of</strong> thc Sac ostrca / me from<br />

bedroLk e vice , hould rs and pool at the north rnmost tip <strong>of</strong> Ko n iso Kok at<br />

the easter cdge <strong>of</strong> the rrouth <strong>of</strong> the bar<br />

6 Ihi H \ar, inte mediate (11W) 114 WOO F )2 S 32’ N T lasigcia and Vt<br />

lahi s crc olleeted I cm the middl f the Sa stra ione on boulders and cob<br />

1 s ak ng the soutf tern edge <strong>of</strong> ti e ir t r aj pro nor tors alor g th east hore<br />

d the bay<br />

7 Hoi Ha Wan pr tee ed HI-li) I 20( 1’ F 2 2804 N. I dasiçeia and 114<br />

lahi v ‘a. e )Ileeted Ito n the niddle and uppe portions <strong>of</strong> tie Sa coSt? ra /one<br />

rnor e rix d h uldr arid hdr ek alc ng Ic west ed <strong>of</strong> the sec nd ira<br />

pr non a o W thL ast horL f th bay.<br />

8 Hot 1 a Wai cry pro ta. cd HH4) 1 4 1 ‘ F. ‘‘ ‘7’47 N I do ‘i a.ia nd<br />

‘14 oh v iv o l ted from am n Saivostiva ml )ulders surrounded by sand in<br />

fr at the s 14 1 ‘Ia<br />

) H Sing War, espc ted 1181) 114 1444 F. _2 6t)) N I lcr cc a er<br />

coIl et dIr Tither idle and 14 / rvn akn th ufpc.r d .<strong>of</strong> liv. Sty cri 0<br />

mt. on a bedrock headlard proje tmf ou into bIt Harbour.


H Sm \Saaprc t<br />

cli dt )I t radii<br />

11 itht rtf’ alp<br />

tvec HS1 rdtF<br />

Ia TilT i.<br />

IL Vt<br />

Identificaf n <strong>of</strong> liters species<br />

; ii r u<br />

111 1 1 51<br />

t. (cdtkpatc i<br />

h v act cshihiDd co<br />

I ny a ong mai a<br />

lcrti ab a tiats lull<br />

ti tO era inc pr<br />

dj c it t hc utur<br />

e<br />

Prorta x mea ur me I<br />

ti chss c aidail ssci<br />

a ire tipfed s aDrpr H pc<br />

Ts treaurmert lid<br />

51(1 ai ii r at t It<br />

t irca oii ss n w oFt.<br />

cuing bru h and tHu hsorh<br />

RI H RD \LMFR<br />

‘ITS ii 14iHL,2D 2 N 1 ,i<br />

c<br />

anT 1/ rcia ncheupprecL. t i Co to<br />

1 pp siraist thd tI ‘. all h i<br />

Ha 1 the ay<br />

C 222(2 NO<br />

ft cud ‘flat<br />

ails t e u edt.<br />

tth’ H is<br />

tI cit<br />

o H<br />

\t . c ) 1 st’t s sps 11 cedly Fog<br />

Ott ci rt on ret sI I<br />

11 tilt lfl mfic as S p1<br />

55=<br />

5 51 ci mdi ih eq a iii cc rdisd c I the<br />

a I n al i thi aioI st t ey V t i ciucar ace at dc<br />

cp tI / d xl ic I rph ned iat tc ict lOs F pie<br />

a C dp ri Iacd p icr t ii tec a Or a Ii f 10 pes<br />

a a n 1ItS1 t cetdb 1 cC nt V I I t it) F<br />

r I tIll I ed eretak t F Ia,<br />

j<br />

I<br />

(C VO’<br />

r<br />

t 11 is<br />

gc iyFd<br />

n th id<br />

1 10 d 1 (1 c to t<br />

a cc kr I tth told<br />

11 1 V I I<br />

Sr FIt F aidr ore r i’ni ii nd<br />

tal I ra raT ate I<br />

1 ( apr ret<br />

rim tF 00 rhi as r etc iF ti prdol H<br />

e Fcaaiatiw ics a Vg<br />

Ily II IC raT uals II u d tha<br />

h d ti u h d crc t c t Fl y ti<br />

r ac hetsse r o’ I re I te<br />

Firf Ia or a then rib tiache<br />

rtrvs krb 0 al seen earalla tiP 0<br />

th Iti rF d xhtl ted tss sman stia Itt r kr ) rlw<br />

I Ira r sr r ss c ru h i r xi xc c cp ‘ted xxi a<br />

ag tb’kq c h ç cthi.ntf jui ‘n’irc ii<br />

the c r 2( C <strong>of</strong> k H He ci alCoty ol F c’c cIt eters<br />

preseit a p cs Fe a iii rg at ire iid vidual o Icc ideiti tahi<br />

based to hell scuipturt and colout<br />

Shell handling xeights, solumes, sexing<br />

uhf<br />

ci a<br />

los If<br />

ais) Od a<br />

ud a<br />

icc<br />

c Al 5a oait en<br />

tidatdu Is aYbifu(u<br />

ruml n dthu<br />

a rw U ki F<br />

he ci ida<br />

10 1.001<br />

TI s a sr<br />

hc a 11 tI<br />

tIE (J<br />

‘aT 1)hc<br />

na ht lusI<br />

shcH vcr clcarcdrf n u tirnog tin a hit fly<br />

rdralintif nmnu Ire r rtt one ihllwh<br />

and coated e itl at oacr lat In It paver I b a ion,<br />

hc nad whdc thc anin als sre st I al s cht o th<br />

and th un copied I a If tIc sFelI It 1 ire Pr It<br />

al crcclaudla kiit,thcrslclls tI ft iiod<br />

r t tissue a presced I rn I up cain t the If rculum tr


11141S4%DVflOD . 4SHHI 4R14110N 6’3<br />

amie mW tra rawtr s iti kttttto u1. ttht lhad<br />

drd.ialserw°adcaiual,iic.c.<br />

L c.up dv lumccfashefl sr.e ie by, i.. ic.te rc <strong>of</strong>t tvite<br />

i d tohl tievo r dtheshellb t en F cp c.uuir o th lrvm.zsn i idthc<br />

pai t pr c. fa c.oid ..tt 11 v ht<strong>of</strong> r Ith lalncev tied<br />

wit sic •tsoi 1)1 heac.dwt wul Ic ,.tdlrc.shvtrwa<br />

ttnitrc ucdntcti pe thaP iflett shi hldi ii .ox w r<br />

unit uru(ed C ncwa hldaprxiuatd Fat w ii ate c hub<br />

be 1 cribiis,t ijpedar undthto unc uptc va hc.ipc. ftheo na ,uli<br />

thdaw e t it Li tel T ill th too ii x.don hini tnod haL<br />

iI’ wit ti panccftiejc.rur patH t tesrfae fthe ethrgoar Adi<br />

ho lhel s’tc.rva i trod ted to i ip rtuc.Litltic. satert iredaflatsurta<br />

(ieitte nwed ncr sacg’d) lust sith th. out r lip rd tic. ventril sari il tie<br />

Iuirc.lIt \ the e relfat urac.e tin thet.dwe F otwtradde<br />

tc hc.aprtuc.y recorded ‘Wihc.u th r di ‘table nelilc.s t mi<br />

Paia IW 1nnuFc ttht.ppr Iunc.s rercpc’rtcdi ra<strong>of</strong>fi shwar Thc.c.<br />

weght ma ec.orver flat alvclun sa taHow% 000m. 1 ml c.<br />

An dx. weiiht weie rip! ed rulssei pact ibolir. atu r era!<br />

nnuc. dt I F etat di cmthe 11 asic curv di c Sradsw r ad<br />

tithe I)pnis r I wind ) tlf’, Istalati Ttc.si, cttl pm<br />

iiy s i e tsn a .nc. ngtt a dd ie r a afrac ci 4 te<br />

rgttteiale. acre iFirtI a £ th . md as tc. ramc.o uedra<br />

& p1 t orcjj l cs ii ira at i ci na eratec tre i .cnad c. ci ‘<br />

ULJL.di C hitlic. t4 4. 4 urn dgc’, i na<br />

Six. cadri Ian ht t iO (‘ii idn )vtnandleahedt<strong>of</strong>lienc.arest<br />

nc Pc. h& weiji a rl nea ur diwasubsairpcotaltlircc.sc. ies.Altei<br />

reinn th bcd tronth sIlo aboc,hcflslwadrtctoac.cnstantwightat<br />

6( ( nac ingot nflc.ween ‘id48h) Thest ubs mple ieIdc. veryac. urate<br />

rcducc. r ajm a i RMA) rear 1 sw it Y Iosjb dy dry w”i’ht)as a tunc.tion Cf X<br />

—lq( t net dbxly w tw &ht) hg 14 slop. andadjutc.dmens±siw cc.<br />

S t t Ia ii c. mad c.usicmctnicdc.Illrc.grtsontc.hnique)<br />

B thIla sçe p hi RMiscpe= 04( 0(2J) mcanX 2.92’ll<br />

i tt”IY fim mx 2NXOC 00DM (F ,— 1949,1


654 A. RICH RD PALMER<br />

‘ii 1000<br />

100<br />

50<br />

4000<br />

3000<br />

• Thai clavigera<br />

0 Thai leuteostoma<br />

‘ Monodonta labio<br />

•4 ,<br />

300 500 1000 2000 4000<br />

Estimated body wet weight (mg)<br />

2000 98$<br />

1000<br />

0 1000 2000 3000 4000<br />

Body wet weight + bnoccupied volume (mg)<br />

Fig. 1. Subsamples from wheh est rrates <strong>of</strong> A, body dry wmght and B to ci nternai<br />

volume <strong>of</strong> the tell ( hell capac ty were deterri ned to threo specees <strong>of</strong> gas<br />

tropods from Hong Kong See Ma enals and Methods for regresson equahons.<br />

dislodg bubbl It was lien pla d o a lump cf las with th p r ural p me parallel<br />

to he vu hing pci Cf Iiitl b lance and erraind r I tie ii tr I s un I lie<br />

witt wat r a icr un e upied v umc, Care was tak n nt L alh v y ci t di place<br />

vale in it ape s h r ooiti(n no the shell on the balance IThial irte ral slur<br />

aleulat d Is suhi aeO i. thc hell dry weichi lr( ii tFe s Light (I tIe Fell ill I tI<br />

frc h a e [he sub r p1 ci id I d er aceur c RM \ r gr si )r t )r Y tc tel<br />

nt a I olume s a uncti n t X estimated body ci weith oeeupi d rlum<br />

F g lB slope am I dju t d rr a Si)<br />

hr h h I a s pe u RMA sip 0)46 ( () ) 26) ieai X l83[<br />

eseete I at n iX l69 0 0’ 1 (26, P J0)( I)<br />

F r Wi to (a a RMA sk pe 0995( ( 0 0l4) me ir X 580<br />

exe uc \ 0 near X 562.11 (05 (1 I I P ()(001)<br />

9<br />

9<br />

9<br />

0<br />

A)


TH4lc AND MOsODOI 4 SHELl ARl VI ION 655<br />

Total Internal solume for all remaining snails was estimated via these regressions Oc<br />

cupied olume was computed simply b\ subtractmg the unoccupied olume, which was<br />

measured directly, from the estimate <strong>of</strong> total internal volume,<br />

Shell morphometrics<br />

Ses eral morphological attributes <strong>of</strong> shells were selected for measurement because <strong>of</strong><br />

their utility for inferring functional relationships. In the list below calipers’ indicates<br />

measurements recorded to the nearest 0. 1 mm using Vernier calipers, or to the nearest<br />

0,02 mm with dial calipers (lip thickness only) ‘Digitized’ indicates measurements<br />

obtained by superimposing, via a camera lucida. the image <strong>of</strong> a shell under a dissecting<br />

microscope over that <strong>of</strong> a calibrated graphics tablet (Mac I ablet Summagraphics Corp.,<br />

Fairfield, (1, l SAz 500 x 500 DPI resolution)<br />

Shell length (calipers)— from the apex to tip <strong>of</strong> the siphonal canal for ‘I hais, or from the<br />

apex to the distal most margin <strong>of</strong> the aperture parallel to the axis <strong>of</strong> coiling for<br />

Monodonta lahio (repeatable to ± 0 2 mm).<br />

Aperture length (digitized) from the posterior margin <strong>of</strong> aperture at the suture to the<br />

tip <strong>of</strong> the siphonal canal for Than, or from the line described by the adapical margin<br />

<strong>of</strong> the aperture adjacent to the suture, to a point perpendicular to this reference line<br />

on thc abapical margin <strong>of</strong> the aperture, for 1 lahio [mean ° errors — sr (N 10)<br />

were 0 7 + 0,1 7 and 2,4 ± 0 38 cc for T clavitera and M lahu respectively].<br />

\pe”ture ama (digitiLed) arcd described by the outermost margin uf th aperturdl<br />

lip and the polished parietal callus when siewed perpendicular to the plane <strong>of</strong> the<br />

apertuie [mean (f errors ± srrvi (N 10) were 1,8 ± 0,50 and 3.S t 0,96- for I.<br />

claiigeia and 11 lahio. respectively]<br />

Apertural t(oth height (digitized) the elevation <strong>of</strong> thc tip <strong>of</strong> the tooth perpendicular<br />

to the inner margin <strong>of</strong> the aperture when viewed roughly perpendicular to the plane<br />

<strong>of</strong> the apcrture (Ihans only. the tooth heights <strong>of</strong> M lahi iwere not reasured becausc<br />

the were consp cuous in all samples) When present the heights <strong>of</strong> the tw most<br />

abaxial teeth were masured In specimen where teeth were quite pro mnent these<br />

teeth were the second and third teeth abapicall from the suture’ the fourth and fifth<br />

teeth w re usually lareer hut were more difficult to oriert for accurate measurement<br />

Lip thickness (ealipers)—dn Thaii, I p tfi kn s was measurcd f om r point irisid the<br />

lip at the lo’ator <strong>of</strong> apertural teeth, t a point outsid thc lip lying bets een tlic two<br />

pro ninent spiral rows <strong>of</strong> knobs ncares the suture, t was mea ur d trm the tip ot<br />

the apertural tooth at this position f onc was freseit. Before condu ting statis icai<br />

analyses howevcr the heieht <strong>of</strong> tf apertural tooth was subtracted trcm his mcas<br />

ure <strong>of</strong> to al lip thick iess In 11 ab , lip thickness v as me sur d lrm a p )Int<br />

hetw r the third and fourth apertural te I adapical v f om t[ olu lla t a pc tnt<br />

bet see i the piral c 1 d on the oute serf ace f the sh 11 as perrend ular a p hle<br />

to the maicin <strong>of</strong> the aperture lip hickne s s a i pat lie t 006 r m<br />

Projeete area (digitized Projected area wa rnea urd a the total a a <strong>of</strong> tI srell<br />

vi wed p rpendicu ar to th axi <strong>of</strong> ci hug from the rieft i e nf the hell<br />

Sh Ils were attached t an adf s. e v rtical urfaee (duet tape a ta F ccl to a r an<br />

gular up )rnng block) with the axis <strong>of</strong> coiIin perperdicular to the line <strong>of</strong> sight


66 A RKHRE P\IMER<br />

rrnean (( errors ‘ ‘a ‘a = It ) w 1 1 )7 - r d I I lot [. lint ii’tii<br />

and M labio respectis l\<br />

Knob heictbt dieitiied) Knob heiht a n sured as h des ation <strong>of</strong> the ttp <strong>of</strong> the<br />

knob perpendicular to the outer surface (I h shell ‘a hen s iev ed rouahf\ perpen<br />

tiiilar to ss hat ss ould hase been th. plan t he aperturL at the tine the knob ss as<br />

hein’ piciduced if /iul onls I ss 0 l rosh o etc n ,isured on each indo dual the<br />

highest tss o <strong>of</strong> th first foLir procc ti3g t’ m the apertural mat gin alone the<br />

ross adascnt to the suture Knobs in tnt’- ross are eanerailL more pronounced than<br />

those tn the other. mere anterior ross .<br />

Statistica’ anak ses<br />

Stattttsal analr ses ss crc conducted xs fib the micnsompueci statisttsai packages Stats less<br />

ii Vei 11>3: descriptise regressions and Super-\NOV-\ i Vet. 101 anals ‘as <strong>of</strong><br />

cox ariance both from Abacus Concepts i Berkeley. California. f’S eSlopes from least<br />

square- linear reeresston IIR ss crc cons cried to reduced mami asis slope’- ithe R\IA<br />

is one form <strong>of</strong> model ii regression b\ di tding them hr the correlatton coeflis tent: the<br />

standard errors ot the slopes remain the ‘-arne LaBarhera 1 9h9 i. The standard errors<br />

for adjusteu means ae not preciseir deftned for model Ii regression. so to compare<br />

differences among means n the figures I graphed the standard error for the expecte<br />

