02.03.2013 Views

5. APLAC Editor Glossary - Niksula

5. APLAC Editor Glossary - Niksula

5. APLAC Editor Glossary - Niksula

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Version 8.10<br />

<strong>APLAC</strong><br />

Index & Glossaries<br />

Technical Support


<strong>APLAC</strong> Version 8.10 Index & Glossaries Technical Support<br />

c○ 2005 <strong>APLAC</strong> Solutions Corporation. All Rights Reserved.<br />

<strong>APLAC</strong> documentation assumes that you have a working knowledge of your operating system and<br />

any non-<strong>APLAC</strong> CAD framework you choose to use, as well as related conventions. For additional<br />

information, please refer to the documentation that came with your computer system or your CAD<br />

framework. Procedures and applications are presented for their instructional value. They have been<br />

carefully tested, but are not guaranteed for any specific computer system application. Complete<br />

manuals are delivered in PDF format. Release Notes supplement each <strong>APLAC</strong> software revision<br />

and manual update.<br />

Sales, distribution and support:<br />

<strong>APLAC</strong> Solutions Corporation <strong>APLAC</strong> Solutions, Inc.<br />

P.O. Box 284 320 Decker Drive, Suite 100<br />

FIN-02600 Espoo Irving, Texas 75062<br />

Finland USA<br />

Tel. +358-9-5404 5000 (GMT +2) Tel. +1 (972) 719-2562 (Central Time, GMT-6)<br />

Fax. +358-9-5404 5040 Fax. +1 (972) 719-2568<br />

Email: sales@aplac.com<br />

support@aplac.com<br />

publications@aplac.com<br />

For a list of international distributors, please see http://www.aplac.com<br />

Acrobat <br />

and PostScript <br />

are registered trademarks of Adobe Systems Incorporated. <strong>APLAC</strong> <br />

is<br />

a registered trademark of the <strong>APLAC</strong> Solutions Corporation. FLEXlm <br />

is a registered trademark<br />

of Macrovision Corporation. Hardlock <br />

is a registered trademark of Aladdin Knowledge Systems.<br />

HP-UX <br />

is a registered trademark of Hewlett-Packard Company. LINUX <br />

is a registered trademark<br />

of Linus Torvalds. MATLAB <br />

is a registered trademark of The MathWorks, Inc. Microsoft <br />

, Windows <br />

and Windows NT <br />

are registered trademarks of Microsoft Corporation. Sun TM<br />

and Solaris TM<br />

are trademarks<br />

of Sun Microsystems, Inc. TEX TM<br />

is a trademark of the American Mathematical Society. Unix <br />

is a registered trademark of The Open Group. X Window System TM<br />

is a trademark of the X Consortium,<br />

Inc. Other brand or product names are the trademarks or registered trademarks of their<br />

respective holders. Where known by the publisher, these are indicated in this book by printing in<br />

initial caps or all caps.<br />

This manual was typeset April 2005


Contents page i<br />

<strong>APLAC</strong> includes a rich collection of basic linear and nonlinear models, semiconductor<br />

models, and much more. <strong>APLAC</strong> modules Fast RF-IC and RF Board are empowered<br />

by application-optimized algorithms. A versatile collection of system-level<br />

blocks are available for the simulation and design of analog and digital communication<br />

systems, including Micro-Electromechanical Systems. An FDTD-based electromagnetic<br />

simulator and radio access modules Bluetooth and WLAN contribute<br />

further simulation functionality.<br />

New and customized models can be created, by the user or by the <strong>APLAC</strong> support<br />

team, using the C-model Interface or the Artificial Neural Network model generator.<br />

Contents<br />

1 TECHNICAL SUPPORT APP-1.1<br />

2 General Index APP-2.1<br />

3 Categorical Index APP-3.1<br />

4 <strong>APLAC</strong> Bibliography APP-4.1<br />

5 <strong>APLAC</strong> <strong>Editor</strong> <strong>Glossary</strong> APP-<strong>5.</strong>1<br />

6 <strong>APLAC</strong> Simulator <strong>Glossary</strong> APP-6.1<br />

7 LINK <strong>Glossary</strong> APP-7.1<br />

8 FLEXlm <strong>Glossary</strong> APP-8.1<br />

9 Complete List of <strong>APLAC</strong> 8.10 Examples APP-9.1<br />

9.1 Analysis methods/AC . . . . . . . . . . . . . . . . APP-9.1<br />

9.2 Analysis methods/ANN . . . . . . . . . . . . . . . APP-9.1<br />

9.2.1 Analysis methods/ANN/JFET . . . . . . . . APP-9.1<br />

9.2.2 Analysis methods/ANN/RSB . . . . . . . . APP-9.2<br />

General Index Examples Main Page


Contents page ii<br />

9.3 Analysis methods/Common problems . . . . . . . APP-9.2<br />

9.4 Analysis methods/DC . . . . . . . . . . . . . . . . APP-9.2<br />

9.5 Analysis methods/Graphics . . . . . . . . . . . . . APP-9.2<br />

9.6 Analysis methods/HB 1-TONE . . . . . . . . . . . APP-9.2<br />

9.7 Analysis methods/HB 1-TONE/submodels . . . . . APP-9.3<br />

9.8 Analysis methods/HB 2-TONE . . . . . . . . . . . APP-9.3<br />

9.9 Analysis methods/HB 2-TONE/submodels . . . . . APP-9.3<br />

9.10 Analysis methods/HB 3-TONE . . . . . . . . . . . APP-9.4<br />

9.11 Analysis methods/Library creation . . . . . . . . . APP-9.4<br />

9.12 Analysis methods/Noise . . . . . . . . . . . . . . . APP-9.4<br />

9.12.1 Analysis methods/Noise/leesonsub . . . . APP-9.4<br />

9.12.2 Analysis methods/Noise/submodels . . . . APP-9.5<br />

9.13 Analysis methods/Optimization . . . . . . . . . . . APP-9.5<br />

9.13.1 Analysis methods/Optimization/filtoptcap . APP-9.6<br />

9.13.2 Analysis methods/Optimization/filtoptind . . APP-9.6<br />

9.14 Analysis methods/S-parameters . . . . . . . . . . APP-9.6<br />

9.15 Analysis methods/Sensitivity . . . . . . . . . . . . APP-9.7<br />

9.16 Analysis methods/Stability . . . . . . . . . . . . . . APP-9.7<br />

9.17 Analysis methods/Statistical MC . . . . . . . . . . APP-9.7<br />

9.17.1 Analysis methods/Statistical MC/libraries . APP-9.8<br />

9.18 Analysis methods/Submodels . . . . . . . . . . . . APP-9.8<br />

9.18.1 Analysis methods/Submodels/submodels . APP-9.8<br />

9.19 Analysis methods/TRAN . . . . . . . . . . . . . . . APP-9.8<br />

9.19.1 Analysis methods/TRAN/submodels . . . . APP-9.8<br />

9.20 Devices/Amplifiers . . . . . . . . . . . . . . . . . . APP-9.9<br />

9.20.1 Devices/Amplifiers/RFIC libraries . . . . . . APP-9.9<br />

9.20.2 Devices/Amplifiers/submodels . . . . . . . APP-9.9<br />

9.21 Devices/BJT characterization . . . . . . . . . . . . APP-9.9<br />

General Index Examples Main Page


Contents page iii<br />

9.21.1 Devices/BJT characterization/libraries . . . APP-9.10<br />

9.22 Devices/FET characterization . . . . . . . . . . . . APP-9.10<br />

9.22.1 Devices/FET characterization/libraries . . . APP-9.10<br />

9.23 Devices/Filters . . . . . . . . . . . . . . . . . . . . APP-9.10<br />

9.23.1 Devices/Filters/filtoptcap . . . . . . . . . . . APP-9.11<br />

9.23.2 Devices/Filters/filtoptind . . . . . . . . . . . APP-9.11<br />

9.24 Devices/MEMS . . . . . . . . . . . . . . . . . . . . APP-9.11<br />

9.24.1 Devices/MEMS/beamfiltersub . . . . . . . . APP-9.13<br />

9.24.2 Devices/MEMS/combdrive . . . . . . . . . APP-9.14<br />

9.24.3 Devices/MEMS/ex00reso . . . . . . . . . . APP-9.14<br />

9.24.4 Devices/MEMS/mechanicalfiltersub . . . . APP-9.14<br />

9.24.5 Devices/MEMS/reso4sub . . . . . . . . . . APP-9.14<br />

9.24.6 Devices/MEMS/tiltinggasdampersub . . . . APP-9.14<br />

9.25 Devices/Matching . . . . . . . . . . . . . . . . . . . APP-9.15<br />

9.26 Devices/Mixers . . . . . . . . . . . . . . . . . . . . APP-9.15<br />

9.26.1 Devices/Mixers/RFIC libraries . . . . . . . . APP-9.15<br />

9.26.2 Devices/Mixers/submodels . . . . . . . . . APP-9.15<br />

9.27 Devices/Multipliers . . . . . . . . . . . . . . . . . . APP-9.15<br />

9.27.1 Devices/Multipliers/submodels . . . . . . . APP-9.16<br />

9.28 Devices/Oscillators . . . . . . . . . . . . . . . . . . APP-9.16<br />

9.28.1 Devices/Oscillators/VCO libraries . . . . . . APP-9.16<br />

9.29 Devices/PLL . . . . . . . . . . . . . . . . . . . . . APP-9.16<br />

9.30 Devices/Switches . . . . . . . . . . . . . . . . . . . APP-9.17<br />

9.31 Measurements/amps . . . . . . . . . . . . . . . . . APP-9.17<br />

9.31.1 Measurements/amps/more . . . . . . . . . APP-9.17<br />

9.32 Measurements/bias . . . . . . . . . . . . . . . . . APP-9.18<br />

9.32.1 Measurements/bias/more . . . . . . . . . . APP-9.18<br />

9.33 Measurements/dividers . . . . . . . . . . . . . . . APP-9.18<br />

General Index Examples Main Page


Contents page iv<br />

9.34 Measurements/filters . . . . . . . . . . . . . . . . . APP-9.18<br />

9.35 Measurements/generic . . . . . . . . . . . . . . . . APP-9.18<br />

9.36 Measurements/mixers . . . . . . . . . . . . . . . . APP-9.19<br />

9.36.1 Measurements/mixers/more . . . . . . . . . APP-9.19<br />

9.36.2 Measurements/mixers/more/differential/down APP-9.19<br />

9.36.3 Measurements/mixers/more/differential/up . APP-9.19<br />

9.36.4 Measurements/mixers/more/singleended/down APP-9.20<br />

9.36.5 Measurements/mixers/more/singleended/up APP-9.20<br />

9.37 Measurements/models . . . . . . . . . . . . . . . . APP-9.20<br />

9.38 Measurements/oscillators . . . . . . . . . . . . . . APP-9.20<br />

9.38.1 Measurements/oscillators/more . . . . . . . APP-9.21<br />

9.39 Measurements/switches . . . . . . . . . . . . . . . APP-9.21<br />

9.40 System/16-QAM . . . . . . . . . . . . . . . . . . . APP-9.21<br />

9.41 System/32-TCM . . . . . . . . . . . . . . . . . . . APP-9.21<br />

9.42 System/64-QAM . . . . . . . . . . . . . . . . . . . APP-9.21<br />

9.43 System/AGC . . . . . . . . . . . . . . . . . . . . . APP-9.22<br />

9.44 System/AM . . . . . . . . . . . . . . . . . . . . . . APP-9.22<br />

9.45 System/BER . . . . . . . . . . . . . . . . . . . . . APP-9.22<br />

9.46 System/BLUETOOTH . . . . . . . . . . . . . . . . APP-9.22<br />

9.47 System/CONSTELLATION . . . . . . . . . . . . . APP-9.22<br />

9.48 System/COSIMULATION . . . . . . . . . . . . . . APP-9.23<br />

9.49 System/DIGITAL . . . . . . . . . . . . . . . . . . . APP-9.23<br />

9.50 System/EYE . . . . . . . . . . . . . . . . . . . . . APP-9.23<br />

9.51 System/FM . . . . . . . . . . . . . . . . . . . . . . APP-9.23<br />

9.52 System/FORMULA BASED . . . . . . . . . . . . . APP-9.24<br />

9.53 System/FREQRESPONSE . . . . . . . . . . . . . APP-9.24<br />

9.54 System/FSK . . . . . . . . . . . . . . . . . . . . . APP-9.24<br />

9.55 System/GSM . . . . . . . . . . . . . . . . . . . . . APP-9.24<br />

General Index Examples Main Page


Contents page v<br />

9.56 System/IMAGE REJECTION . . . . . . . . . . . . APP-9.24<br />

9.57 System/IQ . . . . . . . . . . . . . . . . . . . . . . . APP-9.25<br />

9.58 System/PSK . . . . . . . . . . . . . . . . . . . . . APP-9.25<br />

9.59 System/PWM . . . . . . . . . . . . . . . . . . . . . APP-9.25<br />

9.60 System/QPSK . . . . . . . . . . . . . . . . . . . . APP-9.25<br />

9.61 System/SNR . . . . . . . . . . . . . . . . . . . . . APP-9.25<br />

9.62 System/SPECTRUM . . . . . . . . . . . . . . . . . APP-9.25<br />

9.63 System/SYNCHRONIZATION . . . . . . . . . . . . APP-9.26<br />

9.64 System/VECTOR SIGNALS . . . . . . . . . . . . . APP-9.26<br />

9.65 System/WAVEFORM . . . . . . . . . . . . . . . . . APP-9.26<br />

9.66 System/WLANa . . . . . . . . . . . . . . . . . . . . APP-9.26<br />

9.66.1 System/WLANa/WLANSubModels . . . . . APP-9.27<br />

9.67 System/WLANb . . . . . . . . . . . . . . . . . . . . APP-9.27<br />

9.67.1 System/WLANb/WLANSubModels . . . . . APP-9.27<br />

General Index Examples Main Page


TECHNICAL SUPPORT page APP-1.1<br />

1. TECHNICAL SUPPORT<br />

<strong>APLAC</strong> software is under constant, intense development. Service contract customers receive regular<br />

updates of new product functionality with examples. Help Desk staff deals confidentially with <strong>APLAC</strong>related<br />

questions and currently active design issues. Your feedback sets the guidelines.<br />

If you have questions or comments regarding <strong>APLAC</strong> software, services or training, you can contact<br />

<strong>APLAC</strong> Solutions user support staff:<br />

by email - support@aplac.com<br />

by phone - +358 9 5404 5010 (GMT+2)<br />

Many corporate customers host structured training on their premises to increase user productivity.<br />

Participants should be familiar with the basics of analog electronics and the Microsoft Windows<br />

operating system.<br />

Basic courses include:<br />

• Basic concepts, benefits, and parameters in circuit simulation<br />

• Various circuit analysis methods, theory and demonstrated examples<br />

• Use of variables, manual tuning and statistical analysis<br />

• Hierarchical modelling using the schematic entry tool<br />

Advanced courses include:<br />

• Nonlinear simulation, steady-state and transient analysis, harmonic balance<br />

• Theory and methods of communications system design and simulation<br />

• Optimization & statistical methods, automated features and design quality<br />

• Component modelling, evaluation, implementation and conversion<br />

The <strong>APLAC</strong> Website is available at http://www.aplac.com.<br />

Please let us know how our user documentation serves you best, by contacting us at<br />

publications@aplac.com.<br />

General Index Examples Main Page


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.1<br />

2. General Index<br />

.asd (file type), EM-2.4<br />

.dvl (file type), EM-2.4<br />

.eir (file type), EM-2.4<br />

.i (file type), EM-2.4, RIV-4.18<br />

.n (file type), RIV-4.18<br />

.rdp (file type), EM-2.4<br />

.s1p (file type), EM-2.4<br />

.sar (file type), EM-2.4<br />

.ssd (file type), EM-2.4<br />

.t (file type), EM-2.4<br />

#, see directive<br />

3D graphics, RIV-3.106<br />

AC analysis, RIV-3.6<br />

Amplifier matching, RIV-3.53<br />

Balanced mixer, RIV-3.72<br />

Basic receiver design, RIV-3.83<br />

Chua’s circuit, RIV-3.86<br />

Colpitts oscillator, RIV-3.75<br />

Coupled line, RIV-3.97<br />

Current mirror, RIV-3.113<br />

DC analysis, RIV-3.4<br />

DC characteristics of a simple Ebers-Moll model, RIV-3.39<br />

Design centering, RIV-3.28<br />

FET frequency multiplier, RIV-3.58<br />

For-loop example, RIV-3.88<br />

Frequency doubler, RIV-3.61<br />

Harmonic balance analysis, RIV-3.11, RIV-3.78<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.2<br />

Ideal switched-capacitor circuit, RIV-3.90<br />

JFET model parameter extraction, RIV-3.117<br />

Line fitting, RIV-3.104<br />

Mathematics, RIV-3.111<br />

Monte Carlo analysis, RIV-3.24<br />

Noise analysis, RIV-3.14<br />

Nominal optimization using GoalData, RIV-3.21<br />

Nominal optimization, RIV-3.16<br />

Nonideal switched-capacitor circuit, RIV-3.94<br />

Optimization example, including design centering, RIV-3.30<br />

Output intercept point calculation, RIV-3.69<br />

PLL transient analysis, RIV-3.63<br />

Printed circuit board (PCB) example, RIV-3.101<br />

Representing numerical data graphically, RIV-3.108<br />

S parameter presentation of an amplifier, RIV-3.43<br />

Stability and gain circles, RIV-3.50<br />

Transient analysis, RIV-3.75, RIV-3.8<br />

Transistor DC curves, RIV-3.41<br />

Transistor S parameters, RIV-3.46<br />

Transmission line with an S parameter example, RIV-3.35<br />

About <strong>APLAC</strong> <strong>Editor</strong>, RIV-4.26<br />

AC analysis, RIV-2.21, RIV-3.6, UMAN-2.1<br />

sensitivity, RIV-2.23<br />

AC sensitivity, RIV-2.23<br />

AC voltage, RIV-2.21<br />

Accelerometer, Accelerometer-1<br />

Accuracy<br />

harmonic balance analysis, RIV-6.3<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.3<br />

transient analysis, RIV-6.3<br />

Aclin, Aclin-1<br />

ADC, ADC-1<br />

Add<br />

External Library, RIV-4.14<br />

Adder, Adder-1<br />

Air core inductor, AirInd-1<br />

AirInd, AirInd-1<br />

Almost-periodic Fourier transform, RIV-2.46<br />

Alt<br />

L, RIV-4.11<br />

U, RIV-4.10<br />

Amplifier, Amplifier-1, Amplifier-1, Amplifier-1<br />

common emitter, RIV-3.1<br />

optimization, RIV-3.53<br />

transistor, RIV-3.69<br />

Amplitude dump, AmplShot-1<br />

Amplitude modulator, AmplModulator-1<br />

AmplModulator, AmplModulator-1<br />

AmplShot, AmplShot-1<br />

AmplShot (file type), EM-2.4<br />

Analog-to-digital converter, ADC-1<br />

Analysing, RIV-4.2<br />

Analysis<br />

H parameter, RIV-2.25<br />

n port analysis, RIV-2.25<br />

S parameter, RIV-2.25<br />

Y parameter, RIV-2.25<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.4<br />

Z parameter, RIV-2.25<br />

analysis, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Analysis modes<br />

AC analysis, RIV-2.21<br />

DC analysis, RIV-2.16<br />

harmonic balance, RIV-2.37, RIV-2.44, RIV-2.49<br />

large-signal/small-signal noise analysis, RIV-2.51<br />

noise analysis, RIV-2.32<br />

sensitivity functions, RIV-2.19, RIV-2.23<br />

transient analysis, RIV-2.35<br />

Wizards, RIV-4.2<br />

Analysis setup, Prepare-1<br />

Analysis Statement Pages, RI-1.6, RII-1.4, RIII-1.4, RIV-1.4<br />

Analysis Types, Analyze-1<br />

Analyze, Analyze-1<br />

And, And-1<br />

Angular frequency, RIV-2.23<br />

Anneal, Anneal-1<br />

Annealing optimization, Anneal-1<br />

ANNModel, ANNModel-1<br />

Antenna, Antenna-1<br />

Antenna Input Block, Antenna-1<br />

APFT, RIV-2.46<br />

<strong>APLAC</strong><br />

<strong>Editor</strong>, RIV-4.7<br />

Program, RIV-4.21<br />

<strong>APLAC</strong> Function Pages, RI-1.6, RII-1.4, RIII-1.4, RIV-1.4<br />

<strong>APLAC</strong> Language, UMAN-1.7<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.5<br />

<strong>APLAC</strong> Simulator<br />

UNIX, RIV-4.52<br />

Windows, RIV-4.48<br />

<strong>APLAC</strong> Version Info<br />

F1, RIV-4.26<br />

AplacVar, RIV-2.9, RIV-4.2, see Var<br />

Application error, RIV-6.1<br />

Arguments<br />

multiple, RIV-6.4<br />

Arrow keys, RIV-4.62<br />

Artificial Neural Network Model, ANNModel-1<br />

Asynchronous FIFO, FIFO-1<br />

Attenuator, Attenuator-1<br />

Backlash, Backlash-1<br />

Backlash nonlinearity (hysteresis), Backlash-1<br />

Baseband To Vector Converter, BBToBus-1<br />

Baseband waveform generator, Waveform-1<br />

BBToBus, BBToBus-1<br />

BeamElement, BeamElement-1<br />

BERMeter, BERMeter-1<br />

Bessel bandpass filter, BesselBP-1<br />

Bessel bandstop filter, BesselBS-1<br />

Bessel highpass filter, BesselHP-1<br />

Bessel lowpass filter, BesselLP-1<br />

BesselBP, BesselBP-1<br />

BesselBS, BesselBS-1<br />

BesselHP, BesselHP-1<br />

BesselLP, BesselLP-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.6<br />

Bias, Bias-1<br />

Binary symmetric channel, BinaryChannel-1<br />

BinaryChannel, BinaryChannel-1<br />

Bipolar transistor, BJT-1, Trans-1<br />

example, RIV-3.2<br />

Bit detector, BitDetector-1<br />

Bit mapper, BitMapper-1<br />

Bit Remover, BitRemover-1<br />

Bit sequence source, BitGenerator-1, BitGenerator-1<br />

Bit Vector Puncturer, Puncturer-1, Puncturer-1<br />

Bit-error-rate meter, BERMeter-1<br />

BitDetector, BitDetector-1<br />

BitGenerator, BitGenerator-1, BitGenerator-1<br />

BitMapper, BitMapper-1<br />

BitRemover, BitRemover-1<br />

BJT, BJT-1<br />

BJT, UMAN-2.2<br />

Black box, BlackBox-1<br />

BlackBox, BlackBox-1<br />

Blocking, Blocking-1<br />

Blocking a system, Blocking-1<br />

BLT Forward Error Correction (FEC) Coder, BltFec23Cod-1<br />

BLT Forward Error Correction (FEC) Decoder, BltFec32DeCod-1<br />

BLT Frequency Demodulator, BltDeMod-1<br />

BLT Frequency Demodulator with Frequency Hopping, BltHopDeMod-1<br />

BLT GFSK Modulator, BltModulator-1<br />

BLT Signal Source, BltSource-1<br />

BltDeMod, BltDeMod-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.7<br />

BltFec23Cod, BltFec23Cod-1<br />

BltFec32DeCod, BltFec32DeCod-1<br />

BltHopCnt, BltHopCnt-1<br />

BltHopDeMod, BltHopDeMod-1<br />

BltModulator, BltModulator-1<br />

BltSource, BltSource-1<br />

Boolean functions, UMAN-2.1<br />

Branch swapping, SwapBranch-1<br />

Broadside-coupled stripline, Sbclin-1<br />

BSIM, BSIM-1<br />

BSIM level 3 MOS transistor, BSIM3-1<br />

BSIM level 4 MOS transistor, BSIM4-1<br />

BSIM MOS transistor model, BSIM-1<br />

BSIM3, BSIM3-1<br />

BSIM3SOI, BSIM3SOI-1<br />

BSIM3SOI MOS transistor, BSIM3SOI-1<br />

BSIM4, BSIM4-1<br />

Buffer, Buffer-1<br />

Building block for flexible beams, BeamElement-1<br />

Burst noise, RIV-2.32, RIV-2.35<br />

Bus Combiner, BusCombiner-1<br />

Bus error, RIV-6.1<br />

Bus Inverter, BusInverter-1<br />

Bus Splitter, BusSplitter-1<br />

BusCombiner, BusCombiner-1<br />

BusInverter, BusInverter-1<br />

BusSplitter, BusSplitter-1<br />

BusToBB, BusToBB-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.8<br />

Butterworth bandpass filter, ButterworthBP-1<br />

Butterworth bandstop filter, ButterworthBS-1<br />

Butterworth highpass filter, ButterworthHP-1<br />

Butterworth lowpass filter, ButterworthLP-1<br />

ButterworthBP, ButterworthBP-1<br />

ButterworthBS, ButterworthBS-1<br />

ButterworthHP, ButterworthHP-1<br />

ButterworthLP, ButterworthLP-1<br />

Bypass, Bypass-1<br />

Bypass Block, Bypass-1<br />

Capacitor, RIV-2.3, see Capacitance<br />

Cap, UMAN-2.2<br />

Change Symbol and Pin Order, RIV-4.19<br />

Chaos<br />

Chua’s circuit, RIV-3.86<br />

Cir2Sys, UMAN-2.1<br />

Circuit description, RIV-3.2<br />

Circuit Diagram, RIV-4.11<br />

Circuit diagram, UMAN-2.1<br />

Circuit hierarchy, UMAN-2.1<br />

Close, RIV-4.12, RIV-4.8<br />

External Library, RIV-4.14<br />

Colors, RIV-4.22<br />

Colpitts oscillator, RIV-3.75<br />

Command, RIV-4.18<br />

Command line arguments<br />

UNIX, RIV-<strong>5.</strong>1<br />

Windows, RIV-<strong>5.</strong>1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.9<br />

Comment Note Box, RIV-4.15<br />

Complex<br />

arithmetic, see Input file<br />

Complex numbers, RIV-6.4<br />

Component<br />

Add, RIV-4.1<br />

Insert, RIV-4.13<br />

Selecting, RIV-4.10<br />

Component <strong>Editor</strong>, RIV-4.29<br />

Component Library<br />

F1, RIV-4.26<br />

Component Menu, UMAN-2.1<br />

Component Pages, RI-1.6, RII-1.4, RIII-1.4, RIV-1.4<br />

components, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Conducting patch, Patch-1<br />

Constant noise circles, RIV-2.35<br />

Control + +, RIV-4.11<br />

Control + -, RIV-4.11<br />

Control + C, RIV-4.10<br />

Control + D, RIV-4.11<br />

Control + F, RIV-4.11<br />

Control + H, RIV-4.13<br />

Control + I, RIV-4.13<br />

Control + O, RIV-4.13<br />

Control + Q, RIV-4.17<br />

Control + R, RIV-4.11<br />

Control + Return, RIV-4.19<br />

Control + V, RIV-4.11<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.10<br />

