02.03.2013 Views

Boron reagents for reductive amination - CHIMICA OGGI ...

Boron reagents for reductive amination - CHIMICA OGGI ...

Boron reagents for reductive amination - CHIMICA OGGI ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ABSTRACT<br />

Two classes of boron compounds, amine boranes and<br />

sodium triacyloxyborohydride, are very effective <strong>reagents</strong><br />

<strong>for</strong> reductive <strong>amination</strong>s. The mildness of the reduction<br />

spares functional groups susceptible to hydrogenation or<br />

harsh reduction conditions of other <strong>reagents</strong>. This review<br />

highlights some large-scale reductive <strong>amination</strong>s in the<br />

synthesis of drug candidates.<br />

REDUCTIVE AMINATION<br />

Amines are common in current drugs and drug<br />

candidates (1). Reductive <strong>amination</strong> is an effective way to<br />

introduce an amino functionality into a molecule. First, an<br />

aldehyde or ketone reacts with a primary or secondary<br />

amine to <strong>for</strong>m an imine or enamine intermediate. Then, in<br />

the presence of mild reducing agents, such as amine<br />

boranes and sodium triacetoxyborohydride <strong>reagents</strong>, the<br />

in situ generated imine is reduced to the amine (2). The<br />

<strong>reagents</strong> in this article avoid the <strong>for</strong>mation of cyanide<br />

which is an issue when using sodium cyanoborohydride.<br />

In many cases, isolation of the imine, iminium salt or<br />

enamine prior to addition of the reducing agent is not<br />

necessary.<br />

Via Amine Boranes<br />

Amine boranes are very effective <strong>for</strong> the<br />

reduction of imine and oxime functionalities,<br />

while leaving a wide variety of substituent<br />

functionalities unaffected. The reduction<br />

proceeds rapidly when conducted in the<br />

presence of a Bronsted or Lewis acid to give<br />

secondary amines in excellent yields. Since<br />

many amine borane <strong>reagents</strong> are not<br />

hydrolyzed in aqueous solution and are stable<br />

until a pH of 5, they can even be used in water<br />

or methanol <strong>for</strong> mild reductive <strong>amination</strong><br />

reactions.<br />

The solubility of pyridine borane (PYB), 2picoline<br />

borane (PICB), tert-butylamineborane<br />

(TBAB) triethylamine borane (TEAB) and<br />

trimethylamine borane (TMAB) in various<br />

aprotic solvents such as toluene or THF as well<br />

as their stability in presence of acids, make<br />

these reducing agents very suitable <strong>for</strong> reductive<br />

<strong>amination</strong>. PYB with acetic acid as an activator<br />

gave the highest yield in a comparison of<br />

several reducing agents <strong>for</strong> the synthesis of<br />

intermediate 2 used in HIV drugs (3). (Scheme<br />

1, Rxn 1).<br />

Ketones and aldehydes can be aminated quite<br />

easily with 2-picoline borane (PICB) (4). The<br />

reduction proceeds rapidly when conducted in<br />

KARL MATOS<br />

STEFAN PICHLMAIR<br />

ELIZABETH R. BURKHARDT<br />

<strong>Boron</strong> <strong>reagents</strong><br />

<strong>for</strong> reductive <strong>amination</strong><br />

methanol/AcOH, water/AcOH or even without solvent to<br />

give secondary amines in excellent yields.<br />

tert-Butylamineborane (TBAB) is very advantageous <strong>for</strong><br />

reductive <strong>amination</strong>s due to the low boiling point of tertbutylamine<br />

(45 o C) (5). TBAB was effectively used to<br />

reduce enamine intermediates <strong>for</strong> the synthesis of a<br />

dopamine D1 antagonist (6). Substituted tetralone 3 was<br />

condensed with an amine to the enamine and reduced in<br />

situ with TBAB to a 9:1 mixture of cis/trans isomers (4,<br />

Scheme 1, Rxn 2). In a subsequent step, the benzazepine<br />

ring in 5 was <strong>for</strong>med via cyclization with CH 3SO 3H<br />

followed by reduction using TBAB.<br />

In another example, a robust, plant-scale process was<br />

developed by optimization of the TBAB reduction to get<br />

20 percent higher yields with shorter processing times (7).<br />

The acidity of the reaction was moderated by tertbutylamine<br />

released from TBAB.<br />

These amine boranes are also effective <strong>for</strong> <strong>amination</strong> in<br />

