02.03.2013 Views

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

The Underlying-Event Model in PYTHIA (6&8) - Peter Skands - Cern

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Northwest Terascale Research Projects: <strong>Model</strong><strong>in</strong>g the underly<strong>in</strong>g event and m<strong>in</strong>imum bias events<br />

<strong>The</strong> <strong>Underly<strong>in</strong>g</strong>-<strong>Event</strong> <strong>Model</strong><br />

<strong>in</strong> <strong>PYTHIA</strong> (6&8)<br />

<strong>Peter</strong> <strong>Skands</strong> (CERN)


P. <strong>Skands</strong><br />

<strong>Model</strong>s of Soft-<strong>in</strong>clusive Physics<br />

M<strong>in</strong>-Bias, Zero Bias, etc.<br />

= Experimental trigger conditions<br />

“<strong>The</strong>ory for M<strong>in</strong>-Bias”?<br />

Really = <strong>Model</strong> for ALL INELASTIC<br />

But … how can we do that?<br />

… <strong>in</strong> m<strong>in</strong>imum-bias, we typically do not have a hard scale,<br />

wherefore all observables depend significantly on IR physics …<br />

A) Start from perturbative model (dijets) and extend to IR<br />

B) Start from soft model (Pomerons) and extend to UV<br />

2


P. <strong>Skands</strong><br />

MPI a la <strong>PYTHIA</strong><br />

Multiple Perturbative Parton-Parton Interactions<br />

A) Start from perturbative model (dijets) and extend to IR<br />

pQCD<br />

2→2<br />

= Sum of<br />

≈ Rutherford<br />

(t-channel gluon)<br />

!"#$%&'()*+,'*,-<br />

./.,)&0.%<br />

")&,'(12/)%<br />

Bahr, Butterworth, Seymour: arXiv:0806.2949 [hep-ph]<br />

Parton Shower Cutoff<br />

(for comparison)<br />

Dijet Cross Section<br />

vs pT cutoff<br />

Becomes larger<br />

than total pp<br />

cross section?<br />

At p⊥ ≈ 5 GeV<br />

Lesson from<br />

bremsstrahlung <strong>in</strong><br />

pQCD: divergences<br />

→ fixed-order<br />

unreliable, but<br />

pQCD still ok<br />

if resummed<br />

(unitarity)<br />

→ Resum dijets?<br />

Yes → MPI!<br />

3


P. <strong>Skands</strong><br />

pQCD<br />

2→2<br />

= Sum of<br />

≈ Rutherford<br />

(t-channel gluon)<br />

!"#$%&'()*+,'*,-<br />

./.,)&0.%<br />

")&,'(12/)%<br />

MPI a la <strong>PYTHIA</strong><br />

Multiple Perturbative Parton-Parton Interactions<br />

A) Start from perturbative model (dijets) and extend to IR<br />

Multiparton <strong>in</strong>teractions<br />

Regularise cross section with p ⊥0 as free parameter<br />

IR Regularization<br />

dˆσ<br />

dp 2 ⊥<br />

with energy dependence<br />

Energy Scal<strong>in</strong>g<br />

∝ α2 s (p 2 ⊥ )<br />

p 4 ⊥<br />

p ⊥0(E CM) =p ref<br />

⊥0 ×<br />

→ α2 s (p 2 ⊥0 + p2 ⊥ )<br />

(p 2 ⊥0 + p2 ⊥ )2<br />

<br />

ECM<br />

Eref ɛ CM<br />

Matter profile <strong>in</strong> impact-parameter space<br />

gives time-<strong>in</strong>tegrated overlap which determ<strong>in</strong>es level of activity:<br />

simple Gaussian or more peaked variants<br />

Normalize to<br />

ISR total and cross MPI section: compete for beam momentum → PDF rescal<strong>in</strong>g<br />

+ flavour effects (valence, qq pair companions, . . . )<br />

+ Resum/Unitarize → Probability<br />

+ correlated primordial k⊥ and colour <strong>in</strong> beam remnant<br />

for a 2→2 <strong>in</strong>teraction at xT1 =<br />

Many partons produced close <strong>in</strong> space–time ⇒ colour rearrangement;<br />

reduction → This is of now total our str<strong>in</strong>g basic length (UV & ⇒IR) steeper 2→2 cross 〈p section<br />

⊥〉(nch) See, e.g., new MCnet Review: “General-purpose event generators for LHC physics”, arXiv:1101.2599<br />

4


Questions<br />

Beyond naive factorization:<br />

Correlations & Multi-Parton PDFs<br />

How are the <strong>in</strong>itiators and remnant partons correllated?<br />

• <strong>in</strong> impact parameter?<br />

• <strong>in</strong> flavour?<br />

• <strong>in</strong> x (longitud<strong>in</strong>al momentum)?<br />

• <strong>in</strong> k T (transverse momentum)?<br />

• <strong>in</strong> colour (! str<strong>in</strong>g topologies!)<br />

• What does the beam remnant look like?<br />

• (How) are the showers correlated / <strong>in</strong>tertw<strong>in</strong>ed?<br />

6<br />

Different models<br />

make different ansätze


P. <strong>Skands</strong><br />

Key Ingredients <strong>in</strong> <strong>PYTHIA</strong>’s <strong>Model</strong><br />

Interleaved Evolution<br />

At each step: Competition for x among ISR and MPI<br />

+ <strong>in</strong> pT-ordered model and (optionally) Q-ordered one: showers off the MPI<br />

+ Modifications to subsequent PDFs caused by momentum and (<strong>in</strong> pTordered<br />

model) flavor conservation from preced<strong>in</strong>g <strong>in</strong>teractions<br />