Y at mean X as determined I torn the LLR CflaiX -its. To consti net the I igures ihat corn<br />

pare traits among populations. I computed ‘. alucs at a standard 5iie u’ine onir the<br />

regressions haed on indis tduals from each sPe as to loss 5:<br />

logi standardiied s r1tte { [log(standard X) 1 arnpk mean <strong>of</strong> X R\I \ slope i<br />

loge pected Y a - mean X<br />

Ihesc standardi,ed s alues were dctransfoi med pr or to graph ng.<br />

Statistical inference <strong>of</strong> significant ditf rences am tg populat ons ss as complicated<br />

fo most traits because populations differed not c r lv in the as cia e development <strong>of</strong><br />

particuIai traits, hut also n their allomctiic relations e p c. idices i—iii Hence<br />

although ascrages differ nces wer cleary apparcnt among p p lations, the precise<br />

valu <strong>of</strong> the ditferences dcpendcd upon thc rcfcrcncc tic uscd to compare populations<br />

Ii anid p’ t( ntial lv mi Ii ading p titer s rha, mi hi ri nit her st,m tine popul tion<br />

‘a ‘ans usirg a comm r I pc across all poula ions whcn I s di in I ct diff r I<br />

computed regressions <strong>of</strong> fun tionaIly r lated pairs r f traits for ach population scpa<br />

ratcly rather than ss ith analysis <strong>of</strong> covar ance (ANCOVA). 11 cse population-specific<br />

regressions were then used to computc expected means at three diffgrent si/es br cach<br />

population fhis allossed me to determine to what extent the am ne-population pattern<br />

reported I doss s ared in resp n to the choic d stan lard iz Qualitatis e patterns<br />

f variation among popula ions that dcp ndcd upor th chot )f reference size are<br />

r(ted in the te\t. All <strong>of</strong> the population specific rcgres ions f he traits e\amined<br />

arc presented in Appendices I III<br />

lo examine most patterns <strong>of</strong> s ariat n in tng populati )ns. the reference size used<br />

V as approxirnatelt the averace size icros all populati r tot each species sepaiatelv.<br />

F-or traits ss bern sluantititis e comparisons hctss i spccics ssere also telex ant. I used a<br />

single reference si/c for all three species shtch v as close to the aserage for them all.


in IS \\D tlO\ODO\l 4 SHELL \ \RL\ [1Os<br />

When examinina correlations between char icters ithm species or hetren speLies,<br />

I computed both a sta idard parametric correlation coelticient and non parametric<br />

correlation statistic (Spearmans coeftjcient <strong>of</strong> rank Lorrelation: Soksl and Rohlf 19811,<br />

Variation in adult sue<br />

RESI1JS<br />

estimated adult siz b computinc the average shell leneth <strong>of</strong> the I irgest 2O <strong>of</strong> the<br />

sample used for morphonietric analyses. Because a roughly uniform distribution <strong>of</strong> snails<br />

was collected across the size range asailable at each site this seemed like a reasonable<br />

measure <strong>of</strong> adult ize.<br />

Adult size aried sianificantl among sitcS for all three species. hut was most pro<br />

nounced fur 1. clai igere Fig. 2i. Of interest, the largest sized adults <strong>of</strong> both T. e1avirera<br />

and 11 nisioora /ahie ss crc found at the intermediate ‘ites <strong>of</strong> Lien Ha Wan I HH2 and<br />

11113) Also. for 1. lai i’e, a the smallest sized adults tended to be found at the most<br />

wave exposed sites (Ping (‘hau and Cape d’Aguilar)<br />

T. clavigera T1euteotoma M.io<br />

CDI CD2 PCI PC2 HH1 HH2 HH3 HH4 HS1 HS2 TI’<br />

Collection site<br />

Ffg 2 Average shell length (mean SCM) <strong>of</strong> the largest 20% <strong>of</strong> each sample <strong>of</strong> three<br />

species <strong>of</strong> gastropods from 11 sites along the shores <strong>of</strong> Hong Kong Sites are<br />

ordered roughy in order <strong>of</strong> decreasing wave exposure (see Materials and<br />

Methods for site abbreviations), missing bars indicate no data. Data for P02<br />

were not included because the sample was unavoidably biased towards smaller<br />

Snails. See Appendices I—Ill for sample sizes.<br />

‘ ariation in penis size and sex ratio<br />

Penis size saried in an unexpected manner among the four iegions studied (Fig, 3i.<br />

Among ihai. from Hoi Sing Wan, Fbi Ha Wan and Ping (‘han, pcnes were either well<br />

des eloped or effeetis clv absent l’his pattern was the same whether or not smaller snails<br />

crc included compare Fig. 3A with 3B and 3C ss ith 3D i. At Cape d’Avuilar the di’


, RICHARD<br />

PALMER<br />

tribution <strong>of</strong> penis si/e ss as 5tili bimodal, but the penis ize in presumptis e females v as<br />

conslstentl\ larger there than at the remaining sites. Significantly, both I. clavigera and<br />

I. Icuti’ôtünia exhibited the same pattern.<br />

80<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

— 20<br />

80<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

20<br />

t<br />

iiThoi Sing Wan Hoi Ha \Van<br />

L Cape DAguilar Ping Chau<br />

A)T. davigera, All lengths<br />

— Tentacle<br />

BIT. clavigera. 25mm length<br />

C) T. leuteostoma. All lengths<br />

D) T. leuteostorna. 25rnm length<br />

none


TH4IS A\D 1IO\DO\i.t SHELl \ ARIATIO\ €)59<br />

Females were, on average, more common than males in the samples for all three<br />

species (Table I). Sex ratio varied among sites. hut departures from 50:50 sere onl\<br />

significant at Ping Chau. where females formed a larger proportion <strong>of</strong> the sample. and<br />

at Cape d’Aguilar. where males were more common.<br />

Table 1<br />

Numbers <strong>of</strong> males and females <strong>of</strong> three species <strong>of</strong> rocky shore gastropods<br />

coNected from various sites around Hong Kong<br />

Site M<br />

CD1 21<br />

CD2 34<br />

PCI 10<br />

PC2 3<br />

HH1 16<br />

HH2 12<br />

HH3 27<br />

HH4 5<br />

HS1 14<br />

HS2 20<br />

TT<br />

All pooled 163<br />

C hi-square: *<br />

d.f’<br />

Variation in shell repair frequency<br />

The incidence <strong>of</strong> repaired shell injuries varied b several-fold among sites (Fig. 4). For<br />

Thuis Lial’9’era. the average number <strong>of</strong> injuries per shell aried significantly from 0 to<br />

0.32 chi-cquare 17.6. d.f. = 9. P 0.040). Rather rernarkabl. the incidence <strong>of</strong> re<br />

pairs dropped consistently with decreasing wave exposure among sites in all four regions<br />

studied, Only at Ping Chau. ho’ever. did there appear to be an overall lower incidence<br />

<strong>of</strong> repair.<br />

Although the incidence ot repairs also varied among sites for Thais leuieo stoma and<br />

1onodonta labia, these differences were not significant statistically (chi-square 1.09,<br />

d.f. —<br />

3,<br />

P 0.78. and chi-square 9.1, d.f. = 8. P 0.33. respectivek.Somewhat<br />

surprisingl. there was no concordance <strong>of</strong> repair frequency between either <strong>of</strong> these<br />

species and L L’laviera.<br />

Thais c/a vigera Thais leuteostoma Monodonta Iabio<br />

F ? M F ? M F<br />

19 0<br />

21 0<br />

30 0<br />

8 0<br />

21 3<br />

26 2<br />

18 0<br />

14 1<br />

24 0<br />

20 0<br />

200 6 20<br />

25.5<br />

9<br />

0 002<br />

2 20<br />

8 14 0 0 0 40<br />

6 16 1<br />

6 9 0 3 3 3<br />

9 19 2<br />

11 11 8<br />

12 16 1<br />

14 9 7<br />

0 0 24<br />

0 0 24<br />

1 5 14<br />

41 22 50 63 123<br />

0.74 4.46<br />

2 3<br />

0.69 0.22<br />

Note: For Thais, individuals with a penis that was clearly larger than the right tentacle were con<br />

sidered males, those with no penis or a penis clearly smaller than the right tentacle were considered<br />

females. For M. Iabio. sex was determined by gonad colour (see Materials and methods). ?—sex<br />

either ambiguous or not sexed. See Materials and Methods for site abbreviations.<br />

*Contingency table analysis on M and F categories only for sites containing > 10 sexed snails.


fl4-i<br />

A. Rl(H.-\R[) P\L\IFR<br />

MIL1h1o<br />

CD1 CD2 PCi PC2 HHI HH2 HH3 HH4 HS1 HS2 IT<br />

Collection site<br />

t repairs per sample total snas<br />

Fig. 4. Average number <strong>of</strong> repaired shell njuries (Iota<br />

per sampl& for three species <strong>of</strong> gastropods from 11 sites along the shores <strong>of</strong><br />

Hong Kong. Sites are ordered roughly in order <strong>of</strong> decreasing wave exposure<br />

(see Matenals and Methods for site abbreviationsi. misstng bars indicate no data<br />

except where ndicated<br />

flometric variation<br />

All populations 01 [hai. lu (cent and T. ! ureo\r(ona. and all but t\\ 0 pOpulatiOnS <strong>of</strong><br />

Wolif)d,Jllht 1(11)10. exhibtied po’itis e allornetrr (or ltp thikness rciati’e to aperture length<br />

(Fig SAt. At all but one site T CiU 1:010 exhibited the most pronounced allometr\ and<br />

it v a also the most consistentlr allometric <strong>of</strong> the three specie’ statistically significant<br />

8 <strong>of</strong> I () populations). In addition, three <strong>of</strong> the ses en statistically sienidcant allorietries<br />

tm T. las igeIa, and two ot the three for W lablo oc urted at Hot Ha \Van sites<br />

In contrast. all populations <strong>of</strong> flints k zite stoma and Mm lonta lubn and all but two<br />

populations <strong>of</strong> T dat item, exhibited negative allometry <strong>of</strong> aperture izc relati e to shell<br />

capacitr (Fig. 5B>. M Ia/no exhibited the most consistent allornetrr (6 f 9 populations sig’<br />

ntfieann. wherea’ that e’,hihtted by T. i/rn Ct ma is as somewhat ic” consistent ‘ <strong>of</strong> to<br />

populatIons signifieann. Among geographic regions. the extent <strong>of</strong> allometri in if. ithio tended<br />

to increase is tb increasing is ave e\pd)siir I Tai Tan — Hid Sine Wan —s Hoi Ha Vs an —‘s<br />

Ping C hum. ‘1 he sample Ironi (‘ape ci’ Aguilar. howeser, was not consistent with this trend,<br />

Very similar patterns were also exhibited by all three species tor aperture site relatise to proW<br />

jected area, both within and among gcoeraphic regions, although the average allomctry<br />

exhibited by all three species was somewhat less pronounced (see Appendices I III),<br />

All three species were approximatel\ isometric for shell dr weight relatis e to hod<br />

dr\ weight. when as eraged across all sites Fig .5C The magnitude <strong>of</strong> ailometr\<br />

how cc er. varied rather markedly among sites Although Thai leueo 51(000 and<br />

ifonini’inta la/na did not exhibit an notable patterns, the allometrr <strong>of</strong> 1. let ieeni<br />

s armed in a curious w av. First, with one exception. allornetrr increased with decreasing<br />

exposure among sites within each <strong>of</strong> the four geographic regions examined: the exLep<br />

Lion was HH I Second, in contrast to the tirst pattern the acerage allometry for each<br />

region increased with increasing wave exposurc 0)85. 1 04, 109 and 1,19 for Hoi Sing<br />

Wan, Hoi Ha Vs an Ping Chau and (‘ape d’ guilar, respectis clr).


1.0<br />

TH4IS ‘\ND i’fO%Ol)Ov7A SHEI L VARIA1 ION<br />

Laviera T. leuteostoma 0 M. labzfJ<br />

A) Lip thickness (mm) vs Aperture length (mm)<br />

00<br />

:i[ll**i1U<br />

B) Aperture size (mm 2) vs. Shell capacity (mg)<br />

ft7<br />

l4j<br />

06<br />

CDI CD2 PCi PC2 HHI H112 11113 11114 HSI HS2 I I’<br />

Collection site<br />

Fg 5. Coefttcmnts <strong>of</strong> aNometry (RMA slopes) for A, apertural Np thckness relahve to<br />

aperture length B aperture sze relahve to shell capaoty and C shell dry wmght<br />

relahve to body dry weght for three specjes <strong>of</strong> gastropods from 11 mtes along<br />

the shorec <strong>of</strong> Hong Kong Dashed nes ndmate mometry Asterisks nidicate<br />

samples exhthhng sgnifcant allometry (P


66 ‘\ RICh SRD PALMER<br />

ariation in antipredatory shell features: tooth height, lip thickness, and knob height<br />

Of the tv o Thai spcies. only I. clasigra consistently exhibited apertural teeth Only two<br />

<strong>of</strong> t4 I k iu toma vere touni with apertural te th anti in tese idisiduals tieth were<br />

not os ny well developed (0(5 and 0.2 mit from 1111’ and PCI respectively) Ihe great<br />

est di. elop sent <strong>of</strong> apertural teeth in 7 da 1 aa V as at Hill and CD2 Lie 6A), but the<br />

extent (I t oth di lopmer t did not vary in any notable way ther witi among<br />

geographic regions Ihe lack it apertural teeth at PC2 was probably an andact <strong>of</strong> has ing<br />

npIed pr dominanth uSi. siles and small adul s at this site see site dese iptions in<br />

Materials ai d methods). The least well developed teeth among the remaining san pies were<br />

at 11112<br />

\ I tFre species exhibited it ughiv equivalent variation in lip thii.kness smong sites<br />

(Fig 613, note that lip thickness did not include apertural tooth height) As I it apertural<br />

t.’oth he,ght bp t kaes i” iL’ C ‘ highe’t at HHI md rp , and lowe<br />

at 13112 1 m few sites yielded 1. knit stoma for any patte ns to merge In AIr iodon a<br />

lahi Vp th kness tended to ini.rease with decreasing w ye exp su not only among<br />

stc wt1i geocraph e regions (Hoi Ha Wan, lhi Si it. Wan but al o among ceographic<br />

ieei(n (114 1 48 1 14 1 50 and 1 56 mit for Cape d Agu lar Pirc Chau, Hu Ha<br />

Wan hloi S ng Wan ard i i Ian re pecti Iv<br />

F c t nu uallv elI d i.lopi.d kn bs the ii pool sample In m Pins Chau<br />

PC2 n he ne <strong>of</strong> I/a xhibi ed v’rv pronounc d var or r Fe d ebpm nt<br />

)l sic s ulptur o tls es at sined (Fin 6C) ‘\o i. hclc s both F a ,cua ard<br />

I tar t ‘s produe d t kirg y larger Inhs is the I rg (F ioOs gg st ng a<br />

troig, rsnnlv exp it. d effc <strong>of</strong> enviro ment<br />

‘I,’ ariatior n aperture SIL and shape<br />

pee s xhib ti.d i Ian patter is I r a i r ri dat ye ap U<br />

c ur c i at a v it sh I eapac t ) a r u e size i e e s d it<br />

u r ot onl m it g it s h s g igra F ic g n Fig \) b<br />

o c egi s Tail ‘ iese pat ri it r v r r p r d<br />

iii (Fig 713 a<br />

re hare i.xpr i.d ap t r I ar a a i g aper r I ,, F<br />

h c m i t nt (at en Ii 7 ) Ta las ia ho vi ape d’ \g<br />

i. n U na reia iveis viner perturc ‘s ii ir os ru vi er pe n am<br />

or Cy d Au la d rl tiselv v d n ap r r s r e I P g<br />

Frif ecs i F s e Vs d ie ptt r at<br />

Variati m in shell weight and o cnpied volume<br />

/ cx<br />

in r asrg<br />

C ar on<br />

n salle<br />

t x<br />

a and un<br />

C it rora<br />

(h ‘sc<br />

with r is R F i e v Ft ii d i Ii ire gi Ii n<br />

g<br />

p t n ti iuh it d d my r 3 t e i/c lh<br />

pr v t icn c udfi is ri<br />

( S<br />

at rs s r. po d<br />

it<br />

a ato i<br />

akf i<br />

(r I en e<br />

V r r n I n s. 14 p a Ii<br />

Beuew<br />

r ,aI L’SIL it i f d I e ci p i s, r. s Ii I<br />

s s r par rclati shill it ‘ight and o eupie<br />

sir’<br />

e ure<br />

1 i<br />

Icr ‘t I as<br />

luantt ti 1y urn.