aqueous medium. For example, <strong>amination</strong> of 1,2,3trisubstituted<br />

tri-aminopropane 6 with 40 percent<br />

aqueous glyoxal and triethylamine borane (TEAB) gave 7<br />

in quantitative yield (Scheme 1, Rxn 3) (8).<br />

Oximes are usually <strong>for</strong>med in aqueous media, there<strong>for</strong>e,<br />

amine borane complexes are ideal <strong>for</strong> this reduction<br />

because of their stability in aqueous acidic solution up to<br />

Scheme 1. Reductive Amination with Amine Boranes<br />

Drug development<br />

chimica oggi • Chemistry Today • Vol 25 nr 1 • January/February 2007 17


Drug development<br />

18<br />

Scheme 2. Reductive Amination Examples Using STAB<br />

pH 5. The mild reduction of oxime 8 by TBAB in the<br />

synthesis of a drug candidate <strong>for</strong> treatment of allergy and<br />

asthma, S-5751 (9) delivered the desired amino ester<br />

product 9 without reduction of the alkyne or the ester<br />

(Scheme 1, Rxn 4) (10).<br />

During the synthesis of Fredericamycin A, oxime<br />

intermediate 10 was reduced with PYB to the<br />

corresponding hydroxylamine 11 (Scheme 1, Rxn 5). The<br />

key aspect of the reaction was the use of 20 percent HCl<br />

solution in ethanol solvent, which allowed the reaction to<br />

be completed in just thirty minutes (11).<br />

Overall, the above examples have shown that amine<br />

boranes are excellent <strong>reagents</strong> <strong>for</strong> reductive <strong>amination</strong><br />

because of functional group tolerance and especially<br />

where acidic or aqueous media are required.<br />

Via Sodium Triacetoxyborohydride<br />

Sodium triacetoxyborohydride (STAB) is the reagent of<br />

choice <strong>for</strong> reductive <strong>amination</strong>s under non-aqueous<br />