Impact-parameter dependence<br />

Pedestal Effect …<br />

Color Correlations<br />

How does the system Hadronize?<br />

Color connections vs color re-connections … ?<br />

Re-<strong>in</strong>teractions after hadronization?<br />

Initial-State Radiation Multiple Parton Interactions<br />

7


<strong>The</strong> Pedestal Effect<br />

pT = 160 (HP) pT = 6000 (HP)<br />

BIG JETS SIT ON BIG PEDESTALS


P. <strong>Skands</strong><br />

<strong>The</strong> Pedestal Effect<br />

MINIMUM BIAS<br />

pT<br />

2<br />

and Multiple Parton-Parton Interactions<br />

PERIPHERAL<br />

= 1<br />

1<br />

5<br />

+<br />

= 6 / 4 = 1.5<br />

QCD ANALOGUE:<br />

P a r t o n S h o w e r s : r e s u m d i v e r g e n t<br />

perturbative emission cross sections<br />

MPI: resum divergent perturbative<br />

<strong>in</strong>teraction cross sections<br />

CENTRAL<br />

= 3<br />

2<br />

5<br />

1<br />

9


P. <strong>Skands</strong><br />

<strong>The</strong> Pedestal Effect<br />

JET > 5 GeV<br />

Statistically biases<br />

the selection 2 towards<br />

more central events<br />

with more MPI<br />

and Multiple Parton-Parton Interactions<br />

PERIPHERAL<br />

= 1<br />

<strong>The</strong> assumed shape of the<br />

proton affects the rise 1 and<br />

/<br />

5<br />

+<br />

= 4 / 2 = 2<br />

CENTRAL<br />

= 3<br />

2<br />

5<br />

1<br />

10


P. <strong>Skands</strong><br />

<strong>The</strong> Pedestal Effect<br />

JET > 5 GeV<br />

Statistically biases<br />

the selection 2 towards<br />

more central events<br />

with more MPI<br />

and Multiple Parton-Parton Interactions<br />

PERIPHERAL<br />

= 1<br />

<strong>The</strong> assumed shape of the<br />

proton affects the rise 1 and<br />

/<br />

5<br />

+<br />

= 4 / 2 = 2<br />

Can we tell the difference?<br />

CENTRAL<br />

= 3<br />

2<br />

5<br />

1<br />

11


P. <strong>Skands</strong><br />

Dissect<strong>in</strong>g the Pedestal<br />

JET > 5 GeV<br />

Statistically biases<br />

the selection 2 towards<br />

more central events<br />

with more MPI<br />

PERIPHERAL<br />

= 1<br />

<strong>The</strong> assumed shape of the<br />

proton affects the rise 1 and<br />

/<br />

5<br />

+<br />

= 4 / 2 = 2<br />

High Nch<br />

Low pT<br />

More Central<br />

Less Central<br />

CENTRAL<br />

= 3<br />

2<br />

5<br />

1<br />

High pT<br />

peripheral?<br />

12


Possible to do at Tevatron?<br />

P. <strong>Skands</strong><br />

!"#$%&'"%'()'*+,$(-#"+#$.'%<br />

Analyz<strong>in</strong>g the Pedestal?<br />

!"#$%&'(")*+,$"-*<br />

.$/01%$2$"-0*/-*34536*<br />

A?%90=?8*?"*.1&-(BC/%-?"*D"-$%/E-(?"0*/-*-=$*5F@<br />

GH !<br />

-= 6$8-$2


P. <strong>Skands</strong><br />

Other News <strong>in</strong> <strong>PYTHIA</strong> 8<br />

Can choose 2 nd MPI scatter<strong>in</strong>g<br />

Asecondhardprocess<br />

Multiple <strong>in</strong>teractions key aspect<br />

• TwoJets of <strong>PYTHIA</strong> (with TwoBJets s<strong>in</strong>ce > as 20subsample) years.<br />

• PhotonAndJet, Central toTwoPhotons obta<strong>in</strong> agreement with data:<br />

• Charmonium,<br />

Tune A, Professor,<br />

Bottomonium<br />

Perugia,<br />

(colour<br />

. .<br />

octet<br />

.<br />

framework)<br />

• S<strong>in</strong>gleGmZ, S<strong>in</strong>gleW, GmZAndJet, WAndJet<br />

• TopPair, S<strong>in</strong>gleTop<br />

See the <strong>PYTHIA</strong> 8 onl<strong>in</strong>e<br />

documentation, under<br />

Before 8.1 no chance to select character of second <strong>in</strong>teraction.<br />

“A Second Hard Process”<br />

Now free choice of first process (<strong>in</strong>clud<strong>in</strong>g LHA/LHEF)<br />

and second process Rescatter<strong>in</strong>g<br />

comb<strong>in</strong>ed from list:<br />

• TwoJets (with TwoBJets as subsample)<br />

• PhotonAndJet, TwoPhotons<br />

Rescatter<strong>in</strong>g<br />

Often<br />

...but<br />

• Charmonium, Bottomonium (colour octet framework)<br />

assume<br />

should Often<br />

...but<br />

• S<strong>in</strong>gleGmZ, S<strong>in</strong>gleW, GmZAndJet, WAndJet<br />

assume<br />

should<br />

that<br />

also<br />

• TopPair, S<strong>in</strong>gleTop<br />

that<br />

also<br />

MPI =<br />

<strong>in</strong>clude MPI =<br />

<strong>in</strong>clude<br />

Can be expanded among exist<strong>in</strong>g processes as need arises.<br />

Rescatter<strong>in</strong>g<br />

An Same explicit order<br />

By default<br />

model <strong>in</strong> αs,<br />

same<br />

available ∼ same propagators,<br />

phase<br />

<strong>in</strong><br />

space<br />

<strong>PYTHIA</strong> but<br />

cuts<br />

8 • one PDF weight less ⇒ smaller σ<br />

as for “first” hard process<br />

• one PDF weight less ⇒ smaller σ<br />

=⇒ second can be harder than first. ⇒ will be tough to f<strong>in</strong>d direct evidence.<br />