O4<br />

TIl tic AND WOIvODOIvT4 SHEL I vAR1ATION 6(3<br />

T. clavigera T. leureostoma<br />

0.6 A) verage aperture ienth<br />

02 hi1i±<br />

B)<br />

Fit iIii.JaiIiFiEi<br />

4 C) aserageapertm len )LhJ<br />

11iIJi<br />

CDI CD2 PCI PC2 HH1 HH2 HH3 [1113 FISI HS2 ‘11<br />

Collection site<br />

Fig. 6 A average apertura tooth height. B aersqe apertura lip ft ckness, and C<br />

aierage sculpture height for three species f qastropods fron 1 1 sites along<br />

o shores <strong>of</strong> Hong Kong Af bars are mean si for sna Is at a common ap<br />

erture length sp cif c to cad spe ie approx nately a e age a a a eng h<br />

19 3 21 3 and 12 2 mm fo Tha;< claviqe a T e tao, toma ar ilono a<br />

lab a respect iely tes are ordered r ug y n order <strong>of</strong> de r as çj ‘a’ a<br />

posure see Mater a s and methods for site abbreviation m s ba s indicate<br />

no data unless noted oy a .ero. Approx mate s’gnificance Ic e s r m ANCOVA<br />

for common slope -<br />

0<br />

equality <strong>of</strong> slopes among populations a d equaty <strong>of</strong><br />

aciusted means assuming equal siooes were as foiiows T c!av;gera’ A —<br />


801 A)<br />

j .<br />

160<br />

90<br />

80<br />

A. Rl(HRD P \LMER<br />

T. clavigera T leuteo,sto,na M /uhioj<br />

rage shell capacitj<br />

.I1iIL1i<br />

B) E1IsheI1cacltJ<br />

/ ini11,i1fl<br />

n<br />

20() erageapertureIejJ<br />

180<br />

160<br />

140<br />

1.I41[1r1, n<br />

CDI CD2 PCI PC2 Hill 1*12 HH3 HH4 HSI HS2 11<br />

Collection Site<br />

Fig. 7. Vanation in apertural traits for three specms <strong>of</strong> gastropods from 1 1 sees along<br />

the shores <strong>of</strong> Hong Kong A, aperture area at average shel capacity (1215 1726<br />

and 897 mq for ma/s clavigera. T. leuteostorna and Monodonta labjo, respec<br />

bvely): B. aperture area at small shell capacity 491. 556 and 363 mg for T.<br />

clavigera T. leuteostorna and M. /abio. respectively: and C. aperture area at<br />

average aperture length (193. 21.3 and 12.2 mm for T. clavigera. T leuteostorna<br />

and M. Iabio. respectively. All bars are mean srv. Sites are ordered roughly<br />

n order <strong>of</strong> decreasing wave exposure see Materials and methods for sOc ab<br />

brevations. mssing bars indicate no data. Approx mate ngnOicance levels from<br />

ANCOVA for common slope — 0. equahty <strong>of</strong> slopes among populahons, and<br />

equalty <strong>of</strong> adjusted means assurrurig equal slopes) were as follows. T clavigera:<br />

A, B


THAIS AND WOODOPvT I SHELL \‘ARIA lION 665<br />

Table 2<br />

Average aperture area (mm> at a standardized shell capacity for two sizes <strong>of</strong> three<br />

species <strong>of</strong> rocky shore gastropods from five geographc regions around Hong Kong<br />

Thais clavigera Thais leuteastoma Monodonta labia<br />

Region Ave.* Juv *<br />

Ave. Juv. Ave. Juv.<br />

Cape d Agullar 151.5 86 0 173.5 84.9 120 4 67 4<br />

Ping Chau 149.3 834 1756 85 1 108 7 64 8<br />

Hoi Ha Wan 136,2 77 0 103 4 60 0<br />

Hoi Sing Wan 126 9 70,2 99.5 56.8<br />

Tai Tan 99.0 55 3<br />

Note Tabled values are averages <strong>of</strong> the adjusted means from Figure 8A and B.<br />

*Tbe shell capacities at which aperture sizes were compared were computed for each specec us<br />

ng the followng RMA regressions tabulated in the Appendices 1-144 1151. and III 112 for T.<br />

clavigera. T leuteostoma and M labto, respectively. The shell lengths for which average’ shell<br />

capacities were computed were, 27.5 30.0 and 18 0 mm while those for juvenile shell capacities<br />

were 200, 20.0 and 13 0 mm for T. clavigera T. leuteostoma and M fable respectively<br />

species as well as within species. For these comparisons, I chose a reference value close<br />

to the average <strong>of</strong> the lou-transformed values <strong>of</strong> body dry weight for all species com<br />

bined (150 mg. actual detransformed mean 148,2 mg) and shell capacity (1000 mg,<br />

actual detransformed mean = 992 8).<br />

In spite <strong>of</strong> their very different shapes, both Thais clavifera and Monodonta lahio<br />

exhibited remarkably similar overall shell weights at a given body weight (Fig. 8A). T<br />

clavigei a, howes er, exhibited much more dramatic variation among sites than did M<br />

lahio (1,77 vi 1.18, ratio ot maximum to minimum adjusted mean among sites). 1.<br />

dasigera also exhibited a dramatic decline in relative shell weight with decreasing<br />

exposure among sites within three <strong>of</strong> the four regions examined (Ping Chau, Hoi Ha<br />

Wan, Hoi Sing Wan), although the pattern was reversed at Cape d’Aguilar No trend in<br />

relative shell weight was apparent among regions, however. Of the three species ex<br />

amined, T lcutemtorna produced the least shell per unit body weight, but showed no<br />

significant variation among sites,<br />

When expressed as a function <strong>of</strong> shell capacity Thais (lauf,rra had the heaviest shells<br />

<strong>of</strong> the three species examined (Fig SB). Significantly, the pattern <strong>of</strong> sariation among sites<br />

was very similar to that exhibited at a standard dry body weight, hence this geouraphic<br />

ariation was not primarily a product <strong>of</strong> variation in relatie body size. As before, both T.<br />

leukoskma and Ilonodonta labia exhibited only slight sanation in shell weight when snails<br />

with a common shell capait were compared In contra’.t to Figure 8A, howeser, both<br />

species had comparable shell weights esen though their shapes were quite different<br />

Thais dasie,cia occupied a larger traction <strong>of</strong> the internal shell solumc. than either T<br />

kutu stoma or lluiodonta labia both <strong>of</strong> which vcr quite similar to each other (Fig.<br />

8(j This fraction <strong>of</strong> thr, internal solume actually oc upied by a snail also varied sig<br />

niticantly among sites for both T lavira and 11 lahi althoueh the v’ nation ‘. a<br />

much more pronourned tor T. cia iv a The three hithcst saIue for I a iç’rra oc<br />

coned in the two no t was exposed regions (Cape d’Agu ar and Pinc’ Chau) hut I’!<br />

labia exhif t d no noteworthy pattern cf sariat on Once aga n ditferences amor sites<br />

for I kut istoma were not si?nifiLant


A. RICHARD PALMER<br />

T. clavigera T leuteostorna M. labiyj<br />

gdrydyveight<br />

2800 B) mg shell capacity<br />

2400<br />

2000<br />

1600<br />

I NI<br />

I<br />

900 C) [t 1000mg shell capacity]<br />

800<br />

700 I<br />

I iIIII<br />

CD1 CD2 PCI PC2 HHI HH2 HH3 HH4 HSI<br />

Collection site<br />

HS2 TT<br />

i .i. .<br />

Fig. 8. Variation in relative sMell weight and the volume <strong>of</strong> occupied shell for three<br />

species <strong>of</strong> gastropods from 1 1 sites along the shores <strong>of</strong> Hong Kong. A. shell dry<br />

weight at a common body dry weight 1150 mg for all three species): B. shell dry<br />

weight at a common shell capacity 0000 mg for all three species): and C. oc<br />

cupied volume at a common shell capacit (1000 mg for all three species). All<br />

bars are mean r SEM. Sites are ordered roughly in order <strong>of</strong> decreasing wave<br />

exposure (see Materials and methods for site abbreviations), missing bars indi<br />

cate no data. Approximate significance levels from ANCOVA for common slope<br />

= 0. equality <strong>of</strong> slopes among populations and equality <strong>of</strong> adjusted means<br />

(assuming equal slopes) were as follows<br />


Selection <strong>of</strong> characters and analyses<br />

1H415 AND WO\cILh)\T-l SHFIi \ Rl\TIO\ 667<br />

DISCI’SSIO’%<br />

In an study <strong>of</strong> morphometric variation, the characters measured and the number <strong>of</strong><br />

analyses conducted are in principle limited only by ones imagination and patience. In<br />

practice. the characters measured and the comparison’, conducted should he selected in<br />

ads ancc to address particular questions <strong>of</strong> functional or ontogenetic interest. In this<br />

manner. one may avoid drawing unjustified conclusions based upon small numbers <strong>of</strong><br />

statistically significant associations after having conducted many possible analyses on<br />

arbitrary sets <strong>of</strong> characters. In this study, the characters I chose to measure and the<br />

analyses which I chose to conduct, were selected for the following reasons<br />

Penis sre was measured because increasing exidence suggests that ‘masculinization’<br />

<strong>of</strong> female gastropods may he induced by the antifoulant tributy itin (Bryan et al, 1986:<br />

Gibbs ci al. 1988>.<br />

Shill /entIi ss as used primarily to pros ide a description <strong>of</strong> the ‘size’ dependence <strong>of</strong><br />

attributes for all populations in units commonly used in other studies. e.g.. see RMA<br />

regression equations in ppendices I Ill. Although convenient, shell length may not<br />

always he a useful descriptor <strong>of</strong> size’ Palmer 1990).<br />

Sperture len tli was used to scale out size difterences for traits functionall or<br />

deselopmentall related to the aperture apertural tooth height, lip thickness, knob<br />

height. aperture area This avoided potentially confounding effects that might have<br />

arisen from u,ing shell length asa general size metric, due to differences commonly<br />

obsersed in the proportional or allometric relations between aperture length and total<br />

shell length among populations Crothers 1985: Palmer 1990>.<br />

4perrure area was selected because <strong>of</strong> its relation to tenacit (Branch and Marsh l978<br />

and to desiccation resu,tance (Lowell l984(. \perture area relative to projected area<br />

should approximate the relative susceptibilit to disioclgment by’ moving water: te<br />

nacity (proportional to foot area> relatise to the maximum drag force experienced<br />

(proportional to maximum area in the direction <strong>of</strong> flow). In addition. aperture area<br />

relative to shell capacity should be an index <strong>of</strong> desiccation resistance water loss rate<br />

(proportional to foot area) relatise to water reserse (proportional to the total internal<br />

volume <strong>of</strong> the shell)<br />

Lip tlzukness and apeituial tooth hezçht were selected for measurement because they<br />

are directls related to vulnerability to attack by shell peeling crabs (ermeij 1978,<br />

l982d>.<br />

Knob heii.lzt was measured because such knobs reduce sulnerability to shell crushing<br />

fish (Palmer 1979).<br />

Proiected area was measured because it is proportional to the maximum force likely to<br />

he experienced by shells in breaking was Cs (Denns ci ci. i985.<br />

Shell Lh’\ weis’hr ‘.5 as measured because <strong>of</strong> its general aloe as a deterrent against ‘.heli<br />

breaking predators <strong>of</strong> all t\pes (Vermei 1978: Palmer l 99 . and also because shell<br />

weight am a ins en body weight should he roughly proportional to the energetic in<br />

scstment in morphological defense.<br />

Bwlv des u eiht was measured to allow the relato e ins estment in morphological defense<br />

ss emht <strong>of</strong> the shell relatis c to weight <strong>of</strong> body ( to be compared among populations.


t6S A. RlCF1\RD PL\IER<br />

Size/I opacity vs as measured as a component ot desiccation resistance and as a means<br />

<strong>of</strong> comparing the relatis e amount <strong>of</strong> shell invested in protecting a gis en volume <strong>of</strong><br />

living space ot a shell.<br />

Occupied z a/time was measured to compare the relative amount <strong>of</strong> living space actu<br />

al1 occupied by the snail because this may vary in response to ens ironmental stimuli<br />

(Palmer 1090).<br />

Masculinization <strong>of</strong> female Thai<br />

Ihe concordant geographic variation in the extent <strong>of</strong> penis development in presump<br />

tive females <strong>of</strong> [hats davigtra and T leuttostoma (Fig. 3) suggests very strongl a<br />

c.omnion cause. In tVu cl/a, masculinization <strong>of</strong> females is widespread along shores<br />

exposed to even very low lcvels <strong>of</strong> the antifoulant tributyltin (TBT) (Brxan et al 1986;<br />

Gibbs a al. 1988). These data thus suggest that Cape d Aguilar experiences higher<br />

levels <strong>of</strong> TBT than any <strong>of</strong> the other sites in Mirs Bay or Tolo Channel. Little more<br />

can be said, however, without a more thorough survey <strong>of</strong> masculinization on other<br />

Hong Kong shores.<br />

Shell variation: genetic or ecophenotypic?<br />

Patterns <strong>of</strong> interpopulation morphological variation by themselves are not very in<br />

formative about the mechanisms responsible br that variation, Consistent differences<br />

may arise among populations via at least four pathways: (1>. the cumulative effects ol’<br />

selection over several generatiOfl.s coupled o, ith low gene flow among populations: t2 >.<br />

intense selection tor a subset <strong>of</strong> genot pes from a large pool <strong>of</strong> genotvpe arris ing in<br />

each generation: 3>. selective recruitment <strong>of</strong> particular genotypes to particular habitats:<br />

or (4>. ecophenotypic effects vs here even genetically hornogenous populations may dm<br />

verge from each other in response to ens ironmental stimuli.<br />

I think the first mechanism ma\ he rejected for the three species examined here. If<br />

‘i4izudoiita labia and the tvv o [holy species studied here are like their congeners. they’<br />

‘.vill have planktonic larval stages Fretter and Graham 1967: Spight l97fo. vvhose<br />

planktonic period vs ill he on the order <strong>of</strong> nne Fretter and Graham l962z to two weeks<br />

or more (Webber 1977). respectivel\. Hence it seems unlikel that larvae released by<br />

parents from a particular site on the shore vvnuld return to that same site.<br />

The second mechanism would also seem unlikel to account for the variation ob<br />

served here This mechanism should result in decreased character variance vs ith<br />

increasing si/C. hut scatter plots on log-transformed ayes rev ealed that the variation in<br />

larger mdiv iduals vs as at least equis alent to. or sunless hat larger than, that <strong>of</strong> smaller<br />

ones.<br />

Although I cannot reject the thmrd mechanism re1erental settlement is alvs av’<br />

possible vet ver difficult to detect ithour reliable genetic markers—- I feel that thc<br />

fourth mechanism, ccophenot pie plasticity is a more likely espianation br the hulk<br />