Control + W, RIV-4.17<br />

Control + X, RIV-4.10<br />

Control + Z, RIV-4.13<br />

Control Object, RIV-4.15, UMAN-2.1<br />

As Text, RIV-4.15<br />

Predefined, RIV-4.30<br />

Controlled voltage source, Formula-1<br />

Convergence<br />

controlling DC voltages, RIV-6.3<br />

derivatives, RIV-6.3<br />

impedance level, RIV-6.1<br />

improving convergence, RIV-6.1<br />

nonlinear analysis, RIV-6.2<br />

voltage level, RIV-6.1<br />

CCCS, RIV-6.3<br />

CCVS, RIV-6.3<br />

VCCS, RIV-6.3<br />

VCVS, RIV-6.3<br />

Convolution analysis<br />

transient analysis, RIV-3.97<br />

Copy, RIV-4.10<br />

Core dumped, RIV-6.1<br />

Crash, RIV-6.1<br />

Crosstalk<br />

PCB transient analysis, RIV-3.101<br />

MultiLayerStruct, RIV-3.101<br />

Current<br />

AC current, RIV-2.21<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.11<br />

Branch, RIV-2.17<br />

DC current, RIV-2.17<br />

transient, RIV-2.36<br />

waveform, RIV-2.39<br />

Current Measurement, RIV-4.1<br />

Current measurement, UMAN-2.1<br />

IWf, Harmonic-1<br />

Cut, RIV-4.10<br />

Cut-off frequency<br />

Chebyshev filter, RIV-3.90<br />

DataVolume (file type), EM-2.4<br />

DC analysis, RIV-2.16, RIV-3.39, RIV-3.4, UMAN-2.1<br />

DC charcteristics, RIV-3.41<br />

sensitivity, RIV-2.19<br />

DC operating point, RIV-2.17<br />

DC analysis, RIV-2.16<br />

DC sensitivity, RIV-2.19<br />

DC source, RIV-2.16<br />

DCINIT SOURCE STEP (convergence), GetParam-2, SetParam-3<br />

DCSOURCE STEP CYCLES (convergence), GetParam-3, SetParam-5<br />

Default, Procedure-2<br />

Default model parameter, Param-1<br />

default values, RI-1.5, RII-1.3, RIII-1.3, RIV-1.3<br />

Default Zoom, RIV-4.13<br />

DefaultString, Procedure-2<br />

define (directive), RIV-2.14, UMAN-2.39, UMAN-2.60<br />

DefModel, UMAN-2.1<br />

DefNPort, UMAN-2.1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.12<br />

Delete, RIV-4.11<br />

Del, RIV-4.11<br />

Delimiters, UMAN-2.1<br />

Design centering, RIV-3.28, RIV-3.30<br />

Normalized, RIV-2.29<br />

Diagram, UMAN-2.1<br />

Difference Computation, Subtractor-1<br />

Differential equation<br />

Diode<br />

solving, RIV-3.111<br />

doubler, RIV-3.61<br />

mixer, RIV-3.72<br />

Disable, RIV-4.11<br />

Discrete-time system structure, System-1<br />

Dispersion<br />

transmission line, RIV-3.97<br />

Dispersive transmission line, TLineDisp-1<br />

Displacement limiter, NormalLimiter-1<br />

Display, UMAN-2.1<br />

Displaying results, Show-1<br />

Distortion, RIV-2.41, UMAN-2.1<br />

Down-converter analysis, RIV-2.44<br />

Dublicate, RIV-4.11<br />

Duplicate, RIV-4.11<br />

Ebers-Moll model, RIV-3.2, RIV-3.39<br />

Edit, RIV-4.12<br />

Copy, RIV-4.10<br />

Cut, RIV-4.10<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.13<br />

Delete, RIV-4.11<br />

Disable, RIV-4.11<br />

Duplicate, RIV-4.11<br />

Edit Object List, RIV-4.11<br />

Enable, RIV-4.11<br />

Find, RIV-4.11<br />

Horizontal Flip, RIV-4.11<br />

Paste, RIV-4.11<br />

Rotate, RIV-4.11<br />

Select All, RIV-4.11<br />

Edit menu, RIV-4.10, RIV-4.54<br />

Edit Object List, RIV-4.11<br />

Edit Objects<br />

<strong>Editor</strong><br />

Close, RIV-4.12<br />

Delete, RIV-4.11<br />

Disable/Enable, RIV-4.11<br />

Duplicate, RIV-4.11<br />

Edit, RIV-4.12<br />

<strong>Editor</strong>, RIV-4.12<br />

New, RIV-4.11<br />

Up/Down, RIV-4.11<br />

Help, RIV-4.26<br />

EEFET3, EEFET3-1<br />

EEHEMT1, EEHEMT1-1<br />

EEsof Scalable Nonlinear GaAsFet, EEFET3-1<br />

EEsof Scalable Nonlinear HEMT, EEHEMT1-1<br />

EKVMOS, EKVMOS-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.14<br />

Electromagnetic port, EMPort-1<br />

Electromechanical contact, NormalContact-1<br />

Electrothermal components, RI-1.10, RII-1.8, RIII-1.8, RIV-1.8<br />

Ellipsoid, Ellipsoid-1<br />

else (directive), RIV-2.15<br />

d, EM-2.4<br />

EMCap, EMCap-1<br />

EMConnector, EMConnector-1<br />

EMInd, EMInd-1<br />

EMPort, EMPort-1<br />

EMRes, EMRes-1<br />

Enable, RIV-4.11<br />

End Wiring, RIV-4.17<br />

endif (directive), RIV-2.15, UMAN-2.60<br />

EndSweep, RIV-2.3<br />

EPFL-EKV MOS transistor, EKVMOS-1<br />

Error, RIV-4.6<br />

Error vector measuring device, ErrorVector-1<br />

ErrorVector, ErrorVector-1<br />

Exhaustive, Exhaustive-1<br />

Exhaustive search, Exhaustive-1<br />

Exit, RIV-4.10<br />

Monte Carlo, RIV-4.54<br />

Optimization, RIV-4.54<br />

Simulation, RIV-4.54<br />

Expander, Expander-1<br />

External <strong>Editor</strong>, RIV-4.12<br />

External Library<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.15<br />

Add, RIV-4.14<br />

Close, RIV-4.14<br />

View, RIV-4.14<br />

FDTD – lumped element interface, EMConnector-1<br />

FET<br />

frequency multiplier, RIV-3.58<br />

Field dump, SnapShot-1<br />

FIFO, FIFO-1<br />

File<br />

.lib, UMAN-2.1<br />

.s2p, UMAN-2.1<br />

.sub, UMAN-2.1<br />

Close, RIV-4.8<br />

Exit, RIV-4.10<br />

Exit Monte Carlo, RIV-4.54<br />

Exit Optimization, RIV-4.54<br />

Exit Simulation, RIV-4.54<br />

Guess File, RIV-4.52<br />

New Circuit, RIV-4.8<br />

New System, RIV-4.8<br />

Open, RIV-4.8<br />

Print, RIV-4.52<br />

Print Schematic, RIV-4.9<br />

Print View, RIV-4.9<br />

Save, RIV-4.8, UMAN-2.1<br />

Save As, RIV-4.52, RIV-4.8<br />

Save Current Config, RIV-4.54<br />

Save Selected as Template, RIV-4.9<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.16<br />

Save Special, RIV-4.8<br />

Save Template as, RIV-4.9<br />

File based source, ReadFile-1<br />

File menu, RIV-4.52, RIV-4.8<br />

Filter, Filter-1, Filter-1<br />

biquad, RIV-3.94<br />

Chebyshev, RIV-3.90<br />

electromagnetic simulation, RIV-2.59<br />

low-pass ladder, RIV-3.63<br />

sampling frequency, RIV-3.90<br />

switched-capacitor, RIV-3.94<br />

Filter Block, Filter-1<br />

Filter gain and phase, ReadNthFilter-1<br />

Find, RIV-4.11<br />

Fitting lines, RIV-3.104<br />

Flat wire, Ribbon-1<br />

Flicker noise, RIV-2.32, RIV-2.35<br />

Flow impedance/admittance of a channel, FlowChannel-1<br />

FlowChannel, FlowChannel-1<br />

Fonts, RIV-4.22, RIV-<strong>5.</strong>3, RIV-<strong>5.</strong>9<br />

Formula, Formula-1<br />

Fourier, Fourier-1, Fourier-1<br />

almost-periodic transform, RIV-2.46<br />

generalized series, RIV-2.44<br />

multidimensional transform, RIV-2.46<br />

Fourier and Inverse Fourier, Fourier-1, Fourier-1<br />

Fourier transformation, UMAN-2.1<br />

FreqConverter, FreqConverter-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.17<br />

FreqCounter, FreqCounter-1<br />

FreqDivider, FreqDivider-1, UMAN-2.1<br />

Frequency, RIV-2.23<br />

doubler, RIV-3.61<br />

multiplier, RIV-3.58<br />

Frequency converter, FreqConverter-1<br />

Frequency counter, FreqCounter-1<br />

Frequency divider, FreqDivider-1<br />

Frequency Hopping Control Block, BltHopCnt-1<br />

Frequency-dependent impedance, Zblock-1<br />

Frequency-domain analysis<br />

AC analysis, RIV-2.21<br />

harmonic balance, RIV-2.37, RIV-2.44, RIV-2.49<br />

Full Adder, FullAdder-1<br />

FullAdder, FullAdder-1<br />

Function<br />

function<br />

mathematical functions, RIV-2.12<br />

sensitivity functions, RIV-2.19, RIV-2.23<br />

input (.i) file, RIV-2.13<br />

user-defined, RIV-2.13<br />

Functional variable<br />

functional, see Variable<br />

Gain, Gain-1<br />

circles, RIV-3.50<br />

Gain budget, GainBudget-1<br />

GainBudget, GainBudget-1<br />

Gap discontinuity in a stripline, Sgap-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.18<br />

Gaussian bandpass filter, GaussianBP-1<br />

Gaussian lowpass filter, GaussianLP-1<br />

Gaussian noise source, GaussianNoise-1<br />

GaussianBP, GaussianBP-1<br />

GaussianLP, GaussianLP-1<br />

GaussianNoise, GaussianNoise-1<br />

General, RIV-4.20, RIV-4.21<br />

Actual Grid Size, RIV-4.20<br />

Auto Connection, RIV-4.21<br />

Draw Text Boxes, RIV-4.21<br />

Enable Dublicate Nodes Name Warning, RIV-4.20<br />

N simulators open at a time, RIV-4.21<br />

Show <strong>APLAC</strong> File, RIV-4.20<br />

Show Aplac File before simulation, RIV-4.21<br />

Show DCVoltages in statusbar after simulation, RIV-4.21<br />

Show Grid, RIV-4.20<br />

Show Text Output window, RIV-4.21<br />

Show Verbose window, RIV-4.21<br />

Start <strong>APLAC</strong> with <strong>APLAC</strong> <strong>Editor</strong>, RIV-4.21<br />

Thick Wires, RIV-4.21<br />

Visible Grid Size, RIV-4.20<br />

General coupled line, Aclin-1<br />

General reluctance, RmRel-1<br />

Generalized Fourier series, RIV-2.44<br />

Generate Simulation File, RIV-4.18<br />

Generic, Generic-1<br />

Genetic, Genetic-1<br />

Genetic optimization, Genetic-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.19<br />

GetParam, GetParam-1<br />

GetParam, GetParam-1<br />

Global stripline substrate parameters, Ssub-1<br />

Global suspended substrate parameters, Sssub-1<br />

Gm, Gm-1<br />

Goal, Goal-1, UMAN-2.1<br />

Acceptance, Goal-1<br />

GoalData, RIV-3.21, RIV-3.30<br />

GoalData, GoalData-1<br />

Gradient, Gradient-1<br />

Gradient optimization, Gradient-1<br />

Graphics, Graphics-1, RIV-2.11<br />

3D graphics, RIV-3.106<br />

numerical data, RIV-3.108<br />

Graphics windows, RIV-4.38<br />

GravCenter, GravCenter-1<br />

Gravity center optimization, GravCenter-1<br />

Grid, RIV-4.20<br />

Grid Size, RIV-4.20<br />

Ground, UMAN-2.2<br />

Group delay analysis, RIV-2.23<br />

Guess, Guess-1<br />

Guess File, RIV-4.52<br />

Guess file, Guess-1<br />

Gyrator, Gyrator-1<br />

Half Adder, HalfAdder-1<br />

HalfAdder, HalfAdder-1<br />

Harmonic, Harmonic-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.20<br />

Harmonic analysis source, RIV-2.39<br />

Harmonic balance, RIV-2.39, RIV-2.44, RIV-2.49, RIV-3.11<br />

balanced mixer, RIV-3.72<br />

frequency doubler, RIV-3.61<br />

large-signal/small-signal analysis, RIV-2.49<br />

multitone analysis, RIV-2.44, RIV-2.49<br />

single-tone analysis, RIV-2.37<br />

Sweep, RIV-3.12<br />

Harmonic balance (HB) analysis, UMAN-2.1<br />

Harmonic steady-state analysis<br />

harmonic balance, RIV-2.37, RIV-2.44<br />

harmonic balance analysis, RIV-2.39<br />

large-signal/small-signal harmonic balance, RIV-2.49<br />

multitone harmonic balance, RIV-2.44, RIV-2.49<br />

Harmonic steady-state functions, Harmonic-1<br />

HBINIT SOURCE STEP (convergence), GetParam-2, SetParam-3<br />

HBSOURCE STEP CYCLES (convergence), GetParam-3, SetParam-5<br />

HBT, HBT-1<br />

Helical wire, Helix-1<br />

Helix, Helix-1<br />

Help<br />

About <strong>APLAC</strong> <strong>Editor</strong>, RIV-4.26<br />

<strong>APLAC</strong> Version Info, RIV-4.26<br />

Component Library, RIV-4.26<br />

PDF Books, RIV-4.26<br />

Read Application Note, RIV-4.26<br />

Help menu, RIV-4.26, RIV-4.62<br />

Heterojunction Bipolar Transistor, HBT-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.21<br />

HICUM, HICUM-1<br />

HICUM Level 0 Transistor Model, HICUML0-1<br />

HICUML0, HICUML0-1<br />

Hide Component Attributes, RIV-4.17<br />

Hide Component Name, RIV-4.17<br />

Hide Control Object, RIV-4.16<br />

Hide Object List, RIV-4.17<br />

Hierarchy<br />

Change Symbol and Pin Order, RIV-4.19<br />

List All Schematics, RIV-4.19<br />

Open hierarchical schematic, RIV-4.19<br />

Hierarchy menu, RIV-4.19<br />

High Current Bipolar Transistor Model , HICUM-1<br />

Hole in a stripline, SViaHole-1<br />

Hooke-Jeeves optimization, HookeJeeves-1<br />

HookeJeeves, HookeJeeves-1<br />

Horizontal Flip, RIV-4.11<br />

Hpar (parameter), Sweep-4, UMAN-2.66<br />

Huygen’s surface, HuygenSurface-1<br />

HuygenSurface, HuygenSurface-1<br />

electromechanical, MEMS-2.13<br />

DC current, RIV-2.17<br />

electromechanical, MEMS-2.12<br />

ifdef (directive), RIV-2.15, UMAN-2.60, UMAN-2.63<br />

electromechanical, MEMS-2.14<br />

include (directive), RIV-2.15<br />

Inductor, RIV-2.3<br />

INIT SOURCE STEP (convergence), GetParam-2, Prepare-13, SetParam-3<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.22<br />

Initializing the optimizer, OptimMethod-1<br />

Input, UMAN-2.1<br />

Input, UMAN-2.2<br />

Input file<br />

complex arithmetic, RIV-2.13<br />

complex number, RIV-2.13<br />

mathematical functions, RIV-2.12<br />

structure, RIV-2.5<br />

Insert, UMAN-2.1<br />

Analysis, RIV-4.15<br />

Comment Note Box, RIV-4.15<br />

Component, RIV-4.13<br />

Control Object, RIV-4.15<br />

Control Object as Text, RIV-4.15<br />

NodeName, RIV-4.14<br />

Recently Used Components, RIV-4.15<br />

Symbol, RIV-4.14<br />

Insert Menu<br />

External Library Component, RIV-4.14<br />

Intercept point<br />

OIP3 calculation, RIV-3.69<br />

Interface port, RmPort-1<br />

Internal, RIV-6.1<br />

electromechanical, MEMS-2.13<br />

JFET, JFET-1<br />

Jitter producer, PulseJitter-1<br />

JJ, JJ-1<br />

JKFlip flop, JKFlip flop-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.23<br />

Josephson junction, JJ-1<br />

Junction Field-effect Transistor, JFET-1<br />

Keyboard settings, RIV-4.62<br />

Keystrokes, RIV-4.64<br />

LaplaceTransform, Responsefunc-3<br />

Large-signal/small-signal analysis<br />

harmonic balance, RIV-2.49<br />

Launch, UMAN-2.1<br />

LC-resonator, Resonator-1<br />

libcrypt.exe (utility), RII-11.1<br />

libdir (directive), RIV-2.15<br />

Library, UMAN-2.1<br />

library (directive), RIV-2.15, UMAN-2.65<br />

Library Directory, RIV-4.22<br />

Linear or Nonlinear Amplifier, Amplifier-1, Amplifier-1<br />

LineFit, RIV-3.104<br />

Load, UMAN-2.1<br />

Logic and circuit, And-1<br />

Logic Buffer, Buffer-1<br />

Logic four-bit adder, Adder-1<br />

Logic JK flip-flop, JKFlip flop-1<br />

Logic nand circuit, Nand-1<br />

Logic nor circuit, Nor-1<br />

Logic not circuit, Not-1<br />

Logic or circuit, Or-1<br />

Logic signal edge indicator, TrigPulse-1<br />

Logic State Indicator, Sink-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.24<br />

Logic up-down counter, UpDownCounter-1<br />

Losses<br />

frequency-dependent, RIV-3.97<br />

Lumped capacitor, EMCap-1<br />

Lumped inductor, EMInd-1<br />

Lumped resistor, EMRes-1<br />

Manuals, UMAN-1.3<br />

Mathematics, RIV-3.111<br />

Maximum value trace, TraceMax-1<br />

Measurement, Amplifier-1, Bias-1, Filter-1, Generic-1, Oscillator-1, Switch-1<br />

Memory fault, RIV-6.1<br />

Micromechanical Accelerometer, Accelerometer-1<br />

Microstrip<br />

line, RIV-3.43<br />

Minimum noise figure, RIV-2.35<br />

Mixer<br />

balanced, RIV-3.72<br />

mixer analysis, RIV-2.44<br />

Model, UMAN-2.1<br />

Parameters, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Model parameter extraction<br />

Transistor modelling, RIV-3.117<br />

models, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Modifying variables, SetVar-1<br />

Monte Carlo<br />

Exit, RIV-4.54<br />

Monte Carlo analysis, RIV-3.24, UMAN-2.1<br />

Mouse, RIV-4.64<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.25<br />

Multidimensional Fourier transform, RIV-2.46<br />

MultiLayerStruct<br />

PCB crosstalk, RIV-3.101<br />

Multiple arguments, RIV-6.4<br />

Multitone harmonic balance analysis, see Harmonic balance<br />

N simulators open at a time, RIV-4.21<br />

n port<br />

analysis, RIV-2.25<br />

n-port circuit, NPort-1<br />

Nand, Nand-1<br />

Nelder-Mead optimization, NelderMead-1<br />

NelderMead, NelderMead-1<br />

Netlist, RIV-4.11<br />

Network analyzer measurements, NWA-1<br />

New, RIV-4.11<br />

New Center, RIV-4.13<br />

New Circuit, RIV-4.8<br />

New System, RIV-4.8<br />

NFBudget, NFBudget-1<br />

Node, UMAN-2.1<br />

NodeName, RIV-4.14<br />

Noise, Noise-1<br />

AC analysis, RIV-2.32<br />

analysis, RIV-2.32, RIV-3.14<br />

circles, RIV-2.35<br />

contribution, RIV-2.32, RIV-2.51<br />

figure, RIV-2.33<br />

large-signal/small-signal noise analysis, RIV-2.51<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.26<br />

mechanisms, RIV-2.33<br />

noise analysis, RIV-2.32<br />

source, RIV-2.35<br />

temperature, RIV-2.33<br />

Effrn, Noise-7<br />

FreqNoise2L, Noise-5<br />

IacNoise, Noise-2<br />

IacNoiseContrib, Noise-3<br />

IhbNoise, Noise-3<br />

IhbNoiseContrib, Noise-3<br />

MinNoiseFigure, Noise-7<br />

MinNoiseFigureZ, Noise-7<br />

NoiseData, Noise-7<br />

PhaseNoise2L, Noise-5<br />

VacNoise, Noise-2<br />

VacNoiseContrib, Noise-3<br />

VhbNoise, Noise-3<br />

VhbNoiseContrib, Noise-3<br />

Noise analysis, Noise-1<br />

Noise figure, NoiseFigure-1<br />

Noise figure budget, NFBudget-1<br />

NoiseFigure, NoiseFigure-1<br />

Nominal optimization, RIV-3.16<br />

Nonlinear<br />

resistance, RIV-3.86<br />

Nor, Nor-1<br />

Normal variable, see Variable<br />

NormalContact, NormalContact-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.27<br />

NormalLimiter, NormalLimiter-1<br />

Not, Not-1<br />

notextwindows, RIV-4.52<br />

NPort, NPort-1<br />

Nth power nonlinearity, NthPower-1<br />

NthPower, NthPower-1<br />

ntw, RIV-4.52<br />

Numerical data<br />

representing, RIV-3.108<br />

NWA, NWA-1<br />

Object<br />

Disable, RIV-4.11<br />

Enable, RIV-4.11<br />

Objective function for optimization, Goal-1<br />

OIP, see Intercept point<br />

OIP3, see Intercept point<br />

SCSwitch, RIV-3.94<br />

OpAmp, OpAmp-1<br />

Open, RIV-4.8<br />

Open ended stripline, Sloc-1<br />

Operating point, RIV-2.17<br />

DC analysis, RIV-2.16<br />

Operating point analysis, UMAN-2.1<br />

Operational amplifier, OpAmp-1<br />

Optimization, UMAN-2.1<br />

amplifier, RIV-3.53<br />

Exit, RIV-4.54<br />

nominal, RIV-3.16, RIV-3.21, RIV-3.30<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.28<br />

Optimization objective definition, GoalData-1<br />

Optimizing, RIV-4.6<br />

OptimMethod, OptimMethod-1, RIV-4.6<br />

Options<br />

Colors, RIV-4.22<br />

Fonts, RIV-4.22<br />

General, RIV-4.20<br />

Paths, RIV-4.21<br />

Prefix for Names, RIV-4.22<br />

Simulator, RIV-4.21<br />

Options menu, RIV-4.19<br />

Or, Or-1<br />

UNIX version, RIV-4.57<br />

Origo Pole, Pole-1<br />

Origo Zero, Zero-1<br />

OscGoal, RIV-3.78<br />

Oscil, Oscil-1<br />

Oscillator, Oscillator-1, Oscillator-1, Oscillator-1, UMAN-2.1<br />

chaotic, RIV-3.86<br />

Colpitts, RIV-3.75, RIV-3.78<br />

steady-state analysis, RIV-3.78<br />

transient analysis, RIV-3.75<br />

Oscillator analysis, Oscil-1<br />

OscVar, RIV-3.78<br />

Output, UMAN-2.1<br />

Output, UMAN-2.2<br />

Output functions referring to an EMBlock, Outputfunc-1<br />

Output intercept point, see Intercept point<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.29<br />

Outputfunc, Outputfunc-1<br />

Pad, Pad-1<br />

Param, Param-1<br />

Parameters<br />

arguments, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Backward Euler, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Electrothermal components, RI-1.10, RII-1.8, RIII-1.8, RIV-1.8<br />

Gear-Shichman, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Integration methods, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Model, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Obligatory Parameters, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Optional Parameters, RI-1.3, RII-1.1, RIII-1.1, RIV-1.1<br />

Trapezoidal, RI-1.8, RII-1.6, RIII-1.6, RIV-1.6<br />

Passband ripple<br />

Chebyshev filter, RIV-3.90<br />

Paste, RIV-4.11<br />

Patch, Patch-1<br />

Paths, RIV-4.21<br />

Aplac Program, RIV-4.21<br />

Library Directory, RIV-4.22<br />

Text <strong>Editor</strong>, RIV-4.21<br />

Working Directory, RIV-4.21<br />

Pattern Adder, PatternAdder-1, PatternAdder-1<br />

PatternAdder, PatternAdder-1, PatternAdder-1<br />

PCB<br />

Examples, RIV-3.101<br />

MultiLayerStruct, RIV-3.101<br />

PCB example, RIV-3.101<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.30<br />

pd ctrls.dat file, RIV-4.30<br />

PDF Books<br />

F1, RIV-4.26<br />

Permittive and Conductive Ellipsoid, Ellipsoid-1<br />

Phase detector, PhaseDetector-1, PhaseDetector-1<br />

Phase locked loop, PLL-1, RIV-3.63<br />

transient analysis, RIV-3.63<br />

Phase shifter, PhaseShifter-1<br />

PhaseDetector, PhaseDetector-1, PhaseDetector-1, UMAN-2.1<br />

PhaseShifter, PhaseShifter-1<br />

Piecewise linear nonlinearity, PWL-1<br />

PIN diode, PINDiode-1<br />

PIN diode RC, PINDiodeRC-1<br />

PINDiode, PINDiode-1<br />

PINDiodeRC, PINDiodeRC-1<br />

PLL, PLL-1<br />

Pole, Pole-1<br />

Pole, Responsefunc-3<br />

Poly, Poly-1<br />

Polynomial, Polynomial-1<br />

Polynomial nonlinearity, Polynomial-1<br />

Polynomial source, Poly-1<br />

Port, Port-1, UMAN-2.1<br />

Port definition, Port-1<br />

Post-processing, RIV-4.38<br />

Power Combiner, PowerCombiner-1<br />

Power Divider, PowerDivider-1<br />

Power divider, PowerDivider-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.31<br />