• one jet less ⇒ QCD radiation background 2 → 3 larger than 2 → 4<br />

However, possible to set ˆm and pˆ ⊥ range separately.<br />

⇒ will be tough to f<strong>in</strong>d direct evidence.<br />

Same order <strong>in</strong> αs, ∼ same propagators, but<br />

• one jet less ⇒ QCD radiation background 2 → 3 larger than 2 →<br />

Corke, Sjöstrand, JHEP 01(2010)035<br />

Rescatter<strong>in</strong>g grows with number of “previous” scatter<strong>in</strong>gs:<br />

Tevatron LHC<br />

16


Northwest Terascale Research Projects: <strong>Model</strong><strong>in</strong>g the underly<strong>in</strong>g event and m<strong>in</strong>imum bias events<br />

Color Space<br />

<strong>The</strong> <strong>Underly<strong>in</strong>g</strong>-<strong>Event</strong> <strong>Model</strong> <strong>in</strong> <strong>PYTHIA</strong> (6&8)


Questions<br />

Colour Connections<br />

Each MPI exchanges color between the beams<br />

! <strong>The</strong> colour flow determ<strong>in</strong>es the hadroniz<strong>in</strong>g str<strong>in</strong>g topology<br />

• Each MPI, even when soft, is a color spark<br />

• F<strong>in</strong>al distributions crucially depend on color space<br />

18<br />

Different models<br />

make different ansätze


Questions<br />

Colour Connections<br />

Each MPI exchanges color between the beams<br />

! <strong>The</strong> colour flow determ<strong>in</strong>es the hadroniz<strong>in</strong>g str<strong>in</strong>g topology<br />

• Each MPI, even when soft, is a color spark<br />

• F<strong>in</strong>al distributions crucially depend on color space<br />

19<br />

Different models<br />

make different ansätze


P. <strong>Skands</strong><br />

<strong>Model</strong>s<br />

Extremely difficult problem<br />

Here I just remark on currently available models/options and what I<br />

th<strong>in</strong>k is good/bad about them<br />

1. Most naive<br />

Each MPI ~ <strong>in</strong>dependent → start from picture of each system as<br />

separate s<strong>in</strong>glets?<br />

E.g., <strong>PYTHIA</strong> 6 with PARP(85)=0.0 & JIMMY/Herwig++<br />

This is physically <strong>in</strong>consistent with the exchanged objects be<strong>in</strong>g<br />

gluons<br />

Instead, it corresponds to the exchange of s<strong>in</strong>glets, i.e., Pomerons (uncut ones)<br />

→ In this picture, all the MPI are diffractive!<br />

This is just wrong.<br />

20


P. <strong>Skands</strong><br />

<strong>Model</strong>s<br />

2. Valence quarks plus t-channel gluons?<br />

Arrange orig<strong>in</strong>al beam baryon as (qq)-(q) system<br />

Assume MPI all <strong>in</strong>itiated by gluons → connect them as (qq)-g-g-g-(q)<br />

In which order? Some options:<br />

A) Random (Perugia 2010 & 2011)<br />

B) Accord<strong>in</strong>g to rapidity of hard scatter<strong>in</strong>g systems (Perugia 0)<br />

C) By hand, accord<strong>in</strong>g to rapidity of each outgo<strong>in</strong>g gluon (Tune A, DW, Q20, … + HIJING?)<br />

(pT-ordered <strong>PYTHIA</strong> also <strong>in</strong>cludes quark exhanges, but details not important)<br />

OK, may be more physical …<br />

But both A and B drastically fail to predict, e.g., the observed rise of the <br />

(Nch) distribution (and C “cheats” by look<strong>in</strong>g at the f<strong>in</strong>al-state gluons)<br />

This must still be wrong (though less obvious)<br />

21


P. <strong>Skands</strong><br />

Color Reconnections?<br />

Rapidity<br />

NC → ∞<br />

22


P. <strong>Skands</strong><br />

Color Reconnections?<br />

Rapidity<br />

Do the systems really<br />

hadronize <strong>in</strong>dependently?<br />

23


P. <strong>Skands</strong><br />

Color Reconnections?<br />

Rapidity<br />

How “fat” are color l<strong>in</strong>es?<br />

24


P. <strong>Skands</strong><br />

In reality:<br />

Color Reconnections?<br />

<strong>The</strong> color wavefunction is NC = 3 when it collapses<br />

One parton “far away” from others will only see the sum of their<br />

colours → coherence<br />

On top of this, the systems may merge/fuse/<strong>in</strong>teract with<br />

genu<strong>in</strong>e dynamics (e.g., str<strong>in</strong>g area law)<br />

And they may cont<strong>in</strong>ue to do so even after hadronization<br />

Elastically: hydrodynamics? Collective flow?<br />

Inelastically: re-<strong>in</strong>teractions?<br />

This may not be wrong. But it sure sounds difficult!<br />

25


P. <strong>Skands</strong><br />

CR <strong>in</strong> <strong>PYTHIA</strong><br />

Old <strong>Model</strong> (<strong>PYTHIA</strong> 6, Tune A and friends)<br />

Outgo<strong>in</strong>g gluons from MPI systems have no<br />

<strong>in</strong>dependent color flow<br />

Forced to just form “k<strong>in</strong>ks” on already exist<strong>in</strong>g str<strong>in</strong>g<br />

systems<br />

Inserted <strong>in</strong> the places where they <strong>in</strong>crease the<br />

“str<strong>in</strong>g length” (the “Lambda” measure) the least<br />

Looks like it does a good job on (Nch) at least<br />

Brute force. No dynamical picture.<br />

26


P. <strong>Skands</strong><br />

CR <strong>in</strong> <strong>PYTHIA</strong><br />

pT-Ordered <strong>Model</strong> (<strong>in</strong> <strong>PYTHIA</strong> 6.4): Colour Anneal<strong>in</strong>g<br />

