28.09.2012 Views

TFPS Telcordia Qualification.pdf - GigOptix.com

TFPS Telcordia Qualification.pdf - GigOptix.com

TFPS Telcordia Qualification.pdf - GigOptix.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S Small llF Form F Factor, t Tl <strong>Telcordia</strong> di St Stable, bl<br />

Thin Film Polymer Modulators for<br />

Tele<strong>com</strong> Applications


2<br />

<strong>GigOptix</strong>, Inc.<br />

A lleading di ffabless bl supplier li of f semiconductor i d <strong>com</strong>ponents that h enable bl the h hi high h speed d information i f i streaming i<br />

Overview Markets Served<br />

�� Founded in 2007 – no VC money<br />

�� Communications<br />

� 92 Employees / 90+ products<br />

� Headquartered in San Jose, CA<br />

� 4 International Sales Offices<br />

� Industrial<br />

� Military & Defense<br />

� Avionics<br />

� 2 International R&D Centers � Test & Measurement<br />

� Q3’11 Revenue: $8.4M<br />

� 16% YoY Growth; 10% QoQ<br />

� Adj Adj. EBITDA EBITDA: $289k<br />

� Cash: $16M<br />

Q3’11 Fi Financials i l<br />

I Industry I d Consolidator<br />

C lid<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


3<br />

Enhanced Growth by Strategic Acquisitions<br />

2007<br />

2008<br />

2009<br />

20111<br />

Products Markets Applications<br />

GA GaAs Di Drivers<br />

SiGe Amplifiers &<br />

Drivers<br />

Communications, ,<br />

Military, T&M<br />

<strong>TFPS</strong> Polymer Communications,<br />

Modulators Military<br />

CMOS Structured<br />

ASICs & Standard<br />

Cells<br />

Tele<strong>com</strong>‐Data<strong>com</strong><br />

TTransponders d &<br />

Transceivers<br />

Data<strong>com</strong>‐Consumer<br />

Communications Data Centers Centers, HPC, HPC AOC<br />

DVI/HDMI<br />

Tele<strong>com</strong>‐Data<strong>com</strong><br />

Transponders &<br />

Transceivers<br />

Communications,<br />

Military, y Avionics, Various<br />

Industrial<br />

GaAs MMICs & Communications,<br />

Point‐to‐Point Wireless<br />

Back Haul, Phase Array<br />

TTransceivers i<br />

Mili Military Rd Radar, Microwave Mi<br />

Amplifiers<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


4<br />

Growing Product Portfolio: Optical<br />

$ in Miillions<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

100G<br />

50<br />

40G<br />

10G<br />

Parallel<br />

Rx/TX<br />

TIA<br />

Optical Growth Trend<br />

VCSEL<br />

Driver<br />

EA<br />

Driver<br />

MZM<br />

Driver<br />

0<br />

2009 2010 2011 2012 2013 2014 2015<br />

*(Source: OVUM (052046,047556,047543) & Management estimates)<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

MZM<br />

10G<br />

40G<br />

100G<br />

400G


5<br />

Building Valuable Global Relationships with<br />

lead customers in Served Markets<br />

In 2010, we shipped 90 distinct products to over 100 customers<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


6<br />

Consistent Product Revenue Growth<br />

Q‐o‐Q CAGR >10%<br />

$9 $9,000 000<br />

$8,000<br />

$7,000<br />

$6,000<br />

$5,000<br />

$4 $4,000 000<br />

$3,000<br />

$2,000<br />

$1,000<br />

$‐<br />

Quarterly Product Revenue*<br />

Q3'09 Q4'09 Q1'10 Q2'10 Q3'10 Q4'10 Q1`11 Q2`11 Q3`11<br />

*Quarterly Product Revenue excludes Government Contract revenue<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


7<br />

EO Polymer Polymer Modulator Modulator Technology<br />

Update Status 11 11‐01 01‐2011 2011<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