Power up, UMAN-2.1<br />

PowerCombiner, PowerCombiner-1<br />

PowerDivider, PowerDivider-1, PowerDivider-1<br />

Predefined Control Objects, RIV-4.30<br />

Prefix, RIV-4.22<br />

Prepare, Prepare-1<br />

Preprocessor statements, RIV-2.14<br />

Presentation, UMAN-2.1<br />

Hide Component Attributes, RIV-4.17<br />

Hide Component Name, RIV-4.17<br />

Hide Control Object, RIV-4.16<br />

Hide Object List, RIV-4.17<br />

Show Component Attributes, RIV-4.17<br />

Show Component Name, RIV-4.17<br />

Show Control Object, RIV-4.16<br />

Show Object List, RIV-4.16<br />

Previous Zoom, RIV-4.13<br />

VBIC, RIV-4.52<br />

Print, Print-1, RIV-4.52, UMAN-2.1<br />

HPGL, RIV-4.52<br />

PS, RIV-4.52<br />

Print Schematic, RIV-4.9<br />

Print View, RIV-4.9<br />

MultiLayerStruct, RIV-3.101<br />

Printing data, Print-1<br />

Printing Schema<br />

UNIX, RIV-4.9<br />

Windows, RIV-4.9<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.32<br />

Probability, Probability-1<br />

Probability estimator, Probability-1<br />

Procedure, Procedure-1<br />

Procedure, Modular Customization, Procedure-1<br />

Procedures, RIV-4.1<br />

Programming, Programming-1<br />

Programming Statements, Programming-1<br />

Pulse, Pulse-1<br />

Pulse source, Pulse-1<br />

PulseJitter, PulseJitter-1<br />

Puncturer, Puncturer-1, Puncturer-1<br />

PWL, PWL-1<br />

PWL ACC, RIV-6.2<br />

PWL GRID, RIV-6.2<br />

PWL ITER, RIV-6.2<br />

QADemodulator, QADemodulator-1<br />

QAModulator, QAModulator-1<br />

Quadrature amplitude demodulator, QADemodulator-1<br />

Quadrature amplitude modulator, QAModulator-1<br />

Quantizer, Quantizer-1<br />

Quantizer, Sampling Clock, Quantizer-1<br />

Quasi-periodic waveform, RIV-2.44<br />

Radiated power, RadPower-1<br />

Radiation pattern, RadPat-1<br />

Radio channel, RadioChannel-1<br />

RadioChannel, RadioChannel-1<br />

RadPat, RadPat-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.33<br />

RadPower, RadPower-1<br />

RaisedCosineLP, Responsefunc-3<br />

Random, Random-1<br />

Random optimization, Random-1<br />

RC highpass filter, RCHP-1<br />

RCHP, Responsefunc-3<br />

RC lowpass filter, RCLP-1<br />

RCLP, Responsefunc-3<br />

RC-ladder, RIV-3.88<br />

RCHP, RCHP-1<br />

RCLP, RCLP-1<br />

RCWire, RCWire-1<br />

Read, Read-1, UMAN-2.1<br />

Read Application Note<br />

F1, RIV-4.26<br />

ReadFile, ReadFile-1<br />

Reading data, Read-1<br />

ReadNthFilter, ReadNthFilter-1<br />

Receiver<br />

design, RIV-3.83<br />

Rectangular inductor, Rind-1<br />

Rectangular stripline inductor, Srind-1<br />

Rectangular subarea, Slab-1<br />

Rectifier, Rectifier-1<br />

Rectifier, Maximum Hold, Rectifier-1<br />

REDU FILE (file type), NPort-1<br />

Reference Pages, RI-1.6, RII-1.4, RIII-1.4, RIV-1.4<br />

Reload, NWA-2, NPort-5<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.34<br />

Report menu, RIV-4.59<br />

Reroute Wire, RIV-4.17<br />

Res, Res-1<br />

RESETDC (convergence), Sweep-3<br />

Resistor, RIV-2.3<br />

Res, UMAN-2.2<br />

Resistor, Parasitics, Res-1<br />

Resonator, Resonator-1<br />

Response functions, Responsefunc-1<br />

Responsefunc, Responsefunc-1<br />

Ribbon, Ribbon-1<br />

Rind, Rind-1<br />

RmsRipple, RIV-2.41<br />

RmPort, RmPort-1<br />

RmRel, RmRel-1<br />

Rotate, RIV-4.11<br />

Round wire, Wire-1<br />

Run, RIV-4.18<br />

Sample-and-hold circuit, SampleHold-1<br />

SampleHold, SampleHold-1<br />

SAR value, SarSeek-1<br />

SarSeek, SarSeek-1<br />

SarSeek (file type), EM-2.4<br />

Save, RIV-4.8, UMAN-2.1<br />

Current Config, RIV-4.54<br />

Save As, RIV-4.52, RIV-4.8<br />

Save Selected as Template, RIV-4.9<br />

Save Special, RIV-4.8<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.35<br />

Save Template as, RIV-4.9<br />

Sbclin, Sbclin-1<br />

Sbend, Sbend-1<br />

Scales menu<br />

UNIX version, RIV-4.56<br />

Scattering parameters, see S parameter analysis<br />

Schmitt, Schmitt-1<br />

Schmitt trigger, Schmitt-1<br />

Sclin, Sclin-1<br />

Scrambler, Scrambler-1<br />

Scrambler, Descrambler, Scrambler-1<br />

SCSwitch, SCSwitch-1<br />

ideal, RIV-3.90<br />

sec:Object <strong>Editor</strong>, RIV-4.26<br />

Select All, RIV-4.11<br />

Selectable Waveform Oscillator, Oscillator-1, Oscillator-1<br />

Selecting Component, RIV-4.10<br />

Selection Indication, RIV-4.10<br />

Sensitivity analysis<br />

AC analysis, RIV-2.23<br />

DC analysis, RIV-2.19<br />

SetParam, SetParam-1<br />

SetParam, RIV-6.1<br />

Setting parameters, SetParam-1<br />

SetVar, SetVar-1<br />

Sgap, Sgap-1<br />

Shift F4<br />

Tile Windows, RIV-4.25<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.36<br />

Shift F5<br />

Cascade Windows, RIV-4.25<br />

Short, RIV-2.18, RIV-4.1, Short-1, UMAN-2.1<br />

Short Circuit, Ammeter, Short-1<br />

Short-circuited stripline, Slsc-1<br />

Shortcuts, RIV-4.63<br />

Shot noise, RIV-2.32, RIV-2.35<br />

Show, RIV-2.11, RIV-2.3, Show-1, UMAN-2.1<br />

<strong>APLAC</strong> file, RIV-4.20<br />

Show Aplac File before simulation, RIV-4.21<br />

Show Component Attributes, RIV-4.17<br />

Show Component Name, RIV-4.17<br />

Show Control Object, RIV-4.16<br />

Show DCVoltages in statusbar after simulation, RIV-4.21<br />

Show Grid, RIV-4.20<br />

Show Object List, RIV-4.16<br />

Show Simulation File, RIV-4.18<br />

Show Text Output window, RIV-4.21<br />

Show Verbose window, RIV-4.21<br />

Signal Attenuator, Attenuator-1<br />

Signal time average, TimeAverage-1<br />

Signal-to-noise meter, SNRMeter-1<br />

SIGSEGV, RIV-6.1<br />

simple amplifier<br />

Examples, RIV-3.6<br />

Simulate (in Windows), RIV-4.18<br />

Simulating, RIV-4.2<br />

Simulation, RIV-4.18<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.37<br />

Command, RIV-4.18<br />

Exit, RIV-4.54<br />

Generate Simulation File, RIV-4.18<br />

Run (UNIX), RIV-4.18<br />

Show Simulation File, RIV-4.18<br />

Simulation controls, UMAN-2.1<br />

Simulation File, RIV-4.11<br />

Simulation menu, RIV-4.18<br />

Sinc Filter, SincFilter-1<br />

SincFilter, SincFilter-1<br />

Single Stripline, Slin-1<br />

Sink, Sink-1<br />

Slab, Slab-1<br />

Slin, Slin-1<br />

Slip decoder, SlipDecoder-1<br />

Slip encoder, SlipEncoder-1<br />

SlipDecoder, SlipDecoder-1<br />

SlipEncoder, SlipEncoder-1<br />

Sloc, Sloc-1<br />

Slsc, Slsc-1<br />

Small-signal analysis<br />

AC analysis, RIV-2.21<br />

harmonic balance, RIV-2.49<br />

large-signal/small-signal analysis, RIV-2.49<br />

Smith chart, RIV-2.27, RIV-3.43<br />

Smith Diagram, UMAN-2.1<br />

SMOS, SMOS-1<br />

SnapShot, SnapShot-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.38<br />

SnapShot (file type), EM-2.4<br />

SNRMeter, SNRMeter-1<br />

SOURCE STEP CYCLES (convergence), GetParam-3, Prepare-13, SetParam-4<br />

Spar (parameter), NWA-1, RI-1.1, RIV-6.8, TwoPort-1, UMAN-2.66<br />

SpectralLine, UMAN-2.1<br />

Spectrum, RIV-2.39<br />

Spectrum, Harmonic-2<br />

SpectrumAnalyzer, UMAN-2.1<br />

spi2a.exe (utility), RII-11.2<br />

Spind, Spind-1<br />

Spiral inductor, Spind-1<br />

Spurious sidebands<br />

phase locked loop, RIV-3.63<br />

Srind, Srind-1<br />

SSCheck, SSCheck-1<br />

Ssclin, Ssclin-1<br />

Sslin, Sslin-1<br />

Sslot, Sslot-1<br />

SSPower, SSPower-1<br />

Sssub, Sssub-1<br />

Sstep, Sstep-1<br />

Ssub, Ssub-1<br />

Stability, Stability-1<br />

advanced analysis, RIV-2.29<br />

analysis, RIV-2.27<br />

circles, RIV-2.28, RIV-3.50<br />

envelope, RIV-2.29<br />

traditional analysis, RIV-2.27<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.39<br />

Stability and gain functions, Stability-1<br />

Start Wiring, RIV-4.17<br />

For, RIV-3.88<br />

Statistical analysis, UMAN-2.1<br />

Statistical MOS model, SMOS-1<br />

stderr, RIV-4.52<br />

stdout, RIV-4.52<br />

Steady state check, SSCheck-1<br />

Steady state power, SSPower-1<br />

Steady-state analysis<br />

harmonic balance, RIV-2.37, RIV-2.44<br />

harmonic balance analysis, RIV-2.39<br />

multitone harmonic balance, RIV-2.44<br />

Steady-state source, RIV-2.39<br />

Stee, Stee-1<br />

StoreFile, StoreFile-1<br />

Storing and Loading Graphics, Graphics-1<br />

String, String-1<br />

String functions, String-1<br />

Stripline bend, Sbend-1<br />

Stripline impedance step, Sstep-1<br />

Stripline slot, Sslot-1<br />

Stripline T-junction, Stee-1<br />

Subtractor, Subtractor-1<br />

Sum point, SumPoint-1<br />

Summer, Summer-1, Summer-1<br />

Summing block, Summer-1, Summer-1<br />

SumPoint, SumPoint-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.40<br />

Surface pad, Pad-1<br />

Suspended substrate microstrip line, Sslin-1<br />

SViaHole, SViaHole-1<br />

SwapBranch, SwapBranch-1<br />

Sweep, RIV-2.11, RIV-2.3, RIV-6.1, Sweep-1, UMAN-2.1<br />

SweepIndex, Sweep-16<br />

SweepIndex, UMAN-2.1<br />

Switch, Switch-1, Switch-1<br />

Switch for SC analysis, SCSwitch-1<br />

rise-time, RIV-3.94<br />

Switched-capacitor analysis<br />

filter, RIV-3.90<br />

nonideal, RIV-3.94<br />

Symbol, RIV-4.15<br />

Symmetric coupled suspended substrate microstrips, Ssclin-1<br />

Symmetric edge coupled stripline, Sclin-1<br />

Sys2Cir, UMAN-2.1<br />

System, System-1, System-1<br />

System definition, System-1<br />

System functions, Systemfunc-1<br />

System Gain, Gain-1<br />

System simulation, UMAN-2.1<br />

Systemfunc, Systemfunc-1<br />

Table-based model, TableModel-1<br />

TableModel, TableModel-1<br />

Temperature, RIV-2.18<br />

Text <strong>Editor</strong>, RIV-4.21<br />

Text Output, RIV-4.52<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.41<br />

Text output window<br />

TF, TF-1<br />

Thermal<br />

Windows version, RIV-4.48<br />

noise, RIV-2.32, RIV-2.35<br />

Thick Wires, RIV-4.21<br />

Thin conducting wire, ThinWire-1<br />

ThinWire, ThinWire-1<br />

3D graphics, RIV-3.106<br />

Time Domain Windowing for WLAN Transmitter, WLANWindow-1<br />

Time probe, TimeProbe-1<br />

Time-domain analysis, see Transient analysis<br />

TimeAverage, TimeAverage-1<br />

TimeProbe, TimeProbe-1<br />

TLine, TLine-1<br />

TLineDisp, TLineDisp-1<br />

Tolerance<br />

Monte Carlo analysis, RIV-3.24<br />

TONE source, RIV-2.39<br />

Tools menu, RIV-4.22<br />

Topology<br />

programming, RIV-3.88<br />

Toroid, Toroid-1<br />

Toroid Transformer, Toroid-1<br />

TraceMax, TraceMax-1<br />

Trans, Trans-1<br />

Transadmittance, VCCS, Gm-1<br />

Transfer function, TF-1<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.42<br />

Transient analysis, RIV-2.35, RIV-2.36, RIV-3.35, RIV-3.8, see Analyze TRAN, UMAN-2.1<br />

convolution, RIV-3.97<br />

frequency-domain components, RIV-3.97<br />

PCB crosstalk, RIV-3.101<br />

Transient current, RIV-2.36<br />

Transient source, RIV-2.36<br />

Transient voltage, RIV-2.36<br />

Transistor<br />

S parameters, RIV-3.46<br />

amplifier, RIV-3.1<br />

Transistor modelling<br />

Model parameter extraction, RIV-3.117<br />

Transmission line, TLine-1<br />

Triangle, Triangle-1<br />

Triangular patch, Triangle-1<br />

TrigPulse, TrigPulse-1<br />

TS2A.EXE (utility), RII-11.9<br />

Tuning, Tuning-1<br />

Tuning of optimization variables, Tuning-1<br />

Two-port S parameter file, TwoPort-1, TwoPort-1<br />

TwoPort, TwoPort-1, TwoPort-1<br />

TwoPort, Responsefunc-4<br />

undef (directive), RIV-2.16<br />

Undo, RIV-4.10<br />

Uniform noise source, UniformNoise-1<br />

UniformNoise, UniformNoise-1<br />

Up sampler, UpSampler-1<br />

Up/Down, RIV-4.11<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.43<br />

Update View, RIV-4.13<br />

UpDownCounter, UpDownCounter-1<br />

UpSampler, UpSampler-1<br />

electromechanical, MEMS-2.13<br />

Vac, RIV-2.3<br />

Validate Node Names, RIV-4.18<br />

Value of a parameter, GetParam-1<br />

Var, RIV-4.2, UMAN-2.1<br />

brace definition, RIV-2.8<br />

Variable, RIV-2.7<br />

Variable, RIV-4.2, UMAN-2.1<br />

brace definition, RIV-2.8<br />

functional, RIV-2.8<br />

normal, RIV-2.7<br />

Variable Sweeps, Sweep-1<br />

DC voltage, RIV-2.16<br />

electromechanical, MEMS-2.12<br />

Vector, UMAN-2.1<br />

Vector To Baseband Converter, BusToBB-1<br />

VERBOSE, RIV-4.52<br />

Verbose Output, RIV-4.52<br />

Verbose output window, RIV-4.50<br />

electromechanical, MEMS-2.14<br />

View<br />

Default Zoom, RIV-4.13<br />

External Library, RIV-4.14<br />

New Center, RIV-4.13<br />

Previous Zoom, RIV-4.13<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.44<br />

Update View, RIV-4.13<br />

Zoom In, RIV-4.13<br />

Zoom Out, RIV-4.13<br />

Zoom Region, RIV-4.13<br />

Zoom Wholw Diagram, RIV-4.13<br />

View menu, RIV-4.13<br />

Visible Grid, RIV-4.20<br />

Volt, UMAN-2.1<br />

Volt(dc source), UMAN-2.2<br />

Voltage<br />

AC voltage, RIV-2.21<br />

DC voltage, RIV-2.16<br />

transient, RIV-2.36<br />

waveform, RIV-2.39<br />

Voltage Controlled Switch, Switch-1<br />

Voltage expander, Expander-1<br />

Voltage source, RIV-2.3<br />

AC source, RIV-2.21<br />

DC source, RIV-2.16<br />

TONE, RIV-2.39<br />

transient, RIV-2.36<br />

VWf, Harmonic-2<br />

electromechanical, MEMS-2.13<br />

Waveform, RIV-2.39, Waveform-1<br />

quasi-periodic, RIV-2.44<br />

IWf, Harmonic-1<br />

VWf, Harmonic-2<br />

WVf, MEMS-2.14<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.45<br />

Waveform storing block, StoreFile-1<br />

Window<br />

Arrange Icons, RIV-4.25<br />

Cascade, RIV-4.25<br />

Eldo to <strong>APLAC</strong>, RIV-4.22<br />

HSpice to <strong>APLAC</strong>, RIV-4.22<br />

library encryption, RIV-4.23<br />

List of all Windows in <strong>Editor</strong>, RIV-4.25<br />

Mapping Definition Tool, RIV-4.23<br />

Microstrip Calculator, RIV-4.23<br />

Spice to <strong>APLAC</strong>, RIV-4.22<br />

Tile, RIV-4.25<br />

Window bandpass filter, WindowBP-1<br />

Window bandstop filter, WindowBS-1<br />

Window highpass filter, WindowHP-1<br />

Window lowpass filter, WindowLP-1<br />

WindowLP, Responsefunc-4<br />

Window menu, RIV-4.25<br />

WindowBP, WindowBP-1<br />

WindowBS, WindowBS-1<br />

WindowHP, WindowHP-1<br />

WindowLP, WindowLP-1<br />

Wire, Wire-1<br />

End Wiring, RIV-4.17<br />

Reroute Wire, RIV-4.17<br />

Split Wire with Short, RIV-4.18<br />

Start Wiring, RIV-4.17<br />

Validate Node Names, RIV-4.18<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.46<br />

Wire menu, RIV-4.17<br />

Wire model, RCWire-1<br />

Wires, RIV-4.21<br />

Wiring, UMAN-2.1<br />

Wizard, RIV-4.2<br />

WLAN Modulator, WLANModulator-1<br />

WLAN Preamble Symbol Generator, WLANGenerator-1<br />

WLAN Subcarrier Organizer, WLANFFTPadder-1<br />

WLAN Tail-bits to Zero, WLANZeroTail-1<br />

WLANFFTPadder, WLANFFTPadder-1<br />

WLANGenerator, WLANGenerator-1<br />

WLANModulator, WLANModulator-1<br />

WLANWindow, WLANWindow-1<br />

WLANZeroTail, WLANZeroTail-1<br />

Word generator, WordGenerator-1<br />

Word indicator, WordIndicator-1<br />

WordGenerator, WordGenerator-1<br />

WordIndicator, WordIndicator-1<br />

Working Directory, RIV-4.21<br />

Yield, UMAN-2.1<br />

Ypar (parameter), NWA-2, Prepare-10<br />

Z-transform, ZTransform-1<br />

Zblock, Zblock-1<br />

Zero, Zero-1<br />

Zoom In, RIV-4.13<br />

Zoom Out, RIV-4.13<br />

Zoom Region, RIV-4.13<br />

Main Page Online Help Index


Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Categorical Index page APP-2.47<br />

Zoom Whole Diagram, RIV-4.13<br />

ZTransform, ZTransform-1<br />

ZTransform, Responsefunc-4<br />

Main Page Online Help Index


Categorical Index page APP-3.1<br />

3. Categorical Index<br />

<strong>APLAC</strong> LANGUAGE<br />

Acceptance, Goal-1<br />

DC current, RIV-2.17<br />

DC voltage, RIV-2.16<br />

Default, Procedure-2<br />

DefaultString, Procedure-2<br />

Effrn, Noise-7<br />

electromechanical, MEMS-2.12, MEMS-2.13, MEMS-2.14<br />

FreqNoise2L, Noise-5<br />

GetParam, GetParam-1<br />

IacNoise, Noise-2<br />

IacNoiseContrib, Noise-3<br />

IhbNoise, Noise-3<br />

IhbNoiseContrib, Noise-3<br />

IWf, Harmonic-1<br />

LaplaceTransform, Responsefunc-3<br />

LineFit, RIV-3.104<br />

MinNoiseFigure, Noise-7<br />

MinNoiseFigureZ, Noise-7<br />

NoiseData, Noise-7<br />

Normalized, RIV-2.29<br />

PhaseNoise2L, Noise-5<br />

Pole, Responsefunc-3<br />

RaisedCosineLP, Responsefunc-3<br />

RCHP, Responsefunc-3<br />

RCLP, Responsefunc-3<br />

General Index Examples Main Page


Categorical Index page APP-3.2<br />

Reload, NWA-2, NPort-5<br />

RmsRipple, RIV-2.41<br />

Spectrum, Harmonic-2<br />

SweepIndex, Sweep-16<br />

TwoPort, Responsefunc-4<br />

Vac, RIV-2.3<br />

VacNoise, Noise-2<br />

VacNoiseContrib, Noise-3<br />

Variable, RIV-2.7<br />

VhbNoise, Noise-3<br />

VhbNoiseContrib, Noise-3<br />

VWf, Harmonic-2<br />

WindowLP, Responsefunc-4<br />

WVf, MEMS-2.14<br />

ZTransform, Responsefunc-4<br />

COMPONENTS<br />

BJT, UMAN-2.2<br />

Cap, UMAN-2.2<br />

Ground, UMAN-2.2<br />

Input, UMAN-2.2<br />

Output, UMAN-2.2<br />

Res, UMAN-2.2<br />

Volt(dc source), UMAN-2.2<br />

CONVERGENCE<br />

DCINIT SOURCE STEP, GetParam-2, SetParam-3<br />

DCSOURCE STEP CYCLES, GetParam-3, SetParam-5<br />

HBINIT SOURCE STEP, GetParam-2, SetParam-3<br />

HBSOURCE STEP CYCLES, GetParam-3, SetParam-5<br />

General Index Examples Main Page


Categorical Index page APP-3.3<br />

INIT SOURCE STEP, GetParam-2, Prepare-13, SetParam-3<br />

RESETDC, Sweep-3<br />

SOURCE STEP CYCLES, GetParam-3, Prepare-13, SetParam-4<br />

DIRECTIVES<br />

#define, RIV-2.14, UMAN-2.39, UMAN-2.60<br />

#else, RIV-2.15<br />

#endif, RIV-2.15, UMAN-2.60<br />

#ifdef, RIV-2.15, UMAN-2.60, UMAN-2.63<br />

#include, RIV-2.15<br />

#libdir, RIV-2.15<br />

#library, RIV-2.15, UMAN-2.65<br />

#undef, RIV-2.16<br />

ELECTROMAGNETICS<br />

d, EM-2.4<br />

Examples<br />

3D graphics, RIV-3.106<br />

AC analysis, RIV-3.6<br />

Amplifier matching, RIV-3.53<br />

Balanced mixer, RIV-3.72<br />

Basic receiver design, RIV-3.83<br />

Chua’s circuit, RIV-3.86<br />

Colpitts oscillator, RIV-3.75<br />

Coupled line, RIV-3.97<br />

Current mirror, RIV-3.113<br />

DC analysis, RIV-3.4<br />

DC characteristics of a simple Ebers-Moll model, RIV-3.39<br />

Design centering, RIV-3.28<br />

General Index Examples Main Page


Categorical Index page APP-3.4<br />

FET frequency multiplier, RIV-3.58<br />

For-loop example, RIV-3.88<br />

Frequency doubler, RIV-3.61<br />

Harmonic balance analysis, RIV-3.11, RIV-3.78<br />

Ideal switched-capacitor circuit, RIV-3.90<br />

JFET model parameter extraction, RIV-3.117<br />

Line fitting, RIV-3.104<br />

Mathematics, RIV-3.111<br />

Monte Carlo analysis, RIV-3.24<br />

Noise analysis, RIV-3.14<br />

Nominal optimization using GoalData, RIV-3.21<br />

Nominal optimization, RIV-3.16<br />

Nonideal switched-capacitor circuit, RIV-3.94<br />

Optimization example, including design centering, RIV-3.30<br />

Output intercept point calculation, RIV-3.69<br />

PLL transient analysis, RIV-3.63<br />

Printed circuit board (PCB) example, RIV-3.101<br />

Representing numerical data graphically, RIV-3.108<br />

S parameter presentation of an amplifier, RIV-3.43<br />

Stability and gain circles, RIV-3.50<br />

Transient analysis, RIV-3.75, RIV-3.8<br />

Transistor DC curves, RIV-3.41<br />

Transistor S parameters, RIV-3.46<br />

Transmission line with an S parameter example, RIV-3.35<br />

FILE TYPES<br />

.asd, EM-2.4<br />

.dvl, EM-2.4<br />

.eir, EM-2.4<br />

General Index Examples Main Page


Categorical Index page APP-3.5<br />

.i, EM-2.4, RIV-4.18<br />

.n, RIV-4.18<br />

.rdp, EM-2.4<br />

.s1p, EM-2.4<br />

.sar, EM-2.4<br />

.ssd, EM-2.4<br />

.t, EM-2.4<br />

AmplShot, EM-2.4<br />

DataVolume, EM-2.4<br />

REDU FILE, NPort-1<br />

SarSeek, EM-2.4<br />

SnapShot, EM-2.4<br />

PARAMETERS<br />

UTILITY<br />

Hpar, Sweep-4, UMAN-2.66<br />

Spar, NWA-1, RI-1.1, RIV-6.8, TwoPort-1, UMAN-2.66<br />

Ypar, NWA-2, Prepare-10<br />

TS2A.EXE, RII-11.9<br />

libcrypt.exe, RII-11.1<br />

spi2a.exe, RII-11.2<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.1<br />

4. <strong>APLAC</strong> Bibliography<br />

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. New York, New York:<br />

Dover Publications, Inc., New York, 1970.<br />

[2] H. Altschuler and A. Oliner, “Discontinuities in the Center Conductor or Symmetric Strip Transmission<br />

Line,” IRE Transactions on Microwave Theory and Techniques, vol. 8, pp. 328–339,<br />

May 1960.<br />

[3] D. Anand, Introduction to Control Systems. Pergamon Press, 1974.<br />

[4] M. Andersson, A. Kankkunen, and M. Valtonen, MOSFET Level 3 Model in <strong>APLAC</strong>, Report<br />

CT-9, Helsinki University of Technology, Circuit Theory Laboratory, 1991.<br />

[5] M. Andersson and M. Valtonen, BJT Model in <strong>APLAC</strong>, Report CT-17, Helsinki University of<br />

Technology, Circuit Theory Laboratory, 1992.<br />

[6] M. Andersson and M. Valtonen, IGBT Model in <strong>APLAC</strong>, Report CT-14, Helsinki University of<br />

Technology, Circuit Theory Laboratory, 1992.<br />

[7] M. Andersson, Z. Xia, P. Kuivalainen, and H. Pohjonen, A Physical Si1−xGex/Si Heterojunction<br />

Bipolar Transistor Model for Device and Circuit Simulation, Report 1994/8, VTT Electronics,<br />