Consider each color-anticolor pair<br />

If (reconnect), sever the color connection<br />

Different variants use different reconnect probabilities<br />

Fundamental str<strong>in</strong>g-str<strong>in</strong>g reconnect probability PARP(78)<br />

Enhanced by either nMPI (Seattle type) or local str<strong>in</strong>g density (Paquis type)<br />

For all severed connections, construct new color topology:<br />

Fig. 2: Type I colour anneal<strong>in</strong>g <strong>in</strong> a schematic scatter<strong>in</strong>g. Black dots: beam remnants. Smaller dots:<br />

Consider the parton which is currently “furthest away” (<strong>in</strong> λ) from all others<br />

gluons emitted <strong>in</strong> the perturbative cascade. All objects here are colour octets, hence each dot must be connected to<br />

two str<strong>in</strong>g pieces. Upper: the first connection made. Lower: the f<strong>in</strong>al str<strong>in</strong>g topology.<br />

M. Sandhoff & PS, <strong>in</strong> hep-ph/0604120<br />

“Sees” the sum of the others → connect it to the closest severed parton to it.<br />

where runs over the number of colour-anticolour pairs (dipoles) <strong>in</strong> the event, , is the<br />

Strike it off the list and consider the next-furthest parton, etc.<br />

<strong>in</strong>variant mass of the ’th dipole, and is a constant normalisation factor of order the hadronisation<br />

scale. <strong>The</strong> average multiplicity produced by str<strong>in</strong>g fragmentation is proportional to the<br />

logarithm of . Technically, the model implementation starts by eras<strong>in</strong>g the colour connections<br />

4<br />

27


P. <strong>Skands</strong><br />

<br />

<strong>The</strong> Effect of CR<br />

If driven by<br />

Dependence<br />

m<strong>in</strong>imization<br />

on b profile<br />

10 Gaussian<br />

2<br />

of Area Law<br />

Exponential<br />

or similar:<br />

Reduces multiplicity<br />

Increases pT<br />

10<br />

May or may not:<br />

Charged Particle Multiplicities <strong>in</strong> pp<br />

no MPI<br />

Create rapidity gaps → overcount diffraction?<br />

1<br />

10 2<br />

All<br />

|y|


Northwest Terascale Research Projects: <strong>Model</strong><strong>in</strong>g the underly<strong>in</strong>g event and m<strong>in</strong>imum bias events<br />

Diffraction<br />

<strong>The</strong> <strong>Underly<strong>in</strong>g</strong>-<strong>Event</strong> <strong>Model</strong> <strong>in</strong> <strong>PYTHIA</strong> (6&8)


P. <strong>Skands</strong><br />

Diffraction<br />

Framework needs test<strong>in</strong>g and tun<strong>in</strong>g<br />

E.g., <strong>in</strong>terplay between non-diffractive and diffractive components<br />

+ LEP tun<strong>in</strong>g used directly for diffractive model<strong>in</strong>g<br />

Hadronization preceded by shower at LEP, but not <strong>in</strong> diffraction → dedicated<br />

diffraction tun<strong>in</strong>g of fragmentation pars?<br />

Study this hump<br />

+ Room for new models,<br />

e.g., KMR (SHERPA)<br />

Others?<br />

31


Northwest Terascale Research Projects: <strong>Model</strong><strong>in</strong>g the underly<strong>in</strong>g event and m<strong>in</strong>imum bias events<br />

Energy Scal<strong>in</strong>g<br />

<strong>The</strong> <strong>Underly<strong>in</strong>g</strong>-<strong>Event</strong> <strong>Model</strong> <strong>in</strong> <strong>PYTHIA</strong> (6&8)


P. <strong>Skands</strong><br />

Multiple Parton Interactions (MPI)<br />

Energy Scal<strong>in</strong>g<br />

Multiparton <strong>in</strong>teractions<br />

Asecondhardprocess<br />

Regularise cross section with p ⊥0 as free parameter<br />

Multiple <strong>in</strong>teractions key aspect<br />

dˆσ<br />

of <strong>PYTHIA</strong> s<strong>in</strong>ce > 20 years.<br />

dp<br />

Central to obta<strong>in</strong> agreement with data:<br />

Tune A, Professor, Perugia, . . .<br />

2 ∝<br />

⊥<br />

α2s (p2 ⊥ )<br />

p4 ⊥<br />

IR Regularization<br />

with energy dependence<br />

Energy Scal<strong>in</strong>g<br />

p ⊥0(E CM) =p ref<br />

⊥0 ×<br />

Before 8.1 no chance to select character of second <strong>in</strong>teraction.<br />

Now free choice of first process (<strong>in</strong>clud<strong>in</strong>g LHA/LHEF)<br />

and second process comb<strong>in</strong>ed from list:<br />

• TwoJets (with TwoBJets as subsample)<br />

Tevatron • PhotonAndJet, tunes appear TwoPhotons to be<br />

“low” • Charmonium, on LHC data Bottomonium (colour octet framework)<br />

• S<strong>in</strong>gleGmZ, S<strong>in</strong>gleW, GmZAndJet, WAndJet<br />

Problem • TopPair, for “global” S<strong>in</strong>gleTop tunes.<br />

Poor Can man’s be short-term expanded among solution: exist<strong>in</strong>g processes as need arises.<br />

dedicated LHC tunes<br />

By default same phase space cuts as for “first” hard process<br />

=⇒ second can be harder than first.<br />

However, possible to set ˆm and pˆ ⊥ range separately.<br />

From Tevatron to LHC<br />

→ α2 s (p 2 ⊥0 + p2 ⊥ )<br />

(p 2 ⊥0 + p2 ⊥ )2<br />

ɛ ECM<br />

E ref<br />

CM<br />

Matter profile <strong>in</strong> impact-parameter space<br />

gives time-<strong>in</strong>tegrated overlap which determ<strong>in</strong>es level of activity:<br />

simple Gaussian or more peaked variants<br />

See, e.g., new MCnet Review: “General-purpose event generators for LHC physics”, arXiv:1101.2599<br />