8<br />

The Electro Electro‐Optic Optic MZ Modulator<br />

• Electro‐optic effect: the applied<br />

electrical filed modifies the<br />

material refractive index.<br />

• The induced index variation<br />

modulates the phase of the<br />

optical wave.<br />

• Materials available:<br />

� Piezolectric/ferroelectric<br />

crystals: y Lithium Niobate, ,<br />

Lithium Thantalate;<br />

� Semiconductors (GaAs, InP);<br />

� Electro‐optic lectro optic polymers.<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


9<br />

Modulation Effects and Materials<br />

Electro Electro‐Optic Optic Effect Free Carrier Carrier Plasma<br />

Dispersion Dispersion Effect<br />

LiNbO3 EO Polymers InP, GaAs<br />

1 3<br />

� n � � nerijE<br />

2<br />

2 2<br />

( )( )<br />

2 2<br />

8 0 e h<br />

• Modulation speed is determined by velocity mismatch • Modulation speed is determined by<br />

m<br />

e � N P<br />

�n<br />

� �<br />

�<br />

� c � n m<br />

• Modulation speed is determined by velocity mismatch • Modulation speed is determined by<br />

and RF loss.<br />

how fast the free carriers can be<br />

• Optical refractive index changes under the electrical injected or removed, by the velocity<br />

field for electro-optic materials with non-<br />

mismatch, and RF loss.<br />

centrosymmetric structure structure. • Refractive index is a function of<br />

wavelength.<br />

Polarization<br />

Ph 3SiO<br />

Ph 3SiO<br />

Electron<br />

donor<br />

N<br />

Bridge<br />

O<br />

S<br />

O<br />

NC<br />

F 3C<br />

Electron<br />

acceptor<br />

NC<br />

Electron flow direction<br />

O<br />

CN<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Electro Electro‐Optic Optic (EO) Polymers<br />

• Composite formed with a chromophore and a polymer –<br />

similar with semiconductor doping<br />

• Polarization of chromophore responsible for EO effect<br />

Guest polymer<br />

(Chromophore)<br />

10<br />

Host<br />

polymer<br />

acceptor<br />

donor<br />

electric<br />

field<br />

• Electrical field changes refractive index of material<br />

• Polarization happens in femtoseconds<br />

• Max operation frequency is dependent on RF loss of the electrode<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

+<br />


Modulator Effects and Materials – Cont.<br />

Effect Electro‐Optic Effect Free Carrier Plasma Dispersion<br />

Effect<br />

Material LiNbO3 EO Polymers InP, GaAs<br />

V p dependence<br />

Refractive index (n)<br />

(@1550nm)<br />

V<br />

�<br />

�<br />

�d<br />

3<br />

n r L�<br />

V f ( , n,<br />

L,<br />

Vbias<br />

, , T , N,<br />

P)<br />

�<br />

� �<br />

ij<br />

The effect limits the modulation<br />

Fast effect, femtoseconds for polymers. speed, bandwidth,


<strong>GigOptix</strong> 40G Modulator Package vs. STD Modulator<br />

12<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

3.5”x4.5”