conditions at ambient temperature. Use of STAB in<br />

reductions has been recently reviewed (12). Reductions<br />

with STAB at temperatures higher than 50 o C <strong>for</strong><br />

extended periods of time may cause degradation of the<br />

reducing agent via acetate reduction producing<br />

Scheme 3. Reductive Amination with Appended Functional Groups<br />

acetaldehyde and ethanol. Acetaldehyde<br />

can undergo imine <strong>for</strong>mation and in<br />

particular may give unwanted ethylamine<br />

by-products.<br />

Mode Of Addition<br />

Abdel-Magid et al. explored the reductive<br />

<strong>amination</strong> of aldehydes, acyclic and cyclic<br />

ketones with a variety of primary, secondary<br />

and weakly basic amines, such as aniline<br />

without prior <strong>for</strong>mation of the intermediate<br />

imine or iminium salt (13). Their best<br />

procedure consisted of mixing the carbonyl<br />

compound and the amine (1 and 1.05<br />

equivalents respectively) in 1,2dichloroethane,<br />

THF or acetonitrile at room<br />

temperature followed by addition of STAB<br />

(1.3-1.6 equivalents) and stirring at ambient<br />

temperature until the amine was consumed<br />

(~3 h). The reductive <strong>amination</strong> with weakly basic<br />

amines, such as aniline, is slower leading to competing<br />

ketone reduction and thus lower yields. In these cases,<br />

excess ketone or acetic acid (1 to 3 equivalents) is<br />

recommended to accelerate the reduction.<br />

The following two examples (Scheme 2, Rxn 1 and 2)<br />

demonstrate kilogram scale production of drug<br />

intermediates. Synthesis of cis-3-methylamino-4methylpiperidines<br />

used a process where the best yields<br />

were obtained upon addition of piperidine 12 and<br />

benzaldehyde to a slurry of STAB in toluene (14)<br />

(Scheme 2, Rxn 1).<br />

L-756423, useful <strong>for</strong> the treatment of HIV infection, was<br />

prepared via reductive <strong>amination</strong> with 3 Kg of STAB<br />

(Scheme 2, Rxn 2). Aldehyde 15 was premixed with<br />

amine 14 in isopropyl acetate and acetic acid followed<br />

by addition of solid STAB over 15 min at ambient<br />

temperature (15).<br />

Use of Additives to Accelerate the Reaction<br />

Organic acids, such as acetic acid (16), trifluoroacetic<br />

acid (17) and sulfonic acids are commonly added to<br />

accelerate the reduction by protonation of the imine or<br />

enamine intermediates. Molecular sieves are sometimes<br />

beneficial to aid in <strong>for</strong>mation of the imine (18).<br />

For example, during the synthesis of L-779575, a<br />

STAB reductive <strong>amination</strong> of piperizone 17,<br />

(Scheme 2, Rxn 3) was driven to completion by<br />

addition of crushed molecular sieves to remove<br />

water (19).<br />

To convert aldehyde 20 to the N-methyl<br />

benzylamine derivative 21 (Scheme 2, Rxn 4) a<br />

modification of the usual STAB reduction included<br />

the use of 3Å molecular sieves and acetic acid in<br />

combination with sodium acetate (20, 21). The<br />

crude product was acylated to give an 80 percent<br />

yield over two steps. In addition, imine <strong>for</strong>mation<br />

has been accelerated by use of TiCl(Oi-Pr) 3 as a<br />

Lewis acid (22).<br />

Reductive <strong>amination</strong> with STAB under pressure (1<br />

Mpa) significantly shortened the reaction time<br />

and increased yields (23).<br />

Functional Group Tolerance<br />

Due to the three electron withdrawing acetoxy<br />

groups in STAB, a very mild reduction of imines<br />

and iminium salts occurs in the presence of<br />

other functional groups such as halides (24),<br />

ketones, esters, cyano (25, 26), nitro (27),<br />

benzyl (28), double (29) and triple (30) bonds.<br />

In many cases, catalytic hydrogenation is not<br />

chimica oggi • Chemistry Today • Vol 25 nr 1 • January/February 2007


Scheme 4. Stereoselective Reductive Aminations with STAB<br />

suitable because of carbon-halogen bond cleavage or<br />

undesired reduction occurring. For example, a<br />

carbamate group in 24 was not reduced during the<br />

reductive <strong>amination</strong> with STAB (Scheme 3, Rxn 1). In<br />

addition, racemisation of the amino aldehyde<br />

derivative 23 was not observed (31).<br />

LY426965, a serotonin antagonist, was effectively<br />

prepared in 93 percent yield by the reductive <strong>amination</strong><br />

of aldehyde 25 in the presence of ketone group with<br />

STAB (Scheme 3, Rxn 2). The high chemo-selectivity was<br />

attributed to the β-quaternary center, which would<br />

interfere with the <strong>for</strong>mation of imine intermediate<br />