<strong>of</strong> the interpepulation ariatiori reported ab )s c Numerous studies has e now demon<br />

strated experimentally that gastrop d sh 11 shape (Kemp and Bertness 1984: Etter I 9%Sa.<br />

shell vs eight and apertural d fenses (Appk.ton at d Palm r I 988: Palmet loot>>, and life<br />

histoty attribute’, (Cross I ar d C 5 h 1990) car all ho piaslicil\ in response to<br />

ens ironmental stmmnul i


IHAJS \NDt4O 5ODOyI4 SHELl VAR1VIIO\ 669<br />

Magnitude <strong>of</strong> shell variation: differences among Hong Kong species<br />

The morphological variability exhibited by the three species examined appeared to<br />

depend upon the range <strong>of</strong> habitats over which the were found Thais da igera was<br />

found at all ten sites which were thoroughly sampled (Iai Tan was not included here<br />

because the tide was too poor to determine which species were presenu, and for all but<br />

one character (relatixe aperture length). it exhibited the broadest range <strong>of</strong>sariation (Table<br />

). Ivlanodonta labia was found at eight <strong>of</strong> the ten thoroughly sampled sites and was<br />

morc variable than I. kutostorna for two thirds <strong>of</strong> the traits they shared in common,<br />

T kurtostoma was found at the fewest number <strong>of</strong> sites (four) and for the majority <strong>of</strong><br />

characters examined, it exhibited the least sariation. Although the samplc size is not<br />

large here, these data are consistent with thc siew that ecological generalists are more<br />

morphologically variable than ecological specialists<br />

Relative character ariahility êkn appeared tn he cnrrelated hetween the twn species<br />

which occurred oscr the broadest range <strong>of</strong> habitats’ characters which were relatively<br />

more xariablc in Thais (lavigera also appeared to be relatisely more variable in<br />

Monodonra labia (Fig. 9). For both species. apertural traits (size, shape, and allometry)<br />

were relatisely less variable than those related to morphological defense (shell weight<br />

and lip thickness), Here again, too few species haxe been examined to draw any strong<br />

conclusions. Nonethelcss, the proportionally greater sariation in defensive attributes<br />

compared to those relating to desiccation resistance or tcnacity is intriguing. particu<br />

larly if thc bulk <strong>of</strong> this variation is ecophenotypic. Perhaps selection has been stronger<br />

for plasticity in defensive characters than for haracters related to physical stresses (but<br />

see below)<br />

1 6<br />

1 2<br />

08<br />

Aperture size<br />

allometry<br />

Aperture size<br />

Lip thickness allometry •<br />

Shell weight allometry<br />

• Lip thickness<br />

Adult leng th • Shell weight<br />

• Occupied volume<br />

Aperture shape<br />

1.2 14 16 18 2,0 22<br />

Thaza clavigera Max/Mm<br />

Fig 9 Assoc atian between the relat ye vanab hty <strong>of</strong> morphoiogca trade m 7 iais<br />

c’avp,a and Morodo a iabu 0 82 P = & 007 Speairnai P — 0 O6’) E ch<br />

pm repress ts the. ratio, for a angle trm <strong>of</strong> the max rrun populahon rean<br />

‘ r e m r mum populaho i mea obser ed among all t( e crIes sampled data<br />

om Table 3)


Tabe 3<br />

Ranges <strong>of</strong> morphologica) variation in three species <strong>of</strong> rocky shore gastropods from Hong Kong.<br />

Monodonta labio<br />

Thais c/a vigera Thais leuteostoma<br />

Mm. Max. Max. ‘Mm.<br />

Fig. Mm. Max. Max.. Mm. Mm. Max. Max/Mm.<br />

Trait<br />

Adult’ shell length 2 279 41.2 1.48 32.4 45.2 1 40 19.1 26.7 1 40<br />

Lip thickness allom. 5A 1 33 284 2,14 1.14 1.55 1.36 085 1 75 2.06<br />

Aperture area a))om. 5B 06 0.68 1.13 0.62 066 1 06 0.57 0.64 1,12<br />

Shell weiqht a))om. 50 0.77 1.29 1.68 1.11 1.21 1 09 0.8 1 15 1.44<br />

1.15 1.66 1.44<br />

11.3 132 1 17<br />

937 120.4 1.28<br />

103,9 1061 1 02<br />

1610 1908 1 19<br />

571 608 1.06<br />

Tooth height 6A 0.06 0.44 7.33<br />

Lip thickness 6B 0.79 1.45 1,84 0.63 1.01 1.60<br />

Sculpture height 60 0.94 2.74 2.91 1.53 3.25 2.12<br />

Aperture lengths —- 18.4 20.7 1.13 21.0 21.6 1.03<br />

Aperture size (area) 7A 122.1 158.8 1.30 173.5 176.8 1.02<br />

Aperture shape (area) 70 128.6 155.3 1 21 174.0 181.4 1.04<br />

She)) weight 8A 1271 2253 1 77 1025 1184 1.16<br />

Occupied volume 8C 601 839 1.40 556 607 1.09<br />

Note. Tabled values are the minimum and maximum adjusted means for each <strong>of</strong> the three species as depicted in the indicated figures (units as in figures).<br />

At a given aperture length.<br />

At a g:ven sheli length. computed tram regressions -112 to -121 for T. ciavigerai. 11-38 to lI41 )for T. leuteostorna). or 111-83 to 111-91 (for M. Iabio(, in the<br />

Appendices<br />

At a given shell capacity.<br />

At 150 mg dry body weight<br />

At 1000 ng shell capacity


IH4JS AND ‘1O\(1DO\T4 SHELL’s \RlA[tO\ 671<br />

Magnitude <strong>of</strong> shell ariation: comparison with temperate species<br />

As emphasized in the introduction. most <strong>of</strong> the extensive studies <strong>of</strong> morphological<br />

ariation in marine gastropods has e Lonceiitrated on temperate species. t’nfortunatel<br />

lack <strong>of</strong> a common methodolog rather limits the ability to compare quantitatis el the<br />

extent <strong>of</strong> intraspecific morphological s ariation. To conduct a preliminar examination.<br />

I computed comparable measures <strong>of</strong> shell variahiliir for three notoriously s ariable<br />

species <strong>of</strong> north-temperate .\ mel/a upon ss hich I has e ss orked. Rather surprisingly. Thab<br />

laiier, in the vicinity <strong>of</strong> Hong Kong exhibited a range <strong>of</strong> variation nearls equis alent<br />

to these species (Table 4). Ross eser, the rather impressive magnitude <strong>of</strong> variation ex<br />

hibited h T. (lavigcra may not he representative <strong>of</strong> tropical Thais. It is more a<br />

subtropical than a tropical species because it appears to be near the southern end <strong>of</strong><br />

its range in Hong Kong (Abe 1985b).<br />

Allometric variation<br />

The patterns <strong>of</strong> allometric variation (Fig. 5A C) were somewhat difficult to interpret<br />

The consistent positive allometry <strong>of</strong> lip thickness exhibited by all three species (Fig.<br />

5A> occurs commonly in marine gastropods (Verrneij 1980: Palmer l990. Such<br />

allometr could arise if the maximal rate <strong>of</strong> both growth was limited h the rate <strong>of</strong><br />

shell deposition (Palmer 19811. If this were the case, however, sites exhibiting the most<br />

pronounced allomet should also exhibit the highest occupied volume, because the<br />

bodies <strong>of</strong> rapidl grossing snails should have expanded to fill as much <strong>of</strong> the habitable<br />

volume as possible. Yet for both I hai v elaciç’era and fonadonra laimo sites with the<br />

highest lip allometry were associated with relatively loss occupied volumes te g.. in HHI<br />

and HH2). Perhaps the occupied volumes at the time <strong>of</strong> collection were not representa<br />

tive <strong>of</strong> differences in growth rates. among populations. In addition, none <strong>of</strong> the three<br />

species consistentl exhibited any allometry <strong>of</strong> shell weight relative to body weight Fig.<br />

5C). further suggesting that the rate <strong>of</strong> shell production does not limit the rate <strong>of</strong> both<br />

growth in these snails.<br />

Perhaps the most interesting allometrv was exhibited by aperture size. On the whole,<br />

all three species exhibited proportionally smaller apertures with increasing site (nega<br />

tive ailonietry, Fig 5B). this was true even for populations from wave exposed shores<br />

where aserage aperture site was larger (Fig. 7A, B), suggesting that the size-depend<br />

cnce <strong>of</strong> apcrture area was less relevant to tenacity than to some other factors, e.g.,<br />

desiccation or predation resistance.<br />

Concordant variation <strong>of</strong> characters within species<br />

Assuming that most <strong>of</strong> the obsers ed variation reported here arose ecophenot\ pa ally (as<br />

argued ahoy ci. concord mt variation <strong>of</strong> characters among populations vs ithin a species<br />

ma reflect: (a>. des eiopmentaIl independent respon’.c ot different characters to the<br />

same ens ironmental stimuli: (hL des elopmentall independent responses <strong>of</strong> ditfercnt<br />

characters to separate but otherwise correlated ens ironmental stimuli: (ci, correlated<br />

change due to developmental interdependence, either via some form <strong>of</strong> trade<strong>of</strong>f or via<br />

linked deseioprncntal pamby a s: or d. geometric non-independence. I has e avoided<br />

making any comparisons which might tall in this last categor . and has e tried to con


Table 4<br />

Ranges <strong>of</strong> morphological variation in three temperate species <strong>of</strong> rocky shore gastropods.<br />

Nuceila emarginata’ Nucella lap/I/us<br />

Nuce//a lamellosa’<br />

Mm. Max. Max 1Mm. Mm Max, Max. Mm. Mm, Max. Max. Mm.<br />

Trait<br />

Lip thickness (mm)<br />

1.81 3.56 1.97<br />

Aperture length (mrn) 13.6 157 1 15 16.8 20.3 1,21*<br />

Aperture shape (area. mm) 91 4 104.4 114<br />

She! weiqht (mg)” 2477 5402 2.18 782 1463 1.87 2811 4578 163<br />

rn<br />

Note. Tab ad values are minimum and maximum adjusted means at roughly average size for each <strong>of</strong> the three species.<br />

Computed from data partially presented in Appleton and Palmer 1988.<br />

Palaer unpublished data from 10 sites over a wave exposure gradient in Barkley Sound, BC.<br />

Computed from regressions in Palmer 1990<br />

At 20 mm N emarginatat, or 25 mm (N lapiflus) shell length.<br />

At 145 mm aperture length.<br />

At aporoximately 150 mg dry body weight.<br />

Th s saiue compares quite closely with the range in a much larger data set presented by Crothers (1985: figure 29. excluding the Severn estuary).


IIItIS AND ‘i4OvODOTA SHELL VRRJlON<br />

0.3 -fCD2<br />

/<br />

-IS2 pci<br />

02<br />

- I<br />

---+- ±/<br />

0 1 tim HS1 +CD1<br />

PC2<br />

0.8 1.0 1,2 1.4 1.6<br />

Thais clavigera Lip thickness (mm)<br />

Fig. 10. Correlation between relative apertural tooth height and relative lip thickness in<br />

Thais clavigera from 10 sites along the shores <strong>of</strong> Hong Kong (see Materials and<br />

methods for site abbreviations, r = 063, p = 0 07, Spearman P 0 11) Each<br />

- point represents the mean SEM along each axis for a sir gle collection site (data<br />

from Fig 6A, B> Note that lip thickness does not include the height <strong>of</strong> apertural<br />

teeth The sample from PC2 (identified by t) was excluded from the analysis<br />

because it was biased towards younger, more rapidly growing snails where teeth<br />

were less likely to develop. Note that within each region lHoi Sing Wan, Hoi Ha<br />

Wan and Cape d’Aguilar), tooth height was also positively correlated with lip<br />

thickness (dashed lines).<br />

centrate on characters <strong>of</strong> particular functional significance (lip thickness, apertural tooth<br />

height, aperture area) or characters that showed substantial variation among populations<br />

(shell weight, occupied volume; see Table 3)<br />

In Thais davigua, populations with thicker lips tended to have larger apertural teeth,<br />

although the association was not quite significant statistically (Fig 10) Note that the<br />

same part rn was evident among sites within the three regions having reliable tooth<br />

height measurements Thus, the positive association between tooth height and lip<br />

thickness doe seem valid Because these characters are geometrically independent (see<br />

Matcral and mcLhods), ar 1d bcaus both ae intimately asoJaLd vth1.ducing ‘ul<br />

nerahility to predation by shell breaking crabs (‘vermeij 1978). this correlation seem<br />

most likely to be a product <strong>of</strong> mechanisms (a) or (c).<br />

For both Ihais dasic,cia and lilonodo, Ia labu . lip thickncs was also positively<br />

correlated with occupied volume (a measure <strong>of</strong> relative body sue. Fig. II A) lth ugh<br />

these correlations could have arisen if thicker lips cramped the internal volume <strong>of</strong> the<br />

shell forcing the body to occupy a larger fraction <strong>of</strong> thi spa e (mechanisms (c or (d)).<br />

the xpected necative correlation between relatil sh 11 weight and occupied olumc<br />

did not materiahíe (i = 0.14. P 0.71 N = 10 for f lariçera andi 0 11 P 0 8,<br />

N 9 for 41 labia, both estimated at a common hell capacity <strong>of</strong> 1000 mg). Hcne<br />

neither mechanism (c) nor (d) seems likely to account for these correlations in addi<br />

tion thes’ corr lation are th ievlr e <strong>of</strong> what would be expected based rn studies <strong>of</strong><br />

predatn induction, xpcrimcntallv indu ed thicker lips ire associated with adureasui<br />

occupied volume in both ‘Vuella lainrllosa and lapillus (Appleton and Palmer 1988.


A RICH \RD PALMER<br />

L8 M labia [.davigra A<br />

L6<br />

l4<br />

L0 -<br />

0.8<br />

06<br />

1 6<br />

14<br />

12<br />

600 700 800<br />

Occupied solurne 1000 mg Shell capacity<br />

M labia 1. claviera<br />

LO -<br />

L<br />

100 120 160<br />

Aperture sue (mm’) @ Ave age sh 11 capacuts<br />

Fig 11, A cor elat or betwee i relabve ip 14 kness a d re ati e occupied vo ume in<br />

Tha cavgeraand Monodona abi<strong>of</strong>om 1 aid9s e e per veyaongt[c<br />

s res <strong>of</strong> Hong Kong Eact powt rep ese ts the car P1 aong a axs for<br />

a 14ngle coNe hon site data rorr Figs 6B a d 8C) For T c avigera r 0 71<br />

P 0 031 Spearr an P 0 90 for M lab o r 0 2 P 0 0 8 Spe rrra P<br />

0 0531 B correlat on be ween re ahve ip th ck iess and relat ye aperture s ze<br />

r sar1 sampas rf T cIaCger ard hI, ahc. The Jata are fr “gs 6B<br />

a d 7A For T c avgera r - 0 69 P - 0 028 Spe- rr ar P 0 053 or M I b o<br />

r 087 P 0002 Spea man P 0044 Note t Np thckres does not m<br />

rude if e feig[t <strong>of</strong> ape tural bet Da fed res we tted b cy<br />

a ni r 1 ( I t us a corrc laiL r )r e t ( r r n n r a tim I as t d<br />

ith p edatior rubs meL am ci ( ) a 1 s er 1 k I ,<br />

I<br />

B)<br />

ak t thcr tc<br />

it ns uc 5 tI’atlipthikrc ard.c u d uncrfcti deper ii prse<br />

sep ra e I Ut err Iatcd I tur’ r I if n ir rimerit in i r ism ) e a ci if arc.<br />