Integrated Circuits, 1994.<br />

[8] R. Anholt, Electrical and Thermal Characterization of MESFETs, HEMTs, and HBTs. Artech<br />

House, Norwood, Massachusetts, 199<strong>5.</strong><br />

[9] P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE. McGraw-Hill,<br />

1988.<br />

[10] E. B. Arkilic, Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient<br />

in Silicon Micromachined Channels. PhD thesis, Massachusetts Institute of Technology,<br />

Cambridge, England, January 1997.<br />

[11] H. Atwater, “Simplified Design Equations for Microstrip Line Parameters,” Microwave Journal,<br />

pp. 109–115, November 1989.<br />

[12] I. Bahl and P. Bhartia, Microwave Solid State Circuit Design. John Wiley & Sons, Inc., 1988.<br />

[13] I. Bahl and D. Trivedi, “A Designer’s Guide to Microstrip Lines,” Microwaves, vol. 16, pp. 174–<br />

182, May 1977.<br />

[14] P. Balaban, M. Jeruchim, and K. Shanmugan, Simulation of Communication Systems. Elsevier<br />

Scientific Publishing Company, CEI-EUROPE/ELSEVIER Course duplicate edition, 1991.<br />

[15] C. A. Balanis, Antenna Theory, Analysis and Design. New York, New York: Harper & Row<br />

Publishers, 1982.<br />

[16] C. A. Balanis, Advanced Engineering Electromagnetics. New York, New York: John Wiley &<br />

Sons, Inc., 1989.<br />

[17] L. L. Beranek, Acoustics. American Institute of Physics, New York, 1986.<br />

[18] J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal<br />

of Computational Physics, pp. 185–200, October 1994.<br />

[19] R. Blum and M. Jeruchim, “A Note on Windowing in the Simulation of Continuous-Time Communication<br />

Systems,” IEEE Transactions on Communications, vol. 45, pp. 889–892, August<br />

1997.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.2<br />

[20] I.-S. S. Board, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications:<br />

High-speed Physical Layer in the 5 GHz Band,” IEEE Std. 802.11a-1999, vol. 11,<br />

September 1999.<br />

[21] M. R. Boyd, S. B. Crary, and M. D. Giles, “A Heuristic Approach to the Electromechanical Modeling<br />

of MEMS Beams,” Solid-State Sensor and Actuator Workshop, (Hilton Head Is., South<br />

Carolina), pp. 123–126, June 1994.<br />

[22] R. Brayton, F. Gustavson, and G. Hachtel, “A New Efficient Algorithm for Solving Differential-<br />

Algebraic Systems Using Implicit Backward Differentiation Formulas,” Proceedings of the IEEE,<br />

vol. 60, pp. 98–108, January 1972.<br />

[23] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “A Survey of Optimization Techniques<br />

for Integrated-Circuit Design,” Proceedings of the IEEE, vol. 69, no. 10, pp. 1334–1363, 1981.<br />

[24] R. Brayton and R. Spence, CAD of Electronic Circuits, Vol. 2, Sensitivity and Optimization.<br />

Elsevier Scientific Publishing Company, 1980.<br />

[25] G. Breed, “A Few RF Applications of Digital ICs,” Applied Microwave & Wireless, p. 58, March<br />

1998.<br />

[26] British Approvals Board for Telecommunications, BABT Special Investigation Test Schedule for<br />

the Type Approval of Terminal Apparatus for Use in the Total Access Communications System<br />

(TACS), September 1984.<br />

[27] G. Broyden, “A Class of Methods for Solving Nonlinear Simultaneous Equations,” Math. Comput.,<br />

vol. 19, pp. 577–593, October 196<strong>5.</strong><br />

[28] Brüel & Kjær, Windows to FFT Analysis (Part I), Technical Review, 1987.<br />

[29] M. Bucher, C. Lallement, C. Enz, and F. Krummenacher, The EPFL-EKV MOSFET Model,<br />

Version 2.3, Report, Electronics Laboratory LEG, Swiss Federal Institute of Technology EPFL,<br />

Lausanne, Switzerland, December 199<strong>5.</strong><br />

[30] M. Bucher, C. Lallement, C. Enz, F. Theodoloz, and F. Krummenacher, The EPFL-EKV MOS-<br />

FET Model Equations for Simulation, Model Version 2.6, June, 1997, Revision II, July, 1998,<br />

Report, Electronics Laboratories, Swiss Federal Institute of Technology (EPFL), Lausanne,<br />

Switzerland, July 1998.<br />

[31] R. Caverly, N. V. Drozdovski, L. M. Drozdovskaia, and M. J. Quinn, “Spice Modeling of Microwave<br />

and RF Control Diodes,” Proc. 43rd IEEE Midwest Symp. On Circuits and Systems,<br />

August 2000.<br />

[32] CCITT, “Characteristics of compandors for telephony,” CCITT Recommendations G.162,<br />

pp. 178–185, 1989.<br />

[33] E. K. Chan and R. W. Dutton, “Electrostaic Micromechanical Actuator with Extended Range of<br />

Travel,” Journal of Microelectromechanical Systems, vol. 9, pp. 321–328, September 2000.<br />

[34] E. K. Chan, K. Garikipati, and R. W. Dutton, “Characterization of Contact Electromechanics<br />

Through Capacitance-Voltage Measurements and Simulations,” Journal of Microelectromechanical<br />

Systems, vol. 8, pp. 208–217, January 1999.<br />

[35] W. R. Chang, I. Etsion, and D. B. Bogy, “An Elastic-Plastic Model for the Contact of Rough<br />

Surfaces,” Journal of Tribology, Trans. ASME, vol. 109, pp. 257–263, April 1987.<br />

[36] W. Chang, “The Inductance of a Superconducting Strip Transmission Line,” Journal of Applied<br />

Physics, vol. 50, pp. 8129–8134, December 1979.<br />

[37] S. Chennakeshu and G. Saulnier, “Differential Detection of π/4-Shifted-DQPSK for Digital Cellular<br />

Radio,” IEEE Transactions on vehicular technology, vol. 42, February 1993.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.3<br />

[38] Y. Cho, A. P. Pisano, and R. T. Howe, “Viscous Damping Model for Laterally Oscillating Microstructures,”<br />

Journal of Microelectromechanical Systems, vol. 3, pp. 81–87, June 1994.<br />

[39] L. Chua and P. Lin, Computer-Aided Analysis of Electronic Circuits. Prentice-Hall, Inc., 197<strong>5.</strong><br />

[40] S. Cohn, “Problems in strip transmission lines,” IRE Transactions on Microwave Theory and<br />

Techniques, vol. 3, pp. 119–126, March 195<strong>5.</strong><br />

[41] P. L. Corbeiller and Y.-W. Yeung, “Duality in Mechanics,” Journal of the Acoustical Society of<br />

America, vol. 24, pp. 643–648, November 1952.<br />

[42] L. J. Costa, Implementation of a Superconducting Microstrip Line, Master’s thesis, Helsinki<br />

University of Technology, Department of Electrical Engineering, 199<strong>5.</strong><br />

[43] W. Curtice, “GaAs MESFET Modeling and Nonlinear CAD,” IEEE Transactions on Microwave<br />

Theory and Techniques, vol. 36, pp. 220–230, February 1988.<br />

[44] T. Cuthbert, Circuit Design Using Personal Computers. John Wiley & Sons, Inc., 1983.<br />

[45] T. Cuthbert, Optimization Using Personal Computers. John Wiley & Sons, Inc., 1987.<br />

[46] B. Demidovich and I. Maron, Computational Mathematics. Mir Publishers, 1976.<br />

[47] E. Denlinger, “Losses of Microstrip Lines,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. 28, pp. 101–110, June 1980.<br />

[48] J. E. Dennis, Jr., and V. Torczon, “Direct Search Methods on Parallel Machines,” SIAM Journal<br />

of Optimization, vol. 1, no. 4, pp. 448–474, 1991.<br />

[49] M. Edwards, “A New Criterion for Linear 2-Port Stability Using a Single Geometrically Derived<br />

Parameter,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 2303–2310,<br />

December 1992.<br />

[50] F. E. Ehlers, “Response of Internally Damped Beams on Vibrating Supports,” Journal of the<br />

Acoustical Society of America, vol. 34, no. 1, pp. 40–53, 1962.<br />

[51] Electronic Industries Association Engineering Department, EIA/IS-19-B, Recommended Minimum<br />

Standards for 800-MHz Cellular Subsciber Units, May 1988.<br />

[52] C. H. et al., BSIMSOI3.1 MOSFET MODEL Users’ Manual, Report, University of California,<br />

Berkeley, Dept. of Electrical Engineering and Computer Sciences, 2003.<br />

[53] D. S. et al., “Application of the Three-Dimensional Finite-Difference Time-Domain Method to<br />

the Analysis of Planar Microstrip Circuits,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. 38, pp. 849–856, July 1990.<br />

[54] S. M. et al., “Study of Contacts in an Electrostatically Actuated Microswitch,” Proceedings of the<br />

1998 44th IEEE Holm Conference on Electrical Contacts, (Arlington, Virginia), pp. 127–132,<br />

October 1998.<br />

[55] Y. C. et al., BSIM3v3 Manual, Report, University of California, Berkeley, Dept. of Electrical<br />

Engineering and Computer Sciences, 1996.<br />

[56] Y. C. et al., BSIM4 Manual, Report, University of California, Berkeley, Dept. of Electrical Engineering<br />

and Computer Sciences, 2004.<br />

[57] “European Digital Cellular Telecommunications System (Phase 1).” ETSI, 1992.<br />

[58] R. Fletcher and C. Reeves, “Function Minimization by Conjugate Gradients,” Computer Journal,<br />

vol. 7, pp. 149–154, July 1964.<br />

[59] C.-E. Fröberg, Introduction to Numerical Analysis. Addison-Wesley Publishing Company,<br />

1972.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.4<br />

[60] S. Fukui and R. Kaneko, “Analysis of Ultra-Thin Gas Film Lubrication Based on the Linearized<br />

Boltzmann Equation,” JSME International Journal, vol. 30, pp. 1660–1666, 1987.<br />

[61] S. Fukui and R. Kaneko, “Analysis of Ultra-Thin Gas Film Lubrication Based on Linearized<br />

Boltzmann Equation: First Report – Derivation of a Generalized Lubrication Equation Including<br />

Thermal Creep Flow,” Journal of Tribology, Trans. ASME, vol. 110, pp. 253–262, April 1988.<br />

[62] S. Fukui and R. Kaneko, “A Database for Interpolation of Poiseuille Flow Rates for High Knudsen<br />

Number Lubrication Problems,” Journal of Tribology, Trans. ASME, vol. 112, pp. 78–83,<br />

January 1990.<br />

[63] T. B. Gabrielson, “Mechanical-Thermal Noise in Micromachined Acoustic and Vibration SensorsA,”<br />

IEEE Transactions on Electron Devices, vol. 40, pp. 903–909, May 1993.<br />

[64] N. Garcia, A. P. Levanyuk, S. A. Minyukov, and V. T. Binh, “Estimations of the Characteristics<br />

of GHz Range Nanocantilevers: Eigenfrequencies and Quality Factors,” Surface Science,<br />

vol. 328, pp. 337–342, 199<strong>5.</strong><br />

[65] R. Garg and I. Bahl, “Microstrip Discontinuities,” International Journal of Electronics, vol. 45,<br />

pp. 81–87, July 1978.<br />

[66] H. Gaunholt, P. H. Mannersalo, V. Porra, and M. Valtonen, “Gyrator Transformation - A Better<br />

Way for Modified Nodal Approach,” Proceedings of the 10th European Conference on Circuit<br />

Theory and Design, vol. II, (Copenhagen, Denmark), pp. 864–872, July 1991.<br />

[67] J. Gavan and M. Shulman, “Effects of Desensitization on Mobile Radio System Perfomance,<br />

Part I: Qualitative Analysis,” IEEE Transactions on Vehicular Technology, vol. VT-33, November<br />

1984.<br />

[68] S. D. Gedeny, “An anisotropic perfectly matched layer-absorbing medium for the truncation of<br />

FDTD lattices,” IEEE Trans. Antennas Propagat., pp. 1630–1639, December 1996.<br />

[69] I. Getreu, Modeling the Bipolar Transistor. Tektronix, Elsevier Scientific Publishing Company,<br />

1988.<br />

[70] G. Ghione and C. Naldi, “Parameters of Coplanar Waveguides with Lower Ground Plane,”<br />

Electronics Letters, vol. 19, pp. 734–735, September 1983.<br />

[71] G. Ghione and C. Naldi, “Analytical Formulas for Coplanar Lines in Hybrid and Monolithic<br />

MICs,” Electronics Letters, vol. 20, pp. 179–181, February 1984.<br />

[72] S. Glisic, “Spread Spectrum / CDMA.” CEI-Europe Course Duplicate, 1997.<br />

[73] M. Goldfarb and R. Pucel, “Modeling Via Hole Grounds in Microstrip,” IEEE Microwave and<br />

Guided Wave Letters, vol. 1, pp. 135–137, June 1991.<br />

[74] H. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Transactions<br />

on Parts, Hybrids and Packaging, vol. 10, pp. 101–109, June 1974.<br />

[75] J. A. Greenwood and J. H. Tripp, “The Contact of Two Nominally Flat Rough Surfaces,” Proc.<br />

Instn. Mech. Engrs., vol. 185, pp. 625–633, 1970.<br />

[76] J. A. Greenwood and J. P. B. Williamsson, “Contact of Nominally Flat Surfaces,” Proc. R. Soc.<br />

A., vol. 295, pp. 300–319, 1966.<br />

[77] B. Gross, “Calculating the cascade intercept point of communications receivers,” Ham Radio,<br />

p. 50, August 1980.<br />

[78] W. A. Gross, Gas Film Lubrication. Wiley, New York, 1962.<br />

[79] P. C. Grossman and J. Choma, “Large Signal Modeling of HBT’s Including the Self-Heating and<br />

Transit Time Effects,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-40,<br />

pp. 449–464, March 1992.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.5<br />

[80] K. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits. Artech<br />

House, Norwood, Massachusetts, 1981.<br />

[81] T. Ha, Solid-State Microwave Amplifier Design. John Wiley & Sons, Inc., 1981.<br />

[82] S. Haikarainen, Large-Signal-Small-Signal and Nonlinear Noise Analysis for Circuits with<br />

Quasiperiodic Large-Signal Solution, Master’s thesis, Helsinki University of Technology, Department<br />

of Electrical and Communications Engineering, 1998.<br />

[83] E. Hammerstad, “Computer-Aided Design of Microstrip Couplers with Accurate Discontinuity<br />

Models,” IEEE MTT-S Symposium Digest, pp. 54–56, June 1980.<br />

[84] E. Hammerstad and O. Jensen, “Accurate Models for Microstrip Computer-Aided Design,” IEEE<br />

MTT-S Symposium Digest, pp. 407–409, June 1980.<br />

[85] V. Hanna and D. Thebault, “Theoretical and Experimental Investigations of Asymmetric Coplanar<br />

Waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-32, December<br />

1984.<br />

[86] F. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,”<br />

Proceedings of the IEEE, vol. 66, January 1978.<br />

[87] P. Heikkilä, Object-Oriented Approach to Numerical Circuit Analysis. Doctoral thesis, Helsinki<br />

University of Technology, Department of Electrical Engineering, 1992.<br />

[88] P. Heikkilä, M. Valtonen, and T. Veijola, “Harmonic Balance of Nonlinear Circuits with Multitone<br />

Excitation,” Proceedings of the 10th European Conference on Circuit Theory and Design, vol. II,<br />

(Copenhagen, Denmark), pp. 802–811, July 1991.<br />

[89] J. Heinonen, Oscillator, Course duplicate, Nokia Mobile Phones, 198<strong>5.</strong> In Finnish.<br />

[90] W. Hoefer, “Equivalent Series Inductivity of a Narrow Transverse Slit in Microstrip,” IEEE Transactions<br />

on Microwave Theory and Techniques, vol. 25, pp. 822–824, October 1977.<br />

[91] W. Hoefer, “Theoretical and Experimental Characterization of Narrow Transverse Slits in Microstrip,”<br />

NTZ, vol. 30, pp. 582–585, July 1977.<br />

[92] R. Hoffmann, Handbook of Microwave Integrated Circuits. Norwood, Massachusetts: Artech<br />

House, Norwood, Massachusetts, 1987.<br />

[93] R. Holm, Electric Contacts. Almquist & Wicksell, Stockholm, 1946.<br />

[94] R. Hooke and T. Jeeves, “’Direct search’ solution of numerical and statistical problems,” J.<br />

Assoc. Comp. Mach., vol. 8, pp. 212–229, April 1961.<br />

[95] E. S. Hung and S. D. Senturia, “Generating Efficient Dynamical Models for Microelectromechanical<br />

Systems from a Few Finite-Element Simulation Runs,” Journal of Microelectromechanical<br />

Systems, vol. 8, pp. 280–289, September 1999.<br />

[96] E. S. Hung, Y.-J. Yang, and S. D. Senturia, “Low-Order Models for Fast Dynamical Simulation<br />

of MEMS Microstructures,” Proceedings of Transducers’97, (Chicago, Illinois), pp. 1101–1104,<br />

June 1997.<br />

[97] E. Ifeachor and B. Jervis, Digital Signal Processing: A Practical Approach. Addison-Wesley<br />

Publishing Company, 1993.<br />

[98] D. IJntema and H. A. C. Tilmans, “Static and Dynamic Aspects of an Air-Gap Capacitor,” Sensors<br />

and Actuators A, vol. 35, pp. 121–128, 1992.<br />

[99] L. Ingber, “Very Fast Simulated Re-annealing,” Math. Comput. Modelling, vol. 12, no. 8,<br />

pp. 967–973, 1989.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.6<br />

[100] J. Jacobi, “IMD: Still Unclear After 20 Years,” Microwaves & RF, November 1986.<br />

[101] W. Jakes, ed., Microwave Mobile Communications. Wiley, New York, 1974.<br />

[102] R. Jansen and M. Kirschning, “Arguments and an Accurate Model for the Power-Current Formulation<br />

of Microstrip Characteristic Impedance,” AEÜ, vol. 37, pp. 108–112, March-April<br />

1983.<br />

[103] M. Jeruchim, P. Balaban, and K. Shanmugan, Simulation of Communication Systems. Plenum<br />

Press, 1992.<br />

[104] D. Jiles and D. Atherton, “Theory of Ferromagnetic Hysteresis,” Journal of Magnetism and<br />

Magnetic Materials, vol. 61, pp. 48–60, 1986.<br />

[105] H. Jokinen, Analysis of Switched Capacitor Networks Using Convolution, Master’s thesis,<br />

Helsinki University of Technology, Department of Electrical Engineering, 1992. In Finnish.<br />

[106] H. Jokinen, Convolution-Based Steady State Analysis Methods, Licentiate’s thesis, Helsinki<br />

University of Technology, Department of Electrical Engineering, 1994.<br />

[107] H. Jokinen, Computation of the Steady-State Solution of Nonlinear Circuits with Time-Domain<br />

and Large-Signal-Small-Signal Analysis Methods. PhD thesis, Acta Polytechnica Scandinavica,<br />

1997. Electrical Engineering Series No. 87.<br />

[108] H. Jokinen and M. Valtonen, “Small Signal Analysis of Nonideal Switched-Capacitor Circuits,”<br />

IEEE International Symposium on Circuit and Systems, vol. 1, pp. 395–398, May-June 1994.<br />

[109] H. Jokinen and M. Valtonen, “Small-Signal Harmonic Analysis of Nonlinear Circuits,” International<br />

Journal of Circuit Theory and Applications, vol. 23, pp. 325–343, August 199<strong>5.</strong><br />

[110] H. Jokinen and M. Valtonen, Small-Signal Harmonic Analysis of Nonlinear Circuits, Report<br />

CT-23, Helsinki University of Technology, Circuit Theory Laboratory, 199<strong>5.</strong><br />

[111] H. Jokinen and M. Valtonen, “Steady State Time-Domain Analysis Including Frequency-<br />

Dependent Components,” Proceedings of the 12th European Conference on Circuit Theory<br />

and Design, August 199<strong>5.</strong><br />

[112] H. Jokinen and M. Valtonen, Steady State Time-Domain Analysis Including Frequency-<br />

Dependent Components, Report CT-24, Helsinki University of Technology, Circuit Theory Laboratory,<br />

199<strong>5.</strong><br />

[113] H. Jokinen, M. Valtonen, and T. Veijola, “Fast Analysis of Nonideal Switched Capacitor Circuits<br />

Using Convolution,” Proceedings of the 11th European Conference on Circuit Theory and<br />

Design, Part II, (Davos, Switzerland), pp. 941–946, August-September 1993.<br />

[114] W. B. Joyce, “Thermal Resistance of Heat Sinks With Temperature-Dependent Conductivity,”<br />

Solid-State Electronics, vol. 18, pp. 321–322, 197<strong>5.</strong><br />

[115] O. Juntunen, Implementation of New Stability Analysis Methods in <strong>APLAC</strong> Circuit Simulator,<br />

Master’s thesis, Helsinki University of Technology, Department of Electrical and Communications<br />

Engineering, 1998.<br />

[116] O. Juntunen, A Two-Port S Parameter Data Transformation Utility Implemented in <strong>APLAC</strong> Circuit<br />

Simulator, Report CT-35, Helsinki University of Technology, Circuit Theory Laboratory,<br />

1998.<br />

[117] O. Juntunen, J. Virtanen, and M. Valtonen, Normalized Determinant Function and Stability<br />

Envelope, Report CT-30, Helsinki University of Technology, Circuit Theory Laboratory, 1998.<br />

[118] D. Kajfez and T. S. Sadaka, “Edge Capacitance of a Finite-Thickness Plate Above the Ground<br />

Plane,” Sensors and Actuators A, vol. 64, pp. 216–218, 1998.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.7<br />

[119] A. Kankkunen, M. Andersson, and M. Valtonen, BSIM Model in <strong>APLAC</strong>, Report CT-10, Helsinki<br />

University of Technology, Circuit Theory Laboratory, 1991.<br />

[120] A. Kankkunen, M. Andersson, and M. Valtonen, MOSFET Level 1 and 2 Models in <strong>APLAC</strong>,<br />

Report CT-8, Helsinki University of Technology, Circuit Theory Laboratory, 1991.<br />

[121] V. Karanko, On the Numerics of Frequency-Domain Representations of Signals with a Discrete<br />

Frequency Content, Master’s thesis, Helsinki University of Technology, Department of<br />

Engineering Physics and Mathematics, 1999.<br />

[122] R. Kautz, “Picosecond Pulses on Superconducting Striplines,” Journal of Applied Physics,<br />

vol. 49, pp. 308–314, January 1978.<br />

[123] C. T. Kelley, Iterative Methods for Optimization. Philadelphia, Pennsylvania: SIAM, 1999.<br />

[124] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, “Optimization by Simulated Annealing,” Science,<br />

vol. 220, pp. 671–680, May 1983.<br />

[125] M. Kirschning and R. Jansen, “Accurate Model for Effective Dielectric Constant of Microstrip<br />

with Validity up to Millimetre-wave Frequencies,” Electronics Letters, vol. 18, pp. 272–273,<br />

March 1982.<br />

[126] M. Kirschning and R. Jansen, “Accurate Wide-Range Design Equations for the Frequency-<br />

Dependent Characteristic of Parallel Coupled Microstrip Lines,” IEEE Transactions on Microwave<br />

Theory and Techniques, vol. 32, pp. 83–90, January 1984.<br />

[127] M. Kirschning, R. Jansen, and N. Koster, “Measurement and Computer-Aided Modeling of<br />

Microstrip Discontinuities by an Improved Resonator Method,” IEEE MTT-S Symposium Digest,<br />

pp. 495–497, June 1983.<br />

[128] W. Kloosterman and H. de Graaff, “Avalanche Multiplication in a Compact Bipolar Transistor<br />

Model for Circuit Simulation,” Proc. 1988 BCTM, pp. 103–106, 1988.<br />

[129] M. J. Kobrinsky, E. R. Deutsch, and S. D. Senturia, “Effect of Support Compilance and Residual<br />

Stress on the Shape of Double Supported Surface-Micromachined Beams,” Journal of Microelectromechanical<br />

Systems, vol. 9, pp. 361–369, 2000.<br />

[130] A. S. Kouri, Antenna Switch Module for GSM Network Terminal, Master’s thesis, University of<br />

Oulu, Department of Electrical Engineering, 1996.<br />

[131] M. Kraft, C. P. Lewis, and T. G. Hesketh, “Closed-loop Silicon Accelerometer,” IEE Proc. Circuits<br />

Devices Syst., vol. 145, no. 5, pp. 325–331, 1998.<br />

[132] G. Kull, L. Nagel, S. Lee, P. Lloyd, E. Prendergast, and H. Dirks, “A Unified Circuit Model for<br />

Bipolar Transistors Including Quasi-Saturation Effects,” IEEE Transactions on Electron Devices,<br />

vol. 32, pp. 1103–1113, June 198<strong>5.</strong><br />

[133] K. S. Kundert, J. K. White, and A. Sangiovanni-Vincentelli, Steady-State Methods for Simulating<br />

Analog and Microwave Circuits. Kluwer Academic Publishers, 1990.<br />

[134] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics.<br />

Boca Raton, Florida: CRC Press, Boston, 1993.<br />

[135] J. Kuzdrall, “Algorithm Finds EIA-Standard 5% And 10% Component Values,” Electronic Design,<br />

vol. 39, pp. 81–84, May 1991.<br />

[136] H. Laamanen, Numerical Models of Microstrip Structures, Master’s thesis, Helsinki University<br />

of Technology, Department of Electrical Engineering, 1980. In Finnish.<br />

[137] B. T. Laboratories, Physical Design of Electronic Systems, vol. I. Prentice-Hall, Inc., 1971.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.8<br />

[138] M. Lähepelto, A Measurement-Based MESFET Model for <strong>APLAC</strong> Circuit Simulator, Master’s<br />

thesis, Helsinki University of Technology, Department of Electrical Engineering, 1993.<br />

[139] M. Lähepelto and M. Valtonen, “A Measurement-Based MESFET Model with Frequency-<br />

Dispersive Transconductance Approximation,” Proceedings of the 12th European Conference<br />

on Circuit Theory and Design, (Istanbul, Turkey), August 199<strong>5.</strong><br />

[140] M. Lähepelto and M. Valtonen, MEXTRAM 503 BJT Model in <strong>APLAC</strong>, Report CT-26, Helsinki<br />

University of Technology, Circuit Theory Laboratory, 199<strong>5.</strong><br />

[141] T. Lamminmäki, K. Ruokonen, I. Tittonen, T. Mattila, O. Jaakkola, A. Oja, and H. S. S. Kiihamäki,<br />

“Electromechanical Analysis of Micromechanical SOI-Fabricated RF Resonators,”<br />

