03.03.2013 Views

Frühjahrssymposium 2013 in Berlin - JungChemikerForum Berlin

Frühjahrssymposium 2013 in Berlin - JungChemikerForum Berlin

Frühjahrssymposium 2013 in Berlin - JungChemikerForum Berlin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 5 th<br />

JCF-<strong>Frühjahrssymposium</strong><br />

March 6 th -9 th , 201 3<br />

Berl<strong>in</strong>


Sponsors


Impr<strong>in</strong>t<br />

<strong>JungChemikerForum</strong> Berl<strong>in</strong><br />

<strong>2013</strong><br />

LATEX realization by courtesy of the JCF Erlangen-Nürnberg<br />

We are grateful to Hans-Jörg Drescher for his help with the LATEX code.


Contents<br />

Greet<strong>in</strong>gs 1<br />

Program 7<br />

Information 15<br />

Plenary Lectures 23<br />

Prof. Hashmi (Thursday 9:30 - 10:30) 24<br />

Dr. Loth (Thursday 14:50 - 15:50) 26<br />

Dr. habil. Becker (Friday 9:10 - 10:10) 28<br />

Prof. Schre<strong>in</strong>er (Friday 14:50 - 15:50) 30<br />

Prof. Roth (Saturday 11:30 - 12:30) 32<br />

Oral Presentations 35<br />

Session 1 (Thursday 10:50 - 12:00) 36<br />

Session 2 (Thursday 13:30 - 14:30) 39<br />

Session 3 (Thursday 16:10 - 17:40) 42<br />

Session 4 (Friday 10:30 - 12:00) 46<br />

Session 5 (Friday 13:30 - 14:30) 50<br />

Session 6 (Friday 16:10 - 17:40) 53<br />

Posters 57<br />

Poster Session 1 (Thursday 17:40 - 20:10) 58<br />

Poster Session 2 (Saturday 9:00 - 11:30) 188<br />

Index 315<br />

Sudoku 329


Greet<strong>in</strong>gs<br />

1


Liebe Jungchemiker<strong>in</strong>nen und Jungchemiker,<br />

<strong>in</strong> diesem Jahr treffen Sie sich zu Ihrem Forum <strong>in</strong> Berl<strong>in</strong>, e<strong>in</strong>er Stadt, die dank ihrer<br />

zahlreichen Hochschulen und weiterer Forschungse<strong>in</strong>richtungen <strong>in</strong> besonderer Weise<br />

dazu geeignet ist, sich über Wissenschaft auszutauschen. Sie ist zugleich aber auch<br />

besonderes Symbol für Deutschland, für Vere<strong>in</strong>igung von Ost und West und für <strong>in</strong>ternationale<br />

Sichtbarkeit. Das s<strong>in</strong>d wichtige Charakteristika, wenn Sie mite<strong>in</strong>ander<br />

reden wollen über unsere Wissenschaft, die Chemie - ihre Inhalte, ihre Bedeutung<br />

und ihre Relevanz für die Zukunft unserer Gesellschaft!<br />

Bereits im letzten Jahr schrieb ich Ihnen, wie wichtig und gut ich es f<strong>in</strong>de, dass<br />

Sie mit der aufwändigen Organisation und Durchführung der jährlich stattf<strong>in</strong>denden<br />

Konferenz des Jungchemikerforums das persönliche Treffen und das Gespräch über<br />

elektronische Kommunikationswege setzen. Täglich erlebe ich <strong>in</strong> me<strong>in</strong>em Beruf als<br />

Professor<strong>in</strong> an e<strong>in</strong>er Universität, dass Ideen und E<strong>in</strong>sichten, gedankliche Fortschritte<br />

und neue wissenschaftliche Ergebnisse durch persönliche, barrierelose Gespräche und<br />

Diskussionen geboren werden oder zur Reife gelangen. Nur so ersetzen wir <strong>in</strong> me<strong>in</strong>er<br />

Überzeugung Rout<strong>in</strong>e und Mittelmass durch Inspiration und Exzellenz. Sie wissen es<br />

alle: E<strong>in</strong>e Gruppe von Menschen ist mehr als die Summe e<strong>in</strong>zelner Personen.<br />

In diesem S<strong>in</strong>ne wünsche ich Ihnen auch für <strong>2013</strong>, dass sie <strong>in</strong> Berl<strong>in</strong> die Fasz<strong>in</strong>ation<br />

von Wissenschaft und menschlicher Begegnung spüren, <strong>in</strong> überdurchschnittlichen,<br />

anspruchsvollen und kurzweiligen Vorträgen, an Postern, <strong>in</strong> Diskussionsrunden und<br />

bei geselligen Treffen.<br />

Prof. Dr. Barbara Albert<br />

(Präsident<strong>in</strong> der Gesellschaft Deutscher Chemiker e.V.)<br />

2


Dear “Jungchemiker“,<br />

it provides me with great pleasure to welcome all of you to the 15 th JCF Spr<strong>in</strong>g<br />

Symposium here at Berl<strong>in</strong>’s Humboldt-Universität. Based on the great tradition of<br />

this unique event, I am absolutely conv<strong>in</strong>ced that you will enjoy the next few days<br />

with lots of excit<strong>in</strong>g new chemistry, <strong>in</strong>spir<strong>in</strong>g discussions, and joyful moments.<br />

Right from the beg<strong>in</strong>n<strong>in</strong>g, I wish to thank all of the people, who were <strong>in</strong>volved <strong>in</strong> the<br />

excellent organization. After all it is an event for young chemists by young chemists<br />

and you did a marvelous job.<br />

I am particularly grateful that this event has developed <strong>in</strong> such a success story as it<br />

br<strong>in</strong>gs together the people, who actually DO the science. While academic supervisors<br />

are concerned with arguably too much management, adm<strong>in</strong>istration, and politics, it is<br />

mostly doctoral students such as YOU, who are carry<strong>in</strong>g out experiments on a daily<br />

basis thereby pav<strong>in</strong>g the way to new scientific discoveries. The JCF Spr<strong>in</strong>g Symposia<br />

are a great platform to meet and get to know the person beh<strong>in</strong>d a specific type of<br />

research. After all, science is be<strong>in</strong>g carried out by <strong>in</strong>dividuals and it’s communication<br />

among them that makes science a unique social endeavor as well.<br />

In this spirit, I wish you a great and successful symposium – enjoy the chemistry <strong>in</strong><br />

all dimensions!<br />

Prof. Stefan Hecht, Ph.D.<br />

(Dean of the Faculty of Mathematics and Natural Sciences I of the Humboldt-Universität<br />

zu Berl<strong>in</strong>)<br />

3


Dear Participants,<br />

it is my great pleasure to welcome you to this conference on behalf of the whole<br />

organiz<strong>in</strong>g team! We are the Berl<strong>in</strong> division of the Young Chemists Forum. Our<br />

members are either study<strong>in</strong>g chemistry or do<strong>in</strong>g their PhD work here <strong>in</strong> the capital<br />

of Germany.<br />

Berl<strong>in</strong> has got three universities with chemistry study<strong>in</strong>g courses as well as a few other<br />

colleges that pursue related topics. The local Young Chemists Forum meets once a<br />

month to exchange experiences, share ideas and also organize events.<br />

In the past two years, we have respectively hosted a one-day scientific symposium on<br />

the natural science campus of the Humboldt-Universität. This year, we have worked<br />

hard <strong>in</strong> order to <strong>in</strong>corporate our experiences <strong>in</strong>to this year’s <strong>Frühjahrssymposium</strong> to<br />

make it truly enjoyable for all of you. But a symposium like this would not be feasible<br />

without a long list of supporters. We are extremely grateful for the big number of<br />

<strong>in</strong>stitutes, companies and organizations that helped us <strong>in</strong> various ways to make this<br />

conference happen. We are also very thankful for all the helpers that lend us a hand<br />

and serve your coffee.<br />

Once aga<strong>in</strong>, welcome to Berl<strong>in</strong> and enjoy the conference!<br />

Christ<strong>in</strong> Büchner<br />

(Chair of the Young Chemists Forum Berl<strong>in</strong>)<br />

4


Dear participants of the 15 th <strong>Frühjahrssymposium</strong>,<br />

I am very pleased to welcome you on behalf of the <strong>JungChemikerForum</strong> to the <strong>Frühjahrssymposium</strong><br />

at the Humboldt-Universität zu Berl<strong>in</strong> this year.<br />

The cont<strong>in</strong>uous ris<strong>in</strong>g number of participants shows the obvious success of the <strong>Frühjahrssymposium</strong><br />

and the <strong>in</strong>creas<strong>in</strong>g need for communication between young scientists.<br />

But especially the great number of the <strong>in</strong>ternational students allows an <strong>in</strong>terest<strong>in</strong>g<br />

and wide-rang<strong>in</strong>g exchange of knowledge. In consideration of present scientific challenges,<br />

like <strong>in</strong>creas<strong>in</strong>g lack of raw materials, grow<strong>in</strong>g and age<strong>in</strong>g world population<br />

and related food supply and medical care, the motivated young scientists all over the<br />

world can contribute to solutions of problems of our everyday life by meet<strong>in</strong>g and<br />

exchang<strong>in</strong>g at a conference like the <strong>Frühjahrssymposium</strong>.<br />

The plann<strong>in</strong>g and carry<strong>in</strong>g out of such a big event would not be possible without<br />

a great team. For that reason I want to thank on behalf of all participants of the<br />

<strong>Frühjahrssymposium</strong> the organization team and the assistants for the great job. Furthermore<br />

I want to express my gratitude to all the companies for the f<strong>in</strong>ancial support.<br />

I wish all participants a pleasant time <strong>in</strong> Berl<strong>in</strong>, fruitful discussions, creative ideas<br />

and many new friends.<br />

Anna Hofmann<br />

(Chair of the Young Chemists Forum of the German Chemical Society)<br />

5


Program<br />

7


Wednesday (March 6 th )<br />

12:00 – 20:00 Registration<br />

Unter den L<strong>in</strong>den 6 - Foyer<br />

12:00 – 19:00 Strukturwettbewerb - Organized by JCF Jena<br />

Dorothenstr. 24 - Room 1.406<br />

16:00 – 20:00 JCF Sprechertreffen<br />

Dorothenstr. 24 - Room 1.103<br />

16:00 – 19:00 City Tour<br />

Unter den L<strong>in</strong>den 6<br />

16:00 – 17:00 Boat Trip<br />

Unter den L<strong>in</strong>den 6<br />

20:00 – 23:00 Welcome Reception - Sponsored by Lanxess<br />

Dorothenstr. 24 - Foyer<br />

8


Thursday (March 7 th )<br />

8:50 – 9:30 Open<strong>in</strong>g Ceremony<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Christ<strong>in</strong> Büchner<br />

Chair of the 15 th JCF <strong>Frühjahrssymposium</strong><br />

Prof. Dr. Peter Frensch<br />

Vice President for Research of the Humboldt-Universität zu Berl<strong>in</strong><br />

Prof. Dr. Stefan Hecht<br />

Dean of the Faculty of Mathematics and Natural Sciences I<br />

Prof. Dr. Eckhard Ottow<br />

Vice President of the German Chemical Society (GDCh)<br />

Anna Hofmann<br />

Chair of the Young Chemists Forum (JCF)<br />

9:30 – 10:30 Plenary Lecture<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Prof. Dr. S. Hashmi - Ruprecht-Karls-Universität Heidelberg<br />

"Gold Catalysis 2.0"<br />

10:50 – 12:00 Session 1<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Anne-Kathr<strong>in</strong> Baum - Universität Hamburg<br />

"Sugar Complexes and the Asymmetric Transfer Hydrogenation"<br />

Laith Almazahreh - Friedrich-Schiller-Universität Jena<br />

"Novel [FeFe] Hydrogenase Models with (SCH2)2P=O L<strong>in</strong>ker"<br />

Burkhard Butschke - The Weizmann Institute of Science, Rehovot<br />

"From ’Rollover’ Cyclometalation towards the Catalytic<br />

Dehydrogenation of Alkanes"<br />

12:00 – 12:20 Conference Photo<br />

Unter den L<strong>in</strong>den 6<br />

9


13:30 – 14:30 Session 2<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Björn Raimer - Technische Universität Braunschweig<br />

"New Insights <strong>in</strong>to the Chemistry of Photoaff<strong>in</strong>ity Label<strong>in</strong>g with<br />

Diazir<strong>in</strong>es"<br />

Chiara Palumbo - Sapienza University of Rome<br />

"Asymmetric synthesis of Natural-product-<strong>in</strong>spired Spiro<br />

epoxyox<strong>in</strong>doles via Hydrogen-Bond Organocatalysis"<br />

Guillaume Povie - Universität Bern<br />

"Polar Effects <strong>in</strong> Hydrogen Atom Transfers from Catechols<br />

to Alkyl Radicals"<br />

14:50 – 15:50 Plenary Lecture<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Dr. S. Loth - Center for Free-Electron Laser Science, Hamburg<br />

"Atom-by-atom assembly of stable nanomagnets"<br />

16:10 – 17:40 Session 3<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Maria Wuithschick - Humboldt-Universität zu Berl<strong>in</strong><br />

"Understand<strong>in</strong>g the Growth Mechanism: Key to Size Control<br />

of Colloidal Nanoparticles"<br />

Lydia Liebscher - Technische Universität Dresden<br />

"PbS-mesocrystals - Coherence between atomistic arrangement<br />

and <strong>in</strong>ternal nanocrystal superstructure order<strong>in</strong>g"<br />

Jonathan De Roo - Ghent University<br />

"Synthesis of BaZrO3, Ta2O5 and HfO2 nanoparticles as artificial<br />

p<strong>in</strong>n<strong>in</strong>g centers <strong>in</strong> High Temperature Superconductors"<br />

Krzysztof Sozanski - Polish Academy of Sciences, Warsaw<br />

"Viscosity at the Nanoscale"<br />

17:40 – 20:10 Poster Session 1 and Champagne Reception<br />

Unter den L<strong>in</strong>den 6 - Senatssaal<br />

10


Friday (March 8 th )<br />

9:10 – 10:10 Plenary Lecture<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Dr. habil. J. S. Becker - Forschungszentrum Jülich<br />

"Mass Spectrometry Imag<strong>in</strong>g (MSI) of Elements <strong>in</strong> Biological Tissue"<br />

10:30 – 12:00 Session 4<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Gerrit Hermann - BOKU Wien<br />

"Study<strong>in</strong>g arsenic <strong>in</strong> cancer cells by elemental speciation analysis"<br />

Inga Pfeffer - University of Oxford<br />

"2-Oxoglutarate Oxygenases as Therapeutic Targets"<br />

Fernando Gomollon-Bel - Universidad de Zaragoza<br />

"Design and synthesis of fungical transglycosidase <strong>in</strong>hibitors"<br />

Aleksandra Kubica - Jagiellonian University, Krakow<br />

" 2 H NMR spectroscopy <strong>in</strong> application to selected am<strong>in</strong>o-acids"<br />

13:30 – 14:30 Session 5<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

P. Skup<strong>in</strong>-Mrugalska - Poznan University of Medical Sciences<br />

"Synthesis and development of the novel phthalocyan<strong>in</strong>e derivatives<br />

possess<strong>in</strong>g 2-(morphol<strong>in</strong>-4-yl)ethyloxy groups of potential applications<br />

<strong>in</strong> photodynamic therapy"<br />

Sören Gehne - University of Potsdam<br />

"Novel drug carrier systems - Spectroscopic characterization<br />

of cell-penetrat<strong>in</strong>g peptide analogous"<br />

Torsten Rossow - Freie Universität Berl<strong>in</strong><br />

"Controlled Synthesis of Cell-Laden Degradable Microgels by<br />

Radical-Free and Supramolecular Gelation <strong>in</strong> Droplet Microfluidics"<br />

14:50 – 15:50 Plenary Lecture<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Prof. Dr. P. R. Schre<strong>in</strong>er - Justus-Liebig Universität Giessen<br />

"Tunnel<strong>in</strong>g Control of Chemical Reactions"<br />

11


16:10 – 17:40 Session 6<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Ismael Gracia - Universidad de Zaragoza<br />

"Liquid Crystal and Electro-Optic Block Codendrimers:<br />

Synthesis and Characterization"<br />

Nicolas Dietl - Technische Universität Berl<strong>in</strong><br />

"Great Insights from a Small System: Structure and reactivity<br />

of [VPO4] + <strong>in</strong> comparison with [V2O4] + "<br />

Gregor Koch - Technische Universität Berl<strong>in</strong><br />

"Comparison of different Cu particles supported on SBA-15 as<br />

methanol steam reform<strong>in</strong>g catalysts"<br />

Maria Fritz - Lomonosov Moscow State University<br />

"New Trifluoromethyl Derivatives of 5 IPR Isomers the<br />

Fullerene C84"<br />

19:00 – 21:30 Conference D<strong>in</strong>ner<br />

Unter den L<strong>in</strong>den 6 - Zeltmensa<br />

22:00 Conference Party<br />

Revaler Straße 99 - Cassiopeia<br />

12


Saturday (March 9 th )<br />

9:00 – 11:30 Poster Session 2 and "Frühschoppen"<br />

Unter den L<strong>in</strong>den 6 - Senatssaal<br />

11:30 – 12:30 Clos<strong>in</strong>g Lecture<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

Prof. Dr. K. Roth - Freie Universität Berl<strong>in</strong><br />

"’Berl<strong>in</strong>er Currywurst’ - Some like it hot"<br />

12:30 – 13:30 Clos<strong>in</strong>g Ceremony<br />

Unter den L<strong>in</strong>den 6 - K<strong>in</strong>osaal<br />

14:00 – 17:00 Paper Chase<br />

Unter den L<strong>in</strong>den 6<br />

14:20 – 17:30 Memorial Hohenschönhausen<br />

Unter den L<strong>in</strong>den 6<br />

17:00 – 18:30 Berl<strong>in</strong> Underworld<br />

Badstraße/Böttgerstraße<br />

13


Information<br />

15


Poster Sessions<br />

There will be two poster sessions. To f<strong>in</strong>d out <strong>in</strong> which session your poster is, go to<br />

the <strong>in</strong>dex of this book and look up your name. Go to the page which is <strong>in</strong>dicated<br />

there. Beneath your abstract you’ll f<strong>in</strong>d the session you are <strong>in</strong>. The poster number<br />

right next to the session you’ll need to f<strong>in</strong>d your poster wall.<br />

If your poster is part of the first session: You may put up your poster dur<strong>in</strong>g Thursday<br />

afternoon. S<strong>in</strong>ce the room is used for a different event dur<strong>in</strong>g Friday, please remove<br />

your poster directly after the poster session. Posters that rema<strong>in</strong> after the end of the<br />

poster session will be removed.<br />

If your poster is part of the second session: You may put up your poster on Saturday<br />

morn<strong>in</strong>g right before your poster session. Please remove your poster before the start<br />

of the social activities. Posters that rema<strong>in</strong> after 2 pm will be removed.<br />

Poster Prize<br />

The prizes for the best posters will be awarded by all participants. All posters with<br />

highlight<strong>in</strong>g talks will be awarded <strong>in</strong> their separate category. Each participant can<br />

cast TWO votes for EACH poster session. Both on Thursday and on Saturday each<br />

participant can vote for one highlighted poster and one other poster.<br />

For the Thursday session, please drop your ballot <strong>in</strong>to the box (located <strong>in</strong> foyer of<br />

poster session) by the end of the Thursday session. For the Saturday session, please<br />

drop your ballot <strong>in</strong>to the box (located <strong>in</strong> foyer of poster session) by the end of the<br />

Saturday session.<br />

All prizes for best posters and best talks will be handed over <strong>in</strong> the Clos<strong>in</strong>g Ceremony<br />

on Saturday morn<strong>in</strong>g.<br />

Information regard<strong>in</strong>g Social Activities<br />

At the registration desk you will receive vouchers for the social events that you booked.<br />

Please have your vouchers ready for the respective social events.<br />

On Wednesday<br />

City Tour:<br />

Meet at the Humboldt-Universität ma<strong>in</strong> build<strong>in</strong>g near the registration desk at 15:50.<br />

Tour will take approximately 3 hours.<br />

Boat Trip:<br />

Meet at the Humboldt-Universität ma<strong>in</strong> build<strong>in</strong>g near the registration desk at 15:40.<br />

On Saturday<br />

Paper Chase:<br />

Meet near the <strong>in</strong>fo desk on Saturday at 14:00. Tour will take approximately 3 hours.<br />

Underworld Tours:<br />

Tour <strong>in</strong> English: Meet near the <strong>in</strong>fo desk on Saturday at 16:15 or come directly to the<br />

Bad- / corner Böttgerstraße, 13357 Berl<strong>in</strong> at 17:00. Tour <strong>in</strong> German: Meet near the<br />

<strong>in</strong>fo desk on Saturday at 17:15 or come directly to the Bad- / corner Böttgerstraße,<br />

13357 Berl<strong>in</strong> at 18:00. Tours will take approximately 1.5 hours.<br />

16


Memorial Hohenschönhausen:<br />

Meet near the <strong>in</strong>fo desk on Saturday at 14:20 or come directly to the Genslerstr. 13<br />

A, 13055 Berl<strong>in</strong> at 15:30. Tour will take approximately 2 hours.<br />

Lunch Options<br />

Around the ma<strong>in</strong> build<strong>in</strong>g of the Humboldt-Universität you will f<strong>in</strong>d various lunch<br />

options. In the yard of the ma<strong>in</strong> build<strong>in</strong>g, the student canteen of the Humboldt-<br />

Universität is located <strong>in</strong> the large white tent. If you want to have your lunch there,<br />

please come to the conference desk and buy a meal voucher worth 9 e (per day), as the<br />

canteen discourages payment with cash. Around the university, you can f<strong>in</strong>d various<br />

restaurants. The closer you get to either S-Bahnhof Friedrichstraße or S-Bahnhof<br />

Alexanderplatz, the larger will be the selection of <strong>in</strong>expensive food alternatives.<br />

Public Transport<br />

Dur<strong>in</strong>g the conference (Wednesday to Saturday) every participant may use the public<br />

transport <strong>in</strong> the zones A, B, C (Berl<strong>in</strong>, Potsdam and surround<strong>in</strong>gs) for free. You<br />

need your conference nametag and an ID card or passport. All <strong>in</strong>formation (routes,<br />

timetables etc.) on public transport may be found here: www.bvg.de<br />

WLAN Access<br />

If your home <strong>in</strong>stitute takes part <strong>in</strong> the eduroam project, you may use the WLAN<br />

<strong>in</strong>frastructure of the Humboldt-Universität by just logg<strong>in</strong>g <strong>in</strong> with your account from<br />

your home university. If you are not sure what eduroam is, please visit www.eduroam.org<br />

and ask your local IT adm<strong>in</strong>istrator for it.<br />

In case you can not use eduroam you may ask for a guest account at the registration<br />

desk. Unfortunatly this has several disadvantages: The connection is much slower and<br />

less stable and you have to accept the IT regulations of the Humboldt-Universität.<br />

Thus, please consider to use eduroam!<br />

Science Location Berl<strong>in</strong><br />

With its large number of scientific <strong>in</strong>stitutions, Berl<strong>in</strong> provides excellent opportunities<br />

for researchers from all over the world. Berl<strong>in</strong> is home to four universities (Freie Universität,<br />

Humboldt-Universität, Technische Unversität and Universität der Künste),<br />

several universities of the applied sciences and 70 non-university research <strong>in</strong>stitutions.<br />

The Charité hospital is the largest medic<strong>in</strong>e faculty <strong>in</strong> Europe. It is a perfect example<br />

of how basic and applied research are <strong>in</strong> symbiosis here <strong>in</strong> Berl<strong>in</strong>. You f<strong>in</strong>d unique<br />

research facilities like the synchrotron radiation source BESSY, the research reactor<br />

BER-II (both parts of the Helmholtz-Zentrum Berl<strong>in</strong> for Materials and Energy) and<br />

the free electron laser <strong>in</strong> the Fritz-Haber-Institute of the Max-Planck-Society. As<br />

an example for other research <strong>in</strong>stitutions the Max Delbrück Center for Molecular<br />

Medic<strong>in</strong>e, three additional Max-Planck-Institutes or the Federal Institute for Materials<br />

Research and Test<strong>in</strong>g should be mentioned.<br />

In so-called clusters of excellence, funded by the German government, different <strong>in</strong>stitutes<br />

collaborate on larger topics that are relevant from a social and economic<br />

17


standpo<strong>in</strong>t. UniCat is one of these clusters <strong>in</strong> Berl<strong>in</strong>. It deals with unify<strong>in</strong>g different<br />

concepts <strong>in</strong> heterogeneous, homogeneous and biological catalysis.<br />

Berl<strong>in</strong> was one of the first cities to host a "long night of the sciences". In this annual<br />

event, research <strong>in</strong>stitutes open their doors to the public to give people <strong>in</strong>sights <strong>in</strong>to<br />

the projects they research and the methods they use. Last year over 34,000 people<br />

came to the 73 participat<strong>in</strong>g academic <strong>in</strong>stitutions.<br />

Berl<strong>in</strong> at a Glance<br />

If you have a bit more time <strong>in</strong> Berl<strong>in</strong>, there is a large number of different places to go<br />

and th<strong>in</strong>gs to see. A few of our recommendations:<br />

Museums<strong>in</strong>sel<br />

It is the name for the northern part of an island <strong>in</strong> the center of Berl<strong>in</strong>, with five<br />

<strong>in</strong>ternationally significant museums. Last year this museum complex was visted by<br />

2,75 million people. It consists of the Altes Museum (antique collection), the Neues<br />

Museum (Prehistorical, Egyptian and Early History collections), the Alte Nationalgallerie<br />

(collection of Neoclassical, Romantic, Biedermeier, Impressionist and early<br />

Modernist artwork), the Bode-Museum (collection of sculptures, Byzant<strong>in</strong>e art, and<br />

co<strong>in</strong>s and medals) and the Pergamonmuseum (antiquity collection, the Middle East<br />

Museum, and the Museum of Islamic art).<br />

Naturkundemuseum<br />

It is the largest museum of natural history <strong>in</strong> Germany with 30 million zoological,<br />

paleontological, m<strong>in</strong>eralogical, and geological objects. The m<strong>in</strong>eral collection <strong>in</strong>cludes<br />

75 % of all m<strong>in</strong>erals <strong>in</strong> the world. Two spectacular exhibits are the largest mounted<br />

d<strong>in</strong>osaur <strong>in</strong> the world which is 23 m long and 12 m high and an exemplar of the<br />

earliest known bird, Archaeopteryx.<br />

Deutsches Technikmuseum Berl<strong>in</strong><br />

This museum exhibits a large collection of historical technical exhibition pieces, it<br />

is focused on the waterways and rail transport <strong>in</strong> / to Berl<strong>in</strong> and <strong>in</strong> Germany, the<br />

beer, jewelry production and energy. Also a reproduction of the Z1, the first freely<br />

programmable computer <strong>in</strong> the world, is shown.<br />

Old Airport Tempelhof<br />

Built <strong>in</strong> the 1920ies, this was the first airport <strong>in</strong> Berl<strong>in</strong>. The Nazis added a monumental<br />

airport build<strong>in</strong>g, the US Army used it as their air base after WWII. Dur<strong>in</strong>g<br />

the Berl<strong>in</strong> blockade <strong>in</strong> 1948/49, the airport was a major hub for the historic airlift<br />

that provided supplies for two million citizens. The airport was closed <strong>in</strong> 2008 and<br />

the area converted <strong>in</strong>to a recreational territory. A huge plane stretches <strong>in</strong> the middle<br />

of the city, allow<strong>in</strong>g runn<strong>in</strong>g, skat<strong>in</strong>g, bik<strong>in</strong>g, kit<strong>in</strong>g, areas for barbecues, lacrosse,<br />

baseball, urban garden<strong>in</strong>g and many more activities. You can visit for free daily from<br />

6 AM to 7 PM. Just get off the S-Bahn at station Tempelhof and walk for 5 m<strong>in</strong>utes.<br />

Views Above the City<br />

On Alexanderplatz, you f<strong>in</strong>d one of Berl<strong>in</strong>s landmarks: the 356 metres high TV tower.<br />

The visitors platform provides spectacular views <strong>in</strong> all directions. Just opposite to<br />

the TV Tower, also on Alexanderplatz, you can visit the 37th floor of the Park Inn<br />

Hotel and view the city centre. On Potsdamer Platz, you can use the fastest elevator<br />

<strong>in</strong> Europe to get to a platform with a view over all the important landmarks of Berl<strong>in</strong>.<br />

TV tower: 12 e pp http://www.tv-turm.de Park Inn: 3 e pp Just walk <strong>in</strong> and take<br />

18


the elevator to the top (only open <strong>in</strong> good weather) Panorama (Potsdamer Platz):<br />

5.50 e p.P. http://www.panoramapunkt.de<br />

Not a lot of time? Hop on public bus l<strong>in</strong>e 100!<br />

Operat<strong>in</strong>g from S Alexanderplatz to S Zoologischer Garten, this bus l<strong>in</strong>e takes you<br />

past a big number of the important sites <strong>in</strong> Berl<strong>in</strong>. There is Alexanderplatz, home to<br />

the Rotes Rathaus, the town hall of Berl<strong>in</strong> and the most famous landmark of Berl<strong>in</strong>,<br />

the TV tower which is the tallest structure <strong>in</strong> Germany. St. Marys Church is one of<br />

the oldest churches <strong>in</strong> Berl<strong>in</strong>, the exact age is unknown. The Nikolaiviertel is the reconstructed<br />

historical heart of the city with the oldest church <strong>in</strong> Berl<strong>in</strong> Nikolaikirche,<br />

build between 1220 and 1230. The Staatsoper Berl<strong>in</strong> unfortunately is under reconstruction<br />

at the moment, but you can try to get a glance across Bebelplatz at the very<br />

beautiful Alte Bibliothek. On the other site of the street you can f<strong>in</strong>d the ma<strong>in</strong> build<strong>in</strong>g<br />

of Humboldt-Universität. The Brandenburger Tor is a build<strong>in</strong>g that is attached<br />

to a lot of German history. When the copper statue of the victory goddess was first<br />

put on top, the citizens compla<strong>in</strong>ed that the lady was wear<strong>in</strong>g too reveal<strong>in</strong>g clothes,<br />

so the copper robe was added. Mark<strong>in</strong>g the border between Warsaw Pact and NATO,<br />

it was a symbol of the cold war. From 1990, it became a symbol for the reunification<br />

of Germany. The Reichstag build<strong>in</strong>g accommodates the German Parliament, called<br />

the Bundestag. After the abdication of the Kaiser <strong>in</strong> 1918, the first German republic<br />

was proclaimed to the public from one of the Reichstags balconies. The Haus der<br />

Kulturen der Welt (Berl<strong>in</strong>ers call it the pregnant oyster because of its shape) was a<br />

gift from the United States of America and is the national centre for contemporary<br />

non-European art. Schloss Bellevue is the official residence of the German president.<br />

Due to many reconstruction periods and the representative rooms tak<strong>in</strong>g up a lot of<br />

space, there is only one German president who has actually lived <strong>in</strong> the castle (Roman<br />

Herzog). At the Großer Stern <strong>in</strong>tersection, <strong>in</strong> the center of the Großer Tiergarten,<br />

the Siegessäule watches over the west part of Berl<strong>in</strong>. It was built after a series of wars<br />

that lead to the unification of the many small states to the Kaiserreich. In the late<br />

90s, the Siegessäule was the focal po<strong>in</strong>t for the annual Loveparade, one of the largest<br />

Techno festivals at that time. Beh<strong>in</strong>d the park lies the Potsdamer Platz, an example<br />

for the ’new Berl<strong>in</strong>’ and the urban renewal after the cold war. On the place stands<br />

a replica of the first traffic light <strong>in</strong> Berl<strong>in</strong> from the year 1924. The Breitscheidplatz<br />

lies at one end of the most prestigious shopp<strong>in</strong>g street of the city, the Kurfürstendamm.<br />

Its most strik<strong>in</strong>g build<strong>in</strong>g is the Kaiser-Wilhelm-Gedächtnis-Kirche, which<br />

was heavily damaged <strong>in</strong> World War II, and is kept <strong>in</strong> its state as a war memorial.<br />

The remarkably large church bells, which were made out of cannon balls captured <strong>in</strong><br />

the German-French war (1871) were repurposed for weaponry <strong>in</strong> 1943. The Zoologischer<br />

Garten is a zoo that also consists of a very large aquarium where mar<strong>in</strong>e animals<br />

as well as reptiles, amphibians and <strong>in</strong>sects can be found.<br />

Personal Recommodation of the Organizers<br />

District Friedrichsha<strong>in</strong>:<br />

In the triangle between S Warschauer Straße, S Ostkreuz and U Samariterstraße you<br />

will f<strong>in</strong>d a large selection of bars, restaurants and pubs. Just start at one corner and<br />

f<strong>in</strong>d someth<strong>in</strong>g you like.<br />

Near the conference venue:<br />

Along the Oranienburger Straße you will f<strong>in</strong>d many <strong>in</strong>ternational bars and restaurants.<br />

Start at S Oranienburger Straße and walk through the Oranienburger Straße<br />

19


or the small byroads. Or take a small walk start<strong>in</strong>g at the conference hall along the<br />

Friedrichstraße.<br />

Burger Restaurant Rosenburger – Brunnenstr. 196, 10119 Berl<strong>in</strong>-Prenzl. Berg<br />

At U Rosenthaler Platz, <strong>in</strong> Brunnenstr. 196, you get served some of the nicest burgers<br />

<strong>in</strong> Berl<strong>in</strong>. You can choose from a range of topp<strong>in</strong>gs and organic meat patties are<br />

available as well. Homemade curly fries are my personal favourite.<br />

Que Pasa – Skalitzer Str. 107, 10997 Berl<strong>in</strong>-Kreuzberg or Oranienburger Str. 27,<br />

10117 Berl<strong>in</strong>-Mitte Here you can eat mexican food or dr<strong>in</strong>k tasty cocktails. My<br />

personal favourite is Chilli con Carne. If you are with a bigger group, you should try<br />

this bar, as they have a bit more space.<br />

Hops & Barley – Wühlischstr. 22/23, 10245 Berl<strong>in</strong>-Friedrichsha<strong>in</strong> This pub has<br />

its own brewery and serves several homebrewed beers and cider.<br />

Aspendos – Hauptstraße 11, 10827 Berl<strong>in</strong>-Schöneberg This little restaurant has<br />

Turkish specialities (<strong>in</strong>clud<strong>in</strong>g the Berl<strong>in</strong> default fast food - the Döner) <strong>in</strong> great quality.<br />

Varadero – Vorbergstraße 11, 10823 Berl<strong>in</strong> This Cuban restaurant serves great<br />

typical food. The music and overall atmosphere are perfect, and they make good<br />

cocktails.<br />

Paules Metal Eck – Krossener Straße 15, 10245 Berl<strong>in</strong>-Friedrichsha<strong>in</strong> For friends<br />

of metal musik, Paules Metal Eck can be recommended.<br />

Vapiano – Mittelstraße 51, 10117 Berl<strong>in</strong> This self service restaurant offers you delicious<br />

low budget mediterranean food.<br />

Villa Rixdorf – Richardplatz, 12055 Berl<strong>in</strong> There you can eat good traditional fare<br />

<strong>in</strong> a characteristic german atmosphere.<br />

Important Telephone Numbers<br />

20<br />

Police 110<br />

Ambulance & Fire Department 112<br />

Taxi (english speak<strong>in</strong>g) (+49) 30 20 20 21 22 0<br />

Poison hotl<strong>in</strong>e (+49) 30 19 2 40<br />

Emergency dental service (<strong>in</strong>formation) (+49) 30 89 00 43 33<br />

National enquiries (+49) 11 8 33<br />

International enquiries (+49) 11 8 34<br />

BVG (public transport) customer services (+49) 30 19 4 49<br />

Central (public) lost property office (+49) 30 902 77 31 01


Map of the Conference Venue – Unter den L<strong>in</strong>den 6<br />

21


Plenary Lectures<br />

23


Curriculum Vitae<br />

Prof. Dr. A. Stephen K. Hashmi<br />

Professor for Chemistry<br />

Organisch-Chemisches Institut<br />

Ruprecht-Karls-Universität Heidelberg<br />

Im Neuenheimer Feld 270<br />

69120 Heidelberg<br />

Germany<br />

hashmi@hashmi.de<br />

www.hashmi.de<br />

2007 – Chair for Organic Chemistry at the Institute of Organic Chemistry of the<br />

Ruprecht-Karls-University Heidelberg, Germany<br />

2001 – 2007 Appo<strong>in</strong>ted to professor for Organic Chemistry at the Institute of Organic<br />

Chemistry of Stuttgart University, Germany<br />

1999 – 2000 Temporary professorship for organic chemistry at the Department of<br />

Chemistryof Philipps-University Marburg, Germany<br />

1998 End of the Habilitation with the <strong>in</strong>itiation-lecture as Privatdozent at the<br />

Institute of Organic Chemistry of Johann Wolfgang Goethe-Universität<br />

Frankfurt, Germany<br />

1995 Move with Prof. Dr. J. Mulzer to the Institute of Organic Chemistry of<br />

Johann Wolfgang Goethe-University Frankfurt, Germany<br />

1993 Beg<strong>in</strong>n<strong>in</strong>g of the Habilitation <strong>in</strong> the group of Prof. Dr. J. Mulzer at the<br />

Institute of Organic Chemistry of Free University Berl<strong>in</strong>, Germany<br />

1991 – 1993 Postdoctoral studies <strong>in</strong> the group of Prof. B. M. Trost at Stanford University,<br />

California, USA<br />

1983 – 1991 Chemistry studies at Ludwig-Maximilians-University Munich, Germany;<br />

Diploma thesis <strong>in</strong> the group of Prof. Dr. G. Szeimies; Doctoral thesis <strong>in</strong><br />

the group of Prof. Dr. G. Szeimies<br />

Awards<br />

2010 Hector Research Award<br />

2007 Prize awarded by the students for the best lecture 2007 <strong>in</strong> Chemistry at<br />

Ruprecht-Karls-University Heidelberg<br />

2002 ORCHEM Prize for natural sciences of the German Chemical Society<br />

2001 Karl-Ziegler Memorial Fellowship<br />

1999 Heisenberg Fellowship of the Deutsche Forschungsgeme<strong>in</strong>schaft<br />

1998 Dr. Otto Röhm Memorial Fellowship<br />

1995 Habilitanden-fellowship of the Deutsche Forschungsgeme<strong>in</strong>schaft<br />

1993 Justus von Liebig Fellowship of the Fonds der Chemischen Industrie for<br />

the Habilitation<br />

1991 Postdoctoral fellowship of the Deutsche Forschungsgeme<strong>in</strong>schaft<br />

24 Thursday 9:30 - 10:30 Plenary: Prof. Hashmi


Gold Catalysis 2.0<br />

Stephen Hashmi<br />

The first decade of homogeneous gold catalysis has been dom<strong>in</strong>ated by simple nucleophilic<br />

addition reactions. [1] The field has experienced an exponential growth dur<strong>in</strong>g<br />

that time. With<strong>in</strong> the last 12 months new results <strong>in</strong>dicate very <strong>in</strong>terest<strong>in</strong>g new options,<br />

which are based on entirley new reactivity patterns and complex catalytic<br />

cycles. [2]<br />

[1] a) A. S. K. Hashmi, G. J. Hutch<strong>in</strong>gs, Angew. Chem. 2006, 118, 8064-8105; Angew. Chem.<br />

Int. Ed. 2006, 45, 7896-7936; b) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41,<br />

2448-2462.<br />

[2] a) R. Döpp, C. Lothschütz, T. Wurm, M. Pernpo<strong>in</strong>tner, S. Keller, F. Rom<strong>in</strong>ger, A. S. K. Hashmi,<br />

Organometallics 2011, 30, 5894-5903; b) A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M.<br />

Wieteck, M. Rudolph, F. Rom<strong>in</strong>ger, Angew. Chem. 2012, 124, 4532-4536; Angew. Chem. Int.<br />

Ed. 2012, 51, 4456-4460; c) A. S. K. Hashmi, M. Wieteck, I. Braun, M. Rudolph, F. Rom<strong>in</strong>ger,<br />

Angew. Chem. 2012, 124, 10785-10789; Angew. Chem. Int. Ed. 2012, 51, 10633-10637.<br />

Plenary: Prof. Hashmi Thursday 9:30 - 10:30 25


Curriculum Vitae<br />

Dr. Sebastian Loth<br />

Group Leader<br />

Max Planck Research Department for Structural Dynamics<br />

Center for Free-Electron Laser Science<br />

Notkestrasse 85<br />

22607 Hamburg<br />

Germany<br />

sebastian.loth@mpsd.cfel.de<br />

www.fastatoms.de<br />

2011 – Max-Planck Research Group - Dynamics of Nanoelectronic Systems –<br />

Group Leader hosted at the Center for Free-Electron Laser Science, Hamburg,<br />

Germany and the Max-Planck Institute for Solid State Research,<br />

Stuttgart, Germany<br />

2008 – 2011 IBM Almaden Research Center, San Jose CA, USA – Postdoctoral Researcher<br />

exploration of atomically assembled nanostructures for novel<br />

schemes <strong>in</strong> data-storage and quantum <strong>in</strong>formation process<strong>in</strong>g<br />

2007 Ph.D. degree <strong>in</strong> Physics, IV. Physikalisches Institut (Semiconductor<br />

Physics) studies of nanoscale phenomena <strong>in</strong> operat<strong>in</strong>g semiconductor elements<br />

us<strong>in</strong>g low-temperature scann<strong>in</strong>g tunnell<strong>in</strong>g microscopy, Georg-<br />

August-University of Gött<strong>in</strong>gen, Germany<br />

2004 Diploma degree <strong>in</strong> Physics, Georg-August-University of Gött<strong>in</strong>gen, Germany<br />

2001 – 2002 General Manager – Olesno Konstrukcje + Montaz Sp. z o. o., Zabrze,<br />

Poland adm<strong>in</strong>istration and time schedul<strong>in</strong>g for assembly of <strong>in</strong>dustrial<br />

wood process<strong>in</strong>g plants<br />

2001 Intermediate diploma, University of Bielefeld, Germany<br />

Awards<br />

2008 – 2010 Feodor-Lynen research scholarship of the Alexander von Humboldt foundation<br />

2007 Dissertation award of the Berl<strong>in</strong>er-Ungewitter foundation<br />

2005 – 2007 Doctorate scholarship of the German National Academic Foundation<br />

26 Thursday 14:50 - 15:50 Plenary: Dr. Loth


Atom-by-atom assembly of stable nanomagnets<br />

Sebastian Loth<br />

The scann<strong>in</strong>g tunnel<strong>in</strong>g microscope has changed our view of the nanoworld. Atoms are<br />

no longer <strong>in</strong>tangible objects. They can be imaged <strong>in</strong>dividually and even manipulated<br />

<strong>in</strong>to structures that do not exist naturally.<br />

We focus on magnetic nanostructures and test how classical concepts of magnetism<br />

emerge from the quantum mechanical behavior of <strong>in</strong>dividual atoms. We use a lowtemperature<br />

scann<strong>in</strong>g tunnel<strong>in</strong>g microscope (STM) and assemble the nanostructures<br />

from different transition metal elements. Inelastic tunnel<strong>in</strong>g spectroscopy serves as<br />

a highly sensitive tool to achieve chemical identification of the atoms and to resolve<br />

their magnetic properties.<br />

With this technique we can quantify magnetic exchange <strong>in</strong>teraction and follow the<br />

evolution of magnetic states as we build the nanostructure one atom at a time. This<br />

makes it possible to optimize arrangements of atoms that either enhance or reduce<br />

magnetic stability. We identified a new route to create stable magnetic states us<strong>in</strong>g<br />

antiferromagnetic sp<strong>in</strong>-sp<strong>in</strong> <strong>in</strong>teraction enabl<strong>in</strong>g a model demonstration of dense<br />

magnetic memory with only 12 atoms per bit. [1]<br />

[1] Sebastian Loth, Susanne Baumann, Christopher P. Lutz, D. M. Eigler, Andreas J. He<strong>in</strong>rich,<br />

Science 2012, 335, 196.<br />

Plenary: Dr. Loth Thursday 14:50 - 15:50 27


Curriculum Vitae<br />

2009 – Head of Bra<strong>in</strong>Met<br />

Dr. habil. J. Sab<strong>in</strong>e Becker<br />

Leader of trace and ultratrace analysis<br />

Forschungszentrum Jülich<br />

Analytik (ZEA-3)<br />

Wilhelm-Johnen-Str.<br />

52428 Jülich<br />

Germany<br />

s.becker@fz-juelich.de<br />

www.bra<strong>in</strong>met.de<br />

1997 – 2003 Deputy head of the Central Division of Analytical Chemistry<br />

1992 – Head of mass spectrometry, Central Division of Analytical Chemistry,<br />

Forschungszentrum Jülich<br />

1988 Habilitation on "Ultrasensitive Mass Spectrometric Techniques", University<br />

Leipzig<br />

1974 – 1991 Central Institute for Isotope and Radiation Research, Leipzig<br />

1974 Promotion <strong>in</strong> Quantum Chemistry, University Leipzig<br />

1967 – 1974 Studies of Chemistry, University Leipzig<br />

Awards<br />

2012 W<strong>in</strong>ter Conference Award on Plasma Spectrochemistry sponsored by<br />

Thermo Fisher Scientific, Tucson, Arizona<br />

2010 IUPAC Fellow (International Union of Pure and Applied Chemistry)<br />

2009 DGMS-Award "Massenspektrometrie <strong>in</strong> den Biowissenschaften" (Mass<br />

Spectrometry <strong>in</strong> the Bioscience)<br />

2001 – 2012 Different Guest Professorships at Universities and Research Centres<br />

<strong>in</strong>clud<strong>in</strong>g Bulgaria, Rumania, France, Czech Republic, Israel, Ch<strong>in</strong>a,<br />

Poland, Brazil, Thailand, Canada, Taiwan and the USA<br />

1999 – 2004 Guest professor: Nuclear Research Centre, Atomic Energy Authority,<br />

Cairo<br />

28 Friday 9:10 - 10:10 Plenary: Dr. habil. Becker


Mass Spectrometry Imag<strong>in</strong>g (MSI) of Elements <strong>in</strong> Biological<br />

Tissue<br />

J. Sab<strong>in</strong>e Becker<br />

The application of mass spectrometry with soft ionization techniques (ESI, electrospray<br />

ionization, and MALDI, matrix-assisted laser desorption ionization) <strong>in</strong> the life<br />

sciences for the detection and identification of biomolecules is already well established.<br />

The application of elemental mass spectrometry us<strong>in</strong>g laser ablation <strong>in</strong>ductively coupled<br />

plasma mass spectrometry (LA-ICP-MS) for the determ<strong>in</strong>ation of metals, metalloids<br />

and non-metals biological tissue is rather new and there is some hesitation <strong>in</strong><br />

accept<strong>in</strong>g this analytical method, although it offers many advantages. Elemental and<br />

biomolecular mass spectrometric methods are highly complementary. LA-ICP-MS, as<br />

a solid state mass spectrometric technique, allows the direct determ<strong>in</strong>ation of trace<br />

elements <strong>in</strong> biological and environmental samples and is applied for microlocal and<br />

imag<strong>in</strong>g technique of elements with spatial resolution <strong>in</strong> the µm range. [1-5] Based<br />

on the established rout<strong>in</strong>e Bra<strong>in</strong>Met technique (Bra<strong>in</strong>Met - Bioimag<strong>in</strong>g of Metals <strong>in</strong><br />

Bra<strong>in</strong> and Metallomics) <strong>in</strong> quantitative elemental imag<strong>in</strong>g us<strong>in</strong>g LA-ICP-MS with a<br />

spatial resolution between 200 to ∼ 10 µm, we developed the comb<strong>in</strong>ation of a laser<br />

microdissection apparatus to ICP-MS (LMD-ICP-MS) to imag<strong>in</strong>g of metals at higher<br />

spatial resolution (10 to < 1 µm) and develop a method comb<strong>in</strong><strong>in</strong>g elemental imag<strong>in</strong>g<br />

by LA/LMD-ICP-MS with molecular imag<strong>in</strong>g by MALDI-MS.<br />

Fig. 1: Mass spectrum of a l<strong>in</strong>e scan (top left) and images of selected metals and<br />

non-metals measured by LA-ICP-MS <strong>in</strong> rout<strong>in</strong>e mode. [4]<br />

On the basis of selected examples, it will be shown that the comb<strong>in</strong>ation of different elemental<br />

and biomolecular mass spectrometric techniques can solve analytical problems <strong>in</strong><br />

the life sciences. Future developments and trends will be discussed concern<strong>in</strong>g <strong>in</strong>strumental<br />

developments of new mass spectrometric techniques provid<strong>in</strong>g improvement of spatial<br />

resolution and high sensitivity with lower detection limits for different application areas <strong>in</strong><br />

life sciences.<br />

[1] J. S. Becker, Inorganic Mass Spectrometry: Pr<strong>in</strong>ciples and Application, J. Wiley and Sons:<br />

Chichester, 2007, 520 pages.<br />

[2] J. S. Becker et al., Mass Spectrom. Rev. 2010, 29, 156.<br />

[3] J. S. Becker, N. Jakubowski, Chem. Soc. Rev. 2009, 38 (7),1969-1983.<br />

[4] J. S. Becker, Int. J. Mass Spectrom. 2010, 289, 65-75.<br />

[5] J. S. Becker et al., Int. J. Mass Spectrom. 2011, 307, 3-15.<br />

Plenary: Dr. habil. Becker Friday 9:10 - 10:10 29


Curriculum Vitae<br />

Prof. Dr. Peter R. Schre<strong>in</strong>er<br />

Profssor for Organic Chemistry<br />

Institute of Organic Chemistry<br />

Justus-Liebig Universität Giessen<br />

He<strong>in</strong>rich-Buff-R<strong>in</strong>g 58<br />

35392 Giessen<br />

Germany<br />

Peter.R.Schre<strong>in</strong>er@org.chemie.uni-giessen.de<br />

www.chemie.uni-giessen.de/schre<strong>in</strong>er<br />

2002 – Full professor of Organic Chemistry, Justus-Liebig-University Giessen<br />

1999 – 2002 Associate Professor of Organic Chemistry, Univ. of Georgia, Athens, USA<br />

1996 – 1999 Habilitand, Georg-August-Universität Gött<strong>in</strong>gen<br />

1995 – 1996 Project Coord<strong>in</strong>ator, The Encyclopedia of Computational Chemistry<br />

1995 Ph.D. (Computational Chem., Prof. H. F. Schaefer III), UGA, Athens,<br />

USA<br />

1994 Dr. rer.nat. (Organic Chem., Prof. P. v. R. Schleyer), Univ. Erlangen<br />

1992 Dipl.Chem. (Organic Chem., Prof. P. v. R. Schleyer), Univ. Erlangen<br />

1991 M.Sc. (Organic Chem., Prof. R. K. Hill), UGA, Athens, USA<br />

Awards<br />

2012 Schulich Visit<strong>in</strong>g Professorship, Technion-Israel Institute of Technology<br />

2010 P. v. R. Schleyer Lectureship Award (University of Georgia, USA)<br />

2010 Lifetime Honorary Member, Israel Chemical Society<br />

2009 Török Lectureship Award (Eötvös University, Budapest, Hungary)<br />

2009 Chair, Gordon Research Conference on Physical-Organic Chemistry -<br />

Molecular Design and Synthesis (New Hampshire, USA)<br />

2003 Dirac Medal of the World Association of Theoretical and Computational<br />

Chemists<br />

2000 Research Innovation Award of the Research Corporation<br />

2000 Chemical Research Publicity Award , The University of Georgia<br />

1999 Chair, Gordon Research Conference on Physical-Organic Chemistry -<br />

Molecular Design and Synthesis (New Hampshire, USA)<br />

1999 Dirac Medal of the World Association of Theoretical and Computational<br />

Chemists<br />

1999 Research Innovation Award of the Research Corporation<br />

1997 – 1999 Chemical Research Publicity Award , The University of Georgia<br />

1996 Robert C. Anderson Memorial Award<br />

1995 Mart<strong>in</strong>-Reynolds-Smith-Award, American Chemical Society (ACS)<br />

1993 Karl-Giehrl-Prize, Best Promotion 1994, University of Erlangen-Nürnberg<br />

30 Friday 14:50 - 15:50 Plenary: Prof. Schre<strong>in</strong>er


Tunnel<strong>in</strong>g Control of Chemical Reactions [1,2]<br />

David Ley, Dennis Gerbig, Hans Peter Reisenauer, Jan Philipp Wagner, Peter R.<br />