consequently preventing ketone reduction (32).<br />

STAB was favored over triethylamine borane in a<br />

convergent approach due to amine borane impurities<br />

<strong>for</strong>med at the dimethylamine end of triazole 30 (Scheme<br />

2, Rxn 3). Because of its good solvating ability,<br />

dimethylacetamide (DMAC) was the preferred solvent.<br />

The hemiacetal functionality in 28 and triazole in 29<br />

survived the reductive <strong>amination</strong> conditions to prepare<br />

triazole intermediate 30 in 95 percent isolated yield as<br />

the HCl salt (33).<br />

One of the few examples of a reductive <strong>amination</strong> with<br />

an α,β-unsatured aldehyde and aniline is the synthesis<br />

of aniline derivative 33 <strong>for</strong> farnesyl pyrophosphate<br />

analogues. The mild reducing conditions with STAB<br />

gave yields consistently higher (85 percent) and with<br />

fewer side products than NaBH 3CN, PYB or catalytic<br />

hydrogenation. In this particular case, no 1,4-addition<br />

product was reported (Scheme 3, Rxn 4) (34).<br />

Stereoselective Reductive<br />

Aminations<br />

In the preparation of 3-endotropamine<br />

35, an intermediate in the<br />

synthesis of Zatosetron, STAB was used<br />

<strong>for</strong> reductive <strong>amination</strong> of ketone 34<br />

(Scheme 4, Rxn 1) (35).<br />

A 12:1 mixture of amine 35 favoring<br />

the desired endo-N-benzylamine (8:1<br />

selectivity via hydrogenation) was<br />

obtained and only low levels of<br />

benzylacetamide 36 (2-4 percent)<br />

were seen. Based on statistically<br />

designed experiments, the optimal<br />

reaction conditions were a<br />

stoichiometry of 1.5 drug candidate<br />

equivalents STAB, 0.75 equivalents of<br />

acetic acid to accelerate the reaction<br />

rate, and 1.35 equivalents of<br />

benzylamine to account <strong>for</strong> the loss of<br />

reagent to benzylacetamide <strong>for</strong>mation.<br />

A bulky acyloxyborohydride gave a<br />

better endo:exo ratio (>30:1) but the<br />

slower reaction rate compared to STAB<br />

required 2 equivalents of tris[(2ethylhexanoyl)oxy]borohydride<br />

reagent to complete the reaction in a similar<br />

time (36).<br />

Use of a chiral amine 38 as an auxiliary<br />

allowed diastereoselective <strong>for</strong>mation of<br />

diketopiperizine intermediate 39 (6:1 ratio,<br />

Scheme 4, Rxn 2) (37). Several 1,4,5trisubstituted-2,3-diketopiperazines<br />

were<br />

prepared via this tandem reductive <strong>amination</strong><br />

and acylation.<br />

Methylation with Aqueous Formalin<br />

Although not as common with STAB as amine<br />

boranes, systems containing aqueous <strong>reagents</strong> can be<br />

used. Reductive <strong>amination</strong> of <strong>for</strong>malin is an excellent<br />

methodology to incorporate methyl groups in an amine<br />

compound (38, 39). The key introduction of the methyl<br />

group in the enantioselective synthesis of (-)-Saframycin<br />

A, a potent antitumor agent, was accomplished by<br />

reaction of 40 with <strong>for</strong>malin (2 equivalents) in the<br />

presence of STAB (1.5 equivalents) in acetonitrile (40).<br />

The N-methylated compound 41 was obtained in 94<br />

percent yield and the labile morpholino nitrile<br />

functionality was unaffected (Scheme 5, Rxn 1).<br />

Pre-<strong>for</strong>mation of Imine and Enamine<br />

Intermediates<br />

In some cases, the reductive <strong>amination</strong> works better<br />

by preparing the imine intermediate prior to<br />

reduction with STAB (41). Pre-<strong>for</strong>ming the imine is<br />

especially beneficial when dialkylation of the amine<br />

is undesirable. For example, during the synthesis of<br />

Trecetilide hemi-fumarate, a compound <strong>for</strong> treatment<br />

of chronic atrial arrhythmia (42), the iminium<br />

intermediate was <strong>for</strong>med prior to transfer into a STAB<br />

slurry at 0-4 o C to af<strong>for</strong>d 44 with > 90 percent<br />

chemical purity and yield (Scheme 5, Rxn 2).<br />

Enamines are effectively reduced with STAB in the<br />

presence of acetic acid to protonate the enamine. For<br />

example, the reduction of enamine 45 by addition of<br />

solid STAB in portions gave the desired amine<br />

product 46 in 71 percent isolated yield (Scheme 5,<br />

Rxn 3) (43).<br />

Scheme 5. Reductive Methylation, Pre-<strong>for</strong>med Imine and Enamine Reductions<br />

Drug development<br />

chimica oggi • Chemistry Today • Vol 25 nr 1 • January/February 2007 19


Drug development<br />

20<br />

CONCLUSION<br />

The preferred methods <strong>for</strong> reductive <strong>amination</strong> of<br />