Proceedings of the 3rd International Conference on Modeling and Simulation of Microsystems,<br />

(San Diego, California), pp. 217–220, April 2000.<br />

[142] W. E. Langlois, “Isothermal Squeeze Film,” Quarterly of Appl. Math., vol. 20, pp. 131–150,<br />

1962.<br />

[143] H. Lee and T. Itoh, “Phenomenological Loss Equivalence Method for Planar Quasi-TEM Transmission<br />

Lines with a Thin Normal Conductor or Superconductor,” IEEE Transactions on Microwave<br />

Theory and Techniques, vol. 37, pp. 1904–1909, December 1989.<br />

[144] W. Lee, Mobile Communications Engineering. McGraw-Hill, 1982.<br />

[145] M. S. Lehtinen, V.Porra, and M. Valtonen, “Determination of Some Nonlinear Transistor Model<br />

Parameters by Using Periodic Time Domain Measurements,” Proceedings of the 32nd ARFTG<br />

Conference, (Tempe, Arizona), December 1988.<br />

[146] O. Lehtinen, Development of the RF section of the mobile station for the TDD option of UMTS,<br />

Master’s thesis, Helsinki University of Technology, 1999. In English.<br />

[147] A. Lehtovuori, Time-domain model of dispersive transmission line, Master’s thesis, Helsinki<br />

University of Technology, Department of Electrical Engineering, 2000.<br />

[148] A. Lehtovuori, M. Valtonen, and J. Virtanen, “The Implementation and Development of a Time-<br />

Domain Model of Dispersive Transmission Line,” Proceedings of ECCTD’01, vol. 2, (Espoo,<br />

Finland), pp. 65–68, August 2001.<br />

[149] P. Leturcq, J. Dorkel, A. Napieralski, and E. Lachiver, “A New Approach to Thermal Analysis<br />

of Power Devices,” IEEE Transactions on Electron Devices, vol. ED-34, pp. 1147–1156, May<br />

1987.<br />

[150] H. Levine, “On the Radiation Impedance of a Rectangular Piston,” Journal of Sound and Vibration,<br />

vol. 89, no. 4, pp. 447–455, 1983.<br />

[151] L. Lin, R. T. Howe, and A. P. Pisano, “Microelectromechanical Filters for Signal Processing,”<br />

Journal of Microelectromechanical Systems, vol. 7, no. 3, pp. 286–294, 1998.<br />

[152] E. Lindberg, “A Simple Explanation of the Physical Behaviour of Chua’s Circuit or a Route to<br />

the Hearts of Chua’s Circuit,” Proceedings of the Workshop Nonlinear Dynamics of Electronic<br />

System, (Dresden,Germany), pp. 1–6, July 1993.<br />

[153] L. L. Liou, J. L. Ebel, and C. I. Huang, “Thermal Effects on the Characteristics of AlGaAs/GaAs<br />

Heterojunction Bipolar Transistors Using Two-Dimensional Numerical Simulation,” IEEE Transactions<br />

on Electron Devices, vol. ED-40, pp. 35–43, January 1993.<br />

[154] G. Lorenz and R. Neul, “Network-Type Modeling of Micromachined Sensor Systems,” Proceedings<br />

of the 1st International Conference on Modeling and Simulation of Microsystems,<br />

Semiconductors, Sensors and Actuators, (Santa Clara, California), pp. 233–238, 1998.<br />

[155] W. Lorenz, “Dimensionierung einlagiger Zylinderluftspulen mit optimaler Güte,” FREQUENZ,<br />

1970.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.9<br />

[156] S. Maas, Nonlinear Microwave Circuits. Norwood, Massachusetts: Artech House, Norwood,<br />

Massachusetts, 1988.<br />

[157] O. Macchi, “Advances in Adaptive Filtering,” Digital Communications (E. Biglieri and G. Prati,<br />

eds.), Elsevier Scientific Publishing Company, 1986.<br />

[158] R. H. MacNeal, “The Solution of Elastic Plate Problem by Electrical Analogies,” Journal of<br />

Applied Mechanics, pp. 59–67, March 1951.<br />

[159] K. Madsen, O. Nielsen, H. Schjær-Jacobsen, and L. Thrane, “Efficient Minimax Design of<br />

Networks without Using Derivatives,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. 23, pp. 803–809, October 197<strong>5.</strong><br />

[160] S. March, “Microstrip Packaging: Watch the Last Step,” Microwaves, vol. 20, pp. 83–94, December<br />

1981.<br />

[161] S. March, “Analyzing Lossy Radial-Line Stubs,” IEEE Transactions on Microwave Theory and<br />

Techniques, vol. 33, pp. 269–271, March 198<strong>5.</strong><br />

[162] M. Marsan, S. Benedetto, E. Biglieri, V. Castellani, M. Elia, and L. Presti, “Digital Simulation<br />

of Communication Systems with TOPSIM III,” IEEE Journal on Selected Areas of Communications,<br />

vol. SAC-2, January 1984.<br />

[163] D. Maugis, “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model,” Journal<br />

of Colloid and Interface Science, vol. 150, pp. 243–269, April 1992.<br />

[164] P. D. Maycock, “Thermal Conductivity of Silicon, Germanium III-V Compounds and III-V Alloys,”<br />

Solid-State Electronics, vol. 10, pp. 161–168, 1967.<br />

[165] C. C. McAndrew and L. W. Nagel, “Early Effect Modeling in SPICE,” IEEE Journal of Solid-State<br />

Circuits, vol. 31, pp. 136–138, January 1996.<br />

[166] C. McAndrew, J. Seitchik, D. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian,<br />

J. Parker, D. Roulston, M. Schröter, P. van Wijnen, and L. Wagner, “VBIC95, The Vertical<br />

Bipolar Inter-Company Model,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1476–1482,<br />

October 1996.<br />

[167] W. McCalla, Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic Publishers,<br />

1988.<br />

[168] A. McCamant, G. McCormack, and D. Smith, “An Improved GaAs MESFET Model for SPICE,”<br />

IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 822–824, June 1990.<br />

[169] F. P. Mechel, “Notes on the Radiation Impedance, Especially of Piston-Like Radiators,” Journal<br />

of Sound and Vibration, vol. 123, no. 3, pp. 437–572, 1988.<br />

[170] Q. Meng, M. Mehregany, and R. L. Mullen, “Theoretical Modeling of Microfabricated Beams<br />

with Elastically Restained Supports,” Journal of Microelectromechanical Systems, vol. 2,<br />

pp. 128–137, September 1993.<br />

[171] N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller, “Equation of State Calculations by<br />

Fast Computing Machines,” Journal of Chemical Physics, vol. 21, pp. 1087–1092, June 1953.<br />

[172] C. Michael, Statistical Modeling for Computer-Aided Design of Analog MOS Integrated Circuits.<br />

PhD thesis, The Ohio State University, 1991.<br />

[173] C. Michael and M. Ismail, Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits.<br />

Kluwer Academic Publishers, 1993.<br />

[174] C. Michael, H. Su, M. Ismail, A. Kankkunen, and M. Valtonen, “Statistical Techniques for the<br />

Computer-Aided Optimization of Analog Integrated Circuits,” IEEE Transactions on Circuits and<br />

Systems, vol. 43, pp. 410–413, May 1996.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.10<br />

[175] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. Springler-Verlag,<br />

Berlin, 1992.<br />

[176] J. Modestino and K. Matis, “Interactive Simulation of Digital Communication Systems,” IEEE<br />

Journal on Selected Areas of Communications, vol. SAC-2, January 1984.<br />

[177] J. Mondal, “Octagonal spiral inductor measurement and modelling for MMIC applications,” International<br />

Journal of Electronics, vol. 68, no. 1, pp. 113–125, 1990.<br />

[178] M. Morgan, ed., Finite Element and Finite Difference Methods in Electromagnetic Scattering.<br />

New York, New York: Elsevier Scientific Publishing Company, 1990.<br />

[179] P. M. Morse and K. U. Ingard, Theoretical Acoustics. McGraw-Hill, 1968.<br />

[180] P. Munro and F. Ye, “Simulating the Current Mirror with a Self-Heating BJT Model,” IEEE Journal<br />

of Solid-State Circuits, vol. 26, pp. 1321–1324, September 1991.<br />

[181] G. Mur, “Absorbing Boundary Condition for the Finite-Difference Approximation of the Time-<br />

Domain Electromagnetic Field Equations,” IEEE Transactions on Electromagnetic Compatibility,<br />

vol. EMC-23, pp. 377–382, November 1981.<br />

[182] L. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, Report ERL-<br />

M520, University of California, Electronics Research Laboratory, Berkeley, California, May<br />

197<strong>5.</strong><br />

[183] L. Nagurney, “Using a Spreadsheet in Receiver Design.” Computers in education division of<br />

ASEE.<br />

[184] F. Najm, “VBIC95: An Improved Bipolar Transistor Model,” IEEE Circuits & Devices, vol. 12,<br />

pp. 11–15, March 1996.<br />

[185] V. Nalbandian and W. Steenaart, “Discontinuities in Symmetric Striplines Due to Impedance<br />

Steps and Their Compensation,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. 20, pp. 573–578, September 1972.<br />

[186] T. Närhi and M. Valtonen, “Stability Envelope - New Tool For Generalized Stability Analysis,”<br />

IEEE MTT-S International Microwave Symposium Digest, pp. 623–626, June 1997.<br />

[187] Y. Nemirovsky and O. Bochobza-Degani, “A Methodology and Model for the Pull-In Parameters<br />

of Electrostatic Actuators,” Journal of Microelectromechanical Systems, vol. 10, pp. 601–615,<br />

December 2001.<br />

[188] T. T.-C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined Devices for Wireless Communications,”<br />

Proceeding of the IEEE, vol. 86, pp. 1756–1768, August 1998.<br />

[189] R. Niutanen and M. Valtonen, <strong>APLAC</strong> Optimization Interface, Report CT-7, Helsinki University<br />

of Technology, Circuit Theory Laboratory, 1991.<br />

[190] R. Niutanen, M. Valtonen, and K. Mannersalo, Optimization Methods in <strong>APLAC</strong>, Report CT-15,<br />

Helsinki University of Technology, Circuit Theory Laboratory, 1992.<br />

[191] Nordic Mobile Telephone group, NMT DOC. 900-3, Technical Specification for the Mobile Station,<br />

January 198<strong>5.</strong><br />

[192] Nordic Mobile Telephone group, Addenum to NMT DOC 900-3 Technical Specification for Mobile<br />

Station Annex 3. Handheld Mobile Stations (HMS), 1986.<br />

[193] A. Odabasioglu, M. Celic, and L. Pileggi, “PRIMA: Passive Reduced-Order Interconnect Macromodeling<br />

Algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and<br />

Systems, vol. 17, pp. 645–654, August 1998.<br />

[194] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall, Inc., 1989.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.11<br />

[195] S. P. Pacheco, L. P. B. Katechi, and C. T.-C. Nguyen, “Design of Low Actuation Voltage RF<br />

MEMS Switch,” 2000 IEEE MTT-S International Microwave Symposium Digest, (Boston, Massachusetts),<br />

pp. 165–168, June 2000.<br />

[196] A. Parker and J.B.Scott, “Modelling and characterisation of GaAs devices,” Low-power HF<br />

Microelectronics - a unified approach (G. Machado, ed.), ch. 6, London, England: Institution of<br />

Electrical Engineers, 1996.<br />

[197] T. Parks and C. Burrus, Digital Filter Design. John Wiley & Sons, Inc., 1987.<br />

[198] M. Pedersen, W. Olthuis, and P. Bergveld, “On the Mechanical Behaviour of Thin Perforated<br />

Plates and Their Application in Silicon Condenser Microphones,” Sensors and Actuators A,<br />

vol. 54, pp. 499–504, 1996.<br />

[199] D. Peroulis, S. P. Pacheco, K. Sarabandi, and L. P. B. Katehi, “Electromechanical Considerations<br />

in Developing Low-Voltage RF MEMS Switches,” IEEE Transactions on Microwave Theory<br />

and Techniques, vol. 51, no. 1, pp. 259–270, 2003.<br />

[200] B. N. J. Persson, Sliding Friction. Springler-Verlag, Berlin, 1998.<br />

[201] R. Pettai, Noise in Receiving Systems. John Wiley & Sons, Inc., 1984.<br />

[202] A. Platzker, W. Struble, and K. Hetzler, “Instabilities Diagnosis and the Role of K in the Microwave<br />

Circuits,” IEEE MTT-S International Microwave Symposium Digest, pp. 1185–1188,<br />

1993.<br />

[203] J. Poklemba, “An All-Pole Approximation for the Reciprocal sin (x)/(x) Frequency Response,”<br />

COMSAT Technical Review, vol. 17, pp. 467–479, Fall 1987.<br />

[204] J. Poklemba, “Pole-Zero Approximations for the Raised Cosine Filter Family,” COMSAT Technical<br />

Review, vol. 17, pp. 127–157, Spring 1987.<br />

[205] J. Pölönen, A CMOS Technology Integrated Compandor of a Mobile Telephone, Master’s thesis,<br />

Tampere University of Technology, 1991. In Finnish.<br />

[206] T. Poutanen, Specifying duplex filter, Course duplicate, Nokia Mobile Phones course duplicate,<br />

1988. In Finnish.<br />

[207] P. Pramanick and P. Bhartia, “CAD Models for Millimeter-Wave Finlines and Suspended-<br />

Substrate Microstrip Lines,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. MTT-33, pp. 1429–1435, December 198<strong>5.</strong><br />

[208] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C. Cambridge<br />

University Press, 1990.<br />

[209] J. Proakis, Digital Communications. McGraw-Hill, 198<strong>5.</strong><br />

[210] G. Quinn and H. Singer, “Determining Receiver Perfomance With a Computer Spreadsheet,”<br />

RF-Design, p. 48, April 198<strong>5.</strong><br />

[211] L. Rabiner, R. Schafer, and D. Dlugos, “Periodogram Method for Power Spectrum Estimation,”<br />

Programs for Digital Signal Processing, 1979. IEEE Press.<br />

[212] “Reference Data for Radio Engineers.” Howard W. Sams & Co., 1972.<br />

[213] H. Rekonen, High Frequency Simulation of Printed Circuit Boards, Master’s thesis, Helsinki<br />

University of Technology, Department of Electrical Engineering, 1991.<br />

[214] P. Robrish, “An Analytic Algorithm for Unbalanced Stripline Impedance,” IEEE Transactions on<br />

Microwave Theory and Techniques, vol. 38, August 1990.<br />

[215] P. J. C. Rodrigues, Computer-Aided Analysis of Nonlinear Microwave Circuits. Artech House,<br />

1998.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.12<br />

[216] U. Rohde, Digital PLL Frequency Synthesizers. Prentice-Hall, Inc., 1983.<br />

[217] J. Rollett, “Stability and Power-Gain Invariants of Linear Two-Ports,” IRE Transactions on Circuit<br />

Theory, vol. CT-9, pp. 29–32, March 1962.<br />

[218] F. Romeo and M. Santomauro, “Time-Domain Simulation of n Coupled Transmission Lines,”<br />

IEEE Transactions on Microwave Theory and Techniques, vol. 35, pp. 131–136, February<br />

1987.<br />

[219] J. Roos, Development of the Speed and Convergence of <strong>APLAC</strong>’s DC Analysis by Means of Interpolated<br />

and Piecewise-Linear Models, Licentiate’s thesis, Helsinki University of Technology,<br />

Department of Electrical and Communications Engineering, 1996.<br />

[220] J. Roos, “Comparison of Simplicial Piecewise-Linear Approximations of Nonlinear Mappings,”<br />

Proceedings of NOLTA’99, vol. 2, (Waikoloa, Hawaii), pp. 839–842, November-December<br />

1999.<br />

[221] J. Roos, Improving the Speed and Convergence of DC Analysis by Means of Self-Generating<br />

Lookup Tables and Piecewise-Linear Analysis. PhD thesis, Helsinki University of Technology,<br />

Department of Electrical and Communications Engineering, 1999.<br />

[222] J. Roos and V. Karanko, “Always Convergent Piecewise-Linear DC Analysis by an Appropriate<br />

Choice of Initial Conditions,” Proceedings of ISCAS’2000, vol. 3, (Geneva, Switzerland),<br />

pp. 403–406, May 2000.<br />

[223] J. Roos and M. Valtonen, “General-Purpose Piecewise-Linear DC Analysis,” Proceedings of<br />

ICECS’96, vol. 2, (Rodos, Greece), pp. 792–795, October 1996.<br />

[224] J. Roos and M. Valtonen, “Piecewise-Linear DC Analysis of Nonlinear Circuits,” Proceedings<br />

of BEC’96, (Tallinn, Estonia), pp. 281–284, October 1996.<br />

[225] J. Roos and M. Valtonen, “An Efficient Piecewise-Linear DC Analysis Method for Circuits Containing<br />

Realistic Component Models,” Proceedings of ECCTD’97, vol. 2, (Budapest, Hungary),<br />

pp. 486–491, August-September 1997.<br />

[226] J. Roos and M. Valtonen, “Efficient Piecewise-Linear DC Analysis Using Projections of Simplices,”<br />

Proceedings of ICECS’97, vol. 1, (Cairo, Egypt), pp. 143–147, December 1997.<br />

[227] J. Roos and M. Valtonen, “An Adaptive Modeling Method for Speeding Up Piecewise-Linear<br />

DC Analysis,” Proceedings of CSC’98, vol. 2, (Piraeus, Greece), pp. 868–873, October 1998.<br />

[228] J. Roos and M. Valtonen, “Modified Nodal Formulation Method Applied to Piecewise-Linear<br />

DC Analysis,” Proceedings of ISCAS’98, vol. 3, (Monterey, California), pp. 403–406, May-June<br />

1998.<br />

[229] J. Roos and M. Valtonen, “Performance Evaluation of General-Purpose Piecewise-Linear DC<br />

Analysis,” Proceedings of NOLTA’98, vol. 1, (Crans-Montana, Switzerland), pp. 109–112,<br />

September 1998.<br />

[230] J. Roos and M. Valtonen, “An Efficient Piecewise-Linear DC Analysis Method for General Non-<br />

Linear Circuits,” International Journal of Circuit Theory and Applications, vol. 27, pp. 311–330,<br />

1999.<br />

[231] J. Roos and M. Valtonen, “On the Boundary Crossing of Linear Regions in Piecewise-<br />

Linear DC analysis,” Proceedings of ECCTD’99, vol. 1, (Stresa, Italy), pp. 463–466, August-<br />

September 1999.<br />

[232] J. Roos and M. Valtonen, “Selection of Iteration Variables in Piecewise-Linear DC Analysis,”<br />

Proceedings of NDES’99, (Bornholm, Denmark), pp. 33–36, July 1999.<br />

[233] A. Roth, Vacuum Technology. North Holland Publishing Company, 1976.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.13<br />

[234] D. Rowe and B. Lao, “Numerical Analysis of Shielded Coplanar Waveguides,” IEEE Transactions<br />

on Microwave Theory and Techniques, vol. 31, pp. 911–915, November 1983.<br />

[235] S. N. Rschevkin, The Theory of Sound. Pergamon Press, 1963.<br />

[236] Y. Saad and M. Schultz, “GMRES: a Generalized Minimal Residual Algorithm for Solving Nonsymmetric<br />

Linear Systems,” SIAM Journal on Scientific and Statistical Computing, vol. 7, July<br />

1986.<br />

[237] A. Sanderson, “Effect of Surface Roughness on Propagation of TEM Mode,” Advances in Microwaves<br />

(L. Young, ed.), vol. 7, Cambridge, Massachusetts: Academic Press, 1971.<br />

[238] T. K. Sarkar and O. Pereira, “Using the Matrix Pencil Method to Estimate the Parameters of a<br />

Sum of Complex Exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, pp. 48–55,<br />

February 199<strong>5.</strong><br />

[239] J. Scholliers and T. Yli-Pietilä, “A SPICE-Based Library for Mechatronic Systems,” Proceedings<br />

of the 1995 IEEE International Symposium on Circuits and Systems, (Seattle, Washington),<br />

pp. 668–671, 199<strong>5.</strong><br />

[240] M. Schröter, HICUM - A scalable physics-based compact bipolar transistor model. Electron<br />

Devices and Integrated Circuits, Technische Universität Dresden, December 2000.<br />

[241] F. Sellberg, “Simple and Accurate Algorithms to Include Lange and Asymmetric Microstrip Couplers<br />

in CAD-Packages,” Proceedings of the 18th European Microwave Conference, (Stockholm,<br />

Sweden), pp. 1157–1162, September 1988.<br />

[242] L. Selmi and B. Ricco, “Modeling Temperature Effects in the DC I-V Characteristics of GaAs<br />

MESFET’s,” IEEE Transactions on Electron Devices, vol. ED-40, pp. 273–277, February 1993.<br />

[243] S. Senturia, “CAD for Microelectromechanical Systems,” Proceedings of Transducers’95 and<br />

Eurosensors IX, vol. 2, (Stockholm, Sweden), pp. 5–8, June 199<strong>5.</strong><br />

[244] S. D. Senturia, “CAD Challenges for Microsensors, Microactuators, and Microsystems,” Proceedings<br />

of the IEEE, vol. 86, pp. 1611–1626, 1998.<br />

[245] H. Seppä, Analysis of an R-SQUID Noise Thermometer, VTT Publications 54, Technical Research<br />

Centre of Finland, 1989.<br />

[246] F. Sharipov and V. Seleznev, “Data on Internal Rarefied Gas Flows,” Journal of Physical and<br />

Chemical Reference Data, vol. 27, no. 3, pp. 657–706, 1998.<br />

[247] Y. Shu, X. Qi, and Y. Wang, “Analysis Equation for Shielded Suspended Microstrip Line<br />

and Broadside-Coupled Stripline,” IEEE MTT-S International Microwave Symposium Digest,<br />

pp. 693–696, 1987.<br />

[248] L. J. Sivian, “Acoustic Impedance of Small Orfices,” Journal of the Acoustical Society of America,<br />

vol. 7, pp. 94–101, 193<strong>5.</strong><br />

[249] B. Sklar, Digital Communications. Prentice-Hall, Inc., 1988.<br />

[250] Z. Skvor, “On the Acoustic Resistance Due to Viscous Losses in Air Gap of Electrostatic Transducers,”<br />

Acoustica, vol. 19, pp. 295–299, 1967.<br />

[251] D. Smith, TOM-2: An Improved Model for GaAs MESFETs, TriQuint Proprietary Report,<br />

TriQuint Semiconductor, Inc., February 199<strong>5.</strong> 11 pages.<br />

[252] J. C. Snowdon, “Representation of the Mechanical Damping Possessed by Rubberlike Materials<br />

and Structures,” Journal of the Acoustical Society of America, vol. 35, no. 6, pp. 821–829,<br />

1963.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.14<br />

[253] P. Somervuo, Noise measurements, Course duplicate, Insinöörijärjestöjen koulutuskeskus,<br />

197<strong>5.</strong> In Finnish.<br />

[254] R. Spence and R. Soin, Tolerance Design of Electronic Circuits. Addison-Wesley Publishing<br />

Company, 1988.<br />

[255] V. Starck, Implementation of Simulated Annealing Optimization Method for <strong>APLAC</strong> Circuit Simulator,<br />

Master’s thesis, Helsinki University of Technology, Department of Electrical and Communications<br />

Engineering, 1996.<br />

[256] P. Stenius, Development of an Operational Amplifier Macromodel for <strong>APLAC</strong> Circuit Simulator,<br />

Report CT-6, Helsinki University of Technology, Circuit Theory Laboratory, 1991.<br />

[257] P. Stenius and P. H. Valtonen, “Transient Analysis of Circuits Including Frequency-Dependent<br />

Components Using Transgyrator and Convolution,” Proceedings of the 11th European Conference<br />

on Circuit Theory and Design, Part II, (Davos, Switzerland), pp. 1299–1304, August-<br />

September 1993.<br />

[258] S. Sundström, Stripline Simulation Models with Conductor Surface Roughness, Master’s thesis,<br />

Helsinki University of Technology, Department of Electrical Engineering, February 2004.<br />

[259] M. Suzuki, Circuit Parameters of a Tuning Post in a Rectangular Waveguide and its Applications,<br />

Report R-591-57, PIB-519, Microwave Res. Inst., Polytechnic Inst. of Brooklyn, New<br />

York, New York, 1957.<br />

[260] H. Szu and R. Hartley, “Fast Simulated Annealing,” Physics Letters A, vol. 122, pp. 157–162,<br />

June 1987.<br />

[261] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.<br />

Boston, Massachusetts: Artech House, Norwood, Massachusetts, 199<strong>5.</strong><br />

[262] C. G. D. W. TDMA/CDMA, Evaluation Report - TDoc SMG2 368/97, Report ERL-M520, Concept<br />

Group Delta Wideband TDMA/CDMA, May 1997. 42 pages.<br />

[263] J. Thompson and T. Apel, “Simplified Microstrip Discontinuity Modeling Using the Transmission<br />

Line Matrix Method Interfaced to Microwave CAD,” Microwave Journal, vol. 33, pp. 79–88, July<br />

1990.<br />

[264] H. A. C. Tilmans, “Equivalent Circuit Representation of Electromechanical Transducers:<br />

I. Lumped-Parameter Systems,” Journal of Micromechanics and Microengineering, vol. 6,<br />

pp. 157–176, September 1996.<br />

[265] H. A. C. Tilmans, “Equivalent Circuit Representation of Electromechanical Transducers: II.<br />

Distributed-Parameter Systems,” Journal of Micromechanics and Microengineering, vol. 7,<br />

pp. 285–308, December 1997.<br />

[266] T. Tinttunen, T. Veijola, H. Nieminen, V. Ermolov, and T. Ryhänen, “Static Equivalent Circuit<br />

Model for a Capacitive MEMS RF Switch,” Proceedings of the 5th International Conference on<br />

Modeling and Simulation of Microsystems, (San Juan, Puerto Rico), pp. 166–169, April 2002.<br />

[267] R. Tomar and P. Bhartia, “New Quasi-Static Models for the Computer-Aided Design of Suspended<br />

and Inverted Microstrip Lines,” IEEE Transactions on Microwave Theory and Techniques,<br />

vol. MTT-35, pp. 453–457, April 1987. corrections in No. 11, p. 1076, November 1987.<br />

[268] V. Tripathi, “A Dispersion Model for Coupled Microstrips,” IEEE Transactions on Microwave<br />

Theory and Techniques, vol. 34, pp. 66–71, January 1986.<br />

[269] V. Tripathi and J. Rettig, “A SPICE Model for Multiple Coupled Microstrips and Other Transmission<br />

Lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 33, pp. 1513–1518,<br />

December 198<strong>5.</strong><br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.15<br />

[270] C. Tsai and K. Gupta, “Generalized Model for Coupled Lines and its Applications to Two-Layer<br />

Planar Circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 2190–<br />

2199, December 1992.<br />

[271] D. Valtchev and V. Georgiev, “Time-Frequency Transform for the Spectral Balance Method,”<br />