ISR and MPI compete for beam momentum → PDF rescal<strong>in</strong>g<br />

+ flavour effects (valence, qq pair companions, . . . )<br />

+ correlated primordial k⊥ and colour <strong>in</strong> beam remnant<br />

Many partons produced close <strong>in</strong> space–time ⇒ colour rearrangement;<br />

reduction of total str<strong>in</strong>g length ⇒ steeper 〈p⊥〉(nch) E.g., Rick Field<br />

33


PARP(78)<br />

PARP(82)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

P. <strong>Skands</strong><br />

Evolution of PARP(78) with √ s<br />

PARP(83)<br />

Tun<strong>in</strong>g vs Test<strong>in</strong>g <strong>Model</strong>s<br />

10 3<br />

PARP(78)<br />

Evolution of PARP(83) with √ s<br />

TEST models<br />

Tune parameters <strong>in</strong> several<br />

complementary regions<br />

Consistent model → same<br />

parameters<br />

10<br />

<strong>Model</strong> breakdown → nonuniversal<br />

parameters<br />

3<br />

10 3<br />

(b) PARP(78) vs √ s, Nch ≥ 6<br />

Evolution of PARP(82) with √ Evolution of PARP(78) with s<br />

√ s<br />

PARP(78)<br />

0.5<br />

0.7<br />

0.6<br />

0.5<br />

Multiparton <strong>in</strong>teractions<br />

PARP(82) PARP(78)<br />

Exp=0.25<br />

630 GeV<br />

900 GeV<br />

10 3<br />

IR Regularization<br />

(d) PARP(82) vs √ (a) PARP(78) vs s, Nch ≥ 6<br />

√ s, Nch ≥ 1<br />

√<br />

1800 &<br />

1960 GeV<br />

Regularise cross section with p⊥0 as free parameter<br />

dˆσ<br />

dp2 ∝<br />

⊥<br />

α2s (p2 ⊥ )<br />

p4 →<br />

⊥<br />

α2s (p2 ⊥0 + p2 ⊥ )<br />

(p2 ⊥0 + p2 ⊥ )2<br />

with energy dependence<br />

p⊥0(ECM) =p ref<br />

<br />

ECM<br />

Eref ɛ 0.4<br />

0.3<br />

0.2<br />

0.1<br />

⊥0 ×<br />

CM<br />

Perugia 0<br />

√ s /GeV<br />

Pythia 6<br />

7 TeV<br />

Matter profile <strong>in</strong> impact-parameter space<br />

gives time-<strong>in</strong>tegrated overlap which determ<strong>in</strong>es level of activity:<br />

simple Gaussian or more peaked variants<br />

0<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

(c) PARP(82) vs √ s, Nch ≥ 1<br />

PARP(83)<br />

(e) PARP(83) vs √ s, Nch ≥ 1<br />

10 3<br />

√ s /GeV<br />

√ s /GeV<br />

0.5<br />

PARP(78)<br />

Figure 1: Evolution of parameters with energy. .<br />

√ √<br />

s /GeVs<br />

/GeV<br />

“Energy Scal<strong>in</strong>g of MB Tunes”, H. Schulz + PS, <strong>in</strong> preparation<br />