aldehydes or ketones with various appended functional<br />

groups utilize STAB or amine boranes. Numerous<br />

other examples of reductive <strong>amination</strong> with STAB to<br />

synthesize active pharmaceutical ingredients<br />

containing secondary and tertiary amines as the<br />

structural feature have been reported (44). The unique<br />

selectivity and effectiveness of these <strong>reagents</strong> in the<br />

preparation of synthetic amine intermediates promise<br />

to have a positive impact on production efficiencies of<br />

drug candidates. The high yield and economical<br />

<strong>for</strong>mation of functionalized amines will dramatically<br />

increase the usefulness of boron mediated reductive<br />

<strong>amination</strong>s in industrial applications.<br />

REFERENCES AND NOTES<br />

1. (a) R. Verpoorte, “Alkaloids in Medicine” and T. Schmeller, M. Wink<br />

“Utilization of Alkaloids in Modern Medicine” in: “Alkaloids:<br />

biochemistry, ecology, and medicinal applications” M. F. Roberts, M.<br />

Wink, Plenum Press, NY 1998, pp. 397 and pp. 435. (b) S. A.<br />

Lawrence “Amines” Cambridge University Press, UK 2004, 269.<br />

2. Z. Rappoport, “The Chemistry of Enamines”, in: The Chemistry of<br />

Functional Groups, Patai Ed.; Wiley, 1994.<br />

3. (a) T. E. Smyser, P.N. Confalone, WO 9639393 1996; (b) H.L. Lui,<br />

B.H. Hoff, T.C. Berg, T. Anthonsen, Chirality 13, 135 (2001).<br />

4. (a) S. Sato, T. Sakamoto, E. Miyazawa, Y. Kikugawa, Tetrahedron<br />

60, 7899, (2004); (b) Y. Kikugawa, JP 2004256511 2004<br />

5. T.J. Connolly, A. Constantinescu, T.S. Lane, M. Matchett, P. McGarry,<br />

and M. Paperna Org. Proc. Res. Dev. 9, 837, (2005).<br />

6. (a) R.W. Draper, D. Hou, R. Radha Iyer, G.M. Lee, J.T. Liang, J.L.<br />

Mas, W. Tormos, E.J. Vater, F. Günter, I. Mergelsberg, D. Scherer,<br />

Org. Proc. Res. Dev. 2, 175, (1998); (b) J.G. Berger, W.K. Chang,<br />

E.H. Gold, J.W. Clander, Schering Corp. EP 0230270, WO<br />

8704430 1987.<br />

7. D. Gala, V.H. Dahanukar, J.M. Eckert, B.S. Lucas, D.P. Schumacher,<br />

I.A. Zavialo, Org. Proc. Res. Dev. 8, 754, (2004).<br />

8. Y. Hirokawa, T. Horikawa, H. Noguchi, K. Yamamoto, S. Kato, Org.<br />

Proc. Res. Dev. 6, 28, (2002).<br />

9. D. Cai, R. Larsen, M. Journet, K. Campos, WO 0232892, 2002.<br />

10. Ti(i-PrO)- 4 with sodium borohydride has been used <strong>for</strong> imine<br />

reduction. N. Zheng, J.D. Armstrong, III , K.K. Eng, J. Keller, T. Liu, R.<br />

Purick, J. Lynch, F.W. Hartner, R.P. Volante Tetrahedron: Asymmetry<br />

14, 3435, (2003).<br />

11. J.B. Summers, Jr., B.P. Gunn, D.W. Brooks, Abbott Laboratories EP<br />

0279263, U.S. Patent 4,873,259, 1989.<br />

12. A.F. Abdel-Magid, S.J. Mehrman Org. Proc. Res. Dev. 10, 971,<br />

(2006); G.W. Gribble Org. Proc. Res. Dev. 10, 1062, (2006)<br />

13. A.F. Abdel-Magid, K.G. Carson, B.D. Harris, C.A. Maryanoff, R.D.<br />

Shah, J. Org. Chem. 61, 3849, (1996).<br />

14. W. Cai, J.L. Colony, H. Frost, J.P. Hudspeth, P.M. Kendall, A.M.<br />

Krishnan, T. Makowski, D.J. Mazur, J. Phillips, D.H.B. Ripin, S.G.<br />

Ruggeri, J.F. Stearns, T.D. White, Org. Proc. Res. Dev. 9, 51, (2005).<br />

15. (a) D. Askin, R.M. Purick, R.S. Hoerrner, P. Reider, R.J. Varsolona, R.P.<br />

