02.03.2013 Views

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PARP(78)<br />

PARP(82)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

P. <strong>Skands</strong><br />

Evolution of PARP(78) with √ s<br />

PARP(83)<br />

Tun<strong>in</strong>g vs Test<strong>in</strong>g <strong>Model</strong>s<br />

10 3<br />

PARP(78)<br />

Evolution of PARP(83) with √ s<br />

TEST models<br />

Tune parameters <strong>in</strong> several<br />

complementary regions<br />

Consistent model → same<br />

parameters<br />

10<br />

<strong>Model</strong> breakdown → nonuniversal<br />

parameters<br />

3<br />

10 3<br />

(b) PARP(78) vs √ s, Nch ≥ 6<br />

Evolution of PARP(82) with √ Evolution of PARP(78) with s<br />

√ s<br />

PARP(78)<br />

0.5<br />

0.7<br />

0.6<br />

0.5<br />

Multiparton <strong>in</strong>teractions<br />

PARP(82) PARP(78)<br />

Exp=0.25<br />

630 GeV<br />

900 GeV<br />

10 3<br />

IR Regularization<br />

(d) PARP(82) vs √ (a) PARP(78) vs s, Nch ≥ 6<br />

√ s, Nch ≥ 1<br />

√<br />

1800 &<br />

1960 GeV<br />

Regularise cross section with p⊥0 as free parameter<br />

dˆσ<br />

dp2 ∝<br />

⊥<br />

α2s (p2 ⊥ )<br />

p4 →<br />

⊥<br />

α2s (p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2<br />

with energy dependence<br />

p⊥0(ECM) =p ref<br />

<br />

ECM<br />

Eref ɛ 0.4<br />

0.3<br />

0.2<br />

0.1<br />

⊥0 ×<br />

CM<br />

Perugia 0<br />

√ s /GeV<br />

Pythia 6<br />

7 TeV<br />

Matter profile <strong>in</strong> impact-parameter space<br />

gives time-<strong>in</strong>tegrated overlap which determ<strong>in</strong>es level of activity:<br />

simple Gaussian or more peaked variants<br />

0<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

(c) PARP(82) vs √ s, Nch ≥ 1<br />

PARP(83)<br />

(e) PARP(83) vs √ s, Nch ≥ 1<br />

10 3<br />

√ s /GeV<br />

√ s /GeV<br />

0.5<br />

PARP(78)<br />

Figure 1: Evolution of parameters with energy. .<br />

√ √<br />

s /GeVs<br />

/GeV<br />

“Energy Scal<strong>in</strong>g of MB Tunes”, H. Schulz + PS, <strong>in</strong> preparation<br />

ISR and MPI compete for beam momentum → PDF rescal<strong>in</strong>g<br />

+ flavour effects (valence, qq pair companions, . . . )<br />

rrelated primordial k⊥ and colour <strong>in</strong> beam remnant<br />

ced close <strong>in</strong> space–time ⇒ colour rearrangement;<br />

⇒ steeper 〈p⊥〉(nch) 10<br />

PARP(78)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

630 GeV<br />

Evolution of PARP(78) with √ s<br />

630 GeV<br />

900 GeV<br />

900 GeV<br />

Color Reconnection<br />

Strength<br />

10 3<br />

1800 &<br />

1960 GeV<br />

(b) PARP(78) vs √ s, Nch ≥ 6<br />

√ √<br />

PARP(83)<br />

0.5<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 3<br />

(d) PARP(82) vs √ s, Nch ≥ 6<br />

Evolution of PARP(83) with √ s<br />

PARP(83)<br />

Transverse Mass<br />

Distribution<br />

10 3<br />

1800 &<br />

1960 GeV<br />

(f) PARP(83) vs √ s, Nch ≥ 6<br />

Gauss<br />

Perugia 0<br />

Exponential<br />

√ s /GeV<br />

Pythia 6<br />

7 TeV<br />

√ s /GeV<br />

Pythia 6<br />

Perugia 0<br />

7 TeV<br />

√ s /GeV<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!