I x d a lab Ii y, and pr d in intensi<br />

Cu i u nat Ietwrcn lie thick e an pLrtur s it ditt d 1cm ci<br />

r rd 14 n ntz h, Fit B) r r ap t r d opu 1 o I<br />

i. uter ed haethike ip nheea i ck &rascd vii in L<br />

apertur sue in /ll ahi F Ii hth pen larc.ei ipertures sscr a sociated s ith ir


I/I tIS AM) tIOM)DUVT4 SHELL VARI \TlO’s<br />

creased ssase exposure (Fig. 7A. Table 2; see also Fig. 12 beloss), thus for some rea<br />

son I daszge a produced thicker lips and 14. labia thinner lips on mors. ssase exposed<br />

shores N4edianisms iai (et and (dt all seem unlikely causes because they cmld gen<br />

erate parallLl patterns in both species Thus these contrasting correlations most likely<br />

retlect some other differen es in the biology <strong>of</strong> these to species. Since 1 lad c,u is<br />

a predator <strong>of</strong> or sters and small his aRes (Jay br 1980> hile Al. labia is presumably a<br />

microherhiore like other trochids. and since these species has e ccx different shell<br />

inierostructures. most notabir extensive des elopment <strong>of</strong> nacre in 14. lal’e (personal<br />

ohserx ann. manr explanations for these contrasting patterns are po’sihle.<br />

Uoncordant morphological ariation <strong>of</strong> sinpatric species across enxironments<br />

\s xsith correlations among characters within species, many possible correlations could<br />

base been examined between species. However. I chose to analyze only four characters<br />

shared by [haS dan izuu and Wonod n a labia ftlr interspecific correlations, Tsso <strong>of</strong> these<br />

exhibited con. Istent associations across habitats ssithrn speuies (aperture i,e and lip<br />

thickness i and Iss o exhibited a particularly high range <strong>of</strong> s ariation ( shell ss eight and ocx<br />

upied s olume: l’ahle 3i. These seemed the most interesting to exanline because either<br />

the presence or ahsence <strong>of</strong> correlations ssould he informatis e. L ntortunate] . the third<br />

species. 1 Ieuieevlrmra. xx as not found an enough sites to rnclude rn these analyses.<br />

Table 5<br />

Summary <strong>of</strong> the strength and direct on <strong>of</strong> association <strong>of</strong> she I trarts<br />

with two major aspects o the environment n two spec es <strong>of</strong><br />

rocky shore gast opods from Hong Kong.<br />

Wave exposure’ Crab predation ntensdy<br />

Trait Fig T c’av T. lout. M. iabrc T. clay T feet M. fabyc<br />

Adult she ength 2 -<br />

2 2 2 2<br />

Tooth ‘reight<br />

Lip tb ckness<br />

7A<br />

7B<br />

x 2 x<br />

Sculpture heg F<br />

Aperh re size area<br />

Apertu e s ape (area)<br />

Shot weghF<br />

Occupied vcIume<br />

7C<br />

BA<br />

BC<br />

9A<br />

gO<br />

+<br />

+<br />

0<br />

0<br />

Q<br />

0<br />

7<br />

2<br />

2<br />

2<br />

2<br />

0<br />

7<br />

Q<br />

x<br />

0<br />

Qattat!ve rafl1flg <strong>of</strong> resors by wave e+pos..re: Cape d Agusar > Png Cnau Ho Ha War > Ho<br />

Seg Wan Ta Tan. Wtrr each region seaward shea here conwdered ‘e(at’xel( more esponed.<br />

P’edato” nterstv essence o be propotior’a ro rcdence 0 woared shet “unec Fe 4<br />

At a giver apeCure ength<br />

At a gven see<br />

5 capaey<br />

At 50 rrg dry body weig’r<br />

At 100 110 shel capact,<br />

* ‘ o g a d con s poetve as aton ± weak o 1 a nsistert p dv ass cc 0<br />

1 end car dfference’ - a rg s e w e o ess orsste t nega ye a socatjo<br />

tror g ard c snt r gat e ocntio 2 ssoc etor b guou x r t app cebin Cova t’ s<br />

used fc err pare trads given ir fgures (isted


. RICHARD<br />

P \LMER<br />

Although lip thickness exhibited the greatest range <strong>of</strong> ariaton <strong>of</strong> character’ shared<br />

by all three species tTahle 3, excluding illometric variatione and also e\hbited a con<br />

sistent negatise association with ase exposure at least in ‘ttonoth eta lahio ilable 5i.<br />

it exhibited only a weak negative correlation betw een Thai s las- gr ; a and 4f lahi (r<br />

0.59, P 013. N 8, Spearman P = 0 14, data not shown. As suggested in the pre<br />

ccdina section. th;s negatis e correlation ma he a product ot differences bets een these<br />

tis e species n the biology ol feeding and growth or <strong>of</strong> shell production. Additional<br />

;nforrnation i needed before an conclusions can he drass n \eithei sit the othei tss o<br />

shared characters s’s hich shos’s ed substantial ‘s ariaton s crc signficantl’s correlated be—<br />

tween [ iat-igera and %f. labia shell weight at a common both dry weight ; 0. 0,<br />

P 0 48, N = 8 Spearman P 0 17: o copied volume at a common shell capacity r<br />

(1,26 P 0.54 N 8, Spearman P 1 0)<br />

‘- 12u<br />

perturearea@averageshelipacity<br />

+CD2<br />

U t 110 ,,4,, PC2 ±<br />

100<br />

• HS2<br />

HS>4-s<br />

90 ‘“<br />

130 140 150 160<br />

Thais clavigera ‘ Aperture<br />

2)<br />

area (mm<br />

Fig. 12. Concordant var;aton in relahve aperture size between Thais ciav;gera and<br />

Monodonta labio among the etght sites sampled to Hong Kong (r = 0 72. P =<br />

0042. Soearman P = 0096) Each point represents the mean -<br />

axis (or a single collection site ;aata trom Fsg 7A).<br />

v<br />

along each<br />

R latise apeiture site, Ilk trait which va most eonsistcntl associated tic 055 envi<br />

rarimer’ts ii ohio species Table Sc ‘s’s as also ignificantl\ correlated hcts’seen species<br />

Fig. 12;. shores harboring large apcrtured [hats Ia; iges’a also harbored large aperiured<br />

tI,in,isJ,n;ra lab; i. The ocLurrence ot huger .iperturcd populazons oil niore S’s as e exposed<br />

shores is i conimon pattern in rock —‘hore zastropods (\ermeij 1 ‘s7: Crothcrs 1985:<br />

See1e I $6;. ‘the fact that these t’s’so sp cics should exhibit cone )idant ‘sariation in<br />

apertur’ site, despite their di tinctise taxonomy aid ecology suceest that water<br />

m scnicr t is an environmental for e with an influence m shcll (oim that trio cends<br />

laxonomic arid ecoloizical considerations


11141S AD 4/1O”v( DO\[4 SHEI L \ARl \IION<br />

Phenohpic correlations with incidence <strong>of</strong> shell repair<br />

Nithough the im.idence <strong>of</strong> repaired shell injuries ‘varied substantiall’v among populat ons<br />

from a low ol n ne, to a high <strong>of</strong> (>38 repairs per indixidual (Fm. 4), the oserall aver<br />

age incidence f repair ‘vas quite compar bi among species (mean srxi’ 0 13 t 0.033,<br />

0.08 0 021, ar d 0 18 (3.033 for [ha s laszçera [.lcu u ira and 41 i d ma au ),<br />

respectis ely) These frequencic s c )mpared favourably to those obsers d in \ tic c/la<br />

lap I us (Ve m ij l98a> and Littorina litt ica (ermeij 1982b from the North Atlan<br />

tic, Hence, relatise to other species from rocky shores, snails ftc m Hong Korg appLar<br />

to ha’ve a similar probability <strong>of</strong> experiencing and surviving a crab attack<br />

In spite <strong>of</strong> the roughly tenfold ‘variation among sites differences in predation ir<br />

tensity accounted for ‘very little <strong>of</strong> the obsersed interpopulation shell ‘variation, fo<br />

obtain an oserall index <strong>of</strong> crab predation intensity, I pooled the repair frequenLies<br />

across species on the assumption that, within any particular habitat, each f these<br />

species was equally likely to be attacked and proportionalls likely to sursise the<br />

attack None <strong>of</strong> the traits considered likely a pi ion to respond to ‘rab predation in<br />

tenity exhibited significant associations with repair frequency for either Thaiv<br />

or Uonodonta labto’ apertural tooth height ‘= (i 0 34, p o 37, N = 9<br />

Sparman P —(>99, T. cJa’viç’cra only, PC2 excluded), lip thickness (ti - (3.10, P = 077,<br />

N= lO,SpearmanP=08l.andi 036,P=0 34,N=9,SpcarmanP 030forJ<br />

c/ar gela and 41 lal’h, respectisely). shell weight ( = 055 P — 0.10 N 10,<br />

Spearman P 0.22, andi 0 16. P —(368, N 9, Spearman P 0.67 for T ciarigera<br />

and 11 /ahio, rcspecti’vely), and occupied ‘volume ft 0 48 p (>16 N 10<br />

Spaarma9 P g 14 and i 0 46, P 0.’6, N parn9 P 06 for!. acu’c,a<br />

and 11, labia respectively) Either (a) larger sample si/es are required to describe<br />

hc ‘variation <strong>of</strong> repair frequency among site more accurately’ b), repair frequency<br />

is a poor indicator <strong>of</strong> predation intcnsit’v in certain situations (Vermcij l982c), or (c),<br />

the bulk <strong>of</strong> shell variat on observed in I. la’vie,c a and 41 labro is not in response to<br />

different lesels <strong>of</strong> predation In view <strong>of</strong> the rather substantial ‘variation observed in<br />

these species, this topic would seem worthy <strong>of</strong> further study<br />

CON CLC SION S<br />

To my cu p isc, in spite <strong>of</strong> con iderable variation in many morpl olc meal n ads the r ly<br />

particularly st ikina association between shell form and environment revealed by this<br />

stud’v v as between aperture area and wa’vc exposure (Figs 7A, B and 12, ‘1 able 2) As<br />

discussed above this pattern is common in ther species <strong>of</strong> gastropods and its exist<br />

ence in two taxonomicalls and ecologicall’v distant species suggests that wa’ve acti n is<br />

a significant agent f selection n Hong Kong shores<br />

I find it pu//ling, howexer, that traits related to predation resistance exhibit d so little<br />

correlation between cpeLmes r among en’vmronments The incidence <strong>of</strong> rLpaired shell<br />

injur is sufficiently high to uggest that shell-breaking predators ar an important sourLc<br />

)t ca tropod mortalift on H mg Kong shores (1-ig, 4> In addition studies <strong>of</strong> shell an<br />

ation in temperate rocky shore ‘a tropods have resealed that shell form ma hange<br />

uit rapidly in r ponse to a cr ased prdat’on risk (Vermcij 1982a Seeley 1986) a<br />

large I ati rn <strong>of</strong> which ma’v be ecophenoty pie (Appleton and Palmer 1988, Palmer 1990)


A 10(1 ARt P L IER<br />

PrtHth en rati)nmayic Li a unpi nt Ha<br />

hador tree d n A/we 1 rsi ila Lit. iiiemperst<br />

an Bertw’ 1984, App eton and P t-u 19 8 P’ inie<br />

toi h m ar ir,. ites (UI n. tAph utype. Pc<br />

r a iu 1 U rrr I u ai1 lu<br />

r r aio A/dab u tie rot[ kinr d<br />

Ia F <strong>of</strong> ‘r sd r letwe n ifeni do t c. ma<br />

r uV<br />

r a sti<br />

n 0 ue<br />

f ri<br />

F re dii p<br />

10 Br d r<br />

Dud<br />

eMaa )JU fH ,.<br />

Ku<br />

Ri ‘Ft Km Luivr t P<br />

\t t r Pa<br />

C iy d ‘i ujd<br />

0 1 S it<br />

B Al n Al (<br />

1 (ItO I<br />

La W h<br />

1 1<br />

Ui I /<br />

(ri 9 ) k<br />

( 1)<br />

ACK\ WIFD(I’MEN’IS<br />

Nut iS’ H,<br />

‘(K r) pd<br />

‘0 Out /1/ rçK .i /<br />

d ‘t Au I<br />

rISu r C tita to<br />

A r sir<br />

F ‘I is 11 ‘i<br />

I 48<br />

1 at<br />

I ii I<br />

nale F r t IF vu a ned,<br />

pe N A rr ej 1 80 K rp<br />

)( hat i t f the aria<br />

hap Lii i v hd to Iho<br />

tf Mo ohr’o 9 Aoe<br />

pm tutue a 5 ‘lb<br />

tI ‘<br />

ed<br />

d<br />

8<br />

( 2<br />

c/i (ha H d B<br />

ttIA r<br />

)“ ‘ryri 98 Huy<br />

‘I<br />

din<br />

p<br />

t) preda<br />

tion ri only I at onu f thu n not<br />

Seuw iha uredt<br />

apola r iuci)a /i/<br />

p. F hsouu tro hd vouidsh s srriarre pa ird r i Th icrativ<br />

‘elatin Lv ath s peec. lii F 1 A a 11 f ted r tory<br />

1’ i A rriuij 8 iii it ed ately sugg th’ as ur p ior sal I Perla h<br />

te for uent) ‘reiti n kthat a cvi edit mire I riy ak y duc pe<br />

ram itintr (hid. IaH nu p men e rmnti r I Lv es’ I s I<br />

h sew p torisk trw )udbno f isa<br />

fu Bia I to r 1. o<br />

a in ,rtaa icr<br />

iufr K c ‘at<strong>of</strong>o<br />

)(51 esBIMA’ahom<br />

t it to tul<br />

‘, Na N<br />

Oree n U,,<br />

H<br />

ii<br />

Fe<br />

K ,,r<br />

a 0 8)1<br />

d e<br />

)e e 1<br />

eai 5’<br />

a e ifs<br />

‘, ,, Pta a , p “ t a a It<br />

F n ‘ru erp( ibis r scrub as upported F N LR( OP r ( n Ai’TS<br />

S A<br />

N<br />

Al r<br />

1985a<br />

)85<br />

It C I<br />

tim, c<br />

II<br />

It I<br />

RFFFRI NOES<br />

i ru<br />

Ii Lu ii B 81/c I<br />

F<br />

C sr ii<br />

rt d Ii t<br />

t)<br />

fi<br />

i I<br />

I ‘ I: it<br />

I f<br />

I<br />

I<br />

0<br />

II


[HAIl ND MOKODOK TA SHELL K RI K T ION .79<br />

[or R.J 1988h Pi,siobgicalsress and in1 dy I rlfisrsitthc i cida salK Jo<br />

to i Fo,tx.4.(0 )<br />

FoiL I C 19, ‘ Sionifica i f h<br />

t cit.’ ,r 5 stir tS)S S<br />

I hick sr a, sr s VI astropoda CJO ida B tic<br />

Fr ttrr V idCri am A 1)62 B in p t anti it LondtsrR y5’ iety<br />

(s’bF ,P I Pascie P F andBrLO R l8S Ss. cFa, n [c iid dr 4 leA, it<br />

op ‘nuedh trihutvlrnfrriatftul’gpaiis /it tt4f B ia<br />

Ass ii i . (K68 15 31<br />

Hami .P V.1980 Sb I pnaoonin Vt i’ti r S p ‘a sarat. ertsti it.<br />

reated Ito d i otRts e 138486<br />

Jarsin K IAI Al / iieands ci sari non Ha man a F a Praobai La 0<br />

di rntdispcislabilitie Bit ala at f’t-L nor it )24<br />

Jrhannc str B 1986 shHI ilrphoI es I Li a. a so Is DI the rrlati a. rt a 1<br />

physi at a tr and pedsttor 1)0 iattt spti iot Ida Biot s ct/tnt t,’<br />

102 18 95<br />

Kemo. P ard B rtrc s VI D 1)84 Sra 1 Faa.. and rt<br />

al t ne y in I I t i hit Pi , o r ‘s t N I<br />

I 511 P.<br />

2S1’ 44<br />

Kit hre J A Kurt L a dF(lint F 1)6 Ihc (I<br />

si ‘nihc r V sF cii and body form in a. to tiiii<br />

faBat ra ‘vi .19K Stals nobody sa saf’cti it<br />

5 (55 F S sitmotit 20 ) It<br />

Isa ill 1.1984 Icic aft sla ifriE limiets etc<br />

ites e ‘de it. for pla t V I<br />

4adrs IS a. I irIS<br />

Ri, aid 1 f05 Lxoi oat r not a i/i nm, ,‘ i, d Ilais Ianmlhsa so n<br />

aids Seattle Ciliistoir Co<br />

Ktl’inm.J A ndLorsssoo J 9’4 Obse ati r 1 trrmaidi e loca s nt<br />

Lance intlsiidgatopolstfth g rusl lair Ne /aand In si B<br />

o )u IreNK I ea.<br />

[In oIL t SI) (<br />

‘ci g aides u tr I i B<br />

I sue t u ite n<br />

[ape. 1 o no’o[Fsxiiiitrt Ma’int Bohc on F ,s 1 21<br />

[uckrn , P 5 l/0 K tnation <strong>of</strong> hel harast tf a spcc <strong>of</strong> 0 it n (Klollusc’ Ga spi Ia<br />

at Asamu hi S i n t B pa s 4 It hocu I ortrsit St i its IS Bolts) 35 14 St<br />

Ncwk rk 0 1. and Doyle K. W 1975 Cstnctic analy is <strong>of</strong> tell hapc variation n Littoroo<br />

sot stut s on an enviror mental ch a. [loin t Biott ç 31) t 7<br />

Pal ix. A. R 199 Fish predation md the volution <strong>of</strong> a rop t sh II s Ipture pnuinerial<br />