Volante, Merck & Co., Inc. WO 9854178, U.S. Patent 6,071,916,<br />

2000; (b) Lin, J.H. et al. WO 9925352; (c) Another large-scale<br />

example: M.J. Peterson, J. Lee, R.J. Lee, W. Zhang, Theravance, Inc.<br />

US Appl. 2006/0094878.<br />

16. C.Z. Ding, S.-H. Kim, J.T. Hunt, T. Mitt, R. Bhide, K. Leftheris, Bristol<br />

Myers Squibb Co. U.S. Patent 6, 011, 029, 2000.<br />

17. M. McLaughlin, M. Palucki, I.W. Davies, Org. Lett. 8, 3307, (2006).<br />

18. J. Zhang, P.G. Blazecka, J.G. Davidson, Org. Lett. 5, 553, (2003).<br />

19. (a) J.H. Hutchinson, N.J. Anthony, S. J. deSolms, R.P. Gomez, S.L.<br />

Graham, G.E. Stokker, Merck & Co., Inc. WO 9610034, U.S. Patent<br />

5,652,257, 1997; (b) N.J. Anthony, T.M. Ciccarone, C.J. Dinsmore,<br />

R.P. Gomez, T.M. Williams, G.D. Hartman, Merck & Co., Inc. U.S.<br />

Patent 5, 856, 326, 1999; (c) J.H. Hutchinson, N.J. Anthony, S. J.<br />

deSolms, R.P. Gomez, S.L. Graham, G.E. Stokker, Merck & Co., Inc.<br />

EP 0820445, WO 9630343 1996.<br />

20. N. Murugesan, J.C. Barrish, Z. Gu, R.A.V. Morrison, Bristol-Myers<br />

Squibb Co.; EP 0996618, WO 9833780 1998, U.S. Patent<br />

6,043,265, 2000.<br />

21. L.Y. Hu, T.C. Malone, L. Nadosdi, M.F. Rafferty, T.R. Ryder, D.F. Silva,<br />

Y. Song, B.G. Szoke, L. Urge, Warner Lambert Co. WO 9854123<br />

1998.<br />

22. C. D. Gutierrez, V. Bavetsias, E. McDonald Tetrahedron Lett. 46,<br />

3595, (2005).<br />

23. Y. Habata, F. Osaka, S. Yamada, J. Heterocyclic Chem. 43, 157,<br />

(2006).<br />

24. (a) D.M. Godek, T.J. Rosen, Pfizer, Inc. WO 9118878, 1991; (b) M.<br />

McLaughlin, M. Palucki, I.W. Davies, Org. Lett. 8, 3307, (2006); (c)<br />

T. Korosěc, J. Grdadolnik, U. Urleb, D. Kocjan, S.G. Grdadolnik, J.<br />

Org. Chem. 71, 792, (2006); (d) S. Thaisrivongs, S.R. Turner, J.W.<br />

Strobach, V.A. Vaillancourt, M.E. Schnute, J.A. Tucker, Pharmacia &<br />

Upjohn Co. WO 004065 2000, U.S. Patent 6,248,739, 2001.<br />

25. Y. Matsumoto, S. Akamatsu, M. Ichihara, T. Kawasaki, S. Kaku, I.<br />

Yanagisaura, Yamanonchi Pharmaceutical Co., Ltd. WO 9745413,<br />

U.S. Patent 6,057,324, 2000; EP 0905129.<br />

26. F. Lejeune, G. Lavielle, T. Dubuffet, P. Hantefaye, M. Millan, Adir et<br />

Compagnie EP 0887350, U.S. Patent 6,090,837, 2000.<br />

27. (a) F. Lejeune, G. Lavielle, T. Dubuffet, P. Hantefaye, M. Millan, Adir<br />