Schre<strong>in</strong>er*<br />

Chemical reactivity is traditionally understood [3,4] <strong>in</strong> terms of k<strong>in</strong>etic versus thermodynamic<br />

control, [5,6] where<strong>in</strong> the driv<strong>in</strong>g force is the lowest activation barrier among<br />

the possible reaction paths or the lowest free energy of the f<strong>in</strong>al products, respectively.<br />

Here we expose quantum mechanical tunnel<strong>in</strong>g as a third driv<strong>in</strong>g force that<br />

can overwrite traditional k<strong>in</strong>etic control and govern reactivity based on nonclassical<br />

penetration of the potential energy barriers connect<strong>in</strong>g the reactants and products.<br />

These f<strong>in</strong>d<strong>in</strong>gs are exemplified with the first experimental isolation and full spectroscopic<br />

and theoretical characterization of the elusive hydroxycarbenes (R-C-OH,<br />

1) [7-10] that undergo facile [1,2]hydrogen tunnel<strong>in</strong>g to the correspond<strong>in</strong>g aldehydes<br />

under barriers of nearly 30.0 kcal mol −1 with half-lives of around 1-2 h even at<br />

experimental temperatures as low as 10 K, despite of the presence of paths with substantially<br />

lower barriers (e.g., CH-tunnel<strong>in</strong>g <strong>in</strong> 1b to 3 or rearrangement of 1c to 4).<br />

We will demonstrate that this is a general phenomenon, [11-13] as exemplified by other<br />

OH-tunnel<strong>in</strong>g examples such as the rotational isomerization of monomeric benzoic<br />

acid. [14] Such tunnel<strong>in</strong>g processes do not merely represent corrections to the reaction<br />

rate, they are the reaction rate, i.e., the completely control the reaction outcome. [1]<br />

[1]<br />

P. R. Schre<strong>in</strong>er, H. P. Reisenauer, D. Ley, D. Gerbig, C.-H. Wu, W. D. Allen, Science 2011,<br />

332, 1300.<br />

[2]<br />

D. Ley, D. Gerbig, P. R. Schre<strong>in</strong>er, Org. Biomol. Chem. 2012, 19, 3769.<br />

[3]<br />

H. Eyr<strong>in</strong>g, J. Chem. Phys. 1935, 3, 107.<br />

[4]<br />

M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1935, 31, 875.<br />

[5]<br />

R. B. Woodward, H. Baer, J. Am. Chem. Soc. 1944, 66, 645.<br />

[6]<br />

A. G. Catchpole, E. D. Hughes, C. K. Ingold, J. Chem. Soc. 1944, 11, 8.<br />

[7]<br />

D. Gerbig, H. P. Reisenauer, C.-H. Wu, D. Ley, W. D. Allen, P. R. Schre<strong>in</strong>er, J. Am. Chem.<br />

Soc. 2010, 132, 7273.<br />

[8]<br />

D. Gerbig, D. Ley, H. P. Reisenauer, P. R. Schre<strong>in</strong>er, Beilste<strong>in</strong> J. Org. Chem. 2010, 6, 1061.<br />

[9]<br />

P. R. Schre<strong>in</strong>er, H. P. Reisenauer, F. C. Pickard IV, A. C. Simmonett, W. D. Allen, E. Mátyus,<br />

A. G. Császár, Nature 2008, 453, 906.<br />

[10]<br />

P. R. Schre<strong>in</strong>er, H. P. Reisenauer, Angew. Chem. Int. Ed. 2008, 47, 7071.<br />

[11]<br />

D. Gerbig, D. Ley, P. R. Schre<strong>in</strong>er, Org. Lett. 2011, 13, 3526.<br />

[12]<br />

D. Ley, D. Gerbig, J. P. Wagner, H. P. Reisenauer, P. R. Schre<strong>in</strong>er, J. Am. Chem. Soc.<br />

2011, 133, 13614.<br />

[13]<br />

D. Ley, D. Gerbig, P. R. Schre<strong>in</strong>er, Chem. Sci. <strong>2013</strong>, 2, <strong>in</strong> press.<br />

[14]<br />

S. Amiri, H. P. Reisenauer, P. R. Schre<strong>in</strong>er, J. Am. Chem. Soc. 2010, 132, 15902.<br />

Plenary: Prof. Schre<strong>in</strong>er Friday 14:50 - 15:50 31


Prof. Dr. Klaus Roth<br />

Professor Emeritus<br />

Institute of Chemistry and Biochemistry<br />

Freie Universität Berl<strong>in</strong><br />

Takustr. 3<br />

14195 Berl<strong>in</strong><br />

Germany<br />

klaus.roth@chemie.fu-berl<strong>in</strong>.de<br />

www.klausroth.de<br />

2000 – Professor at the Institute of Chemistry, Freie Universität Berl<strong>in</strong><br />

1991 – 2000 Director of Dahlem Conferences, Freie Universität Berl<strong>in</strong><br />

1990 Supernumerary professor, Freie Universität Berl<strong>in</strong><br />

1986 – 1988 Visit<strong>in</strong>g Professor, University of California San Francisco<br />

1981 Habilitation, Freie Universität Berl<strong>in</strong><br />

1979 – 1980 Postdoctoral research, Institute for Medical Research <strong>in</strong> Mill Hill, London<br />

1973 Promotion, Freie Universität Berl<strong>in</strong><br />

1964 – 1969 Studies of Chemistry, Freie Universität Berl<strong>in</strong><br />

Awards<br />

2008 Author award of the Gesellschaft Deutscher Chemiker for the book<br />

"Chemische Delikatessen"<br />

1986 – 1988 Max-Kade-Fellowship for a research stay as a Visit<strong>in</strong>g Associate Professor<br />

<strong>in</strong> the group of M.W. We<strong>in</strong>er, Department of Radiology, University of<br />

California, San Francisco<br />

1979 – 1980 DFG-fellowship for a research stay <strong>in</strong> the group of J. Feeney, Institute for<br />

Medical Research, London<br />

32 Saturday 11:30 - 12:30 Plenary: Prof. Roth


“Berl<strong>in</strong>er Currywurst” - Some like it hot<br />

Klaus Roth<br />

A typical local specialty <strong>in</strong> Berl<strong>in</strong> is the “Currywurst”, a fried sausage covered with a<br />

sauce based ma<strong>in</strong>ly on tomato ketchup and a mixture of more or less hot spices. It’s<br />

not a gourmet but fast food, and with an additional help<strong>in</strong>g of French fries it conta<strong>in</strong>s<br />

a four-digit number of kilocalories and keeps your stomach busy for a couple of hours.<br />

When you order a “Currywurst”, the person beh<strong>in</strong>d the counter may ask you how hot<br />

the sausage should be. You should answer quickly and exactly, because if you hesitate<br />

too long, people <strong>in</strong> the queue beh<strong>in</strong>d you will start to get nervous. In that critical<br />

moment solid chemical knowledge can be of great help.<br />

Indeed the biochemistry of Bell Pepper and Chili has many surprises to offer. The<br />

brilliant red color is based on the “paprika ketones”, compounds that only capsicum<br />

can synthesize. The extraord<strong>in</strong>ary pungency, which many humans all over the world<br />

enjoy so much, is due to capsaic<strong>in</strong> and dihydrocapsaic<strong>in</strong>, which are also compounds<br />

that only capsicum can produce. With all that knowledge about capsicums’s unique<br />

and outstand<strong>in</strong>g chemical achievements, you can order your “Currywurst”, more precisely,<br />

qualified, and relaxed, which can make a “Currywurst”, a delicious experience<br />

you shouldn’t miss. This is just another proof that chemistry not only can be excit<strong>in</strong>g<br />

but also taste good.<br />

Guten Appetit!<br />

Plenary: Prof. Roth Saturday 11:30 - 12:30 33


Oral Presentations<br />

35


Sugar Complexes and the Asymmetric Transfer<br />

Hydrogenation<br />

Anne-Kathr<strong>in</strong> Baum, Jürgen Heck<br />

Institut für Anorganische und Angewandte Chemie –<br />

Fachbereich Chemie, Universität Hamburg – Mart<strong>in</strong>-Luther-K<strong>in</strong>g-Platz 6 –<br />

20146 Hamburg – GER<br />

baum@chemie.uni-hamburg.de<br />

The use of carbohydrates as ligands offers the chance of transferr<strong>in</strong>g the natural<br />

chirality from the ligand not only to the complex but, us<strong>in</strong>g the derived complex <strong>in</strong><br />

asymmetric reactions, also to a prochiral substrate.<br />

Various carbohydrate ligands have been synthesised and applied <strong>in</strong> organometal complexes<br />

<strong>in</strong> our group. [1] Glucopyranosidato and allopyranosidato ligands with their<br />

oxygen donor atoms were applied <strong>in</strong> zirconium and titanium complexes present<strong>in</strong>g different<br />

structural motifs and a possible application <strong>in</strong> the hydroam<strong>in</strong>ation reaction. [2-5]<br />

The successful change of donor atoms from oxygen to nitrogen by synthesis of a diam<strong>in</strong>oglucoside<br />

ligand afforded the opportunity for synthesis of group 6 sugar carbonyl<br />

complexes. [6]<br />

To enable the use of sugar ligands <strong>in</strong> late transition metal complexes a N,O-motif was<br />

chosen for coord<strong>in</strong>ation. Three ligand precursors, am<strong>in</strong>oglucopyranoside 1, am<strong>in</strong>oallopyranoside<br />

2 and am<strong>in</strong>omannopyranoside 3, have been prepared and their coord<strong>in</strong>ation<br />

chemistry on ruthenium complexes of the type [Ru(η 6 − arene)Cl2]2 is be<strong>in</strong>g<br />

<strong>in</strong>vestigated. [7] The first promis<strong>in</strong>g results apply<strong>in</strong>g the derived complexes <strong>in</strong> the<br />

Asymmetric Transfer Hydrogenation have been achieved and are subject to further<br />

studies. [7]<br />

Just recently, the molecular structure of dichlorido(η 6 -p-cymene)(methyl-2am<strong>in</strong>o-4,6-O-benzylidene-2-deoxy-α-D-allopyranoside-κN<br />

2 )ruthenium(II) 4 could be<br />

determ<strong>in</strong>ed. [7]<br />

Molecular Structure and Structural Formula of Complex 4<br />

[1]<br />

S. Tschersich, M. Böge, D. Schwidom, J. Heck, Rev. Inorg. Chem. 2011, 31(1), 27-55.<br />

[2]<br />

L. Jessen, E. T. K. Haupt, J. Heck, Chem. Eur. J. 2001, 7, 3791-3797.<br />

[3]<br />

D. Küntzer, L. Jessen, J. Heck, Chem. Commun. 2005, 5653-5655.<br />

[4]<br />

D. Küntzer, S. Tschersich, J. Heck, Z. Anorg. Allg. Chem. 2007, 633, 43-45.<br />

[5]<br />

D. Schwidom, D. Zeys<strong>in</strong>g, M. Schmidt, J. Heck, Eur. J. Inorg. Chem. 2009, 5295-5298.<br />

[6]<br />

C. Fowel<strong>in</strong>, A.Matyja, M. Schmidt, J.Heck, Z. Anorg. Allg. Chem. 2007, 633, 2395-2399.<br />

[7] A.-K. H. Baum, J. Heck manuscript <strong>in</strong> preparation.<br />

36 Thursday 11:00 - 11:20 Talk 01


Novel [FeFe] Hydrogenase Models with (SCH2)2P=O L<strong>in</strong>ker<br />

Laith Almazahreh ∗ , Wolfgang Weigand ∗ , Ulf Peter Apfel † , Wolfgang Imhof ∗ ,<br />

Helmar Görls ∗ , Manfred Rudolph ∗ , Mohammed El-khateeb ‡<br />

∗ Institut für Anorganische und Analytische Chemie – Friedrich-Schiller-Universität –<br />

Humboldtstraße 8 – Jena – GER<br />

† Department of Chemistry – Massachussetts Institute of Technology –<br />

77 Massachusetts Avenue – Cambridge – USA<br />

‡ Chemistry Department – Jordan University of Science and Technology – 22110 Irbid –<br />

JOR<br />

laithmazahreh@yahoo.com<br />

[FeFe] Hydrogenases are enzymes that have high efficiency to catalyze reduction of<br />

protons to form dihydrogen, which <strong>in</strong> microorganisms occur at potentials of -0.1 to<br />

-0.55 V. [1] These high catalytic efficiency and low energy features were the impetus to<br />

scientists for pav<strong>in</strong>g the way to macroscale hydrogen production, based on design<strong>in</strong>g<br />

of <strong>in</strong>expensive electrocatalyst that resembles the structure of the [FeFe] active site<br />

[Figure a]. [2] Protonation of the Fe-Fe core to form term<strong>in</strong>al or bridg<strong>in</strong>g hydride, as<br />

well as the nitrogen atom of the cofactor (SCH2)2NH is considered as a fundamental<br />

step <strong>in</strong> the function of the active site to catalyze the production of hydrogen. [3] The<br />

biological function of the azathiolate cofactor, (SCH2)2NH, is proposed to relay protons<br />

to and from the diiron core via agostic [Figure b] or hydrido-proton <strong>in</strong>teraction<br />

[Figure c]. [4-6] In our research we <strong>in</strong>troduce the synthesis of novel [FeFe] hydrogenase<br />

models, namely [Fe2(CO)5X][(µ-SCH2)2(Ph)P=O] (X = CO, PPh3, P(OEt)3) [Figure<br />

d] to <strong>in</strong>vestigate the <strong>in</strong>fluence of the P=O functionality and the ligand X toward<br />

the electrochemical and the electrocatalytic properties of the [Fe2S2] cluster <strong>in</strong> the<br />

presence of the weak acid, acetic acid, and moderately strong acids, trifluoro acetic<br />

acid and pyrid<strong>in</strong>ium cation. Here<strong>in</strong> we report a catalytic mechanism for reduction of<br />

protons where the P=O function as protonation site and hence can be <strong>in</strong>volved <strong>in</strong> proton<br />

relay. This protonation of the P=O functionality was proved by monitor<strong>in</strong>g the<br />

reaction of the complexes with HBF4·Et2O by IR and 31 P NMR spectroscopic methods.<br />

High level DFT calculations of the protonation by HBF4·Et2O or pyrid<strong>in</strong>ium<br />

acid have been carried out consider<strong>in</strong>g the P=O functionality and the dithiolato sulfur<br />

atoms as potential sites for protonation.<br />

[1]<br />

P. M. Vignais, B. Billoud, J. Meyer, JFEMS Microbiol. Rev. 2001, J25, 455.<br />

[2]<br />

C. Topf, U. Monkowius, G. Knör, J. Inorganic Chemistry Communications 2012, J21, 147.<br />

[3]<br />

M. G. I. Gal<strong>in</strong>ato, M. W. Whaley, D. Roberts, P. Wang, N. Lehnert, JEur. J. Inorg. Chem.<br />

2011, 1147.<br />

[4]<br />

Y. Nicolet, A. L. de Lacey, X. Vernede, V. M. Fernandez, C. E. Hatchikian, J. C. Fontecilla-<br />

Camps, J. Am. Chem. Soc. 2001, J123, 1596.<br />

[5]<br />

Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps, J. W. Peters, JTrends Biochem. Sci. 2000,<br />

J25, 138.<br />

[6]<br />

Y. Nicolet, C. Cavazza, J. C. Fontecilla-Camps, J. Inorg. Biochem. 2002, J91, 1.<br />

Talk 02 Thursday 11:20 - 11:40 37


From “Rollover” Cyclometalation towards the Catalytic<br />

Dehydrogenation of Alkanes<br />

Burkhard Butschke ∗ , Helmut Schwarz †<br />

∗ Department of Organic Chemistry – The Weizmann Institute of Science – P.O.Box 26 –<br />

Rehovot – ISR<br />

† Institut für Chemie – Technische Universität Berl<strong>in</strong> – Straße des 17. Juni 135 –<br />

Berl<strong>in</strong> – GER<br />

burkhard.butschke@weizmann.ac.il<br />

“Rollover” cyclometalation, which constitutes a special case of the well-known cyclometalation<br />

reaction, requires decomplexation and rotation of the ligand as key steps<br />

prior to metal mediated C–H bond activation (1 → 2 + HX <strong>in</strong> Figure 1). [1] While<br />

“rollover”-cyclometalated complexes are well known for a long time, their reactivity<br />

has hardly been studied. In mass-spectrometric experiments, however, which constitute<br />

a powerful tool to probe chemical reactions <strong>in</strong> a highly idealized environment,<br />

this particular k<strong>in</strong>d of cyclometalated species exhibits a rich chemistry. [2] “Rollover”cyclometalated<br />

[Pt(bipy - H)] + (2) (bipy = 2,2’-bipyrid<strong>in</strong>e) is conveniently produced<br />

by electrospray ionization (ESI) of methanolic solutions of dimeric [Pt(CH3)2(µ-<br />

(CH3)2S)]2 and 2,2’-bipyrid<strong>in</strong>e. In ion/molecule reactions of this complex with ethane,<br />

the liberation of neutral ethene is observed concomitant with the formation of the<br />

plat<strong>in</strong>um-hydride complex [Pt(H)(bipy)] + (2 + C2H6 → 3 + C2H4, Figure 1). The<br />

latter species might, based on DFT results, undergo ejection of H2 via “rollover” cyclometalation<br />

to regenerate [Pt(bipy – H)] + (2) as demonstrated earlier for the correspond<strong>in</strong>g<br />

methyl and chloro complexes [Pt(X)(bipy)] + (1, X = CH3, Cl). [3] This<br />

sequence of processes might be regarded as a catalytic cycle for the oxidative dehydrogenation<br />

of ethane by “rollover”-cyclometalated [Pt(bipy - H)] + (2) as summarized<br />

<strong>in</strong> Figure 1. When the classically cyclometalated plat<strong>in</strong>um complexes [Pt(L - H)] +<br />

(L = 2-phenylpyrid<strong>in</strong>e, 7,8-benzoqu<strong>in</strong>ol<strong>in</strong>e) are subjected to reactions with ethane,<br />

similar processes occur as encountered for [Pt(bipy - H)] + (2), while the relative rates<br />

are drastically reduced when compared with the “rollover”-cyclometalated analogue.<br />

This observation is <strong>in</strong>terpreted <strong>in</strong> terms of a pathway that proceeds directly at the<br />

cyclometalated plat<strong>in</strong>um complexes <strong>in</strong>stead of tak<strong>in</strong>g the route via retro-“rollover” cyclometalation.<br />

This process, however, which generates [Pt(L - H)(H2)(C2H4)] + as an<br />

<strong>in</strong>termediate, is more energy demand<strong>in</strong>g, which expla<strong>in</strong>s the decreased relative rates.<br />

Figure 1: Illustration of the gas-phase generation of "rollover"-cyclometalated [Pt(bipy –<br />

H)] + (2) and its potential use for the catalytic dehydrogenation of ethane.<br />

[1] B. Butschke, H. Schwarz, Chem. Sci. 2012, 3, 308-326.<br />

[2] a) B. Butschke, M. Schlangen, D. Schröder, H. Schwarz, Chem. Eur. J. 2008, 14, 11050-<br />

11060; b) B. Butschke, M. Schlangen, D. Schröder, H. Schwarz, Int. J. Mass Spectrom. 2009,<br />

283, 3-8; c) B. Butschke, S. Ghassemi Tabrizi, H. Schwarz, Chem. Eur. J. 2010, 16, 3962-3969;<br />

d) B. Butschke, S. Ghassemi Tabrizi, H. Schwarz, Int. J. Mass Spectrom. 2010, 291, 125-132;<br />

e) B. Butschke, H. Schwarz, Int. J. Mass Spectrom. 2011, 306, 108-113; f) B. Butschke, H.<br />

Schwarz, Chem. Eur. J. 2012, 18, 14055-14062.<br />

[3] B. Butschke, H. Schwarz, Organometallics 2010, 29, 6002-6011.<br />

38 Thursday 11:40 - 12:00 Talk 03


New Insights <strong>in</strong>to the Chemistry of Photoaff<strong>in</strong>ity Label<strong>in</strong>g<br />

with Diazir<strong>in</strong>es<br />

Björn Raimer, Thomas L<strong>in</strong>del<br />

Chemistry – TU Braunschweig – Hagenr<strong>in</strong>g 30 – Braunschweig – GER<br />

b.raimer@tu-bs.de<br />

3-Aryl-3-trifluoromethyl-3H -diazir<strong>in</strong>es (TFD) developed by Brunner et al. [1] have<br />

been used as covalent l<strong>in</strong>kers <strong>in</strong> photoaff<strong>in</strong>ity labell<strong>in</strong>g (PAL), which aims at the<br />

identification an analysis of biological targets. Although a grow<strong>in</strong>g number of natural<br />

products and other biologically active molecules have been functionalized with a<br />

diazir<strong>in</strong>e moiety, relatively little has been improved regard<strong>in</strong>g the chemoselectivity of<br />

diazir<strong>in</strong>es. [2]<br />

Based on extensive quantum mechanical calculations search<strong>in</strong>g for suitable carbenes<br />

with a s<strong>in</strong>glet ground state, we <strong>in</strong>vestigated experimentally the selectivity of a 3-(pmethoxyphenyl)-3-trifluoromethyl-3H<br />

-diazir<strong>in</strong>e towards phenolic motifs. By deuteration<br />

experiments, we were able to show for the first time that electron rich positions<br />

are alkylated via a carbene-protonation mechanism, which becomes dom<strong>in</strong>ant if the<br />

ground state of the carbene is s<strong>in</strong>glet. [3]<br />

We are currently work<strong>in</strong>g on the design of sterically h<strong>in</strong>dered diazir<strong>in</strong>es which should<br />

ideally undergo only one chemoselective reaction with structural motifs present <strong>in</strong><br />

prote<strong>in</strong>s and nucleic acids. This would clearly facilitate the <strong>in</strong>terpretation of mass<br />

spectra of covalent ligand-prote<strong>in</strong> adducts formed by PAL and the <strong>in</strong>vestigation of<br />

b<strong>in</strong>d<strong>in</strong>g modes.<br />

1<br />

[1] J. Brunner, H. Senn, F. M. Richards, J. Biol. Chem. 1980, 255, 3313-3318.<br />

[2] Reviews: a) A. Blencowe, W. Hayes, Soft Matter 2005, 1, 178-205; b) L. Dub<strong>in</strong>sky, B. P.<br />

Krom, M. M. Meijler, Bioorg. Med. Chem. 2012, 20, 554-570.<br />

[3] B. Raimer, T. L<strong>in</strong>del, 2012, submitted.<br />

Talk 04 Thursday 13:30 - 13:50 39


Asymmetric synthesis of Natural-product-<strong>in</strong>spired Spiro<br />

epoxyox<strong>in</strong>doles via Hydrogen-Bond Organocatalysis<br />

Chiara Palumbo ∗ , Tecla Gasperi † , Andrea Mazziotta ∗ , Mart<strong>in</strong>a Miceli ∗ ,<br />

Maria Antonietta Loreto ∗ , Augusto Gambacorta †<br />

∗ Department of Chemistry – Sapienza University of Rome – Piazzale Aldo Moro 5 –<br />

Rome – ITA<br />

† Department of Sciences – University of Studies Roma Tre – Via della Vasca Navale 79 –<br />

Rome – ITA<br />

chiara.palumbo@uniroma1.it<br />

The spiroox<strong>in</strong>dolic core is among the most valuable build<strong>in</strong>g blocks, as it is featured<br />

<strong>in</strong> several natural products which are endowed of biological <strong>in</strong>terest<strong>in</strong>g properties. For<br />

<strong>in</strong>stance convolutamid<strong>in</strong>es, are proved to be anti-leukaemia agents. [1] Furthermore,<br />

epoxides bear<strong>in</strong>g a phosphonate moiety, like phosphonomyc<strong>in</strong>e, display a quite good<br />

antiviral and antibiotic activities. [2]<br />

Over the last decades organocatalysis has proved to be an excellent asymmetric activation<br />

mode, which can also be used to get new, challeng<strong>in</strong>g reactions and to mold<br />

highly complex scaffolds. [3] Hydrogen-bond <strong>in</strong>teractions have recently had a breakthrough<br />

<strong>in</strong> this field and, whereas covalent organocatalysis has broadly been explored,<br />

non covalent catalysis still represents a novelty for organic chemists. [4] For <strong>in</strong>stance<br />

<strong>in</strong>terest<strong>in</strong>g and very efficient examples of this activation mode have recently been<br />

reported by the use of thioureas, or conf<strong>in</strong>ed Brønsted acids, that have proved to be<br />

very efficient and selective <strong>in</strong> many k<strong>in</strong>ds of synthetic transformations. [5]<br />

Our research group has reported about the epoxidation of new 3-alkylidenox<strong>in</strong>doles<br />

bear<strong>in</strong>g a phosphonate group, because of the previously highlighted expected<br />

properties. [6] Moreover we have recently proved how prol<strong>in</strong>ol derivatives could act<br />

as H-bond<strong>in</strong>g catalysts towards this k<strong>in</strong>d of reaction. [7]<br />

Here<strong>in</strong> we report the last results of a H-bond<strong>in</strong>g catalysed, enantioselective, nucleophilic<br />

epoxidation of 3-alkylidenox<strong>in</strong>doles; this reaction, catalysed by prol<strong>in</strong>ol <strong>in</strong> a<br />

fast, mild way, gave us quite good results <strong>in</strong> terms of enantioselectivities (up to 93%<br />

ee), substrate scope (more than 30 spiro epoxyox<strong>in</strong>doles), and yields (up to 98% Y).<br />

We hypothesised a reaction mechanism which <strong>in</strong>volve a H-bond network between the<br />

catalyst/oxidant system and the olef<strong>in</strong>. We checked, as well, the effect on reactivity<br />

and selectivity of different substituents on the nitrogen atom, on the aromatic<br />

r<strong>in</strong>g, and on the exocyclic double bond, such as phosphonates which could result <strong>in</strong><br />

antiviral activity. [2]<br />

[1] S. Peddibhothla, CBC 2009, 5, 20.<br />

[2] M. Jackson, et al., Science 1969, 166, 122.<br />

[3] D. W. C. MacMillan, Nature 2008 455, 304.<br />

[4] E. N. Jacobsen, et al., ACIE, 2006, 45, 1520.<br />

[5] P. R. a) Schre<strong>in</strong>er, et al., CSR 2009, 38, 1187; b) List, B. et al., Nature, 2012, 483, 315; c)<br />

Lattanzi, A. CC 2009, 1452.<br />

[6] T. Gasperi, et al., EJOC 2011, 385.<br />

[7] T. Gasperi, et al., OL 2011, 13, 6248.<br />

40 Thursday 13:50 - 14:10 Talk 05


Polar Effects <strong>in</strong> Hydrogen Atom Transfers from Catechols to<br />

Alkyl Radicals<br />

Guillaume Povie, Giorgio Villa, Davide Pozzi, Leigh Ford, Philippe Renaud<br />

Department für Chemie und Biochemie – Universität Bern – Freiestrasse 3 – Bern – CH<br />

guillaume.povie@ioc.unibe.ch<br />

In comb<strong>in</strong>ation with organoboranes, 4-tert-butylcatechol can be used as an efficient<br />

hydrogen atom donor <strong>in</strong> radical cha<strong>in</strong> reactions. [1] This surpris<strong>in</strong>g behavior of a class<br />

of compounds generally seen as cha<strong>in</strong> break<strong>in</strong>g anti-oxydants allowed the development<br />

of a broad scope method for the reduction of organoboranes. [2] Extend<strong>in</strong>g this concept<br />

to the reduction of alkyl iodides, the hydrogen atom transfer step was found to<br />

be particularly sensitive to the polarity of the attack<strong>in</strong>g radical. While alkyl substituted<br />

radicals are efficiently reduced, electron poor radicals slowly react with catechol<br />

derivatives giv<strong>in</strong>g them sufficient lifetime to undergo addition reactions. This peculiar<br />

feature could be used to trigger <strong>in</strong>ter and <strong>in</strong>tramolecular processes such as the contrathermodynamic<br />

3-exo-trig cyclisation shown here. The Arrhenius parameters for<br />

the hydrogen atom transfer to different alkyl radicals could be determ<strong>in</strong>ed us<strong>in</strong>g substituted<br />

5-hexenyl radical clocks. The variations of the activation energies <strong>in</strong> function<br />

of the exothermicity of the reaction and of the polar effects affect<strong>in</strong>g the transition<br />

state are discussed.<br />

Catechol/triethylborane mediated 3-exo-trig radical cyclisation<br />

[1]<br />

G. Povie, G. Villa, L. Ford, D. Pozzi, C. H. Schiesser, P. Renaud, Chem.<br />

803-805.<br />

[2]<br />

G. Villa, G. Povie, P. Renaud, J. Am. Chem. Soc. 2011, 133, 5913-5920<br />

Commun. 2010,<br />

Talk 06 Thursday 14:10 - 14:30 41


Understand<strong>in</strong>g the Growth Mechanism: Key to Size Control<br />

of Colloidal Nanoparticles<br />

Maria Wuithschick, Klaus Rademann, Jörg Polte<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 –<br />

12489 Berl<strong>in</strong> – GER<br />

maria.wuithschick@hu-berl<strong>in</strong>.de<br />

Metal nanoparticles have attracted much attention due to their specific catalytic,<br />

optical and magnetic properties. These properties can be adjusted by alter<strong>in</strong>g size,<br />

composition, crystal structure and morphology. [1] Thus, size control provides one<br />

effective key to an accurate adjustment of the colloidal properties but is often challeng<strong>in</strong>g.<br />

The common approach to size control is a simple parameter variation via trial<br />

and error. The actual particle growth mechanisms and <strong>in</strong> particular the parameter<br />

<strong>in</strong>fluences on the growth process rema<strong>in</strong> a black box. [2]<br />

This contribution presents an approach to size control which is based on a profound<br />

mechanistic understand<strong>in</strong>g. It comprises three steps: (A) the <strong>in</strong>vestigation of the<br />

pr<strong>in</strong>ciple growth mechanism for one set of parameters, (B) the <strong>in</strong>vestigation of parameter<br />

<strong>in</strong>fluences on the growth mechanism which leads to the identification of size<br />

determ<strong>in</strong><strong>in</strong>g parameters and (C) the well-directed development of synthetic recipes.<br />

This approach is exemplified for a silver nanoparticle synthesis, namely the reduction<br />

of AgClO4 with an excess of NaBH4 <strong>in</strong> water.<br />

Recently, we deduced the pr<strong>in</strong>ciple growth mechanism from time-resolved <strong>in</strong>-situ<br />

SAXS <strong>in</strong>vestigations (see figure 1). [3] It comprises (1) the rapid reduction of the ionic<br />

silver, (2) the coalescence of these prelim<strong>in</strong>ary formed clusters, (3) an <strong>in</strong>termediate<br />

phase of stability and (4) a second coalescence which is the result of the complete<br />

conversion of residual BH4- to B(OH)4-. The f<strong>in</strong>al particle mean radius ranges from<br />

4 to 9 nm and is poorly reproducible. In the next step of the approach, the <strong>in</strong>fluences<br />

of reaction parameters on the growth mechanisms were elucidated. [4] It was found<br />

that the reproducibility can be improved by controlled ag<strong>in</strong>g of the reduc<strong>in</strong>g agent<br />

solution. In addition, the decisive size determ<strong>in</strong><strong>in</strong>g parameters could be identified.<br />

As a result, synthetic procedures for silver colloids were developed which allow a size<br />

control <strong>in</strong> a wide range without additional steric stabilization.<br />

Figure 1: Pr<strong>in</strong>ciple nanoparticle growth mechanism for the reduction of silver perchlorate<br />

with sodium borohydride<br />

[1] Y. Sun, Y. Xia, Science 2002, 298, 2176-2179.<br />

[2] Xia, Y. et al., Angewandte Chemie International Edition 2009, 48, 60-103.<br />

[3] J. Polte, et al., ACS Nano 2012, 6, 5791-5802.<br />

[4] M. Wuithschick, et al., submitted.<br />

42 Thursday 16:20 - 16:40 Talk 07


PbS-mesocrystals - Coherence between atomistic<br />

arrangement and <strong>in</strong>ternal nanocrystal superstructure<br />

order<strong>in</strong>g<br />

Lydia Liebscher ∗ , Igor A. Babur<strong>in</strong> ∗ , Wilder Carrillo-Cabrera ∗ , Elena Rosseeva † ,<br />

Paul Simon † , Stephen G. Hickey ∗ , Alexander Eychmüller ∗<br />

∗ Physikalische Chemie – TU Dresden – Bergstraße 66b – Dresden – GER<br />

† MPI for Chemical Physics of Solids – Max Planck Institute – Nöthnitzer Straße 40 –<br />

Dresden – GER<br />

L.Liebscher@chemie.tu-dresden.de<br />

Self aggregation and organization of nanoparticulate build<strong>in</strong>g blocks to form mesocrystals<br />

(Quantum dot solids) with special shapes and tunable properties is promis<strong>in</strong>g for<br />

many applications because such 2D and 3D arrangements comb<strong>in</strong>e the size-dependent<br />

properties of the <strong>in</strong>dividual nanoparticles (NPs) with new features that are derived<br />

from the unique collective properties <strong>in</strong>herent with<strong>in</strong> arrays of ordered particles. At<br />

the present time mesocrystals are of <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest because these structures have<br />

further promis<strong>in</strong>g applications as light emitt<strong>in</strong>g devices, photodetectors and solar<br />

cells. [1]<br />

In this work we <strong>in</strong>vestigate the <strong>in</strong>ternal order<strong>in</strong>g of PbS mesocrystals at the atomistic<br />

scale with respect to the superlattice formed through the self assembly of the<br />

NPs. [2] The hierarchical structures were synthesized us<strong>in</strong>g a gentle diffusion technique<br />

employ<strong>in</strong>g spherical lead chalcogenide NPs as build<strong>in</strong>g blocks.<br />

The PbS mesocrystals were characterized by SEM. In order to shed some light on the<br />

<strong>in</strong>ner order<strong>in</strong>g of the PbS mesocrystals FIB cuts have been performed and subjected to<br />

detailed TEM <strong>in</strong>vestigations. The results of the HR-TEM studies show that a dist<strong>in</strong>ct<br />

structural relationship between the crystallographic orientation of the PbS (galena)<br />

core of the NPs and their order<strong>in</strong>g with<strong>in</strong> the fcc superstructure of the mesocrystals<br />

exists. Additionally, careful exam<strong>in</strong>ations of the HR-TEM images along the different<br />

projections of the <strong>in</strong>dividual nanocrystals have revealed that the appearance of the<br />

<strong>in</strong>dividual NPs is closely related to that of truncated octahedra. These f<strong>in</strong>d<strong>in</strong>gs are<br />

further supported by means of atomistic simulations undertaken on the NP assemblies<br />

as well as of the constitution of the monomeric build<strong>in</strong>g blocks.<br />

[1] S. M. Rupich, E. V. Shevchenko, M. I. Bodnarchuk, B. Lee, D. V Talap<strong>in</strong>, Journal of the<br />

American Chemical Society 2010, 132, 289-296.<br />

[2] P. Simon, E. Rosseeva, I. a Babur<strong>in</strong>, L. Liebscher, S. G. Hickey, R. Cardoso-Gil, A. Eychmüller,<br />

R. Kniep, W. Carrillo-Cabrera, Angewandte Chemie (International ed. <strong>in</strong> English) 2012, 51,<br />

10776-10781.<br />

Talk 08 Thursday 16:40 - 17:00 43


Synthesis of BaZrO3, Ta2O5 and HfO2 nanoparticles as<br />

artificial p<strong>in</strong>n<strong>in</strong>g centers <strong>in</strong> High Temperature<br />

Superconductors<br />

Jonathan De Roo ∗ , Katrien De Keukeleere ∗ , Jonas Feys ∗ , Petra Lommens ∗ ,<br />

Zeger Hens ∗ , Isabel Van Driessche ∗<br />

† Department of Inorganic and Physical Chemistry – Ghent University –<br />

Krijgslaan 281, build<strong>in</strong>g S3 – Ghent – BEL<br />

jonathan.deroo@ugent.be<br />

The development of Y Ba2Cu3O7−δ (YBCO) high-temperature superconductors has<br />

reached the level of high performance applications such as magnets, generators and<br />

transformers. These materials will contribute to a susta<strong>in</strong>able future by provid<strong>in</strong>g<br />

major energy sav<strong>in</strong>gs. However, the critical current density (Jc) rema<strong>in</strong>s too low<br />

for optimal application <strong>in</strong> high magnetic fields. Moreover, the dependence of Jc<br />

on the orientation of the magnetic field poses problems for practical application. [1]<br />

These problems can be circumvented by the <strong>in</strong>troduction of various structural and<br />

morphological defects (artificial p<strong>in</strong>n<strong>in</strong>g centers).<br />

Recently, BaZrO3 and Y2O3 nanostructures have proven some effectiveness via <strong>in</strong>situ<br />

approaches. [1] However, our <strong>in</strong>novative research focuses on the ex-situ addition<br />

of nanosized BaZrO3, T a2O5 and HfO2 of which the latter have never been used as<br />

artificial p<strong>in</strong>n<strong>in</strong>g centers up to date. This ex-situ approach provides more control over<br />

the size and morphology of the nanostructures and hence their p<strong>in</strong>n<strong>in</strong>g properties.<br />

We explored solvothermal, microwave and hot-<strong>in</strong>jection synthesis methods for the<br />

creation of these nanostructures. We try to restra<strong>in</strong> the use of organics <strong>in</strong> those<br />

synthesis routes and use as much as possible environmental-friendly, even water-based<br />

precursors. The synthesized nanoparticles were <strong>in</strong>corporated <strong>in</strong> YBCO precursor<br />

solutions. In order to do this we needed to carefully assess the surface chemistry of<br />

the different types of nanoparticles, and study the <strong>in</strong>fluence of ligand exchange on the<br />

stability of the nanoparticle/YBCO precursor mixtures. In the end, these mixtures<br />

will be used as <strong>in</strong>ks <strong>in</strong> order to deposit ex-situ p<strong>in</strong>ned YBCO on selected substrates<br />

through <strong>in</strong>k-jet pr<strong>in</strong>t<strong>in</strong>g.<br />

TEM picture of solvothermally prepared HfO2 nanoparticles. Inset (upper left): High<br />

Resolution TEM picture of an isolated particle. Inset (upper right): TEM diffraction<br />

pattern of the HfO2 nanoparticles.<br />

[1] X. Obradors et al., Comprehensive Nanoscience and technology 2011, 1, 303-349.<br />

44 Thursday 17:00 - 17:20 Talk 09


Viscosity at the Nanoscale<br />

Krzysztof Sozanski, Tomasz Kalwarczyk, Robert Holyst<br />

Department of Soft Condensed Matter –<br />

Institute of Physical Chemistry of the Polish Academy of Sciences – Kasprzaka 44/52 –<br />

Warsaw – POL<br />

krzysiek.sozanski@gmail.com<br />

One of the ma<strong>in</strong> factors <strong>in</strong>fluenc<strong>in</strong>g the k<strong>in</strong>etics of biochemical processes <strong>in</strong> liv<strong>in</strong>g cells<br />

is the mobility of prote<strong>in</strong>s and other macromolecules. It is mostly determ<strong>in</strong>ed by the<br />

diffusion coefficient of a given molecule <strong>in</strong> the cytoplasm. However, <strong>in</strong> an environment<br />

as crowded as the cytoplasm, accurate description of the diffusion rates becomes much<br />

more complicated than <strong>in</strong> simple liquids. It has been frequently observed that small<br />

prote<strong>in</strong>s present diffusion coefficients much greater (even by orders of magnitude)<br />

than predicted by the classical Stokes-E<strong>in</strong>ste<strong>in</strong> equation.<br />

The experiment-based explanation we suggest utilizes the notion of the so-called<br />

nanoviscosity. [1] This parameter <strong>in</strong>cludes both the properties of the complex liquid<br />

as well as the length scale of the object whose mobility is <strong>in</strong>vestigated. Thus, two<br />

objects differ<strong>in</strong>g is size may effectively experience different viscosity of the very same<br />

environment. [2]<br />

The scal<strong>in</strong>g we propose may be merged with the reaction rate theory to produce a<br />

simple yet universal and extremely functional physical description of diffusion processes<br />

<strong>in</strong> complex liquids. Most of the experimental work was performed by means<br />

of fluorescence correlation spectroscopy (FCS) – a fairly new and little known technique<br />

of great potential. To provide a straightforward framework of parameters, we<br />

focused on polymer model systems. However, the results are not only a contribution<br />

to the development of polymer theory. A new perspective is opened for model<strong>in</strong>g the<br />

transport processes and predict<strong>in</strong>g the mobility of any nano-scaled objects <strong>in</strong> crowded<br />

environment.<br />

[1] R. Hołyst, A. Bielejewska, J. Szymański, A. Wilk, A. Patkowski, J. Gapiński, A. Żywociński,<br />

T. Kalwarczyk, E. Kalwarczyk, M. Tabaka, N. Ziębacz, S. A. Wieczorek, Physical Chemistry<br />

Chemical Physics 2009, 11 (40), 9025-9032.<br />

[2] T. Kalwarczyk, N. Ziębacz, A. Bielejewska, E. Zaboklicka, K. Koynov, J. Szymański, A. Wilk,<br />

A. Patkowski, J. Gapiński, H.-J. Butt, R. Hołyst, Nano Letters 2011, 11, 2157.<br />

Talk 10 Thursday 17:20 - 17:40 45


Study<strong>in</strong>g arsenic <strong>in</strong> cancer cells by elemental speciation<br />

analysis<br />

Gerrit Hermann ∗ , Petra Heffeter † , Walter Berger † , Stephan Hann ∗ ,<br />

Gunda Koellensperger ∗<br />

∗ Division of Analytical Chemistry –<br />

University of Natural Resources and Life Sciences – BOKU Vienna – Muthgasse 18 –<br />

Vienna – AUT<br />

† Institute of Cancer Research – Medical University of Vienna – Borschkegasse 8a –<br />

Vienna – AUT<br />

Gerrit.Hermann@boku.ac.at<br />

More than 2000 years Arsenic trioxide (ATO) was used as a remedy by mank<strong>in</strong>d.<br />

S<strong>in</strong>ce the 30ies of the 20th century the importance of the compound as drug decl<strong>in</strong>ed<br />

as more effective medication was available for diseases like syphilis and its side effects<br />

were put more <strong>in</strong>to focus. At the end of the 20th century more evidence emerged for<br />

new application of ATO as a cancer therapeutic. Recently ATO was approved by the<br />

FDA for the use <strong>in</strong> the treatment of relapsed/refractory acute promyelotic leukemia<br />

(APL). S<strong>in</strong>ce the <strong>in</strong>troduction of ATO <strong>in</strong> chemotherapy, we keep learn<strong>in</strong>g about the<br />

cytostatic activity of the drug. Still the knowledge on the <strong>in</strong>tracellular chemistry of<br />

ATO with regard to the activity profile of the drug is however fragmentary. The<br />

debate cont<strong>in</strong>ues if ATO can be applied for other blood and solid cancers. [1,2] The<br />

contoversity about scientific results <strong>in</strong> this case and the etablished concepts of mode<br />

of action for ATO was motivation for this work.<br />

The <strong>in</strong>tracellular metabolism of ATO concern<strong>in</strong>g the b<strong>in</strong>d<strong>in</strong>g dynamics between cytosolic<br />

compounds with special emphasis on the <strong>in</strong>teraction with glutathione and the<br />

formation of its oxidized form was extensively studied. Sensitive versus resistance<br />

cancer cell models as well as cell l<strong>in</strong>es derived from different types of cancer were<br />

subject due to this <strong>in</strong>vestigation.<br />

[1] J. Zhu, Z. Chen, V. Lallemand-Breitenbach, H. De Thé, “How acute promyclocytic leukaemia<br />

revived arsenic”, Nature Reviews Cancer 2002, 2 (9), 705-713.<br />

[2] H. De Thé, Z. Chen, “Acute promyelocytic leukaemia: Novel <strong>in</strong>sights <strong>in</strong>to the mechanisms of<br />

cure”, Nature Reviews Cancer 2010, 10 (11), 775-783.<br />

46 Friday 10:40 - 11:00 Talk 11


2-Oxoglutarate Oxygenases as Therapeutic Targets<br />

Inga Pfeffer, Michael McDonough, Mart<strong>in</strong> Münzel, Ben G. Davis,<br />

Christopher J. Schofield<br />

Chemistry Research Laboratory – University of Oxford – 12 Mansfield Road – Oxford –<br />

UK<br />

<strong>in</strong>ga.pfeffer@chem.ox.ac.uk<br />

2-Oxoglutarate oxygenases [1] are non-haeme Fe(II)-dependent oxygenases that require<br />

2-oxoglutarate (2OG) and oxygen as cosubstrates. They catalyse a wide range of<br />

oxidative reactions on unactivated C-H bonds and are <strong>in</strong>volved <strong>in</strong> all steps of gene<br />

expression. 2OG oxygenases are ‘druggable‘ targets; both <strong>in</strong>hibition and activation<br />

of different 2OG oxygenases can be of therapeutic <strong>in</strong>terest. However, selectivity vs.<br />

other ‘key‘ 2OG oxygenases will be important.<br />

Human aspartyl/asparag<strong>in</strong>yl-β-hydroxylase (AspH) [2] is a 2OG oxygenase and catalyses<br />

hydroxylation of a specific aspartate or asparag<strong>in</strong>e residue <strong>in</strong> epidermal growth<br />

factor-like (EGF-like) doma<strong>in</strong>s. The physiological role of hydroxylations catalysed by<br />

AspH is not yet fully determ<strong>in</strong>ed. AspH is strongly expressed <strong>in</strong> various cancers, [3]<br />

and mice knockouts show <strong>in</strong>creased <strong>in</strong>cidence of tumour growth. The role of AspH<br />

for cancer needs to be further <strong>in</strong>vestigated but it is already be<strong>in</strong>g used as a biomarker<br />

for cancerous tissue <strong>in</strong> histopathological studies.<br />

Crystallographic studies revealed a common structural feature of 2OG oxyenases: The<br />

catalytic doma<strong>in</strong> conta<strong>in</strong>s a double-stranded helix core fold (‘jelly roll’) which supports<br />

a highly but not universally conserved Fe(II)-b<strong>in</strong>d<strong>in</strong>g motif <strong>in</strong> form of a triad<br />

of two histid<strong>in</strong>es and one carboxylate, either Asp or less frequently Glu (HXD/E· · ·H<br />

triad motif). AspH lacks the HXD/E· · ·H triad Fe(II)-b<strong>in</strong>d<strong>in</strong>g motif. Instead, it has<br />

a His-Xxx-Gly· · ·His motif, the Asp or Glu residue is not present. AspH therefore<br />

differs from other 2OG oxygenases and conta<strong>in</strong>s two Fe(II)-b<strong>in</strong>d<strong>in</strong>g residues only. Its<br />

unique active site geometry makes AspH an attractive potential drug target. Here we<br />

demonstrate that the hydroxylase doma<strong>in</strong> of the prote<strong>in</strong> alone has no substrate hydroxylation<br />

activity but another doma<strong>in</strong>, the tetratricopeptide repeat (TPR) doma<strong>in</strong>,<br />

is required for substrate recognition. We present new crystal structures for a multidoma<strong>in</strong><br />

construct of AspH <strong>in</strong>clud<strong>in</strong>g enzyme-substrate-complexes with a peptide from<br />

the natural substrate coagulation factor X and designed cyclic peptides which provide<br />

valuable <strong>in</strong>sight for further mechanistic studies and selective <strong>in</strong>hibitor design.<br />

AspH <strong>in</strong> complex with a substrate peptide from factor X.<br />

[1] R. Chowdhury et al., Chem. Soc. Rev. 2008, 37 (7), 1308-1319.<br />

[2] B. A. McMullen, et al., Biochem. Biophys. Res. Comm. 1983, 115 (1), 8-14.<br />

[3] H. Yang, et al., Oncology Reports 2010, 24 (5), 1257-1264.<br />

Talk 12 Friday 11:00 - 11:20 47


Design and synthesis of fungical transglycosidase <strong>in</strong>hibitors<br />

Fernando Gomollon-Bel ∗ , Eduardo Marca ∗ , Ramon Hurtado-Guerrero † , Ignacio Delso ∗ ,<br />

Tomás Tejero ∗ , Pedro Mer<strong>in</strong>o ∗<br />

∗ Departamento de Síntesis y Estructura de Biomoléculas –<br />

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) –<br />

Universidad de Zaragoza - CSIC - C/ Pedro Cerbuna 12 – Zaragoza – ESP<br />

† BIFI – Instituto de Biocomputación y Física de Sistemas Complejos –<br />

Universidad de Zaragoza - C/ Mariano Esquillor s/n – Zaragoza – ESP<br />

gomobel@unizar.es<br />

Transglycosydases are a group of key enzymes <strong>in</strong> preserv<strong>in</strong>g the structure of the<br />

cell-wall <strong>in</strong> most fungi. Therefore, the study of their active site and preparation of<br />

<strong>in</strong>hibitors could lead to the obtention of powerful fungicides which could be active<br />

aga<strong>in</strong>st <strong>in</strong>fectious organisms such as Aspergillus fumigatus or Candida albicans.<br />

We were able to study the x-ray crystall<strong>in</strong>e structure of Gas2 [1] , a membrane bound<br />

enzyme from Saccharomices cerevisae, a fungus that is usually studied <strong>in</strong> Biochemistry<br />

because of its genetical and structural analogies to pathogens like A. fumigatus<br />

and C. albicans. Know<strong>in</strong>g the active site and the optimal substrate for the enzyme,<br />

molecular dock<strong>in</strong>g studies were carried out to design the target molecules to be synthesized.<br />

We have optimized a purification method [2] of β(1,3)-oligosaccharides from commercially<br />

available glucans (Figure 1, A) and we have studied the synthesis of cyclic six<br />

membered nitrones that can be functionalized [3] with hydrophobic substituents (R)<br />

(Figure 1, B) which will be able to fit <strong>in</strong> a lipophilic cavity close to Gas2 active site.<br />

Nowadays, new dock<strong>in</strong>g, molecular dynamics and <strong>in</strong>hibition studies are be<strong>in</strong>g carried<br />

out to determ<strong>in</strong>e the activity as fungicides of the prepared compounds.<br />

Figure 1 - Saccharomyces cerevisae Gas2 transglycosidase and synthetic goals<br />

Acknowledgments: F. G.-B. thanks the Spanish Council for Scientific Research (CSIC) for a<br />

JAE-Predoctoral grant. R. H.-G. thanks the ARAID Foundation for a permanent position.<br />

[1]<br />

R. Hurtado-Guerrero, A. W. Schüttelkopf, I. Mouyna, A. F. M. Ibrahim, S. Shepherd, T.<br />

Fonta<strong>in</strong>e, J.-P. Latgé, D. M. F. van Aalten, J. Biol. Chem. 2009, 284, 8461-8469.<br />

[2]<br />

V. Moreau, J.-L. Viladot, E. Sama<strong>in</strong>, A. Planas, H. Driguez, Bioorg. Med. Chem. 1996, 4,<br />

1849-1855.<br />

[3]<br />

a) P. Mer<strong>in</strong>o, S. Franco, F. Merchán, T. Tejero, Synlett. 2000, 442-454; b) I. Delso, T. Tejero,<br />