ISR and MPI compete for beam momentum → PDF rescal<strong>in</strong>g<br />

+ flavour effects (valence, qq pair companions, . . . )<br />

rrelated primordial k⊥ and colour <strong>in</strong> beam remnant<br />

ced close <strong>in</strong> space–time ⇒ colour rearrangement;<br />

⇒ steeper 〈p⊥〉(nch) 10<br />

PARP(78)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

630 GeV<br />

Evolution of PARP(78) with √ s<br />

630 GeV<br />

900 GeV<br />

900 GeV<br />

Color Reconnection<br />

Strength<br />

10 3<br />

1800 &<br />

1960 GeV<br />

(b) PARP(78) vs √ s, Nch ≥ 6<br />

√ √<br />

PARP(83)<br />

0.5<br />

0<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

10 3<br />

(d) PARP(82) vs √ s, Nch ≥ 6<br />

Evolution of PARP(83) with √ s<br />

PARP(83)<br />

Transverse Mass<br />

Distribution<br />

10 3<br />

1800 &<br />

1960 GeV<br />

(f) PARP(83) vs √ s, Nch ≥ 6<br />

Gauss<br />

Perugia 0<br />

Exponential<br />

√ s /GeV<br />

Pythia 6<br />

7 TeV<br />

√ s /GeV<br />

Pythia 6<br />

Perugia 0<br />

7 TeV<br />

√ s /GeV<br />

34


P. <strong>Skands</strong><br />

Nota Bene<br />

Crucial Task for run at 2.8 TeV<br />

Make systematic studies to resolve<br />

possible Tevatron/LHC tension<br />

Measure regions that <strong>in</strong>terpolate between Tevatron and LHC<br />

E.g., start from same phase-space region as CDF<br />

|η| < 1.0 pT > 0.4 GeV<br />

35


P. <strong>Skands</strong><br />

<strong>Underly<strong>in</strong>g</strong> <strong>Event</strong><br />

Compromise between Tevatron and LHC?<br />

“Perugia 2010” : Larger UE at Tevatron → better at LHC<br />

<strong>PYTHIA</strong> 6 @ 1.8 TeV<br />

<strong>PYTHIA</strong> 6<br />

Recommended:<br />

Perugia 2010<br />

(or dedicated LHC tunes AMBT1, Z1)<br />

For more on tun<strong>in</strong>g <strong>PYTHIA</strong> 6, see<br />

PS, arXiv:1005.3457<br />

(Plots from mcplots.cern.ch)<br />

<strong>PYTHIA</strong> 6 @ 7 TeV<br />

(next iteration: fusion between Perugia 2010 and AMBT1, Z1?)<br />

36


P. <strong>Skands</strong><br />

<strong>PYTHIA</strong> 6 @ 1.8 TeV<br />

<strong>PYTHIA</strong> 8 @ 1.8 TeV<br />

<strong>Underly<strong>in</strong>g</strong> <strong>Event</strong><br />

<strong>PYTHIA</strong> 6<br />

Recommended:<br />

Perugia 2010 (→ 2011)<br />

(or dedicated LHC tunes AMBT1, Z1)<br />

For more on tun<strong>in</strong>g <strong>PYTHIA</strong> 6, see<br />

PS, arXiv:1005.3457<br />

<strong>PYTHIA</strong> 8<br />

Recommended:<br />

Tune 4C<br />

(probably default from next version)<br />

(Also has damped diffraction<br />

follow<strong>in</strong>g ATLAS-CONF-2010-048)<br />

For more on tun<strong>in</strong>g <strong>PYTHIA</strong> 8, see<br />

Corke, Sjostrand, arXiv:1011.1759<br />

(Plots from mcplots.cern.ch)<br />

<strong>PYTHIA</strong> 6 @ 7 TeV<br />

<strong>PYTHIA</strong> 8 @ 7 TeV<br />

37


P. <strong>Skands</strong><br />

Summary<br />

<strong>PYTHIA</strong>6 is w<strong>in</strong>d<strong>in</strong>g down<br />

Supported but not developed<br />

Still ma<strong>in</strong> option for current run (sigh)<br />

But not after long shutdown 2013!<br />

<strong>PYTHIA</strong>8 is the natural successor<br />

Already several improvements over <strong>PYTHIA</strong>6 on soft physics<br />

(<strong>in</strong>clud<strong>in</strong>g modern range of PDFs (CTEQ6, LO*, etc) <strong>in</strong> standalone version)<br />

Though still a few th<strong>in</strong>gs not yet carried over (such as ep, some SUSY, etc)<br />

If you want new features (e.g., x-dependent proton size, rescatter<strong>in</strong>g, ψ’,<br />

MadGraph-5 and VINCIA <strong>in</strong>terfaces, …) then be prepared to use <strong>PYTHIA</strong>8<br />

Provide Feedback, both what works and what does not<br />

Do your own tunes to data and tell outcome<br />

<strong>The</strong>re is no way back!<br />

Recommended for <strong>PYTHIA</strong> 6:<br />

Global: “Perugia 2010” (MSTP(5)=327)<br />

→ Perugia 2011 (MSTP(5)=350)<br />

+ LHC MB: “AMBT1” (MSTP(5)=340)<br />

+ LHC UE “Z1” (MSTP(5)=341)<br />

Recommended for <strong>PYTHIA</strong> 8:<br />

“Tune 4C” (Tune:pp = 5)<br />

38


Northwest Terascale Research Projects: <strong>Model</strong><strong>in</strong>g the underly<strong>in</strong>g event and m<strong>in</strong>imum bias events<br />

Additional Slides<br />

Diffraction, Identified Particles, Baryon Transport, Tunes


P. <strong>Skands</strong><br />

Tun<strong>in</strong>g of <strong>PYTHIA</strong> 8<br />

Tun<strong>in</strong>g to e+e- closely related to p⊥-ordered <strong>PYTHIA</strong> 6.4. A few<br />

iterations already. First tun<strong>in</strong>g by Professor (Hoeth) → FSR ok?<br />

C Parameter<br />

Out-ofplane<br />

pT<br />

(Plots from mcplots.cern.ch)<br />

40


P. <strong>Skands</strong><br />

(Identified Particles)<br />

Interest<strong>in</strong>g discrepancies <strong>in</strong> strange sector<br />

+ problems with Λ/K and s spectra also at LEP?<br />

Grows worse (?) for multi-strange baryons<br />

Flood of LHC data now com<strong>in</strong>g <strong>in</strong>!<br />

Interest<strong>in</strong>g to do systematic LHC vs LEP studies<br />

41


P. <strong>Skands</strong><br />

<strong>PYTHIA</strong> 8 Tune Parameters<br />

42


P. <strong>Skands</strong><br />

Strangeness Tunable Paramters<br />

Flavor Sector<br />

(<strong>The</strong>se do not affect pT spectra, apart from via feed-down)<br />

Ma<strong>in</strong> Quantity <strong>PYTHIA</strong> 6 <strong>PYTHIA</strong> 8<br />

s/u K/π PARJ(2) Str<strong>in</strong>gFlav:probStoUD<br />

Baryon/Meson p/π PARJ(1) Str<strong>in</strong>gFlav:probQQtoQ<br />

Additional Strange Baryon Suppr. Λ/p PARJ(3) Str<strong>in</strong>gFlav:probSQtoQQ<br />

Baryon-3/2 / Baryon-1/2 ∆/p, …<br />

PARJ(4) ,<br />

PARJ(18)<br />

Str<strong>in</strong>gFlav:probQQ1toQQ0<br />

Str<strong>in</strong>gFlav:decupletSup<br />

Vector/Scalar (non-strange) \rho/π PARJ(11) Str<strong>in</strong>gFlav:mesonUDvector<br />

Vector/Scalar (strange) K * /K PARJ(12) Str<strong>in</strong>gFlav:mesonSvector<br />

Note: both programs have options for c and b, for special baryon production (lead<strong>in</strong>g and “popcorn”) and for<br />

higher excited mesons. <strong>PYTHIA</strong> 8 more flexible than <strong>PYTHIA</strong> 6. Big uncerta<strong>in</strong>ties, see documentation.<br />