International Journal of Electronic Communication (AEÜ), vol. 49, pp. 50–53, January 199<strong>5.</strong><br />

[272] M. Valtonen, <strong>APLAC</strong>1 - A Flexible Frequency Domain Circuit Analysis Program for Small Computers,<br />

Report S55, Helsinki University of Technology, Radio Laboratory, 1973.<br />

[273] M. Valtonen, <strong>APLAC</strong>2 - A Flexible DC and Time Domain Circuit Analysis Program for Small<br />

Computers, Report S56, Helsinki University of Technology, Radio Laboratory, 1973.<br />

[274] M. Valtonen, “Computer-Aided Analysis of Mixed Lumped and Distributed Circuits in Time<br />

Domain,” Proceedings of the 1978 IEEE International Symposium on Circuits and Systems,<br />

pp. 762–766, 1978.<br />

[275] M. Valtonen, <strong>APLAC</strong> - A Frequency Domain Program for Microwave Circuit Analysis and Design,<br />

Report 1252-79-05, Twente University of Technology, Microwave Laboratory, 1979.<br />

[276] M. Valtonen, Microwave Circuit Simulation Using Higher-Order Dynamic Elements, Report CT-<br />

20, Helsinki University of Technology, Circuit Theory Laboratory, 1994.<br />

[277] M. Valtonen, “<strong>APLAC</strong> - Object-Oriented Circuit Simulation and Design Tool,” Proceedings of<br />

the 4th Brazilian Microelectronics School (IV EBMicro), (Recife, Brazil), pp. 483–517, 199<strong>5.</strong><br />

[278] M. Valtonen, “<strong>APLAC</strong> - Object-Oriented Circuit Simulation and Design Tool,” Proceedings of<br />

Microwave and RF Conference ’97, (London, England), 1997.<br />

[279] M. Valtonen, P. H. Jokinen, and T. Veijola, “<strong>APLAC</strong> - Object-Oriented Circuit Simulation and<br />

Design Tool,” Low-power HF Microelectronics - a unified approach (G. Machado, ed.), ch. 9,<br />

London, England: IEE Circuits and Systems, 1996. 40 pages.<br />

[280] M. Valtonen, P. H. Kankkunen, K. Mannersalo, R. Niutanen, P. Stenius, T. Veijola, and J. Virtanen,<br />

“<strong>APLAC</strong> - A New Approach to Circuit Simulation by Object-Orientation,” Proceedings of<br />

the 10th European Conference on Circuit Theory and Design, vol. 1, (Copenhagen, Denmark),<br />

pp. 351–360, July 1991.<br />

[281] M. Valtonen and T. Veijola, “<strong>APLAC</strong> - A Microcomputer Tool Especially Suited for Microwave<br />

Circuit Design in Frequency and Time Domains,” Proceedings of URSI/IEEE National Convention<br />

on Radio Science, (Espoo, Finland), p. 20, 1986.<br />

[282] R. P. van Kampen, Bulk-Micromachinend Capacitive Servo-Accelerometer. PhD thesis, Technical<br />

University of Delft, Delft, Netherlands, September 199<strong>5.</strong><br />

[283] M. van Valkenburg, Analog Filter Design. Holt-Saunders, 1982.<br />

[284] T. Veijola, Modeling and Analysis of Mixed Lumped and Distributed Lossy Circuits in the Time<br />

Domain, Licentiate’s thesis, Helsinki University of Technology, Department of Electrical Engineering,<br />

1986. In Finnish.<br />

[285] T. Veijola, Accelerometer Model in <strong>APLAC</strong>, Report CT-18, Helsinki University of Technology,<br />

Circuit Theory Laboratory, February 1994.<br />

[286] T. Veijola, “Model for Thermal Spreading Impedance in GaAs MESFETs,” Proceedings of<br />

ICECS’96, (Rodos, Greece), October 1996.<br />

[287] T. Veijola, “Simple Model for Thermal Spreading Impedance,” Proceedings of Baltic Electronics<br />

Conference BEC’96, (Tallinn, Estonia), p. 73, October 1996.<br />

[288] T. Veijola, Accelerometer Level 3 and 4 Models in <strong>APLAC</strong>, Report CT-36, Helsinki University of<br />

Technology, Circuit Theory Laboratory, 1998.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.16<br />

[289] T. Veijola, “Finite-Difference Large-Displacement Gas-Film Model,” Proceedings of Transducers’99,<br />

(Sendai, Japan), pp. 1152–1155, June 1999.<br />

[290] T. Veijola, “Compact Damping Models for Lateral Structures Including Gas Rarefaction Effects,”<br />

Proceedings of the 3rd International Conference on Modeling and Simulation of Microsystems,<br />

(San Diego, California), pp. 162–165, April 2000.<br />

[291] T. Veijola, “Acoustic Impedance Elements Modeling Oscillating Gas Flow in Micro Channels,”<br />

Proceedings of the 4th International Conference on Modeling and Simulation of Microsystems,<br />

(Hilton Head Is., South Carolina), pp. 96–99, April 2001.<br />

[292] T. Veijola, “End Effects of Rare Gas Flow in Short Channels and in Squeezed-Film Dampers,”<br />

Proceedings of the 5th International Conference on Modeling and Simulation of Microsystems,<br />

(San Juan, Puerto Rico), pp. 104–107, April 2002.<br />

[293] T. Veijola and M. Andersson, “Combined Electrical and Thermal Parameter Extraction for Transistor<br />

Model,” Proceedings of the European Conference on Circuit Theory and Design ’97,<br />

(Budapest, Hungary), 1997.<br />

[294] T. Veijola and L. Costa, Combined Electrical and Thermal Circuit Simulation Using <strong>APLAC</strong>. Part<br />

C: Thermal Spreading Impedance Models, Report CT-34, Helsinki University of Technology,<br />

Circuit Theory Laboratory, 1998.<br />

[295] T. Veijola, H. Kuisma, and J. Lahdenperä, Model for Gas Film Damping in a Silicon Accelerometer,<br />

Report CT-29, Helsinki University of Technology, Circuit Theory Laboratory, 1996.<br />

[296] T. Veijola, H. Kuisma, and J. Lahdenperä, “Model for Gas Film Damping in a Silicon Accelerometer,”<br />

Proceedings of Transducers’97, (Chicago, Illinois), pp. 1097–1100, June 1997.<br />

[297] T. Veijola, H. Kuisma, and J. Lahdenperä, “Dynamic Modelling and Simulation of Microelectromechanical<br />

Devices with a Circuit Simulation Program,” Proceedings of MSM’98, (Santa<br />

Clara, California), March 1998.<br />

[298] T. Veijola, H. Kuisma, and J. Lahdenperä, “The Influence of Gas-Surface Interaction on Gas<br />

Film Damping in a Silicon Accelerometer,” Sensors and Actuators A, vol. 66, pp. 83–92, 1998.<br />

[299] T. Veijola, H. Kuisma, and J. L. Ryhänen, “Equivalent Circuit Model of the Squeezed Gas Film<br />

in a Silicon Accelerometer,” Sensors and Actuators A, vol. 48, no. 3, pp. 239–248, 199<strong>5.</strong><br />

[300] T. Veijola and S. Lähteenmäki, “Electrical Equivalent-Circuit Model for Small-Current Electromechanic<br />

Metal Contact,” Proceedings of the 16th European Conference on Cicuit Theory<br />

and Design ’03, (Krakow, Poland), pp. 203–212, September 2003.<br />

[301] T. Veijola and T. Mattila, “Modelling of Nonlinear Micromechanical Resonators and their Simulation<br />

with the Harmonic Balance Method,” International Journal of RF and Microwave Computer-<br />

Aided Engineering, vol. 11, no. 5, pp. 310–321, 2001.<br />

[302] T. Veijola, T. Mattila, O. Jaakkola, J. Kiihamäki, T. Lamminmäki, A. Oja, K. Ruokonen, H. Seppä,<br />

P. Seppälä, and I. Tittonen, “Large-Displacement Modelling and Simulation of Micromechanical<br />

Electrostatically Driven Resonators Using the Harmonic Balance Method,” Proceedings of the<br />

International Microwave Symposium, (Boston, Massachusetts), pp. 99–102, June 2000.<br />

[303] T. Veijola, T. Ryhänen, H. Kuisma, and J. Lahdenperä, “Circuit Simulation Model of Gas Damping<br />

in Microstructures With Nontrivial Geometries,” Proceedings of Transducers’95 and Eurosensors<br />

IX, vol. 2, (Stockholm, Sweden), pp. 36–39, June 199<strong>5.</strong><br />

[304] T. Veijola, T. Tinttunen, H. Nieminen, V. Ermolov, and T. Ryhänen, “Gas Damping Model for a<br />

RF MEMS Switch and Its Dynamic Characteristics,” Proceedings of the International Microwave<br />

Symposium, (Seattle, Washington), pp. 1213–1216, January 2002.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.17<br />

[305] T. Veijola and M. Turowski, “Compact Damping Models for Lateral Structures Including Gas<br />

Rarefaction Effects,” Journal of Microelectromechanical Systems, vol. 10, pp. 263–272, June<br />

2001.<br />

[306] T. Veijola and M. Valtonen, “Dispersive Transmission Line Model for Nonlinear Time Domain<br />

Circuit Analysis,” Proceedings of the 1988 IEEE Symposium on Circuits and Systems, (Espoo,<br />

Finland), pp. 2839–2842, June 1988.<br />

[307] T. Veijola and M. Valtonen, Combined Electrical and Thermal Circuit Simulation Using <strong>APLAC</strong>.<br />

Part A: Basic Implementation and Component Models, Report CT-25, Helsinki University of<br />

Technology, Circuit Theory Laboratory, 199<strong>5.</strong><br />

[308] T. Veijola and M. Valtonen, Combined Electrical and Thermal Circuit Simulation Using <strong>APLAC</strong>.<br />

Part B: Electrothermal Diode and Transistor, Report CT-27, Helsinki University of Technology,<br />

Circuit Theory Laboratory, 1996.<br />

[309] R. Velghe, D. Klaassen, and F. Klaassen, MOS MODEL 9 level 902, Unclassified Report NL-UR<br />

003/94, Philips Research Laboratories, Eindhoven, Netherlands, June 199<strong>5.</strong><br />

[310] M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall, Inc., 1978.<br />

[311] J. Virtanen, Modeling of Lossy Transmission Lines in the Time Domain, Master’s thesis,<br />

Helsinki University of Technology, Department of Electrical Engineering, 1991. In Finnish.<br />

[312] J. Virtanen, Toroid Model in <strong>APLAC</strong>, Report CT-32, Helsinki University of Technology, Circuit<br />

Theory Laboratory, 1997.<br />

[313] B. C. Wadell, Transmission Line Design Handbook. Norwood, Massachusetts: Artech House,<br />

Norwood, Massachusetts, 1991.<br />

[314] H. Walker, “High Speed Data Communications System Using Phase Shift Key Coding.” U.S.<br />

patent 5 185 765, 1993.<br />

[315] H. Walker, “VPSK Modulation: A Tutorial,” Conference Proceedings RF Expo West, pp. 86–92,<br />

199<strong>5.</strong><br />

[316] H. Walker, “VPSK and VMSK Modulation Transmit Digital Audio and Video at 15 bits/sec/Hz,”<br />

IEEE Transactions on Broadcasting, vol. 43, pp. 454–462, March 1997.<br />

[317] J. Walston, “Spice Circuit Yields Recipe for PIN Diode,” Microwaves & RF, pp. 78–89, November<br />

1992.<br />

[318] S. Watanabe and M. Taki, “An improved FDTD model for the feeding gap of a thin-wire antenna,”<br />

IEEE Microwave and Guided Wave Letters, pp. 152–154, April 1998.<br />

[319] P. W. Webb, “Thermal Modeling of Power Gallium Arsenide Microwave Integrated Circuits,”<br />

IEEE Transactions on Electron Devices, vol. ED-40, pp. 867–877, May 1993.<br />

[320] P. W. Webb and I. A. D. Russell, “Thermal Resistance of Gallium-Arsenide Field-Effect Transistors,”<br />

IEE Proceedings G, vol. 136, pp. 229–234, October 1989.<br />

[321] P. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method<br />

Based on Time Averaging Over Short, Modified Periodograms,” IEEE Transactions on Audio<br />

Electroacoustics, vol. AU-15, June 1967.<br />

[322] G. Wexler, “The Size Effect and the Non-Local Boltzmann Transport Equation in Orfice and<br />

Disk Geometry,” Proc. Phys. Soc., vol. 89, pp. 927–941, 1966.<br />

[323] H. Wheeler, “Transmission-Line Properties of Parallel Wide Strips by a Conformal-Mapping<br />

Approximation,” IEEE Transactions on Microwave Theory and Techniques, vol. 12, pp. 280–<br />

289, May 1964.<br />

General Index Examples Main Page


<strong>APLAC</strong> Bibliography page APP-4.18<br />

[324] H. Wheeler, “Transmission-Line Properties of a Stripline Between Parallel Planes,” IEEE Transactions<br />

on Microwave Theory and Techniques, vol. 26, pp. 866–876, November 1978.<br />

[325] H. Wheeler, “Transmission-Line Properties of a Round Wire in a Polygon Shield,” IEEE Transactions<br />

on Microwave Theory and Techniques, vol. 27, pp. 717–721, August 1979.<br />

[326] B. Widrow and S. Stearns, Adaptive Signal Processing. Prentice-Hall, Inc., 198<strong>5.</strong><br />

[327] Y. Z. William and W. Yiyan, “COFDM: an Overview,” IEEE Transactions on Broadcasting,<br />

vol. 41, pp. 1–8, March 199<strong>5.</strong><br />

[328] R. P. v. F. Wolffenbuttel, “Modeling the Mechanical Behavior of Bulk-Micromachined Silicon<br />

Accelerometers,” Sensors and Actuators A, vol. 64, pp. 137–150, 1998.<br />

[329] H. H. Woodson and J. R. Melcher, Electromechanical Dynamics, Part 1: Discrete Systems.<br />

Wiley, New York, 1968.<br />

[330] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C. Stipe, and D. Rugar,<br />

“Quality Factors in Micron- and Submicron-Thick Cantilevers,” Journal of Microelectromechanical<br />

Systems, vol. 9, no. 1, pp. 117–125, 2000.<br />

[331] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations<br />

in Isotropic Media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302–<br />

307, May 1966.<br />

[332] P. Zhao, J. Littva, and K. Wu, “A New Stable and Very Dispersive Boundary Condition for the<br />

FD-TD Method,” 1994 IEEE MTT-S Digest TU1B-4, pp. 35–38, 1994.<br />

[333] Y. Zhao, D. M. Maietta, and L. Chang, “An Asperity Microcontact Model Incorporating the<br />

Transition From Elastic Deformation to Fully Plastic Flow,” Journal of Tribology, Trans. ASME,<br />

vol. 122, pp. 86–93, January 2000.<br />

[334] V. Ziebart, O. Paul, U. Münch, J. Schwizer, and H. Baltes, “Mechanical Properties of Thin<br />

Films From the Load Deflection of Long Clamped Plates,” Journal of Microelectromechanical<br />

Systems, vol. 7, no. 3, pp. 320–328, 1998.<br />

[335] R. Ziemer and W. Tranter, Principles of Communications. Houghton Mifflin Company, 198<strong>5.</strong><br />

General Index Examples Main Page


<strong>APLAC</strong> <strong>Editor</strong> <strong>Glossary</strong> page APP-<strong>5.</strong>1<br />

<strong>5.</strong> <strong>APLAC</strong> <strong>Editor</strong> <strong>Glossary</strong><br />

AC: This is the basic frequency domain analysis. It is based on a linearized circuit at the operating<br />

point. As a conseguence of linearity, if the amplification of the device is 20dB, 1 mV in input<br />

creates 10 mV in output and if the input is 1 MV, output reads 10 MV (even though the operating<br />

voltage of the device can be such as 10 V). NOTE: Be careful with the validity of AC results.<br />

<strong>APLAC</strong> <strong>Editor</strong>: This is the graphical entry tool for <strong>APLAC</strong> Simulator. You can easily create the circuit<br />

/ system topology with <strong>APLAC</strong> <strong>Editor</strong>, add Control Objects to the schematic that describe<br />

the desired analysis and then automatically launch <strong>APLAC</strong> Simulator to perform the analysis.<br />

<strong>APLAC</strong> Simulator: This is the simulator executable. In UNIX, it is a batch program that runs the<br />

analysis and terminates when all analysis windows are closed. In Windows, it has a main<br />

window and the program exits only after this window is closed.<br />

Circuit Diagram: meant for circuit analysis (as opposed to system level design) built from electrical<br />

components<br />

Control Object: contains all simulation definitions that are not part of the schematic diagram, used<br />

to control the analysis of the circuit/system under study. In <strong>APLAC</strong> Language, a statement can<br />

be a component or a Control Object.<br />

DC: The basis of almost every other analysis, initial operating point calculation. DC means, of<br />

course, that frequency in the circuit is zeroed and all reactive component values are set to<br />

zero or infinity.<br />

Diagram: means the topology of the circuit or system in the <strong>APLAC</strong> <strong>Editor</strong>, components and their<br />

interconnecting wires.<br />

Element: In <strong>APLAC</strong> <strong>Editor</strong>, your circuit diagram consists typically of components (resistors, capacitors...)<br />

and their interconnections. However, it is also possible to enter such objects into the<br />

diagram that have no direct counterpart in physical reality, like NodeNames, Shorts, Outputs...<br />

These parts are denoted as elements of the diagram.<br />

Harmonic Balance: Nonlinear analysis which can include frequency dependent components. Also<br />

known as the steady state analysis.<br />

Schematic: This is the diagram and the associated Control Objects: Schematic = Diagram +<br />

Control Objects.<br />

Statement: <strong>APLAC</strong> Language statement, for example Analyze, Tran or Sweep.<br />

System Diagram: Diagram for system level design built of system blocks.<br />

Transient analysis: This is the time domain analysis. The waveform can be of an arbitrary shape.<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.1<br />

6. <strong>APLAC</strong> Simulator <strong>Glossary</strong><br />

Access function A user-defined function which gives access to the parameters of an object is called<br />

the access function. The body of an access function must include either a Return block or a<br />

minimum of one Ret function call. The access function is defined explicitly by the Function<br />

statement. The access function may be used in <strong>APLAC</strong> expressions.<br />

Example:<br />

Function RDep(x) [ 1, sqr(x), 2*x ]<br />

Var TempDep FUNC=RDep(Temp)<br />

Above RDep is an access function of a three-dimensional temperature-dependent variable,<br />

TempDep. A reference to TempDep causes the execution of the access function RDep, which<br />

returns three values to TempDep.<br />

Variable TempDep above can also be defined in a more compact way (the access function is<br />

implicit):<br />

Example:<br />

Var TempDep FUNC=[ 1, sqr(Temp), 2*Temp ]<br />

An access function fi returns 10 integers 0, 1, ..., 9:<br />

Example:<br />

* note the definition of local variable i in function fi<br />

Function fi {i} for(i=0, i


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.2<br />

Definition The introduction of an object is called the definition. The definition creates an object with<br />

a unique name and defines its properties using the parameters. Lines beginning with Res, Cap<br />

and MOSFET are definitions. Programming statements which define variables and functions<br />

are often also called definitions.<br />

Delimiter In lines beginning with Function or Call the following characters are considered delimiters:<br />

ASCII codes from 1 to 32 (ASCII code 32 = blank). In expressions the characters ”=” and ”,” are<br />

also delimiters.<br />

Directive Input file (.i) may have directives either for controlling or text editing purposes. All directives<br />

begin with the symbol #.<br />

Input file preprocessor recognizes the following directives:<br />

#CaseSensitiveUnits This directive makes the scaling factors case sensitive except Meg, Pet<br />

and mil.<br />

#define name replace text name is replaced by replace text whenever it appears after the<br />

#define definition in the input file, except inside comments, strings and other preprocessor<br />

directives. The position of #define affects the operation of the Ifdef directive.<br />

#else #else can be used inside Ifdef...#endif block.<br />

Example:<br />

#ifdef MSWINDOWS<br />

Print S "MSWINDOWS is defined" LF<br />

#else<br />

Print S "MSWINDOWS is not defined" LF<br />

#endif<br />

#endif #endif terminates a block beginning with Ifdef.<br />

Ifdef name Ifdef begins a block ending at #endif. All input lines between Ifdef name . . .<br />

#endif block are interpreted normally if name was previously defined with the #define<br />

directive. Otherwise the input lines within the block are ignored. Note that nested Ifdefs<br />

are allowed. There are six platform-dependent names available: MSWINDOWS (defined<br />

under Win95/NT environment), UNIX (defined under any UNIX system), DGUX (defined<br />

under Digital UNIX), HPUX (defined under Hewlett-Packard UNIX), LINUX (defined under<br />

Linux), and SOLARIS (defined under Sun/Solaris). These can be tested for creating<br />

common input files for various hardware environments.<br />

Example:<br />

#ifdef MSWINDOWS<br />

OpenFile R "C:MODELS\\BJT.I"<br />

#endif<br />

#ifdef UNIX<br />

OpenFile R "/users/my/models/bjt.i"<br />

#endif<br />

Ifndef name Ifndef begins a block ending at #endif. Ifndef is the complemented version of<br />

Ifdef (if not defined).<br />

#include filename Includes the file filename in the Input file. #includes can be nested at any<br />

level. Each file included is processed at the same directory where the actual file is. This<br />

allows the nested #includes relative to the current directory.<br />

#libdir pathname1:pathname2:...:pathnameN in UNIX and<br />

#libdir pathname1;pathname2;...;pathnameN in Win95/NT<br />

This directive is used together with the #library directive. The delimiter between pathnames<br />

should be a colon in UNIX and a semicolon in Win95/NT to preserve the colon<br />

for defining the drive (e.g., C:). If the opening of libraryfile in the current directory fails<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.3<br />

<strong>APLAC</strong> tries to open the files (/ for UNIX, use \ in Win95/NT) pathname1/libraryfile, pathname2/libraryfile<br />

etc. Instead of #libdir directive an environment string called <strong>APLAC</strong>DIR<br />

could be used. In the UNIX environment the following environment string could be used:<br />

Example:<br />

setenv <strong>APLAC</strong>DIR /lib/aplac/:/appl/ele/aplac/lib/<br />

Example: (WinNT)<br />

set <strong>APLAC</strong>DIR=\lib\aplac\;\appl\ele\aplac\lib\<br />

#library libraryfile name1 name2 ... nameN This directive includes file libraryfile and in addition<br />

sends the specified #define directives name1 name2 ... nameN to the file. This<br />

enables, for example, selective use of component model parameters in the library. All<br />

previously introduced #define directives are not valid in libraryfile.<br />

Example: As a simple example, let the following lines<br />

#ifdef a<br />

Print S "a" LF<br />

#endif<br />

#ifdef version<br />

Print <strong>APLAC</strong>VERSION LF<br />

#endif<br />

#ifdef b<br />

Print S "b" LF<br />

#endif<br />

form a file under name libfile. Then the following file<br />

#define b 27<br />

#library libfile a version<br />

Print REAL b LF<br />

yields, after preprocessing, the following input for the <strong>APLAC</strong> Language<br />

Print S "a" LF<br />

Print <strong>APLAC</strong>VERSION LF<br />

Print REAL 27 LF<br />

NOTE: #define b did not affect the library file because it was not mentioned in the line<br />

#library libfile a version.<br />

Any #include-files defined inside libraryfile are first sought from the directory where libraryfile<br />

is stored, and thereafter from the current directory, and the directory list defined<br />

by <strong>APLAC</strong>DIR.<br />

#undef name name must be a symbol, which is previously defined using the #define directive.<br />

name is not replaced in the rest of the file after the #undef directive.<br />

#ver Displays <strong>APLAC</strong> version information.<br />

Expression Mathematical statements composed of integers, real or complex numbers, integer, real<br />

or complex vectors, real or complex matrices, variables, access functions, functions, Math functions<br />

and/or user-defined functions, and operators are called expressions. Several expressions<br />

may be cascaded using a semicolon as a delimiter. In this case the value of the cascaded<br />

expressions is equal to the value of the last expression.<br />

Example:<br />

Declare VAR a b c<br />

Call a=(7*8; b=5; 9);c=a<br />

Print REAL a BL REAL b BL REAL c LF<br />

yields the output<br />

9.000 <strong>5.</strong>000 9.000<br />

Note the effect of parentheses. The example above without parentheses is shown below.<br />

Example:<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.4<br />

Declare VAR a b c<br />

Call a=7*8; b=5; 9;c=a<br />

Print REAL a BL REAL b BL REAL c LF<br />

would output<br />

56.000 <strong>5.</strong>000 56.000<br />

On the other hand, if the parentheses are misplaced as in the following<br />

Example:<br />

Declare VAR a b c<br />

Call a=(7*8; b=5; 9;c=a)<br />

Print REAL a BL REAL b BL REAL c LF<br />

the result is surpringly<br />

0.000 <strong>5.</strong>000 0.000<br />

because there is, in fact, an assignment a = a and thus a preserves its default value 0 due to<br />

the Declare statement.<br />

NOTE: Side effects may occur when using the cascade of expressions as was done above.<br />

Functions A function which gives access to the analyzer and optimizer parameters as well as the<br />

results of the analysis and optimization. A function may be used in expressions. Yield, Get-<br />

Param, and Distortion are examples of functions.<br />

Identifier The optional parameters are composed of identifiers alone or identifiers followed by identifierdependent<br />

information usually composed of other identifiers and/or references to previously<br />

defined objects. In the following<br />

Example:<br />

Var k1=0.99 MIN=0.9 OPT<br />

Ind L1 2 3 10n<br />

Ind L2 6 0 100n<br />

Muc M1 L1 L2 K=k1<br />

a variable, two inductances and a mutual inductance are defined. The optional parameters<br />

above include three identifiers, MIN, OPT and K. MIN is followed by a real-valued expression<br />

(real number in this case), OPT is a pure identifier defining an optimization variable and K is<br />

followed by the previously defined variable k1.<br />

Input File A normal ASCII-file including comments, directives, definitions, and statements understood<br />

by <strong>APLAC</strong> Language is called input file. The structure of the input file is as follows:<br />

Example:<br />

* this is a comment line.<br />

* directives<br />

* definitions and statements, i.e. commands<br />

Analyze $ this is a simple job definition<br />

Sweep $ this begins a versatile job definition<br />

* any lines not containing circuit definition<br />

* all commands here are executed for each sweep point<br />

EndSweep $ this terminates the job definition<br />

Statements and commented lines can be placed anywhere. However, the circuit must have<br />

been completely defined before the first job statement Sweep or Analyze. You may use Sweep<br />

or Analyze alone or combine them. The number of job statements is not limited.<br />

Integer number A normal integer, which may be followed by a scaling factor, such as 21 k.<br />