A. Goti, P. Mer<strong>in</strong>o, J. Org. Chem. 2011, 76, 4139-4143.<br />

48 Friday 11:20 - 11:40 Talk 13


2 H NMR spectroscopy <strong>in</strong> application to selected am<strong>in</strong>o-acids<br />

Aleksandra Kubica ∗ , Danuta Kruk † , Artur Birczyński ‡<br />

∗ Faculty of Physics, Astronomy and Applied Computer Science –<br />

Jagiellonian University – Reymonta 4 – Krakow – POL<br />

† Faculty of Mathematics and Computer Science – University of Warmia and Mazury –<br />

Sloneczna 54 – Olsztyn – POL<br />

‡ Institute of Nuclear Physics – Polish Academy of Science – Radzikowskiego 152 –<br />

Krakow – POL<br />

aleksandra.kubica@uj.edu.pl<br />

2 H Nuclear Magnetic Resonance (NMR) is one of the key methods provid<strong>in</strong>g <strong>in</strong>formation<br />

on mechanisms of molecular dynamics. [1] 2 H NMR spectral shapes as well<br />

as sp<strong>in</strong> relaxation are dom<strong>in</strong>ated by strong quadrupolar <strong>in</strong>teraction. [1] Comb<strong>in</strong><strong>in</strong>g<br />

these great advantages of 2 H NMR with selective substitution of 1 H by 2 H one gets<br />

powerful tool for study<strong>in</strong>g dynamics of biomolecules. Generally 2 H spectral shapes<br />

analysis of 2 H NMR is based on perturbation theory. For biological systems the description<br />

of time scale outside of the perturbation regime is needed. Unswerv<strong>in</strong>g to<br />

this need <strong>in</strong> this work a theory of 2 H l<strong>in</strong>eshape based on Stochastic Liouville Equation<br />

is presented. [2] . This treatment is an adaptation of “Swedish slow motion theory” [3,4]<br />

applied <strong>in</strong> Electron Sp<strong>in</strong> Resonance (ESR). The presented theory of 2 H l<strong>in</strong>eshapes is<br />

valid for arbitrary motional conditions and allow for consider<strong>in</strong>g various mechanisms<br />

of motion, for <strong>in</strong>stance simple (Brownian), free - or jump rotational dynamics. The<br />

free diffusion model assumes that the molecule reorients freely for a given time and<br />

then jumps to a new orientation and then reorients aga<strong>in</strong>. In the case of jump diffusion<br />

it is assumed that the molecule has a fixed average direction around which it<br />

reorients for a given time and then jumps to a new direction. These models are described<br />

by two times: τ - life time of s<strong>in</strong>gle orientation and τR- rotational correlation<br />

time. Illustrative simulations of 2 H l<strong>in</strong>eshapes for the simple, jump- and free diffusion<br />

models are shown <strong>in</strong> the Fig.1. The theory has been applied to analyze 2 H l<strong>in</strong>eshapes<br />

of am<strong>in</strong>o acids (lizyne, glicyne, alan<strong>in</strong>e) and prote<strong>in</strong>s [5] (concanaval<strong>in</strong>e and leuc<strong>in</strong>e-<br />

69 from chicken vill<strong>in</strong> - spectra were taken from [6] ) for the purpose of extract<strong>in</strong>g<br />

<strong>in</strong>formation on the dynamical mechanisms of the selectively deuterated parts of the<br />

molecules. One can conclude from this attempt that the models capture the essential<br />

features of the dynamical processes and allow for a consistent <strong>in</strong>terpretation of the<br />

2 H NMR spectral shapes.<br />

Left: 2 H NMR spectra, B0=0.1T for quadrupolar coupl<strong>in</strong>g constant aq=220kHz and<br />

different models of diffusion. Right: 2 H NMR spectra for leuc<strong>in</strong>e-69 and simulations.<br />

[1]<br />

D. Kruk, Theory of Evolution and Relaxation of Multi-Sp<strong>in</strong> Systems (Arima, Bury St Edmunds,<br />

2007).<br />

[2]<br />

D.Kruk et al., J.Chem. Phys. 2011, 135, 224511.<br />

[3]<br />

T. Nilsson, J. Kowalewski, J. Magn. Reson. 2000, 146, 345.<br />

[4]<br />

D. Kruk et al., J. chem. Phys. 2011, 135, 224511.<br />

[5]<br />

D. Kruk et al., J. chem. Phys. 2012, 136, 244509.<br />

[6]<br />

Vugmeyster et al., J. Am. Chem. Soc. 2009, 131, 13652.<br />

Talk 14 Friday 11:40 - 12:00 49


Synthesis and development of the novel phthalocyan<strong>in</strong>e<br />

derivatives possess<strong>in</strong>g 2-(morphol<strong>in</strong>-4-yl)ethyloxy groups of<br />

potential applications <strong>in</strong> photodynamic therapy<br />

P. Skup<strong>in</strong>-Mrugalska ∗ , L. Sobotta ∗ , W. Szczolko † , K. Konopka ⋄ , E. Tykarska † ,<br />

M. Wierzchowski † , J. Dlugaszewska ‡ , M. Kuc<strong>in</strong>ska ‡ , M. Murias ‡ , N. Duzgunes ⋄ ,<br />

T. Gosl<strong>in</strong>ski † , J. Mielcarek ∗<br />

∗ Department of Inorganic and Analytical Chemistry –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

† Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

‡ Department of Toxicology – Poznan University of Medical Sciences – Dojazd 30 –<br />

Poznan – POL<br />

⋄ Department of Biomedical Sciences – University of the Pacific – 2155 Webster Street –<br />

San Francisco – USA<br />

p_skup<strong>in</strong>@wp.pl<br />

Phthalocyan<strong>in</strong>es (Pcs) are macrocyclic compounds which possess many applications.<br />

In biomedical field, Pcs have been <strong>in</strong>vestigated as potential photosensitizers (PSs)<br />

for photodynamic therapy (PDT). PDT is a medical modality which exploits oxygen,<br />

visible light and PS to treat various diseases <strong>in</strong>clud<strong>in</strong>g cancer, age-related macular<br />

degeneration, psoriasis, keratosis, etc. [1] Chemical modifications of exist<strong>in</strong>g PSs, design<strong>in</strong>g<br />

novel molecules and pharmaceutical formulations are ongo<strong>in</strong>g approaches aim<strong>in</strong>g<br />

to improve PSs properties. As most Pcs are highly <strong>in</strong>soluble <strong>in</strong> water, they have<br />

been ma<strong>in</strong>ly modified either by chemical reactions lead<strong>in</strong>g to more soluble derivatives<br />

or by <strong>in</strong>corporation <strong>in</strong>to vehicles like liposomes. [2] Here<strong>in</strong>, novel Pcs endowed with<br />

2-(morphol<strong>in</strong>-4-yl)ethyloxy substituents were synthesized (1-4). Moreover, alkylation<br />

reaction of 1 led to water soluble Pc (4). Novel macrocycles were characterized us<strong>in</strong>g<br />

NMR techniques and crystallography. Their purity was assessed by HPLC method. In<br />

addition, absorption, emission and aggregation properties of the novel Pcs were studied.<br />

S<strong>in</strong>glet oxygen quantum yield of compounds 1-4 was measured both <strong>in</strong> DMSO<br />

and <strong>in</strong> DMF. Cytotoxic activity of these compounds was <strong>in</strong>vestigated us<strong>in</strong>g panel of<br />

cancer cell l<strong>in</strong>es. The Pc 3 was found the most active compound which showed light<br />

but not dark cytotoxicity. Pcs 1-3 were then <strong>in</strong>corporated <strong>in</strong>to liposomes follow<strong>in</strong>g<br />

hydration procedure, and extruded to achieve a uniform size distribution. Liposomes<br />

were characterized by dynamic light-scatter<strong>in</strong>g method. F<strong>in</strong>ally, the biological activity<br />

aga<strong>in</strong>st human squamous cell carc<strong>in</strong>oma of novel Pcs, both non-<strong>in</strong>corporated and<br />

<strong>in</strong>corporated <strong>in</strong>to liposomes, was studied.<br />

Studies supported by the National Science Centre - Grant No. N401 067238 and funds from University<br />

of the Pacific, A.A. Dugoni School of Dentistry. P. Skup<strong>in</strong>-Mrugalska, W.Szczolko -scholarship<br />

holders “Scholarship support for Ph.D. students specializ<strong>in</strong>g <strong>in</strong> majors strategic for Wielkopolska’s<br />

development”, Sub-measure 8.2.2 Human Capital Operational Programme, co-f<strong>in</strong>anced by EU under<br />

the ESF.<br />

[1] S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, T.<br />

Joh, J. Photochem. Photobiol. 2011, C 12, 46.<br />

[2] Y.N. Konan, R. Gurny, E. Allemann, J. Photochem. Photobiol. 2002, B 66, 89.<br />

50 Friday 13:30 - 13:50 Talk 15


Novel drug carrier systems - Spectroscopic characterization<br />

of cell-penetrat<strong>in</strong>g peptide analogous<br />

Sören Gehne ∗ , Karl Sydow † , Margitta Dathe † , Michael U. Kumke ∗<br />

∗ Physical Chemistry – University of Potsdam – Karl-Liebknecht-Str. 24-25 – Potsdam –<br />

GER<br />

† Peptide Lipid Interaction/Peptide Transport –<br />

Leibniz Institute for Molecular Pharmacology – Robert-Roessle-Str. 10 – Berl<strong>in</strong> – GER<br />

gehne@uni-potsdam.de<br />

The specific transport of pharmaceutical <strong>in</strong>gredients to the po<strong>in</strong>t of need is a very hot<br />

topic <strong>in</strong> life sciences. Among the molecular transport systems <strong>in</strong>vestigated colloidal<br />

vehicles (e.g. micelles) are of special <strong>in</strong>terest because they are able to transport also<br />

only poorly soluble or rapidly degradable molecules. [1]<br />

We report on the lipopeptide (LP) P2A2, which consists of a cell-penetrat<strong>in</strong>g peptide<br />

part A2 (derived from apoliprote<strong>in</strong> E) and of two palmitoyl cha<strong>in</strong>s P2. [2,3] The unique<br />

comb<strong>in</strong>ation of cell-penetrat<strong>in</strong>g and micelle-form<strong>in</strong>g properties paves the road for the<br />

development of a novel class of powerful drug carrier systems (DCS). Knowledge on<br />

the physico-chemical properties as well as the <strong>in</strong>teraction of the DCS with the target<br />

(e.g. cells, cell membranes) is <strong>in</strong>dispensible for the design of novel highly effective<br />

tailor-made DCS. Fundamental properties such as the critical micelle concentration<br />

(cmc), the aggregation number (Nagg) as well as the exchange rates of drugs between<br />

DCS and environment are needed, which – <strong>in</strong> some cases – are only accessible with<br />

sensitive spectroscopic methods.<br />

For the spectroscopic <strong>in</strong>vestigation A2 and P2A2 were labeled with 5(6)-Carboxyfluoresce<strong>in</strong><br />

(FAM) and used as fluorescent probe. By us<strong>in</strong>g different spectroscopic<br />

methods (e.g. fluorescence anisotropy, fluorescence correlation spectroscopy) the<br />

FAM-labeled biomolecules were characterized regard<strong>in</strong>g their aggregation behavior<br />

(cmc, Nagg). To study the <strong>in</strong>fluence of the chemical composition of the peptide part<br />

on the micelle formation, P2A2 analogous with modified peptide sequences were <strong>in</strong>vestigated.<br />

P2A2 turned out to be a very strong detergent with an outstand<strong>in</strong>g low cmc <strong>in</strong> the<br />

micromolar(!) range. For a powerful drug delivery system also the targeted delivery<br />

to specific cells [4] or the exchange k<strong>in</strong>etics of the pharmaceutical agents is highly<br />

important. Therefore, the exchange k<strong>in</strong>etics of P2A2 micelles were <strong>in</strong>vestigated <strong>in</strong><br />

biomimetic systems us<strong>in</strong>g fluorescent probes as drug analogous.<br />

P2A2-micelle (yellow - palmitoyl cha<strong>in</strong>s).<br />

[1] V. P. Torchil<strong>in</strong>, Pharm Res 2007, 24, 1-16.<br />

[2] S. Keller et al., Angew. Chem. Int. Ed. 2005, 44, 5252-5255.<br />

[3] E. Leupold et al., Biochimica et Biophysica Acta 2009, 1788, 442-449.<br />

[4] I. Sauer et al., Biochimica et Biophysica Acta 2006, 1758, 552-561.<br />

Talk 16 Friday 13:50 - 14:10 51


Controlled Synthesis of Cell-Laden Degradable Microgels by<br />

Radical-Free and Supramolecular Gelation <strong>in</strong> Droplet<br />

Microfluidics<br />

Torsten Rossow, Sebastian Seiffert<br />

Organische Chemie – Freie Universität Berl<strong>in</strong> – Takustraße 3 – Berl<strong>in</strong> – GER<br />

torsten.rossow@onl<strong>in</strong>ehome.de<br />

Hydrogels with micrometer-scale dimensions (microgels) are useful scaffolds for cell<br />

encapsulation, because they mimic the natural extracellular matrix with the possibility<br />

to tailor it. [1] We fabricate microgel particles that conta<strong>in</strong> liv<strong>in</strong>g cells with<br />

exquisite control through droplet-based microfluidics, as shown <strong>in</strong> Figure 1. The microgel<br />

gelation is achieved via the bio-orthogonal thiol-ene click reaction of dithiolated<br />

polyethyleneglycol (PEG) macrocrossl<strong>in</strong>kers and acrylated hyperbranched polyglycerol<br />

(hPG) build<strong>in</strong>g blocks and does not require any <strong>in</strong>itiator. [2] This approach yields<br />

high cell viabilities of about 90%.<br />

To perform efficient cell analysis, fast and stimuli-responsive microgel degradation<br />

must be achievable to release encapsulated cells on demand. For this purpose, reversibly<br />

crossl<strong>in</strong>ked supramolecular polymer gels are an <strong>in</strong>terest<strong>in</strong>g class of materials.<br />

We follow this approach and prepare supramolecularly crossl<strong>in</strong>ked cell-laden<br />

microgels that consist of bipyrid<strong>in</strong>e-term<strong>in</strong>ated PEG, crossl<strong>in</strong>ked by complexation of<br />

non-harmful metal salts such as iron(II)-sulfate. To study the <strong>in</strong>fluence of the microgel<br />

elasticity on mammalian-cell viabilities, we use bpy-PEG-bpy precursors with<br />

different molecular weights and at different concentrations. That way, the microgel<br />

properties can be optimized to obta<strong>in</strong><strong>in</strong>g cell viabilities of up to 96%. These microgels<br />

are stable enough to use them as <strong>in</strong>-vitro 3D-cell cultur<strong>in</strong>g systems, but they are<br />

labile enough to release the cells on demand. This can be achieved by simple dilution<br />

on a timescale of hours or by the addition of decomplex<strong>in</strong>g agents on a timescale of<br />

m<strong>in</strong>utes, with no effect on the viability of the encapsulated and released cells.<br />

Figure 1. Formation of cell-laden microgel particles through the use of droplet-based<br />

microfluidic particle templat<strong>in</strong>g and bio-orthogonal crossl<strong>in</strong>k<strong>in</strong>g of thiol-term<strong>in</strong>ated polyethyleneglycol<br />

(PEG) and ene-term<strong>in</strong>ated hyperbranched polyglycerol (hPG) precursor<br />

polymers.<br />

[1] D. Velasco, E. Tumark<strong>in</strong>, E. Kumacheva, Small 2012, 8, 1633-1642.<br />

[2] T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J.<br />

Am. Chem. Soc. 2012, 134, 4983-4989.<br />

52 Friday 14:10 - 14:30 Talk 17


Liquid Crystal and Electro-Optic Block Codendrimers:<br />

Synthesis and Characterization<br />

Ismael Gracia ∗ , Beatriz Fer<strong>in</strong>gán ∗ , Joaquín Barberá ∗ , Ana Omenat ∗ , Jose Luis Serrano †<br />

∗ Dpto. Química Orgánica –<br />

Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC –<br />

C/ Pedro Cerbuna 12 – Zaragoza – ESP<br />

† Dpto. Química Orgánica –<br />

Instituto de Nanociencia de Aragón, Universidad de Zaragoza - CSIC –<br />

C/ Pedro Cerbuna 12 – Zaragoza – ESP<br />

ismaelgg@unizar.es<br />

Dendrimers are polymeric materials that have attracted a lot of attention, <strong>in</strong> many<br />

fields, all over the last decade. One of the ma<strong>in</strong> properties of dendrimers is that<br />

it is possible to achieve a high degree of control over their functionalization, both<br />

<strong>in</strong> the backbone and <strong>in</strong> the periphery. In our group, we have experience <strong>in</strong> the<br />

study of the structure-properties relationship of liquid crystal dendrimers, or the socalled<br />

dendromesogens. [1] In this work, different bifunctional materials have been<br />

synthesized based on block codendrimers. The objective is to obta<strong>in</strong> ordered and<br />

light emitt<strong>in</strong>g materials based on highly controllable dendritic structures.<br />

For the dendrimer backbone, we have used the first and second generation of bis-MPA<br />

dendrons. [2] From this start<strong>in</strong>g material and by means of an orthogonal synthetic<br />

procedure, we obta<strong>in</strong> compounds with two or four peripheral hydroxyl groups for the<br />

first and second generations, respectively. S<strong>in</strong>ce our first goal was to prepare a liquid<br />

crystal material, we have <strong>in</strong>troduced four mesogenic groups, which should favour the<br />

mesophase formation, and a variable amount of chromophores on the other side of the<br />

molecule, <strong>in</strong> order to study the relationship between the mesogenic and the emissive<br />

properties of the codendrimer. Afterwards, we have <strong>in</strong>troduced some modifications<br />

<strong>in</strong> the structure to favour the formation of room temperature stable smectic and<br />

columnar phases that would benefit the ordered fluorescence emission.<br />

WAXD patterns show that dendrons and codendrimers with one term<strong>in</strong>al cha<strong>in</strong><br />

present type A and C smectic mesophases, whereas those with three term<strong>in</strong>al cha<strong>in</strong>s<br />

show columnar mesomorphism <strong>in</strong> some cases. Even though smectic phases are quite<br />

stable <strong>in</strong> the materials under study, the columnar mesomorphism is not always reached<br />

maybe due to the destabilization caused by the photoactive species. Calculations<br />

based on WAXD patterns allow us to propose molecular models for the mesophases.<br />

UV-vis absorption and fluorescence emission experiments show strong signals with<br />

maxima at 264 -268 nm and 351 nm, respectively, while when emission was measured<br />

from multi-doma<strong>in</strong> oriented films maximum emission was found at 370 nm. Optical<br />

properties of these codendrimers show that the <strong>in</strong>troduction of one, two or four<br />

carbazole units does not affect the emission quantum yield.<br />

Fig. 1. Schematic representation of the codendrimers synthesized<br />

[1] M. Marcos, R. Martín-Rapún, A. Omenat, J. L. Serrano, Chem. Soc. Rev. 2007, 36, 1889.<br />

[2] H. Ihre, A. Hult, J. M. Fréchet, I. Gitsov, Macromolecules 1998, 31, 4061.<br />

Talk 18 Friday 16:20 - 16:40 53


Great Insights from a Small System: Structure and<br />

reactivity of [V P O4] + <strong>in</strong> comparison with [V2O4] + .<br />

Nicolas Dietl ∗ , Maria Schlangen ∗ , Knut Asmis † , Helmut Schwarz ∗<br />

∗ Institut für Chemie – Technische Universität Berl<strong>in</strong> – Straße des 17. Juni 135 – Berl<strong>in</strong> –<br />

GER<br />

† Institut für Molekülphysik – Fritz-Haber-Institut der Max-Planck-Gesellschaft –<br />

Faradayweg 4-6 – Berl<strong>in</strong> – GER<br />

nicolas.dietl@mail.chem.tu-berl<strong>in</strong>.de<br />

The selective oxidation of hydrocarbons still constitutes one of the major challenges <strong>in</strong><br />

contemporary chemistry to solve global problems, such as the environmentally benign<br />

and economically feasible conversion of natural gas <strong>in</strong>to value-added products. [1] Today,<br />

there exist numerous effective homogeneous and heterogeneous catalysts which<br />

cover a broad spectrum of oxidation reactivity; however, it is not exaggerated to<br />

note the lack of substantiated knowledge about the <strong>in</strong>tr<strong>in</strong>sic properties of many of<br />

the catalysts which, after all, control the selectivity of the various oxidation processes.<br />

A well-known example for such a poorly understood catalytic process represents<br />

the chemical transformation of n-butane to maleic anhydride by the so-called<br />

VPO-catalysts; this highly complex and selective reaction <strong>in</strong>volves the abstraction of<br />

eight hydrogen atoms from, as well as the transfer of three oxygen atoms to C4H10.<br />

One approach <strong>in</strong> the elucidation of mechanistic aspects at a molecular level employs<br />

reactivity studies which are conducted under near s<strong>in</strong>gle-collision conditions <strong>in</strong> a mass<br />

spectrometer <strong>in</strong> conjunction with computational studies. [2]<br />

Our recent results report on the electrospray-ionization (ESI) generation of the small,<br />

mixed-oxo cluster [V P O4] + , its electronic structure <strong>in</strong> the gas phase as well as its<br />

reactivity towards small hydrocarbons, thus permitt<strong>in</strong>g a comparison to the long-time<br />

known and extensively <strong>in</strong>vestigated vanadium-oxide cation [V2O4] + . [3] As described<br />

<strong>in</strong> previous studies, the latter exhibits no reactivity towards small hydrocarbons, such<br />

as CH4, C2H6, C3H8, C4H10, and C2H4, while the substitution of one vanadium<br />

atom by a phosphorous atom yields the reactive [V P O4] + ion which br<strong>in</strong>gs about<br />

oxidative dehydrogenation from saturated hydrocarbons, i.e. propane and butane, as<br />

well as oxygen-atom transfer to unsaturated hydrocarbons, i.e. ethene, at thermal<br />

conditions. Further, the structure of [V P O4] + was characterized <strong>in</strong> the gas phase<br />

by advanced IR photodissociation spectroscopy, and a comparison is made to the<br />

also structurally characterized gaseous [V2O4] + system, <strong>in</strong>clud<strong>in</strong>g structure-reactivity<br />

relationships. F<strong>in</strong>ally, reaction mechanisms are elucidated by DFT calculations; the<br />

results underl<strong>in</strong>e the key role of phosphorous <strong>in</strong> terms of C-H bond activation of<br />

hydrocarbons by mixed VPO-clusters.<br />

[1] J. R. Webb, T. Bolaño, T. B. Gunnoe, ChemSusChem 2011, 4, 37.<br />

[2] H. Schwarz, Angew. Chem. Int. Ed. 2011, 50, 10096.<br />

[3] a) R. C. Bell, K. A. Zemski, K. P. Kerns, H. T. Deng, A. W. Castleman, J. Phys. Chem. A<br />

1998, 102, 1733; b) K. R. Asmis, J. Sauer, Mass Spectrom. Rev. 2007, 26, 542.<br />

54 Friday 16:40 - 17:00 Talk 19


Comparison of different Cu particles supported on SBA-15<br />

as methanol steam reform<strong>in</strong>g catalysts<br />

Gregor Koch, Thorsten Ressler<br />

Institut für Anorganische und Analytische Chemie – Technische Universität –<br />

Straße des 17. Juni 135, 10623 Berl<strong>in</strong> – Berl<strong>in</strong> – GER<br />

gregor.koch@tu-berl<strong>in</strong>.de<br />

Intensive research has shown the importance of Cu conta<strong>in</strong><strong>in</strong>g catalysts for methanol<br />

steam reform<strong>in</strong>g (MSR) as H2 source. [1] For subsequent fuel cell application CO<br />

formation due to side reactions like water gas shift needs to be avoided. Therefore,<br />

the correlation between catalyst structure and activity has to be understood. From<br />

<strong>in</strong>vestigations of Cu/ZnO/Al2O3 catalyst, Cu was found to be the active phase, while<br />

ZnO and Al2O3 were suggested as both functional and structural promoters. [2] To<br />

further reveal the effect of structural changes of the active Cu phase (e.g. micro stra<strong>in</strong>)<br />

on MSR activity, suitable model systems have to be <strong>in</strong>vestigated. Therefore, b<strong>in</strong>ary<br />

Cu-ZnO catalysts, for <strong>in</strong>stance, have been studied <strong>in</strong> detail [3] . Here, Cu particles were<br />

deposited on nanostructured silica to reveal correlations between the structure of Cu<br />

particles and their catalytic activity. This approach shall allow dist<strong>in</strong>guish<strong>in</strong>g these<br />

effects from any further promot<strong>in</strong>g effect of ZnO.<br />

Cu catalysts were prepared by <strong>in</strong>cipient wetness. Therefore, SBA-15 was treated with<br />

Cu citrate solution. Subsequent decomposition <strong>in</strong> air resulted <strong>in</strong> the oxidic precursor.<br />

XAS at the Cu K edge showed that CuO is the major copper phase <strong>in</strong> the oxidic<br />

precursor of all catalysts. Dur<strong>in</strong>g reduction <strong>in</strong> 5 % H2, formation of an <strong>in</strong>termediate<br />

phase before generation of Cu particles was observed with <strong>in</strong> situ XAS measurements.<br />

After reduction, partially oxidized metallic Cu was found. The average oxidation state<br />

was shifted from ± 0 up to + 0.4. In situ diffraction patterns illustrated enlarged Cu<br />

particles with <strong>in</strong>creas<strong>in</strong>g Cu load<strong>in</strong>g on silica support. XAS measurement of the Cu<br />

K edge also <strong>in</strong>dicated that higher load<strong>in</strong>g of Cu resulted <strong>in</strong> bigger Cu particles after<br />

reduction (Fig. 1). However, these Cu catalysts showed a good catalytic activity<br />

with high selectivity to CO2. Correlation between structure of the Cu phase and the<br />

performance of the catalysts will be discussed.<br />

Fig.1 Comparison of the FT(χ(k)*k 3 ) of three Cu/SBA-15 catalysts with different<br />

load<strong>in</strong>gs after reduction.<br />

[1]<br />

S. Sá, H. Silva, L. Brandão, J. M. Soua, A. Mendes, Appl. Catal., B Environmental 2010,<br />

99, 43.<br />

[2]<br />

M. Behrens, F. Studt, I. Kasatk<strong>in</strong>, S. Kühl, M. Hävecker, F. Abild-Pederson, S. Zander, F.<br />

Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, Science<br />

2012, 366, 893.<br />

[3]<br />

P. Kurr, I. Kasatk<strong>in</strong>, F. Girgsidies, A. Trunschke, R. Schlögl, T. Ressler, Appl. Catal. A<br />

2008, 348, 153.<br />

Talk 20 Friday 17:00 - 17:20 55


New Trifluoromethyl Derivatives of 5 IPR Isomers the<br />

Fullerene C84<br />

Maria Fritz ∗ , Kaich<strong>in</strong> Chang † , Natalia A. Romanova ∗ , Sergey I. Troyanov ∗ ,<br />

Nadezhda B. Tamm ∗<br />

∗ Chemical Department – Lomonosov Moscow State University – Len<strong>in</strong>skie Gori/1-3 –<br />

Moscow – RUS<br />

† Institute of Chemistry – Humboldt University Berl<strong>in</strong> – Brook-Taylor Straße/2 –<br />

Berl<strong>in</strong> – GER<br />

malanskikh@gmail.com<br />

The C84 fullerene corresponds to the higher fullerenes of more than 70 carbon atoms.<br />

As is widely known, the number of possible isomers rapidly grows with the number<br />

of carbon atoms, the isomers which obey the Isolated Pentagon Rule (IPR) [1] be<strong>in</strong>g<br />

the most stable. There are 24 possible IPR-isomers of C84 fullerene. Unambiguous<br />

structural determ<strong>in</strong>ation of the fullerene molecules requires an X-ray study of prist<strong>in</strong>e<br />

isomers or their derivatives. In this regard, the derivatized molecules frequently prove<br />

advantageous as the attached moieties suppress rotational disorder thereby enabl<strong>in</strong>g<br />

reliable determ<strong>in</strong>ation of both cage connectivity and addition patterns.<br />

Here we report synthesis, separation, and structural characterization by means of<br />

s<strong>in</strong>gle crystal X-ray diffraction new trifluoromethyl derivatives of 5 IPR isomers the<br />

fullerene C84. Mixtures of higher fullerenes were reacted with CF3I <strong>in</strong> a sealed<br />

ampoule at 420 ◦ C and 550 ◦ C. The C2m(CF3)2n reaction products were dissolved <strong>in</strong><br />

hexane or toluene and subjected to multistep HPLC separation (Lomonosov Moscow<br />

State University, Moscow, Russia). S<strong>in</strong>gle crystals grown from isolated fractions were<br />

studied by X-ray diffraction with the use of synchrotron radiation (BESSY, Free<br />

University, Berl<strong>in</strong>, Germany). Structural relationship accompanied with theoretical<br />

<strong>in</strong>vestigation (DFT/PRIRODA) allowed determ<strong>in</strong><strong>in</strong>g the ma<strong>in</strong> addition rules and<br />

reveal<strong>in</strong>g the sequential addition pathways.<br />

[1] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Dover Publications, 2006, 392.<br />

56 Friday 17:20 - 17:40 Talk 21


Posters


Nanoporous anodic titanium oxide (ATO) layers as surface<br />

for microbial and cell growth<br />

Magdalena Jarosz ∗ , Katarzyna Malec † , Justyna Sygula-Cholew<strong>in</strong>ska ‡ ,<br />

Tomasz Sawoszczuk ‡ , Iwona Wybranska † , Grzegorz Sulka ∗ , Marian Jaskula ∗<br />

∗ Department of Physical Chemistry & Electrochemistry – Jagiellonian University –<br />

Ingardena 3/30-060 – Krakow – POL<br />

† Department of Cl<strong>in</strong>ical Biochemistry – Collegium Medicum, Jagiellonian University –<br />

Kopernika 15a/31-501 – Krakow – POL<br />

‡ Department of Microbiology, Faculty of Commodity Science –<br />

Cracow University of Economics – Rakowicka 27/31-510 – Krakow – POL<br />

jarosz@chemia.uj.edu.pl<br />

The most commonly considered materials for bone-implants are titanium and its<br />

alloys due to their good biocompatibility, high strength to weight ratio. [1] Titaniumbased<br />

materials are widely used <strong>in</strong> medic<strong>in</strong>e and dentistry, for orthopedic, dental and<br />

other implants, as well as <strong>in</strong> medical devices (e.g. screws and plates). Unfortunately,<br />

there are some drawbacks and limitations to the use of titanium implants, e.g. their<br />

<strong>in</strong>ertness and long-term osseo<strong>in</strong>tegration via the natural oxide (TiO2) exist<strong>in</strong>g on<br />

their surface. Therefore, titanium with nanoporous materials on its surface becomes<br />

a novel solution for bone implant technology. [2]<br />

Anodic titanium oxide (ATO) films on Ti foils were prepared via a three-step anodization<br />

<strong>in</strong> glycol ethylene based solutions conta<strong>in</strong><strong>in</strong>g NH4F (0.38 wt.%) and H2O<br />

(1.79 wt.%) under a constant voltage of 40 V. The duration of first and second anodiz<strong>in</strong>g<br />

step was 3h. The duration of the third step was 10 m<strong>in</strong>. Titanium foils<br />

(99.5 % purity) were used as both work<strong>in</strong>g and counter electrodes. The anodization<br />

was performed <strong>in</strong> two-electrode cells at a constant temperature of 20 ◦ C. After<br />

anodization, some samples were annealed at the temperature of 400 or 1000 ◦ C <strong>in</strong><br />

order to achieve different polymorphic structures of TiO2 (anatase and rutile). Other<br />

samples were modified with silver nanoparticles. Such prepared samples were used<br />

for the cell growth and microbial exam<strong>in</strong>ations. Adipocyte derived stem cells obta<strong>in</strong>ed<br />

from abdom<strong>in</strong>al liposuction were seeded onto TiO2 surfaces. Cell viability,<br />

proliferation and phenotype were assessed by the measurement of redox reactions <strong>in</strong><br />

the cells, cellular DNA, tritiated thymid<strong>in</strong>e ([3H]-TdR) <strong>in</strong>corporation and alkal<strong>in</strong>e<br />

phosphatase (ALP) production. Staphylococcus aureus bacteria were used for exam<strong>in</strong>ation<br />

of antimicrobial character of nanoporous TiO2 on Ti. The evaluations of<br />

the <strong>in</strong>hibition of microorganism growth and biofilm formation on various nanoporous<br />

TiO2 surfaces were performed. Nanoporous TiO2 surfaces were placed either on the<br />

surface of Mueller-H<strong>in</strong>ton agar which was <strong>in</strong>oculated with microorganisms before or<br />

stroked perpendicularly <strong>in</strong>to the <strong>in</strong>oculated selected broth. In both techniques a zone<br />

of <strong>in</strong>hibition on broths was measured. For biofilm formation tests, nanoporous TiO2<br />

surfaces were placed <strong>in</strong> liquid broths with suspension of microorganisms. The occurrence<br />

of biofilm on plates was <strong>in</strong>vestigated with a microscopic and UV radiation<br />

methods.<br />

[1] K.M. Buettner, A.M. Valent<strong>in</strong>e, Chem. Rev. 2012, 112, 1863-1881.<br />

[2] M. Stigter, J. Bezemer, K. de Groot, P. Layrolle, J. Control. Release 2004, 99, 127-137<br />

58 Thursday 17:40 - 20:10 Poster 001


Superparamagnetic Iron Oxide Nanoparticles Coated with<br />

Chitosan - Physicochemical Characterization<br />

Agnieszka Szpak, Szczepan Zapotoczny, Maria Nowakowska<br />

Faculty of Chemistry – Jagiellonian University – Ingardena 3 – Kraków – POL<br />

szpak@chemia.uj.edu.pl<br />

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have attracted attention due<br />

to their great magnetic properties, biodegradablility and nontoxicity, what is crucial<br />

for biomedical applications, especially as tools <strong>in</strong> advanced diagnostic and therapy<br />

(contrast enhancement for magnetic resonance imag<strong>in</strong>g, drug delivery, detoxification,<br />

hyperthermia treatment, cell separation, detoxification of biological fluids). [1,2]<br />

Here we present results of our studies on fabrication and physicochemical characterization<br />

of stable suspensions of SPIONs. Nanoparticles are covered with ultrath<strong>in</strong><br />

layer of polymer prevent<strong>in</strong>g aggregation process.<br />

For <strong>in</strong>vestigat<strong>in</strong>g SPIONs properties we used a wide range of methods such as Dynamic<br />

Light Scatter<strong>in</strong>g (size and charge), Transmission Electron Microscopy (size),<br />

Vibrat<strong>in</strong>g Sample Magnetometer (magnetization of suspension) and High Resolution<br />

Electron Microscope for (crystallographic structure) among others. The possibility of<br />

us<strong>in</strong>g SPIONs towards biological applications will be <strong>in</strong>vestigated <strong>in</strong> the next step.<br />

Acknowledgements: This work was supported by the European Union from the resources<br />

of the European Regional Development Found under the Innovative Economy<br />

Programme (grant coord<strong>in</strong>ated by JCET-UJ, No POIG.01.01.02-00-060/09)<br />

[1] A.K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995-4021.<br />

[2] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Chemical<br />

Reviews 2008, 108, 2064-2110.<br />

Poster 002 Thursday 17:40 - 20:10 59


Synthesis of Substituted Pyrid<strong>in</strong>yl Im<strong>in</strong>othiazolid<strong>in</strong>one<br />

Compounds via One-Pot Method<br />

Fatma Tülay Tugcu<br />

Department of Chemistry – Yildiz Technical University, Faculty of Science – İstanbul –<br />

TUR<br />

ttugcu@yahoo.com<br />

Because of their reaction capabilities both as N-nucleophiles and as S-nucleophiles,<br />

thioureas are successfully used <strong>in</strong> the synthesis of biologically active compounds. As a<br />

result of comprehensive researches made <strong>in</strong> recent years, new thiourea compounds hav<strong>in</strong>g<br />

anticancer, antitumor, antiviral, anti-HIV, antimalarial and other various pharmacological<br />

activities have been synthesized. [1]<br />

On the other hand, antimicrobial, antituberculosis and antibacterial activities of<br />

im<strong>in</strong>othiazolid<strong>in</strong>one compounds have been observed <strong>in</strong> their biological and pharmacological<br />

activity studies. [2] In addition, existence of anti-<strong>in</strong>flammatory [3] and antifungal<br />

[4] effects of these compounds are also mentioned.<br />

Therefore, <strong>in</strong> this study, some new substituted pyrid<strong>in</strong>yl im<strong>in</strong>othiazolid<strong>in</strong>one derivatives<br />

which are considered that may possess biological activity have been obta<strong>in</strong>ed via<br />

one-pot multicomponent method by us<strong>in</strong>g thiophene-2-carboxaldehyde, chloroacetic<br />

acid and several hetaryl-thioureas; and the structures of all these synthesized compounds<br />

have been clarified with spectral data: [5]<br />

Thanks for Yıldız Technical University Scientific Research Projects Coord<strong>in</strong>ation’s support<br />

<strong>in</strong> this study.Project No: 2010-01-02-GEP01.<br />

[1] W. Liu, J. Zhou, T. Zhang, H. Zhu, H. Qian, H. Zhang, W. Huang, R. Gust, Bioorganic and<br />

Medic<strong>in</strong>al Chemistry Letters 2012, 22, 2701-2704.<br />

[2] Ş. G. Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, A. C. Ek<strong>in</strong>ci, A. Vid<strong>in</strong>, European Journal<br />

of Medic<strong>in</strong>al Chemistry 2000, 35, 761-771.<br />

[3] R. Ottana, R. Maccari, M.L. Barreca, G. Bruno, A. Rotondo, A. Rossi, G. Chiricosta, R. Di<br />

Paola, L. Sauteb<strong>in</strong>, M. G. Vigorita, Bioorganic and Medic<strong>in</strong>al Chemisty 2005, 13, 4243-4252.<br />

[4] H. Liu, Z. Li, T. Anthonsen, Molecules 2000, 5, 1055-1061.<br />

[5] S. Kasmi-Mir, A. Djafri, L. Paqu<strong>in</strong> J., Hamel<strong>in</strong>, M. Rahmouni, Molecules 2006, 11, 597-602.<br />

60 Thursday 17:40 - 20:10 Poster 003


Nanoscaled phosphors based on metal (II) and gadol<strong>in</strong>ium<br />

mixed borates doped with dysprosium (III) ions<br />

Andrii Shyichuk, Stefan Lis<br />

Faculty of Chemistry – Adam Mickiewicz University – Umultowska 89b – Poznań – POL<br />

andrii.shyichuk@gmail.com<br />

Summary<br />

Mixed borate-based nanophosphors of general formula MeMe’2Gd2(BO3)4, where:<br />

Me, Me’ = Ca, Sr, Ba, were obta<strong>in</strong>ed by the sol-gel Pech<strong>in</strong>i method. Accord<strong>in</strong>g to<br />

Scherrer XRD analysis, the size of particles was about 50 nm. The dope of Dy 3+<br />

resulted <strong>in</strong> white emission. The phosphors can be excited by 350 nm near-ultraviolet<br />

light. The emission color can be tuned between yellowish-white, bluish-white and almost<br />

pure white, what was confirmed with CIE chromaticity diagrams. The materials<br />

can f<strong>in</strong>d potential applications <strong>in</strong> lum<strong>in</strong>escent tubes and light emitt<strong>in</strong>g diodes.<br />

Structure<br />

The composition of the materials was kept as MeMe’2Gd2−xDyx(BO3)4, where Me,<br />

Me’ = Ca, Sr, Ba. The details of the synthesis procedure are described <strong>in</strong> our paper<br />

[1]. The materials were studied by means of powder X-ray diffraction (XRD), spectrofluorimetry<br />

<strong>in</strong> the visible range and lum<strong>in</strong>escence lifetime measurements. In the<br />

case of Me = Me’ the XRD patterns of the studied compounds matched the related<br />

entries of JCPDS database. However, <strong>in</strong> the case of different Me and Me’ the peaks <strong>in</strong><br />

XRD patterns were located between the peaks of appropriate references. The width<br />

of peaks was much smaller than the shifts. It means, that new structures conta<strong>in</strong><strong>in</strong>g<br />

both Me and Me’ were formed and no mixture of two phases was present. Sherrer<br />

XRD analysis [2] showed particles size of about 50 nm.<br />

Photolum<strong>in</strong>escence<br />

The excitation spectra of the samples conta<strong>in</strong>ed maxima <strong>in</strong> the spectral range of 330-<br />

400 nm, correspond<strong>in</strong>g to 4f-4f transitions from the ground state of 6 H 15/2 to 4 F 7/2,<br />

6 F9/2, 4 G 21/2, 4 H 15/2, 4 K 15/2, 4 P 3/2, 4 P 7/2 levels of Dy 3+ . The emission was<br />

represented by two ma<strong>in</strong> bands at 486 and 577 nm correspond<strong>in</strong>g to transitions from<br />

4 F9/2 Dy 3+ level to 6 H 15/2 and 6 H 13/2 levels, respectively. The decay times varied<br />

with<strong>in</strong> the range of 2-2.5 ms and the lum<strong>in</strong>escence decay curves were monoexponential.<br />

The color of emission (characterized by CIE 1931 color coord<strong>in</strong>ates) l<strong>in</strong>early changed<br />

<strong>in</strong> the series of Ba3Gd2(BO3)4, Ba2SrGd2(BO3)4, BaSr2Gd2(BO3)4, Sr3Gd2(BO3)4,<br />

CaSr2Gd2(BO3)4, Ca2SrGd2(BO3)4, Ca3Gd2(BO3)4 from yellowish-white to bluishwhite<br />

be<strong>in</strong>g very close to pure white (D65 standard source) <strong>in</strong> all cases. Additional<br />

excitation bands aris<strong>in</strong>g from transitions from the ground state of 8 S 7/2 to 6 I 15/2 and<br />

6 P7/2 level of Gd 3+ were present <strong>in</strong> spectra of Gd-based compounds. Those bands<br />

were located at 272.8 and 310 nm, respectively. No emission from Gd 3+ was observed.<br />

It means that efficient energy transfer occurred from Gd 3+ to the Dy 3+ dope ions.<br />

[1]<br />

A.A. Shyichuk, S. Lis, J. Rare Earth 2011, 29 (12), 1161.<br />

[2]<br />

A. Patterson, Phys. Rev. 1939, 10, 56.<br />

[3]<br />

C. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, J. Lum<strong>in</strong>. 2003, 101, 11.<br />

[4]<br />

H. Mataki, Rare earth-metal nanocluster doped organic/<strong>in</strong>organic optical nanocomposites<br />

(thesis), Waseda University, Tokyo 2007.<br />

Poster 004 Thursday 17:40 - 20:10 61


A versatile approach for coat<strong>in</strong>g oxidic surfaces with a range<br />

of nanoparticulate materials.<br />

Jan Poppe, Stefanie Gabriel, Lydia Liebscher, Stephen G. Hickey, Alexander Eychmüller<br />

Physical Chemistry and Electrochemistry – TU Dresden – Bergstraße 66b – Dresden –<br />

GER<br />

jan.poppe@chemie.tu-dresden.de<br />

A versatile and effective method by which a wide range of nanoparticulate materials<br />

can be attached to a variety of oxidic surfaces is presented. After synthesiz<strong>in</strong>g the<br />

nanocrystals (PbS, CdSe, CdSe@CdS core shell, Au) via standard hot <strong>in</strong>jection routes,<br />

the stabiliz<strong>in</strong>g ligands are exchanged to 3-mercatopropyl-trimethoxysilane (MPTMS).<br />

The ligand exchange is monitored us<strong>in</strong>g FTIR-spectroscopy and transmission electron<br />

microscopy (TEM). The modified nanocrystals were then applied to different oxidic<br />

substrates, yield<strong>in</strong>g homogeneous and dense particle films. The effectiveness of this<br />

coat<strong>in</strong>g procedure is then compared with the commonly employed deposition methods<br />

by means of electrochemical measurements and scann<strong>in</strong>g electron microscopy imag<strong>in</strong>g<br />

and found to be vastly superior <strong>in</strong> its particle deposition efficiency. The applicability<br />

of this methodology is further verified by deposit<strong>in</strong>g a layer of PbS nanoparticles onto<br />

a silica sphere colloidal crystals to modify its optical properties.<br />

SEM image of PbS nanoparticles attached to a electrochemically grown ZnO substrate.<br />

62 Thursday 17:40 - 20:10 Poster 005


Complexes of Manganese, Iron and Cobalt with Sterically<br />

Demand<strong>in</strong>g Indenyl Ligands<br />

Miyuki Maekawa ∗ , Constant<strong>in</strong> Daniliuc † , Matthias Freytag ∗ , Peter Jones ∗ ,<br />

Marc Walter ∗<br />

∗ Institut für Anorganische und Analytische Chemie – TU Braunschweig – Hagenr<strong>in</strong>g 30 –<br />

Braunschweig – GER<br />

† Organisch-Chemisches Institut – Westfälische Wilhelms-Universität Münster –<br />

Corrensstrasse 40 – Münster – GER<br />

m.maekawa@tu-bs.de<br />

Indenyl complexes have been used <strong>in</strong> wide range applications such as polymerization [1]<br />

and hydrosilylation, [2] and r<strong>in</strong>g substituents can vary their properties. Although <strong>in</strong>denyl<br />

ligands are also monoanionic, formal six-electron ligands that are often considered<br />

close analogues of the cyclopentadienyl anion, they have been explored to a<br />

lesser extent. Several substituted <strong>in</strong>denyl systems have been reported, but examples<br />

with bulky alkyl substituted derivative have relatively limited, e.g. C9H5(iPr)2 [3] ,<br />

C9H5(tms)2 [3] and C9H6(cHex) [4] .<br />

Here we report on the preparation of the series of manganese, iron and cobalt complexes<br />

bear<strong>in</strong>g stericaly demand<strong>in</strong>g 1,3-disubstitueted <strong>in</strong>denyl ligands, C9H5(tBu)2<br />

(1) and C9H5(cHex)2 (2). The <strong>in</strong>fluence of bulky alkyl groups on structure and electronic<br />

properties of these metallocene will be presented. [5] Although the cone angles<br />

and electronic properties of each ligands are similar to 1,2,4-(tBu)3C5H2 (Cp’), [6]<br />

<strong>in</strong>denyl iron half sandwich complexes are only stable at low temperature. This will<br />

be demonstrated for 1-FeI us<strong>in</strong>g suitable trapp<strong>in</strong>g experiments. [5]<br />

trapp<strong>in</strong>g experiment of <strong>in</strong>denyl iron half sandwich complexwith CO<br />

[1]<br />

T. E. Ready, J. C. W. Chien, M. D. Rausch, J. Organomet. Chem. 1999, 583, 11.<br />

[2]<br />

H. Brunner, K. Fisch, Angew. Chem. Int. Ed. 1990, 29, 1131.<br />

[3]<br />

C. A. Bradley, S. Flores-Torres, E. Lobkovsky, H. D. Abruña, P. J. Chirik, Organometallics<br />

2004, 23, 5322.<br />

[4]<br />

C. Krüger, F. Lutz, M. Nolte, G. Erker, M. Aulbach, J. Organomet. Chem. 1993, 452, 79.<br />

[5]<br />

M. Maekawa, C. G. Daniliuc, M. Freytag, P. G. Jones, M. D. Walter, Dalton Trans. 2012, 41,<br />

10317.<br />

[6]<br />

A. Glöckner, H. Bauer, M. Maekawa, T. Bannenberg, C. G. Daniliuc, P. G. Jones, Y. Sun, H.<br />

Sitzmann, M. Tamm, M. D. Walter, Dalton Trans. 2012, 41, 6614.<br />

Poster 006 Thursday 17:40 - 20:10 63


Compatibility Studies Of Poly(Ether Imide) - Liquid<br />

Crystall<strong>in</strong>e (4-[4-(Dodesiloksi) Benzoyloxy] Benzoic Acid<br />

Mixtures By Viscometry and Fourier Transform Infrared<br />

Spectroscopy<br />

Fatih Cakar, Selma Ozkal, Hale Ocak, Belkıs Bilg<strong>in</strong>-Eran, Ozlem Cankurtaran,<br />

Ferdane Karaman<br />

Chemistry – Yildiz Technical University – Istanbul – TUR<br />

ffatihcc@yahoo.com<br />

Liquid crystals (LCs) have more order than isotropic liquid state, but less order<br />

than solid crystall<strong>in</strong>e state and exhibit properties between of them. [1] They have<br />

been studied for many years not only because of their technological importance but<br />

also because of their extraord<strong>in</strong>ary physical properties such as dielectric and optical<br />

anisotropy, flow properties, and response to external fields. [2]<br />

Polyether imides such as Ultem, a well-known class of eng<strong>in</strong>eer<strong>in</strong>g thermoplastic polymers,<br />

offer exceptional thermal, chemical and mechanical stability and are available<br />

<strong>in</strong> large quantities. [3] Their cost is similar to other thermoplastic polymers that offer<br />

similar performance and significantly more economical than small batch thermoplastic<br />

polymers. Polyether imides have higher diffusivity selectivity due to their fused<br />

r<strong>in</strong>g structure and rigid backbone. Their high glass transition temperatures allow<br />

higher pressure and temperature applications without plastic deformation. [4]<br />

Mix<strong>in</strong>g is very important <strong>in</strong> modern technologies for process<strong>in</strong>g of materials composed<br />

of many different chemical components. Polymer and liquid crystal mixtures are an<br />

important area of <strong>in</strong>terest <strong>in</strong> science and eng<strong>in</strong>eer<strong>in</strong>g because of its many applicat<br />

ions <strong>in</strong> <strong>in</strong>dustry. Miscibility can be detected by a number of techniques. Among these<br />

techniques, it is well known that determ<strong>in</strong>ation of the viscometry of a dilute solution<br />

is a simple and quick method for determ<strong>in</strong><strong>in</strong>g the miscibility. Fourier transform<br />

<strong>in</strong>frared spectroscopy (FTIR) is one of the many techniques that have been applied<br />

to <strong>in</strong>vestigate specific molecular bond<strong>in</strong>g <strong>in</strong>teractions <strong>in</strong> polymer blends. [5] In the case<br />

of immiscible systems, the spectrum of the blend reflects the appropriate addition of<br />

the IR spectrum of the two <strong>in</strong>dividual components. In the case of miscible or partially<br />

miscible polymer blends, the IR spectrum would show formation of new bands as the<br />

results of miscibility; and disappearance of some component bands. Shifts <strong>in</strong> the<br />

specific bands would give <strong>in</strong>formation on the switches from component specific bonds<br />

to the bonds between components.<br />

This study deals with the determ<strong>in</strong>ation of the miscibility of poly (ether imide) (Ultem)<br />

and their mixtures with liquid crystall<strong>in</strong>e (4-[4-(Dodesiloksi) benzoyloxy] benzoic<br />

acid (4DBBA)) compounds <strong>in</strong> dilute solutions. Mixtures of variable compositions<br />

from 0 to 100 wt were prepared by solvent cast<strong>in</strong>g. Their miscibility was <strong>in</strong>vestigated<br />

by us<strong>in</strong>g viscometry and FTIR.<br />

[1]<br />

N. Sen, Current Science 2000, 79(10), 1417.<br />

[2]<br />

N.Y. Canli, F. Yakuphanoğlu, B. Bilg<strong>in</strong>-Eran, Optoelectronics and Advanced Materials-Rapid<br />

Communications 2009, 3(7), 731.<br />

[3]<br />

M.K. Ghosh K. L. Mittal, Polyimides: Fundamentals and Applications, Marcel Dekker, New<br />

York, 1996.<br />

[4]<br />

F. Cakar, O. Cankurtaran, Polymer Bullet<strong>in</strong> 2005, 55, 95.<br />

[5]<br />

M.T. Kalichevsky, J.M.V. Blanshard, Carbohydrate Polymers 1993, 20, 107.<br />

64 Thursday 17:40 - 20:10 Poster 007


Synthesis and characterization of InSb nanowires for<br />

thermoelectric applications<br />

Katarzyna Hnida ∗ , William Töllner † , Tim Böhnert † , Kornelius Nielsch † ,<br />