For pT spectra, ma<strong>in</strong> parameters are shower folded with: longitud<strong>in</strong>al and transverse<br />

fragmentation function (Lund a and b parameters and pT broaden<strong>in</strong>g (PARJ(41,42,21)),<br />

with possibility for larger a for Baryons <strong>in</strong> <strong>PYTHIA</strong> 8, see “Fragmentation” <strong>in</strong> onl<strong>in</strong>e docs).<br />

43


P. <strong>Skands</strong><br />

UE Contribution to Jet Shapes<br />

44


Corrections (secondaries/feed-down) 0.6%<br />

Total 1.4%<br />

Baryon Transport<br />

217<br />

LESS than<br />

221<br />

Perugia-SOFT<br />

225<br />

(at least for<br />

228<br />

protons, <strong>in</strong> central<br />

231<br />

region)<br />

236<br />

But MORE<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

218<br />

219<br />

220<br />

222<br />

223<br />

224<br />

209<br />

210<br />

226<br />

211<br />

227<br />

212<br />

213<br />

229<br />

214<br />

230<br />

215<br />

216<br />

232<br />

217<br />

233<br />

218<br />

234<br />

219<br />

235<br />

220<br />

221<br />

237<br />

222<br />

238<br />

223<br />

239<br />

224<br />

<strong>The</strong> ma<strong>in</strong> sources of systematic uncerta<strong>in</strong>ties are the<br />

detector material budget, the (anti)proton reaction cross<br />

section, the subtraction of secondary protons and the accuracy<br />

of the detector response simulations (see Table I).<br />

<strong>The</strong> amount of material <strong>in</strong> the central part of ALICE<br />

is very low, correspond<strong>in</strong>g to about 10% of a radiation<br />

length<br />

TABLE<br />

on average<br />

I. Systematic<br />

between<br />

uncerta<strong>in</strong>ties<br />

the vertex<br />

of<br />

and<br />

the<br />

the<br />

p/p<br />

active<br />

ratio.<br />

volume<br />

of the TPC. Systematic It has beenUncerta<strong>in</strong>ty studied with collision data<br />

and adjusted Material <strong>in</strong> the budget simulation based on the 0.5% analysis of<br />

photon conversions. Absorption cross <strong>The</strong>section current simulation 0.8% reproduces<br />

Elastic cross section 0.8%<br />

the amount and spatial distribution of reconstructed con-<br />

Analysis cuts 0.4%<br />

version po<strong>in</strong>ts Corrections <strong>in</strong> great (secondaries/feed-down) detail, with a relative 0.6% accuracy of<br />

a few percent. Total Based on these studies, we 1.4% assign a systematic<br />

uncerta<strong>in</strong>ty of 7% to the material budget. By<br />

chang<strong>in</strong>g the material <strong>in</strong> the simulation by this amount,<br />

we<strong>The</strong> f<strong>in</strong>dma<strong>in</strong> a variation sources of of thesystematic f<strong>in</strong>al ratiouncerta<strong>in</strong>ties R of less thanare 0.5%. the<br />

detector <strong>The</strong> experimentally material budget, measured the (anti)proton p–A reaction reaction cross cross sections<br />

section, arethe determ<strong>in</strong>ed subtraction with ofasecondary typical accuracy protonsbetter and the than ac-<br />

5% curacy [17]. ofWe theassign detector a 10% response uncerta<strong>in</strong>ty simulations to the (see absorption Table I).<br />

correction <strong>The</strong> amount as calculated of materialwith <strong>in</strong> the FLUKA, centralwhich part leads of ALICE to a<br />

0.8% is very uncerta<strong>in</strong>ty low, correspond<strong>in</strong>g <strong>in</strong> the ratioto R. about By compar<strong>in</strong>g 10% of aGEANT3 radiation<br />

with length FLUKA on average and with between the experimentally the vertex andmeasured the activeelas- voltic<br />

ume cross-sections, of the TPC. It thehas correspond<strong>in</strong>g been studieduncerta<strong>in</strong>ty with collision wasdata estimated<br />

and adjusted to be <strong>in</strong> 0.8%, the which simulation corresponds based onto the theanalysis difference of<br />

between photon conversions. the correction <strong>The</strong> factors current calculated simulation with reproduces the two<br />

models. the amount and spatial distribution of reconstructed conversion<br />

By chang<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong>the great event detail, selection, with a relative analysisaccuracy cuts and of<br />

track a few quality percent. requirements Based on these with<strong>in</strong> studies, reasonable we assign ranges, a sys- we<br />

f<strong>in</strong>d tematic a maximum uncerta<strong>in</strong>ty deviation of 7% of tothe theresults material of 0.4%, budget. which By<br />

we chang<strong>in</strong>g assignthe as systematic material <strong>in</strong> uncerta<strong>in</strong>ty the simulation to the by this accuracy amount, of<br />

the we f<strong>in</strong>d detector a variation simulation of the and f<strong>in</strong>al analysis ratio Rcorrections. of less than 0.5%.<br />

<strong>The</strong> uncerta<strong>in</strong>ty experimentally result<strong>in</strong>g measured fromp–A the subtraction reaction cross of secondary<br />

tions are protons determ<strong>in</strong>ed and from withthe a typical feed-down accuracy corrections better than was<br />

estimated 5% [17]. We to be assign 0.6% a by 10% us<strong>in</strong>g uncerta<strong>in</strong>ty differentto functional the absorption forms<br />

for correction the background as calculated subtraction with FLUKA, and for which the contribution leads to a<br />

of 0.8% theuncerta<strong>in</strong>ty hyperon decay <strong>in</strong> the products. ratio R. By compar<strong>in</strong>g GEANT3<br />

with <strong>The</strong>FLUKA contribution and with of the diffractive experimentally reactions measured to our f<strong>in</strong>al elasevent<br />

tic cross-sections, sample was studied the correspond<strong>in</strong>g with different uncerta<strong>in</strong>ty event generators was esand<br />

timated was found to be to 0.8%, be less which thancorresponds 3%, result<strong>in</strong>g to <strong>in</strong>to the difference a negligible<br />

between contribution the correction (< 0.1%) factors to thecalculated systematicwith uncerta<strong>in</strong>ty. the two<br />