P’ul<br />

and F° graphic evidence, Eta into 3,697 “13<br />

c A R 1981 Do carb mate skelets ns limit the ra sf body growth Ko or 292 Is) 52<br />

Painter. A R 990 Effect <strong>of</strong> crab effluent nd sc nt <strong>of</strong> da naged cc s pecuftcs on fcedtnc or sth and<br />

sell moupholo.y <strong>of</strong> the Atlart dogwhelk K a to to I is (F ). II di thut boo 193155 82<br />

P i lips B F (aTnpbell, N A and Wil n B R IT’) A null sari I study f gea.. api<br />

auiation ‘n th sshclk I) otT s loi not t Isp in ti M itt Btt s aol F ‘it 5<br />

2”’ r9.<br />

I a R H. 86 irtunse iatur 1 clcctit cau F d<br />

rrarnt sial Pit telocsr / ‘vain S oa /<br />

strshc dtr i tisr i i irg<br />

itt itt I SI 53.68)7 9)<br />

S ill 11 9811 tnaturalh’ an ‘or r if [mIl a iat ti in thep ri ik<br />

son sill it ho,, titMa, Ba ii 5 ut /1 S S 41<br />

S a.R R i dR hI F J laS orO ndc S n F i t c KS 13 Frc rr C<br />

Sig,ht1 VII96Folr.. satIs. irntrr t Ott it.2 -4<br />

Sruh ala.<br />

i<br />

J KS<br />

P iS<br />

(S Si<br />

Fr c[ VI<br />

r r<br />

s<br />

1 n r<br />

t A<br />

s siit<br />

In<br />

rt ‘I e<br />

45° t<br />

r I” s silur ii<br />

1 1 J.) I) D tarl it t h v t r I) idlic (<br />

H, K Ic a’ I I i it I i ti dIM<br />

Ii<br />

s. S tI Ft rr it<br />

I I’ l’ur sK<br />

nc o<br />

s ra 11 n<br />

I S<br />

I I loatH<br />

P<br />

C) V I<br />

I S


A RIC HARD P \I MFR<br />

rnietj. Id J 19’S. Rimi ai api. a d a ip zr i Pat ri a ii ii’ atnhridge. Nlass.<br />

liarsard Lms erOr Press<br />

Venneij. H. J. I 95(1. (iastropod shell gr stf rate alL tnctrx ard adult iie: ens ironrnental iniplh<br />

ation In Sst/t i/ Ci ott ru<br />

i ark. Plenum Pt ass.<br />

o aqutr’i ii. a a i ted. Li. ( Rhoads and R. A. Lutz. ‘-i $4.<br />

at ntet. Ph J I952a. Phenotr pie es olution tn a oorl disprsing ‘nail aIter art is al <strong>of</strong> a preda<br />

tar. \l’tt’t 29°: 49 50<br />

S ermeit H J I 95 ‘h. Ens lronmentai chanre and the olutionarr hstor <strong>of</strong> titr pen ‘a ink Ic<br />

iii;: i/tnt fill//tOt n North Anencit. Fr :ar, t. :)hi—X0<br />

\ crmcij. H. i. i 9X1 I. nsuecessful predation and e’ alution. dine/i at; \a[UritiO I 20:9) I dii.<br />

\ermetj. Id. J. l°2d. Gastropod ‘hell Ltrm. breaIaoa. and repatr tn relation to predation hr the<br />

rah Ca/apoa (la/a a/aria 23:1 Id.<br />

\ermeij. H I. I 957 1 iv /i 1te a<br />

Lots erstir Press.<br />

and a ‘a a/alit a -30 0. ‘/ i.ai a! h/train ii tit Princeton: Princeton<br />

Vt cOhen. H. 11. 1977. Gastropoda: Prosohranchta. in Ri prim non v/ manna ot ,tchioic ed. A.<br />

(7 Hiese anti .1. S. Pcarse . I 9 \e’a ark: Academic Press<br />

55 ellinrion. (I. SI. anti Kurts. A M. I °. Gross th and shell armatton in the tropical eastern Pa<br />

cific intertidal gastropod genus Pioporo. ecoloetcal and es olutionarr implications. Bo’i’ri:a!<br />

Ba//cnn I h4: I S<br />

APPENDICES<br />

These appendices include the descriptis e regressions used to generate standardiied s alues<br />

for Tltai,s rId/li/era 3 Appendix I T. leureucni’na Appendix Iii and .‘vtanac/oitta labia<br />

(Appendix 1113 in the ftgures and iable in the text. For each regresston. sites are or<br />

dered rouehl\ in order <strong>of</strong> increasing was a espoxte. For each spec ics. regresion<br />

5 ate<br />

ordered alphabeticalir 1w N and then Y variables. For each character pair examined in<br />

each species. a separate regression was computed for each ile i.e.. slopes difbared too<br />

<strong>of</strong>ten among sites to justify usine pooled slopes from ANCOV.\, See Materials and<br />

n elhods for details <strong>of</strong> measurement and Discussion for a justification <strong>of</strong> the s aniables<br />

analyied.<br />

Abbreviations: Regr. # number <strong>of</strong> the regression as referred to in the text: Site —<br />

see Matetials and methods for site abhrcviati )ns (All recre sion computed on data<br />

for all sites pooledi: N sample si/c: Mm Max, mir imum and maximum<br />

ititiansjoirned s alues for the X sariate; Mean mean <strong>of</strong> the X s mates actuallr used to<br />

compute the regrecsion (may or may not be log trsnsf )rmedf Lea t Sq. [incur Regr<br />

results from a least squares lineat regres ion [Slope tandard e ror <strong>of</strong> slope),<br />

correlation cocfiictcne] Expected Y @v Mean X Y salue predicted from the least<br />

squares linear regression it the mean valu’ for X (st mndard erro )f expected 11: RM<br />

slope reduced major axis slope for a model II regression (— lea (-squares linear re<br />

gression slope/i. see Statistical analyses section in M termals and methods). Is<br />

Allom Students r alue fot the difference betxsen the obsersed RMA slopes and those<br />

exp cted for isomelr\ (set.. Statistical analyses section in Materials and Methods