Grzegorz Sulka ∗ , Marian Jaskuła ∗<br />

∗ Department of Physical Chemistry & Electrochemistry – Jagiellonian University –<br />

Ingardena 3 – Cracow – POL<br />

† Institute of Applied Physics – University of Hamburg – Jungiusstrasse 11 –<br />

Hamburg – GER<br />

hnida@chemia.uj.edu.pl<br />

Over the past few years, simulations, theoretical calculations and laboratory tests<br />

suggested that there is a relationship between the size of nanostructures (nanodots,<br />

nanowires and nanotubes) and efficiency of thermoelectric materials. [1, 2] Thus, if developed<br />

relatively <strong>in</strong>expensive and not very complicated methods for the preparation<br />

of thermoelectric nanostructures they could have a wide practical application.<br />

Electrodeposition is the method of choice to synthesize nanoeng<strong>in</strong>eered thermoelectric<br />

materials because of low operat<strong>in</strong>g and capital costs, high deposition rates, near<br />

room temperature operation, and the ability to tailor the properties of materials by<br />

adjust<strong>in</strong>g deposition conditions.<br />

Indium antimonide (InSb) is a small band gap semiconductor with high carrier mobility<br />

and small effective mass, and is widely use <strong>in</strong> optical detectors, high-speed electronic<br />

devices, and magnetic field sensors. Different methods have been used to fabricate<br />

InSb nanowires, such as physical and chemical vapor deposition (PVD, CVD),<br />

vapor-liquid-solid (VLS), and hydrothermal methods. Comparatively, the pulse electrodeposition<br />

process us<strong>in</strong>g porous anodic alum<strong>in</strong>um oxide (AAO) templates, is an<br />

effective and <strong>in</strong>expensive method of fabricat<strong>in</strong>g nanowires.<br />

In this work, we have fabricated a nanowire-based device us<strong>in</strong>g laser lithography<br />

to measure the Seebeck coefficient and resistance of an InSb nanowire. The InSb<br />

nanowire was synthesized us<strong>in</strong>g template assisted pulse electrodeposition method.<br />

Acknowledgments This work was supported by the International PhD-studies programme<br />

at the Faculty of Chemistry Jagiellonian University with<strong>in</strong> the Foundation<br />

for Polish Science MPD Programme co-f<strong>in</strong>anced by the EU European Regional Development<br />

Fund.<br />

[1] M. S. Dresselhaus et. al., Low dimensional thermoelectricity, <strong>in</strong>: T. M. Tritt (Ed.), Semiconductors<br />

and Semimetals: Recent Trends <strong>in</strong> Thermoelectric Materials Research III, vol. 71,<br />

Academic Press, San Diego, CA, 2001, 1-121, Chap. 1<br />

[2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial<br />

College Press, London, 1998.<br />

Poster 008 Thursday 17:40 - 20:10 65


Synthesis and characterization of new monomer and ATRP<br />

<strong>in</strong>itiators- towards conduct<strong>in</strong>g polymer brushes<br />

Karol Wolski, Michał Szuwarzyński, Szczepan Zapotoczny<br />

Faculty of Chemistry – Jagiellonian University – Ingardena 3 – Cracow – POL<br />

wolski@chemia.uj.edu.pl<br />

Advanced polymeric materials like polymer brushes are very promis<strong>in</strong>g for design<strong>in</strong>g<br />

novel organic solar cells. Organic photovoltaic cells are cheaper than commonly used<br />

silicon cells however they are less efficient. The key issue <strong>in</strong> design<strong>in</strong>g of new efficient<br />

materials is undisturbed transport of charge carriers to appropriate electrodes<br />

<strong>in</strong> the cell. The structure of conductive polymer brushes can provide directional<br />

and effective transport of such charge carriers formed along s<strong>in</strong>gle polymer cha<strong>in</strong>s.<br />

We report here synthesis of essential compounds for Surface-Initiated Atom Transfer<br />

Radical Polymerizations (ATRP) applied for template polymerization of conjugated<br />

polymers. [1] We present the synthesis of a monomer which has both −C=C− and<br />

−C≡C− groups <strong>in</strong> its structure and the pyrid<strong>in</strong>e r<strong>in</strong>g. In addition, two relatively<br />

short ATRP <strong>in</strong>itiators, which can form SAMs on the gold substrate are synthesized.<br />

Physicochemical characterisation of the new compounds is presented. AFM images<br />

of the polymer brushes of the selected monomers obta<strong>in</strong>ed by “graft<strong>in</strong>g from” method<br />

with application of the new <strong>in</strong>itiators are also shown.<br />

Acknowledgment: The authors would like to thank Polish M<strong>in</strong>istry of Science and<br />

Higher Education for the f<strong>in</strong>ancial support (“Ideas Plus”; grant no. IdP2011 000561).<br />

[1] M. Szuwarzyński, J. Kowal, S. J. Zapotoczny, Mater. Chem. 2012, 22, 20179-20181.<br />

66 Thursday 17:40 - 20:10 Poster 009


R<strong>in</strong>g open<strong>in</strong>g polymerization of organic carbonats us<strong>in</strong>g CO2<br />

- carbene adducts as effective organo catalyst<br />

Annika Reitz , Dirk Kuckl<strong>in</strong>g, René Wilhelm<br />

Chemie – Universität Paderborn – Warburgerstraße 100 – Paderborn – GER<br />

areitz@mail.upb.de<br />

Many modern applications of polymers are <strong>in</strong> biological systems. Therefore, residual<br />

metals should be avoided and the polymer itself should be degradable. Polytrimethylene<br />

carbonate is slightly more stable than polylactide but still biodegradable <strong>in</strong> reasonable<br />

span of time and therefore a good choice for stents or similar applications.<br />

S<strong>in</strong>ce the homopolymer of trimethylencarbonate shows a very low glass temperature<br />

copolymerization improves the mechanical properties and multiplies the uses of Polytrimethylencarbonat.<br />

Highly reactive carbenes can be used as efficient organo catalyst<br />

but their moisture and air sensibility is a major drawback. Especially their great diversity<br />

due to the effect of substituents makes them a great advantage. The use of<br />

adducts, especially those of CO2, is a major improvement, as they are air stable and<br />

easy to handle.<br />

The polymerization was carried out <strong>in</strong> bulk with benzylalcohol as <strong>in</strong>itiator and the<br />

CO2 adduct of 1,3 Bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene as<br />

catalyst. To improve the polymerization microwave energy is used. In this microwave<br />

assisted polymerization the turnover <strong>in</strong>creases while the polydispersity stays low.<br />

The polymers are characterized by NMR and IR spectroskopy, ESI-IMS-MS and GPC.<br />

Their molecular weight, polydispersity and end groups will be discussed.<br />

chemical equation of polymerization<br />

Poster 010 Thursday 17:40 - 20:10 67


Investigat<strong>in</strong>g Thermodynamic Interactions of<br />

4-[4-((S)-Citronellyloxy) Benzoyloxy] Benzoic Acid (SBBA)<br />

Liquid Crystal with Some Solvents by Inverse Gas<br />

Chromatography<br />

Ismail Erol, Fatih Cakar, Hale Ocak, Belkis Bilg<strong>in</strong>-Eran, Ozlem Cankurtaran,<br />

Ferdane Karaman<br />

Chemistry – Yildiz Technical University – Istanbul – TUR<br />

ismailerol21@gmail.com<br />

Liquid crystals (LCs) represent a fasc<strong>in</strong>at<strong>in</strong>g state of matter with wide technical<br />

applications <strong>in</strong> display <strong>in</strong>dustry and optoelectronics, significant importance for the<br />

development of new functional materials, nanopattern<strong>in</strong>g, tissue eng<strong>in</strong>eer<strong>in</strong>g, sensor<br />

and biosensor applications, and also provid<strong>in</strong>g a fundamental concept <strong>in</strong> biological<br />

self-assembly. This is due to the dual nature of LCs, comb<strong>in</strong><strong>in</strong>g features of anisotropic<br />

crystall<strong>in</strong>e solids and isotropic liquids, enabl<strong>in</strong>g their soft self-assembled and ordered<br />

structures to respond to external stimuli, but also to their ability of self-heal<strong>in</strong>g of<br />

defects formed. [1]<br />

Inverse gas chromatography (IGC) is now widely used to exam<strong>in</strong>e the physicochemical<br />

properties of different materials of both liquid and solid. The term “<strong>in</strong>verse” <strong>in</strong>dicates<br />

that the exam<strong>in</strong>ed material, e.g. a polymer blend or modified silica, placed <strong>in</strong> the<br />

chromatographic column, is of <strong>in</strong>terest <strong>in</strong> contrast to the common analytical gas<br />

chromatographic experiments. Carefully selected test solutes are <strong>in</strong>jected <strong>in</strong>to the<br />

flow of a carrier gas and transported over the surface of, e.g. fiber. The retention<br />

time and the peak elution profiles of Standard solutes, affected by <strong>in</strong>teractions between<br />

the solute and stationary phase, are used to estimate those <strong>in</strong>teractions. [2]<br />

IGC is an easy, fast and economic method to <strong>in</strong>vestigate liquid crystal-solvent <strong>in</strong>teractions.<br />

Us<strong>in</strong>g IGC to study liquid crystal-solvent <strong>in</strong>teractions is new method and<br />

there are only few study <strong>in</strong> literature. In IGC process, there is relevance between<br />

liquid crsytal-solvent <strong>in</strong>teractions and specific retention volumes. [3] Thermodynamic<br />

parameters that obta<strong>in</strong>ed by us<strong>in</strong>g specific retention volume, use to expla<strong>in</strong> liquid<br />

crystal-solvent <strong>in</strong>teractions.<br />

In this study, thermodynamic <strong>in</strong>teractions of 4-[4-((S)-Citronellyloxy ) benzoyloxy]<br />

benzoic acid with some solvents were exam<strong>in</strong>ed by <strong>in</strong>verse gas chromatography method.<br />

Firstly, the specific retention volumes of the solvents were determ<strong>in</strong>ed and the retention<br />

diagrams were plotted for liquid crystal-solvent systems. And then, the weight<br />

fraction activity coefficient, Flory-Hugg<strong>in</strong>s and equation of state <strong>in</strong>teraction parameters,<br />

effective exchange energy parameter, exchange enthalpy and entropy parameters<br />

were calculated at the temperature range which thermodynamical equilibrium occurred.<br />

[1] Shanker G., Nagaraj M., Kocot A., Vij J.K., Prehm M., Tschierske C., “Nematic Phases <strong>in</strong> 1,2,4-<br />

Oxadiazole-Based Bent-Core Liquid Crystals: Is There a Ferroelectric Switch<strong>in</strong>g?”, Adv. Funct.<br />

Mater. 2012, 22(8), 1671-1683.<br />

[2] A. Voelkel, “Inverse gas chromatography <strong>in</strong> the exam<strong>in</strong>ation of acid–base and some other properties<br />

of solid materials”, <strong>in</strong>: A. Dabrowski, V.A. Tertykh (Eds.), Adsorption on New and Modified<br />

Inorganic Sorbents, Studies <strong>in</strong> Surface Science and Catalysis 1996, vol. 99, 465.<br />

[3] Price G.J., Shillcock I.M., “Investigation of Mesophase Transitions <strong>in</strong> Liquid Crystals Us<strong>in</strong>g<br />

Inverse Gas Chromatography”, Can. J. Chem. 1995, 73, 1883-1892.<br />

68 Thursday 17:40 - 20:10 Poster 011


Synthesis, Thermal, and Electrical Properties of Stilbene<br />

Bridged Polymeric Z<strong>in</strong>c Phthalocyan<strong>in</strong>e<br />

Muhammet Kasim Sener ∗ , Hilal Yurtseven ∗ , Mehmet Arif Kaya ∗ , Ahmet Alt<strong>in</strong>dal †<br />

∗ Department of Chemistry – Yildiz Technical University – Istanbul – TUR<br />

† Department of Physics – Yildiz Technical University – Istanbul – TUR<br />

mkasimsener@gmail.com<br />

Polymeric phthalocyan<strong>in</strong>es are very <strong>in</strong>terest<strong>in</strong>g materials s<strong>in</strong>ce they belong to a class<br />

of π-conjugated semiconductor polymers which offer a unique comb<strong>in</strong>ation of properties.<br />

Polymeric phthalocyan<strong>in</strong>es are ma<strong>in</strong>ly prepared via polycyclotetramerization<br />

reactions of bifunctional monomers such as aromatic tetracarbonitriles, various<br />

oxy-, arylenedioxy- and alkylenedioxy-bridged diphthalonitriles, and other nitriles or<br />

tetracarboxylic acid derivatives <strong>in</strong> the presence of metal salts or metals. We report<br />

here, the synthesis and characterization of a new z<strong>in</strong>c conta<strong>in</strong><strong>in</strong>g polymeric phthalocyan<strong>in</strong>e<br />

and its precursor. To understand the semiconduct<strong>in</strong>g and dielectric properties<br />

of polymeric z<strong>in</strong>c phthalocyan<strong>in</strong>e, a systematic <strong>in</strong>vestigation on dc and ac electrical<br />

properties and their variation with temperature and frequency is attempted. Also,<br />

thermal properties of the polymeric z<strong>in</strong>c phthalocyan<strong>in</strong>e is <strong>in</strong>vestigated by differential<br />

scann<strong>in</strong>g calorimetry (DSC) and thermal gravimetric analysis (TGA).<br />

[1]<br />

A. Bilg<strong>in</strong>, C. Yagci, U. Yildiz, E. Ozkazanc, E. Tarcan, Polyhedron 2009, 28, 2268.<br />

[2]<br />

D. Wöhrle, Macromol. Rapid. Commun. 2001, 22, 68.<br />

[3]<br />

D. Wöhrle, U. Marose, R. Knoop, Makromol. Chem. 185, 186, 2209.<br />

[4]<br />

A. Bilg<strong>in</strong>, C. Yagci, U. Yildiz, Macromol. Chem. Phys. 2005, 206,2257.<br />

[5]<br />

A. Bilg<strong>in</strong>, A. Mendi, U. Yildiz, Polymer 2006, 47, 8462.<br />

[6]<br />

Y. A. Kokshorov, A. I. Sherle, A. N. Tikhonov, Synth. Met. 2005, 149, 19.<br />

Poster 012 Thursday 17:40 - 20:10 69


Use of the oxygen carrier Hemerythr<strong>in</strong> for development of<br />

blood substitutes<br />

Mariann K<strong>in</strong>ga Arkosi ∗ , Radu Silaghi-Dumitrescu ∗ , August<strong>in</strong> Catal<strong>in</strong> Mot ∗ ,<br />

Denisa Hathazi ∗ , Iulia Lupan ‡ , Grigore Damian ⋄ , Eva Fischer-Fodor †<br />

∗ Department of Chemistry and Chemical Eng<strong>in</strong>eer<strong>in</strong>g – Babes-Bolyai University –<br />

Arany Janos Str. no. 11 – Cluj Napoca – ROU<br />

† Comprehensive Cancer Center – Ion Chiricuta Cancer Institute –<br />

Republicii Str. no. 34-36 – Cluj Napoca – ROU<br />

‡ Department of Biology – Babes-Bolyai University – Arany Janos Str. no. 11 –<br />

Cluj Napoca – ROU<br />

⋄ Department of Physics – Babes-Bolyai University – Arany Janos Str. no. 11 –<br />

Cluj Napoca – ROU<br />

arkosi.mariann@gmail.com<br />

Blood substitutes are used to carry oxygen and <strong>in</strong>crease the fluid volume <strong>in</strong> the<br />

human cardiovascular system <strong>in</strong> case of emergencies; they must accomplish numerous<br />

conditions concern<strong>in</strong>g stability, oxygen aff<strong>in</strong>ity, toxicity, immunogenic response and<br />

hydrodynamic volume. As opposed to Hemoglob<strong>in</strong> (Hb) based potential artificial<br />

oxygen carriers, Hemerythr<strong>in</strong> (Hr) based blood substitutes haven’t been exam<strong>in</strong>ed and<br />

described extensively and therefore might sound less familiar. My poster presentation<br />

aims to present <strong>in</strong>vestigations of this prote<strong>in</strong> as raw material for artificial oxygen<br />

carriers.<br />

Hr is a prote<strong>in</strong> found <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates which b<strong>in</strong>ds oxygen reversibly by the<br />

use of a non-heme diiron center. It is a very promis<strong>in</strong>g alternative to Hb for blood<br />

substitutes because, <strong>in</strong> contrast to Hb, Hr has dist<strong>in</strong>ctly smaller reactivity towards<br />

oxidative and nitrosative stress agents and also shows a remarkably smaller tendency<br />

to generate toxic free radicals <strong>in</strong> such reactions.<br />

In laboratory, the prote<strong>in</strong> was obta<strong>in</strong>ed through overexpression and purification of<br />

recomb<strong>in</strong>ant Phascolopsis Gouldii Hr from Escherichia coli stra<strong>in</strong>s. [1] Strategies for<br />

conversion of Hr <strong>in</strong>to an effective blood substitute typically <strong>in</strong>volved:<br />

i.) PEGylation of the prote<strong>in</strong> surface (wild type and site directed mutagens) primarily<br />

<strong>in</strong> order to decrease immunogenicity;<br />

ii.) glutaraldehyde-assisted polymerization and copolymerization (with Human Serum<br />

Album<strong>in</strong> and the non-heme iron peroxidase Rubrerythr<strong>in</strong>) which resulted <strong>in</strong> high<br />

molecular weight aggregates. [2]<br />

Characterization of the derivatives such as hydrodynamic volume or dioxygen reactivity<br />

(oxygen aff<strong>in</strong>ity, autooxidation rate) was ma<strong>in</strong>ly accomplished us<strong>in</strong>g size exclusion<br />

chromatographic and spectroscopic methods (UV-Vis and EPR). As well, aspects related<br />

to biological activity have already been <strong>in</strong>vestigated. The results of <strong>in</strong> vitro<br />

cytotoxicity assessments on human lymphocytes and HUVEC cells suggest that <strong>in</strong><br />

comparison to Hb derivatives, Hr-based blood substitutes have a better performance<br />

and show a cytoprotective effect. [3]<br />

[1]<br />

C.S. Farmer et al., “A leuc<strong>in</strong>e residue "Gates" solvent but not O2 access to the b<strong>in</strong>d<strong>in</strong>g pocket<br />

of Phascolopsis Gouldii hemerythr<strong>in</strong>.” J. Biol. Chem. 2000. 275(22), 17043-17050.<br />

[2]<br />

A.C. Mot et al., “Towards the Development of Hemerythr<strong>in</strong>-Based Blood Substitutes.” Prote<strong>in</strong><br />

J. 2010 29(6), 387-393.<br />

[3]<br />

E. Fischer-Fodor et al., “Towards hemerythr<strong>in</strong>-based blood substitutes: Comparative performance<br />

to hemoglob<strong>in</strong> on human leukocytes and umbilical ve<strong>in</strong> endothelial cells.” J. Biosci., 2011,<br />

36(2), 215-221.<br />

70 Thursday 17:40 - 20:10 Poster 013


Polymers with Phosphor Conta<strong>in</strong><strong>in</strong>g Side Cha<strong>in</strong>s via<br />

Modular Conjugation as Potential Flame Retardants<br />

Jördis Eisenblätter ∗ , Leonie Barner † , Ulrich Fehrenbacher ∗ ,<br />

Christopher Barner-Kowollik ‡<br />

∗ Environmental Eng<strong>in</strong>eer<strong>in</strong>g – Fraunhofer Institute for Chemical Technology (ICT) –<br />

Joseph-von-Fraunhofer-Strasse 7 – Pf<strong>in</strong>ztal – GER<br />

† Institute for Biological Interfaces (IBG I) – Karlsruhe Institute of Technology (KIT) –<br />

Herrmann-von-Helmholtz-Platz 1 – Eggenste<strong>in</strong>-Leopoldshafen – GER<br />

‡ Institut for Chemical Technology and Polymer Chemistry –<br />

Karlsruhe Institute of Technology (KIT) – Engesserstraße 18 – Karlsruhe – GER<br />

joerdis.eisenblaetter@ict.fraunhofer.de<br />

Polymers are an <strong>in</strong>dispensable part of our lives. They are used for example <strong>in</strong> the<br />

construction <strong>in</strong>dustry, <strong>in</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g, transport, as well as <strong>in</strong> furniture and<br />

textiles. A major problem with the use of polymers, however, is their high flammability<br />

due to their carbon skeleton. Depend<strong>in</strong>g on the application high fire safety<br />

requirements are imposed. Often native polymers can not fulfill this. Hence the<br />

equipment of polymers with flame retardants represents a necessary step to reduce<br />

fire damage. Most of the flame retardants used up to now, however, show two ma<strong>in</strong><br />

problems: Firstly, ma<strong>in</strong>ly halogenated materials are used today as flame retardants<br />

will be prohibited <strong>in</strong> the next few years due to an <strong>in</strong>creas<strong>in</strong>g concern about persistence<br />

<strong>in</strong> the environment and potential negative health effects of these materials. Secondly,<br />

until now most of the flame retardants are <strong>in</strong>corporated <strong>in</strong>to the polymer as additives<br />

to achieve the protection of organic material. A drawback of this method is the<br />

emission of potential environmental harmful substances from the polymer over time.<br />

By b<strong>in</strong>d<strong>in</strong>g organo phosphorus compounds covalently to the polymer backbone, no<br />

emission of flame retardant from the polymer over time can occur. These so-called<br />

reactive flame retardants are homogeneously distributed <strong>in</strong> the polymer, whereby an<br />

agglomeration of the flame retardant component is prevented <strong>in</strong> the polymer. To ga<strong>in</strong><br />

reproducible results, the applied polymers have to possess narrow polydispersities and<br />

functional groups <strong>in</strong> the side cha<strong>in</strong>. Liv<strong>in</strong>g/controlled polymerization techniques like<br />

the reversible addition-fragmentation cha<strong>in</strong> transfer polymerization (RAFT) give access<br />

to excellent control over molecular weight of polymers while be<strong>in</strong>g tolerant to a<br />

wide list of functional groups. [1] Therefore it is possible to prepare well-def<strong>in</strong>ed polymers<br />

conta<strong>in</strong><strong>in</strong>g functional groups <strong>in</strong> the side cha<strong>in</strong>s that can subsequently be modified<br />

further, e.g. to functional groups that can be used for click reactions. Subsequently<br />

functional compounds can be <strong>in</strong>tegrated <strong>in</strong> these polymers by covalent l<strong>in</strong>kages to the<br />

side cha<strong>in</strong>s of the polymer. By l<strong>in</strong>k<strong>in</strong>g functionalized compounds to appropriate functionalized<br />

polymers via 1,3-dipolar cycloaddition described by Huisgen [2] a wide range<br />

of variable polymers can be designed. In this work, various phosphorylated polymers<br />

were prepared via 1,3-dipolar cycloaddition and analyzed via comprehensive thermal<br />

analysis to achieve <strong>in</strong>sight <strong>in</strong>to the characteristics of phosphorylated polymers.<br />

The focus was on the determ<strong>in</strong>ation of the <strong>in</strong>fluence of the chemical structure of the<br />

phosphorus esters on the thermal degradation behavior and the formation of a char<br />

layer. It could be shown that even with a small amount of 30 % can be achieved.<br />

[1] C. Barner-Kowollik, Handbook of RAFT Polymerization, Wiley-VCH, 2008.<br />

[2] R. Huisgen, “K<strong>in</strong>etics and reaction mechanisms: selected examples from the experience of<br />

forty years”, Pure and Applied Chemistry 1989, 613.<br />

Poster 014 Thursday 17:40 - 20:10 71


Metal Nanowire Arrays as Alternative Microelectronic<br />

Interconnectors<br />

Matthias Graf ∗ , Alexander Eychmüller ∗ , Klaus-Jürgen Wolter ‡<br />

∗ Physikalische Chemie & Elektrochemie – Technische Universität Dresden –<br />

Bergstrasse 66b – Dresden – GER<br />

‡ Electronics Packag<strong>in</strong>g Laboratory – Technische Universität Dresden –<br />

Helmholtzstrasse 10 – Dresden – GER<br />

graf@avt.et.tu-dresden.de<br />

S<strong>in</strong>ce the m<strong>in</strong>aturization of microelectronic structures parallel to the performance <strong>in</strong>crease<br />

<strong>in</strong>side these devices are relevant and ongo<strong>in</strong>g processes, meanwhile established<br />

strategies <strong>in</strong> connect<strong>in</strong>g ready-made devices have already been pushed to their geometrical<br />

limits. Apart, technologies as wire bond<strong>in</strong>g or stud bump solder<strong>in</strong>g start<br />

display<strong>in</strong>g limitations when it comes to high performance three-dimensional packag<strong>in</strong>g<br />

with a conventional demand to device reliability. This shows the necessity of<br />

new strategies be<strong>in</strong>g <strong>in</strong>vestigated for electronic packag<strong>in</strong>g. Here<strong>in</strong>, nanomaterials are<br />

considered as promis<strong>in</strong>g candidates s<strong>in</strong>ce they are expected to provide new, possibly<br />

attractive properties for solv<strong>in</strong>g upcom<strong>in</strong>g problems <strong>in</strong> electronic packag<strong>in</strong>g.<br />

We present <strong>in</strong>vestigations on electrochemical synthesis and characterization of templateassisted<br />

electrochemical growth of one-dimensionally elongated metal (Ag, Ni) nanoparticles.<br />

The generated arrays are objected to be applied as macroscopic <strong>in</strong>terconnect<strong>in</strong>g<br />

layers with anisotropic electrical conductivity and sub-µm resolution <strong>in</strong> the vertical<br />

<strong>in</strong>terconnection of microelectronic chips (Flip-chip architectures or 3D chip stacks).<br />

Metal nanowires (NWs) are synthesized by electrodeposit<strong>in</strong>g the desired NW species<br />

<strong>in</strong>to hollow l<strong>in</strong>ear pores of anodized Al2O3. Geometric features as well as surface<br />

chemistry of Al2O3 is thereby variable with<strong>in</strong> a decent range and allows the geometrical<br />

tun<strong>in</strong>g of the NWs. The regular lateral arrangement of pores enables a<br />

homogeneous NW distribution (and thereby a homogeneous transportable current<br />

density through the film) as well as a very small diameter range. For the <strong>in</strong>tegration<br />

of such NW arrays between microelectronic contact structures, the generation of a<br />

reliable contact between contact pad surface and NW is a crucial po<strong>in</strong>t. We propose<br />

the utilization of a th<strong>in</strong> additional adhesive film surround<strong>in</strong>g freestand<strong>in</strong>g NW tips on<br />

both sides of the film to generate a self-adhesive NW film that can easily be lam<strong>in</strong>ated<br />

between two microelectronic chips. The bond<strong>in</strong>g between film and chip is so realized<br />

at the top edge of the pores. Therefore we apply a very strongly b<strong>in</strong>d<strong>in</strong>g polymer<br />

(poly cyanurate) be<strong>in</strong>g able to establish a covalent bond structure to Si/SiO2 surfaces.<br />

In this contribution we focus on the creation process of NWs and the <strong>in</strong>terferences<br />

between synthesis and properties (such as electrical conductivity or crystall<strong>in</strong>ity).<br />

72 Thursday 17:40 - 20:10 Poster 015


Clarification of the sorption behavior of uranium onto mica<br />

and feldspar<br />

Constanze Richter, Madlen Stockmann, V<strong>in</strong>zenz Brendler, Kay Großmann<br />

Helmholtz-Zentrum Dresden-Rossendorf e.V. – Institute of Resource Ecology –<br />

P.O.Box 51 01 19, 01314 Dresden – Dresden – GER<br />

constanze.richter@hzdr.de<br />

As part of long-term safety assessments for radioactive waste disposals, scenarios have<br />

to be considered, which lead to the mobilization of radionuclides from the waste and to<br />

their transport through the repository system. Any repository sites (such as Gorleben)<br />

the sedimentary overburden is an important barrier for radionuclide transport. For<br />

most radionuclides the transport is retarded by sorption on m<strong>in</strong>eral phases. Mica<br />

and feldspars are major components of the Gorleben sediments. However, almost no<br />

sorption parameters are available (www.hzdr.de/res 3 t [1] ) for these systems.<br />

The WEIMAR-project (Further Development of the Smart Kd-Concept for Long-<br />

Term Safety Assessment) shall address these shortcom<strong>in</strong>gs. Batch sorption experiments<br />

and spectroscopic <strong>in</strong>vestigations will allow the assessment, the evaluation as<br />

well as the process<strong>in</strong>g of sorption data for U, Np, La(III) onto muscovite and orthoclase.<br />

Generally, the amount of sorption can depend on the pH-value, ionic strength,<br />

redox potential, concentrations of the contam<strong>in</strong>ant as well as of the sorbent, of complex<strong>in</strong>g<br />

ligands and compet<strong>in</strong>g ions. All batch experiments are carried out under<br />

ambient atmosphere and with 0.01 M NaClO4 as background electrolyte.<br />

For muscovite and orthoclase the background concentration of the sorb<strong>in</strong>g elements,<br />

the tendency of wall sorption and the dissolution behavior has to be determ<strong>in</strong>ed. For<br />

both m<strong>in</strong>erals an optimal solid-to liquid ratio has to be optimized. This means that<br />

the sorption is neither too low nor too high, so the sorption has to be between 5 and<br />

95%. All those problems will be illustrated for the case of U(VI) sorption.<br />

This project is funded by the German Federal M<strong>in</strong>istry of Economics and Technology<br />

(BMWi) under contract number 02 E 11072B<br />

[1] V. Brendler et al., J. Cont. Hydrol. 2003, 61, 281-291.<br />

Poster 016 Thursday 17:40 - 20:10 73


Carbon dioxide - a suitable material for hydrogen storage<br />

Peter Sponholz , Dörthe Mellmann, Henrik Junge, Matthias Beller<br />

Leibniz-Institute for Catalysis Rostock – Albert-E<strong>in</strong>ste<strong>in</strong>-Str. 29a – Rostock – GER<br />

Peter.Sponholz@catalysis.de<br />

Advancements <strong>in</strong> hydrogen technology such as the generation of hydrogen, its storage<br />

and its conversion to electrical energy are the prerequisite for the application of<br />

hydrogen as power source (Figure 1). Recently, the use of carbon dioxide or bicarbonate<br />

as suitable storage materials for hydrogen has received considerable attention.<br />

As a significant advantage this cycle is reversible and susta<strong>in</strong>able. The liquid formic<br />

acid affiliates high hydrogen content (4.4% by mass) with a good stability. A cycle<br />

compris<strong>in</strong>g of the storage of hydrogen <strong>in</strong> formic acid or formate salts by catalytic<br />

hydrogenation of carbon dioxide or bicarbonate and the release from it by catalytic<br />

dehydrogenation could be realized. We have recently demonstrated for the first time<br />

that both reactions can be coupled lead<strong>in</strong>g to a closed carbon cycle for hydrogen<br />

storage apply<strong>in</strong>g a ruthenium-based catalyst system for the selective hydrogenation<br />

of bicarbonates as well as the selective dehydrogenation of formats. [1] Further we<br />

could show a setup of a “hydrogen-battery” based on hydrogenation of CO2 to formic<br />

acid and its dehydrogenation back to CO2. [2] For the latter reaction <strong>in</strong> a cont<strong>in</strong>uous<br />

flow setup turnover numbers and turnover frequencies are achieved, which meet<br />

already the requirements of hydrogen supply for applications <strong>in</strong> the 100 W range.<br />

Moreover besides the ruthenium based systems both reactions, hydrogenation and<br />

dehydrogenation, can also be catalyzed by more abundant iron catalysts. [3]<br />

Figure 1: Energy cycle with hydrogen production, storage and usage.<br />

[1] A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M.<br />

Beller, Angew. Chem. Int. Ed. 2011, 50, 6411-6414.<br />

[2] A. Boddien, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, G. Laurenczy, M.<br />

Beller, Energy Environ. Sci. 2012, 5, 8907.<br />

[3] A. Boddien, D. Mellmann, F. Gärtner, R. Jackstell, H. Junge, P. J. Dyson, G. Laurenczy, R.<br />

Ludwig, M. Beller, Science 2011, 333, 1733-1736.<br />

74 Thursday 17:40 - 20:10 Poster 017


Functionalization of Monodisperse Iron Oxide Nanoparticles<br />

with Aromatic Dendrons<br />

Ekater<strong>in</strong>a Yu. Yuzik-Klimova ∗ , N<strong>in</strong>a V. Kuchk<strong>in</strong>a ∗ , Lyudmila M. Bronste<strong>in</strong> † ,<br />

Z<strong>in</strong>aida B. Shifr<strong>in</strong>a ∗<br />

∗ Group of Macromolecular Chemistry –<br />

A.N. Nesmeyanov Institute of Organoelement Compounds RAS – Vavilov St. 28 –<br />

Moscow – RUS<br />

† Department of Chemistry – Indiana University – 800 E. Kirkwood Av. –<br />

Bloom<strong>in</strong>gton – USA<br />

yu.k.cather<strong>in</strong>e@gmail.com<br />

Magnetic nanoparticles (NPs) have been widely studied because of their potential applications<br />

<strong>in</strong> magnetic storage media, electronic devices, ferrofluids, biosensors, contrast<br />

enhancement agents for magnetic resonance imag<strong>in</strong>g, bioprobes, and catalysis.<br />

The last application, i.e. magnetically recoverable catalysts, attracted considerable<br />

attention because they allow easy separation of catalysts from reaction mixtures and<br />

their repeated use, thus lead<strong>in</strong>g to energy conservation, more environmentally friendly<br />

processes and cheaper target products.<br />

As is known, iron oxide NPs are well stabilized by fatty acids, such as oleic acid,<br />

conta<strong>in</strong><strong>in</strong>g a s<strong>in</strong>gle double bond, but normally more functional groups are required if<br />

catalytic complexes or NPs have to be formed <strong>in</strong> the magnetic NP shell. [1] Here we<br />

report functionalization of iron oxide NPs prepared by thermal decomposition of iron<br />

acetyl acetonate <strong>in</strong> the presence of the second and third generations of rigid aromatic<br />

dendrons bear<strong>in</strong>g the pyrid<strong>in</strong>e moieties and carboxyl focal po<strong>in</strong>t. Functionalization<br />

of as-synthesized magnetic NPs was followed us<strong>in</strong>g transmission electron microscopy<br />

<strong>in</strong>clud<strong>in</strong>g HRTEM, energy dispersive spectroscopy, thermal gravimetric analysis and<br />

Fourier transform <strong>in</strong>frared spectroscopy.<br />

This work was f<strong>in</strong>ancially supported by European Community’s Seventh Framework<br />

Programme [FP7/2007-<strong>2013</strong>] under grant agreement no. CP-IP 246095 and the Russian<br />

Foundation for Basic Research (RFBR) grants (projects No. 11-03-00064 and<br />

12-03-31057).<br />

Structures of second and third generation aromatic dendrons with a carboxyl focal group<br />

and pyrid<strong>in</strong>e moieties<br />

[1] S.H. Gage, B.D. Ste<strong>in</strong>, L.Zh. Nikoshvili, V.G. Matveeva, M.G. Sulman, E.M. Sulman, D.G.<br />

Morgan, E.Yu. Yuzik-Klimova, W.E. Mahmoud, L.M. Bronste<strong>in</strong>, Langmuir, Accepted.<br />

Poster 018 Thursday 17:40 - 20:10 75


Bright and tunable up-conversion lum<strong>in</strong>escence through<br />

cooperative energy transfer <strong>in</strong> Yb 3+ , Tb 3+ and Eu 3+<br />

co-doped LaPO4 nanocrystals<br />

Tomasz Grzyb<br />

Department of Rare Earths – Adam Mickiewicz University – Grunwaldzka 6 – Poznan –<br />

POL<br />

tgrzyb@amu.edu.pl<br />

Up-conversion (UC) [1] of Eu 3+ ions is relatively rare and <strong>in</strong>effective through to their<br />

optical properties. Also the way of Eu 3+ excitation require a cooperative energy<br />

transfer (CET) [2] between Yb 3+ act<strong>in</strong>g as donors and Eu 3+ acceptors, which is<br />

highly dependent on both the properties of the matrix used ions. To <strong>in</strong>crease the<br />

<strong>in</strong>tensity of Eu 3+ UC we have used Tb 3+ ions as co-dopants <strong>in</strong>volved <strong>in</strong> the energy<br />

transfer between Yb 3+ and Eu 3+ . By chang<strong>in</strong>g the Tb 3+ to Eu 3+ molar ratio it<br />

was possible to tune the color of emission from green <strong>in</strong> Tb 3+ -only doped system<br />

through yellow, orange and red with <strong>in</strong>creas<strong>in</strong>g concentration of Eu 3+ ions <strong>in</strong> this<br />

system. Lanthanum phosphate is a good candidate for CET systems and has been<br />

used as host for dopants ions. Nanomaterials were prepared by a microwave assisted<br />

hydrothermal method <strong>in</strong> the presence of ethylenediam<strong>in</strong>etetraacetic acid. Obta<strong>in</strong>ed<br />

products showed UC emission only after their heat<strong>in</strong>g at 900 o C what resulted <strong>in</strong><br />

change of crystallographic structure from hexagonal to monocl<strong>in</strong>ic and the removal<br />

of all water from the system. Also morphology was changed <strong>in</strong> this way. Nanorods<br />

were transformed <strong>in</strong>to spherical-shaped nanocrystals with average sizes around 50<br />

nm. The synthesized nanomaterials were analyzed by X-ray diffraction (XRD) and<br />

transmission electron microscopy (TEM). Spectroscopic properties were determ<strong>in</strong>ed<br />

from excitation and emission spectra. Measured lum<strong>in</strong>escence decays showed the<br />

energy transfer processes that occurred. The mechanism ly<strong>in</strong>g beh<strong>in</strong>d the observed<br />

spectroscopic properties was proposed.<br />

Fund<strong>in</strong>g for this research was provided by the National Science Centre (grant no.<br />

DEC-2011/03/D/ST5/05701).<br />

[1] F. Auzel, Chem. Rev. 2004, 104 139-173.<br />

[2] T. Grzyb, A. Gruszeczka, R.J. Wiglusz, Z. Śniadecki, B. Idzikowski, S. Lis, J. Mater. Chem.<br />

2012, 22, 22989-22997.<br />

76 Thursday 17:40 - 20:10 Poster 019


Compar<strong>in</strong>g the Mechanical Properties of Unsaturated<br />

Polyester Composites Conta<strong>in</strong> Different Additives and Fillers<br />

Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi, Hüsey<strong>in</strong> Yıldırım<br />

Polymer Eng<strong>in</strong>eer<strong>in</strong>g – Yalova Üniversitesi – Rahmi Üstel Caddesi – Yalova – TUR<br />

ceylanozgur@yahoo.com<br />

Unsaturated polyester res<strong>in</strong>s are low molecular weight thermosett<strong>in</strong>g materials conta<strong>in</strong><strong>in</strong>g<br />

double bonds and derived from unsaturated dibasic acid (or anhydride) and<br />

glycols. It was known that first composite plastics were produced by us<strong>in</strong>g glass fiber<br />

and unsaturated polyester res<strong>in</strong>s <strong>in</strong> 1940. [1]<br />

Nowadays, researchers have been perform<strong>in</strong>g studies on especially mechanical properties<br />

of unsaturated polyester based composites that conta<strong>in</strong> different additives and<br />

fillers. However, most researches were based on only one k<strong>in</strong>d of additive or filler. [2,3]<br />

It was not general that compar<strong>in</strong>g mechanical properties caused by different fillers and<br />

additives <strong>in</strong> the same study. Thus, <strong>in</strong> this study our aim is to compare the effects of<br />

different additives and fillers on mechanical properties. A serie of polyester composites<br />

which conta<strong>in</strong> different additives and fillers were prepared and their mechanical<br />

properties such as tensile strength, modulus of elasticity, charpy and flexural strength<br />

were evaluated and compared. In this study we used different fillers and additives<br />

such as calsium carbonate, nanoclay, carbon fiber and SBR rubber. SBR rubber dried<br />

<strong>in</strong> oven (50 ◦ C) prior to use. Also we have <strong>in</strong>vestigated the effect of different fill<strong>in</strong>gs<br />

and additives mixtures on mechanical properties of samples prepared. The samples<br />

were prepared by us<strong>in</strong>g same mold.<br />

Key words: Unsaturated Polyester Res<strong>in</strong>, Fillers, Composit, Mechanical Properties<br />

[1] Kirk-Othmer Encyclopedia of Chemical Technology ISBN: 9780471238966<br />

[2] L. Xu, L. J. Lee “K<strong>in</strong>etic analysis and mechanical properties of nanoclay re<strong>in</strong>forced unsaturated<br />

polyester (UP) res<strong>in</strong>s cured at low temperatures”, Polymer Eng<strong>in</strong>eer<strong>in</strong>g & Science 2005, 45 (4),<br />

496-509.<br />

[3] M. Monti, M. Natali, R. Petrucci, J. M. Kenny, L. Torre, “Carbon Nanofibers for Stra<strong>in</strong> and<br />

Impact Damage Sens<strong>in</strong>g <strong>in</strong> Glass Fiber Re<strong>in</strong>forced Composites Based on an Unsaturated Polyester<br />

Res<strong>in</strong>” Polymer Composites, 32 (5), 766-775.<br />

Poster 020 Thursday 17:40 - 20:10 77


Phase transfer of gold nanoparticles from aqueous to organic<br />

solution<br />

Beata Tkacz-Szczesna, Marc<strong>in</strong> Rosowski, Katarzyna Soliwoda, Grzegorz Celichowski,<br />

Jaroslaw Grobelny<br />

Department of Materials Technology and Chemistry – University of Lodz –<br />

Pomorska 163 St., 90-236 Lodz – Lodz – POL<br />

btkacz@uni.lodz.pl<br />

Gold nanoparticles (AuNPs) have potential application <strong>in</strong> the areas of electronic,<br />

optics, optoelectronics, catalysis, biomedic<strong>in</strong>e etc., because of their size and shapedependent<br />

chemical, optical and electrical properties. Some of the application require<br />

water based colloids while the other ones organic. The simple and reproducible<br />

method for obta<strong>in</strong><strong>in</strong>g organic colloids is a phase-transfer of AuNPs from water solution<br />

to nonpolar solvent. In order to transfer nanoparticles to organic media it is<br />

necessary to use a modifier – a compound that physically or chemically b<strong>in</strong>ds to the<br />

AuNPs surface. It’s role is to provide stabilization of the nanoparticles <strong>in</strong> the organic<br />

phase. Moreover, this technique allows to use well-characterized nanoparticles,<br />

various modifiers (e.g. thiol, alkylam<strong>in</strong>es, carboxy acids, dithiophosphoric acids) and<br />

solvents (e.g. hexane, toluene, chloroform, dichlorobenzene). In this presentation<br />

the ma<strong>in</strong> idea of phase-transfer method will be shown. The size, size distribution<br />

and stability of gold nanoparticles <strong>in</strong> organic media were tested by Dynamic Light<br />

Scatter<strong>in</strong>g (DLS) measurements. UV-Vis spectroscopy was used to determ<strong>in</strong>ate the<br />

efficiency of described method. By the use a phase-transfer method it is possible to<br />

obta<strong>in</strong> AuNPs <strong>in</strong> organic solvents. Nanoparticles <strong>in</strong> organic media can be used as <strong>in</strong>k<br />

component for pr<strong>in</strong>t<strong>in</strong>g electronics or sp<strong>in</strong> coated layers.<br />

Scientific work supported by MNiSW, funds for science <strong>in</strong> 2011-2014 allocated for the cofounded<br />

<strong>in</strong>ternational project<br />

jgrobel@uni.lodz.pl<br />

78 Thursday 17:40 - 20:10 Poster 021


Molecular magnetism <strong>in</strong> cage-like silsesquioxanes conta<strong>in</strong><strong>in</strong>g<br />

3d-transition metal atoms<br />

Mar<strong>in</strong>a Dronova ∗ , Oksana Koplak ‡ , Elena Shub<strong>in</strong>a ∗ , Aleksey Kiril<strong>in</strong> † ,<br />

Mikhail Levitsky ∗ , Aleksey Bilyachenko ∗ , Aleksey Dmitriev ‡ , Artem Talantsev ‡<br />

∗ Laboratory of metal hydrides –<br />

A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences –<br />

Vavilova/28 – Moscow – RUS<br />

† Department of hetero-organic chemistry –<br />

Lomonosov Moscow University of F<strong>in</strong>e Chemical Technology –<br />

prospect Vernadskogo/86 – Moscow – RUS<br />

‡ Laboratory of magnetochemistry and sp<strong>in</strong> dynamics –<br />

Institute of Problems of Chemical Physics of Russian Academy of Sciences –<br />

prospect Akademika Semenova/1 – Chernogolovka, Moscow region – RUS<br />

dronovamar<strong>in</strong>a@gmail.com<br />

Cage-like silsesquioxanes conta<strong>in</strong><strong>in</strong>g Cr(III), Fe(III), Mn(II) and Cu(II) ions, have<br />

been prepared by common method of partial nucleophilic cleavage of polymeric metallasiloxanes.<br />

All synthesized compounds have been structurally characterized by X-ray diffraction<br />

analyses. We have established dependence of magnetic properties of the compounds<br />

on quantity and type of metal ions as well as structural peculiarities of the cage.<br />

There was made a comparison of magnetic properties for polymeric and cage-like<br />

cobalt-conta<strong>in</strong><strong>in</strong>g silsesquioxanes. A correlation between metal content and value of<br />

<strong>in</strong>tradimeric exchange <strong>in</strong>teraction J has been found out.<br />

This work was supported by RFBR (project 11-03-00646)<br />

Poster 022 Thursday 17:40 - 20:10 79


Fabrication of Ordered and Bamboo-type TiO2 Nanopore<br />

Arrays via Pulse Anodization<br />

Joanna Kapusta-Kołodziej , Grzegorz D. Sulka, Marian Jaskuła<br />

Faculty of Chemistry, Department of Physical Chemistry and Electrochemistry –<br />

Jagiellonian University – Ingardena 3 – 30-060 Kraków – POL<br />

kapusta@chemia.uj.edu.pl<br />

Nowadays, nanotechnology is <strong>in</strong>terdiscipl<strong>in</strong>ary branch of sciences, which develops<br />

rapidly and <strong>in</strong>tensively. Among all new nanomaterials, enormous efforts have been<br />

devoted to titanium dioxide (TiO2) especially <strong>in</strong> nanoporous/nanotubular forms due<br />

to a successful comb<strong>in</strong>ation of functional chemical and physical properties with a<br />

well controllable nanoarchitecture, which make its one of the most important material<br />

highly desirable for diverse applications. Titanium dioxide it is now the subject<br />

of <strong>in</strong>tensive studies because of its potential and promise usefulness <strong>in</strong> bone growth<br />

and regeneration, environmental applications, solar cells, catalysis, lithium <strong>in</strong>sertion<br />

and extraction, dielectrics, optoelectronics and sensors. Tak<strong>in</strong>g <strong>in</strong>to the above mentioned<br />

importance of this nanostructured material, fabrication of titanium dioxide on<br />

a nanometer size scale has fundamental and practical importance and, therefore these<br />

materials have ga<strong>in</strong>ed a lot of attention of the scientific community. [1]<br />

It is well known that among all synthetic procedures, anodic oxidation is an excellent<br />

approach to fabricate TiO2 nanopore arrays due to its simplicity, low cost,<br />

self-order<strong>in</strong>g process and facility of morphology control. Under the right conditions,<br />

this technique leads to highly ordered nanopore or nanotubube arrays. A typical<br />

nanostructured anodic titania film, fabricated <strong>in</strong> this way, exhibits close-packed array<br />

of hexagonally arranged tubes or cells conta<strong>in</strong><strong>in</strong>g pores <strong>in</strong> each cell center. [2] A<br />

particular advantage for many further purposes is that grown oxide layers formed via<br />

electrochemical anodization can be directly used as nanostructured electrodes.<br />

Multi-sectional anodic titanium dioxide, consist<strong>in</strong>g of alternat<strong>in</strong>g bamboo-shaped and<br />

smooth-walled sections, different from the typical nanopore/nanotube arrays, could<br />

be obta<strong>in</strong>ed by chang<strong>in</strong>g the anodization potential dur<strong>in</strong>g the pore growth process. In<br />

this work we report multi-sectional TiO2 nanopore arrays with bamboo-like features<br />

fabricated by pulse anodization (PA) carried out under specific alternat<strong>in</strong>g-voltage<br />

conditions. The anodic oxide layers with a structural modulation of pores were formed<br />

by the two-step electrochemical anodization at room temperture <strong>in</strong> an ethylene glycol<br />

solution conta<strong>in</strong><strong>in</strong>g NH4F (0.38 wt%) and H2O (1.79 wt%). It is expected that these<br />

novel nanostructured architectures with a higher surface area, compared to the typical<br />

TiO2 nanopore/nanotube arrays, could have various applications <strong>in</strong> the area of energy<br />

conversion and storage.<br />

Acknowledgments<br />

This research was partially supported by the Polish M<strong>in</strong>istry of Science and High<br />

Education (Grant No. N N204 213340).<br />

[1] M. Bayoumi, B. G. Ateya, Electrochem. Commun. 2006, 8, 38-46.<br />

[2] G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, M. Jaskuła, Electrochim. Acta 2010, 55,<br />

4359-4367.<br />

80 Thursday 17:40 - 20:10 Poster 023


Synthesis of Substituted<br />

5,6,7,8-Tetrahydroqu<strong>in</strong>azol<strong>in</strong>-2-am<strong>in</strong>e Compounds via<br />

One-Pot Method<br />

Ece Tosun, Fatma Tülay Tugcu<br />

Department of Chemistry – Yildiz Technical University, Faculty of Science – İstanbul –<br />

TUR<br />

ftugcu@yildiz.edu.tr<br />

Qu<strong>in</strong>azol<strong>in</strong>e derivatives, as the nitrogen-conta<strong>in</strong><strong>in</strong>g heterocycles, are extremely important<br />

compounds with high biological activities as antimicrobial, anti<strong>in</strong>flammatory,<br />

antihyperlipidemic, antihypertensive and anticonvulsant properties. [1-3] They have an<br />

important place <strong>in</strong> the area of heterocyclic compounds because of their presence <strong>in</strong><br />

the structures of macrocyclic complex drugs, their applications <strong>in</strong> <strong>in</strong>dustry and usage<br />

<strong>in</strong> pharmaceutical researches due to their biological properties.<br />

Therefore, <strong>in</strong> this study, some new substituted qu<strong>in</strong>azol<strong>in</strong>e derivatives which are considered<br />

that may possess biological activity have been obta<strong>in</strong>ed via one-pot multicomponent<br />

method by us<strong>in</strong>g hetaryl carboxaldehydes, guanid<strong>in</strong>e carbonate and 4methylcyclohexanone;<br />

and the structures of all these synthesized compounds have<br />

been clarified with spectral data: [4]<br />

Thanks for Yıldız Technical University Scientific Research Projects Coord<strong>in</strong>ation’s support<br />

<strong>in</strong> this study. Project No: 2012-01-02-GEP05.<br />

[1] S. Muthadı, J. Bandı, M. Chıdara, S. R. Muthadı, K.U. Sankar, V.M. Reddy, Scientific Journal<br />

of Pharmacy 2011, 1(1), 30-37.<br />

[2] X. Li, M. Hilgers, M. Cunn<strong>in</strong>gham, Z. Chen, M. Trzoss, Z. Zhang, L. Kohnen, T. Lam, C.<br />

Creighton, G. C. Kedar, K. Nelson, B. Kwan, M. Stidham, V. Brown-Driver, K. J. Shaw, J. F<strong>in</strong>n,<br />

Bioorganic & Medic<strong>in</strong>al Chemistry Letters 2011, 21, 5171-5176.<br />