Anatomy of a EO polymer MZM<br />

13<br />

Top electrode<br />

Ground pads<br />

Top clad<br />

Electro-optic polymer<br />

End of waveguide<br />

Waveguide trench<br />

Bottom clad<br />

Ground plane<br />

Sl Silicon substrate<br />

b<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

Top Clad<br />

EO Polymer<br />

Bottom Clad<br />

Silicon Substrate<br />

Cross section SEM


<strong>GigOptix</strong> Manufacturing<br />

� <strong>GigOptix</strong> has a 1400sq ft, class 10<br />

cleanroom in Bothell Bothell, WA<br />

� Team of 18 chemists, process, RF,<br />

and optical engineers<br />

� Specialized in the manufacture of<br />

EO polymer modulators<br />

� Capacity of 200 wafers/year /<br />

� Outsourcing partner already<br />

identified for volume production<br />

14<br />

� Sanmina for packaging<br />

� IMT –MEMS for chip p<br />

fabrication<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


EO Polymers Applications<br />

15<br />

Discrete D<br />

lithic<br />

Monol<br />

40G and 100G Modulator<br />

Active Passive<br />

Driver / modulator integration<br />

(source Intel)<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

40G and d 100G Mixer/Hybrids Mi /H b id in i<br />

Receiver devices<br />

(source IBM)<br />

On On-chip chip interconnect


<strong>TFPS</strong> Modulator Improvement<br />

16<br />

EO Polymer Material <strong>TFPS</strong> Modulators<br />

• <strong>GigOptix</strong> was able to reduce insertion loss of material by 50% every 3 years.<br />

• GigOpti <strong>GigOptix</strong> was as able to increase r33 of material by b 30pm/V every eer3 3 years ears maintaining<br />

very small form factor.<br />

• <strong>GigOptix</strong> has achieved maximum operating temperature of EO polymer to 85C, 25<br />

years operation operation.<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Polymer Modulator Technology Roadmap<br />

17<br />

V �(*) 40Gbps DPSK<br />

Technology demonstration<br />

4.5Vpp<br />

3.7Vpp<br />

3Vpp<br />

2Vpp<br />

40Gbps RZ+DQPSK<br />

100Gbps DP‐QPSK<br />

SE, integration,<br />

additional Vpi reduction<br />

smallest size<br />

reliability/production<br />

Die size


Tl <strong>Telcordia</strong> di diQ Q <strong>Qualification</strong> lifi ti R Result ltS<br />