et Compagnie EP 0887350, U.S. Patent 6,090,837, 2000; (b) T.E.<br />

Smyser, P.N. Confalone, The DuPont Merck Pharmaceutical Company.<br />

U.S. Patent 5,532,356, 1996.<br />

28. S. Hajela, M. Botta, S. Giraudo, J. Xu, K.N. Raymond, S. Aime, J.<br />

Am. Chem. Soc. 122, 11228, (2000).<br />

29. P.E. Finke, C.G. Caldwell, M. MacCoss, S.G. Mills, B. Oates, S.<br />

Kothandaraman, D. Kim, L. Wang, Merck & Co.,Inc. WO 9938514<br />

1999, U.S. Patent 6,140,349, 2000.<br />

30. J. Cossy, D. Belotti, J. Org. Chem. 62, 7900, (1997).<br />

31. M.F. Rafferty, T.R. Ryder, L.Y. Hu, Warner Lambert Co. WO 9907689<br />

32. (a) D.T. Kohlman, et al. EP 0924205, WO 9931077 1999; (b) S.E.<br />

Denmark, J. Fu. Org. Lett. 4, 1951, (2002).<br />

33. (a) D.E. Cai, M.S. Journet, J.I. Kowal, R.D. Larson, Merck & Co., Inc.<br />

U.S. Patent 6,051,717, 2000; (b) M. Journet, D. Cai, D.L. Hughes,<br />

J.J. Kowal, R.D. Larsen, P.J. Reider, Org. Proc. Res. Dev. 9, 490,<br />

(2005).<br />

34. K.A. Chehade, D.A. Andres, H. Morimoto, H.P. Spielmann, J. Org.<br />

Chem. 65, 3027, (2000).<br />

35. J.E. Burks, L. Espinosa, E.S. LaBell, A.R. Ritter, J.L. Speakman, M.<br />

Williams, Org. Proc. Res. Dev. 1, 198, (1997).<br />

36. J.M. McGill, E.S. LaBell, M. Williams, Tetrahedron Lett. 37, 3977,<br />

(1996).<br />

37. D.C.Beshore, C.J. Dinsmore, Tetrahedron Lett. 41, 8735, (2000).<br />

38. H. Maag, G.A. Dvorak, L.E. Fisher, K.L. Green, R.N. Harris, III, A.<br />

Prince, D.B. Repke, R.S. Stabler, Syntex, LLC U.S. Patent 6,667,301,<br />

2003, U.S. Patent Application 2002004501, WO 0190081 2001.<br />

39. A.D. Baxter, E.A. Boyd, O.M. Guicherit, J. Porter, S. Price, L. Rubin,<br />

Curis, Inc. U.S. Patent 6,683,108, U.S. Patent 6,613,798 WO<br />

0174344. WO 0327234, U.S. Patent Application 2002198236;<br />

40. A.G. Myers, D.W. Kung, J. Am. Chem. Soc. 121, 10828, (1999).<br />

41. J. Duan, Bristol-Myers Squibb Pharma Company WO 0059285,<br />

U.S. Patent 6,495,548, 2002.<br />

42. S.S. Mackey, H. Wu, M.E. Matison, M. Goble, Org. Proc. Res. Dev.<br />

9, 174, (2005).<br />

43. (a) F.J. Urban, R. Breitenbach, D. Gonyaw Synth. Commun. 26,<br />

1629, (1996); (b) F.J. Urban, U.S. Patent 5,359,068, 1994.<br />

44. (a) N. Kimura, et al. WO 9843601, EP 0976732; (b) Y. Miyazaki,<br />

et al. EP 1048652, WO 9933805; (c) C.L. Branch, et al. WO<br />

9850364, EP 0983244; (d) G.E. Stokker, Tetrahedron Lett. 37, 5453,<br />

(1996); (e) T.R. Ryder, M.F. Rafferty, L.-Y. Hu, Warner Lambert. WO<br />

9943658, U.S. Patent 6,251,919, 2001; (f) T. Ishii, et al. WO<br />

9823628, EP 0945459; (g) P.A. Procopiou, Glaxo Group WO<br />

0196278 2001; (h) A. Naya, et al. WO 9804554, WP 0916668; (i)<br />

J.M. Smallheer, P.K. Jadhav, The DuPont Merck Pharmaceutical<br />

Company U.S. Patent 5,760,029, 1998, WO 9733887; (j) R.W.<br />

Feenstra, et al. WO 0029397; (k) J.H. Wikel, et al. WO 0039118; l)<br />

T. Niidome, et al. WO 0005210; (m) R.M. Williams, WO 0075135;<br />

(n) H.-C.Zhang, et al. WO 0100656; (o) T. Kimura, et al. WO<br />

0107406 2001; (p) A.D. Baxter, et al. WO 0126644; (q) D. Askin,<br />

R.M. Purick, R. S. Hoerrner, P. Reider, R.J. Varsolona, R. P. Volante,<br />

Merck & Co., Inc. WO 9854178, U.S. Patent 6,071,916, 2000; (r)<br />

J.F. Payack, E. Vazques, L. Matty, M.H. Kress, J. McNamara, J. Org.<br />

Chem. 70, 175, (2005); (s) D.H.B. Ripin, S. Abele, W. Cai, T.<br />

Blumenkopf, J.M. Casavant, J. L. Doty, M. Flanagan, C. Koecher,<br />

K.W. Laue, K. McCarthy, C. Meltz, M. Munchhoff, K. Pouwer, B.<br />

Shah, J. Sun, J. Teixeira, T. Vries, D.A. Whipple, G. Wilcox, Org.<br />

Proc. Res. Dev. 7, 115, (2003).<br />

KARL MATOS, STEFAN PICHLMAIR,<br />

ELIZABETH R. BURKHARDT*<br />

*Correspondent author<br />

BASF Corporation<br />

1424 Mars-Evans City Road<br />

Evans City, PA 16033, USA<br />

chimica oggi • Chemistry Today • Vol 25 nr 1 • January/February 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!