APPENDIX I<br />

Thais c/a vigera<br />

HMA 7<br />

Sop A on<br />

Expec.ted Y A<br />

Mean X<br />

L a t Sq Urear 3eg<br />

Slope a)<br />

X Ax a<br />

Mm. Max<br />

Ro>r<br />

# S3e N<br />

I02<br />

02<br />

02<br />

1 60<br />

1 92<br />

Os<br />

34<br />

(4<br />

76<br />

4 28<br />

4)<br />

11<br />

29<br />

X 01 Aoerturn length nm), I log (Aperture a mx mm<br />

01 HS1 38 141 245 1 296 2 062 0 0544) 0 988 2 59 0 O03<br />

0’ 3S 40 13.3 253 1 281 2064 00409 11993 2103 00030<br />

03 3H1 40 102 232 1.234 2009 1 0370 0904 046 0 033)<br />

04 HH? 3/ 165 285 1.327 2.16/ 00551 0989 2201 0.0040)<br />

105 NH 44 11.6 297 .333 2013 00341 0994 2216 00013)<br />

>6 HH4 13 123 262 1 240 2.029 00518 0995 2023 00050)<br />

07 P01 40 101 246 1.256 2153 00388) 0994 2100 00035)<br />

08 P0? 11 110 170 1 151 233 02343 0354 1 870 00110)<br />

09 CD 40 146 224 1.260 2 033 (0 0630 0.982 2 139 (0 0030<br />

1 C DO ho 88 22 5 1 201 2 05 (0 0298) 0 995 1.981 0.0030)<br />

A<br />

(I’<br />

00<br />

01<br />

1<br />

7-<br />

.5<br />

3.<br />

01<br />

3.<br />

-1<br />

0<br />

/<br />

1(86 35<br />

1043 15<br />

55 1 5<br />

1 5/ 642<br />

115 >1<br />

1076 1>5<br />

1’)2<br />

45 >5<br />

128 ‘ 1<br />

l’6 385<br />

X og Apert,rx length mm I log Aperture wdth mm<br />

11 H81 18 141 245 1 296 1 053 00438 0970 000 00025)<br />

12 HS 40 133 25.3 1 281 1 029 (0.0271 0 98/ 0 988 0 00)0<br />

S MH1 40 102 232 1 234 1 039 00296) 0985 )C47 30028<br />

14 1H2 38 16.5 28 5 1 325 1 233 0.0400) 0 981 1 008 0 0030<br />

1 HH3 44 116 097 1 333 1 136 00302 0985 1 019 0.0028)<br />

HH’ 19 12 3 262 1 240 1.064(0 0389 0 989 0 923 0 0038)<br />

1 P111 40 10.1 246 1.256 1 179(0 0373 098 0 976 0.0035)<br />

18 t 02 1 11 9 1 0 1 15 1. 4 0 1680) 0 92/ 0 837 0 0078<br />

1) C)) 40 146 221 1 260 1 064 00609 0343 1 (09 00028)<br />

20 CD2 88 22.5 1 201 I 100 0 0327 0.977 C 919 0.0030)<br />

C 18<br />

68<br />

3 03<br />

0 30<br />

118<br />

03<br />

/6<br />

317<br />

0 58<br />

X oq (Apertu e le gth mm Y log (Knob hmght mn)<br />

21 H 1 38 141 245 1 296 0 36 0.1595) 0 140 0013 00100 0971<br />

2 350 40 13.3 253 81 0829 01533 0659 0.005 00)18 1 c8<br />

23 HH1 40 102 232 234 0732 0.1261 0686 0119 00113 1 >6<br />

24 HH2 40 1 .5 285 1.323 0.021 01690 0.020 3149 00 18) OoO<br />

I 25 HH3 45 11 6 29 7 1.328 0.290 0 1230 0 339 0 121 0.01°3 0 85<br />

? HH4 20 123 ‘62 1.28 0.483 0 0.3o2 U uca u.unoa)<br />

27 PCi 40 10 1 246 1 56 0 /17 0 1362 0 6o0 0 028 .0123 1 1<br />

‘8 P02 1 119 170 1 151 2 8 05126 0822 0076 00 38 ‘638<br />

20 CD) 40 146 224 1 260 0 539 030 7 0 306 0 078 0.0135 1 958<br />

31 CD 55 88 225 1 201 0 494 3 1313 0 459 0 &8 (0.012,) 1 0/C


Appendllx (cont)<br />

Ixpected 9’ Ca<br />

M an X<br />

Leist Sq Lnrar Ragr<br />

4’lope<br />

X Axis<br />

Mn Max Mean<br />

X g Apr 1 ci qth, r a 9’ log L p hekres cxc dng tenth, rem)<br />

1 H31 38 141 24a 1 296 0983 02405) 0563 00 2 0 148) 3 18<br />

3? H’,’ 40 13 53 1 281 0802 01721 0603 0081 00133) 201<br />

‘3 1 31 40 1 2 432 1 234 211 01968 3 8,7 0.818 001 8 7<br />

313, 4 165 285 1 3”3 2 319 (0 2a13) 0 838 0 005 3 0175 1?<br />

. HHI 5 116 23 328 1 333 0 1151) 0870 0082)0 3113<br />

3 HH4 1 262 1.2’8 1 909)02293 0891 0092 00210) 43<br />

‘I ‘12 4 10.1 ‘46 1 256 1 820 00969) 0°38 0067 7 0088) /95<br />

18 122 11 1 9 170 I 151 3’O 01936 0.536 0206 003 8 1<br />

3 2 3 4 14 224 1 260 099 0 1976) 0 634 0 085 (0 3088 18<br />

4 7, 3’ a 88 22.5 1 ‘01 I 234 0 521 0 760 001/ 0 0143)<br />

X Apsiti enqth ma 9’ Tooth heiq it an<br />

4 HS1 38 141 245 200 0002 .0079 0035 C 98 00’?O 0<br />

14 1(82 40 133 253 194 0003(00049 0107 1/0 00165 23<br />

141 HH1 40 0.2 232 175 0017 000’4 0716 3323 00250 0166<br />

44 3132 4 163 295 3 0 022 0 0056 0 a34 44 3 0193 41<br />

1, 1H3 45 116 29 218 0.019 00049) 0370 0229 0021, C (3a<br />

6 13H4 12 3 262 177 0.037 (0 0084 0 715 0 34 C 0123 08’<br />

4 p 40 tO 1 24.8 184 0 022 0 0060 0 523 1 38 0203) 004<br />

43 P120 1 1 9 /0 142 0.000 00000 1 000 0000 00000 0 300<br />

143 CDI 40 146 224 183 0.001 00014 0.01 0048 00138 0 59<br />

‘0 CD? 55 88 22.5 162 004 (0 0046) 0588 01 8 0 3150) 0 41<br />

X log Itody dry wt mg), 9’ og (Sic dry wt mg(<br />

‘ Hal 38 70 596 0635 (00533) 0908 3392 00113 C. 65 44C<br />

52 t1S 40 85 596 0920(00930 0976 3 315 0 00/9 0°43 1 4<br />

(53 HHI 40 a 39 1 192 0.0784 09? 3272 00208 1 81 36’<br />

‘4 HH 37 /7 910 08 0(0 9396 0.958 .502 10115 0846 39C<br />

55 HH3 45 35 942 0 924 0 0342 0 972 3 509 0 120 5 1 44<br />

r’,4 2u ‘1 So? 1 04? (2 0634 0 cob 3. )‘4 ui00 7<br />

7 02 1 41 2 430 1.04? (0 0458) 0 965 3 264 (0.0140) 380<br />

158 P8? 1 35 189 1 019 0 1432 0 922 2 904 0073 13’ 3 73<br />

I 5 CDl 40 31 367 1 067 0 0725 0.922 3.296 0 0103 1 101 11<br />

60 CD’ 18 319 1 179 00406) 0370 31 2 00115 1 ‘15 ‘.3<br />

X og Pro erted xrea mm 9’ og (Apertur arex in<br />

(01 ((SI 38 133 443 2,404 1 004 0.0409 00/1 1 034


119 434 2 383 093 0 328 987 123 0 4) 4 4<br />

4 (C 380 225 0933 022 0989 24 6(0 04 094 4<br />

3 1 9 4 2487 0932 002 1 988 201 004 943<br />

4 2’ >482 0906 0 21) 098 >21 03 341 4 0<br />

19 82 43’ 2.257 0 3D 0349) 0 989 c.0? 00 3 9 2 6<br />

40 a4 364 3 .279 0 31 0 0262 0 984 10) 0 053 C 9 1<br />

I 82 94 20/2 028 00 90 097 870 00078 1 70<br />

D 43 144 31 275 0886 (0043 C 946 >13? 0 050 33 2<br />

> 1 41 301 2 185 0906 00 >0 0980 13 1 3 0 .>4 3 2<br />

(4 > (UdtA y 0>4 09 Ap> w >. a a o<br />

(IS 38 11 3147 619 00182 0985 2 4 00)39<br />

H>? 4) 4>>) 3 138 (6 0 >3) 98. 2 00(40<br />

4 1 4 1 2 890 0 637 (0 146) 099 044 0 004<br />

HI >4) 322 0535 0155 388 201 00 40<br />

181 44 1 3239 0.a95 0.0 >2 331 2 14 00 4 /<br />

144 zO 2/8 343 064 0.0 8 0994 0?4 00 a, (6<br />

P 40 (8 941 0(36 0.0 4 0993 2100 0. 338)<br />

5a >44 066 00363 3.98 (70 0 0(0 11 D<br />

C 1 1 4 7 2.286 0.6 0 0232 09 4 139 00 35 C<br />

CD >> > 99 361 00 43 3986 1 981 ( 0 a 3<br />

71<br />

25<br />

0 Y 0 C up> I vo ume ng(<br />

38 4 I 31 0 47 (86 0(3 0 0984 303 (0) 5 C<br />

4) 4 9 3237 3 138 0 997 0 0202 0 992 “.30° .4 18 V<br />

43 4 221> S9 1>”” 224> 0 >9 >73> 1> 4><br />

40 9 4464 320/ 1’ 3 I> 0992 3 5 00 3<br />

4 43 4874 3 317 36 001 a 0 234 ‘ 6 (064 /<br />

‘0 213 43 89 C 0432) 0988 .440 3 25 4.<br />

40 08 21 1 >341 1 240 (0 025 0992 1(3 C 3084 9 4’<br />

1 >55 4 9 264/ 042(0 10/) 0956 2 41 04 3 3<br />

0 14 “003 2.986 .013 0 0357 0 977 80 0.00a3<br />

a 65 52 ‘ 99 1.033 01 0 99 2 aS( 001 5 .43<br />

3<br />

0 Y 09 74 drywt T19 4’<br />

38 4 1 3100 4/ 0743 00454 0939 .392 033) 4 3<br />

4 429 323/ 3 138 0.898 C 0233) 0 984 3 5 0 0063 9 3 32<br />

44 134 220 2890 118 00643 0948 ‘3> 5 1 48 336<br />

1 ‘2 4464 3.20 0 25 0427) 0 362 3 502 0 1) 3 34> 3<br />

1> 33 4874 32 7 9/a 0308 979 35 0 00 3 96 13<br />

2/8 321 >94 4 0599 03/1’ 91 00 5 >43<br />

4 08 >17 2941 051’ 00402 0374 3>65 00123 1 4<br />

2aa 939 2644 0°6 01474 0909 >434 (.0238 1 064 0 3<br />

1) 447 4009 2986 1 060 006/4 0931 236 00(9 13’ 04<br />

a 6a 1752 2799 1.086 00348 09 4 3 1 0 0 1 3 0<br />

y s>><br />

81 (IS<br />

3? (S<br />

03 4<br />

4 I’I><br />

8 H)<br />

86 4<br />

C PC<br />

3) CD<br />

1 C><br />

X 1 >pa<br />

91 >1<br />

9? 2<br />

3 (1<br />

>4 HI><br />

HH<br />

3 5(4<br />

‘C<br />

98 C<br />

(3 p4<br />

1 CD


Appendix__(cont.)<br />

Execteo ‘7<br />

RMA Os<br />

Mean X Sooe AScii-<br />

eas1 So ,near Regr<br />

Siope .s’.’<br />

X-Ax s<br />

M “ Max Mean<br />

2 Site N<br />

X ‘og ‘a) length mm) ‘7 log Aperture area. mm<br />

l HS1 38 20.8 38.5 1 459 1.597 0.0864 0 965 2.159 0.0058 1 966 040<br />

‘02 HS2 40 20.0 38.2 1 452 2.’58 0.0666 0.982 2 ‘23 0 005Dm 2 ‘98 297<br />

‘03 HI-i’ 40 30 347 1 382 ‘4j 0.0582) 0.979 2 046 0 0060 1 780 377<br />

-‘04 HH2 37 24’ 440 15’C ‘866 03652i 0979 220’ (‘3Q55, 1906 ‘44<br />

: 135 HH3 44 ‘58 4o5 1500 ‘533 3Q47’, 0985 22’5 00050 827<br />

‘05 imH4 ‘9 l6 363 1384 ‘922 00635 3991 2324 03063 i39 -095<br />

)-‘O’ 1-01 40 128 340 1 384 837 00653) 0977 2 00 )0.0068 1 880 183<br />

108 P 11 156 39 1 274 205 02176 0953 1 870 001101 2 158 07’<br />

09 CDI 40 86 308 1 373 1 059 0 1017) 0 936 2 119 0 0055) 1 772 4<br />

1 C 55 108 3 6 1 342 1 06 0.0591) 0.970 1 981 3065) 1 73 08<br />

X 09 m I e Igt 1, mmml ‘7 -‘ log Ape-tore enqth -nxm<br />

I 111 A) 369 108 45 1 415 0828 0010 ) 0974 .265 00013 1484<br />

Ill -IS 38 218 ‘395 1 459 9)4 0 380 0970 ‘91 0 025 1<br />

I 13 HS2 40 200 382 1 45’ 043 002 3 0°87 1.281 0002 08<br />

) 11” HH1 40 110 47 1 382 0 866 1 0”35 0 84 1 34 0 3 ‘ 4 7)<br />

I 11 )H 40 4 1 440 1.505 0 4 00’ 6 0.983 1 323 (0 0023 5 3<br />

118 3H3 45 loS 455 1 494 0896 00 82 0.991 1 328 00020<br />

I 17 994 20 6 5 363 1 382 0 946 00 58 0.993 1 238 (0 0025) 1 1 3<br />

) 118 P ‘1 40 28 343 1.384 0 850 0 0287) 0.979 ) 256 3 0030) 479<br />

) 113 PC1 ‘1 156 ‘3° 1 274 0.89 1 C 14) 0973 1 15) 00035) 109<br />

120 CD) 40 186 308 1 3’3 0.813 0410) 0.956 1 iO 0 0020) 350<br />

I ‘ 1 002 55 108 31 6 1 342 0.8 6 0 0226) 0.981 1 01 0 00251 654<br />

X=ug Se enqth urn, Y= 00 Body Or, ,v:. “9<br />

I 132 ALL. 369 13.8 455 1 415 2 00 0.04’S 0959 2268 ‘3 00451 2515 4.4?<br />

133 5’ 38 208 385 1 459 3 ‘4 0 1507, 0 960 2 396 0 3133, 3.233 ‘<br />

134 HS2 43 20.0 382 1452 i’7 00883 3985 2401 00083 3124 ‘43<br />

1 ‘35 99’ 40 13.0 34.7 1 382 2489 0’240 0956 2.113 0.0128. 2604 320<br />

-‘36 992 40 24.’ 440 1 505 3 526 0 ‘3’3 0 985 2.423 0.0080 3.580 5.72<br />

I ‘37 990 45 158 45.o 1 494 3.154 0 0841 0 985 2.464 3.0090 3.202 2.41<br />

1 ‘38 HH4 20 165 36.3 1.382 3 ‘91 0 1548 0 979 2 158 0 0150 3 259 1 68<br />

i-39 PC’ 40 128 343 1 384 28’4 0.’094i 0974 0’86 0.0i’5 2.95’ 045<br />

‘47 PC2 1’ ‘56 23.9 ‘ 274 2943 031511 0952 963 00158) 3091 029<br />

-‘4’ CD) 40 186 308 1.373 266’ 01327 0956 22’2 00070’ 2183 -‘63<br />

I 147 002 55 3 8 31 6 342 2 541 0 0689’ 0 981 2.38’ ‘0 0078, 2 593 5.90


X g Shei lenqt r o ‘7 log Pro octod aroa or<br />

14 A 369 108 45.5 1.415 878 0010/ 0994 232 00(13)<br />

‘O<br />

3’<br />

2<br />

2-<br />

5-<br />

62<br />

X g SF oIl igth mr ‘7 og (Shel copo ty nq<br />

144 ALL 369 108 45’ 1 415 2785 0.0306 0379 016 00033<br />

14’ HI? 38 208 385 1 459 3 069 0 1002 0 981 ‘ 147 0068<br />

1 (F (32 40 20.0 382 42 3.200 0 0696 0 991 3 138 (0 0053)<br />

14 HH 40 130 347 382 2613 C 0999 0973 ?890 001)<br />

148 HH2 40 24.1 440 1 505 3 11 00809 0987 3207 00068<br />

4) HH3 4 154 (4.5 1 494 3.1 2 C66 2 991 21 1<br />

150 HH4 20 iF 5 36 3 1 38? ‘.963)0 0853 0 993 2 943 (0.0083<br />

13 PCi 40 1 .8 343 1 384 2867 01 34 0976 2941 00108<br />

15g. PC? 1 156 239 1 274 3.13, 02408 0.374 2644 0.0123<br />

F C Dl 40 186 30.8 373 2 /52 0.’OSl 0 973 2 986 0 0055)<br />

15) C C? 5’ 10.8 31 6 3(2 2.780 0.0/04 0 983 2 800 0 30/8)<br />

0(3<br />

3 48<br />

0,<br />

3 90<br />

34<br />

1 1,<br />

14<br />

303<br />

44<br />

2 344<br />

3 34?<br />

03C<br />

2-<br />

3’ C<br />

183<br />

3 421<br />

3 13<br />

3 54<br />

X og Sholl lnqth orr ‘7 09 S i I dry wt Tig<br />

I 155 (131 38 208 385 1 459 2 00 0 1005 0 370 3 392 0.0067<br />

115 HS? 4 2)0 382 1 ‘52 2894 00857 0983 3 315 0.3)65)<br />

I lol 3H1 40 13.0 347 1 382 3292 0 00 ) 0383 3272 00103<br />

I 158 HH2 40 241 440 1.50o 2963 0 028 0 78 3o02 (00085<br />

I 139 HF? 45 158 455 .49 3016 0645 09°0 3309 0.0070<br />

I 0 HH4 ?) 165 363 1.382 3464) 1298) .988 3034 3.0125<br />

I 1 1 PC 1 128 34 3 384 3 148 0 783 0 989 3 264 0 0060<br />

I 152 P62 1 156 239 1 274 3223 03/4( 0.944 2904(00188)<br />

I 16 CD1 40 86 IC 8 1.373 3 084 0 149/) .958 3 236 0 0077<br />

I 164 CD? 55 108 316 1 342 3 10/ 00738) 0.985 3 12 00 80


APPFNDIXII<br />

Thaw leuteostoma<br />

,,.a<br />

14W<br />

bUCd V<br />

ix<br />

X Ms<br />

‘U; ice<br />

LcsstSq. neirReg<br />

do.. ‘<br />

M’p I—<br />

* ‘1<br />

V aqAp tubesJtinw V og ipet sa a in<br />

IC ‘1 .3 6a 4 1337 1868(0.08’S 0979 5( U’ 130 1<br />

10 C 1, 24 ‘3 iae 2202(10595) 0996 lOS (3’S 13 34<br />

(3 D 1 41 286 1.31., 2)6900’88 996 2.’?.) 43 03<br />

lot C 1 .3 1292 204200W 0337 ‘8(1048 43 4<br />

.1’<br />

X jr leigihimY ogAuettrtw.dttiin<br />

105 ‘C’ 3 16’ ‘8’ .33 orooao 0944 05’00058 U<br />

36 C 1 24 33 229 118600449) 0961 ‘5 004 1’ 43<br />

7 CL 1 86 .31. 15 5’) 7 64 3 1<br />

8 I 3’ 129. 1)aOO’ 995 0 3)6 II 44<br />

z<br />

‘I.<br />

X qAw c,igtt it V ogKo,i I<br />

In ,e n fl d3 uno ua’2 d 113 44<br />

C ‘ 1 .4 3. ‘29 12°2 0l44 0.37 )37J 0 13 3)<br />

I 41 ‘3 31’ 1468 33.33) 3702 38 03$ 0.<br />

‘<br />

‘ .3 29.. 0)13 2 ‘14 32’ 01’) 371<br />

X cj Apire 9th uim,V 09 ptIkres mit<br />

II PC Ia 28.. 1337 1.106(0’38 0.714 0 3 0188 1549 2 2<br />

4 ‘1 24 126 09490133 3.815 0’ 58 1 79<br />

‘ 11 286 3 1 4(0223 12 7t00198 1.1 30<br />

2.1 323 2 40700729) 975 04 C 10’) 4 0<br />