If the syntax of the <strong>APLAC</strong> Language expects an integer, a real function or a real expression<br />

may also be specified. In these cases, the value of the function or expression is rounded to<br />

the nearest integer. Note that the value of the function or expression is usually evaluated only<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.5<br />

once. Inside Sweep. . . EndSweep block, however, the evaluation takes place for each sweep<br />

point.<br />

Math function A standard function such as sin, sqrt or pow, or an extended library function included<br />

in <strong>APLAC</strong>, such as Csqrt, Fourier or Interpol. The standard functions are written in<br />

lower-case letters while the internal library functions begin with capital letters in this volume.<br />

<strong>APLAC</strong> Language, however, is case insensitive. A math function may be used in expressions.<br />

Name Each object has a unique name, which is symbolic and not case sensitive. If a name includes<br />

blanks, it must be packaged within double quotes. If it begins with a number, it must be<br />

packaged within double quotes, unless it is the name of a Node, branch or component.<br />

Nodes and branches should not share the same name, but can share names with components,<br />

DataFiles, GoalDatas, Models, NPorts, NWAs and Vars. Example: A Var may have the same<br />

name as a node.<br />

If the same name is used for a user-defined function and a variable, the name of the variable<br />

has higher priority in positions where both are allowed. If the name of a predefined function<br />

such as sin is used as a name, then the function must not be used in the same input file.<br />

Every circuit must have a ground node denoted either by GND or 0.<br />

Object Most modules of the <strong>APLAC</strong> program are written as objects. Each type of object is called<br />

a class. Examples of such classes are all the component models, variables, graphics, the<br />

analyzer (the simulation engine), and the optimizer (the design engine). The following classes<br />

are visible to the user: DataFile, GoalData, Model, NPort, NWA and Var.<br />

Operators <strong>APLAC</strong> Language recognizes the operators in the table. The last two columns indicate<br />

whether the operator can be used with real or complex operands.<br />

Symbol Explanation Real number Complex number<br />

* multiplication x x<br />

/ division x x<br />

+ addition x x<br />

- subtraction or unary minus x x<br />

ˆ exponents x x<br />

= assignment x x<br />

< less than x<br />

≤ less than or equal to x<br />

> greater than x<br />

≥ greater than or equal to x<br />

== equal to x<br />

!= not equal to x<br />

and logical and x<br />

or logical or x<br />

; expression delimiter - -<br />

An order of precedence for operators is normal (according to C language). Assignments are<br />

evaluated from right to left and other operations from left to right. The precedence of operators<br />

doesn’t affect the order of evaluation of functions. Functions are always evaluated in order<br />

from left to right.<br />

If one of the operands is complex the whole expression becomes complex. Assignments behave<br />

as in C, returning the assigned value.<br />

The logical operators return either 0.0 (false) or 1.0 (true). An expression is considered true if<br />

its absolute value is greater than 0.<strong>5.</strong> <strong>APLAC</strong> also has an operator for separating expressions:<br />

;. A cascade of expressions separated by ;-operators returns the value of the last expression.<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.6<br />

Real number A normal real number, which may be followed by a scaling factor, e.g., 12.7 G.<br />

If the syntax of the <strong>APLAC</strong> Language expects a real number a real function or a real expression<br />

may be specified.<br />

Scaling factor The scaling factors depend on the #CaseSensitiveUnits directive. By default, real<br />

numbers may have the following case insensitive scaling factors:<br />

PET = 10 15 k = 10 3 u = 10 −6<br />

T = 10 12 % = 10 −2 n = 10 −9<br />

G = 10 9 m = 10 −3 p = 10 −12<br />

MEG = 10 6 mil = 2<strong>5.</strong>4 · 10 −6 f = 10 −15<br />

If the #CaseSensitiveUnits directive has been specified the scaling factors become case sensitive<br />

and are listed below:<br />

E = 10 18 Meg = 10 6 u = 10 −6<br />

P = 10 15 k = 10 3 n = 10 −9<br />

Pet = 10 15 % = 10 −2 p = 10 −12<br />

T = 10 12 m = 10 −3 f = 10 −15<br />

G = 10 9 mil = 2<strong>5.</strong>4 · 10 −6 a = 10 −18<br />

M = 10 6<br />

Note that the case insensitive scaling factors may be followed by units, e.g., 5 nH, 7.2 V and<br />

127 MEGohm, whereas case sensitive scaling factors must be used alone, e.g., 5 n, 7.2 and<br />

127 M. However, mm is an exception and thus, e.g., 2.3 mm is allowed in both cases.<br />

Statement Keywords understood by the programmable <strong>APLAC</strong> Language are called statements.<br />

For example, For, If and Declare are statements.<br />

String Any text is called a string. A string may be closed within double quotes but cannot include a<br />

double quote. See Name for cases where a string must be enclosed within double quotes.<br />

String function A function manipulating strings or operating with string variables is called a string<br />

function. See the example in String variable.<br />

String variable A variable whose value is a string is called a String variable. String variables may<br />

be used in file names and input/output operations.<br />

Example:<br />

Declare STRING file path name<br />

Calc<br />

ReadString(path)<br />

ReadString(name)<br />

strcat(file,path)<br />

strcat(file,"/")<br />

strcat(file,name)<br />

EndCalc<br />

Print STRING "open file:" STRING file LF<br />

OpenFile R file<br />

If path and name receive (from stdin) values ”/aplac/examples” and<br />

”hfet.s2p”, respectively, then the example above yields text<br />

open file:/aplac/examples/hfet.s2p<br />

and opens the given file for reading.<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.7<br />

User-defined functions A function defined using the statement Function is called a user-defined<br />

function. A user-defined function may either be a normal parameterized function returning one<br />

or more values, or it may be an access function. The only difference between user-defined functions<br />

and access functions lies in the fact that access functions must include either a Return. . .<br />

blockor at least one Ret function call. Legal function types include integer, real, complex and<br />

vector. The parameters of the user-defined function have to be of the type real. User-defined<br />

functions may be used in expressions.<br />

If the syntax of the <strong>APLAC</strong> Language expects a function an expression may also be specified.<br />

Whenever an expression is used in place of a function, all delimiters must be closed within<br />

parentheses (see Variable).<br />

Variable (Var) Var is an extension of the normal concept of a variable. A variable may be almost anything:<br />

real number, complex number, functional value, vector of real functional values, statistical<br />

variable, optimization variable or E-series variable.<br />

An explicit variable definition is made using Var or Declare, or closing the definition either within<br />

braces or brackets in places where a variable is expected.<br />

Example:<br />

Var Cpara=1n MIN=0.1n MAX=10n OPT<br />

Cap Cshunt 3 0 Cpara<br />

defines an optimization variable Cpara, which is used by Cap Cshunt. The two definitions<br />

above could also be replaced by the definition below.<br />

Example:<br />

Cap Cshunt 3 0 {Var Cpara=1n MIN=0.1n MAX=10n OPT}<br />

Variables are created automatically, if an expression is written directly (one-dimensional variable),<br />

within parentheses (two-dimensional or complex variable), or within brackets (multidimensional<br />

variable or vector) to the position where a variable is expected. In this case the<br />

specified expression(s) will define the access function of the internal variable. In the multidimensional<br />

case the entries are separated by commas.<br />

Example:<br />

Function Rdep [ 2*sqr(f)+f+1k ]<br />

Var RD FUNC=Rdep<br />

Var Jgen=50 IM=25<br />

Res R 2 0 RD<br />

Curr J 0 2 AC=Jgen<br />

The same example as a shorter version.<br />

Example:<br />

Res R 2 0 (2*sqr(f)+f+1k)<br />

Curr J 0 2 AC=(50,25)<br />

Whenever an expression is used in place of a variable, all delimiters must be closed within<br />

parentheses. Thus, for example, the expression of Res above may also be written as<br />

Example:<br />

Res R 2 0 2*Sqr(f)+f+1k $ correct<br />

or alternatively as<br />

Example:<br />

Res R 2 0 2*sqr(f)+(f + 1k) $ correct<br />

whereas<br />

Example:<br />

Res R 2 0 2*sqr(f)+f + 1k $ wrong<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-6.8<br />

is not acceptable because of the delimiter between f and +.<br />

In its simplest form the automatic creation of a variable is done by introducing only its name in<br />

braces in appropriate place.<br />

Example:<br />

Volt Vbias 3 0 DC {Vbe}<br />

creates the variable Vbe, which has a default value of 1 and may be used, e.g., as a variable in<br />

Sweep.<br />

VCCS VCCS can have several controlling voltages and the output current can be any function of the<br />

controlling voltages. In <strong>APLAC</strong> all analog components are internally modeled using VCCSs.<br />

You can define your own nonlinear models with VCCSs, VCVSs, CCCSs or CCVSs.<br />

A simple static diode model is given. The model obeys the equation<br />

Example:<br />

$ u = CV(0)<br />

i = 10 −14 (e 40u − 1).<br />

VCCS D1 n1 n2 1 n1 n2<br />

+ [10f*(exp(40*CV(0))-1),400f*exp(40*CV(0))]<br />

Furthermore<br />

Example:<br />

Function Rnl [ CV(0)*sqr(CV(1))*CV(2),<br />

+ sqr(CV(1))*CV(2),<br />

+ 2*CV(0)*CV(1)*CV(2),<br />

+ CV(0)*sqr(CV(1)) ]<br />

Var Vcros FUNC=Rnl<br />

VCCS Rout Nout GND 3 N1 GND N1 N2 N3 N7 Vcros<br />

defines a nonlinear voltage-controlled current source having three controlling voltages u0, u1<br />

and u2 between the node pairs (N1,GND), (N1,N2) and (N3,N7), respectively. Source current i<br />

flowing from node Nout to GND obeys the equation<br />

i = u0u 2 1u2.<br />

CV(0) ... CV(2) refer to the controlling voltages. The access function of the VCCS should return<br />

the current and its derivatives with respect to each controlling voltage. These derivatives are<br />

needed for iteration in nonlinear analysis and for linear AC analysis. Without explicit derivatives<br />

<strong>APLAC</strong> calculates the derivates numerically, making analysis slower or even leading to a poor<br />

convergence.<br />

Vector or Matrix A collection of items is called a vector or a matrix. Vectors may be of the type<br />

integer, identifier, real or complex. Matrices can only be of the type real or complex. By default<br />

the vectors and matrices are real.<br />

If the syntax of the <strong>APLAC</strong> Language expects a vector or matrix, a vector (matrix) -valued<br />

function or expression may also be given. If the expression includes delimiters they must be<br />

closed within parentheses (see Variable). Multidimensional variables may also be used in<br />

places where a vector is expected.<br />

General Index Examples Main Page


LINK <strong>Glossary</strong> page APP-7.1<br />

7. LINK <strong>Glossary</strong><br />

AL <strong>APLAC</strong> Language<br />

.amd <strong>APLAC</strong> Mapping Definition file. This file contains the rules for mapping. Also called as the<br />

”rule definition file”.<br />

<strong>APLAC</strong> <strong>Editor</strong> The schematic diagram editor that self-integrates with the <strong>APLAC</strong> Simulator. Components<br />

or blocks, nets (nodes), branches, and model parameters can be manipulated without<br />

limit on the <strong>APLAC</strong> <strong>Editor</strong> drawing sheet, connecting to create complete schematics. The<br />

<strong>APLAC</strong> <strong>Editor</strong> automatically generates an input file for the <strong>APLAC</strong> Simulator.<br />

<strong>APLAC</strong> Simulator The electronic design simulation tool that includes multiple analysis and optimization<br />

methods as well as a Monte Carlo feature. Analysis methods cover DC and AC currents,<br />

frequency and time domains, noise, sensitivity, harmonic balance, and optimization with automatic<br />

statistical support. Pre-defined component models include a variety of bipolar transistors,<br />

diodes and field effect transistors, as well as a broad selection of macro models, passive components<br />

and sources.<br />

AS <strong>APLAC</strong> Simulator<br />

LINK <strong>APLAC</strong> RF IC Design Link, the electronic design integration tool that bridges the gap between<br />

design frameworks and the industry-strength <strong>APLAC</strong> Simulator, supporting third-party<br />

systems such as PowerLogic/PowerPCB.<br />

.asd <strong>APLAC</strong> Simulation Definition file. This is the presentation of the <strong>APLAC</strong> Language file to be<br />

simulated in LINK-specific format. It is close to .i file, but not readable by <strong>APLAC</strong> Simulator.<br />

Attribute In some frameworks, the properties of elements are called attributes. For example, C can<br />

be an attribute for a capacitor, denoting the capacitance of the element. Also Property.<br />

CAD Computer Aided Design<br />

CADE Third-party Computer Aided Design Environment (framework), such as Design Architect or<br />

PowerLogic/PowerPCB. Using the <strong>APLAC</strong> RF IC Design Link, designs from a variety of CAD<br />

frameworks can be imported and used in all types of <strong>APLAC</strong> Simulation.<br />

Component A basic building block in a circuit, with defined current/voltage behavior. Each component<br />

or complex model is specified by a collection of Key/Value pairs in the extracted transition<br />

netlist.<br />

Component library The library in a CAD framework containing netlists that describe a selection of<br />

components for specific design tasks, such as the semiconductor model from a specific vendor.<br />

Design Viewpoint A Design Architect term. Design Viewpoint governs what is visible from the<br />

schematic to the outside world, so with Design Architect you define the Viewpoint as the<br />

schematic name to LINK.<br />

EDA Electronic Design and Automation (a special branch of CAD that deals with the design of electronic<br />

equipment. Also measurement devices are sometimes taken as part of EDA)<br />

JRE Java Runtime Environment, the Java Virtual Machine on which LINK executable runs, enabling<br />

distribution of LINK to various operating systems.<br />

Key In an extracted transition netlist, a key is the data type associated with a value.<br />

Mapping Collection A collection of Mapping Rules associated with a specific CAD framework.<br />

There is typically one Mapping Collection for each component library at a site.<br />

General Index Examples Main Page


<strong>APLAC</strong> Simulator <strong>Glossary</strong> page APP-7.2<br />

Mapping Rule A pre-defined rule used to convert design components from a third-party CAD framework<br />

to <strong>APLAC</strong> Simulator input format.<br />

MG Short for Mentor Graphics<br />

Net (node) Any single group of wires or connections to component pins, that holds one single voltage<br />

(potential).<br />

Property In some frameworks, the attributes of elements are called properties. For example, C can<br />

be a property for a capacitor, denoting the capacitance of the element. Also Attribute.<br />

Schematic The design diagram (or schematic/schema) of an electrical device, in which electrical<br />

components and their connections are represented with symbols, showing only their most important<br />

specifications or parameters. In schematics, components and connections have no<br />

specific three-dimensional shape.<br />

Simulation abstraction Defined parts of a circuit/schematic that do not appear in the final working<br />

device, such as sources, outputs, or loads.<br />

.tnl Transition netlist<br />

Transition netlist A design’s component attributes and connectivity data is extracted from the CAD<br />

environment to the .tnl. Extracted transition netlist data describes component data as sets of<br />

Key/Value pairs. The .tnl is mapped to the <strong>APLAC</strong> netlist.<br />

.tnl element A line in the Transition Netlist .tnl defining one single CAD framework element.<br />

Variable Definition Attribute (VDA) A special attribute that causes a certain property be mapped<br />

automatically as a variable, not with the original (numerical) value. Used especially with those<br />

frameworks where the notion of variables is not supported internally.<br />

Wizard A helper utility in LINK for defining simulation tasks. Wizards ensure that all relevant user<br />

input is collected from the user.<br />

General Index Examples Main Page


FLEXlm <strong>Glossary</strong> page APP-8.1<br />

8. FLEXlm <strong>Glossary</strong><br />

Feature - any part of <strong>APLAC</strong> that requires licensing. For example: kernel <strong>APLAC</strong>, RF option, etc.<br />

License - your legal right to use a feature. FLEXlm controls licensing by controlling feature usage.<br />

Client - <strong>APLAC</strong> is a client for the license server. <strong>APLAC</strong> client installations request licenses from<br />

the license server.<br />

Daemon - the process that serves the clients. Synonymous with the license server and its background<br />

role.<br />

Vendor Daemon - the server process that dispenses licenses for requested <strong>APLAC</strong> software features.<br />

The <strong>APLAC</strong> Solutions Corporation vendor daemon is lm aplac or lm aplac.exe.<br />

lmgrd - the master license server daemon. lmgrd acts as a relay between <strong>APLAC</strong> software and the<br />

<strong>APLAC</strong> Solutions vendor daemon.<br />

Server Node - a computer system running a license server.<br />

License File - a file that defines server nodes that can run license daemons, vendor daemons and<br />

licenses (features) for all supported products.<br />

License File List - a list of license files on UNIX or Windows. A license file list can be supplied<br />

wherever at least one license file is used.<br />

License Key - a 12 to 20 character hexadecimal number authenticating the readable license file text,<br />

ensuring that the license file has not been modified.<br />

License Server - lmgrd and vendor daemon processes. License server refers to the processes, not<br />

the computer hardware (compare Server Node).<br />

lmtools.exe<br />

General Index Examples Main Page


Analysis methods/Common problems page APP-9.1<br />

9. Complete List of <strong>APLAC</strong> 8.10<br />

Examples<br />

Click any example netlist .n or input .i file to open it for simulation or editing. Circuits and results can<br />

also be printed in text or graphical formats.<br />

Examples are documented in .pdf brochures of the same name.<br />

NOTE: UNIX users may be unable to launch non-.pdf files through .pdf links. After viewing the related<br />

brochure, please find the desired example file through the <strong>APLAC</strong> interface.<br />

9.1 Analysis methods/AC<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp1 gain.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp1 gain.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp1 tailor graphics.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp1 tailor graphics.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp2 NDF stability.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp2 NF.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp2 stability basic.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ amp2 stability envelope.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ filter4 gdelay sensitivity.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ filter4 opt Eseries.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ filter4 tuning.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ filter5 response.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ filter5 variable.n<br />

<strong>APLAC</strong>/examples/Analysis methods/AC/ zeropivot ac.n<br />

9.2 Analysis methods/ANN<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/ ANN procedure.n<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/ ANN procedure.pdf<br />

9.2.1 Analysis methods/ANN/JFET<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/JFET/ JFET schema.n<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/JFET/ jfet ann.lib<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/JFET/ jfet create ANNmodel.n<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/JFET/ jfet create data.n<br />

General Index Examples Main Page


Analysis methods/HB 1-TONE/submodels page APP-9.2<br />

9.2.2 Analysis methods/ANN/RSB<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/RSB/ rsb as defmodel.lib<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/RSB/ rsb create ANNmodel.n<br />

<strong>APLAC</strong>/examples/Analysis methods/ANN/RSB/ rsb schema.n<br />

9.3 Analysis methods/Common problems<br />

<strong>APLAC</strong>/examples/Analysis methods/Common problems/ zeropivot ac.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Common problems/ zeropivot dc.n<br />

9.4 Analysis methods/DC<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ dc basic.n<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ dc basic.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ dc sensitivity.n<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ dc sensitivity manually.n<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ dc source power.n<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ voltage divider.n<br />

<strong>APLAC</strong>/examples/Analysis methods/DC/ zeropivot dc.n<br />

9.5 Analysis methods/Graphics<br />

<strong>APLAC</strong>/examples/Analysis methods/Graphics/ grid3d.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Graphics/ m3d.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Graphics/ markers lines drawing styles.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Graphics/ store eps.n<br />

9.6 Analysis methods/HB 1-TONE<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 large signal freq sweep.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 large signal freq sweep.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 power sweep.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 power sweep.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp1 spectrum waveform.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp3 efficiency sweep.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp3 large signal freq sweep.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp3 optimize waveform MC.n<br />

General Index Examples Main Page


Analysis methods/HB 3-TONE page APP-9.3<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp3 power sweep.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp3 spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ amp4 spectrum waveform distortion.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ colpitts oscillator frequency search.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ coupler waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ diode mixer lsss noise.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ diode mixer lsss noise figure temperature.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ diode mixer lsss spectrum.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ doubler1 spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ doubler2 spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ frequency multiplier spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ rectifier spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/ rectifier waveform ripple.n<br />

9.7 Analysis methods/HB 1-TONE/submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ reso.i<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ reso.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ reso.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ transistor.i<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ transistor.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 1-TONE/submodels/ transistor.sub<br />

9.8 Analysis methods/HB 2-TONE<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ amp3 OIP3.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ amp5 OIP3.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ balanced mixer.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ balanced mixer.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ diode mixer spectrum.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ diode mixer spectrum box.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ rx mixer.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/ rx mixer Zin.n<br />

9.9 Analysis methods/HB 2-TONE/submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ diff match.i<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ diff match.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ diff match.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ mixer.i<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ mixer.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ mixer.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ transistor.i<br />

General Index Examples Main Page


Analysis methods/Noise/submodels page APP-9.4<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ transistor.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 2-TONE/submodels/ transistor.sub<br />

9.10 Analysis methods/HB 3-TONE<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 3-TONE/ differential mixer.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 3-TONE/ mixer cell.i<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 3-TONE/ mixer cell.n<br />

<strong>APLAC</strong>/examples/Analysis methods/HB 3-TONE/ mixer cell.sub<br />

9.11 Analysis methods/Library creation<br />

<strong>APLAC</strong>/examples/Analysis methods/Library creation/ backup.lib<br />

<strong>APLAC</strong>/examples/Analysis methods/Library creation/ librarycreation.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Library creation/ librarycreation.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Library creation/ opatest.n<br />

9.12 Analysis methods/Noise<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ MMIC amp NF stability.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ MMIC amp NF stability.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ amp NF.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ amp noise circles.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ amp nonlin noise density.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ m86563v<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ mixer NF.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ osc phasenoise.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ osc phasenoise.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ osc transient phasenoise.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ osc transient phasenoise.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/ transistor.lib<br />

9.12.1 Analysis methods/Noise/leesonsub<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ amplifier.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ amplifier.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ amplifier.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ reso.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ reso.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/leesonsub/ reso.sub<br />

General Index Examples Main Page


Analysis methods/Optimization/filtoptind page APP-9.5<br />

9.12.2 Analysis methods/Noise/submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ diff match.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ diff match.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ diff match.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ mixer.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ mixer.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Noise/submodels/ mixer.sub<br />

9.13 Analysis methods/Optimization<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 ac tran.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 ac tran.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 gain.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 gain.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 gain E-series.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 gain E-series.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 tuning.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp1 tuning.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp flat response.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ amp flat response.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ bpamp.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ correlationopt1.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ correlationopt1.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ correlationopt2.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ correlationopt2.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ file.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ filter1 ac and yield opt.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ filter1 ac and yield opt.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ filter1 multigoaldata.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ filter2 fit response.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ fit circuit to measured.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ fit polynomial.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ model opt.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip hairpin bpfilter.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip hairpin bpfilter.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip powdiv.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip powdiv.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip stubfilter.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ mstrip stubfilter.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ signal.txt<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ sparam files opt.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ sparam files opt.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ system circuit opt.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/ system circuit opt.pdf<br />

General Index Examples Main Page


Analysis methods/Sensitivity page APP-9.6<br />

9.13.1 Analysis methods/Optimization/filtoptcap<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ caplist.txt<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest1.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest10.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest2.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest3.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest4.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest6.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest7.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest8.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptcap/ captest9.s2p<br />

9.13.2 Analysis methods/Optimization/filtoptind<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indlist.txt<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest1.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest10.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest2.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest3.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest4.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest6.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest7.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest8.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/Optimization/filtoptind/ indtest9.s2p<br />

9.14 Analysis methods/S-parameters<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ MMIC amp NF stability.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ MMIC amp NF stability.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ amp.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ amp spar load.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ amp spar store.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ bandpass amp opt.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ bpamp.s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ branchline hybrid.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ branchline hybrid.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ branchline mc.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ branchline mc.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ m86563v<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip hairpin bpfilter.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip hairpin bpfilter.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip powdiv.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip powdiv.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip stubfilter.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ mstrip stubfilter.pdf<br />

General Index Examples Main Page


Analysis methods/Submodels page APP-9.7<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ spar load.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ spar load.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ spar store.n<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ spar store.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/S-parameters/ tres.s2p<br />

9.15 Analysis methods/Sensitivity<br />

<strong>APLAC</strong>/examples/Analysis methods/Sensitivity/ LCfilter synthesis 1200MHz.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Sensitivity/ LCfilter synthesis 140MHz.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Sensitivity/ LCfilter synthesis 20MHz.n<br />

9.16 Analysis methods/Stability<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ MMIC amp NF stability.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ MMIC amp NF stability.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ amp2 NDF stability.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ amp2 stability basic.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ amp2 stability envelope.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ amp3 stability circles and factor.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Stability/ m86563v<strong>5.</strong>s2p<br />

9.17 Analysis methods/Statistical MC<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ MC model build histogram.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ amp1 MC.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ branchline MC.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ branchline MC.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ filter1 MC.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ filter1 yield optimize.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ filter2 yield optimize.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ lotdev histogram.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ oscillator MC.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ powdivider YFA.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ pwl distribution histogram.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ voltdivider yield optimize.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ yield optimize illustration.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/ yieldsens.i<br />

General Index Examples Main Page


Devices/Amplifiers page APP-9.8<br />

9.17.1 Analysis methods/Statistical MC/libraries<br />

<strong>APLAC</strong>/examples/Analysis methods/Statistical MC/libraries/ transistor.lib<br />

9.18 Analysis methods/Submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/ GSM test systemsim.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/ top.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/ top.pdf<br />

9.18.1 Analysis methods/Submodels/submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ amp123.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ amp123.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ amp123.sub<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ gsm input.i<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ gsm input.n<br />

<strong>APLAC</strong>/examples/Analysis methods/Submodels/submodels/ gsm input.sub<br />

9.19 Analysis methods/TRAN<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ HB TRAN SSTD.N<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ PCB.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ PLL.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ analysis basic.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ analysis basic.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ analysis basic 2.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ chuas circuit.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ colpitts oscillator waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ coupler waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ fourier.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ rectifier large cap waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ rectifier waveform.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ transient components.n<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ transient components.pdf<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/ transmission line.n<br />

9.19.1 Analysis methods/TRAN/submodels<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/submodels/ transistor.i<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/submodels/ transistor.n<br />

General Index Examples Main Page


Devices/FET characterization page APP-9.9<br />

<strong>APLAC</strong>/examples/Analysis methods/TRAN/submodels/ transistor.sub<br />

9.20 Devices/Amplifiers<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ MMIC amp NF stability.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ MMIC amp NF stability.pdf<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ PA class B.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ PA class C.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ PA class E.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ RFIC Miller OTA.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp1 gain.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp1 gain.pdf<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp1 large signal freq sweep.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp1 large signal freq sweep.pdf<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp1 spectrum waveform distortion.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp2 stability basic.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp3 power sweep.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ amp4 OIP3.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/ m86563v<strong>5.</strong>s2p<br />