Summary


Summary of GR468 Tests<br />

� Vπ, insertion loss, extinction ratio,<br />

and bandwidth measured on all<br />

<strong>com</strong>ponents pre and post test<br />

� HTOL monitored every 500 hours<br />

� Visual inspection p for hermeticityy<br />

<strong>com</strong>pleted after every test.<br />

� Samples size of 11 pieces used for<br />

critical tests<br />

19<br />

� Smaller sample sizes run for mechanical<br />

tests due to cost<br />

Maximum Allowable<br />

Performance Parameter Deviation Caused by<br />

Any Test<br />

Vpi +/-0.3V<br />

Insertion Loss +/-0.5dB<br />

Extinction Ratio +/-3.0dB<br />

Band Width +/-2GHz<br />

Test Item<br />

HTOL<br />

Low<br />

Temperature<br />

Storage<br />

Mechanical<br />

Shock<br />

Vibration<br />

Thermal<br />

Shock<br />

Fiber Twist<br />

Fiber Side<br />

Pull<br />

Cable<br />

Retention<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

Test<br />

Description<br />

High<br />

temperature<br />

operation life<br />

time test<br />

Storage only in<br />

low<br />

temperature<br />

Apply<br />

mechanical<br />

shocks to<br />

device<br />

Apply vibration<br />

to devices<br />

Sudden<br />

exposure to<br />

extreme<br />

changes in<br />

temperature<br />

Twist fiber<br />

pigtail pg<br />

Pull fiber pigtail<br />

Apply force to<br />

the cable<br />

Specification:<br />

Method or<br />

Conditions<br />

T<strong>Telcordia</strong> l d GR GR_468_COREi02<br />

468 CORE 02<br />

3.3.3.1; 2000 hrs at power,<br />

driver, bias and Ta = 85oC <strong>Telcordia</strong> GR_468_COREi02<br />

3.3.2.1 -40 o C, 72 Hour<br />

<strong>Telcordia</strong> GR_468_COREi02<br />

3.3.1.1; mil-std-883 Method<br />

2002.3<br />

GR_468_COREi02 3.3.1.1;<br />

mil-std-883 Method 2007.2.<br />

<strong>Telcordia</strong> GR_468_COREi02<br />

3.3.1.2; mil-std-883 Method<br />

1011.9.<br />

<strong>Telcordia</strong> GR_468_COREi02<br />

3.3.1.3.1; FOTP 36.<br />

<strong>Telcordia</strong> GR_468_COREi02<br />

3.3.1.3.2; GR-326-CORE<br />

4.4.3.5.<br />

<strong>Telcordia</strong> GR_468_COREi02<br />

3.3.1.3.3; FOTP 6.<br />

Sample<br />

Data<br />

Passed<br />

Y/N<br />

11 Y<br />

11 Y<br />

7 Y<br />

6 Y<br />

11 Y<br />

8 Y<br />

8 Y<br />

11 Y


2000 Hour 85 85°C C HTOL<br />

20<br />

�Vpi (V)<br />

�IL (dBB)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

Driving Voltage Variation<br />

0 500 1000 1500 2000<br />

Time (hours)<br />

IInsertion ti LLossVariation V i ti<br />

0 500 1000 1500 2000<br />

Time (hours)<br />

#26<br />

#27<br />

#28<br />

#34<br />

#35<br />

#36<br />

#39<br />

#41<br />

#42<br />

#45<br />

#46<br />

#26<br />

#27<br />

#28<br />

#34<br />

#35<br />

#36<br />

#39<br />

#41<br />

#42<br />

#45<br />

#46<br />

�ER (dB)<br />

�BW (GHHz)<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

Extinction Ratio Variation<br />

0 500 1000 1500 2000<br />

Time (hours)<br />

Bandwidth Variation<br />

0 500 1000 1500 2000<br />

Time (hours)<br />

#26<br />

#27<br />

#28<br />

#34<br />

#35<br />

#36<br />

#39<br />

#41<br />

#42<br />

#45<br />

#46<br />

#26<br />

#27<br />

#28<br />

#34<br />

#35<br />

#36<br />

#39<br />

#41<br />

#42<br />

#45<br />

#46


Thermal Testing 0°C to 100°C Thermal Shock<br />

21<br />

• Thermal shock between 0°C<br />

and 100°C in less than 10<br />

seconds for 20 cycles<br />

• Low temperature storage at ‐<br />

40°C 40 C for 72 hours<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011<br />