F<strong>in</strong>ally, the complete analysis was repeated us<strong>in</strong>g only<br />

TPC By <strong>in</strong>formation chang<strong>in</strong>g the (i.e., event without selection, us<strong>in</strong>g any analysis of thecuts ITS and detectors).<br />

track quality <strong>The</strong> requirements result<strong>in</strong>g difference with<strong>in</strong>was reasonable negligible ranges, at both we<br />

f<strong>in</strong>d a maximum deviation of the results of 0.4%, which<br />

weTable assignI as summarizes systematicthe uncerta<strong>in</strong>ty contribution to the to the accuracy system- of<br />

atic the detector uncerta<strong>in</strong>ty simulation from alland the analysis differentcorrections. sources. <strong>The</strong> total<br />

<strong>The</strong> uncerta<strong>in</strong>ty result<strong>in</strong>g from the subtraction of secondary<br />

protons and from the feed-down corrections was<br />

estimated to be 0.6% by us<strong>in</strong>g different functional forms<br />

for the background subtraction and for the contribution<br />

45<br />

of the hyperon decay products.<br />

than Perugia-0<br />

240<br />

225<br />

241<br />

226<br />

242<br />

227<br />

243<br />

228<br />

244<br />

(at least for<br />

247<br />

Lambdas, <strong>in</strong><br />

models.<br />

250<br />

forward region)<br />

energies (< 0.1%).<br />

229<br />

245<br />

230<br />

246 231<br />

232<br />

248<br />

233<br />

249 234<br />

235<br />

251 236<br />

252 237<br />

253 238<br />

254 239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

0.9<br />

0.8<br />

1<br />

A50$939&%5="G0(8$2(" "<br />

0.9<br />

0.8<br />

Data<br />

pp @ s = 7 0.9 TeV TeV<br />

<strong>PYTHIA</strong> 6.4: ATLAS-CSC<br />

<strong>PYTHIA</strong> 6.4: Perugia-SOFT<br />

H&>2@05"8&9I80"30%(85030&2"%2"@9:<br />

HIJING/B<br />

$$9(9>&("%2" "C"6D-"K"L"E0F"<br />

0.4 0.6 0.8 1<br />

pp @ s = p7<br />

[GeV/ TeV c]<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

255<br />

256<br />

257<br />

258<br />

/p ratio<br />

p<br />

1<br />

FIG. 3. (Color onl<strong>in</strong>e) <strong>The</strong> pt dependence of the p/p ratio<strong>in</strong>tegrated<br />

over |y| < 0.5 forppcollisionsat √ s =0.9 TeV(top)<br />

and √ LHCb<br />

s =7TeV(bottom). Onlystatisticalerrorsareshown<br />

for the data; the width of the Monte Carlo bands <strong>in</strong>dicates<br />

the statistical uncerta<strong>in</strong>ty of Data the simulation results.<br />

0.9<br />

ALICE<br />

<strong>PYTHIA</strong> 6.4: ATLAS-CSC<br />

systematic uncerta<strong>in</strong>ty is identical for both energies and<br />

amounts to 1.4%.<br />

<strong>The</strong> f<strong>in</strong>al, feed-down corrected p/p ratio R <strong>in</strong>tegrated<br />

with<strong>in</strong> our rapidity and pt acceptance rises from<br />

R |y|


P. <strong>Skands</strong><br />

HIJING<br />

From a brief look at the ʼ94 HIJING paper (so apologies for misunderstand<strong>in</strong>gs and<br />

th<strong>in</strong>gs not up to date), the HIJING pp model appears to be:<br />

•Basic MPI formalism ~ Herwig++ (JIMMY+IVAN) model, with<br />

• Dijet cross section <strong>in</strong>tegrated above p0 (with no unitarization?)<br />

• Poisson distribution of number of <strong>in</strong>teractions<br />

• p0 plays same ma<strong>in</strong> role as <strong>PYTHIA</strong>ʼs pT0, but is much more closely related to the Herwig++<br />

cutoff parameter (which <strong>in</strong> turn is very highly correlated with the assumed proton shape, so<br />

hard to <strong>in</strong>terpret <strong>in</strong>dependently of that)<br />

• <strong>The</strong> <strong>in</strong>teractions appear to undergo ISR and FSR showers (us<strong>in</strong>g <strong>PYTHIA</strong> or someth<strong>in</strong>g<br />

else???), with possibility to add medium modifications to evolution<br />

• “Soft” <strong>in</strong>teractions below p0<br />

• <strong>The</strong>se are somehow also showered (below p0), us<strong>in</strong>g ARIADNE it seems?<br />

• Soft + Hard constructed to add up to total <strong>in</strong>elastic (non-diffractive???)<br />

•<strong>The</strong> multiple scatter<strong>in</strong>gs only <strong>in</strong>volve gluons (?)<br />

• <strong>The</strong> outgo<strong>in</strong>g gluons are color-ordered <strong>in</strong> rapidity (unlike Herwig++)<br />

• (Equivalent to highly correlated production mechanism ~ <strong>PYTHIA</strong> and/or CR models)<br />

•Some unclear po<strong>in</strong>ts:<br />

• Transverse mass distribution: Fourier transform of a dipole?<br />

• Related to EM form factor of Herwig++? To <strong>PYTHIA</strong> forms? Evolves with E? Does it get<br />

Smaller/Bigger?<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!