‘C q lady I vt iq o S Idrywt ‘og)<br />

Il 3 1 796 2528 04 at’S’ 0.940 346.)0.’lO 16 lIC<br />

18 • 1 47 43 215.3 2... 36 029 3. 33* 13 61<br />

D? 3 a.) 135 .420 110938 0988 2860178 1<br />

X nP rt.Ju.iri. V<br />

o P a ,83 ‘4t 088(0427 09,, .“J( (3 4<br />

I 0 8 233 (.94300?. 993 ‘0? (070 ‘ 33<br />

I 1 4 4 3(100., 3376 9)0) 38a 3<br />

3 CL I 7 C 2382 08 00196 99 ‘Itt 0(0(3 0?<br />

S I ipGityng V og(Apecusirnim<br />

14 Pt ‘ 06 4016 326) 6310276 98 2 373 t


25 P02 3 29 ‘864 0108 -078<br />

2 898 0 651 0 3388’ 0 981 2 017 0 0 664<br />

25 002 0045 154<br />

21 274 69>5 3.151 0 630 (0 0100) 0 998 ° 85 (0 0 531<br />

X q S 1 1 apac ty mg Y log (3 c ip>ed volume rr g)<br />

(27 P( 1 2 706 4016 3260 0995(00378 0 787 3042 00 98 1.003<br />

28 P00 0692) 973 0.943<br />

3 229 1864 2 898 0 921 0 0 2 649 (0.0 93) 1 .73<br />

29 002 22 200 6925 ‘32 0088 > .036 0 0>90 0 997 2 v21 0 I 330<br />

X og Sheh capacty mg Y - log See’ dry WI.. 09<br />

I 30 PC’ 2’ 006 4>>16 04’ 0045( 0193 3 260 1 0 0 955 3 471 0 1 096 1 23<br />

3 3> P02 >9 1864 2 898 062 (0 3013) >> 062 3 J4> ‘0 925’ 1 194 >4<br />

32 CD 22 274 6925 3132 1 107 (00350) 0990 3284 (0 0160 11> 338 -y<br />

X -.. j (56 I 2 r g r or) 2 log (Ap’ to area m ii<br />

I 33 PCI 23 21 4 428 653 962 2.268 0090 1.481 1 0 1029) 0 (0 1 718 4 -‘<br />

0 >4 PC? 16 >54 355 365 0983 99195 ‘.89 9:<br />

1 847 0.0a63> 2.321<br />

I) 25 CDI 22 ‘9 2 38.6 1.459 984 0:9873, 2.229 9.9080 026<br />

9.981 2 022<br />

1136 002 21 ‘58 474 1442 >7589947s1 0993 218000080. 1773 400 ‘<br />

X og Shel engle rim Y og Ape lure lenqt( mm’<br />

I 37 ALL 83 158 774 447 875 0147) 30? (017 1 0 0 0 989 3) 84<br />

I 38 PCi 3 ‘1 4 428 0.886 338 9033) 1 481 0 0361 0 983 1 9 3<br />

I 49 PC? 3 16.4 365 839 0366 229 (0.0040 1<br />

35 5 1 0 (0 0 988 1 4<br />

140 OD1 192 386 1 459 0.96’ (0 0320 0 989 316 (000 3 1 88<br />

‘4> 002 2’ >58 474 1442 0860 0.3230 0995 1292>00033. 600 —<br />

J<br />

X ‘og She.’ lv ir>” gt>>. V L09 Body ory WI. >19’<br />

46 AL. 63 >58 4’ 2702 4 1 436 ‘96’’ 009. 0 977 2 393 ‘0 2 766 3<br />

(47 P01 72 ‘14 428 1481 262701313 0961 >528 09173 762 1 4<br />

(48 20’ 1 104 355 1 365 2.443 (0 ‘010) 0 356 2 163 (00 2.> 25>> 13<br />

49 CD? ‘2 58 474 1 415 76 . 3702 0 994 420 00 5 27 8 1<br />

X = 101 II >11 lengt mm) Y log (Pr0(3cted area, mm<br />

.150 AoL 33 >5.8 474 44’ 962 0 0>93 0096 2 3°3 0.003 1 56<br />

X og Stifl length CaoacIy. mm 2 og SOc mgI<br />

35> ALL 63 158 474 437 276a 1 9 3577 ‘25 000’S 2005 9 988 3 3.54<br />

1 P0 ol ‘4 428 1 482 2722.91351 0975 3261 (3ui”7) 2009 . 3<br />

53 PC’ 11 164 315 284> (02058 0972 .1898(991 923<br />

1 361 5<br />

,4 CD? 2 118 74 43’ 1 3) 2 777 3 619 0 35 3 7 1 38<br />

Shell leIgh mm) 2 log ISh II y NO mo<br />

log<br />

X .<br />

155 PCI 00 2>4 42(4 1481 3016,0139), 3900 3461 09103 0384 ‘>7.<br />

3 56 P02 15 16.4 355 1.365 0.915o 9.60<br />

3.041 0.19601 0 985 3 058 3 387<br />

I o7 CD> 22 92 386 459 3.348 ‘9.9159 2.50<br />

1 0 1749 0 974 3 347 3 431<br />

158 002 22 >58 4’4 1435 3>0900579 ‘996 32840.0095 312 2>0


APPENDIX III<br />

Monodonta labto<br />

-3<br />

L peeled Y a<br />

Man l’l a<br />

Least Sq. L mm Regr<br />

Spe<br />

X Axis<br />

Miri Mo’i Mp’rn<br />

Site N<br />

mit Y og Aperture area mm<br />

20 70 127 0981 2148 00604 0993 796 00053(<br />

3 163<br />

24 80 14 1 045 2138 00352( 099 1 336 (00030<br />

4<br />

21 3 4° 1 017 2043 0 560( 0992 1879 0(050(<br />

‘059<br />

30 85 178 11 2039 00305 0997 2 091 0 0023<br />

2 4,<br />

30 8 1 131 1 103 ° 16 0458 o 059 (0 00 7<br />

2076 00)53<br />

2003 0 035<br />

1 328 (0 0060(<br />

2 066 0 0033<br />

C94 2 /<br />

29 90 167 1 110 2 68 00620( 0989<br />

30 87 154 1 076 394(3 0525( 0990 3 4<br />

9 81 155 1 043 2 123 007 2( 0996 13?<br />

40 9? 157 1 108 2 145 0 0479 0 991 164<br />

X p (Ape tore lerrgtt<br />

10<br />

‘7<br />

op<br />

331<br />

48<br />

3 “<br />

31)<br />

8<br />

34<br />

90? (15<br />

103 390<br />

04 HI-Il<br />

lOP HH<br />

106 HH3<br />

7 I-H4<br />

38 PC?<br />

11109 (D2<br />

66<br />

24<br />

3 ‘4<br />

I 1<br />

38<br />

2 10<br />

44<br />

I aO<br />

Ape I ire ength mm( V 09 (Aperture widt[ om(<br />

16 20 70 127 0981 1 012 00448 0983 9(9 )0040(<br />

HS1 ‘4 80 14a 1 045 1 066 00278 0993 1385 00023<br />

HS ‘4 73 149 1 017 1 094 00324 0990 0961 0 0(28<br />

IH1 30 8 a 1 8 17 1 003(0 0300 0 988 1 057 0 00?3(<br />

HH2 30 81 169 1 103 1 113 00360 0986 047 00010<br />

IH 29 °Q 67 110 1 070 00464( 33375 1 054 0 038<br />

5H4 10 82 14 076 0994 004?3( 0976 1 018 0 328<br />

PC’> 9 81 55 1 43 11 0090a( 098 0976 00(73<br />

D2 40 9? 157 1 108 1 076 0 )393( 0976 045 0) 28<br />

X oo<br />

1110<br />

11<br />

I l<br />

II 1<br />

I 14<br />

II 15<br />

I 18<br />

13<br />

4<br />

S<br />

31<br />

Ape tort erqth rrm( V log I p thekness mrT(<br />

77 20 0 12 0981 0 703 01115( 0830 0105 00538( 8(7<br />

F°l ‘4 80 45 1 045 1 04 01206( 0905 0 84 00103 133<br />

HS 21 73 149 1 017 0 984 0 0936 091 3 0 140 083 1 73<br />

HH1 10 85 1 1 117 1 603 0 1317 0917 0 143 001 5( 1 738<br />

HH2 30 8 1 169 1 103 0 340 0 1698 0 683 0 192 3 1 8 1 3(<br />

(1H’ 23 90 6 ‘ ‘>3 54 2 ‘036 3> 044 U ‘aS a’ 03 a<br />

HH( 30 8? 154 1 073 0 0 234 0 60 0211 0 083 0 3<br />

PC? 9 81 155 1 043 1 094 01362( 0950 122 0011’ 1 15°<br />

CD? 40 92 1’ 7 108 1 149 01045( 87’ 3089(0003 1 318<br />

X oj<br />

II 19<br />

lIl•2<br />

II 1<br />

III 22<br />

II?<br />

1 25<br />

23<br />

I?<br />

2830(00383 801<br />

2891, 00(87 0919<br />

o 793 0 0269( 0 990<br />

o oo 0 0292 0 983<br />

X lop Body dry wt. mg( Y op (Sie d y WI mg<br />

II 28 11 20 4 107<br />

1129 HS1 24 22 172


113<br />

413<br />

56<br />

.18<br />

3<br />

11<br />

? 7<br />

1 963<br />

1 151<br />

0 7147<br />

35<br />

‘° 268 1 843<br />

26 339 084<br />

2 280 2051<br />

71 353 2)97<br />

3 263 2030<br />

24 33 780<br />

27 187 1 952<br />

H52<br />

€1111<br />

H 1<br />

H H3<br />

HF<br />

P172<br />

C D2<br />

O 10<br />

31<br />

32<br />

094<br />

73<br />

2 902 0 0090<br />

3164(0000<br />

3149 00103)<br />

3158 00783<br />

3138 0009.,<br />

7 866 0 0230<br />

3085 000’O<br />

0991<br />

0 986<br />

0 983<br />

0 992<br />

0 968<br />

0 994<br />

0 979<br />

0 960 0 0276)<br />

1135 00366)<br />

0930 00345)<br />

1 049 0 0264)<br />

08’1 00417<br />

0 988 (0 0559<br />

0 855 0 0290)<br />

I 34<br />

33<br />

III 3€<br />

frooctedae br ‘7<br />

1 20<br />

‘74<br />

34<br />

HHI 30<br />

H 30<br />

HH3 9<br />

HH4 0<br />

Pc 9<br />

17)3 10<br />

X og<br />

13<br />

4<br />

6.36 7<br />

8o4 j,,,<br />

84<br />

1€, /<br />

211<br />

172<br />

0717<br />

1 050<br />

C 94<br />

880<br />

081<br />

0 892<br />

0 82<br />

0 940<br />

0861<br />

020<br />

1796 000’3)<br />

1 936 (0 0070)<br />

879 (0 0040<br />

209 00043<br />

058 (0 0065<br />

2076 (00045<br />

2 003 0 OOoO<br />

1 928 (0 0005)<br />

2076 00035<br />

0 989<br />

0 983<br />

0 995<br />

0 990<br />

0 979<br />

0 991<br />

0 980<br />

0 989<br />

0 989<br />

1 047 0 0364<br />

0931 00371<br />

0876 (00188<br />

0803 00214)<br />

0873 00341)<br />

0816 (00208)<br />

0 921 (0 0356<br />

0852 00477)<br />

1 009 (0 0248<br />

995<br />

2 Cci<br />

2 079<br />

2 228<br />

2 208<br />

2236<br />

225<br />

2 022<br />

2153<br />

log Ape to e area n m<br />

1 68<br />

55 ‘U’<br />

54 290<br />

o6 32<br />

17 306<br />

64 363<br />

1 272<br />

51 259<br />

68 ‘2<br />

3’<br />

40<br />

114<br />

42<br />

O 43<br />

O 44<br />

II 45<br />

131<br />

31<br />

6.95<br />

3.00 .,.<br />

123 (io<br />

5.313<br />

492<br />

53’ f’<br />

20€ •<br />

A’<br />

0 344<br />

0 640<br />

0 596<br />

0 602<br />

0 722<br />

o89<br />

0 532<br />

031<br />

0641<br />

1 796 0 00o3)<br />

1 936 (0 0058)<br />

1 879 0 0030)<br />

2 091 0 0035)<br />

2 136(00060)<br />

2076 (0 0040<br />

2 003 (0 0033)<br />

1 908 (0 0075)<br />

2076 00028)<br />

0 993<br />

0 989<br />

0 997<br />

0 994<br />

0 969<br />

° 093<br />

0 991<br />

0 998<br />

0 993<br />

0639 00177<br />

0 633 0 0203)<br />

0594 00102<br />

0598 00130)<br />

0 603 (0 0345<br />

5°5 0030<br />

0587 00151<br />

0570 00178<br />

0637 00122<br />

2 642<br />

2817<br />

2 797<br />

3 050<br />

3119<br />

0 050<br />

2 995<br />

2 728<br />

2 929<br />

Aperture irea mm<br />

141 1063<br />

221 152<br />

198 2256<br />

‘0 2934<br />

593 2519<br />

29? 308<br />

279 2220<br />

187 2085<br />

260 1718<br />

Shel r p0017, rrg ‘7 log<br />

I<br />

H1 24<br />

H52 24<br />

IH1 30<br />

HH 22<br />

HIll 20<br />

1H4 30<br />

PC 6<br />

CD’ 40<br />

X 0)<br />

O 46<br />

I 47<br />

48<br />

43<br />

III 50<br />

O<br />

III<br />

1153<br />

4<br />

o02<br />

488 *<br />

049<br />

112<br />

1 0/8<br />

1 062<br />

1 020<br />

080<br />

1 073<br />

1 038<br />

0 990<br />

1 H4<br />

2 365 (0 0070)<br />

2 562 0 0045)<br />

2 568 (0 0035)<br />

2815 00043<br />

2 902 (0 0068<br />

2 826 (0 0035)<br />

2 /61 (0 0050)<br />

2 504 0 0200<br />

2 682 (0 0025<br />

0 396<br />

0 998<br />

0 999<br />

0 996<br />

0 987<br />

0 998<br />

0 993<br />

0 995<br />

0 998<br />

6 0 0240<br />

076 00160<br />

06 00113<br />

1016(00 60<br />

066 0 0387)<br />

1071 00115)<br />

1 031 (0 0228)<br />

0 985 0 0473)<br />

1052 00110)<br />

2 642<br />

2 817<br />

2 797<br />

3 050<br />

3119<br />

3 059<br />

2 995<br />

2 ‘28<br />

2 929<br />

log (Ouct p ed volu 310 19<br />

41 1063<br />

H 52<br />

1,8 2256<br />

710 2934<br />

593 2u19<br />

292 308<br />

‘,9 2220<br />

187 2085<br />

260 1718<br />

3hII C 3dC ty, mg ‘7<br />

20<br />

7151<br />

34<br />

7S2 24<br />

HHI 10<br />

HH’ 2<br />

HH3 29<br />

HH4 30<br />

PC 6<br />

(D2 40<br />

X 09<br />

1’<br />

II<br />

3.07<br />

6 36<br />

I 68<br />

3.21<br />

4 9”<br />

53<br />

O 59<br />

O 60<br />

11€<br />

III 62<br />

log Slel 3ywt n-g<br />

14 063<br />

21 1521<br />

198 2256<br />

Slell c bpaoty, rng ‘7<br />

fT 20<br />

Ho<br />

24<br />

X oq<br />

64<br />

/ 80<br />

1 58<br />

0 08<br />

2 830 0 0063<br />

2 896 0 0083<br />

2 902 (0 0080)<br />

0827 00213) 0994<br />

0 946 (0 0282) 0 390<br />

0 995 0 0254) 0 993<br />

2 642<br />

2817<br />

797<br />

III 66


I ppsndlx UI (corn)<br />

LatSo n 1kg 1MA I<br />

4 ( M V MaXM 11<br />

I 0 9.34 300 14)39 3 .3(4 X 1 5<br />

H ‘3 a I 1030’8) 0983 32* 43 ‘ 41<br />

1 .9 31 0 031 )331 31W 01 II 4<br />

)Jt (571 4 (7. ia 00) Cl 4<br />

87 03 1 I) 3) 86( 31<br />

1 ‘60 17 3° 8&OtS 0)8 86)01 4<br />

t log Joe w’ n irir<br />

10 ICC 36(88’ 098* 361 3<br />

/4 I I 1’LL ‘3 08 03 33 0’)9 1?<br />

0 .4 26 16. 64.3 0.8 3006( 74 t 1.<br />

I 0 .6 IWO.57 (979 .0000 3<br />

MI- .3 II 6 14 1/08 )b ‘8 0.h I LI<br />

I 1.3 9 118 • 043 (98 6 3(6 1 1)1 L<br />

C 1 333 ‘4 ... ‘ ,‘. 1. •<br />

F I. ‘8 18 630%) 0’8 928 3<br />

£ 113 1 24 l’)O( 0) (((1 38<br />

t i V lcj(Ax is wlh in<br />

10 9 144 (0019’ 0933 71 0)’O £ 863<br />

0 04 39 7 035’ 00460 0980 (981 000 ) I C<br />

6 4 10 ‘1’ 1188 0708 094 (4a 03<br />

10. ‘4’ ‘6 081 0036) 03 10 0.003, 01 43<br />

1 10 26 1273 0590)331 97 110030 F 0.30<br />

HI C ‘C 174 0. (3468) .943 100051 07 S<br />

3 IF • 13 ‘9’ ‘88 0’S 017 09) 00013 Od 133<br />

* C 120 5€ 184 )301044( 60 ) (3’ 08.4 6<br />

1) 38 116 O3 066) Si II 06 7 4)<br />

4 18 /2’ 1/11 0 00.. 363 1090) 1 23<br />

V C)Bodyry C)<br />

11 ° 4I 81(004 )°8 156043 0<br />

0 1)9 17’ .336123 03. 1(51 191) 92 31<br />

1 1 .1 88 ‘ . 0080., 139 183 100(6 7 ‘33<br />

4 1’ ‘ 1 14 .0 4.8) 099 340030 3<br />

II I S /69 17’ ?33’0.089 (384 2083 09) 1.33 6<br />

3 1., ‘69 1/76 2300139 09Th 06 130 1<br />

3 11 2C3 1a8 2’ (3)) .991 9038 .14’ 44


* 2 4 2 20 7<br />

1 33 C ((3 $<br />

C<br />

4<br />

18 4) 390(, 3 8 CV,<br />

I (f)G lii<br />

L Sb ) 144 I (1<br />

r m j. %.tynj<br />

0 148 0.)6 (238<br />

iC 9 2 ‘ RU .4 •A •v P<br />

11,1 3 21 88 1(1 33 1)0’ 6<br />

1 ‘4 20 2 (C’ 9) ‘1<br />

H<br />

27 1.)<br />

3 2’ C 10 2 0.8 I 0’ 1<br />

. 4( 3 kO I 3 3 ( 36* *1 ‘t<br />

I 3 228 .3 S 36<br />

4 a 3<br />

3 1’ F 8 1 Cl’ a )95( ( . 3<br />

I I 0 39 8 H<br />

0 H 1441 .01307 39 ,J3 3 8 1<br />

g i Y g 4lwtnq<br />

04 1 7’ 0 33 ‘0 8’O 0(3 in<br />

88 ?C .)‘8 038 189 00 ‘3*<br />

4 10., iS 26 2808 a ‘W0) * 11€ ..,<br />

Is? 20., 2 306<br />

4<br />

2 4<br />

3 1 C 74 24 04 )t 33 3 ‘2 4<br />

9 88 - a . 0<br />

1’<br />

3<br />

...6 1134 010 13 3 2 4<br />

‘2 2 0 7 (0 $4 9<br />

C<br />

1<br />

IS ‘ S I 1 35 3.<br />

9<br />

S

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!