Part ID ΔIL ΔVpi ΔER ΔS21<br />

47 0.3 ‐0.1 0 0.2<br />

48 0.2 0.08 2 1.3<br />

52 0.4 0 3 ‐1.1<br />

55 0.3 0.12 ‐2 1.9<br />

57 ‐0.1 ‐0.07 1.5 0.4<br />

58 0 0.03 0 1.8<br />

65 ‐0.1 ‐0.02 ‐2 ‐1.2<br />

72 0.3 ‐0.12 ‐3 0<br />

77 0.4 0.05 1 0<br />

84 0.2 ‐0.1 ‐2.5 ‐0.8<br />

72 Hour ‐40°C Storage<br />

PPart tID ID ΔIL ΔV ΔVpi i ΔER ΔS21<br />

2026 0.1 ‐0.03 ‐0.5 0.8<br />

123 0 0.08 0 0.1<br />

26 0.1 0.07 2.3 ‐0.5<br />

27 0 ‐0.03 0.1 ‐0.3<br />

34 ‐0.4 04 ‐0.1 01 0 ‐0.1 01<br />

36 0 0.09 ‐1.4 ‐0.3<br />

39 ‐0.2 0.07 0 ‐0.7<br />

41 ‐0.1 ‐0.07 1.5 ‐0.5<br />

42 ‐0.3 0.03 ‐0.5 ‐1.8<br />

45 0 0 03 0.3 12 1.2<br />

46 0 ‐0.03 0 ‐1.3


Mechanical Mechanical Testing Vibration<br />

22<br />

• For vibration testing, the<br />

frequency was varied<br />

logarithmically between 20<br />

and 2000 Hz in less than 4<br />

minutes. The cycle was<br />

performed 4 times in each X, X Y<br />

and Z<br />

72 0.3 0.02 2 1.5<br />

• Mechanical shock pulse of<br />

500g/millisecond, 5 times in<br />

Mechanical Shock<br />

Part ID ΔIL ΔVpi ΔER ΔS21<br />

24 ‐0.4 0.12 ‐2.5 ‐0.5<br />

25 0 0.03 ‐0.3 ‐1.3<br />

58 ‐0.2 0.09 ‐1 0<br />

72 03 002 2 15<br />

84 0 0.09 ‐2 ‐1.2<br />

34 ‐0.1 0.1 ‐0.5 0.3<br />

500g/millisecond 5 times in<br />

each direction of +/‐ X, +/‐ Y,<br />

and +/‐ Z.<br />

Part ID<br />

25<br />

30<br />

58<br />

84<br />

ΔIL<br />

0.2<br />

‐0.1<br />

‐0.1<br />

0.2<br />

ΔVpi<br />

0.03<br />

‐0.08<br />

0.13<br />

‐0.03<br />

ΔER<br />

0.3<br />

‐0.7<br />

‐1<br />

‐1<br />

ΔS21<br />

‐1.6<br />

‐0.3<br />

1.6<br />

‐0.9<br />

26 0.5 ‐0.03 ‐0.5 ‐1.2<br />

23 0.1 0.15 ‐2.3 ‐0.3<br />

34 ‐0.2 0.18 ‐0.6 0<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


LX8401 – Tier 1 Customers<br />

Evaluation Evaluation Results Summary


Outline<br />

24<br />

• LX8401 <strong>TFPS</strong> modulators were tested by 5 Tier 1 customers<br />

and <strong>com</strong>pared with LiNbO3 modulators from various<br />

vendors<br />

• All customers confirmed GGOX results and conducted<br />

ffurther th ttests t at t system t llevel l<br />

• All customers attested that the performance of LX8401 is<br />

equal or superior with that of the best LiNbO3 in the market<br />

• Following slides show some of the performed tests and the<br />

results<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Tier 1 Customers’ Evaluation Tests<br />

• Customer A<br />

� Characterization of the LX8401 <strong>TFPS</strong><br />

25<br />

modulator at RT and 750C � PPerformance f measurement 43G DPSK<br />

� Sensitivity measurement 39G /43G VSR<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Tier 1 Customers’ Evaluation Tests<br />

• Customer B<br />

26<br />

� Characterization of LX8401 at DC and<br />

datarate<br />

� OSNR measurements<br />

� Optical spectra measurements<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Tier 1 Customers’ Evaluation Tests<br />

• Customer C<br />

27<br />

� Characterization of LX8401 at DC and<br />

datarate at RT and 850 datarate at RT and 85 C<br />

� Eye diagram measurements<br />

� Reliability tests<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011


Conclusions<br />

� <strong>GigOptix</strong> is now offering 2 production EO Thin Film Polymer<br />

on Silicon (<strong>TFPS</strong>) MZMs:<br />

28<br />

� LX8401 is a small ll form f factor f 40G DPSK MZ modulator l targeting high h h<br />

speed RF photonic and ultra‐long haul (ULH) tele<strong>com</strong> applications<br />

� LX8220 is a small form‐factor 40G DQPSK MZ modulator<br />

� <strong>GigOptix</strong> is now offering sample <strong>TFPS</strong> modulator:<br />

�� LX8901 is a 100G NRZ MZ modulator targeting ultra high speed RF<br />

Photonic applications and advanced high speed tele<strong>com</strong><br />

<strong>com</strong>munication research<br />

� A <strong>com</strong>plete <strong>Telcordia</strong> qualified modulator product, including<br />

85 0 C/25 years stability<br />

<strong>GigOptix</strong> Inc CONFIDENTIAL - 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!