9.20.1 Devices/Amplifiers/RFIC libraries<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/RFIC libraries/ cap.lib<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/RFIC libraries/ mos.lib<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/RFIC libraries/ res.lib<br />

9.20.2 Devices/Amplifiers/submodels<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/submodels/ transistor.i<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/submodels/ transistor.n<br />

<strong>APLAC</strong>/examples/Devices/Amplifiers/submodels/ transistor.sub<br />

9.21 Devices/BJT characterization<br />

<strong>APLAC</strong>/examples/Devices/BJT characterization/ BJT Gummel beta.n<br />

<strong>APLAC</strong>/examples/Devices/BJT characterization/ BJT SYZH.n<br />

<strong>APLAC</strong>/examples/Devices/BJT characterization/ BJT fT.n<br />

<strong>APLAC</strong>/examples/Devices/BJT characterization/ BJT temperature.n<br />

General Index Examples Main Page


Devices/Filters/filtoptcap page APP-9.10<br />

9.21.1 Devices/BJT characterization/libraries<br />

<strong>APLAC</strong>/examples/Devices/BJT characterization/libraries/ rf npn bjt.lib<br />

9.22 Devices/FET characterization<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/ mesfet dc curves.n<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/ mosfet dc curves.n<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/ n fet ft.n<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/ p fet ft.n<br />

9.22.1 Devices/FET characterization/libraries<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/libraries/ fet.lib<br />

<strong>APLAC</strong>/examples/Devices/FET characterization/libraries/ mosfet.lib<br />

9.23 Devices/Filters<br />

<strong>APLAC</strong>/examples/Devices/Filters/ LCfilter synthesis.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ LCfilter synthesis 1200MHz.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ LCfilter synthesis 140MHz.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ LCfilter synthesis 20MHz.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ file.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 MC.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 ac and yield opt.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 ac and yield opt.pdf<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 active.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 multigoaldata.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter1 yield optimize.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter2 fit response.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter3 yield optimize.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter4 gdelay sensitivity.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter4 opt Eseries.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter4 tuning.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter5 response.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter5 variable.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter6 sparam files.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter6 sparam files.pdf<br />

<strong>APLAC</strong>/examples/Devices/Filters/ filter ac and yield opt.pdf<br />

<strong>APLAC</strong>/examples/Devices/Filters/ mstrip hairpin bpfilter.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ mstrip hairpin bpfilter.pdf<br />

<strong>APLAC</strong>/examples/Devices/Filters/ mstrip stubfilter.n<br />

<strong>APLAC</strong>/examples/Devices/Filters/ mstrip stubfilter.pdf<br />

General Index Examples Main Page


Devices/MEMS/beamfiltersub page APP-9.11<br />

9.23.1 Devices/Filters/filtoptcap<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ caplist.txt<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest1.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest10.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest2.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest3.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest4.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest6.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest7.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest8.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptcap/ captest9.s2p<br />

9.23.2 Devices/Filters/filtoptind<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indlist.txt<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest1.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest10.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest2.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest3.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest4.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest<strong>5.</strong>s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest6.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest7.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest8.s2p<br />

<strong>APLAC</strong>/examples/Devices/Filters/filtoptind/ indtest9.s2p<br />

9.24 Devices/MEMS<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-01-dc1.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-01-dc1.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-02-dc2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-02-dc2.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-03-dc3.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-03-dc3.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-04-ac1.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-04-ac1.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-05-ac2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-05-ac2.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-06-tran1.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-06-tran1.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-07-tran2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-07-tran2.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-08-tran3.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-08-tran3.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-09-tran4.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-09-tran4.pdf<br />

General Index Examples Main Page


Devices/MEMS/beamfiltersub page APP-9.12<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-10-hb1.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-10-hb1.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-11-hb2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-11-hb2.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-12-hb3.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-12-hb3.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-13-noise1.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-13-noise1.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-electrical.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-electrical.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-limiter-tilt.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-limiter-tilt.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-limiter.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-contact-limiter.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-accel.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-accel.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-parallel.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-parallel.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-perforated.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-perforated.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-sf-ac.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-sf-ac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-sf-tran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-sf-tran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-tuncap.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-damper-tuncap.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-cf-beam-ac.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-cf-beam-ac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-cf-beam-tran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-cf-beam-tran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-coupled.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-coupled.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-k3.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-k3.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-linear.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-linear.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-tilt.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-reso-tilt.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-sf-damper-ac.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-sf-damper-ac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-sf-damper-tran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-sf-damper-tran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-dc.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-dc.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-general.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-general.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-hb.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-hb.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-parallel.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-parallel.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-tilt-ac.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-tilt-ac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-tilt-tran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ ex-transducer-tilt-tran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterac.n<br />

General Index Examples Main Page


Devices/MEMS/combdrive page APP-9.13<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfiltercv.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfiltercv.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterhb.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterhb.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterhbmeas.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exbeamfilterhbmeas.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchcv.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchcv.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchspar.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchspar.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchtran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ excapacitiveswitchtran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccel.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelac.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelac.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelacg.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelacg.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelbias.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelbias.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelcvdc.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelcvdc.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelcvtran.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearaccelcvtran.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearacceltranpulse.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exlinearacceltranpulse.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormalcontact.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormalgasdamper.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormalgasdamper.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormallimiter.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormaltransducer.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormaltransducer.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormaltransducer2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exnormaltransducer2.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exparallelgasdamper.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ exparallelgasdamper.pdf<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ extiltingcontact.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ extiltinggasdamper.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ extiltinggasdamper2.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ mittaus<strong>5.</strong>txt<br />

9.24.1 Devices/MEMS/beamfiltersub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter0sub.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter0sub.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter0sub.sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter1sub.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter1sub.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfilter1sub.sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfiltersub.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfiltersub.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/beamfiltersub/ beamfiltersub.sub<br />

General Index Examples Main Page


Devices/Mixers page APP-9.14<br />

9.24.2 Devices/MEMS/combdrive<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrive.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrive.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrive.sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrivee.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrivee.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/combdrive/ combdrivee.sub<br />

9.24.3 Devices/MEMS/ex00reso<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ex00reso/ ex-00-reso.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ex00reso/ ex-00-reso.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/ex00reso/ ex-00-reso.sub<br />

9.24.4 Devices/MEMS/mechanicalfiltersub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/mechanicalfiltersub/ mechanicalfiltersub.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/mechanicalfiltersub/ mechanicalfiltersub.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/mechanicalfiltersub/ mechanicalfiltersub.sub<br />

9.24.5 Devices/MEMS/reso4sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso4.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso4.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso4.sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso44.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso44.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso44.sub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso444.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso444.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/reso4sub/ reso444.sub<br />

9.24.6 Devices/MEMS/tiltinggasdampersub<br />

<strong>APLAC</strong>/examples/Devices/MEMS/tiltinggasdampersub/ extiltinggasdampersub.i<br />

<strong>APLAC</strong>/examples/Devices/MEMS/tiltinggasdampersub/ extiltinggasdampersub.n<br />

<strong>APLAC</strong>/examples/Devices/MEMS/tiltinggasdampersub/ extiltinggasdampersub.sub<br />

General Index Examples Main Page


Devices/Multipliers/submodels page APP-9.15<br />

9.25 Devices/Matching<br />

<strong>APLAC</strong>/examples/Devices/Matching/ LC matching.n<br />

<strong>APLAC</strong>/examples/Devices/Matching/ antennamatching.n<br />

9.26 Devices/Mixers<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ RFIC Rx1 mixer.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ RFIC Rx1 mixer Zin.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ RFIC Rx2 mixer.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ RFIC Tx mixer transient.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ balanced mixer.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ balanced mixer.pdf<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ diode mixer spectrum.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/ ratrace mixer 40GHz.n<br />

9.26.1 Devices/Mixers/RFIC libraries<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ cap.lib<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ mos.lib<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ poly phase filter.i<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ poly phase filter.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ poly phase filter.sub<br />

<strong>APLAC</strong>/examples/Devices/Mixers/RFIC libraries/ res.lib<br />

9.26.2 Devices/Mixers/submodels<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ common submodel.i<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ common submodel.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ common submodel.sub<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ diff match.i<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ diff match.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ diff match.sub<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ mixer.i<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ mixer.n<br />

<strong>APLAC</strong>/examples/Devices/Mixers/submodels/ mixer.sub<br />

9.27 Devices/Multipliers<br />

<strong>APLAC</strong>/examples/Devices/Multipliers/ doubler1 spectrum waveform.n<br />

<strong>APLAC</strong>/examples/Devices/Multipliers/ doubler2 spectrum waveform.n<br />

General Index Examples Main Page


Measurements/amps page APP-9.16<br />

9.27.1 Devices/Multipliers/submodels<br />

<strong>APLAC</strong>/examples/Devices/Multipliers/submodels/ reso.i<br />

<strong>APLAC</strong>/examples/Devices/Multipliers/submodels/ reso.n<br />

<strong>APLAC</strong>/examples/Devices/Multipliers/submodels/ reso.sub<br />

9.28 Devices/Oscillators<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/ Colpitts.n<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/ RFIC VCO.n<br />

9.28.1 Devices/Oscillators/VCO libraries<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ cap.lib<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ mos.lib<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ poly phase filter.i<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ poly phase filter.n<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ poly phase filter.sub<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/ res.lib<br />

Devices/Oscillators/VCO libraries/VCO libraries<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/VCO libraries/ cap.lib<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/VCO libraries/ mos.lib<br />

<strong>APLAC</strong>/examples/Devices/Oscillators/VCO libraries/VCO libraries/ res.lib<br />

9.29 Devices/PLL<br />

<strong>APLAC</strong>/examples/Devices/PLL/ pll AC testbench.n<br />

<strong>APLAC</strong>/examples/Devices/PLL/ pll macromodel AC tran.n<br />

<strong>APLAC</strong>/examples/Devices/PLL/ pll step response testbench.n<br />

General Index Examples Main Page


Measurements/bias/more page APP-9.17<br />

9.30 Devices/Switches<br />

<strong>APLAC</strong>/examples/Devices/Switches/ insertionloss.n<br />

<strong>APLAC</strong>/examples/Devices/Switches/ isolation.n<br />

<strong>APLAC</strong>/examples/Devices/Switches/ switchingtime.n<br />

9.31 Measurements/amps<br />

<strong>APLAC</strong>/examples/Measurements/amps/ amplifier.ntf<br />

9.31.1 Measurements/amps/more<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone compression current mode.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone distortion.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone distortion current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone noise.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone noise current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone power.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone power current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 1tone waveform spectrum.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 2tone compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ 2tone compression current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ ac analysis.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ linear2port gain stability.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ linear2port noisecirc noisefig optnfz conjz.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ linear2port sparams conjz grdelay.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ linear bandwidth.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/ linear psrr.ntf<br />

Measurements/amps/more/differential<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone compression diff-current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone compression diff.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone distortion diff.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone distortion diff current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone noise diff.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone noise diff current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone power diff.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 1tone power diff current.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 2tone compression diff.ntf<br />

<strong>APLAC</strong>/examples/Measurements/amps/more/differential/ 2tone compression diff current.ntf<br />

General Index Examples Main Page


Measurements/mixers page APP-9.18<br />

9.32 Measurements/bias<br />

<strong>APLAC</strong>/examples/Measurements/bias/ bjt SYZH.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ bjt ft.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ bjt gummel beta.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ bjt temperature.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ mesfet dc curves.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ mosfet dc curves.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ n fet ft.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ p fet ft.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ transconductance.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/ transient load line.ntf<br />

9.32.1 Measurements/bias/more<br />

<strong>APLAC</strong>/examples/Measurements/bias/more/ bjt dc curves.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/more/ gummel plot.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/more/ npn ft.ntf<br />

<strong>APLAC</strong>/examples/Measurements/bias/more/ pnp ft.ntf<br />

9.33 Measurements/dividers<br />

<strong>APLAC</strong>/examples/Measurements/dividers/ coupler.ntf<br />

<strong>APLAC</strong>/examples/Measurements/dividers/ divider.ntf<br />

9.34 Measurements/filters<br />

<strong>APLAC</strong>/examples/Measurements/filters/ filter bp.ntf<br />

<strong>APLAC</strong>/examples/Measurements/filters/ filter bs.ntf<br />

<strong>APLAC</strong>/examples/Measurements/filters/ filter distortion.ntf<br />

<strong>APLAC</strong>/examples/Measurements/filters/ filter hp.ntf<br />

<strong>APLAC</strong>/examples/Measurements/filters/ filter lp.ntf<br />

9.35 Measurements/generic<br />

<strong>APLAC</strong>/examples/Measurements/generic/ 1-port s-parameters.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ 2-port s-parameters.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ 4-port s-parameters.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ AC multi.ntf<br />

General Index Examples Main Page


Measurements/mixers/more/singleended page APP-9.19<br />

<strong>APLAC</strong>/examples/Measurements/generic/ DC multi.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ HB multi.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ S-param multi.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ ac analysis.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ dc analysis.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ hb 1-tone.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ hb 2-tone-series.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ hb 2-tone.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ hb 3-tone-parallel.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ hb 3-tone-series.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ mixed-mode-2 port-s-parameters.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ optimize 1-port.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ optimize 2-port.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ transient.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ transient fourier.ntf<br />

<strong>APLAC</strong>/examples/Measurements/generic/ transient multi.ntf<br />

9.36 Measurements/mixers<br />

<strong>APLAC</strong>/examples/Measurements/mixers/ mixer.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/ mixer fastIMD3.ntf<br />

9.36.1 Measurements/mixers/more<br />

Measurements/mixers/more/differential<br />

9.36.2 Measurements/mixers/more/differential/down<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down conversiongain.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down ip3.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down isolation.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down noise.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down spectrum.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down vswr.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/down/ diff down vswr lo.ntf<br />

9.36.3 Measurements/mixers/more/differential/up<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up conversiongain.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up ip3.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up isolation.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up noise.ntf<br />

General Index Examples Main Page


Measurements/switches page APP-9.20<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up spectrum.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up vswr.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/differential/up/ diff up vswr lo.ntf<br />

Measurements/mixers/more/singleended<br />

9.36.4 Measurements/mixers/more/singleended/down<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down conversiongain.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down ip3.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down isolation.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down noise.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down spectrum.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down vswr.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/down/ se down vswr lo.ntf<br />

9.36.5 Measurements/mixers/more/singleended/up<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up compression.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up conversiongain.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up ip3.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up isolation.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up noise.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up spectrum.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up vswr.ntf<br />

<strong>APLAC</strong>/examples/Measurements/mixers/more/singleended/up/ se up vswr lo.ntf<br />

9.37 Measurements/models<br />

<strong>APLAC</strong>/examples/Measurements/models/ pindioderc.ntf<br />

9.38 Measurements/oscillators<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/ oscillator.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/ oscillator vsense.ntf<br />

General Index Examples Main Page


System/AM page APP-9.21<br />

9.38.1 Measurements/oscillators/more<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ frequency hb.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ frequency tran.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ oscillator open loop.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ phasenoise hb.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ powerefficiency hb.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ pulling hb.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ pulling tran.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ pushing hb.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ pushing tran.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco fo vs itune.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco fo vs vtune.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco hb itune.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco hb vtune.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco phase noise.ntf<br />

<strong>APLAC</strong>/examples/Measurements/oscillators/more/ vco phase noise itune.ntf<br />

9.39 Measurements/switches<br />

<strong>APLAC</strong>/examples/Measurements/switches/ insertionloss.ntf<br />

<strong>APLAC</strong>/examples/Measurements/switches/ isolation.ntf<br />

<strong>APLAC</strong>/examples/Measurements/switches/ switchingtime.ntf<br />

9.40 System/16-QAM<br />

<strong>APLAC</strong>/examples/System/16-QAM/ 16QAM1.n<br />

<strong>APLAC</strong>/examples/System/16-QAM/ 16QAM1.pdf<br />

<strong>APLAC</strong>/examples/System/16-QAM/ 16QAM2.n<br />

<strong>APLAC</strong>/examples/System/16-QAM/ 16QAM2.pdf<br />

9.41 System/32-TCM<br />

<strong>APLAC</strong>/examples/System/32-TCM/ 32TCM.N<br />

9.42 System/64-QAM<br />

<strong>APLAC</strong>/examples/System/64-QAM/ 64QAM.n<br />

General Index Examples Main Page


System/COSIMULATION page APP-9.22<br />

9.43 System/AGC<br />

<strong>APLAC</strong>/examples/System/AGC/ AGC.n<br />

<strong>APLAC</strong>/examples/System/AGC/ gsm input.i<br />

<strong>APLAC</strong>/examples/System/AGC/ gsm input.n<br />

<strong>APLAC</strong>/examples/System/AGC/ gsm input.sub<br />

9.44 System/AM<br />

<strong>APLAC</strong>/examples/System/AM/ FM AM.n<br />

<strong>APLAC</strong>/examples/System/AM/ FM AM.pdf<br />

9.45 System/BER<br />

<strong>APLAC</strong>/examples/System/BER/ BER.n<br />

<strong>APLAC</strong>/examples/System/BER/ BER SNR.n<br />

<strong>APLAC</strong>/examples/System/BER/ BER SNR.pdf<br />

<strong>APLAC</strong>/examples/System/BER/ QAM BER.N<br />

9.46 System/BLUETOOTH<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ blt.lib<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ ex3 1.n<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ ex3 2.n<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ ex3 3.n<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ ex3 4.n<br />

<strong>APLAC</strong>/examples/System/BLUETOOTH/ ex3 <strong>5.</strong>n<br />

9.47 System/CONSTELLATION<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ 16QAM1.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ 16QAM1.pdf<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ 16QAM2.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ 16QAM2.pdf<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ DQPSK.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ DQPSK.pdf<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ EDGE.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ EDGE.pdf<br />

General Index Examples Main Page


System/FORMULA BASED page APP-9.23<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ constellation1.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ constellation2.n<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ edge bits.txt<br />

<strong>APLAC</strong>/examples/System/CONSTELLATION/ pa9103.txt<br />

9.48 System/COSIMULATION<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ PLL1.n<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ PLL1.pdf<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ PLL2.n<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ PLL2.pdf<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ system circuit opt.n<br />

<strong>APLAC</strong>/examples/System/COSIMULATION/ system circuit opt.pdf<br />

9.49 System/DIGITAL<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ counter.n<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ counter.pdf<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ dacjitter.n<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ dacjitter.pdf<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ deltamodulator.n<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ deltamodulator.pdf<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ digital filter.n<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ digital filter.pdf<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ oscillator.n<br />

<strong>APLAC</strong>/examples/System/DIGITAL/ oscillator.pdf<br />

9.50 System/EYE<br />

<strong>APLAC</strong>/examples/System/EYE/ QPSK.n<br />

<strong>APLAC</strong>/examples/System/EYE/ QPSK.pdf<br />

<strong>APLAC</strong>/examples/System/EYE/ eye.n<br />

9.51 System/FM<br />

<strong>APLAC</strong>/examples/System/FM/ FM AM.n<br />

<strong>APLAC</strong>/examples/System/FM/ FM AM.pdf<br />

<strong>APLAC</strong>/examples/System/FM/ FM receiver1.n<br />

<strong>APLAC</strong>/examples/System/FM/ FM receiver1.pdf<br />

General Index Examples Main Page


System/IQ page APP-9.24<br />

<strong>APLAC</strong>/examples/System/FM/ FM receiver2.n<br />

<strong>APLAC</strong>/examples/System/FM/ FM receiver2.pdf<br />

<strong>APLAC</strong>/examples/System/FM/ QPSK FM transceiver.n<br />

<strong>APLAC</strong>/examples/System/FM/ QPSK FM transceiver.pdf<br />

<strong>APLAC</strong>/examples/System/FM/ differentiator.n<br />

<strong>APLAC</strong>/examples/System/FM/ differentiator.pdf<br />

9.52 System/FORMULA BASED<br />

<strong>APLAC</strong>/examples/System/FORMULA BASED/ recnf.n<br />

<strong>APLAC</strong>/examples/System/FORMULA BASED/ recnf.pdf<br />

<strong>APLAC</strong>/examples/System/FORMULA BASED/ systest.n<br />

<strong>APLAC</strong>/examples/System/FORMULA BASED/ systest.pdf<br />

9.53 System/FREQRESPONSE<br />

<strong>APLAC</strong>/examples/System/FREQRESPONSE/ freq response bandpass.n<br />

<strong>APLAC</strong>/examples/System/FREQRESPONSE/ freq response baseband.n<br />

<strong>APLAC</strong>/examples/System/FREQRESPONSE/ impulse response.n<br />

<strong>APLAC</strong>/examples/System/FREQRESPONSE/ impulse response.pdf<br />

9.54 System/FSK<br />

<strong>APLAC</strong>/examples/System/FSK/ FSK.n<br />

9.55 System/GSM<br />

<strong>APLAC</strong>/examples/System/GSM/ GSMtrans1.n<br />

<strong>APLAC</strong>/examples/System/GSM/ GSMtrans1.pdf<br />

<strong>APLAC</strong>/examples/System/GSM/ GSMtrans2.n<br />

<strong>APLAC</strong>/examples/System/GSM/ GSMtrans2.pdf<br />

9.56 System/IMAGE REJECTION<br />

<strong>APLAC</strong>/examples/System/IMAGE REJECTION/ SSB mixer system.n<br />

<strong>APLAC</strong>/examples/System/IMAGE REJECTION/ image rejection mixer system.n<br />

General Index Examples Main Page


System/SYNCHRONIZATION page APP-9.25<br />

9.57 System/IQ<br />

<strong>APLAC</strong>/examples/System/IQ/ IQmod1.n<br />

<strong>APLAC</strong>/examples/System/IQ/ IQmod1.pdf<br />

<strong>APLAC</strong>/examples/System/IQ/ IQmod2.n<br />

<strong>APLAC</strong>/examples/System/IQ/ IQmod2.pdf<br />

<strong>APLAC</strong>/examples/System/IQ/ bits.txt<br />

9.58 System/PSK<br />

<strong>APLAC</strong>/examples/System/PSK/ binaryDPSK.n<br />

<strong>APLAC</strong>/examples/System/PSK/ binaryDPSK.pdf<br />

9.59 System/PWM<br />

<strong>APLAC</strong>/examples/System/PWM/ PWM.n<br />

9.60 System/QPSK<br />

<strong>APLAC</strong>/examples/System/QPSK/ DQPSK.n<br />

<strong>APLAC</strong>/examples/System/QPSK/ DQPSK.pdf<br />

<strong>APLAC</strong>/examples/System/QPSK/ QPSK.n<br />

<strong>APLAC</strong>/examples/System/QPSK/ QPSK.pdf<br />

<strong>APLAC</strong>/examples/System/QPSK/ QPSK FM transceiver.n<br />

<strong>APLAC</strong>/examples/System/QPSK/ QPSK FM transceiver.pdf<br />

9.61 System/SNR<br />

<strong>APLAC</strong>/examples/System/SNR/ SNR.n<br />

<strong>APLAC</strong>/examples/System/SNR/ SNR.pdf<br />

9.62 System/SPECTRUM<br />

<strong>APLAC</strong>/examples/System/SPECTRUM/ spectrum.n<br />

<strong>APLAC</strong>/examples/System/SPECTRUM/ spectrum.pdf<br />

General Index Examples Main Page


System/WLANa/WLANSubModels page APP-9.26<br />

9.63 System/SYNCHRONIZATION<br />

<strong>APLAC</strong>/examples/System/SYNCHRONIZATION/ synchronization.n<br />

9.64 System/VECTOR SIGNALS<br />

<strong>APLAC</strong>/examples/System/VECTOR SIGNALS/ busdemo1.n<br />

<strong>APLAC</strong>/examples/System/VECTOR SIGNALS/ busdemo1.pdf<br />

<strong>APLAC</strong>/examples/System/VECTOR SIGNALS/ busdemo2.n<br />

<strong>APLAC</strong>/examples/System/VECTOR SIGNALS/ busdemo2.pdf<br />

9.65 System/WAVEFORM<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ IQmod2.n<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ IQmod2.pdf<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ bits.txt<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ waveform.n<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ waveform complex.n<br />

<strong>APLAC</strong>/examples/System/WAVEFORM/ waveform real.n<br />

9.66 System/WLANa<br />

<strong>APLAC</strong>/examples/System/WLANa/ 80211A TB.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ 80211A TB.pdf<br />

<strong>APLAC</strong>/examples/System/WLANa/ IdealReceiver.i<br />

<strong>APLAC</strong>/examples/System/WLANa/ IdealReceiver.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ IdealReceiver.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/ MCMsig.txt<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX 1.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX 1.pdf<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX 2.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX 2.pdf<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX RX 2.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX RX 2.pdf<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX RX form.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a TX RX form.pdf<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a generator.lib<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a transceiver spex channel.i<br />

<strong>APLAC</strong>/examples/System/WLANa/ WLAN80211a transceiver spex channel.n<br />

<strong>APLAC</strong>/examples/System/WLANa/ exampledata.txt<br />

<strong>APLAC</strong>/examples/System/WLANa/ joy bits.txt<br />

<strong>APLAC</strong>/examples/System/WLANa/ mcm im.txt<br />

General Index Examples Main Page


System/WLANb/WLANSubModels page APP-9.27<br />

<strong>APLAC</strong>/examples/System/WLANa/ mcm re.txt<br />

9.66.1 System/WLANa/WLANSubModels<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoding.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoding.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoding.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoeffs.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoeffs.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCoeffs.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCorr.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCorr.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelCorr.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelDeCoding.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelDeCoding.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aChannelDeCoding.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMACFramer.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMACFramer.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMACFramer.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMAC DeFramer.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMAC DeFramer.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aMAC DeFramer.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aOFDM.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aOFDM.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aOFDM.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aPreambleGen.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aPreambleGen.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aPreambleGen.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingDecoder.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingDecoder.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingDecoder.sub<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingSymbolGen.i<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingSymbolGen.n<br />

<strong>APLAC</strong>/examples/System/WLANa/WLANSubModels/ WLAN80211aSignallingSymbolGen.sub<br />

9.67 System/WLANb<br />

<strong>APLAC</strong>/examples/System/WLANb/ WLAN80211b transceiver spex.i<br />

<strong>APLAC</strong>/examples/System/WLANb/ WLAN80211b transceiver spex.n<br />

<strong>APLAC</strong>/examples/System/WLANb/ WLAN80211b transceiver spex unix.n<br />

<strong>APLAC</strong>/examples/System/WLANb/ testdata.txt<br />

9.67.1 System/WLANb/WLANSubModels<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataDecoder.i<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataDecoder.n<br />

General Index Examples Main Page


System/WLANb/WLANSubModels page APP-9.28<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataDecoder.sub<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataSource.i<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataSource.n<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bDataSource.sub<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bRefReceiver.i<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bRefReceiver.n<br />

<strong>APLAC</strong>/examples/System/WLANb/WLANSubModels/ WLAN80211bRefReceiver.sub<br />

General Index Examples Main Page

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!