[3] N. M. Abdel Gawad, H. H. Georgey, R. M. Youssef, N. M. El-Sayed, European J. of Medic<strong>in</strong>al<br />

Chemistry 2010, 45, 6058-6067.<br />

[4] L. Rong, H. Han, H. Wang, H. Jiang, S. Tu, J. Heterocyclic Chem. 2009, 46, 152,.<br />

Poster 024 Thursday 17:40 - 20:10 81


Towards bionanotechnology -<br />

diatom biosilica for nanoparticle assembly<br />

Anne Jantschke ∗ , Cathleen Fischer ∗ , Alexander Eychmüller † , Eike Brunner ∗<br />

∗ Bioanalytische Chemie – TU Dresden – Bergstr. 66 – Dresden – GER<br />

† Physikalische Chemie – TU Dresden – Bergstraße 66b – Dresden – GER<br />

anne.jantschke@chemie.tu-dresden.de<br />

Nanoparticle arrays are of <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest ow<strong>in</strong>g to their various potential applications<br />

<strong>in</strong> optics, (opto)electronics, photovoltaics, and catalysis. The comb<strong>in</strong>ation<br />

of metal and semiconductor nanoparticles with biological materials, especially materials<br />

with ordered structures, provides various opportunities for the design of new<br />

materials that comb<strong>in</strong>e natural structural characteristics with the special properties<br />

of nanoparticles.<br />

Diatom biosilica offers a number of advantageous properties: It consists of microand<br />

nanostructured amorphous silica. The shape and pattern<strong>in</strong>g of diatom biosilica<br />

is genetically controlled and precisely reproduced from generation to generation. Approximately<br />

200 000 diatom species are found <strong>in</strong> nature and provide us with a huge<br />

variety of different structures.<br />

The poster will give an overview about ongo<strong>in</strong>g research on diatom based bionanotechnology:<br />

i) Assembly, characterization and applications of diatom biosilica decorated with<br />

noble metal and semiconductor nanoparticles<br />

ii) Regioselective assembly of nanoparticles onto diatom biosilica<br />

iii) DNP-NMR-measurements on diatom biosilica us<strong>in</strong>g TOTAPOL to characterize<br />

the diatom surface<br />

iv) Grow<strong>in</strong>g diatoms with Au@SiO2-nanoparticles: <strong>in</strong>-vivo-studies<br />

v) Deposit<strong>in</strong>g th<strong>in</strong> metal films<br />

CLSM image of CdTe nanoparticles regioselectively<br />

assembled onto diatom biosilica of Stephanopyxis turris<br />

A. Jantschke, A.-K. Herrmann, V. Lesnyak, A. Eychmüller, E. Brunner, “Decoration of Diatom<br />

Biosilica with Small (


Deposition of gold nanoparticles by the use of electrospray<br />

technique<br />

Marc<strong>in</strong> Rosowski , Beata Tkacz-Szczesna, Katarzyna Soliwoda, Grzegorz Celichowski,<br />

Jaroslaw Grobelny<br />

Department of Materials Technology and Chemistry – University of Lodz –<br />

Pomorska 163 St – Lodz – POL<br />

mrosowski@uni.lodz.pl<br />

One of the novel method of gold nanoparticles (AuNP) deposition from water colloid<br />

is electrospray<strong>in</strong>g. The technique is based on spray<strong>in</strong>g of liquid, controlled by electrical<br />

forces. An important feature and advantage of this method is that the evaporation<br />

of solvent is very quick that it is possible to deposit particles <strong>in</strong> dry conditions. It can<br />

be extremely important when solvents can cause damage of the structure of a solid<br />

substrate. The surface density of nanoparticles on the sample can be controlled by<br />

chang<strong>in</strong>g different electrospray<strong>in</strong>g parameters e.g. flow rate, time, voltage, distance<br />

between a nozzle and substrate, operation mode (s<strong>in</strong>gle jet/ multi jet), nanoparticles<br />

concentration and a solvent system <strong>in</strong> sprayed solution The <strong>in</strong>fluence of these parameters<br />

on the coverage of AuNP on the sample coverage was <strong>in</strong>vestigated. By the use<br />

of electrospray deposition method it is possible to obta<strong>in</strong> sample coverage up to 90<br />

percent and even more (multiple layer) if it will be necessary. Deposited <strong>in</strong> this way<br />

AuNP can be used <strong>in</strong> a wide range of application such as electronics, biomedic<strong>in</strong>e,<br />

optics, optoelectronics and catalyze.<br />

Scientific work supported by MNiSW, funds for science <strong>in</strong> 2011-2014 allocated for the cofounded<br />

<strong>in</strong>ternational project.<br />

jgrobel@uni.lodz.pl<br />

Poster 026 Thursday 17:40 - 20:10 83


Optimization of operat<strong>in</strong>g parameters for sensitive and rapid<br />

detection of hydrogen peroxide us<strong>in</strong>g a silver nanowire array<br />

sensor<br />

Elżbieta Kurowska, Grzegorz D. Sulka, Marian Jaskuła<br />

Department of Physical Chemistry and Electrochemistry – Jagiellonian University –<br />

Ingardena 3 – Krakow – POL<br />

kurowska@chemia.uj.edu.pl<br />

Nanoelectrochemistry is a relatively new branch of science that comb<strong>in</strong>es broad spectrum<br />

of fast and <strong>in</strong>expensive, highly selective and sensitive electrochemical research<br />

with a fabrication and test<strong>in</strong>g of nanomaterials. A rapid development of nanoelectrochemistry<br />

is a consequence of a faster transfer of electrons between the electrode<br />

based on nanomaterials and test substances (faster current response), and a high surface<br />

to volume ratio of nanomaterials that <strong>in</strong>creases the sensitivity of chemical sensors<br />

(lower detection and determ<strong>in</strong>ation limits than those achieved for sensors based on<br />

bulk materials). The development of nanotechnology requires fabrication of novel<br />

nanomaterials and m<strong>in</strong>iaturization of devices, that is particularly important <strong>in</strong> application<br />

areas such as bioanalysis and medic<strong>in</strong>e, where a small size, high diagnostic<br />

device sensitivity and selectivity are highly desirable features.<br />

This research was focused on optimization of fabricat<strong>in</strong>g method used for the synthesis<br />

of a non-enzymatic electrochemical sensor based on silver nanowire arrays for determ<strong>in</strong>ation<br />

of hydrogen peroxide <strong>in</strong> the presence of <strong>in</strong>terfer<strong>in</strong>g substances. Such sensors<br />

are characterized by a low determ<strong>in</strong>ation limit, rapid current response, high sensitivity,<br />

high selectivity and long-term stability. In real systems such as human blood, a<br />

determ<strong>in</strong>ed substance is usually accompanied by a very diverse mixture of chemical<br />

compounds, which often disturb significantly a signal of the electrochemical sensor.<br />

We believe that the fabricated hydrogen peroxide sensors based on silver nanowire<br />

arrays or nanoporous th<strong>in</strong> films will be <strong>in</strong>sensitive to <strong>in</strong>terfer<strong>in</strong>g substances. Moreover,<br />

they can accurate determ<strong>in</strong>e the actual concentration of H2O2 <strong>in</strong> test samples<br />

and allow to control the appropriate level of blood glucose <strong>in</strong> test patients.<br />

The nanostructured electrochemical H2O2 sensors were prepared by cathodic electrodeposition<br />

of silver <strong>in</strong>side the nanoporous anodic alum<strong>in</strong>um oxide (AAO) templates.<br />

The AAO templates were synthesized via a simple and cost-effective two-step<br />

anodization of alum<strong>in</strong>um. After suitable treatment, free stand<strong>in</strong>g silver nanowire arrays<br />

were obta<strong>in</strong>ed and <strong>in</strong>vestigated as amperometric sensors for the detection and<br />

determ<strong>in</strong>ation of hydrogen peroxide. Typical electrochemical techniques, <strong>in</strong>clud<strong>in</strong>g<br />

cyclic voltammetry and chronoamperometry were applied for exam<strong>in</strong>ation of nanostructured<br />

sensors. The CV tests were used to select an appropriate potential for the<br />

reduction of hydrogen peroxide. The chronoamperometric measurements carried out<br />

<strong>in</strong> a phosphate buffer solution were used to study the response of electrochemical sensors<br />

to different concentrations of H2O2. The effects of the temperature, pH, volume<br />

of added portions, concentration of hydrogen peroxide <strong>in</strong> a s<strong>in</strong>gle portion and the<br />

time <strong>in</strong>terval between successive add<strong>in</strong>g portions were studied.<br />

Acknowledgements<br />

The research was partially carried out with the equipment purchased thanks to the<br />

f<strong>in</strong>ancial support of the European Regional Development Fund <strong>in</strong> the framework of<br />

the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-<br />

12-023/08).<br />

84 Thursday 17:40 - 20:10 Poster 027


Enzymatic regulation of adhesive functions of<br />

peptide-polymer conjugates<br />

Maria Meißler ∗ , Andreas Taden † , Hans G. Börner ∗<br />

∗ Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems –<br />

Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 – Berl<strong>in</strong> – GER<br />

† Adhesive Technologies – Henkel AG und Co.KG aA – Henkelstr. 67 – Düsseldorf – GER<br />

maria.meissler@chemie.hu-berl<strong>in</strong>.de<br />

Functional peptide-polymer conjugates are of great importance <strong>in</strong> material science.<br />

Comb<strong>in</strong>ation of peptides that b<strong>in</strong>d specific <strong>in</strong>organic surfaces with synthetic polymers<br />

results <strong>in</strong> bioconjugates for a broad scope of <strong>in</strong>dustrial applications. Furthermore, it<br />

is of peculiar <strong>in</strong>terest to control and regulate the adhesive process of the bioconjugates<br />

on the surface. A possibility of enzyme-activated peptide-polymer conjugates could<br />

be presented already, whereas Tyros<strong>in</strong>ase is used to “switch on” adhesive functions<br />

of a mussel-glue derived peptide segment, lead<strong>in</strong>g to bioconjugates that adhere to<br />

steel. [1]<br />

Here<strong>in</strong>, we present an approach for the specific suppression of adhesive functions of<br />

bioconjugates on <strong>in</strong>organic surfaces. Synthesis of peptide-PEO conjugates conta<strong>in</strong><strong>in</strong>g<br />

a known metal b<strong>in</strong>d<strong>in</strong>g peptide sequence leads to an efficient coat<strong>in</strong>g of a specific<br />

material, which can be measured with quartz crystal microbalance (QCM). Introduction<br />

of a designed doma<strong>in</strong> <strong>in</strong>to the system results <strong>in</strong> negation of the adhesive<br />

process by <strong>in</strong>terference with the active b<strong>in</strong>d<strong>in</strong>g site (Figure 1). Enzymatic treatment<br />

“switches on” the b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> and therefore recovers the adhesive properties of<br />

the peptide-polymer conjugates.<br />

Figure 1: Schematic representation of enzymatic regulation of adhesive functions of<br />

peptide-polymer conjugates.<br />

[1] Patrick Wilke, Hans G. Börner, ACS Macro Lett. 2012, 1, 871-875.<br />

Poster 028 Thursday 17:40 - 20:10 85


About nano- magnetic- photopolimerized microvessels <strong>in</strong><br />

controlled drug delivery<br />

Adam Budniak, Maciej Mazur<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

adam.budniak@student.uw.edu.pl<br />

The possibility of delivery medication just to specific, diseased tissue would be a great<br />

change <strong>in</strong> medic<strong>in</strong>e, especially for treatment of cancer. It would not only enable to<br />

limit <strong>in</strong>toxication of organism and improve effectiveness of therapy, but it also ease<br />

to use well-known, strong drugs, which are too noxious to arrange them <strong>in</strong> great scale.<br />

The way to solve this problem could be the encapsulation of medic<strong>in</strong>e by neutral<br />

to health polymer <strong>in</strong> order to decrease the <strong>in</strong>itial contact of patient with the cure.<br />

For specific direct<strong>in</strong>g drug-carrier, it is crucial to modify it and as the result enable<br />

to affect with external magnetic field. At the end, microvessels must be opened <strong>in</strong><br />

special way, harmless for patient.<br />

Dur<strong>in</strong>g the presentation, there will be <strong>in</strong>troduced the method of synthesis of pollypyrole<br />

microvessels [1] with adsorbed magnetic nanoparticles [2] and exemplary way<br />

for selective release of medic<strong>in</strong>e. The author will also present advantages of application<br />

of photopolymerization method <strong>in</strong> comparison to chemical synthesis with use of<br />

template. [3]<br />

Fig. 1. Polypyrolle microvessels with adsorbed magnetic nanoparticles.<br />

[1] K. Kijewska, G. J. Blanchard, J. Szlachetko, J. Stolarski, A. Kisiel, A. Michalska, K.Maksymiuk,<br />

M. Pisarek, P. Majewski, P. Krysiński, M. Mazur, Chem. Eur. J. 2012, 18, 310-320.<br />

[2] P. Majewski, "Sythesis, sort<strong>in</strong>g and chemical modifications of the surface of magnetic ferrite<br />

nanoparticles", Master thesis at Chemistry Faculty <strong>in</strong> the field of physical chemistry, Warsaw,<br />

June 2007.<br />

[3] D.Kubacka, P. Krysiński, G. J. Blanchard, J. Stolarski, M. Mazur, J. Phys. Chem. B 2010,<br />

114, 14890–14896.<br />

86 Thursday 17:40 - 20:10 Poster 029


Nitroxide-Mediated Controlled Radical Polymerization as a<br />

Method of Synthesis of the Novel Amphiphilic Polymers<br />

Joanna Szafraniec, Szczepan Zapotoczny, Maria Nowakowska<br />

Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry –<br />

Jagiellonian University – Ingardena 3 – 30-060 Cracow – POL<br />

joanna.szafraniec@uj.edu.pl<br />

Nitroxide-mediated controlled radical polymerization (NMP) is rapidly developed<br />

technique <strong>in</strong> response to <strong>in</strong>creas<strong>in</strong>g need for new polymeric materials. It is metal<br />

free technique which enable effective polymerization of a broad range of monomers<br />

with control of molecular weight and structure of polymers.<br />

Amphiphilic polyelectrolytes attract attention due to their wide range of practical applications<br />

result<strong>in</strong>g from the presence of hydrophilic groups which make them soluble<br />

<strong>in</strong> water and chromophores which make them photoactive. To reduce the contact of<br />

hydrophobic with hydrophilic medium, polymer spontaneously aggregates <strong>in</strong> aqueous<br />

solution form<strong>in</strong>g doma<strong>in</strong>s consisted of packed chromophores <strong>in</strong> which poorly soluble<br />

organic compounds can be solubilized. It makes such systems can be used as<br />

nanoconta<strong>in</strong>ers or nanoreactors. For applications of the copolymer it is important<br />

to have stable core of the micelle. It is believed that the core is better stabilized by<br />

many short arms than by one long block of chromophores.<br />

Novel amphiphilic polymers were synthesized via nitroxide-mediated controlled radical<br />

polymerization us<strong>in</strong>g 4-hydroxy-2,2,6,6-tetramethylpiperid<strong>in</strong>-1-oxy (HTEMPO)<br />

free radical. The polymers dissolved <strong>in</strong> water self-assembly form<strong>in</strong>g hydrophobic doma<strong>in</strong>s,<br />

which consist of highly packed hydrophobic arms. Presented results <strong>in</strong>clude<br />

characterization of such aggregates.<br />

Acknowledgements<br />

Joanna Szafraniec acknowledges the f<strong>in</strong>ancial support from the project Interdiscipl<strong>in</strong>ary<br />

PhD Studies “Molecular sciences for medic<strong>in</strong>e” (co-f<strong>in</strong>anced by the European<br />

Social Fund with<strong>in</strong> the Human Capital Operational Programme).<br />

Poster 030 Thursday 17:40 - 20:10 87


Synthesis of Aryl Im<strong>in</strong>othiazolid<strong>in</strong>one Compounds via<br />

Multicomponent Reaction (Non-solvent) That is Suitable for<br />

The Green Chemistry<br />

Gizem Kahraman, Fatma Tülay Tugcu<br />

Department of Chemistry – Yildiz Technical University, Faculty of Science – İstanbul –<br />

TUR<br />

gizemkahramann@gmail.com<br />

Heterocyclic compounds and derivatives, show<strong>in</strong>g very rapid development of organic<br />

chemistry and constitute a part of <strong>in</strong>creas<strong>in</strong>g importance day by day. As a member<br />

of the r<strong>in</strong>g conta<strong>in</strong><strong>in</strong>g heteroatoms such as nitrogen, sulfur and oxygen thiazolid<strong>in</strong>one<br />

derivative compounds are ga<strong>in</strong><strong>in</strong>g importance due to antifungal, antitubercular, anticancer,<br />

anti-<strong>in</strong>flammatory, and antimicrobial activities. [1-3] Therefore, <strong>in</strong> this case,<br />

the synthesis of such compounds is extremely important.<br />

At the same time, the biologically active compounds very useful <strong>in</strong> the identification<br />

and optimization of the multicomponent reaction type is provided significant<br />

improvements <strong>in</strong> the discovery of pharmaceutical products us<strong>in</strong>g. [4]<br />

Therefore, the study was <strong>in</strong>itiated, may be considered to possess biological activity,<br />

a new aryl substituted im<strong>in</strong>othiazolid<strong>in</strong>one derivatives; thiophene-2-carboxaldehyde,<br />

aryl thiourea, and chloroacetic acid are obta<strong>in</strong>ed us<strong>in</strong>g the multicomponent reaction<br />

method, [5] structures of all compounds is illum<strong>in</strong>ated with spectral data:<br />

Thanks for Yıldız Technical University Scientific Research Projects Coord<strong>in</strong>ation’s support<br />

<strong>in</strong> this study. Project No: 2010-01-02-GEP01.<br />

[1]<br />

S. P. S<strong>in</strong>gh, S. S. Parmar, K. Raman, V. I. ve Stenberg, Chemical Reviews 1981, 81, 175-203.<br />

[2]<br />

A. Verma, K. S. Saraf, European Journal of Medic<strong>in</strong>al Chemistry 2008, 43, 897-905.<br />

[3]<br />

M. Rahman, S. Mukhtar, W. Ansari, G. Lemiere, European Journal of Medic<strong>in</strong>al Chemistry<br />

2005, 40, 173-184.<br />

[4]<br />

A. Döml<strong>in</strong>g, I. Ugi, Angewandte Chemie International Edition 2000, 39, 3169-3210.<br />

[5]<br />

S. Kasmi-Mir, A. Djafri, L. Paqu<strong>in</strong>, J. Hamel<strong>in</strong>, M. Rahmouni, Molecules 2006, 11, 597-602.<br />

88 Thursday 17:40 - 20:10 Poster 031


Silicone membranes as a new corneal epithelial culture bed<br />

Maria Grolik ∗ , Danuta Kuźmicz ∗ , Krzysztof Szczubiałka ∗ , Bogumił Wowra † ,<br />

Dariusz Dobrowolski † , Edward Wylęgała † , Maria Nowakowska ∗<br />

∗ Faculty of Chemistry – Jagiellonian University – Ingardena 3 – Cracow – POL<br />

† Department of Ophthalmology – District Railway Hospital – Panewnicka 65 –<br />

Katowice – POL<br />

grolikm@chemia.uj.edu.pl<br />

The ma<strong>in</strong> aim of the project is development of novel biodegradable and resorbable<br />

polymeric supports for corneal epithelial cells and to determ<strong>in</strong>e their physicochemical,<br />

mechanical and biological properties. The diseases of cornea each year affect 15<br />

million people worldwide accord<strong>in</strong>g to World Health Organization (WHO) estimates<br />

and are often sight-threaten<strong>in</strong>g. At present, the only generally accepted therapy<br />

is the transplantation of the cornea from human donors. However, this treatment<br />

has several drawbacks. The ma<strong>in</strong> one is limited number of human donors therefore<br />

the science is look<strong>in</strong>g for some alternatives. Regeneration of epidermal tissue can<br />

restore and life-save cornea. Corneal tissue is usually cultured on human amniotic<br />

membrane (AM). [1] The supports obta<strong>in</strong>ed from AM show good properties, however,<br />

AM is difficult to obta<strong>in</strong>, expensive, and therefore cannot be used on a large scale.<br />

The new hybrid organic - <strong>in</strong>organic materials used to synthesize the supports are<br />

natural polymers, with chitosan as the ma<strong>in</strong> component crossl<strong>in</strong>ked with genip<strong>in</strong> and<br />

by the addition of collagen and new silicone surfactant (DAP EG<br />

2 D undecyl<br />

2 ). F<strong>in</strong>d<strong>in</strong>g<br />

an alternative support for cultur<strong>in</strong>g corneal cells would be a great breakthrough <strong>in</strong> the<br />

surgery of the cornea and would certa<strong>in</strong>ly result <strong>in</strong> an <strong>in</strong>creased number of sight-sav<strong>in</strong>g<br />

surgeries performed.<br />

[1] D. Dobrowolski, E. Wylęgała, B. Wowra, A. Nowińska, “Application of autologous cultivated<br />

corneal epithelium for restor<strong>in</strong>g of corneal surface.” Acta Ophthalmol. 2010, 88, 246.<br />

[2] M. Grolik, K. Szczubiałka, B. Wowra, D. Dobrowolski, B. Orzechowska-Wylęgała, E. Wylęgała,<br />

M. Nowakowska, “Hydrogel membranes based on genip<strong>in</strong>-cross-l<strong>in</strong>ked chitosan blends for corneal<br />

epithelium tissue eng<strong>in</strong>eer<strong>in</strong>g.” J Mater Sci: Mater Med 2012, 23, 1991-2000.<br />

Project operated with<strong>in</strong> the Foundation for Polish Science Team Programme co-f<strong>in</strong>anced by the<br />

EU European Regional Development Fund, PolyMed, TEAM/2008-2/6 and the National Science<br />

Centre for fund<strong>in</strong>g of research project no 2011/01/N/ST5 /05544.<br />

Poster 032 Thursday 17:40 - 20:10 89


Silver nanoparticles adsorption on solid surfaces for various<br />

ionic strengths<br />

Katarzyna Kubiak, Zbigniew Adamczyk<br />

Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences –<br />

Niezapom<strong>in</strong>ajek 8, 30-239 – Cracow – POL<br />

nckubiak@cyf-kr.edu.pl<br />

Silver nanoparticles exhibit a number of unique properties <strong>in</strong>volv<strong>in</strong>g high antibacterial<br />

and catalytic activities <strong>in</strong> oxidation processes. Silver particle monolayers also f<strong>in</strong>d<br />

practical applications <strong>in</strong> medic<strong>in</strong>e, biology, pharmacology and catalysis, <strong>in</strong> surfaceenhanced<br />

Raman scatter<strong>in</strong>g (SERS) and metal-enhanced fluorescence (MEF) [1,2].<br />

Stable silver nanoparticle sol was synthesized by the reduction of silver nitrate with<br />

sodium borohydride and sodium citrate. Characterization of this sol <strong>in</strong>volved the<br />

ext<strong>in</strong>ction spectrum and solid weight content. Electrophoretic mobilities and the diffusion<br />

coefficient (hydrodynamic diameter) of particles were also measured us<strong>in</strong>g the<br />

dynamic light scatter<strong>in</strong>g - DLS. It was determ<strong>in</strong>ed that the hydrodynamic diameter<br />

of particles was constant and equal to 11 nm for ionic strengths <strong>in</strong> the range of 10 −5<br />

M NaCl to 3 x 10 −2 M NaCl (for pH=5.5), confirm<strong>in</strong>g a high stability of the sol. On<br />

the other hand, the zeta potential of particles (calculated us<strong>in</strong>g the Henry’s model)<br />

varied between -48 mV for 10 −5 M to -39 mV for ionic strength of 3·10 −2 M NaCl and<br />

the same pH. Additionally, the UV-Vis method was used to study the stability of the<br />

silver particle sol as a function of its bulk concentration. Particle shape and size distribution<br />

were also measured by the Atomic Force Microscopy (AFM) and Scann<strong>in</strong>g<br />

Electron Microscopy (SEM). Us<strong>in</strong>g these methods the k<strong>in</strong>etics of particle adsorption<br />

on mica and silicon modified by cationic polyelectrolyte: poly(allylam<strong>in</strong>e hydrochloride)<br />

- PAH was quantitatively evaluated. The <strong>in</strong>fluence of the ionic strengths and<br />

the sol concentration was systematically studied. The k<strong>in</strong>etic runs obta<strong>in</strong>ed <strong>in</strong> these<br />

measurements were adequately reflected for the entire range of times and bulk concentration<br />

by the random sequential adsorption (RSA) model.<br />

[1] M. Oćwieja, Z. Adamczyk, K. Kubiak, J. Colloid Interface Sci. 2012, 376, 1.<br />

[2] K. Aslan, J.R. Lakowicz, Ch.D. Geddes, J. Phys. Chem. B. 2005, 109, 6247.<br />

90 Thursday 17:40 - 20:10 Poster 033


Liquid crystals - synthesis and properties of mesogenic Ni(II)<br />

complexes<br />

Katarzyna Purtak, Adam Krówczyński, Ewa Górecka<br />

Department of Chemistry – University of Warsaw – Żwirki and Wigury St. 101 –<br />

Warsaw – POL<br />

kasia.purtak@gmail.com<br />

New Ni(II) metallomesogens are described, hav<strong>in</strong>g their chelat<strong>in</strong>g centre constructed<br />

from two non-identical fragments: enam<strong>in</strong>oketone and barbiturylidenomethylenoam<strong>in</strong>e<br />

r<strong>in</strong>gs, thus low Cs symmetry. Various side cha<strong>in</strong>s were attached to the mesogenic<br />

core. Despite a triangular molecular shape, almost all synthesised coupounds<br />

exhibit a liquid crystall<strong>in</strong>e hexagonal disordered columnar phase (Colh) with high<br />

clear<strong>in</strong>g temperature. The ability to create the columnar phase is propably connected<br />

with the permanent dipole moment appear<strong>in</strong>g <strong>in</strong> the non-symmetric molecules<br />

and dipole-dipole <strong>in</strong>teractions between molecules <strong>in</strong> columns.<br />

Discotic liquid crystal phase<br />

A. Krówczyński, P. Krzyczkowska, M. Salamończyk, E. Górecka, D. Pociecha, J. Szydłowska,<br />

“Mesogenic Ni(II) complexes of Cs symmetry form<strong>in</strong>g Colh phase by dipole-dipole <strong>in</strong>teraction”,<br />

Liquid Crystals 2012, 39(6), 729-737<br />

Poster 034 Thursday 17:40 - 20:10 91


Regioselective synthesis of highly functionalized<br />

1,3-oxaz<strong>in</strong>-2-ones via electrophilic cyclization of N -Cbz<br />

protected propargylic am<strong>in</strong>es<br />

Alicia Monleón, José Ramón Pedro, Gonzalo Blay<br />

Química Orgànica – Universitat de València – Doctor Mol<strong>in</strong>er, 50 – Burjassot – ESP<br />

alicia.monleon@uv.es<br />

The activation of a carbon-carbon triple bond towards a nucleophilic attack has been<br />

widely carried out us<strong>in</strong>g transition metals as catalysts [1] or electrophiles as reagents.<br />

The utilization of this latter activation method leads to functionalized structures with<br />

high synthetic value. [2]<br />

We have recently reported a convenient strategy for the synthesis of chiral nonracemic<br />

N -Cbz protected propargylic am<strong>in</strong>es 1 by the addition of term<strong>in</strong>al alkynes to im<strong>in</strong>es<br />

generated <strong>in</strong> situ from α -amidosulfones catalyzed by diethylz<strong>in</strong>c and a BINOL-type<br />

ligand. [3]<br />

The electrophilic activation of the triple bond <strong>in</strong> this k<strong>in</strong>d of compounds 1 followed<br />

by the <strong>in</strong>tramolecular nucleophilic attack of the carbamate group should allow the<br />

synthesis of highly functionalized cyclic structures. A 6-endo cyclization process<br />

should lead to oxaz<strong>in</strong>one moieties, a very important type of scaffold present <strong>in</strong> a great<br />

variety of biologically active compounds. [4] Despite the <strong>in</strong>creased attention on these<br />

6-membered r<strong>in</strong>g heterocyclic structures, only a few synthetic strategies have been<br />

developed. [5]<br />

In this communication, we present the regioselective electrophilic cyclization of N -Cbz<br />

protected propargylic am<strong>in</strong>es 1 to afford highly functionalized 3,4-dihydro-2H -1,3oxaz<strong>in</strong>-2-ones<br />

2 which are suitable start<strong>in</strong>g materials for further desirable reactions.<br />

F<strong>in</strong>ancial support from the M<strong>in</strong>isterio de Ciencia e Innovación and FEDER (CTQ2009-<br />

13083), Generalitat Valenciana (ACOMP/2012/212) and ISIC/2012/001is acknowledged.<br />

A M thanks the Generalitat Valenciana for a pre-doctoral grant.<br />

[1] a) T. Saito, S. Ogawa, N. Takei, N. Kutsumura, T. Otani, Org. Lett. 2011, 13, 1098-1101; b)<br />

M. Bian, W. Yao, H. D<strong>in</strong>g, C. Ma, J. Org. Chem. 2010, 75, 269-272.<br />

[2] A. K. Verma, S. P. Shukla, J. S<strong>in</strong>gh, V. Rustagi, J. Org. Chem. 2011, 76, 5670-5684.<br />

[3] G. Blay, A. Br<strong>in</strong>es, A. Monleón, J.R. Pedro, Chem. Eur. J. 2012, 18, 2440-2444.<br />

[4] a) R. Nicoletti, E. Buomm<strong>in</strong>o, A. De Filippis, M. P. Lopez-Gresa, E. Manzo, A. Carella, M.<br />

Petrazzuolo, M. A. Tufano, World J. Microbiol. Biotechnol. 2008, 24, 189-195; b) M. Inami,<br />

I. Kawamura, S. Tsujimoto, F. Nishigaki, S. Matsumoto, Y. Naoe, Y. Sasakawa, M. Matsuo, T.<br />

Manda, T. Goto, Cancer Lett. 2002, 181, 39-45.<br />

[5] a) A. Arfaoui, I. Beltaïef, H. Amri, Synthetic Communications 2011, 41, 1536-1543; b) M.<br />

Pattarrozzi, C. Zonta, Q. B. Broxterman, B. Kapte<strong>in</strong>, R. de Zorzi, L. Randaccio, P. Scrim<strong>in</strong>, G.<br />

Lic<strong>in</strong>i, Org. Lett. 2007, 9, 2365-2368. R. Robles-Machín, J. Adrio, J. C. Carretero, J. Org.<br />

Chem. 2006, 71, 5023-5026.<br />

92 Thursday 17:40 - 20:10 Poster 035


Synthesis of Oleate Capped Gadol<strong>in</strong>ium Oxide Nanocrystals<br />

Madlen Schmudde, Christian Goroncy, Christ<strong>in</strong>a Graf<br />

Institut für Chemie und Biochemie –<br />

Physikalische und Theoretische Chemie, Freie Universität Berl<strong>in</strong> – Takustr. 3 –<br />

14195 Berl<strong>in</strong> – GER<br />

madlen.schmudde@fu-berl<strong>in</strong>.de<br />

Nowadays magnetic resonance imag<strong>in</strong>g (MRI) is widely used <strong>in</strong> modern medic<strong>in</strong>e.<br />

Unfortunately, the resolution and sensitivity of this technique are quite low, so that<br />

contrast agents are necessary to improve the results of MRI. [1] Quite promis<strong>in</strong>g results<br />

as new contrast agents for MRI give gadol<strong>in</strong>ium oxide nanoparticles, which could be an<br />

alternative to today cl<strong>in</strong>ically ma<strong>in</strong>ly used gadol<strong>in</strong>ium chelates. [2] These nanoparticles<br />

could give a higher contrast because of their higher ion concentration and provide<br />

superior possibilities for functionalization. [3]<br />

In the present study a simple synthetic route for the preparation of oleate capped<br />

gadol<strong>in</strong>ium oxide nanocrystals was developed. This synthesis is based on the thermal<br />

decomposition of a metal oleate precursor <strong>in</strong> a high boil<strong>in</strong>g solvent, which is already<br />

well established for the preparation of many other metal oxide nanoparticles. [4]<br />

Accord<strong>in</strong>gly, a gadol<strong>in</strong>ium oleate precursor was decomposed <strong>in</strong> octadecene or alternatively<br />

<strong>in</strong> trioctylam<strong>in</strong>e at 320 ◦ C or 350 ◦ C to yield 2.5 nm to 3.5 nm diameter<br />

spherical gadol<strong>in</strong>ium oxide nanoparticles. The nanoparticles were characterized by<br />

high-resolution transmission electron microscopy (HRTEM) and dynamic light scatter<strong>in</strong>g<br />

(DLS). By us<strong>in</strong>g X-ray powder diffraction (XRD) measurements show that<br />

the particles are highly crystall<strong>in</strong>e. The surface functionalization with the capp<strong>in</strong>g<br />

agent oleate was verified by IR spectroscopy. This simple preparation method for<br />

highly stable gadol<strong>in</strong>ium oxide nanoparticles provides a wide scope for further surface<br />

modifications by ligand exchange reactions as well as the opportunity for dop<strong>in</strong>g<br />

the <strong>in</strong>organic core with other rare metal ions provid<strong>in</strong>g an additional fluorescence<br />

function.<br />

[1]<br />

H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. 2009, 21, 2133-2148.<br />

[2]<br />

G. H. Lee, Y. Chang, T.-J. Kim, Eur. J. Inorg. Chem. 2012, 1924-1933.<br />

[3]<br />

N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. S. Prosser, F. C. J. M. van Veggel, Chem. Mat.<br />

2011, 23, 3714-3722.<br />

[4]<br />

J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang,<br />

T. Hyeon, Nat. Mater. 2004, 3, 891-895.<br />

Poster 036 Thursday 17:40 - 20:10 93


Up-conversion of REPO4 nanocrystals doped with<br />

Yb 3+ /Er 3+ , Yb 3+ /Tm 3+ and Yb 3+ /Tb 3+ ions<br />

Dom<strong>in</strong>ika Przybylska ∗ , Rafał Wiglusz †<br />

∗ Department of Rare Earths, Faculty of Chemistry – Adam Mickiewicz University –<br />

Grunwaldzka 6, 60-780 Poznan – Poznań – POL<br />

† Institute for Low Temperature and Structure Research – Polish Academy of Sciences –<br />

P.O. Box 937, 50-442 Wroclaw – Wroclaw – POL<br />

dom<strong>in</strong>ika1936@gmail.com<br />

Up-conversion is one of the most <strong>in</strong>vestigated phenomenon <strong>in</strong> lanthanide doped nanomaterials.<br />

Lum<strong>in</strong>escent properties of lanthanide ions (Ln 3+ ) are the result of energy<br />

transfer (ET) processes between them. Lanthanide ions may convert energy from the<br />

ultraviolet range to the visible light (down-conversion). However, reversed process<br />

is also possible, where absorbed light from the near-<strong>in</strong>frared range is converted <strong>in</strong>to<br />

visible wavelengths due to up-conversion. Up-conversion (UC) it is a phenomenon <strong>in</strong><br />

which the sequential absorption of two or more photons leads to the emission of light<br />

at shorter wavelengths than the excitation wavelength (anti-Stokes type emission) [1]<br />

In recent years, UC was <strong>in</strong>tensively studied <strong>in</strong> nanocrystall<strong>in</strong>e systems. [2,3] They have<br />

a high potential for <strong>in</strong>dustrial and biological applications, e.g. can be used as biological<br />

assays. [4,5]<br />

Rare earth (RE = Y, La or Gd) phosphates are especially <strong>in</strong>terest<strong>in</strong>g for bioapplications<br />

and as hosts for lum<strong>in</strong>escent Ln 3+ ions because of their relatively high<br />

biocompatibility. Also up-conversion <strong>in</strong> this systems could be effective. [6] REPO4<br />

nanocrystals doped with Yb 3+ /Er 3+ , Yb 3+ /Tm 3+ and Yb 3+ /Tb 3+ ions were synthesized<br />

by co-precipitation method. The best reaction conditions, <strong>in</strong> order to obta<strong>in</strong><br />

small size of the crystals, were estimated and glycer<strong>in</strong> solution was used as the reaction<br />

medium. The result of this reaction ware nanocrystals composed from nanorods<br />

with thickness up to 10 nm and length around 500 nm. Measured excitation and<br />

emission spectra as well as lum<strong>in</strong>escence decays were base for spectroscopic studies<br />

and were used to <strong>in</strong>vestigate energy transfer processes. Structural and morphological<br />

properties were exam<strong>in</strong>ed us<strong>in</strong>g X-ray diffraction (XRD) and transmission electron<br />

microscopy (TEM). Synthesized nanomaterials showed bright yellow (Yb 3+ /Er 3+ ),<br />

blue (Yb 3+ /Tm 3+ ) and green (Yb 3+ /Tb 3+ ) up-conversion emission.<br />

Fund<strong>in</strong>g for this research was provided by the National Science Centre (grant no.<br />

DEC-2011/03/D/ST5/05701).<br />

[1]<br />

F. Auzel, Chem. Rev. 2004, 104, 139-73.<br />

[2]<br />

S. Heer, O. Lehmann, M. Haase, H.-U.H.-U. Güdel, Angew.<br />

3179-3182.<br />

[3]<br />

S. Zeng, J. Xiao, Q. Yang, J. Hao, J. Mater. Chem. 2012.<br />

Chem. Int. Ed. 2003, 42,<br />

[4]<br />

F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Analyst 2010, 135, 1839-54.<br />

[5]<br />

M.E. Lim, Y.-l<strong>in</strong>g Lee, Y. Zhang, J.J.H. Chu, Biomaterials 2011, 3-11.<br />

[6]<br />

T. Grzyb, A. Gruszeczka, R.J. Wiglusz, Z. Śniadecki, B. Idzikowski, S. Lis, J. Mater. Chem.<br />

2012, 22, 22989-22997.<br />

94 Thursday 17:40 - 20:10 Poster 037


Synthesis and characterization of polysiloxanes th<strong>in</strong> films<br />

Agnieszka Puciul-Mal<strong>in</strong>owska, Vladyslav Kuryltso, Szczepan Zapotoczny<br />

Department of Chemistry – Jagiellonian Uniwersity – Ingardena 3 – Krakow – POL<br />

puciul@chemia.uj.edu.pl<br />

Dur<strong>in</strong>g the last few years the <strong>in</strong>terest of the formation of microcapsules that may serve<br />

as conta<strong>in</strong>ers for drug delivery or photorectors for conversion of sunlight energy is still<br />

grow<strong>in</strong>g. Due to that there is a very great <strong>in</strong>terest of formation of flexible coat<strong>in</strong>gs<br />

for that microcapsules. For that purpose the great material are polysiloxanes because<br />

of their biocompability and very high flexibility of the cha<strong>in</strong>s. Their water-soluble<br />

properties also cause that these polymers are very well suited for that purpose. .<br />

This work presents the polysiloxane film formation on model surfaces obta<strong>in</strong>ed by<br />

Electrostatic Self-Assembly “layer-by-layer” method and its characterization. Atomic<br />

Force Microscopy and Spectroscopic Ellipsometry were used to determ<strong>in</strong>e dependence<br />

of the film thickness from the number of bilayers. In addition the impact on film<br />

topography of different types of ris<strong>in</strong>g, namely stream of the water and sonication,<br />

was observed. The films will be further used as functional coat<strong>in</strong>gs for photochemical<br />

applications.<br />

The authors would like to thank Polish M<strong>in</strong>istry of Science and Higher Education for<br />

the f<strong>in</strong>ancial support (“Ideas Plus” grant no. IdP2011 000561).<br />

Poster 038 Thursday 17:40 - 20:10 95


Selective Growth of Trigonal and Hexagonal Shaped Silver<br />

Micro Nano Platelets at the Water/Oil Interface<br />

Eike Gericke ∗ , Stefan Weidemann † , Roman Bansen ‡ , Torsten Boeck ‡ ,<br />

Franziska Emmerl<strong>in</strong>g ⋄ , Klaus Rademann ∗<br />

∗ Institute for Chemistry – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 –<br />

Berl<strong>in</strong> – GER<br />

† Institute for Physics – Humboldt-Universität zu Berl<strong>in</strong> – Newtonstr. 15 – Berl<strong>in</strong> – GER<br />

‡ Leibniz-Institute for Crystal Growth – Max-Born-Str. 2 – Berl<strong>in</strong> – GER<br />

⋄ BAM Bundesanstalt für Materialprüfung – Richard-Willstätter-Str. 11 – Berl<strong>in</strong> – GER<br />

eike.gericke@chemie.hu-berl<strong>in</strong>.de<br />

A particle synthesis method for the shape selective growth of th<strong>in</strong> silver micro nano<br />

platelets at the water/oil <strong>in</strong>terface is presented. In this case no additives are needed<br />

to reach the shape selectivety. The seed dependence of the growth, as well as the<br />

ripen<strong>in</strong>g k<strong>in</strong>etics, give the full procedure control.<br />

This method pursues former results for shape selective growth <strong>in</strong> particle dimensions [1]<br />

and proposses a more detailed mechanistic model [2] than before.<br />

The experiments were evaluated for reagent concentrations between 10 −3 and 10 −2<br />

mol/l and <strong>in</strong> a reaction time w<strong>in</strong>dow from 30 m<strong>in</strong>utes to 3 days with ESEM, FESEM,<br />

AFM and XRD.<br />

We show that the shape selective production of silver particles <strong>in</strong> this set up is possible<br />

and give a detailed machanistic propose. Possible applications could be oxidation and<br />

oxygenation catalysis, microelectronics ore analytical usages for SERS.<br />

[1] A. Wang, H. Y<strong>in</strong>, M. Ren, Y. Liu, T. Jiang, Appl. Surf. Sci. 2008, 254, 6527.<br />

[2] M. S. J<strong>in</strong>, Q. Kuang, X. G. Han, S. F. Xie, Z. X. Xie, L. S. Zheng, J. Solid State Chem. 2010,<br />

183, 1354.<br />

96 Thursday 17:40 - 20:10 Poster 039


Asbestos <strong>in</strong> environmental soil samples<br />

Sylwia Lipiecka, Katarzyna Makowska, Zuzanna Kowalkiewicz, Włodzimierz Urbaniak<br />

Faculty of Chemistry – Adam Mickiewicz University <strong>in</strong> Poznan –<br />

Umultowska Street 89 B – Poznan – POL<br />

sylwia.lipiecka@gmail.com<br />

Asbestos as well-known harmful material [1] should be controled <strong>in</strong> environment. Admittedly,<br />

the largest health risk is related with presence of this m<strong>in</strong>eral <strong>in</strong> the air, but<br />

other elements of environment, e.g. soil or water, could be also contam<strong>in</strong>ated with<br />

asbestos fibers and cause secondary fibers emission <strong>in</strong>to atmosphere and exposure . [2]<br />

Asbestos analyses, practically limited only to air samples, base ma<strong>in</strong>ly on obsolete<br />

methods and the new solutions, especially for liquid and soil samples despite the<br />

market requirements, aren’t sufficiently developed.<br />

Asbestos contam<strong>in</strong>ation <strong>in</strong> soil could be the result of precipitation with fibers from the<br />

air, elution from asbestos-cement materials for example roof sheets, from debris dur<strong>in</strong>g<br />

removal work and asbestos-waste disposal. For confirmation of correctness of executed<br />

work and safety for people health is required the environmental monitor<strong>in</strong>g. [3] Results<br />

of analyses are also important by adm<strong>in</strong>istrative decisions regard<strong>in</strong>g the sites.<br />

The elaborated method [4] enables the asbestos determ<strong>in</strong>ation <strong>in</strong> soil and liquid samples<br />

with use the phase contrast optical microscope. This is a relatively fast and easy<br />

and not expensive analysis. The suitable sample preparation, all asbestos characteristics<br />

considered, assures <strong>in</strong>creas<strong>in</strong>g of <strong>in</strong>vestigations. [5]<br />

We would like to present the study of asbestos separation from soil samples, which<br />

have a very complex matrix and f<strong>in</strong>d<strong>in</strong>gs for quantitative asbestos determ<strong>in</strong>ation by<br />

phase contrast microscopy. With use the proposed method s<strong>in</strong>ce 2009 the environmental<br />

monitor<strong>in</strong>g of area next to farm build<strong>in</strong>g with asbestos cement roof is made<br />

and the results would be the part of the presentation.<br />

[1] Virta R. L., “Asbestos: Geology, M<strong>in</strong>eralogy, M<strong>in</strong><strong>in</strong>g, and Uses”, U.S. Geological Survey, Open-<br />

File Report 02-149, Version 1.0, 2002.<br />

[2] A. Domaszewicz, S. Lipiecka, W. Urbaniak, “Problems <strong>in</strong> asbestos analyses <strong>in</strong> environmental<br />

and bulk samples, Integrated waste management”, PZiTS, Poznan, 2009.<br />

[3] Lipiecka S., Szeflińska K., Narożny M., Eitner K., Urbaniak W. “Asbestos dust <strong>in</strong> municipal<br />

environment”, Przegląd Komunalny, 3/2012 (246), Publisher Abrys, 2012.<br />

[4] S. Lipiecka, A. Domaszewicz, B. Staniszewski, W. Urbaniak, “Asbestos Determ<strong>in</strong>ation”, Polish<br />

Patent 2012 (Application P-389368, 2009).<br />

[5] S. Lipiecka, A. Domaszewicz, K. Szeflińska, W. Urbaniak, “Method of asbestos separation <strong>in</strong><br />

soil samples and determ<strong>in</strong>ation by optical microscope”, Ars Separatoria Acta 2009/2010, ISSN<br />

1731-6340, No. 07, 85-98.<br />

Poster 040 Thursday 17:40 - 20:10 97


Antioxidant characteristics of the plant extracts from traffic<br />

polluted and unpolluted areas<br />

Marija Ilic ∗ , Snezana Jovanovic ∗ , Strah<strong>in</strong>ja Simonovic ∗ , Violeta Mitic ∗ ,<br />

Vesna Stankov-Jovanovic ∗ , Snezana Nikolic-Mandic †<br />

∗ Department of Chemistry – University of Niš, Faculty of Sciences and Mathematics –<br />

Visegradska 33 – Nis – SER<br />

† Department of Analytical Chemistry – University of Belgrade, Faculty of Chemistry –<br />

Studentski trg 12-14 – Belgrade – SER<br />

marija.fertico@gmail.com<br />

Plants have specific chemical composition which depends on plant species, habitat and<br />

series of environmental factors. Certa<strong>in</strong>ly, one of the major factors is traffic pollution.<br />

Term traffic pollution refers mostly to the form of air pollution com<strong>in</strong>g from vehicles.<br />

Several studies have confirmed l<strong>in</strong>k between pollution and plants metabolism,<br />

which means changes <strong>in</strong> production of certa<strong>in</strong> compounds by permanently exposure<br />

to pollutants. The aim of the present research study was exam<strong>in</strong>ation of antioxidant<br />

activity, total phenol and total flavonoid content <strong>in</strong> plants from two localities: near<br />

ma<strong>in</strong> road (polluted environment, Sicevacka gorge, route Nis-Sofia) and natural environmental<br />

(Ploce, unpolluted nearby area). The plant species: Anthemis t<strong>in</strong>ctoria,<br />

Stenactis annua, Crepis foetida and Artemisia vulgaris were the most abundant <strong>in</strong><br />

polluted area, recognized as remedies <strong>in</strong> traditional medic<strong>in</strong>e and therefore have become<br />

the subject of the study. In estimation of antioxidant characteristics, DPPH and<br />

ABTS assays (based on free radical scaveng<strong>in</strong>g) and Total reduc<strong>in</strong>g power of ferrous<br />

to ferri ion were used (TRP). Determ<strong>in</strong>ation of total phenols was performed by Fol<strong>in</strong>-<br />

Ciocalteau assay, and determ<strong>in</strong>ation of total flavonoids was based on usage of AlCl3<br />

which forms colored complexes with flavonoids. Investigated methanol extracts were<br />

obta<strong>in</strong>ed by ultrasonic extractions. The results which expressed ability of samples to<br />

scavenge DPPH radical (EC50 values) and ABTS radical cation (Trolox equvalents)<br />

are very similar; extract samples from polluted area, showed higher activity except<br />

for C. foetida aga<strong>in</strong>st DPPH, where the reverse dependence was registered. In regard<br />

to TRP, higher values for samples from polluted area <strong>in</strong> comparison to those from<br />

natural environmental were obta<strong>in</strong>ed. Contents of phenols and flavonoids were higher<br />

<strong>in</strong> plants which grew near magistral road. Surpris<strong>in</strong>gly, obta<strong>in</strong>ed results showed that<br />

plants <strong>in</strong> potentially polluted environment possessed higher antioxidant activity and<br />

higher flavonoids and phenols content.<br />

Acknowledgements: The research was supported by the Serbian M<strong>in</strong>istry of Education,<br />

Science and Technology Development (Grant no 172051).<br />

Keywords: Traffic polluted, antioxidant characteristics, Anthemis t<strong>in</strong>ctoria, Stenactis<br />

annua, Crepis foetida, Artemisia vulgaris<br />

98 Thursday 17:40 - 20:10 Poster 041


Changes <strong>in</strong> gene expression <strong>in</strong> frog heart after exposition to<br />

heavy metal ions<br />

Marta Kaczor-Kamińska<br />

Chair of Medical Biochemistry – Jagiellonian University Medical College – Kopernika 7 –<br />

Krakow – POL<br />

marta.b.kaczor@uj.edu.pl<br />

Heavy metal ions (Cd, Hg, Pb) are environmentally persistent tox<strong>in</strong>s. There are<br />

three ma<strong>in</strong> reasons contribut<strong>in</strong>g <strong>in</strong>to their high toxicity <strong>in</strong> liv<strong>in</strong>g organisms: 1) high<br />

aff<strong>in</strong>ity for thiol-, histydyl-, am<strong>in</strong>o- and carboxyl groups of am<strong>in</strong>o acid residues <strong>in</strong><br />

prote<strong>in</strong>s (changes <strong>in</strong> structural and catalytic properties of prote<strong>in</strong>s), 2) effect on the<br />

antioxidant potential of cells - a reduced level of glutathione can ultimately produce<br />

oxidative stress, 3) their compet<strong>in</strong>g with metal cations of active sites of prote<strong>in</strong>s, what<br />

leads to <strong>in</strong>hibition or modification of a prote<strong>in</strong> activity. The ma<strong>in</strong> objective of the<br />

study was to <strong>in</strong>vestigate changes <strong>in</strong> the activity and expression of γ-cystathionase<br />

(CST) and sulfurtransferase 3-mercaptopyruvate (MPST), enzymes participat<strong>in</strong>g <strong>in</strong><br />

the non-oxidative metabolism of cyste<strong>in</strong>e, and the expression of mitochondrial and<br />

cytoplasmic superoxide dismutase <strong>in</strong> hearts of frogs - Pelophylax ridibundus exposed<br />

to lead (28 mg Pb/l;10 days) and cadmium (40 and 80 mg Cd/l; 4 or 10 days) and<br />

Xenopus laevis (X. tropicalis) exposed to mercury (1.353 mg Hg/l; 7, 10 or 14 days).<br />

The results confirmed changes <strong>in</strong> the expression of genes encod<strong>in</strong>g for CST and MPST<br />

<strong>in</strong> the heart. An <strong>in</strong>creased expression of the CST gene was observed <strong>in</strong> hearts of frogs<br />

exposed to mercury ions, while lead and cadmium ions had no effect and the expression<br />

was comparable to that seen <strong>in</strong> the control group. The expression of the MPST gene<br />

<strong>in</strong> the heart was decreased <strong>in</strong> response to exposure to all of the <strong>in</strong>vestigated ions.<br />

Furthermore, changes <strong>in</strong> expression were correlated with a decrease <strong>in</strong> MPST specific<br />

activity accompanied by a decrease <strong>in</strong> the level of sulfane sulfur. The exposition to<br />

cadmium and lead ions resulted <strong>in</strong> the <strong>in</strong>crease <strong>in</strong> the content of total glutathione and<br />

the ratio of GSH/GSSG <strong>in</strong> the heart. These effects all together suggest that cyste<strong>in</strong>e is<br />

directed to the synthesis of glutathione and is less readily available for the production<br />

of sulfane sulfur through the MPST-dependent pathway. It was also observed that<br />

the expression of gene for the cytosolic superoxide dismutase was <strong>in</strong>creased after the<br />

exposure to the <strong>in</strong>vestigated ions, possibly <strong>in</strong> response to an elevated level of reactive<br />

oxygen species.<br />

Poster 042 Thursday 17:40 - 20:10 99


Synthesis and Photophysicochemical Properties of Novel<br />

Z<strong>in</strong>c Phthalocyan<strong>in</strong>es<br />

Ali Erdogmus, Erkan Kırbac, Goknur Yasa, A. Lütfi Ugur, Ibrahim Erden<br />

Chemistry – Yildiz Technical University – Davutpasa Campus – Istanbul – TUR<br />

erdogmusali@hotmail.com<br />

Phthalocyan<strong>in</strong>es (Pcs) are remarkable macrocyclic compounds hav<strong>in</strong>g magnificent<br />

physical and chemical properties. They are usually synthesized start<strong>in</strong>g from the<br />

appropriate phthalonitriles and their derivatives or their substitution yield as metalfree<br />

phthalociyan<strong>in</strong>e and metallophthalocyan<strong>in</strong>es which obta<strong>in</strong>ed especially <strong>in</strong> high<br />

temperatures with the presence of a suitable anhydrous metal salt. [1,2] Metallophthalocyan<strong>in</strong>es<br />

(MPcs) have potential applications <strong>in</strong> many areas such as <strong>in</strong> medic<strong>in</strong>al<br />

and material science. [3,4] MPcs enjoy usage <strong>in</strong> pr<strong>in</strong>t<strong>in</strong>g <strong>in</strong>ks, catalysis, display devices,<br />

data storage, chemical sensors, gas sensors, solar cells, organic light emitt<strong>in</strong>g<br />

devices (OLED), PDT and photonic devices. [5,6] In this study, we report the synthesis,<br />

characterization of different substituted z<strong>in</strong>c phthalocyan<strong>in</strong>es. The new compounds<br />

have been characterized by elemental analysis, UV, FT-IR, 1H-NMR spectroscopy<br />

and mass spectra. The effect of fluor<strong>in</strong>e, brom<strong>in</strong>e and chlor<strong>in</strong>e substitituents on<br />

photophysical and photochemical properties were reported. The s<strong>in</strong>glet oxygen, photodegradation,<br />

fluorescence quantum yield, triplet quantum yield and triplet life time<br />

of the complexes <strong>in</strong> DMF, THF, DMSO were determ<strong>in</strong>ed. Fluorescence quantum<br />

yields for the complexes ranged from 0.19 to 0.30.<br />

[1]<br />

C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyan<strong>in</strong>es -Properties and Applications, vols. 1-4,<br />

VCH, New York, 1989-1996.<br />

[2]<br />

N.B. McKeown, Phthalocyan<strong>in</strong>e Materials-Synthesis, Structure and Function, Cambridge<br />

University Press, New York, 1998.<br />

[3]<br />

K. Kadish, K. M. Smith, R. Guilard, editors. The porphyr<strong>in</strong> Handbook, vol. 15-20, Boston:<br />

Academic Press, 2003.<br />

[4]<br />

K. Morishige, S. Tomoyasu, G. Iwani, “Adsorption of CO, O2, NO2, and NH3 by metallophthalocyan<strong>in</strong>e<br />

monolayers supported on graphite”, Langmuir 1997, 13, 5184-5188.<br />

[5]<br />

F. H. Moser, L. R. Thomas, Phthalocyan<strong>in</strong>e compounds, New York: Re<strong>in</strong>hold, 1963, 123-145.<br />

[6]<br />

T. Tom<strong>in</strong>aga, K. Hayashi, N. Toshima “Construction of a ‘sequential potential field’ by [Cu(pc)]/<br />

[Zn(pc)] double-layered th<strong>in</strong> film: application to electrochromic and electrolum<strong>in</strong>escent devices”,<br />

J. Porphyr. Phtalocyan. 1997, 1, 239-249.<br />

100 Thursday 17:40 - 20:10 Poster 043


Spectroscopic analysis of Xylella fastidiosa biofilms<br />

Bärbel Abt ∗ , M.A. Cotta † , D.M. Murillo Munar † , R. Janissen † , B.C. Niza Silva ‡ ,<br />

A.A. de Souza ‡ , G.S. Lorite ⋄ , C. Kranz ∗ , B. Mizaikoff ∗<br />

∗ Analytische und Bioanalytische Chemie – Universität Ulm – Ulm – GER<br />

† Instituto Física Gleb Watagh<strong>in</strong> – UNICAMP – Camp<strong>in</strong>as – BRA<br />

‡ Instituto Agronômico – Centro de Citricultura Sylvio Moreira – Cordeiropolis – BRA<br />

⋄ Institute of Biomedic<strong>in</strong>e – University of Oulu – Oulu – FIN<br />

baerbel.abt@uni-ulm.de<br />

Xylella fastidiosa (Xf) is a gram-negative phytopathogen bacterium that particularly<br />

affects the xylem vessels of citrus plants by vascular occlusion. This causes diseases<br />

such as Pierce’s disease or citrus variegated chlorisis (CVC). [1] Substantial economic<br />

losses of annually exceed<strong>in</strong>g $ 100 million for the citrus <strong>in</strong>dustry may be attributed<br />

to Xylella fastidiosa. As an important step toward fully understand<strong>in</strong>g this bacterium,<br />

the genome of Xylella fastidiosa has recently been sequenced <strong>in</strong> part by our<br />

collaborators. [2] Yet, the molecular mechanisms <strong>in</strong>volved <strong>in</strong> colonization of the xylem<br />

by this phytopathogen, and <strong>in</strong> particular the <strong>in</strong>volved biofilm formation rema<strong>in</strong> little<br />

understood.<br />

A vested <strong>in</strong>terest <strong>in</strong> the role of biomolecules dur<strong>in</strong>g biofilm formation is not only<br />

limited to agricultural aspects. Consider<strong>in</strong>g that biofilms play an important role<br />

for many bacterial-caused diseases, the relevance of <strong>in</strong>vestigat<strong>in</strong>g the adsorption and<br />

colonization of bacteria at surfaces, and the associated biofilm formation with respect<br />

to the <strong>in</strong>volved prote<strong>in</strong>s and biomolecules is evident. [3-5] For this purpose disulfide<br />

bonds play an important role for the formation of biofilms. [6]<br />

In the present study, spectroscopic techniques were used to <strong>in</strong>vestigate the chemical<br />

and structural properties of the biomolecules <strong>in</strong>volved <strong>in</strong> Xf biofilm formation.<br />

Spectroscopic techniques and <strong>in</strong> particular <strong>in</strong>frared attenuated total reflection (IR-<br />

ATR) spectroscopy were used to characterize <strong>in</strong> detail the growth media of Xf and<br />

its molecular components. On the basis of the characterization of the media, a better<br />

understand<strong>in</strong>g on the formation of biofilms by Xf and the molecular components<br />

may be derived. Experimental and analytical procedures will be accompanied by<br />

first results on the characterization of growth media with IR-ATR spectroscopy and<br />

complementary spectroscopic techniques.<br />

[1] A. H. Purcell and D. L. Hopk<strong>in</strong>s, “Fastidious xylemlimited bacterial plant pathogens”, Annual<br />

review of phytopathology 1996, 34(c), 131-151.<br />

[2] The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequenc<strong>in</strong>g and Analyisis,<br />

“The genome sequence of the plant pathogen Xylella fastidiosa”, Nature 2000, 406(13), 151-159.<br />

[3] G. S. Lorite, A. A. de Souza, D. Neubauer, B. Mizaikoff, C. Kranz, and M. A. Cotta, “On the role<br />

of extracellular polymeric substances dur<strong>in</strong>g early stages of Xylella fastidiosa biofilm formation.”<br />

Colloids and surfaces. B, Bio<strong>in</strong>terfaces <strong>2013</strong>, 102, 519-25.<br />

[4] G. S. Lorite, C. M. Rodrigues, A. A. de Souza, C. Kranz, B. Mizaikoff, and M. A. Cotta, “The<br />

role of condition<strong>in</strong>g film formation and surface chemical changes on Xylella fastidiosa adhesion<br />

and biofilm evolution.”, J Colloid Interface Sci 2011, 359(1), 289-295.<br />

[5] R. M. Donlan and J. W. Costerton, “Biofilms: Survival Mechanisms of Cl<strong>in</strong>ically Relevant<br />

Microorganisms”, Cl<strong>in</strong>ical Microbiology Reviews 2002, 15(2), 167-193.<br />

[6] C. A. Santos, M. A. S. Toledo, D. B. B. Trivella, L. L. Beloti, D. R. S. Schneider, A. M. Saraiva,<br />

A. Crucello, A. R. Azzoni, A. A. Souza, R. Aparicio, and A. P. Souza, “Functional and structural<br />

studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redoxdependent<br />

oligomeric modulation <strong>in</strong> vitro.” The FEBS journal 2012, 279(20), 3828-3843<br />

Poster 044 Thursday 17:40 - 20:10 101


New Diselenooxalato Complexes<br />

Structure, EPR and TG/DTA studies<br />

Mike Neumann ∗ , Uwe Schilde † , Peter Strauch ∗<br />

∗ Institute of Chemistry, Inorganic Material Chemistry – University of Potsdam –<br />

Karl-Liebknecht-Str. 24-25 – Potsdam – GER<br />

† Institute of Chemistry, Inorganic Chemistry – University of Potsdam –<br />

Karl-Liebknecht-Str. 24-25 – Potsdam – GER<br />

mike.neumann@uni-potsdam.de<br />

The chemistry of coord<strong>in</strong>ation compounds with thiooxalato ligands and <strong>in</strong> particular<br />

with the dithiooxalato ligand is well-<strong>in</strong>vestigated. [1] In contrast the synthesis and<br />

characterisation of selenium and tellurium analogs is widely unexplored. Only the<br />

synthesis of two diselenooxalato complexes, bis(benzyltriphenylphosphonium)bis(1,2diselenooxalato)metallate(II)<br />

(M = Ni, Cu), and the structure of the Ni-complex as<br />

well as the preparation of the diselenooxalato ligand <strong>in</strong> form of the potassium salt<br />

have been published yet. [2,3]<br />

Here we present new complexes of the [cation]2[Ni(dso)2] type, as well as the related<br />

diselenosquarato analogs, and their structures (Fig. 1). The paramagnetic copper(II)<br />

complexes (S = 1/2, I = 3/2) are well-suited to be studied by EPR-spectroscopy.<br />

TG/DTA and XRD measurements will give <strong>in</strong>formation about the thermal behaviour<br />

of the complexes and their potential as possible precursors <strong>in</strong> material science.<br />

Figure 1: X-Ray structure of the mononuclear (K(18-Crown-6))2[Pd(dso)2] complex.<br />

[1]<br />

W. Dietzsch, P. Strauch, E. Hoyer, Coord. Chem. Rev. 1992, 121, 43.<br />

[2]<br />

P. Strauch,<br />

S. Abram, U. Drutkowski, Inorg.<br />

Naturforsch. 1978, 33b, 461.<br />

Chim. Acta 1998, 278, 118.<br />

[3]<br />

C. Matz, R. Mattes, Z.<br />

102 Thursday 17:40 - 20:10 Poster 045


Ultrasound effects on adsorption of Cu(II) on<br />

methyl-sulfonated Lagenaria vulgaris shell<br />

Maja Stanković, Nenad Krstić, Jelena Mitrović, Ružica Nikolić, Miljana Radović,<br />

Danijela Bojić, Aleksandar Bojić<br />

Department of Chemistry – Faculty of Sciences and Mathematics, University of Niš –<br />

Visegradska 33 – Niš – SRB<br />

majstan@gmail.com<br />

The rapid <strong>in</strong>dustry development leads to ris<strong>in</strong>g of the contam<strong>in</strong>ation of available water<br />

resources, while <strong>in</strong>creas<strong>in</strong>g of global population requires new sources of dr<strong>in</strong>k<strong>in</strong>g water.<br />

Therefore, the challenge for scientists is to f<strong>in</strong>d cheap, efficient, environmental-friendly<br />

materials for removal of pollutants from <strong>in</strong>dustrial and communal/atmospheric wastewaters.<br />

In this study, methyl-sulfonated shell of Lagenaria vulgaris (msLVB) was <strong>in</strong>vestigated<br />

as a novel, low-cost biosorbent for the removal of copper from aqueous<br />

solutions with and without the assistance of ultrasound. Lagenaria vulgaris shell<br />

represents a lignocellulosic material with ability for b<strong>in</strong>d<strong>in</strong>g metal cations due to<br />

presence of hydroxyl, carboxylic, lactonic and phenolic groups <strong>in</strong> its structure, while<br />

treatment with formaldehyde and sodium-sulphite was used to <strong>in</strong>troduce sulphonic<br />

groups, known by significant ion-exchang<strong>in</strong>g capacity. Sorption k<strong>in</strong>etics was <strong>in</strong>vestigated<br />

<strong>in</strong> batch conditions, us<strong>in</strong>g 125 mL of the solution with 50.0 mg L -1 of Cu(II)<br />

ions, 4.0 g L -1 of msLVB, at pH 5.0 and 25 o C. The experiments were performed<br />

us<strong>in</strong>g magnetic stirrer on 200 rpm or ultrasonic bath with the frequency of 40 kHz.<br />

The sorption was considerably <strong>in</strong>creased <strong>in</strong> the presence of ultrasound (Fig. 1). The<br />

k<strong>in</strong>etic data fitted very well the pseudo-second-order k<strong>in</strong>etic model.<br />

Effect of mix<strong>in</strong>g on adsorption capacity of msLVB for Cu(II) ions<br />

Poster 046 Thursday 17:40 - 20:10 103


Treatment of Basic Dye from Textile Wastewaters by<br />

Sulfonated Polymers<br />

Mehmet Arif Kaya, Mithat Çalebi, Özgür Ceylan, Hüsey<strong>in</strong> Yildirim<br />

Polymer Eng<strong>in</strong>eer<strong>in</strong>g – Yalova University – Yalova – TUR<br />

marifkaya@gmail.com<br />

The textile <strong>in</strong>dustry consumes huge volumes of water <strong>in</strong> different wet processes and as<br />

a result it was obta<strong>in</strong>ed significant amount of colourful wastewater from dye process.<br />

In dy<strong>in</strong>g process, various dyes can be used such as acidic, reactive, basic, disperse,<br />

azo, diazo, antraquionone-based and metal complex dyes accord<strong>in</strong>g to fabric types. [1]<br />

Basic dyes are cationic soluble salts of coloured bases. Basic dyes are applied to<br />

substrate with anionic character where electrostatic attractions are formed. Basic<br />

dyes are powerful colour<strong>in</strong>g agents. It’s applied to polyacrylonitrile, modified nylons,<br />

modified polyesters, paper. They are generally water soluble. [2]<br />

In this study, treatment of basic dye (Basic Red 481) from local textile mill was<br />

<strong>in</strong>vestigated by different sulfonated polymers at different pHs.<br />

Key words: basic dye, textile dye, decolorization, sulfonated polymer<br />

Removal of Basic Red 46 by sulfonated polymers after 2 hour. K: Control.<br />

[1] A. Tuba, G.Tuğba, G. Afife, D Gönül, M. Ülkü, “Decolorization of textile azo dyes by ultrasonication<br />

and microbial removal”, Desal<strong>in</strong>ation 2010, 255, 154-158.<br />

[2] V.K. Gupta, Suhas, “Application of low-cost adsobents for dye removal-A review”, Journal of<br />

Environmental Management 2009, 90, 2313-2342.<br />

104 Thursday 17:40 - 20:10 Poster 047


Removal of Phenolic Derivatives from Wastewater us<strong>in</strong>g<br />

Photocatalytic Membranes<br />

Crist<strong>in</strong>a Orbeci, Gheorghe Nechifor, Ion Untea<br />

Department of Analytical Chemistry and Environmental Eng<strong>in</strong>eer<strong>in</strong>g –<br />

“Politehnica” University of Bucharest – 1-7 Gh. Polizu Street – Bucharest – ROU<br />

crist<strong>in</strong>a27ccc@yahoo.com<br />

The presence of phenol and phenolic derivatives <strong>in</strong> water <strong>in</strong>duces toxicity, persistence<br />

and bioaccumulation <strong>in</strong> plant and animal organisms and is a risk factor for human<br />

health. In consequence, the identification and monitor<strong>in</strong>g of these compounds detectable<br />

<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water and surface waters are imperative.<br />

Available technologies deal<strong>in</strong>g with phenolic compounds <strong>in</strong>clude the advanced oxidation<br />

processes (AOPs), based on the formation of very active hydroxyl radicals,<br />

which react quickly with the organic contam<strong>in</strong>ant. AOPs present the advantage of<br />

completely remov<strong>in</strong>g organic contam<strong>in</strong>ants from the environment, not only from the<br />

aqueous phase, by transform<strong>in</strong>g them <strong>in</strong>to other organic compounds with low toxicity<br />

and f<strong>in</strong>ally <strong>in</strong>to <strong>in</strong>nocuous <strong>in</strong>organic species. The technologies for remov<strong>in</strong>g phenolic<br />

derivatives based on membranes and photocatalytic processes play an important<br />

role. [1] Among the AOPs, the photocatalytic process is one of the most attractive<br />

methods because the reagent components are easy to handle and non-toxic to the<br />

environment. [2] Separation membranes have become essential parts of human life because<br />

of their grow<strong>in</strong>g <strong>in</strong>dustrial applications <strong>in</strong> high technology such as biotechnology,<br />

nanotechnology and membrane based separation and purification. [3-5]<br />

This paper presents a hybrid method for an advanced removal of low biodegradable<br />

organic compounds from water, by comb<strong>in</strong><strong>in</strong>g the separation selectivity of membranes<br />

with the high oxidation efficiency of the photocatalytic process. The hybrid process for<br />

the disposal of phenolic compounds from aqueous solutions comb<strong>in</strong>es the selectivity<br />

of membranes with high efficiency and the photocatalytic process.<br />

[1] Fei Feng, Zhenliang Xu, Xiaohuan Li, Went<strong>in</strong>g You, Yang Zhen Advanced treatment of dye<strong>in</strong>g<br />

wastewater towards reuse by the comb<strong>in</strong>ed Fenton oxidation and membrane bioreactor process,<br />

Journal of Environmental Sciences 2010, 22 (11), 1657-1665;<br />

[2] Lifen Liu, Guohua Zheng, Fengl<strong>in</strong> Yang, Adsorptive removal and oxidation of organic pollutants<br />

from water us<strong>in</strong>g a novel membrane, Chemical Eng<strong>in</strong>eer<strong>in</strong>g Journal 2010, 156 (3), 553-556;<br />

[3] Bui Xuan Thanh, Vo Thi Kim Quyen, Nguyen Phuoc Dan, Removal of Non-Biodegradable<br />

Organic Matters from Membrane Bioreactor Permeate By Oxidation Processes, Journal of Water<br />

Susta<strong>in</strong>ability 2011, 1 (3), 289–299;<br />

[4] Xiaob<strong>in</strong> Wanga, Xiongfu Zhanga, Haiou Liua, K<strong>in</strong>g Lun Yeungb, J<strong>in</strong>qu Wang, Preparation<br />

of titanium silicalite-1 catalytic films and application as catalytic membrane reactor, Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g Journal, 2010, 156, 562-570;<br />

[5] Huab<strong>in</strong>g Jianga, Guoliang Zhanga, Tao Huanga, J<strong>in</strong>yuan Chena, Qidong Wangb, Q<strong>in</strong> Mengc,<br />

Photocatalytic membrane reactor for degradation of acid red B wastewater, Chemical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Journal 2010, 156, 571-577.<br />

Poster 048 Thursday 17:40 - 20:10 105


The impact of the extraction of magnesium on chang<strong>in</strong>g of<br />

the optical properties of chrysotile fibers<br />

Katarzyna Makowska, Sylwia Lipiecka, Zuzanna Kowalkiewicz, Włodzimierz Urbaniak<br />

Faculty of Chemistry – Adam Mickiewicz University – Umultowska 89B – Poznań – POL<br />

katarzyna.makowska6@gmail.com<br />

Chrisotile is an <strong>in</strong>organic fibrous m<strong>in</strong>eral naturally occur<strong>in</strong>g <strong>in</strong> the nature. A s<strong>in</strong>gle<br />

fiber is composed of two layers - hexagonal magnesium hydroxide layer and tetragonal<br />

silicalayer form<strong>in</strong>g a “tube” with a diameter of 25-30 nm and a center channel with a<br />

diameter of about 5 nm. Chrysotile fibers are present <strong>in</strong> tightly packed bundles, but<br />

are bound together only by weak van der Waals <strong>in</strong>teractions, and therefore can be<br />

readily separated by mechanical actions. [1]<br />

Chrysotile has specific optical properties which can be observed <strong>in</strong> Polarised Light<br />

Microscopy (PLM). It is a very simple method of identification of asbestos fibers.<br />

PLM allows, not only, to dist<strong>in</strong>guish asbestos from other materials, but also the<br />

various types of asbestos from each other. Us<strong>in</strong>g liquid of known refractive <strong>in</strong>dex<br />

(for chrysotile nc = 1.55) can be seen optical properties such as: dispersion sta<strong>in</strong><strong>in</strong>g,<br />

pleochroism, birefr<strong>in</strong>gence, ext<strong>in</strong>ction, ext<strong>in</strong>ction angle and sign of elongation. [2] If<br />

the tested fibers do not display any of these characteristics can exclude presence of<br />

asbestos <strong>in</strong> the material.<br />

This study presents how extraction of magnesium from brucite layer has changed the<br />

optical properties of chrysotile asbestos. In the experiment were tested pure chrisotile<br />

fibers and chrysotile fibers after <strong>in</strong>cubation with <strong>in</strong>organic acids, organic acid and also<br />

with the addition of fluoride ions.<br />

[1] J. Addison “Asbestos , Analysis of”, Meyers R. A. Environmental analysis and remediation.<br />

USA N.Y., John Wiley & Sons, Inc., 1998, 1, 413-434.<br />

[2] G. Stroszejn-Mrowca “Identification of asbestos <strong>in</strong> bulk materials by polarysed light microscopy<br />

and phase contrast: method and results”, Occupational Medic<strong>in</strong>e, 2003, 54 (6), 567-572<br />

106 Thursday 17:40 - 20:10 Poster 049


Study of the PM10 concentration variations at the crossroad<br />

of busy roads <strong>in</strong> Poznan<br />

Maciej Narozny, Krystian Eitner, Wlodzimierz Urbaniak<br />

Department of Analytical Chemistry – Adam Mickiewicz University – Grunwaldzka 6 –<br />

Poznan – POL<br />

narozny@amu.edu.pl<br />

The movement of motor vehicles is one of the ma<strong>in</strong> sources of suspended matter <strong>in</strong><br />

urban areas. Additionally the lack of adequate monitor<strong>in</strong>g stations of this type of air<br />

pollution causes impossibility to estimation the risks and analysis of the situation.<br />

Dur<strong>in</strong>g the period from October 2011 to June 2012, PM10 concentrations were measured<br />

<strong>in</strong> the center of Poznan, at the crossroad of busy roads. The measurements<br />

took place <strong>in</strong> four series, each with a different time of year (fall, w<strong>in</strong>ter, spr<strong>in</strong>g, summer)<br />

and lasted seven days. Measurement time was 8 hours from 8 am to 16 pm.<br />

Sampl<strong>in</strong>g was carried out us<strong>in</strong>g portable real - time aerosol monitor the DustTrak II<br />

8530. Additionally were measured meteorological factors such as temperature, humidity,<br />

pressure, w<strong>in</strong>d strength and direction us<strong>in</strong>g a weather station Oregon Scientific<br />

WMR 200th. Dur<strong>in</strong>g the measurements also identified the <strong>in</strong>ternal combustion car<br />

traffic pass<strong>in</strong>g through crossroad. Mean daytime concentration of PM 10 ranged from<br />

17 µg/m 3 to 421 µg/m 3 . The study shows that the concentration of PM10 is strongly<br />

dependent on the weather and the number of vehicles. This shows how much the people<br />

of urban areas are exposed to the effects of dust, which <strong>in</strong> the long term negative<br />

impact on human health.<br />

Poster 050 Thursday 17:40 - 20:10 107


Ultrasound-assisted Synthesis of Naphthapyranes Catalyzed<br />

by Copper Triflate<br />

Kadir Turhan, S. Arda Ozturkcan, Zuhal Turgut<br />

Department of Chemistry – Yildiz Technical University – Davutpasa Street –<br />

34210 Esenler, Istanbul – TUR<br />

turhankadir@yahoo.com<br />

Active oxygen heterocycles takes <strong>in</strong>terest because they are an important class of natural<br />

compounds such as Mollug<strong>in</strong> and Nigrol<strong>in</strong>ea benzopyranes which exhibit<strong>in</strong>g a<br />

wide spectrum of pharmaceutical and biological properties such as antitumor and<br />

antibacterial activities. [1,2] Naphthapyranes are important biologically active heterocyclic<br />

compounds, which possess analgesic, anti-<strong>in</strong>flammatory, antifungal, antiviral,<br />

cytotoxic, anti-oxidative, and 5-lipoxygenase <strong>in</strong>hibitory activities. [3-7]<br />

Ultrasonic-assisted organic synthesis (UAOS) as a green synthetic approach is a powerful<br />

technique that is be<strong>in</strong>g used more accelerates organic reactions. [8] UAOS can be<br />

highly effective and it is applicable to a wide range of practical reactions. In order to<br />

expand the application of ultrasound <strong>in</strong> the synthesis of heterocyclic compound, we<br />

wish to report a general, rapid, productive and environment-friendly method for the<br />

synthesis of naphthapyranes.<br />

Triflates are effective and recoverable homogeneous catalysts for the modern synthesis.<br />

Recently, rare earth metal triflates, a new type of Lewis acid, are broadly used <strong>in</strong><br />

organic reactions due to their low toxicity, high stability, ease of handl<strong>in</strong>g, water<br />

tolerance, and recoverability from water. To the best of our knowledge, this study<br />

reports a new procedure for the synthesis of naphthapyranes us<strong>in</strong>g Cu(OTf)2 as a<br />

green catalyst under ultrasound irradiation.<br />

[1]<br />

S. Claessens, B. Kesteleyn, T. Nguyen Van, N. De Kimpe, Tetrahedron 2006, 62 (35), 8419.<br />

[2]<br />

V. Rukachaisirikul, K. Tadpetch, A. Watthanaphanit, N. Saengsanae, S. Phongpaichit, Journal<br />

of Natural Products 2005, 68 (8), 1218.<br />

[3]<br />

L. Q. Wu, W. L. Li, F. L. Yan, Journal of Heterocyclic Chemistry 2010, 47 (5), 1246.<br />

[4]<br />

L.-Q. Wu, L.-M. Yang, X. Wang, F.-L. Yan, Journal of the Ch<strong>in</strong>ese Chemical Society 2010,<br />

57, 738.<br />

[5]<br />

G. C. Nandi, S. Samai, R. Kumar, M. S. S<strong>in</strong>gh, Tetrahedron 2009, 65 (34), 7129.<br />

[6]<br />

A. K. Bhattacharya, K. C. Rana, M. Mujahid, I. Sehar, A. K. Saxena, Bioorganic & Medic<strong>in</strong>al<br />

Chemistry Letters 2009, 19 (19), 5590.<br />

[7]<br />

A. Kumar, S. Sharma, R. A. Maurya, J. Sarkar, Journal of Comb<strong>in</strong>atorial Chemistry 2009,<br />

12 (1), 20.<br />

[8]<br />

G. H. Mahdav<strong>in</strong>ia, S. Rostamizadeh, A. M. Amani, Z. Emdadi, Ultrasonic Sonochemistry<br />

2009, 16 (1), 7.<br />

This study was f<strong>in</strong>ancially supported by YILDIZ TECHNICAL UNIVERSITY, Coord<strong>in</strong>ation<br />

of Scientific Research Projects with the project number of 2012-01-02-GEP01.<br />

108 Thursday 17:40 - 20:10 Poster 051


Electroreduction of aliphatic chlorides at silver cathodes <strong>in</strong><br />

water, acetonitryle and mixed water-acetonitryle<br />

Agnieszka Brzózka ∗ , Anna Brudzisz † , Grzegorz Sulka †<br />

∗ Faculty of Non-Ferrous Metals – AGH University of Science and Technology –<br />

30 Mickiewicza Av. – Krakow – POL<br />

† Department of Physical Chemistry & Electrochemistry – Jagiellonian University –<br />

Ingardena 3 – Krakow – POL<br />

brzozka@agh.edu.pl<br />

As a result of widespread use <strong>in</strong> <strong>in</strong>dustry and <strong>in</strong> various household products and<br />

poor biodegradability chlor<strong>in</strong>ated aliphatic hydrocarbons are frequently found <strong>in</strong> soils,<br />

dr<strong>in</strong>k<strong>in</strong>g waters and gaseous emissions at levels that, <strong>in</strong> water sediments, can be as<br />

high as 150 ppb. Contam<strong>in</strong>ation of dr<strong>in</strong>k<strong>in</strong>g water by chlor<strong>in</strong>ated aliphatic hydrocarbons<br />

is particularly dangerous <strong>in</strong> view of their toxicity or even carc<strong>in</strong>ogenic nature and<br />

hence efficient remediation technologies are highly desired. Indeed, the development<br />

of degradation technologies for water pollutants is an active area of research, and<br />

various methods are already known for the abatement of halogenated compounds. [1]<br />

The electrocatalytic reductive dehalogenation of organic halides has been extensively<br />

<strong>in</strong>vestigated as a technology for the detoxification and disposal of halogenated hydrocarbons<br />

<strong>in</strong> <strong>in</strong>dustrial effluents. In comparison to other reductive pathways such<br />

as chemical, catalytic, and photochemical dehalogenation this method appears as<br />

a very promis<strong>in</strong>g approach be<strong>in</strong>g <strong>in</strong>tr<strong>in</strong>sically milder, more selective, and easier to<br />

run. However, the reduction of organic halides at the most commonly used cathodes<br />

occurs at very negative potentials, where a concomitant reduction of water might<br />

take place. Experimental evidence is presented that Ag exhibits a powerful electrocatalytic<br />

activity for the dehalogenation of polyhalogenated hydrocarbons to less, or<br />

non-halogenated hydrocarbons with positive shifts of the peak potentials as compared<br />

to glassy carbon. [2]<br />

The process of reduction C2H4Cl2 was <strong>in</strong>vestigated by cyclic voltammetry at glassy<br />

carbon and silver electrodes (bulk and nanowires <strong>in</strong> the form of nanobrushes) <strong>in</strong> H2O,<br />

acetonitryle (ACN) and mixed H2O/ACN with LiClO4, tetraethylammonium perchlorate<br />

and tetrabutylammonium fluoride as a support<strong>in</strong>g electrolyte. Silver nanowire<br />

array have been successfully fabricated us<strong>in</strong>g anodic alum<strong>in</strong>a oxide templates by a<br />

direct-current electrodeposition from a commercially available plat<strong>in</strong>g solution. The<br />

porous anodic alum<strong>in</strong>a membranes were prepared by a two-step anodiz<strong>in</strong>g process.<br />

The morphology of samples was studied us<strong>in</strong>g a field emission scann<strong>in</strong>g electron microscope<br />

(FE-SEM). To confirm the chemical composition of obta<strong>in</strong>ed Ag nanowires,<br />

the EDAX analysis was performed. In order to test the long-term stability of the<br />

silver nanowires, cyclic voltamperometry experiments were repeatedly carried out on<br />

the Ag-nanowire electrode, without renewal of Ag nanowires.<br />

Acknowledgement:<br />

This research was partially supported by the National Science Centre (Grant No<br />

2011/01/N/ST5/02510). The research was partially carried out with the equipment<br />

purchased thanks to the f<strong>in</strong>ancial support of the European Regional Development<br />

Fund <strong>in</strong> the framework of the Polish Innovation Economy Operational Program (contract<br />

no. POIG.02.01.00-12-023/08).<br />

[1]<br />

G. Fiori, S. Rond<strong>in</strong><strong>in</strong>i, G. Sello, A. Vertova, M. Cirja, L. Conti, J. Appl. Electrochem. 2005,<br />

35, 363-68.<br />

[2]<br />

S. Ardizzone, G. Cappelletti, P. R. Muss<strong>in</strong>i, S. Rond<strong>in</strong><strong>in</strong>i, L. M. Doubova, J. Electroanal.<br />

Chem. 2002, 532, 285-293.<br />

Poster 052 Thursday 17:40 - 20:10 109


Charge Transfer K<strong>in</strong>etics of SnS-Nanoparticle Monolayers<br />

Susann Kittler, Jan Poppe, Stephen G. Hickey, Alexander Eychmüller<br />

Physikalische Chemie und Elektrochemie – TU Dresden – Bergstraße 66b – Dresden –<br />

GER<br />

susann.kittler@chemie.tu-dresden.de<br />

Scarcity of fossil fuels, a ris<strong>in</strong>g demand for power and a grow<strong>in</strong>g ecological sensitivity<br />

are only three of the reasons as to why renewable energy sources are of great <strong>in</strong>terest.<br />

Photovoltaic devices have a huge potential but the level of efficiency is presently only<br />

about 25 % for epitaxial solar cells.<br />

In 1991 O’Regan and Grätzel published a new solar cell construction called a dye<br />

sensitized solar cell (DSSC). [1] As the role of the dye is as the light harvest<strong>in</strong>g component,<br />

semiconductor nanoparticles can be used <strong>in</strong> their stead giv<strong>in</strong>g rise to a quantum<br />

dot sensitised solar cell (QDSSC). Primarily compound semiconductors nanoparticles<br />

such as CdS, CdSe and PbS have been well <strong>in</strong>vestigated as possible sensitizer materials.<br />

T<strong>in</strong>(II) sulfide (SnS) as a IV-VI semiconductor represents a material with high potential<br />

for photovoltaic applications, because of its good chemical stability under normal<br />

work<strong>in</strong>g conditions, high absorption coefficient (α > 104 cm-1) and position of a direct<br />

and <strong>in</strong>direct bandgap (1.09 and 1.3 eV respectively) <strong>in</strong> the wavelength range of<br />

<strong>in</strong>terest for solar harvesters. [2]<br />

In this work SnS particles have been deposited onto a transparent conduct<strong>in</strong>g glass<br />

substrate (<strong>in</strong>dium t<strong>in</strong> oxide, ITO) through the use of bifunctional organic compounds.<br />

The SnS-layers were then characterisized by scann<strong>in</strong>g electron microscopy (SEM), absorption<br />

spectroscopy and different voltammetric and amperometric methods under<br />

square wave modulated illum<strong>in</strong>ation.<br />

SEM-picure of a SnS-NP monolayer<br />

[1] B. O’Regan, M. Grätzel, Nature 1991, 353, 737.<br />

[2] S. G. Hickey, C. Waurisch, B. Rell<strong>in</strong>ghaus, A. Eychmüller, Journal of the American Chemical<br />

Society 2008, 130, 14978.<br />

110 Thursday 17:40 - 20:10 Poster 053


NMR Spectroscopy <strong>in</strong> Nuclear Safety Research<br />

Jérôme Kretzschmar ∗ , Astrid Barkleit ∗ , V<strong>in</strong>zenz Brendler ∗ , Eike Brunner †<br />

∗ Institut für Ressourcenökologie – Helmholtz-Zentrum Dresden-Rossendorf –<br />

Bautzner Landstr. 400 – Dresden – GER<br />

† Bioanalytische Chemie – Technische Universität Dresden – Bergstr. 66 –<br />

Dresden – GER<br />

j.kretzschmar@hzdr.de<br />

Radioactive elements can be emitted to the environment for several reasons. There<br />

are natural uranium and thorium compounds (and their decay products) <strong>in</strong> rock<br />

formations, which can be released by geologic alteration or m<strong>in</strong><strong>in</strong>g processes. As<br />

a consequence of energy production <strong>in</strong> nuclear power plants over the last decades,<br />

huge amounts of nuclear waste were produced. If this waste is not stored adequately,<br />

radionuclides can enter the geo- or biosphere. Study<strong>in</strong>g the transport behaviour of<br />

these radioactive elements and their fission products is the key aspect of our research.<br />

Here, rocks and natural m<strong>in</strong>eral phases as well as organic molecules as potential<br />

b<strong>in</strong>d<strong>in</strong>g sites are objects of <strong>in</strong>vestigation.<br />

Both, NMR spectroscopic structure elucidation of environmentally relevant complexes<br />

of lanthanides, act<strong>in</strong>ides and selenium as well as the verification of results obta<strong>in</strong>ed<br />

by other techniques <strong>in</strong> former studies, are the aims of this work.<br />

The study of large biomolecules such as prote<strong>in</strong>s or humic acids is rather complicated.<br />

Therefore, compounds which are themselves potential complex<strong>in</strong>g agents or at least<br />

possess structural similarities to larger molecules, are used as model substances, for<br />

<strong>in</strong>stance glutathione (a tripeptide) or citrate.<br />

Different one- and two-dimensional solution and solid state NMR methods will be<br />

applied to dedicated systems, supplied by TRLFS, ATR FT-IR and EXAFS. Where<br />

possible, the radionuclides are supposed to be replaced by <strong>in</strong>active analogues or isotopes.<br />

In the case of selenium [1] , the sp<strong>in</strong>–1/2 nucleus of Se-77 is well suited to be<br />

directly observed by NMR spectroscopy.<br />

[1] <strong>in</strong> cooperation with Erica Brendler, Institut für Analytische Chemie, Technische Universität<br />

Bergakademie Freiberg<br />

Poster 054 Thursday 17:40 - 20:10 111


Catalytic dehydrogenation of liquid organic hydrogen<br />

carriers for a decentralized energy storage application<br />

Kathar<strong>in</strong>a Obesser, A. Bösmann, P. Wasserscheid<br />

Institute of Chemical Reaction Eng<strong>in</strong>eer<strong>in</strong>g – University Erlangen-Nuremberg –<br />

Egerlandstr. 3 – Erlangen – GER<br />

kathar<strong>in</strong>a.obesser@crt.cbi.uni-erlangen.de<br />

Liquid organic hydrogen carriers (LOHC) provide an efficient and convenient way<br />

for hydrogen storage and transportation. [1,2] LOHC compounds like N-ethylcarbazole<br />

(NEC) can be loaded with hydrogen by catalytic hydrogenation of unsaturated bonds. [3]<br />

The orig<strong>in</strong>at<strong>in</strong>g energy-rich Dodecahydro-N-ethylcarbazole (H12-NEC) is liquid at<br />

ambient conditions and can be handled very similar to diesel fuel. When energy is<br />

demanded, the stored hydrogen is released <strong>in</strong> a catalytic dehydrogenation reaction<br />

while the energy-lean compound is regenerated (Figure 1).<br />

This LOHC approach is a promis<strong>in</strong>g technology for long-term stor<strong>in</strong>g local and temporary<br />

energy overproduction from regenerative sources. With<strong>in</strong> the context of the<br />

Bavarian Hydrogen Center the construction of a pilot plant for domestic energy supply<br />

is planned <strong>in</strong> order to demonstrate the functionality and potential of the hydrogen<br />

storage system. For the near-term realization of the project the usage of catalysts<br />

which are commercially available <strong>in</strong> large quantities is crucial. The screen<strong>in</strong>g of various<br />

commercial catalysts for efficient dehydrogenation of H12-NEC under relatively<br />

mild conditions is presented.<br />

Figure 1 The LOHC system N-ethylcarbazole / Dodecahydro-N-ethylcarbazole: typical<br />

parameters for the reversible hydrogenation and dehydrogenation process. [1]<br />

[1]<br />

D. Teichmann, K. Stark, K. Müller, G. Zöttl, P. Wasserscheid, W. Arlt, Energy Environ. Sci.<br />

2012, 5, 9044-9054.<br />

[2]<br />

D. Teichmann, W. Arlt, P. Wasserscheid, , Freymann, Energy Environ. Sci. 2011, 4, 2767-<br />

2773.<br />

[3]<br />

F. Sotoodeh, K. J. Smith, Ind. Eng. Chem. Res. 2010, 49, 1018-1026.<br />

112 Thursday 17:40 - 20:10 Poster 055


Synthesis and Structural Analysis of Some New<br />

Hexahomotrioxacalix[3]arene Derivatives Based on<br />

Terpyrid<strong>in</strong>e Units<br />

Claudia Lar ∗ , Anamaria Terec ∗ , Ion Neda † , Ion Grosu ∗<br />

∗ Department of Organic Chemistry –<br />

Faculty of Chemistry and Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Babes Bolyai University –<br />

Arany Janos 11 – Cluj Napoca – ROU<br />

† Institut fur Anorganische und Analytische Chemie –<br />

Technische Universitat Braunschweig – Hagenr<strong>in</strong>g 30 – Braunschweig – GER<br />

cl_lar@yahoo.com<br />

Anion recognition, complexation and transport were recognised recently as a very important<br />

part of supramolecular chemistry. [1] In order to develop more specific function<br />

or recognition, supramolecular chemists have widely used calixarene derivatives as a<br />

platform and have selectively <strong>in</strong>troduced a variety of groups <strong>in</strong>to the upper and lower<br />

rims. Calix[n]arenes are known as build<strong>in</strong>g blocks [2] <strong>in</strong> supramolecular chemistry and<br />

can be used as molecular scaffolds for the synthesis of more elaborated structures. In<br />

this work, the synthesis and structural aspects of some hexahomotrioxacalix[3]arene<br />

derivatives [3] based on terpyrid<strong>in</strong>e units (Scheme 1) are discussed.<br />

This work was possible with the f<strong>in</strong>ancial support of the Sectoral Operational Programme<br />

for Human Resources Development 2007-<strong>2013</strong>, co-f<strong>in</strong>anced by the European<br />

Social Fund, under the project number POSDRU 89/1.5/S/60189 with the title “Postdoctoral<br />

Programs for Susta<strong>in</strong>able Development <strong>in</strong> a Knowledge Based Society”.<br />

Scheme 1<br />

[1] (a) “Supramolecular Chemistry of Anions” A. Bianchi, K. Bowman-James, E. Garcia-Espana,<br />

Eds., Wiley-VCH: New York, 1997; (b) “Supramolecular Chemistry-Concepts and Perspectives”<br />

J. M. Lehn, VCH: We<strong>in</strong>heim, 1995.<br />

[2] (a) “Calixarenes 2001” Z. Asfari, V. Bohmer, J. Harrowfield, J. Vicens, Eds., Kluwer Academic:<br />

Dordrecht, 2001; (b) “Calixarenes: A Versatile Class of Macrocyclic Compounds” J. Vicens,<br />

V.Bohmer, Eds., Kluwer Academic; Dordrecht, 1991.<br />

[3] (a) J. Kang, N. Cheong, Bull. Korean Chem. Soc. 2002, 23, 995-997; (b) M. Dudic, P.<br />

Lhotak, I. Stibor, H. Dvorakova, K. Lang, Tetrahedron 2002, 58, 5475-5482; (c) P. Zlatuskova, I.<br />

Stibor, M. Tkadlecova, P. Lhotak, Tetrahedron 2004, 60, 11383-11390.<br />

Poster 056 Thursday 17:40 - 20:10 113


Reevaluation of Fulvene Based Self Replicat<strong>in</strong>g Diels-Alder<br />

System<br />

Ilhan Sevim, Gunter von Kiedrowski<br />

Chair of Organic Chemistry I. Bioorganic Chemistry – Ruhr-Universität Bochum –<br />

NC 2/172 Universitätsstrasse 150 – Bochum – GER<br />

Ilhan.Sevim@ruhr-uni-bochum.de<br />

Chemical systems which have the ability of catalayz<strong>in</strong>g their own formations by the<br />

product templates are def<strong>in</strong>ed as chemical self replicat<strong>in</strong>g systems. Effective self<br />

replicat<strong>in</strong>g systems without the aid of enzymes or external cofactors have attracted<br />

the scientists‘ attention both for their potentials of synthetic applications and understand<strong>in</strong>g<br />

of the orig<strong>in</strong> of life. To understand these systems several artificial ones<br />

have been demonstrated over the last two decades. The aims of these studies were to<br />

understand the efficiency of the systems and structural <strong>in</strong>formation transfer which are<br />

created dur<strong>in</strong>g the reaction. With these concerns, fulvene and maleimide based self<br />

replicat<strong>in</strong>g Diels-Alder system mediated by the hydrogen bond<strong>in</strong>g has been <strong>in</strong>vestigated<br />

with the help of k<strong>in</strong>etic NMR measurements. The high efficiency of the system<br />

has brought us to <strong>in</strong>vestigate the asymmetric version of the system. Different substituted<br />

maleimides have been used with this aim. The diastereomeric distribution of<br />

these reactions have showed some imbalances compared with the ma<strong>in</strong> reaction and<br />

this has brought us to reevaluate the ma<strong>in</strong> reaction. This study conta<strong>in</strong>s the reevaluation<br />

of fulvene and maleimide based self replicat<strong>in</strong>g Diels-Alder system with much<br />

more detailed NMR and HPLC analysis. The efficiency of the different diastereomers<br />

and their autocatalytic and cross-catalytic properties are still under <strong>in</strong>vestigation.<br />

114 Thursday 17:40 - 20:10 Poster 057


The <strong>in</strong>fluence of water molecule coord<strong>in</strong>ation to a metal ion<br />

on water hydrogen bonds<br />

Majda Mis<strong>in</strong>i ∗ , Jelena Andrić † , Dragan N<strong>in</strong>ković † , Milan Milovanović ∗ , Snežana Zarić ⋄<br />

∗ Department of Chemistry – University of Belgrade – Studentski trg 12-16 – Belgrade –<br />

SRB<br />

† Innovation center, Department of Chemistry – University of Belgrade –<br />

Studentski trg 12-16 – Belgrade – SRB<br />

‡ ICTM – University of Belgrade – Njegoševa 12 – Belgrade – SRB<br />

⋄ Department of Chemistry – Texas A and M University – P.O. Box 23874 –<br />

Doha – QAT<br />

majdamis<strong>in</strong>i@gmail.com<br />

Interactions of water molecules with ions, molecules and <strong>in</strong>terfaces, have been <strong>in</strong>tensively<br />

studied. [1] Pure liquid water has a very complex hydrogen bond network nature<br />

and this is still <strong>in</strong> the process of be<strong>in</strong>g clarified us<strong>in</strong>g spectroscopic techniques and<br />

computational methods. [2]<br />

In this work the <strong>in</strong>fluence of cation on water hydrogen bonds was studied by analyz<strong>in</strong>g<br />

crystal structures from Cambridge Structural Database and by high level ab<br />

<strong>in</strong>itio calculations. [3] The hydrogen bonds of the water molecules <strong>in</strong> the first hydration<br />

shell of the cation were compared with the hydrogen bonds of free water molecules.<br />

To the best of our knowledge this is the first work report<strong>in</strong>g on the strength of the<br />

hydrogen bonds of the first hydration shell of metal cations based on the data <strong>in</strong> the<br />

crystal structures from the CSD. The results of statistical analysis of data from CSD,<br />

show that the MLOH/O <strong>in</strong>teractions have a larger tendency towards shorter H. . . O<br />

distances and l<strong>in</strong>ear orientations, which is typical of stronger hydrogen bonds. The<br />

results of calculation show that water coord<strong>in</strong>ation to a metal ion has a remarkable<br />

<strong>in</strong>fluence on hydrogen bonds. Positively charged complexes form quite strong hydrogen<br />

bonds, the hydrogen bond energy of [Zn(H2O)6] 2+ complex with water molecule<br />

([Zn(H2O)6] 2+ ...OH2) is -21.89 kcal/mol, which is several times stronger than the<br />

hydrogen bond of non-coord<strong>in</strong>ated water, -4.77 kcal/mol (HOH...OH2).<br />

Moreover, the hydrogen bond of the aqua ligand has a strong <strong>in</strong>fluence on the stability<br />

and coord<strong>in</strong>ation number of a complex. These results can be important for all the<br />

systems where a water molecule is <strong>in</strong> contact with metal cations, from biomolecules<br />

to materials.<br />

[1] G. R. Desiraju, Angew. Chem., Int. Ed. 2010, 49, 2.<br />

[2] R. Bukowski, K. Szalewicz, G. C. Groenenboom, A. van der Avoird, Science 2007, 315.<br />

[3] J. M. Andrić, G. V. Janjić, D. B. N<strong>in</strong>ković, S.D. Zarić, Physical Chemistry Chemical Physics<br />

2012, 14, 10896.<br />

Poster 058 Thursday 17:40 - 20:10 115


Multicomponent organogelator liquid system based<br />

organogels: A tough competition between gelation and<br />

crystallization<br />

Eva-Maria Schön ∗ , Iti Kapoor ∗ , Jürgen Bachl ∗ , Dennis Kühbeck ∗ , Carlos Cativiela † ,<br />

Subhadeep Saha ‡ , Rahul Banerjee ‡ , Stefano Roelens ⋄ , José Juan Marrero-Tellado # ,<br />

David Díaz Díaz ∗,†<br />

∗ Institut für Organische Chemie – Universität Regensburg – Universitätsstraße 31 –<br />

Regensburg – GER<br />

† Departamento de Química Orgánica, ISQCH – Universidad de Zaragoza - CSIC – Pedro<br />

Cerbuna 12 – Zaragoza – ESP<br />

‡ Physical/Materials Chemistry Division – National Chemical Laboratory – Dr. Homi<br />

Bhabha Road – Pune – IND<br />

⋄ Istituto di Metodologie Chimiche, Consiglio Nazionale della Ricerche, Dipart. di<br />

Chimica – Universitá di Firenze – Via della Lastruccia 13 – Firenze – ITA<br />

# Instituto Universitario de Bio-Orgánica “Antonio González” – Universidad de La<br />

Laguna – Astrofísico Francisco Sánchez 2 – La Laguna, Tenerife – ESP<br />

Eva-Maria.Schoen@chemie.uni-regensburg.de<br />

As physical gels have attracted much attention <strong>in</strong> the last years [1] we present here<br />

new organogels derived from methanolic solution of (1R,2R)-1,2-diam<strong>in</strong>ocyclohexane<br />

L-tartrate. [2]<br />

In comparison with other organogelators, the system presented here (Figure 1 A) has<br />

several feautures which makes it unique: 1) Simple, small and commercially available<br />

chiral build<strong>in</strong>g blocks are the base of the multicomponent gelator system; 2) each<br />

s<strong>in</strong>gle component of the multicomponent solution and its stoichiometry is crucial for<br />

the formation of the organogels and their stability; 3) contrarily to usual way where<br />

the gelation phenomenon takes place dur<strong>in</strong>g cool<strong>in</strong>g-down from high temperatures,<br />

here the gels are result<strong>in</strong>g from warm<strong>in</strong>g up the isotropic solution from low temperatures;<br />

4) although the organogels are composed of low molecular weight components<br />

and consequently hold together by non-covalent <strong>in</strong>teractions, they are not thermoreversible.<br />

This system exemplifies the delicate equilibrium between solution and crystallization<br />

that def<strong>in</strong>es the gel phase (Figure 1 B).<br />

Figure 1:A) Components of the new gelator liquid system. B) Ilustration of the<br />

competition between gelation and crystallization.<br />

[1]<br />

R. G. Weiß, P. Terech, “Molecular Gels: Materials with Self-Assembled Fibrillar Networks”,<br />

Spr<strong>in</strong>ger: NY 2006.<br />

[2]<br />

I. Kapoor, E.-M. Schoen, J. Bachl, D. Kühbeck, C. Cativiela, S. Saha, R. Banerjee, S. Roelens,<br />

J. J. Marrero-Tellado, D. Díaz Díaz, Soft Matter 2012, 8, 3446-3456.<br />

116 Thursday 17:40 - 20:10 Poster 059


Host-guest properties of some cage molecules<br />

Adrian Woiczechowski-Pop ∗ , Anamaria Terec ∗ , Christ<strong>in</strong>e Baudequ<strong>in</strong> † ,<br />

Yvan Ramondenc † , Ion Grosu ∗<br />

∗ Depart. of Organic Chem., Centre of Supramol. Organic and Organometallic Chem. –<br />

Babes-Bolyai University – Arany Janos 11 – Cluj-Napoca – ROU<br />

† Institut de Recherche en Chimie Organique F<strong>in</strong>e de Rouen – Université de Rouen –<br />

Rue Tesniére 76130 – Rouen - Mont Sa<strong>in</strong>t Aignan – FRA<br />

adi_w2001@yahoo.com<br />

Development of synthetic host compounds, comb<strong>in</strong>ed with the numerous studies <strong>in</strong><br />

host-guest chemistry, led to the conclusion that the three-dimensional cage molecules<br />

can be <strong>in</strong>volved <strong>in</strong> specifically directed complex<strong>in</strong>g, molecular recognition, and ion<br />

transport through membranes. [1] Recently, coord<strong>in</strong>ation cage molecules have found<br />

applications as nanoreactors [2] or transport vehicles for cytotoxic compounds [3] and<br />

for the stabilization of reactive molecules [4] respectively. The size and the symmetry<br />

of these cages may also display fasc<strong>in</strong>at<strong>in</strong>g host-guest chemistry.<br />

In this work, theoretical and experimental studies (NMR, UV-Vis, fluorescence) concern<strong>in</strong>g<br />

the supramolecular host-guest properties of type I cage molecules have been<br />

performed (Scheme 1). Different organic molecules have been used as guests for<br />

1,3,5-tris(phenyl)benzene 1,3,5-tris(biphenyl)benzene and 2,4,6-tris(phenyl)-1,3,5-triaz<strong>in</strong>e<br />

based macrocycles.<br />

This work was possible with the f<strong>in</strong>ancial support of the Sectoral Operational Programme<br />

for Human Resources Development 2007-<strong>2013</strong>, co-f<strong>in</strong>anced by the European<br />

Social Fund, under the project number POSDRU 89/1.5/S/60189 with the title “Postdoctoral<br />

Programs for Susta<strong>in</strong>able Development In a Knowledge Based Society”<br />

Scheme 1.<br />

[1] (a) C. J. Pedersen, Angew. Chem. Int. Ed. 1988, 27, 1021; (b) F. Ebmeyer, F. Vögtle,<br />

Angew. Chem. Int. Ed. 1989, 28, 79; (c) C. Seel, F. Vögtle, Angew. Chem. Int. Ed. 1991,<br />

30, 442.<br />

[2] (a) M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009, 48, 3418; (b)<br />

T. S. Koblenz, J. Wassenaar, J. N. H. Reek, Chem. Soc. Rev. 2008, 37, 247.<br />

[3] (a) O. Zava, J. Mattsson, B. Therrien, P. J. Dyson, Chem. Eur. J. 2010, 16, 1428; (b) B.<br />

Therrien, G. Süss-F<strong>in</strong>k, P. Gov<strong>in</strong>daswamy, A. K. Renfrew, P. J. Dyson, Angew. Chem. Int. Ed.<br />

2008, 47, 3773.<br />

[4] M. Kawano, Y. Kobayashi, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2006, 128, 6558.<br />

Poster 060 Thursday 17:40 - 20:10 117


Synthesis, structural aspects and ion transport <strong>in</strong>vestigation<br />

of several new [1+1] condensed cyclophane ether<br />

Zafer Söyler ∗ , M. D. Amir † , Naz Mohammed Aghatabay †<br />

∗ Chemistry – Yıldız Technical University – Davutpaşa – İstanbul – TUR<br />

† Chemistry – Fatih University – Büyükçekmece – İstanbul – TUR<br />

zafersoyler@gmail.com<br />

Six novel [1 + 1] condensed 14 membered cyclophane ethers were synthesized via<br />

simple procedure afford<strong>in</strong>g high yields. The o-dibromoxylene and m-dibromoxylene<br />

were <strong>in</strong>corporated to form macrocyclic units by coupl<strong>in</strong>g with the sodium salts of<br />

the diols (3a, 3b, 3c). [1-3] They were characterized by elemental analyses, mass, FT-<br />

IR, 1 H, and 13 C NMR spectral data. Ion transportation and permeability of the<br />

compounds aga<strong>in</strong>st Na + , K + hard ions and Ag + soft ion were also <strong>in</strong>vestigated. [4]<br />

Scheme a: KOH/EtOH, 60 o C, 3h, 90%; b: MeOH/NaBH4 , 12h, 85%; c: Na/THF 75%.<br />

[1] P. Rajakumar, V. Murali, Tetrahedron 2004, 60, 2351-2360.<br />

[2] P. Rajakumar, R. Kanagalatha, Tetrahedron 2006, 62, 9735-9741.<br />

[3] A. H. M. Elwahy, A. A. Abbas, Tetrahedron 2000, 56, 885-895.<br />

[4] P. Rajakumar, A.M. Abdul-Rasheed, Tetrahedron 2005, 61, 5351-5362.<br />

118 Thursday 17:40 - 20:10 Poster 061


Conductometry as a tool <strong>in</strong> research of β-cyclodextr<strong>in</strong><br />

<strong>in</strong>clusion complex<br />

Katarzyna Abramczyk, Adam Bald<br />

Physical Chemistry of Solutions – University of Lódź – Pomorska 163, 90-236 Lódź –<br />

Łódź – POL<br />

kasiabramczyk@<strong>in</strong>teria.pl<br />

Over the last few years, cyclodextr<strong>in</strong>s have become very popular. These macromolecules<br />

belong to the sugar class compounds. They consist of 6-, 7- or 8- units of<br />

α-D(+) glucopyranoses which are connected by α-1,4-glycosidic bonds <strong>in</strong> such a way<br />

that they form a truncated cone shape. The <strong>in</strong>terior of the molecule is hydrophobic<br />

while the exterior has a hydrophilic character. Depend<strong>in</strong>g on the number of sugar<br />

particles, they are denoted α-, β-, γ-cyclodextr<strong>in</strong>. [1]<br />

In literature there are many papers about wide application of cyclodextr<strong>in</strong>s. The extraord<strong>in</strong>ary<br />

properties of these compounds, relative non-toxicity and low price give rise<br />

to great opportunities for us<strong>in</strong>g cyclodextr<strong>in</strong>s <strong>in</strong> chemistry and numerous <strong>in</strong>dustries. [3]<br />

A special attention shouold be paid to their ability to form <strong>in</strong>clusion complexes. In<br />

our team, we focused on the determ<strong>in</strong>ation of the b<strong>in</strong>d<strong>in</strong>g constants and the basic<br />

thermodynamic functions of <strong>in</strong>clusion complexes of β-CD with the sodium salts of<br />

carboxylic acids us<strong>in</strong>g conductivity method.<br />

Toroidal and chemical structure of cyclodextr<strong>in</strong> [2]<br />

[1]<br />

G. Gattuso, S. A. Nepogodiev, J. Fraser Stoddart, Chem. Rev. 1998, 98, 1919-1958.<br />

[2]<br />

A. A. Rafati, N. Hamnabard, E. Ghasemian, Z. B. Noj<strong>in</strong>i, Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

C 2009, 29, 791–795.<br />

[3]<br />

M. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875-1917.<br />

Poster 062 Thursday 17:40 - 20:10 119


Phenanthrol<strong>in</strong>e derivatives and DNA<br />

Philipp Scharf , Jens Müller<br />

Institut für Anorganische und Analytische Chemie –<br />

Westfälische Wilhelms-Universität Münster – Corrensstraße 28/30 – Münster – GER<br />

philipp.scharf@uni-muenster.de<br />

Functionalization of the nucleic acids DNA and GNA by <strong>in</strong>troduction of artificial<br />

nucleobases is a grow<strong>in</strong>g field with relevance <strong>in</strong> several chemical discipl<strong>in</strong>es (GNA<br />

= glycol nucleic acid). In particular, the use of ligands as nucleobases result<strong>in</strong>g<br />

<strong>in</strong> the formation of metal-mediated base pairs offers the opportunity to modify the<br />

properties of these supramolecular assemblies. This is expected to lead to <strong>in</strong>terest<strong>in</strong>g<br />

applications <strong>in</strong> nanotechnology, e. g. <strong>in</strong> the areas of conductivity or magnetism. [1-4]<br />

1,10-Phenanthrol<strong>in</strong>e and its derivatives are versatile ligands for a variety of transition<br />

metals. [5] Due to its planarity and aromaticity the use of this ligand <strong>in</strong> metal-mediated<br />

base pairs appears to be feasible.<br />

We report the synthesis of a novel build<strong>in</strong>g block of the ligand 1H-imidazo[4,5-f][1,10]phenanthrol<strong>in</strong>e<br />

and its <strong>in</strong>tegration <strong>in</strong>to a DNA oligonucleotide. Thereafter we refer<br />

to the <strong>in</strong>teraction of this oligonucleotide with several metal ions especially regard<strong>in</strong>g<br />

the thermal stability of the formed metal-mediated base pairs.<br />

[1] L. Zhang, A. E. Peritz, P. J. Carroll, E. Meggers, Synthesis 2006, 645-653.<br />

[2] M. K. Schlegel, L. Zhang, N. Pagano, E. Meggers, Org. Biomol. Chem. 2009, 7, 476-482.<br />

[3] K. Seubert, C. F. Guerra, F. M. Bickelhaupt, J. Müller, Chem. Comm. 2011, 47, 11041-11043.<br />

[4] P. Scharf, J. Müller, ChemPlusChem <strong>2013</strong>, 78, 1, 20-34.<br />

[5] A. Benc<strong>in</strong>i, V. Lippolis, Coord. Chem. Rev. 2010, 254, 2096-2180.<br />

120 Thursday 17:40 - 20:10 Poster 063


Cholesterol-Modified Nucleosides as Precursors for<br />

Microtubes Self-Assembly<br />

Anca Petran ∗ , Nicolai Brodersen † , Paula Pescador † , Holger Scheidt ‡ , Louisa Losensky ⋄ ,<br />

Mart<strong>in</strong> Loew ⋄ , Andreas Herrmann ⋄ , Daniel Huster ‡ , Anna Arbuzova ⋄ , Jürgen Liebscher †<br />

∗ Phyisics of Nanostructural Systems –<br />

National Institute for Research and Development of Isotopic and Molecular Technologies –<br />

Donath, nr. 65-103 400293 Cluj-Napoca – Cluj-Napoca – ROU<br />

† Organic Chemistry – Institute of Chemistry, Humboldt-University Berl<strong>in</strong> –<br />

Brook-Taylor-Str. 2 – Berl<strong>in</strong> – GER<br />

‡ Institute of Medical Physics and Biophysics –<br />

Institute of Medical Physics and Biophysics – Haertelstr. 16-18 – Leipzig – GER<br />

⋄ Institute of Biology/Biophysics –<br />

Institute of Biology/Biophysics, Humboldt-University Berl<strong>in</strong> – Invalidenstr. 42 –<br />

Berl<strong>in</strong> – GER<br />

apetran@itim-cj.ro<br />

Molecular self-assembly is the basis of supramolecular chemistry and can lead to a<br />

variety of structural motifs, e. g. to molecular membranes such as <strong>in</strong> phospholipid<br />

double layers. Under certa<strong>in</strong> circumstances such membranes can form nanotubular<br />

structures. Nanotube formation requires highly ordered molecular pack<strong>in</strong>g and<br />

anisotropic <strong>in</strong>termolecular <strong>in</strong>teractions.<br />

In our group a new lipophilic nucleoside 1 (figure 1, a) was synthesized which selfassembled<br />

<strong>in</strong> microtubes after mix<strong>in</strong>g with a simple phospholipid. [1] The SEM image<br />

of such a microtubule reveals a straight structure with an almost uniform outer diameter<br />

of about 300 nm (figure 1, b). The tubes posses open ends and thus are<br />

<strong>in</strong>terest<strong>in</strong>g as potential carriers, e. g. for drugs.<br />

Our target was to synthesize new cholesteryl-nucleoside and nucleobase derivatives<br />

analogous to structure 1. In these compounds we varied cha<strong>in</strong> length of the l<strong>in</strong>ker,<br />

po<strong>in</strong>t of attachment of cholesterol and additional derivatisation of hydroxyl groups.<br />

These variations give us the ability to study the effect of structural motifs on the<br />

ability to form microtubes by mix<strong>in</strong>g with phospholipids.<br />

[1] P. Pescador, N. Brodersen, H. A. Scheidt, M. Loew, G. Holland, N. Bannert, J. Liebscher, A.<br />

Herrmann, D. Huster, A. Arbuzova, Chem. Commun. 2010, 46, 5358.<br />

Poster 064 Thursday 17:40 - 20:10 121


Parallel Interactions at Large Horizontal Displacement <strong>in</strong><br />

Pyrid<strong>in</strong>e-Pyrid<strong>in</strong>e and Benzene-Pyrid<strong>in</strong>e Dimers<br />

Jelena Andric ∗ , Dragan N<strong>in</strong>kovic ∗ , Snežana Zarić ‡<br />

∗ Innovation center, Department of Chemistry – University of Belgrade –<br />

Studentski trg 12-16 – Belgrade – SRB<br />

‡ Department of Chemistry – Texas A and M University – P.O. Box 23874 – Doha – QAT<br />

jelenaandric.chem@gmail.com<br />

Although aromatic–aromatic <strong>in</strong>teractions have been extensively studied, <strong>in</strong>teractions<br />

at a large horizontal displacement (offset) have only been recently reported. [1] The<br />

results <strong>in</strong>dicated the importance of stack<strong>in</strong>g <strong>in</strong>teractions of benzene molecules at<br />

large horizontal displacements and prompted us to study pyrid<strong>in</strong>e–pyrid<strong>in</strong>e and pyrid<strong>in</strong>e–benzene<br />

parallel <strong>in</strong>teractions.<br />

Here<strong>in</strong>, we present the results on the <strong>in</strong>teractions of pyrid<strong>in</strong>e–pyrid<strong>in</strong>e and pyrid<strong>in</strong>e–benzene<br />

molecules <strong>in</strong> the parallel orientation. We analyzed crystal structures<br />

from the Cambridge Structural Database (CSD) and performed DFT calculations. A<br />

study of crystal structures from the CSD and DFT calculations revealed that parallel<br />

pyrid<strong>in</strong>e–pyrid<strong>in</strong>e <strong>in</strong>teractions at large horizontal displacements (offsets) were<br />

preferred, [2] similar to parallel benzene–benzene <strong>in</strong>teractions. [1]<br />

At large horizontal displacements (4.0-5.0 A) <strong>in</strong>teraction energies <strong>in</strong> the benzenebenzene,<br />

pyrid<strong>in</strong>e–pyrid<strong>in</strong>e and pyrid<strong>in</strong>e–benzene dimers are similar; about 2 kcal<br />

mol -1 .<br />

[1]<br />

D. B. N<strong>in</strong>ković, G. V. Janjić, D.Ž . Veljković, D. N. Sredojević, S. D. Zarić, ChemPhysChem<br />

2011, 12, 1-4.<br />

[2]<br />

D. B. N<strong>in</strong>ković, G. V. Janjić, S. D. Zarić, Cryst. Growth Des. 2012, 12, 1060-1063.<br />

122 Thursday 17:40 - 20:10 Poster 065


Improved Synthesis of Ozazol<strong>in</strong>e-Based Chiral Ligands and<br />

Their Application <strong>in</strong> Heteroleptic Transition-Metal<br />

Complexes<br />

Swantje Wiebalck, Gisa Meißner, C<strong>in</strong>dy Glor, Silke Plachetta, Patrick Kuhrt,<br />

C. Christoph Tzschucke<br />

Chemie und Biochemie – Freie Universität Berl<strong>in</strong> – Takustr. 3 – Berl<strong>in</strong> –<br />

swantje@email.de<br />

Oxazol<strong>in</strong>e based structures provide a versatile design pr<strong>in</strong>ciple for the construction<br />

of ligand collections, s<strong>in</strong>ce they can be derived from the chiral pool of natural<br />

am<strong>in</strong>o acids. Protocols for the synthesis of bisoxazol<strong>in</strong>es (box), pyrid<strong>in</strong>oxazol<strong>in</strong>es (pyrox),<br />

and their derivatives 6-methylpyr<strong>in</strong><strong>in</strong>roxazol<strong>in</strong>e (mepyrox) and qu<strong>in</strong>ol<strong>in</strong>oxazol<strong>in</strong><br />

(qu<strong>in</strong>ox) were established.After amide formation, the crucial r<strong>in</strong>g closure was <strong>in</strong>duced<br />

by a strong base <strong>in</strong> methanol as polar solvent. The reaction protocol offers reliable<br />

access to a variety of different substitution patterns. [1]<br />

The box-type ligands were used for the preparation of new heteroleptic ruthenium or<br />

iridium complexes. The complexes were characterized with respect to their structural<br />

and spectroscopic properties. Initial results regard<strong>in</strong>g the reactivity of the ruthenium<br />

and iridium complexes will be presented. [2]<br />

[1] a) I. Butula, G. Karlovic, Liebigs Ann. Chem 1976, 1455; b) D. Sirbu, G. Consiglio, B.<br />

Milani, P. G. A. Kumar, P. S. Pregos<strong>in</strong>, S. Gischig, J. Organomet. Chem. 2005, 690, 2254 2262;<br />

c) R. I. McDonald, P. B. White, A. B. We<strong>in</strong>ste<strong>in</strong>, C. P. Tam, S. S. Stahl, Org. Lett. 2011, 13,<br />

2830.<br />

[2] G. Mestroni, A., Camus, G. Zass<strong>in</strong>ovich, J. Organomet. Chem. 1974, 73, 119.<br />

Poster 066 Thursday 17:40 - 20:10 123


Direct synthesis of dimethyl carbonate from methanol and<br />

carbon dioxide over surface functionalized CexZr1−xO2<br />

catalysts<br />

Patrick Kollmorgen, Iuliia Prymak, Narayana Kalevaru, Andreas Mart<strong>in</strong>,<br />

Sebastian Wohlrab<br />

Leibniz-Institut für Katalyse e.V. – Albert-E<strong>in</strong>ste<strong>in</strong>-Strasse 29a – 18059 Rostock – GER<br />

patrick.kollmorgen@catalysis.de<br />

Dimethyl carbonate (DMC) is a non-toxic, biodegradable solvent and can be used as<br />

alkylation-/acylation agent, phosgene substitute, fuel additive/antiknock agent, <strong>in</strong>termediate<br />

<strong>in</strong> polymer synthesis, electrolyte <strong>in</strong> lithium-ion-batteries and <strong>in</strong> pharmacy. [1]<br />

In an <strong>in</strong>dustrial scale DMC is ma<strong>in</strong>ly produced via oxidative carbonylation of methanol<br />

us<strong>in</strong>g copper conta<strong>in</strong><strong>in</strong>g species. An <strong>in</strong>terest<strong>in</strong>g alternative susta<strong>in</strong>able route to l<strong>in</strong>ear<br />

carbonates is the direct carboxylation of alcohols which is topic of our current<br />

research. The reaction itself uses CO2 as renewable zero cost feedstock and possess<br />

high atom efficiency. A second aspect of CO2 utilization is the capture of CO2 as<br />

greenhouse gas. Nevertheless for this reaction elementary problems have to be solved.<br />

Due to the thermodynamic stability of the CO2 molecule the activation of the C-Obond<br />

is quite difficult and complex. In addition the reaction is thermodynamically<br />

unfavoured (G=+26 KJ/mol) and consequently the position of the equilibrium leads<br />

to low DMC yields. This work focuses on the CexZr1−xO2 system which has both<br />

acidic and basic sites. [2] These sites play the dom<strong>in</strong>ant role on the catalytic performance.<br />

Our aim is the modification of those acidic and basic properties via chang<strong>in</strong>g<br />

the Ce/Zr ratios or surface functionalization of the CexZr1−xO2 to enhance DMC<br />

yield. In comparison to the monometallic archetypes mixed metal oxides show better<br />

stabilities and higher catalytic activities. CexZr1−xO2 catalysts with vary<strong>in</strong>g molar<br />

metal ratios with x from 0 to 1 were prepared via an oxalate-gel-method. [3] All<br />

synthesized catalysts were catalytically tested <strong>in</strong> a 25 ml autoclave. Reactions were<br />

carried out for 1 h at 443 K, 65 bar of CO2 and typically 10 ml of methanol and 50 mg<br />

of catalyst were used. DMC concentration was determ<strong>in</strong>ed by gas chromatography.<br />

Catalysts where x is 0.6 and 0.8 showed the highest catalytic activity and were further<br />

surface functionalized by different species. The catalysts were characterized by<br />

BET-surface analysis and X-ray diffraction. BET surface areas range between 30 and<br />

90 m 2 /g and XRD-pattern showed that CeO2 exists <strong>in</strong> cubic phase and the ZrO2 exists<br />

<strong>in</strong> monocl<strong>in</strong>ic and tetragonal phase. Our synthesized CexZr1−xO2 solid catalysts<br />

showed comparable activities known from literature. [3] Acid Base surface modifications<br />

on CexZr1−x O2 led to changed catalytic performances. In this context DMC<br />

yield could be <strong>in</strong>creased from 0.4 to 1.1 mol% for Ce0.6Zr0.4O2 and from 0.3 to 1.7<br />

mol% for Ce0.8Zr0.2O2. Results reveal that the Ce content as well as the surface<br />

modification has a significant effect on acid base properties and plays an important<br />

role on the catalytic performance.<br />

[1]<br />

M. Aresta, A. Dibenedetto, C. Pastore, C. Cuocci, B. Aresta, S. Cometa, E. De Giglio, Catalysis<br />

Today 2008, 137, 125-131.<br />

[2]<br />

W. Khaodee, B. Jongsomjit, S. Assabumrungrat, P. Praserthdam, S. Goto, Catalysis Communications<br />

2007, 8, 548-556.<br />

[3]<br />

H. J. Hofmann, A. Brandner, P. Claus, Chemie Ingenieur Technik 2011, 83, 1711-1719.<br />

124 Thursday 17:40 - 20:10 Poster 067


Photochemically Generated S<strong>in</strong>glet Oxygen as Mechanistic<br />

Probe for the Interaction of Bisanthracenes<br />

Matthias Klaper, Torsten L<strong>in</strong>ker<br />

Institut für Chemie – Universität Potsdam – Karl-Liebknecht-Str. 24-25 –<br />

14467 Potsdam OT Golm – GER<br />

mklaper@uni-potsdam.de<br />

The understand<strong>in</strong>g of the <strong>in</strong>teraction of Bisanthracenes via π-π <strong>in</strong>teraction is important<br />

for applications <strong>in</strong> semiconductor techniques. [1] Accord<strong>in</strong>gly, <strong>in</strong>vestigations<br />

on the correlation between π-π stack<strong>in</strong>g ability and photovoltaic performance were<br />

made. [2] Furthermore, it is known that strong <strong>in</strong>teraction will lead preferably to a<br />

high degree of excitonic self quench<strong>in</strong>g or other radiationless deactivation processes<br />

result<strong>in</strong>g <strong>in</strong> poor quantum yields. [3] In literature there is noth<strong>in</strong>g known about endoperoxides<br />

<strong>in</strong>teractions with anthracenes yet.<br />

Here we report about our <strong>in</strong>vestigation on photochemically generated s<strong>in</strong>glet oxygen<br />

as a probe for the <strong>in</strong>teraction of α,ω-dianthrylalkanes and their monoendoperoxides.<br />

Therefore, a number of l<strong>in</strong>ked anthracenes were synthesized by various procedures,<br />

vary<strong>in</strong>g the cha<strong>in</strong>-length from zero to eight.<br />

With these distanced bisanthracenes <strong>in</strong> hand, the k 1 and k 2 values of the two photooxidation<br />

steps to the correspond<strong>in</strong>g mono- and bisendoperoxides were detected.<br />

Interest<strong>in</strong>gly, the k 2 value does not simply rise with prolonged distance, due to less<br />

steric h<strong>in</strong>drance like k 1, but <strong>in</strong>stead reaches a maximum at a certa<strong>in</strong> cha<strong>in</strong> length.<br />

This can be ascribed to the strongest <strong>in</strong>teraction of the anthracene – monoendoperoxid<br />

at this particular distance. This is also assured by experiments of the photo<strong>in</strong>duced<br />

<strong>in</strong>tramolecular [4+4]-cycloaddition at 366 nm, which is only observed for C1- up to<br />

C4-cha<strong>in</strong>es and also by UV and fluorescence spectroscopy. Our f<strong>in</strong>d<strong>in</strong>gs allow conclud<strong>in</strong>g<br />

the formation of a ferrocene-like anthracen - s<strong>in</strong>glet oxygen - anthracen sandwich<br />

complex at this particular distance.<br />

[1]<br />

L. R. MacGillivray et al., J. Am. Chem. Soc. 2006, 128, 2806.<br />

[2]<br />

H. Hoppe et al., Macromolecules 2010, 43, 126.<br />

[3]<br />

a) D. A. M. Egbe et al., Macromolecules 2010, 43, 306; b) P. Günther et al., J. Phys. Chem.<br />

1996, 100, 18931.<br />

Poster 068 Thursday 17:40 - 20:10 125


Development of novel bifunctional chiral thiourea derivative<br />

as organocathalyst<br />

Ana Escamilla, Ana C. Cuñat, Juan F. Sanz<br />

Department of Organic Chemistry – University of Valencia –<br />

c/ Doctor Mol<strong>in</strong>er N o 50 46100 – Valencia – ESP<br />

ana.escamilla@uv.es<br />

In this communication, we are describ<strong>in</strong>g the design of chiral bifunctional thioureas<br />

bear<strong>in</strong>g an imidazol<strong>in</strong>e r<strong>in</strong>g <strong>in</strong> expectation of their dual activation of both electrophiles<br />

and nucleophiles to promote a wide range of nucleophilic addition reactions. We have<br />

modified the r<strong>in</strong>g A substitution <strong>in</strong> order to enhance the acidity of NH protons, thus<br />

<strong>in</strong>creas<strong>in</strong>g the substrate’s nucleophilicity (see scheme below).<br />

The most important moiety of this structure is the imidazol<strong>in</strong>e r<strong>in</strong>g, which is synthesized<br />

from a chiral diam<strong>in</strong>e and an aldehyde. Diam<strong>in</strong>e 2 was obta<strong>in</strong>ed through<br />

amidation and reduction of phenyglyc<strong>in</strong>e methyl esther. In order to prepare the desired<br />

organocathalyst, a thiourea functionality was <strong>in</strong>troduced by means of reaction<br />

between an isothiocyanate and a primary am<strong>in</strong>e.<br />

The new organocathalysts will be tested <strong>in</strong> several transformations, such as Henry or<br />

aza-Henry [1] , Michael [2] and Mannich [3] additions.<br />

[1] X. Xu, T. Furukawa, T. Ok<strong>in</strong>o, H. Miyabe, Y. Takemoto, Chem. Eur.J. 2005, 12, 466-476.<br />

[2] C. Chun-Li, Y. Meng-Chun, S. Xiu-Li, T. Yong Org. Lett. 2006, 8, 2901-2904.<br />

[3] Z.Hui, C. Yongm<strong>in</strong>g, L. Zhengyu, P. Yungui Adv. Synth. Catal. 2009, 351, 2288-2294.<br />

126 Thursday 17:40 - 20:10 Poster 069


Asymmetric Total Synthesis of Smyr<strong>in</strong>diol Employ<strong>in</strong>g an<br />

Organocatalytic Aldol Key Step<br />

Jeanne Fronert, Tom Bisschops, Florian Boeck, Dieter Enders<br />

Institute of Organic Chemistry – Landoltweg 1 – Aachen – GER<br />

jeanne.fronert@rwth-aachen.de<br />

The natural product smyr<strong>in</strong>diol, also called (+)-(2’S,3’R)-3-hydroxymarmes<strong>in</strong>, is a<br />

l<strong>in</strong>ear dihydrofurocoumar<strong>in</strong> which was isolated from the roots of Smyrniopsis aucheri<br />

by Dzhafarov et al. <strong>in</strong> 1992 and from the roots of Brosimum gaudichaudii by Vilegas<br />

et al. <strong>in</strong> 1993. [1] Smyr<strong>in</strong>diol has shown antifungal and antibacterial activity and can<br />

be used to cure Vitiligo, a sk<strong>in</strong> disease, or as a vasodilator. [1a,2]<br />

The first organocatalytic asymmetric synthesis of smyr<strong>in</strong>diol us<strong>in</strong>g a (S)-prol<strong>in</strong>e catalyzed<br />

5-enolexo aldol reaction as key step is described. The diastereo- and enantioselectivity<br />

is virtually complete (de 99%, ee 99%) and the title compound was<br />

obta<strong>in</strong>ed <strong>in</strong> 15 steps <strong>in</strong> an overall yield of 6.3%. [3]<br />

In addition to the aldol reaction the total synthesis also <strong>in</strong>cludes a new type of<br />

coumar<strong>in</strong> assembly via a Sonogashira reaction to a propiolic acid derivative, followed<br />

by a L<strong>in</strong>dlar reduction / lactonization sequence, which opens a new efficient and<br />

flexible entry to the coumar<strong>in</strong> core of other natural products.<br />

[1] a) Z. R. Dzhafarov, Z. A. Kuliev, A. D. Vdov<strong>in</strong>, A. A. Kuliev, V. M. Malikov, N. M. Ismailov,<br />

Chem. Nat. Compd. 1992, 28, 27; b) W. Vilegas, G. L. Pozetti, J. Harumi Yariwake Vilegas, J.<br />

Nat. Prod. 1993, 56, 416.<br />

[2] B. Ngameni, V. Kuete, I. K. Simo, A. T. Mbaveng, P. K. Awoussong, R. Patnam, R. Roy, B.<br />

T. Ngadjui, S. Afr. J. Bot. 2009, 75, 256.<br />

[3] D. Enders, J. Fronert, T. Bisschops, F. Boeck, Beilste<strong>in</strong> J. Org. Chem. 2012, 8, 1112.<br />

Poster 070 Thursday 17:40 - 20:10 127


Investigation of organocatalytic reaction mechnisms us<strong>in</strong>g<br />

ESI-MS<br />

Mart<strong>in</strong> Schmidt, Marianne Engeser<br />

Kekule-Institut für Organische Chemie und Biochemie – Universität Bonn –<br />

Gerhard-Domagk-Str. 1 – Bonn – GER<br />

mlschm@uni-bonn.de<br />

SOMO catalysis has obta<strong>in</strong>ed large <strong>in</strong>terest as a new and powerful version of enantioselective<br />

organocatalysis which <strong>in</strong>cludes radical steps <strong>in</strong>itiated by a one-electron<br />

oxidation. [1] The key <strong>in</strong>termediate enam<strong>in</strong>e radical cation has been postulated but<br />

had not been observed directly until it we could detect it by ESI mass spectrometry<br />

comb<strong>in</strong>ed with an onl<strong>in</strong>e microreactor technique. [2] This Comb<strong>in</strong>ation has proven to<br />

be an excellent tool to <strong>in</strong>vestigate reaction mechanisms <strong>in</strong> solution as it allows the<br />

detection of short-lived, reactive molecules such as radical species.<br />

We have identified enam<strong>in</strong>e radical cation species <strong>in</strong> the case of four commonly used<br />

imidazolid<strong>in</strong>-4-one organocatalysts so far. Subsequent reactions of the enam<strong>in</strong>e radicals<br />

with e.g. styrene (Fig.1) could be observed <strong>in</strong> our experiments as well. [2] Currently,<br />

the project is extended towards establish<strong>in</strong>g electrochemical oxidation onl<strong>in</strong>e<br />

coupled to the MS to replace the chemical oxidant.<br />

A second project aims on mechanism elucidation of enam<strong>in</strong>e mediated, prol<strong>in</strong>e catalysed<br />

reactions which has been a strongly <strong>in</strong>vestigated field of organocatalysis <strong>in</strong> the<br />

last years. Therefore a charge labeled, prol<strong>in</strong>e based organocatalysts was synthesized.<br />

The catalyst carries a fixed charge far away from the catalytic center which enables<br />

us to detect <strong>in</strong>termediate species <strong>in</strong> low concentrations via MS without <strong>in</strong>fluenc<strong>in</strong>g<br />

the properties of the catalytic center.<br />

Figure 1. In situ formation of an <strong>in</strong>termediate enam<strong>in</strong>e radical (red) cation and follow<strong>in</strong>g<br />

reaction with styrene under SOMO catalysis conditions.<br />

[1] T. D. Beeson, A. Mastracchio, J. Hong, K. Ashton, D. W. C. MacMillan, Science, 2007, 316,<br />

582. [2] R. Beel, S. Kobialka, M.L. Schmidt, M. Engeser, Chem.Comm. 2011, 47, 3293.<br />

128 Thursday 17:40 - 20:10 Poster 071


The <strong>in</strong>fluence of calc<strong>in</strong>ation parameters on Cu catalysts<br />

derived from mixed Cu,Zn hydroxy-carbonate precursors<br />

Julia Schumann, Andrey Tarasov, Nygil Thomas, Robert Schlögl, Malte Behrens<br />

Department of Inorganic Chemistry – Fritz-Haber-Institut der Max-Planck-Gesellschaft –<br />

Faradayweg 4-6 – Berl<strong>in</strong> – GER<br />

schumann@fhi-berl<strong>in</strong>.mpg.de<br />

Methanol is one of the most important bulk chemicals. Its synthesis is performed<br />

over Cu/ZnO/Al2O3 catalysts. The well-established catalyst preparation by coprecipitation<br />

leads to a precursor system with a complex phase mixture [1] , conta<strong>in</strong><strong>in</strong>g<br />

different hydroxy-carbonates. Thermogravimetric (TG) measurements show, that the<br />

decomposition of Cu,Zn hydroxy-carbonates dur<strong>in</strong>g calc<strong>in</strong>ation proceeds <strong>in</strong> two ma<strong>in</strong><br />

steps: After the desorption of surface water, firstly, H2O and CO2 are released simultaneously<br />

and <strong>in</strong> a second step only CO2 is released. The <strong>in</strong>termediate is therefore<br />

termed “high temperature carbonate” (HT-CO3). [2] Accord<strong>in</strong>g to the TG data, the<br />

typical calc<strong>in</strong>ation temperatures around 350 ◦ C would favor the formation of HT-<br />

CO3, but its role for the catalytic activity is unclear. The aim of this study is to<br />

<strong>in</strong>vestigate the <strong>in</strong>fluence of the calc<strong>in</strong>ation parameters on the properties and catalytic<br />

performance of catalysts derived from z<strong>in</strong>cian malachite and aurichalcite precursors.<br />

We prepared two series of catalysts by variation of the calc<strong>in</strong>ation conditions. The<br />

first series starts from a phase pure aurichalcite, (Zn,Cu)5(CO3)2(OH)6, with a molar<br />

metal ratio Cu/Zn of 40:60. The second series starts from a z<strong>in</strong>cian malachite,<br />

(Cu,Zn)(CO3)(OH)2 (Cu/Zn 80:20) precursor. All samples were calc<strong>in</strong>ed <strong>in</strong> a rotat<strong>in</strong>g<br />

furnace at 330 ◦ C for 3 h with a flow of 100 ml/m<strong>in</strong>. The heat<strong>in</strong>g rates were varied<br />

between 0.1 and 2 K/m<strong>in</strong>. The result<strong>in</strong>g catalysts have been characterized <strong>in</strong> depth<br />

by XRD, TG analysis and IR spectroscopy and the catalytic activities <strong>in</strong> methanol<br />

synthesis have been tested.<br />

TG <strong>in</strong>vestigations of the calc<strong>in</strong>ed sample series revealed, that catalysts heated with<br />

different heat<strong>in</strong>g rates conta<strong>in</strong> different amounts of HT-CO3 after calc<strong>in</strong>ation. By <strong>in</strong>creas<strong>in</strong>g<br />

the heat<strong>in</strong>g rate, more water accumulates <strong>in</strong> the atmosphere above the sample<br />

and cannot be purged out fast enough. The amount of water <strong>in</strong> the atmosphere dur<strong>in</strong>g<br />

calc<strong>in</strong>ation crucially <strong>in</strong>fluences the decomposition k<strong>in</strong>etics of the hydroxy-carbonate<br />

by promot<strong>in</strong>g the decomposition of the HT-CO3 and the crystallization of the metal<br />

oxides CuO and ZnO. [3] This is confimed by XRD measurements. The samples with<br />

the highest heat<strong>in</strong>g rates are most crystall<strong>in</strong>e <strong>in</strong> both series, the samples of the exaurichalcite<br />

series with lower heat<strong>in</strong>g rates are nearly amorphous, with some weak<br />

features that cannot be ascribed to either ZnO or CuO. IR spectra of the calc<strong>in</strong>ed<br />

samples show bands <strong>in</strong> the carbonate region, similar to the ones <strong>in</strong> the precursors.<br />

Here aga<strong>in</strong>, the samples with the highest heat<strong>in</strong>g rate differ from the other samples by<br />

show<strong>in</strong>g weaker and much broader features. Copper metal surface areas varied <strong>in</strong> a<br />

range of 19-25 m 2 /g and 13-19 m 2 /g for the ex-aurichalcite and ex-z<strong>in</strong>cian malachite<br />

series, respectively. Activity <strong>in</strong> methanol synthesis was measured, but only differences<br />

smaller 10 % were found. There is an apparent trend <strong>in</strong> the activity data (normalized<br />

per weighed portion), but this trend is reversed when normaliz<strong>in</strong>g the activity to the<br />

actual reduced mass of catalyst. Therefore, no beneficial effect of a large amount of<br />

HT-CO3 for the catalytic activity <strong>in</strong> methanol synthesis was observed.<br />

[1] C. Baltes, S. Vukojevic, F. Schüth, J. Catal. 2008, 258, 334.<br />

[2] M. Behrens, F. Girgsdies, A. Trunschke, R. Schlögl, Eur. J. Inorg. Chem. 2009, 1347.<br />

[3] S. Fujita, S. Moribe, Y. Kanamori, R. Takezawa, React. K<strong>in</strong>et. Catal. Lett. 2000, 11.<br />

Poster 072 Thursday 17:40 - 20:10 129


Gold-catalyzed Cycloisomerization of Fluor<strong>in</strong>ated Allenes:<br />

Application <strong>in</strong> BODIPY-Synthesis<br />

L<strong>in</strong>da Lempke ∗ , Norbert Krause ∗ , Tobias Fischer † , Knut Rurack †<br />

∗ Organic Chemistry – TU Dortmund – Otto-Hahn-Straße 6 – 44227 Dortmund – GER<br />

† Bundesanstalt für Materialforschung und -prüfung – Fachbereich 1.9 –<br />

Richard-Willstätter-Straße 11 – 12489 Berl<strong>in</strong> – GER<br />

L<strong>in</strong>da.Lempke@tu-dortmund.de<br />

The gold-catalyzed cycloisomerization of α-functionalized allenes is a well-known<br />

reaction. [1] Us<strong>in</strong>g this selective formation to prepare functionalized cycloisomerization<br />

products is of particular value for different applications or the total synthesis of<br />

natural products and their derivatives.<br />

In this project, the gold-catalyzed cycloisomerization of fluor<strong>in</strong>ated α-am<strong>in</strong>oallenes is<br />

applied for the synthesis of new BODIPY (boron-dipyrromethene) fluorescent dyes. [2]<br />

Furthermore the use of ionic liquids as reaction medium for gold-catalyzed cyclisation<br />

reactions [3] offers the possibility of recycl<strong>in</strong>g the catalyst, thus enhanc<strong>in</strong>g susta<strong>in</strong>ability<br />

and <strong>in</strong>dustrial practicability.<br />

BODIPY’s have particular spectroscopic properties like small stoke shifts and high<br />

quantum yields which open new avenues for their application. The high fluor<strong>in</strong>e content<br />

facilitates XPS-measurements beside the possibility of conventional fluorescent<br />

detection.<br />

Abb.1. Au-catalyzed cycloisomerisation as a key-step <strong>in</strong> BODOPY synthesis.<br />

[1] C. W<strong>in</strong>ter, N. Krause, Chem. Rev. 2011, 111, 1994-2009.<br />

[2] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184-1201.<br />

[3] Ö. Aksın, N. Krause, Adv. Synth. Catal. 2008, 350, 1106-1112.<br />

130 Thursday 17:40 - 20:10 Poster 073


One-pot organocatalytic asymmetric synthesis of<br />

nitrogenated tricyclic compounds<br />

David Sadaba ∗ , Ignacio Delso † , Tomas Tejero ∗ , Pedro Mer<strong>in</strong>o ∗<br />

∗ Departamento de Síntesis y Estructura de Biomoléculas –<br />

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) – C/ Pedro Cerbuna, 12 –<br />

Zaragoza – ESP<br />

† Servicio de Resonancia Magnética Nuclear –<br />

Centro de Química y Materiales de Aragón (CEQMA) – C/ Pedro Cerbuna, 12 –<br />

Zaragoza – ESP<br />

dsadaba@unizar.es<br />

Five-membered cyclic nitrones have been demonstrated to be <strong>in</strong>terest<strong>in</strong>g heterocycles<br />

and attractive build<strong>in</strong>g blocks for the synthesis of a variety of nitrogenated compounds<br />

conta<strong>in</strong><strong>in</strong>g a pyrrolid<strong>in</strong>e r<strong>in</strong>g <strong>in</strong> their structure, many of them of biological <strong>in</strong>terest.<br />

Most of the reported syntheses of enantiomerically pure five-membered cyclic nitrones<br />

employ natural sugars as start<strong>in</strong>g materials. A different approach was carried out<br />

<strong>in</strong> order to prepare other cyclic nitrones with different substituents, us<strong>in</strong>g common<br />

reactants such as nitrostyrene.<br />

In this work, a new three-step one-pot methodology was developed. The first step<br />

is a Michael addition reaction of an aldehyde (1) to a nitroalkene (2). This is an<br />

organocatalytic reaction mediated by a prol<strong>in</strong>ol chiral derivative. [1] This reaction generates<br />

two chiral carbons <strong>in</strong> a γ-nitroaldehyde compound. In the follow<strong>in</strong>g step, the<br />

reduction of the nitro group to hydroxylam<strong>in</strong>e group was done and, <strong>in</strong> situ, the condensation<br />

of the latter one with the aldehyde to yield the nitrone (3) took place. The<br />

treatment of the reaction mixture provided alkenyl nitrones (3d) gave spontaneously<br />

an <strong>in</strong>tramolecular 1,3-dipolar cycloaddition lead<strong>in</strong>g to tricyclic derivatives 4. [2]<br />

Figure 1<br />

Acknowledgements:<br />

D. S. thanks the Spanish Council for Scientific Research (CSIC) for his JAE-predoctoral grant.<br />

References:<br />

[1] For a review see: D. Roca-Lopez, D. Sadaba, I. Delso, R. P. Herrera, T. Tejero, P. Mer<strong>in</strong>o,<br />

Tetrahedron: Asymmetry 2010, 21, 2561-2601.<br />

[2] D.Sadaba, I. Delso, T. Tejero, P. Mer<strong>in</strong>o, Tetrahedron: Lett 2011, 52, 5976-5979.<br />

Poster 074 Thursday 17:40 - 20:10 131


The effect of tertiary am<strong>in</strong>es on the structure and selectivity<br />

of dialkylallium alkoxides <strong>in</strong> the polymerization of rac-LA<br />

Anna Maria Dabrowska, Anna Litw<strong>in</strong>ska, Pawel Horeglad<br />

Chemistry – University of Warsaw – Zwirki i Wigury 101 – Warsaw – POL<br />

anna.m.dabrowska@student.uw.edu.pl<br />

Polylactide (PLA), called a “nature’s polyethylene” [1] , is well known for its good<br />

mechanical properties, biodegradability, and biocompatibility. Moreover, it can be<br />

synthesized from renewable resources. These make PLA environmentally friendly<br />

polymer of many potential applications. The latter results from the properties of<br />

polylactide (PLA), which depend significantly on its tacticity. Therefore it is essential<br />

to synthesize PLA <strong>in</strong> the controlled and stereoselective way. One of the most<br />

promis<strong>in</strong>g methods for the synthesis of PLA is the r<strong>in</strong>g-open<strong>in</strong>g polymerization (ROP)<br />

of racemic lactide (rac-LA) us<strong>in</strong>g metal alkoxides as <strong>in</strong>itiators.<br />

Dialkylgallium alkoxides are very <strong>in</strong>terest<strong>in</strong>g catalysts as they can polymerize rac-LA<br />

<strong>in</strong> controlled and stereoselective manner. [2] We showed that heterotactically enriched<br />

polylactide can be obta<strong>in</strong>ed <strong>in</strong> the presence of dialkylgallium alkoxides modified with<br />

Lewis bases, while the heteroselectivity was found to be strongly related to the coord<strong>in</strong>ation<br />

efficiency of a Lewis base to Ga center (Scheme 1). [2] Noteworthy is the<br />

fact that dialkylgallium enabled for the first time the facile switch of stereoselectivity<br />

dur<strong>in</strong>g the process of polymerization as the use of strong Lewis bases, such<br />

as N-heterocyclic carbenes, for the complexation of dialkylgallium alkoxides led to<br />

isoselective gallium catalysts. [3]<br />

It is therefore important to exam<strong>in</strong>e <strong>in</strong> details the effect of various Lewis bases on<br />

the activity and stereoselectivity of obta<strong>in</strong>ed dialkylgallium catalysts. I am go<strong>in</strong>g to<br />

present the results of our studies on the effect of tertiary am<strong>in</strong>es on the structure and<br />

selectivity of dialkylgallium alkoxides, and the structure of obta<strong>in</strong>ed polylactide.<br />

Scheme 1<br />

[1] D.J. Cole-Hamilton, Angewandte Chemie 2010, 49, 8564-8566.<br />

[2] P. Horeglad, P. Kruk, J. Pecaut, Organometallics 2010, 29, 3729-3734.<br />

[3] P. Horeglad, G. Szczepaniak, M. Dranka, J. Zachara, Chemical Communications 2012, 48,<br />

1171-1173.<br />

132 Thursday 17:40 - 20:10 Poster 075


Supported MoV-Mixed Metal Oxide Catalyst for Selective<br />

Oxidation of Propane<br />

Pia Kjaer Nielsen, Kazuhiko Amakawa, Annette Trunschke, Robert Schlögl<br />

Anorganische Chemie – Fritz-Haber-Institut der Max-Planck-Gesellschaft –<br />

Faradayweg 4-6 – 14195 Berl<strong>in</strong> – GER<br />

pia@fhi-berl<strong>in</strong>.mpg.de<br />

Introduction<br />

MoV-mixed metal oxides are frequently applied as catalysts for selective oxidation,<br />

<strong>in</strong> bulk phases as well as supported systems. [1] Support<strong>in</strong>g the metal oxide phases<br />

on a high surface area, mesoporous, and <strong>in</strong>ert SiO2 material, allows the possibility<br />

to study the model catalyst surface isolated from bulk properties. In this study we<br />

report a systematic <strong>in</strong>vestigation of the effects of the V:Mo metal oxide ratio of such<br />

supported model systems.<br />

Experimental<br />

Supported MoV-mixed metal oxides were prepared by anchor<strong>in</strong>g (NH4)6Mo7O24<br />

and NH4VO3 to the surface of functionalized SBA-15 by apply<strong>in</strong>g an ion exchange<br />

methodology. [2] Upon calc<strong>in</strong>ation the metal oxide precursors decomposed to disperse<br />

metal oxide species on the surface of the support. A series of samples of vary<strong>in</strong>g<br />

V:Mo ratio with constant total metal load<strong>in</strong>g was obta<strong>in</strong>ed. Materials were characterized<br />

by N2-physisorption, XRD, XRF, SEM/EDX along with <strong>in</strong> situ Raman and<br />

UV-vis spectroscopy, before their catalytic performance <strong>in</strong> oxidative dehydrogenation<br />

of propane (ODP) was <strong>in</strong>vestigated.<br />

Results<br />

The mesoporous structure of SBA-15 is ma<strong>in</strong>ta<strong>in</strong>ed, while the metal oxide species are<br />

distributed homogeneously throughout the f<strong>in</strong>al catalyst materials. Due to the variation<br />

<strong>in</strong> ratios, the <strong>in</strong>teraction between the V and Mo oxides differs. The <strong>in</strong>teraction<br />

has been analyzed us<strong>in</strong>g <strong>in</strong> situ UV-vis and Raman spectroscopy. A consequence of<br />

this variation is difference <strong>in</strong> the catalytic behavior <strong>in</strong> ODP.<br />

[1] H. Dai et al. Journal of Catalysis 2004, 221, 491-499.<br />

[2] Hess et al. J. Phys. Chem. B 2004, 108 (28), 9703-9709.<br />

Poster 076 Thursday 17:40 - 20:10 133


Group 4 Sugar Complexes and Their Application <strong>in</strong> Catalysis<br />

Anne Sachs, Jürgen Heck<br />

Chemistry – Hamburg – Mart<strong>in</strong>-Luther-K<strong>in</strong>g-Platz 6 – Hamburg – GER<br />

sachs@chemie.uni-hamburg.de<br />

In the last decade, we were successful to synthesise various organometallic complexes<br />

of early transition metals with monosaccharide ligands. The obta<strong>in</strong>ed structures are<br />

anionic or neutral d<strong>in</strong>uclear complexes which are bridged via one or two pyranosidato<br />

ligands. [1-3]<br />

Our first complex of this class of compounds was achieved by reaction of CpZrCl3(thf)2<br />

with methyl-4,6-O-benzylidene-β-D-glucopyranoside <strong>in</strong> presence of triethylam<strong>in</strong>e. [1]<br />

Thereby, the complex conta<strong>in</strong><strong>in</strong>g benzylidene protected glucopyranosidato ligands<br />

forms a U-shaped chiral cavity with C 2-symmetry. The anionic zirconate complex 1<br />

<strong>in</strong>corporates a triethylammmonium cation form<strong>in</strong>g a host-guest couple. Add<strong>in</strong>g other<br />

am<strong>in</strong>es the <strong>in</strong>corporated cation is substituted. By us<strong>in</strong>g a racemic mixture the chiral<br />

cavity is able to discrim<strong>in</strong>ate between R- and S-enantiomers. [4]<br />

We obta<strong>in</strong>ed a similar complex conta<strong>in</strong><strong>in</strong>g two titanium centres by us<strong>in</strong>g Cp* <strong>in</strong>stead<br />

of Cp. Molecule 2 conta<strong>in</strong>s only two chlorido ligands and for this reason it is neutral<br />

and cannot <strong>in</strong>corporate other anions. 2 is used as precatalyst for hydroam<strong>in</strong>ation<br />

reactions. [5]<br />

Next to d<strong>in</strong>uclear compounds we are also try<strong>in</strong>g to synthesise mononuclear titanium<br />

and zirconium sugar complexes to use them also as catalysts <strong>in</strong> different reactions.<br />

Figure D<strong>in</strong>uclear anionic zirconate complex 1 and neutral titanium complex 2<br />

[1] L. Jessen, E. T. K. Haupt, J. Heck, Chem. Eur. J. 2001, 7, 3791-3797.<br />

[2] C. Bolm, F. E. Hahn, Activat<strong>in</strong>g Unreactive Substrates, Wiley-VCH Verlag GmbH & Co.<br />

KGaA, We<strong>in</strong>heim, 2009, 147-164.<br />

[3] S. Tschersich, M. Böge, D. Schwidom, J. Heck, Rev. Inorg. Chem. 2011, 31, 27-55.<br />

[4] P. Kitaev, Dissertation, University of Hamburg, 2009.<br />

[5] D. Küntzer, L. Jessen, J. Heck, Chem. Commun. 2005, 5653-5655.<br />

134 Thursday 17:40 - 20:10 Poster 077


Structure and reactivity of supported VOx and MoOx<br />

selective oxidation catalysts<br />

Juliane Scholz , Thorsten Ressler<br />

Institut für Chemie – Technische Universität Berl<strong>in</strong> –<br />

Sekr. C2 / Straße des 17. Juni 135 – 10623 Berl<strong>in</strong> – GER<br />

juliane.scholz@tu-berl<strong>in</strong>.de<br />

Heterogeneous catalysis is an important tool to convert resources to valuable chemicals.<br />

One of the most important reactions to generate functionalized hydrocarbons<br />

is selective oxidation of alkanes and alkenes with molybdenum and vanadium based<br />

oxide catalysts. Industrially used catalysts exhibit a highly complex chemical composition.<br />

To understand pr<strong>in</strong>ciple reaction processes <strong>in</strong> catalytic oxidation it is essential<br />

to study model systems under simplified conditions. Nanostructured oxide materials<br />

are often used as support, to create suitable model systems for detailed simultaneous<br />

<strong>in</strong>vestigations of catalysts structure and performance. The structure of the surface oxide<br />

catalysts is significantly affected by the properties of the support material. Thus,<br />

it is possible to generate a variety of molecular model catalyst structures.<br />

Here, we <strong>in</strong>vestigated the <strong>in</strong>fluence of MgO-coated SBA-15 (MgO/SBA-15 ) with alkal<strong>in</strong>e<br />

surface properties on the structure of vanadium and molybdenum oxide catalysts.<br />

To ga<strong>in</strong> deeper <strong>in</strong>sight <strong>in</strong>to structure activity correlation, we used a comb<strong>in</strong>ation of<br />

spectroscopic techniques and simultaneous determ<strong>in</strong>ation of catalytic activity under<br />

selective propene oxidiz<strong>in</strong>g conditions. The alkal<strong>in</strong>e character of the MgO-based<br />

support led to the formation of highly simplified catalysts units. X-ray absorption<br />

spectroscopy (XAS) and diffuse reflectance UV-Vis (DR-UV-Vis) spectroscopy measurements<br />

showed that a similar structural motif was obta<strong>in</strong>ed for VOx and MoOx<br />

supported on MgO/SBA-15 with a tetrahedral arrangement of oxygen atoms around<br />

the metal centers. In situ XAS <strong>in</strong>vestigations under propene oxidiz<strong>in</strong>g conditions<br />

revealed a correlation between structural changes and the onset of catalytic activity.<br />

Selectivity towards the selective oxidation of propene to acrole<strong>in</strong> was directly correlated<br />

to the number of bridg<strong>in</strong>g M–O–M bonds (Fig. 1). Thus, the presence of<br />

nucleophilic oxygen <strong>in</strong> the M–O–M bond proved to be crucial for selective oxidation.<br />

Fig. 1: Selectivity towards acrole<strong>in</strong> of supported vanadium oxides at different V load<strong>in</strong>gs<br />

compared to a supported molybdenum oxide under propene oxidiz<strong>in</strong>g conditions.<br />

We acknowledge HASYLAB, Hamburg and the Deutsche Forschungsgeme<strong>in</strong>schaft (DFG) for provid<strong>in</strong>g<br />

beamtime and f<strong>in</strong>ancial support, respectively.<br />

Poster 078 Thursday 17:40 - 20:10 135


New method for assessment of the photocatalytic<br />

degradation of VOCs based on FTIR technique<br />

Patrycja Lyczkowska, Małgorzata Cieślak, Grzegorz Celichowski<br />

Department of Materials Technology and Chemistry – University of Lodz –<br />

Pomorska 163 – Lodz – POL<br />

plyczkowska@uni.lodz.pl<br />

These studies were carried out <strong>in</strong> cooperation with Scientific Department of Unconventional<br />

Technologies and Textiles, Textile Research Institute, Brzez<strong>in</strong>ska 5/15, 92-103<br />

Lodz, Poland (Head of work: PhD Eng. Małgorzata Cieślak)<br />

Indoor air quality (IAQ) is one of the most significant factors affect<strong>in</strong>g the health and<br />

well-be<strong>in</strong>g of people who spend a lot of time <strong>in</strong> their lives <strong>in</strong>doors. Volatile organic<br />

compounds (VOCs) <strong>in</strong>clude a variety of chemicals, which adversely affect on human<br />

health. Among the different treatment methods developed for the degradation of<br />

VOCs, photocatalytic oxidation process with us<strong>in</strong>g titanium dioxide as photocatalyst<br />

can be considered as an <strong>in</strong>novative and promis<strong>in</strong>g solution. Currently, research is<br />

carried out on the modification of textile materials with titanium dioxide. The evaluation<br />

of the photocatalytic activity of different forms of titanium dioxide and textile<br />

materials modified by them requires search<strong>in</strong>g a suitable techniques.<br />

The aim of this study was the development of a new measurement method for the<br />

photocatalytic effectiveness assessment based on Fourier Transform Infrared Spectroscopy<br />

(FTIR) technique. FTIR Spectrometer Bruker Vertex 70 equipped with the<br />

gas cuvette was used and the specially photoreactor (with quartz cover) connected to<br />

FTIR was built. The Xenon lamp Optel (150 W) to the photocatalytic process was<br />

used. The photocatalytic activity of titanium oxide (IV) (TiO2) and titanium oxide<br />

(IV) modified by silver (TiO2/Ag) was tested. As a model of VOCs the toluene was<br />

selected.<br />

It was found that, the assessment of the photocatalytic activity of titanium dioxide<br />

towards VOCs us<strong>in</strong>g developed method based on FTIR spectroscopy technique is<br />

possible.<br />

136 Thursday 17:40 - 20:10 Poster 079


Mechanistic Investigations of the Palladium-Catalysed<br />

Arylation of Pyrid<strong>in</strong>e N-Oxides<br />

Emma Svensson, Sasa Duric, S<strong>in</strong>a Zucker, C. Christoph Tzschucke<br />

Chemie und Biochemie – Freie Universität Berl<strong>in</strong> – Takustr. 3 – Berl<strong>in</strong> – GER<br />

emma-svensson@hotmail.com<br />

Direct arylation of pyrid<strong>in</strong>e N-oxides via palladium-catalysed C-H-activation has<br />

shown to be a convenient synthesis of substituted bipyrid<strong>in</strong>e N-oxides. [1,2] The limitation<br />

of the coupl<strong>in</strong>g reaction lies with<strong>in</strong> the electronic properties of the pyrid<strong>in</strong>e Noxide.<br />

Direct arylation of electron-deficient substrates such as 4-ethoxycarbonylpyrid<strong>in</strong>e<br />

N-oxide gives product <strong>in</strong> good yields (eq. 1). [1] On the contrary, arylation of unsubstituted<br />

pyrid<strong>in</strong>e N-oxides is highly dependent on the nature of aryl halide. Reaction<br />

with 4-bromotoluene gives the product <strong>in</strong> high yields (eq. 2), [2] whereas arylation<br />

with 2-bromopyrid<strong>in</strong>e is limited and gives bipyrid<strong>in</strong>e N-oxide <strong>in</strong> low yields (eq. 3).<br />

Initial k<strong>in</strong>etic measurements <strong>in</strong>dicate that the rate-limit<strong>in</strong>g step for pyrid<strong>in</strong>e N-oxides<br />

with electron-withdraw<strong>in</strong>g groups is the C-H-activation, regardless of aryl halide.<br />

Prelim<strong>in</strong>ary data of the coupl<strong>in</strong>g of electron-rich pyrid<strong>in</strong>e N-oxides with bromobenzene<br />

displays a l<strong>in</strong>ear consumption of aryl halide, whereas decay of bromopyrid<strong>in</strong>e does<br />

not show the same l<strong>in</strong>earity. However, k<strong>in</strong>etic measurements of bromopyrid<strong>in</strong>e are<br />

h<strong>in</strong>dered due to a decomposition pathway where nucleophilic attack of pyrid<strong>in</strong>e Noxide<br />

on bromopyrid<strong>in</strong>e forms the N-(2-pyridyl)-2-pyridone product.<br />

Here<strong>in</strong>, we present k<strong>in</strong>etic measurements of the direct arylation of electron-deficient<br />

and electron-rich substrates. Further mechanistic <strong>in</strong>vestigations with different electrophiles<br />

will be performed to elucidate the <strong>in</strong>fluence of aryl halide <strong>in</strong> the coupl<strong>in</strong>g<br />

reaction.<br />

[1] S. Duric, C. C. Tzschucke, Org. Lett. 2011, 13, 2310.<br />

[2] L. C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020.<br />

Poster 080 Thursday 17:40 - 20:10 137


Catalyst degradation <strong>in</strong> direct methanol fuel cells<br />

Alexander Schökel ∗ , Claudia Brieger † , Christ<strong>in</strong>a Roth †<br />

∗ Materials Science – TU Darmstadt – Petersenstr. 23 – Darmstadt – GER<br />

† Institute of Chemistry and Biochemistry – FU Berl<strong>in</strong> – Takustr. 3 – Berl<strong>in</strong> – GER<br />

schoekel@energy.tu-darmstadt.de<br />

Introduction<br />

One of the major degradation mechanisms <strong>in</strong> direct methanol fuel cells utiliz<strong>in</strong>g a<br />

carbon-supported plat<strong>in</strong>um-ruthenium alloy catalyst (PtRu/C) (see [1] ) is the dissolution<br />

of ruthenium from the anode catalyst and consecutive migration and deposition<br />

of Ru species onto the cathode catalyst and other parts of the fuel cell. While there<br />

are various reports about Ru dissolution from unsupported (e.g. [2] ) and supported<br />

catalysts (e.g. [3] ), none of these focusses on elucidat<strong>in</strong>g the mechanisms <strong>in</strong>volved on<br />

an early timescale of operation (0 − 100 h).<br />

Experimental<br />

Two different techniques (wet spray<strong>in</strong>g and hot press<strong>in</strong>g) for preparation of the<br />

membrane-electrode assemblies (MEA) were chosen to study the <strong>in</strong>fluence of the electrode<br />

preparation process. MEAs from both preparation routes were subjected to<br />

specific operation conditions <strong>in</strong> a methanol fuel cell. This way, a set of samples with<br />

different histories (i.e. cell potential, runtime, fuel) was created and analyzed us<strong>in</strong>g<br />

different techniques. While the particle size was determ<strong>in</strong>ed by X-ray diffraction<br />

(XRD), the Ru content was measured by quantitative synchrotron X-ray fluorescence<br />

spectroscopy (synXRF) and cyclic voltammetry (CV). X-ray absorption spectroscopy<br />

(XAS) was used as a f<strong>in</strong>gerpr<strong>in</strong>t technique to identify the chemical nature of the<br />

ruthenium by comparison of the near edge features. The most important drawback is<br />

the low concentration of Ru species, which is high enough to severly impact the performance,<br />

but almost too low to be detected by standard characterization techniques.<br />

Results<br />

It is observed that already dur<strong>in</strong>g preparation of the MEA a crossover of ruthenium<br />

from the anode to the cathode occurs. As there is no cell potential <strong>in</strong>volved, this has<br />

to be attributed to soluble Ru species permeat<strong>in</strong>g through the membrane. A process<br />

that most def<strong>in</strong>itely cont<strong>in</strong>ues dur<strong>in</strong>g further operation of the fuel cell.<br />

It was possible to obta<strong>in</strong> XAS spectra of catalyst samples conta<strong>in</strong><strong>in</strong>g ruthenium <strong>in</strong><br />

the 10 - 100 ppm range. The quality of the cathode samples’ spectra is good enough<br />

to compare the absorption edge shape to known ruthenium references and identify<br />

the ruthenium’s oxidation state.<br />

Tak<strong>in</strong>g <strong>in</strong>to account the different histories of the samples, we see the expected correlation<br />

between runtime and amount of Ru migration (i.e. longer runtime means more<br />

Ru be<strong>in</strong>g transferred). The correlation between cell potential and Ru migration on<br />

the other hand is not that obvious and will be discussed <strong>in</strong> further detail.<br />

Acknowledgements<br />

The authors gratefully acknowledge the f<strong>in</strong>ancial support from the Federal M<strong>in</strong>istry<br />

of Economics and Technology, Germany (Grant no. 0327853-C).<br />

[1] E. J. Antol<strong>in</strong>i, Solid State Electrochem. 2011, 15, 455.<br />

[2] P. Piela, C. Eickes, E. Brosha, F. Garzon, P. J. Zelenay Electrochem. Soc. 2004, 151, A2053.<br />

[3] FZ Juelich, IEF-3 Report 2007<br />

138 Thursday 17:40 - 20:10 Poster 081


Sulfoxim<strong>in</strong>es as Ligands <strong>in</strong> Copper-Catalysed Asymmetric<br />

Friedel-Crafts Reactions<br />

Anne-Dorothee Ste<strong>in</strong>kamp, Marcus Fr<strong>in</strong>gs, Carsten Bolm<br />

Institut für Organische Chemie – RWTH Aachen University – Landoltweg 1 –<br />

52074 Aachen – GER<br />

Anne.Dorothee.Ste<strong>in</strong>kamp@rwth-aachen.de<br />

Indole-conta<strong>in</strong><strong>in</strong>g compounds are ubiquitous, and many of them exhibit <strong>in</strong>terest<strong>in</strong>g<br />

biological activity. One strategy commonly employed to further functionalise <strong>in</strong>doles is<br />

a Friedel-Crafts reaction, one of the most important methods to form bonds between<br />

two carbon atoms. S<strong>in</strong>ce Jørgensen published the metal-catalysed enantioselective<br />

alkylation of <strong>in</strong>doles <strong>in</strong> 2001, [1] additional research projects have been accomplished<br />

<strong>in</strong> this field. [2]<br />

Sulfoxim<strong>in</strong>es have been verified as powerful ligands <strong>in</strong> asymmetric metal catalysis.<br />

C2-symmetric bissulfoxim<strong>in</strong>es, for example, have been sucessfully employed <strong>in</strong> allylic<br />

alkylations [3] and (hetero)-Diels-Alder reactions. [4]<br />

Here, we present our prelim<strong>in</strong>ary results of an asymmetric Friedel-Crafts reaction between<br />

<strong>in</strong>dole (1) and diethyl-2-benzylidenemalonate (2) catalysed by a chiral sulfoxim<strong>in</strong>ecopper-complex<br />

to achieve the desired product 3 <strong>in</strong> high enantioselectivity.<br />

[1] a) W. Zhuang, T. Hansen, K. A. Jørgensen, Chem. Commun. 2001, 347-348; b) K. B. Jensen,<br />

J. Thorhauge, R. G. Hazell, K. A. Jørgensen, Angew. Chem. 2001, 113, 164-167; Angew. Chem.<br />

Int. Ed. 2001, 40, 160-163.<br />

[2] For selected examples, see: a) J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030-9031;<br />

b) G. Huang, H. Sun, X. Qiu, Y. Shen, J. Jiang, L. Wang, J. Org. Chem. 2011, 696, 2949-2957;<br />

c) H. J. Lee, D. Y. Kim, Synlett 2012, 23, 1629-1632.<br />

[3] C. Bolm, O. Simić, M. Mart<strong>in</strong>, Synlett 2001, 1878-1880.<br />

[4] a) C. Bolm, O. Simić, J. Am. Chem. Soc. 2001, 123, 3830-3831; b) C. Bolm, M. Mart<strong>in</strong>, O.<br />

Simić, M. Verrucci, Org. Lett. 2003, 5, 427-429.<br />

Poster 082 Thursday 17:40 - 20:10 139


A simple model of a copolymer cha<strong>in</strong>: the <strong>in</strong>fluence of the<br />

conf<strong>in</strong>ement on the structure<br />

Tomasz Piskorz , Andrzej Sikorski<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

tomasz.k.piskorz@gmail.com<br />

A coarse-gra<strong>in</strong>ed model of polymer cha<strong>in</strong>s on a three-dimensional lattice was built.<br />

The cha<strong>in</strong>s were represented by sequences if beads a [310] hybrid lattice. The l<strong>in</strong>ear<br />

and star-branched cha<strong>in</strong>s were under consideration. The Monte Carlo simulations<br />

employ<strong>in</strong>g the algorithm with micromodifications of cha<strong>in</strong>’s conformation was performed.<br />

The size, structure and order<strong>in</strong>g <strong>in</strong> model macromolecules were <strong>in</strong>vestigated.<br />

[1] I. Carmes<strong>in</strong>, K. Kremer, Macromolecules 1988, 21 (9), 2819-2823<br />

140 Thursday 17:40 - 20:10 Poster 083


Stereoselective Intramolecular Cyclopropanation through<br />

Catalytic Olef<strong>in</strong> Activation<br />

Sebastian Klimczyk ∗ , Xueliang Huang ∗ , Luis F. Veiros † , Nuno Maulide ∗<br />

∗ Max-Planck-Institut für Kohlenforschung – Kaiser-Wilhelm-Platz 1 –<br />

45470 Mülheim an der Ruhr – GER<br />

† Departamento de Engenharia Química – Universidade Técnica de Lisboa –<br />

Av. Rovisco Pais – 1049-001 Lisboa – POR<br />

klimczyk@mpi-muelheim.mpg.de<br />

The direct cyclopropanation of olef<strong>in</strong>s is an important and valuable transformation<br />

<strong>in</strong> organic synthesis from a laboratory scale all the way to <strong>in</strong>dustrial production, as<br />

cyclopropanes are common structural features of both naturally occur<strong>in</strong>g and nonnatural<br />

bioactive substances. [1] Olef<strong>in</strong> cyclopropanation is dom<strong>in</strong>ated by the powerful<br />

chemistry of diazo compounds, which can be decomposed by specific transition<br />

metals (commonly rhodium, ruthenium, palladium, iridium or copper) to produce<br />

metallocarbene complexes <strong>in</strong> situ. [2] These metallocarbenes are mild and selective<br />

cyclopropanat<strong>in</strong>g agents and perform best with electron-rich or -neutral olef<strong>in</strong>ic partners.<br />

Dur<strong>in</strong>g our recent studies on the gold-catalysed rearrangement of sulfonium ylides<br />

bear<strong>in</strong>g an allyloxycarbonyl moiety, [3] we serendipitously discovered a direct <strong>in</strong>tramolecular<br />

cyclopropanation of sulfonium ylides onto olef<strong>in</strong>s. In this presentation, we shall<br />

report on the development of a gold-catalysed <strong>in</strong>tramolecular cyclopropanation of<br />

electron-neutral alkenes by stabilised sulfonium ylides, mechanistic and computational<br />

<strong>in</strong>vestigations <strong>in</strong>to this process and prelim<strong>in</strong>ary results on an asymmetric version. [4]<br />

Gold-catalysed <strong>in</strong>tramolecular cyclopropanation of sulfonium ylides.<br />

[1]<br />

a) Brackmann, F.; de Meijere, A. Chem. Rev. 2007, 107, 4493; (b) Brackmann, F.; de Meijere,<br />

A. Chem. Rev. 2007, 107, 4538.<br />

[2]<br />

a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis<br />

with Diazo compounds; Wiley Interscience: New York, 1998; b) Lebel, H.; Marcoux, J.-F.;<br />

Mol<strong>in</strong>aro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977; c) Reissig, H.-U.; Zimmer, R. Chem.<br />

Rev. 2003, 103, 1151; d) Maas, G. Chem. Soc. Rev. 2004, 33, 183.<br />

[3]<br />

Huang, X.; Peng, B.; Luparia, M.; Gomes, L. F. R.; Veiros, L. F.; Maulide, N. Angew. Chem.<br />

Int. Ed. 2012, 51, 8886.<br />

[4]<br />

Huang X.; Klimczyk, S.; Veiros, L. S.; Maulide, N. Chem. Sci. <strong>2013</strong> doi: 10.1039/C2SC21914J.<br />

Poster 084 Thursday 17:40 - 20:10 141


Influence of calc<strong>in</strong>ation conditions on supported Cu particles<br />

as a catalyst for methanol steam reform<strong>in</strong>g<br />

Lena Schmidt, Gregor Koch, Thorsten Ressler<br />

Institut für Anorganische und Analytische Chemie – Technische Universität Berl<strong>in</strong> –<br />

Straße des 17. Juni 135 – 10623 Berl<strong>in</strong> – GER<br />

lena.schmidt@mailbox.tu-berl<strong>in</strong>.de<br />

Hydrogen is frequently discussed as energy carrier of the future. Complications <strong>in</strong><br />

handl<strong>in</strong>g due to its gaseous aggregate state can be avoided by chemically b<strong>in</strong>d<strong>in</strong>g hydrogen,<br />

e.g. as methanol. Methanol synthesis and its reverse reaction (i.e. methanol<br />

steam reform<strong>in</strong>g to release hydrogen) are <strong>in</strong>dustrially catalyzed by a Cu/ZnO/Al2<br />

O3 catalyst. [1,2] For a more efficient use of valuable resources catalysts need to be<br />

improved <strong>in</strong> both activity and selectivity. reliable structure-activity relations are required.<br />

In order to exclude contributions from other components, here Cu particles<br />

<strong>in</strong> the size range of few nm and stabilized on a nanostructured silica support were<br />

<strong>in</strong>vestigated as model systems.<br />

Four samples of Cu particles on a SBA-15 support were prepared by <strong>in</strong>cipient wetness<br />

with Cu-citrate solutions with different concentrations. Afterwards samples of<br />

vary<strong>in</strong>g layer thickness and concentration were calc<strong>in</strong>ed under controlled conditions.<br />

Reducibility of the prepared CuO particles and activity of the result<strong>in</strong>g Cu phase<br />

were studied by temperature programmed reduction (TPR) and catalytic measurements<br />

(Fig. 1), respectively. It was shown, that activity <strong>in</strong> methanol steam reform<strong>in</strong>g<br />

and structure of the active Cu phase were <strong>in</strong>fluenced by the calc<strong>in</strong>ation conditions.<br />

Correspond<strong>in</strong>g structure activity correlations are presented.<br />

Fig. 1: Comparison of the relative H2 ion currents under methanol steam reform<strong>in</strong>g<br />

conditions of Cu particles supported on SBA-15 calc<strong>in</strong>ed under different conditions and<br />

with vary<strong>in</strong>g Cu load<strong>in</strong>gs.<br />

[1] S. Sá, H. Silva, Applied Catalysis B 2010, 99, 43.<br />

[2] M. M. Günter, T. Ressler, Catalysis Letters 2001, 71, 37.<br />

142 Thursday 17:40 - 20:10 Poster 085


Cont<strong>in</strong>uous-flow photoreactor packed with magnesium(II)<br />

2,3-bis(1-adamantylsulfanyl)phthalocyan<strong>in</strong>e immobilized on<br />

silica<br />

Michal Kryjewski ∗ , Michal Nowak † , Tomasz Gosl<strong>in</strong>ski † , Jadwiga Mielcarek ∗<br />

∗ Department of Inorganic and Analytical Chemistry –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

† Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

mkryjewski@wp.eu<br />

S<strong>in</strong>glet oxygen ( 1 O2) constitutes a versatile reagent <strong>in</strong> many synthetic approaches,<br />

able to oxidize substrates that are unaffected by oxygen <strong>in</strong> its normal, triplet state. Organic<br />

chemists have found utility of 1 O2 as synthetic reagent, characterized its versatility,<br />

availability, low costs, and negligible environmental impact. 1 O2 reacts rapidly<br />

with unsaturated carbon-carbon bonds <strong>in</strong> ene reactions, [4+2] and [2+2] cycloadditions,<br />

heteroatom oxidations. [1] Phthalocyan<strong>in</strong>es (Pcs) are synthetic aza-analogues of<br />

porphyr<strong>in</strong>s, which upon illum<strong>in</strong>ation with light of an appropriate wavelength generate<br />

1 O2.<br />

We synthesized magnesium(II) 2,3-bis(1-adamantylsulfanyl)phthalocyan<strong>in</strong>e and reported<br />

its photochemical properties. [2] This new macrocycle exhibited high s<strong>in</strong>glet<br />

oxygen quantum yield value Φ∆ = 0.49 <strong>in</strong> both dimethylformamide and dimethylsulfoxide.<br />

Therefore, it was chosen as an active agent <strong>in</strong> design of cont<strong>in</strong>uous-flow<br />

photoreactor for s<strong>in</strong>glet oxygen generation. The phthalocyan<strong>in</strong>e was deposited on<br />

silica gel and next used to pack glass chromatography column. LED array emitt<strong>in</strong>g<br />

light of wavelength λ = 690 nm, correspond<strong>in</strong>g to the absorbance maximum of the<br />

compound, was used.<br />

1,3-Diphenylisobenzfuran (DPBF) is a chemical quencher of s<strong>in</strong>glet oxygen which was<br />

used <strong>in</strong> a hexane solution pass<strong>in</strong>g via column dur<strong>in</strong>g the measurements. Illum<strong>in</strong>ation<br />

of silica gel modified with Pc resulted immediately <strong>in</strong> decrease of DPBF concentration<br />

<strong>in</strong> eluate, while silica gel without immobilized Pc showed no 1 O2 production.<br />

Fig. 1 Scheme of the photoreactor, change of absorbance at λ = 411 nm dur<strong>in</strong>g constant<br />

flow of DPBF solution <strong>in</strong> dark and light conditions.<br />

[1] M. C. DeRosa et al., Coord. Chem. Rev. 2002, 233-234, 351-371.<br />

[2] M. Kryjewski et al., Inorg Chem Commun <strong>2013</strong>, 27, 56-59.<br />

This study was supported by grant from the Polish M<strong>in</strong>istry of Science and Higher Education –<br />

National Science Centre (N N404 069440).<br />

Poster 086 Thursday 17:40 - 20:10 143


Stable ruthenium <strong>in</strong>denylidene complexes with a sterically<br />

reduced NHC ligand<br />

Adam Ziel<strong>in</strong>ski, Grzegorz Szczepaniak, Karol Grela<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

aziel<strong>in</strong>ski2407@gmail.com<br />

Over the past decade olef<strong>in</strong> metathesis became a powerful tool <strong>in</strong> organic synthesis. [1]<br />

New ruthenium complexes that comb<strong>in</strong>e high catalytic activity with excellent tolerance<br />

to multiplicitous functional groups have been developed. [2] Despite the fact that<br />

many modifications of olef<strong>in</strong> metathesis catalysts have been <strong>in</strong>troduced dur<strong>in</strong>g the<br />

past years, obta<strong>in</strong><strong>in</strong>g a new complex that allows good yields with demand<strong>in</strong>g partners<br />

is still a challenge.<br />

S<strong>in</strong>ce the <strong>in</strong>troduction of the ‘first generation’ Ru-based catalysts the basic structure<br />

has been modified lead<strong>in</strong>g to different catalyst families [3] , <strong>in</strong>clud<strong>in</strong>g the most prom<strong>in</strong>ent<br />

mixed N-heterocyclic carb<strong>in</strong>e (NHC)–phosph<strong>in</strong>e metathesis catalysts, described<br />

as ‘second generation’. The replacement of one labile phosph<strong>in</strong>e ligand with a nonlabile<br />

NHC led to an <strong>in</strong>creased longevity of the active species and therefore better<br />

catalyst performance.<br />

A new <strong>in</strong>denylidene complex conta<strong>in</strong><strong>in</strong>g o-tolyl NHC ligand has been synthetized. [4]<br />

The catalytic activity of the complex was <strong>in</strong>vestigated <strong>in</strong> model reactions. Notably,<br />

for the RCM of sterically demand<strong>in</strong>g olef<strong>in</strong>s it is one of the most efficient catalysts<br />

reported so far.<br />

Fig. 1. New o-tolyl Ru catalyst<br />

[1]<br />

T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.<br />

[2]<br />

K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem., Int. Ed. 2002, 41, 4038.<br />

[3]<br />

G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.<br />

[4]<br />

C. Torborg, G. Szczepaniak, A. Zieliński, M. Malińska, K. Woźniak, K. Grela, “Stable Ruthenium<br />

Indenylidene Complexes with a Sterically Reduced NHC Ligand” Chem. Commun. <strong>2013</strong>,<br />

<strong>in</strong> press<br />

144 Thursday 17:40 - 20:10 Poster 087


New Susta<strong>in</strong>able Decarboxylative Allylations of Benzoic acid<br />

Derivatives<br />

Kai Pfister, Lukas J. Gooßen<br />

FB Organische Chemie – Technische Universität Kaiserslautern –<br />

Erw<strong>in</strong>-Schröd<strong>in</strong>ger-Straße Build<strong>in</strong>g 54 – Kaiserslautern – GER<br />

kpfister@chemie.uni-kl.de<br />

With<strong>in</strong> recent years, the field of decarboxylative allylation reactions has undergone<br />

tremendous development. [1] However, most of the known catalytic protocols are versions<br />

of the Carroll rearrangement and extend only to allyl esters of carboxylic acids<br />

that – upon extrusion of CO2 – form stabilized carbanions. [1] Even fewer methods<br />

for the decarboxylative allylation of benzoic acids have been developed and they still<br />

suffer from limited substrate scope, for example the restriction to electron-rich benzoic<br />

acids. [2] Furthermore the requirement of an excess of silver(I) salts and toxic allyl<br />

halides makes this approach less attractive.<br />

We have recently overcome these drawbacks by develop<strong>in</strong>g a waste free method for the<br />

decarboxylative allylation of benzoic acid derivatives without the need of stoichiometric<br />

amount of additives. The developed method gives the correspond<strong>in</strong>g allylbenzenes<br />

<strong>in</strong> good to excellent yields, proceeds at moderate temperatures and produces only CO2<br />

as byproduct.<br />

The new catalyst also allows the conversion of benzoic esters that are generated <strong>in</strong><br />

situ. For example, benzoic acids can be allylated with diallyl carbonate and directly<br />

be converted to the correspond<strong>in</strong>g allylarenes. In this process, CO2 and allyl alcohol<br />

rema<strong>in</strong> the only side products.<br />

Decarboxylative Allylations<br />

[1] J. D. Weaver, A. Recio, A. J. Grenn<strong>in</strong>g, J. A. Tunge, Chem. Rev. 2011, 111, 1846–1913.<br />

[2] J. Wang, Z. Cui, Y. Zhang, H. Li, L.-M. Wu, Z. Liu, Org. Biomol. Chem. 2011, 9, 663–666.<br />

Poster 088 Thursday 17:40 - 20:10 145


Development new convenient palladium-catalyzed<br />

trifluorov<strong>in</strong>ylations of arene halides<br />

S<strong>in</strong>a P. Zucker, Sasa Duric, Bernd M. Schmidt, N<strong>in</strong>a M. N<strong>in</strong>nemann, Dieter Lentz,<br />

C. Christoph Tzschucke<br />

Institut für Chemie und Biochemie – Freie Universität Berl<strong>in</strong> – Takustraße 3 –<br />

14195 Berl<strong>in</strong> – GER<br />

honey@zedat.fu-berl<strong>in</strong>.de<br />

Trifluorostyrenes are <strong>in</strong>terest<strong>in</strong>g and important compounds <strong>in</strong> material sciences and<br />

drug development, yet, only few convenient reactions for their preparation have<br />

been reported. [1] Most of them require the formation of highly reactive and unstable,<br />

organometallic <strong>in</strong>termediates or are multistep sequences. Recently we developed<br />

the synthesis of trifluorostyrenes by coupl<strong>in</strong>g of aryl bromides with stable<br />

trimethoxy(trifluorov<strong>in</strong>yl)borate 1 derived from the bulk compound HFC-134a. [2] To<br />

further simplify the procedure and to broaden the substrate scope, we are develop<strong>in</strong>g a<br />

one-step/one-pot procedure for a convenient palladium-catalyzed coupl<strong>in</strong>g reaction of<br />

aryl halides with <strong>in</strong> situ generated trifluorov<strong>in</strong>ylanion synthons. This method requires<br />

highly active catalysts, which operate at very low temperatures as well as a better<br />

understand<strong>in</strong>g of the elemental steps <strong>in</strong>volved. The synthesis of differnt precatalysts<br />

and prelim<strong>in</strong>ary results of coupl<strong>in</strong>g reactions will be discussed.<br />

[1] R. Anilkumar, D. J. Burton, Tetrahedron Letters 2002, 43, 2731-2733; A. Raghavanpillai, D.<br />

J. Burton, J. Org. Chem. 2004, 69, 7083-7091; M. Ohashi, T. Kambara, T. Hatanaka, H. Saijo,<br />

R. Doi, S. Ogoshi, J. Am. Chem. Soc. 2011, 133, 3256-3259; M. Ohashi, H. Saijo, M. Shibata,<br />

S. Ogoshi, Eur. J. Org. Chem. 2012, 3454-5457; Eur. J. Org. Chem. <strong>2013</strong>, 3, 443-447; T.<br />

Yamamoto, T. Yamakawa, Org. Lett. 2012, 14, 3454-3457; C. Xu, S. Chen, L. Lu, Q. Shen, J.<br />

Org. Chem. 2012, 77, 10314-10320.<br />

[2] S. Duric, B. M. Schmidt, N. M. N<strong>in</strong>nemann, D. Lentz, C. C. Tzschucke, Chem. Eur. J. 2012,<br />

18, 437-441.<br />

146 Thursday 17:40 - 20:10 Poster 089


Search<strong>in</strong>g for the Transmetalation Intermediate <strong>in</strong><br />

Copper-Catalyzed 1,4-Addition Reactions via NMR<br />

Spectroscopy<br />

Felicitas von Rekowski, Katr<strong>in</strong> Schober, Ruth M. Gschw<strong>in</strong>d<br />

Department of Organic Chemistry – University of Regensburg – Universitätsstr. 31 –<br />

Regensburg – GER<br />

Felicitas.Von-Rekowski@chemie.uni-regensburg.de<br />

For the formation of C-C bonds, with a new chiral center, one of the most powerful<br />

methods is the enantioselective catalytic 1,4-addition reaction to α,β-unsaturated<br />

systems. With a catalytic system consist<strong>in</strong>g of chiral phosphoramidite ligands and<br />

copper(I) salts it is possible to reach high chemo- and regioselectivity and quantitative<br />

yields. A further advantage are the relatively low costs compared to other<br />

applied catalytic systems. [1−4] In order to elucidate the structure of the formed Cu(I)<br />

complexes as well as their temperature dependent geometry we comb<strong>in</strong>e experimental<br />

as well as simulated 31 P NMR spectra and 1 H diffusion experiments of various<br />

mixtures. For this purpose the Cu(I) source, the ligand to salt ratio and the solvent<br />

were varied. With these data we were able to identify a b<strong>in</strong>uclear precatalytic complex<br />

structure with a mixed trigonal/tetrahedral coord<strong>in</strong>ation on copper. [5−8] This<br />

complex structure provides a free coord<strong>in</strong>ation site for the transmetalation reagent.<br />

The transmetalation of the organic moiety from the organometallic reagent to the<br />

precatalytic copper complex represents the first step <strong>in</strong> the proposed mechanism.<br />

However, up to now no experimental proof for such a transmetalated species was<br />

found. Thus we elucidate several systems comb<strong>in</strong><strong>in</strong>g the precatalytic copper complex<br />

with diaryl/dialky z<strong>in</strong>c or trialkyl alum<strong>in</strong>um reagents by various NMR spectroscopic<br />

techniques. Recently we were able to detect for the first time a transmetalation <strong>in</strong>termediate<br />

by 1 H 31 P HMBC experiments, but the structure of the transmetalated<br />

species is until now not completely elucidated.<br />

Schematic presentation of the 1,4-addition of a trialkylalum<strong>in</strong>um reagent with the<br />

<strong>in</strong>vestigated precatalytic copper complex.<br />

[1]<br />

A. Alexakis et al., Chem. Rev. 2008, 108, 2796.<br />

[2]<br />

T. Jerphagnon et al., Chem. Soc. Rev. 2009, 38, 1039.<br />

[3]<br />

N. Krause et al., Synthesis 2001, 2, 171.<br />

[4]<br />

J. F. Teichert et al., Angew. Chem. Int. Ed. 2010, 41, 2486.<br />

[5]<br />

H. Zhang et al., Angew. Chem. Int. Ed. 2006, 45, 6391.<br />

[6]<br />

H. Zhang et al., Chem. Eur. J. 2007, 13, 6691.<br />

[7]<br />

K. Schober et al., J. Am. Chem. Soc. 2008, 130, 12310.<br />

[8]<br />

K. Schober et al., Angew. Chem. Int. Ed. 2010, 49, 2794.<br />

Poster 090 Thursday 17:40 - 20:10 147


Secondary Phosp<strong>in</strong>e Oxides: A Stable Approach for Gold<br />

Catalysis<br />

Felix Schröder ∗ , Jean Philippe Goddard † , Virg<strong>in</strong>ie Mansuy † , Louis Fensterbank †<br />

∗ Chemistry Department – Technische Universität Berl<strong>in</strong> – Straße des 17. Juni 115 –<br />

Berl<strong>in</strong> – GER<br />

† Chimie Organique de Synthèse – Université Pierre et Marie Curie Paris 6 –<br />

4 Place Jussieu – Paris – FRA<br />

schroederfelix@onl<strong>in</strong>e.de<br />

The use of Secondary Phosph<strong>in</strong>e Oxide Gold(I) Complexes (SPO-Au) <strong>in</strong> enyne cycloisomerizations<br />

was exam<strong>in</strong>ed. The SPO-Au complex is affordable and easy to synthesize,<br />

and it is not as <strong>in</strong>stable under no protect<strong>in</strong>g atmospheric conditions as other<br />

transition metal-ligand complexes are. A large variety of different enynes (Scheme<br />

1) were synthesized <strong>in</strong> order to determ<strong>in</strong>e the activity and selectivity of the catalytic<br />

system. The ma<strong>in</strong> focus was put on 1,6-enynes with a tosyl or ortho-tosyl protected<br />

nitrogen l<strong>in</strong>ker <strong>in</strong> position four on the enyne with a vary<strong>in</strong>g substitution pattern at<br />

the triple and double bond. Other enynes bear<strong>in</strong>g malonic acid dimethyl ester <strong>in</strong> position<br />

four or an acetyl group <strong>in</strong> position three also gave very <strong>in</strong>terest<strong>in</strong>g results. The<br />

catalytic conversion mostly followed the general procedure given <strong>in</strong> the literature. [1,2]<br />

Three different ma<strong>in</strong> product classes could be identified. Two of them are formal<br />

metatheses products bear<strong>in</strong>g highly substituted 1,3-dienes and the third is an <strong>in</strong>terest<strong>in</strong>g<br />

class of cyclopropane derivatives (Scheme 2). The class of enynes bear<strong>in</strong>g an<br />

acetyl group showed furthermore a 1,2-migration of the acetyl which was presented<br />

earlier by Fensterbank et al. [3] The chiral background of the SPO-Au complex was<br />

also used for enantioselective cycloisomerizations of 1,6-enynes. The enantiomeric<br />

excess could be raised <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g from 0% to 11% by chang<strong>in</strong>g the reaction<br />

conditions. It was shown that the used SPO-Au complex has the potential for substitut<strong>in</strong>g<br />

other more expensive and fragile catalytic systems and our results encourage<br />

further <strong>in</strong>vestigation.<br />

[1] L. Zhang, J Sun, S. A. Kozm<strong>in</strong>, Adv. Synth. Catal. 2006, 348, 2271-2296.<br />

[2] C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer, A. M. Echevarren,<br />

J. Org. Chem. 2008, 73, 7721-7730.<br />

[3] X. Moreau, J.-P. Goddard, Matthieu Bernard, G. Lemière, J. M. López-Romero, E. Ma<strong>in</strong>etti,<br />

N. Marion, V. Mouriès, S. Thorimbert, L. Fensterbank, M. Malacria, Adv. Synth. Catal. 2008,<br />

350, 43-48.<br />

148 Thursday 17:40 - 20:10 Poster 091


Synthesis of biphenolic natural products through<br />

Suzuki-Miyaura-reaction us<strong>in</strong>g Pd/C <strong>in</strong> water<br />

Mart<strong>in</strong> Riemer ∗ , Bernd Schmidt †<br />

∗ Institut für Chemie – Universität Potsdam –<br />

Karl Liebknechtstraße 24-25 Haus 25 D1.12 – Golm – GER<br />

† Institut für Chemie – Universität Potsdam –<br />

Karl Liebknechtstraße 24-25 Haus 25 D1.16 – Golm – GER<br />

mariemer@uni-potsdam.de<br />

Biphenols and their derivatives are lead structures <strong>in</strong> many natural products, drugs<br />

(e.g. vancomyc<strong>in</strong>) and precursor of many ligands. [1] Biphenyls are phytoalex<strong>in</strong>s of<br />

Pyr<strong>in</strong>ae (apples, pears) and therefore economically attractive. [2]<br />

A good method to synthesise biaryls is the Pd-mediated SUZUKI-MIYAURA-reaction.<br />

The reaction is hampered by the phenolic structure of these phytoalex<strong>in</strong>s, because<br />

electron-rich arylhalides are less reactive. It is challeng<strong>in</strong>g to avoid the protect<strong>in</strong>g/deprotect<strong>in</strong>g<br />

steps and actually only a few examples of a direct coupl<strong>in</strong>g are<br />

known. [3]<br />

We report an efficient method for the synthesis of biphenols and the total synthesis<br />

of biphenolic phytoalex<strong>in</strong>s which features a ligandless SUZUKI-MIYAURA-reaction<br />

us<strong>in</strong>g simple Pd on charcoal (heterogenous, easy to remove) <strong>in</strong> water. [4]<br />

[1] G. Br<strong>in</strong>gmann, T. Gulder, T. A. M. Gulder, M. Breun<strong>in</strong>g, Chem. Rev. 2011, 111, 563.<br />

[2] C. Chizzali, L. Beerhues, Beilste<strong>in</strong> J. Org. Chem. 2012, 613.<br />

[3] J. S. Freundlich, H. E. Landis, Tetrahedron Lett. 2006, 47, 4275.<br />

[4] T. Hirao, H. Sakurai, J. Org. Chem. 2002, 67, 2721.<br />

Poster 092 Thursday 17:40 - 20:10 149


Synthesis and characterization of long-term s<strong>in</strong>ter<strong>in</strong>g-stable<br />

Ni catalysts for dry reform<strong>in</strong>g of CO2<br />

Kathar<strong>in</strong>a Mette ∗ , Stefanie Kühl ∗ , Robert Schlögl ∗ , Malte Behrens ∗ , Hendrik Düdder † ,<br />

Kev<strong>in</strong> Kähler † , Mart<strong>in</strong> Muhler †<br />

∗ Abteilung Anorganische Chemie – Fritz-Haber-Institut der Max-Planck-Gesellschaft –<br />

Faradayweg 4-6 – 14195 Berl<strong>in</strong> – GER<br />

† Laboratory of Industrial Chemistry – Ruhr-University Bochum – Universitätsstr. 150 –<br />

44801 Bochum – GER<br />

mette@fhi-berl<strong>in</strong>.mpg.de<br />

Fossil power generations emit large amounts of the greenhouse gas CO2. Thus, the<br />

efficient conversion of CO2 <strong>in</strong>to useful chemical <strong>in</strong>termediates is an important component<br />

for prospective resource-sav<strong>in</strong>g and susta<strong>in</strong>able energy economics.<br />

This work ma<strong>in</strong>ly focuses on the use of CO2 and methane as raw materials to obta<strong>in</strong><br />

syngas by dry reform<strong>in</strong>g (DRM: CO2 + CH4 −→ 2CO + 2H2). S<strong>in</strong>ce dry reform<strong>in</strong>g<br />

is a highly endothermic reaction, several carbon produc<strong>in</strong>g side reactions can<br />

occur lead<strong>in</strong>g to deactivation of the catalysts. [1] To suppress side reactions, high reaction<br />

temperatures are needed. For the catalyst development the ma<strong>in</strong> challenge is the<br />

preparation of a noble metal-free material, which prevents cok<strong>in</strong>g and is stable at high<br />

temperatures. Here, we show that Ni/MgAlOx catalysts derived from hydrotalcitelike<br />

(htl) precursors fulfill these requirements.<br />

Ni/MgAl2O4 catalysts have been prepared from hydrotalcite-like (htl) compounds as<br />

precursors by a constant pH co-precipitation method. The precursors and catalysts<br />

were extensively characterized <strong>in</strong> their calc<strong>in</strong>ed and reduced states as well as after<br />

DRM, us<strong>in</strong>g a variety of methods.<br />

XANES spectroscopy reveals the presence of two different Ni oxide species <strong>in</strong> the<br />

mostly amorphous calc<strong>in</strong>ed materials; NiO and NiAl2O4. The reduced catalysts exhibit<br />

a homogeneous metal distribution with high BET and specific Ni surface areas<br />

(up to 40 m 2 /gNi) and small Ni particles (∼10 nm), which are embedded <strong>in</strong> an<br />

MgAlOx matrix (Fig. 1). The ex-htl catalysts show high activities and outstand<strong>in</strong>g<br />

stabilities <strong>in</strong> DRM at 900 ◦ C over 100 hours. The specific activities are found to correlate<br />

l<strong>in</strong>early with the specific metal surface area. TEM analysis of the spent catalysts<br />

reveals a good stability of the microstructure and only m<strong>in</strong>or carbon deposition. In<br />

summary, we developed a noble metal free Ni/MgAlOx catalyst, which is stable at<br />

high temperatures even with high Ni load<strong>in</strong>gs. With these materials cok<strong>in</strong>g dur<strong>in</strong>g<br />

DRM can be suppressed to a certa<strong>in</strong> extent by an <strong>in</strong>crease of the reaction temperature<br />

allow<strong>in</strong>g stable operation over 100 hours.<br />

Fig. 1: TEM micrographs of the Ni/MgAlOx catalysts reduced at 1000 ◦ C; 50 mol%<br />

(left), 25 mol% (center) and 5 mol% Ni (right).<br />

[1] S. Wang, G. Q. (Max) Lu, Energy & Fuels 1996, 10, 896-904.<br />

150 Thursday 17:40 - 20:10 Poster 093


Postsynthesis, Characterization, and Catalytic Properties <strong>in</strong><br />

Alkene Epoxidation of Hydrothermally Stable Mesoporous<br />

Ti-SBA-15<br />

Edyta Makuch, Agnieszka Wróblewska<br />

Department of Chemical Organic Technology –<br />

Institute of Organic Chemical Technology, West Pomeranian University of Technology Szczec<strong>in</strong> –<br />

Pulaskiego 10 – Poland – POL<br />

editamakuch@wp.pl<br />

The microporous TS-1 catalyst (with the structure of MFI type) used <strong>in</strong> the process<br />

of allylic compounds epoxidation was obta<strong>in</strong>ed <strong>in</strong> 1983 by Taramasso at al. [1] A few<br />

years later, <strong>in</strong> 1990, the microporous titanium-silicalite catalyst TS-2 with the MEL<br />

structure was obta<strong>in</strong>ed by Reddy at al. [2] Despite of the differences <strong>in</strong> the structures<br />

of TS-1 and TS-2, these catalysts have close and small pore size (0.5 nm) and a similar<br />

catalytic activity. Because of small pore size these materials can be used only for the<br />

epoxidation of unsaturated compounds with the small molecules.<br />

In 1992 Camblor at al. [3] obta<strong>in</strong>ed the titanium silicalite catalyst Ti-Beta (with pore<br />

size of 0.8 nm) hav<strong>in</strong>g the structure of BEA. Ti-Beta due to the <strong>in</strong>corporation of<br />

alum<strong>in</strong>um <strong>in</strong> the crystal lattice, is considered as a catalyst show<strong>in</strong>g oxidiz<strong>in</strong>g and<br />

acidic properties. This properties of the Ti-Beta catalyst cause that epoxides formed<br />

dun<strong>in</strong>g the epoxidation of allylic compounds can easily undergo hydration. The research<br />

published by Mobil R & D Corporation <strong>in</strong> 1992 confirmed the discovery of<br />

mesoporous materials of M41S type. These materials are characterized by narrow<br />

distribution of pores (from 2 to 30 nm) and large specific surface (from 800 to 1600<br />

m2/g). [4] The literature data show that all titanium silicalite catalysts (TS-1, TS-2,<br />

Ti-Beta, Ti-MCM-41, Ti-MCM-48) undergo deactivation <strong>in</strong> the process of allyl alcohol<br />

epoxidation. One of the reasons is the leach<strong>in</strong>g of titanium from the structure of<br />

the catalyst. In the case of mesoporous titanium silicalite catalysts (Ti-MCM-41, Ti-<br />

MCM-48) deactivation is also connected with the <strong>in</strong>stability of the structure <strong>in</strong> water<br />

solution. Much greater thermal stability (compared to the other titanium silicalite<br />

catalysts) and high arrangement of the structure has the mesoporous Ti-SBA-15 catalyst.<br />

This material, which belong to newest titanium silicalite catalysts, is obta<strong>in</strong>ed<br />

with the use of a biodegradable polymer Pluronic P123 as a structure-direct<strong>in</strong>g agent.<br />

[1] M. Taramasso, G. Perygo, B. Notari, “Preparation of porous crystall<strong>in</strong>e synthetic material<br />

comprised of silicon and titanium oxides”, Pat. USA 4 410 501, 1983.<br />

[2] J. S. Reddy, R. Kumar, P. Ratnasam, “Titanium silicalite-2: synthesis, characterization and<br />

catalytic properties”, Appl. Catal. A: General 1990, 58, L1-L4.<br />

[3] M. A. Camblor, A. Corma, J. Perez-Pariente, “Zeolites, A new highly efficient method for the<br />

synthesis of Ti-Beta zeolite oxidation catalyst”, Appl. Catal. A: General 1995, 133, L185-L189.<br />

[4] G. Oye, J. Stocker, “Sythesis, characterization and potential applications of new marerials <strong>in</strong><br />

the mesoporous range”, Adv. Colloid Interfac. 2001, 89-90, 439-466.<br />

Poster 094 Thursday 17:40 - 20:10 151


Synthesis and immobilisation of Pd-bipyrid<strong>in</strong>e catalysts for<br />

aerobic alcohol oxidation<br />

Anja Sokolowski, C. Christoph Tzschucke<br />

Chemie und Biochemie – Freie Universität Berl<strong>in</strong> – Takustraße 3 – Berl<strong>in</strong> – GER<br />

anjasoko@zedat.fu-berl<strong>in</strong>.de<br />

Palladium-catalysed oxidations typically require a stoichiometric secondary oxidant<br />

such as benzoqu<strong>in</strong>one or CuCl2 . This <strong>in</strong>creases the complexity of the reaction and<br />

complicates product isolation and reduces the atom efficiency. [1] A major <strong>in</strong>terest <strong>in</strong><br />

palladium-catalysed reactions is the stabilisation of the catalyst and the reoxidation of<br />

the Pd(0) <strong>in</strong>termediate to prevent Pd-black formation. To address these limitations,<br />

recent developments utilise coord<strong>in</strong>at<strong>in</strong>g solvents or ligands to stabilise the Pd(0)<br />

<strong>in</strong>termediates and molecular oxygen as stochiometric oxidant. [2,3]<br />

Our work <strong>in</strong>vestigates the viability of immobilisation of Pd bipyrid<strong>in</strong>e-complexes on<br />

gold electrode. This methodology could both provide fast reoxidation of Pd(0) on the<br />

electrode surface and prevent Pd black formation. A variety of substituted bipyrid<strong>in</strong>es<br />

were synthesized and attached to a sulfur functionalised l<strong>in</strong>ker that can be immobilised<br />

on gold surfaces. The synthesis of the functionalized l<strong>in</strong>kers and characterisation of<br />

the immobilized complexes will be presented.<br />

[1] B. A. Ste<strong>in</strong>hoff, I. A. Guzei, S. S. Stahl, J. Am. Chem. Soc. 2004, 126, 11268-11278.<br />

[2] D. M. Pearson, N. R. Conley, R. M. Waymouth, Organometallics 2011, 30, 1445-1453.<br />

[3] G.-J. ten Br<strong>in</strong>k, I. W. C. E. Arends, M. Hoogenraad, G. Verspui, R. A. Sheldon, Adv. Synth.<br />

Catal. 2003, 345, 1341-1352.<br />

152 Thursday 17:40 - 20:10 Poster 095


Ultrasound-Assisted Rapid Synthesis of Ferrocene<br />

Conta<strong>in</strong><strong>in</strong>g Beta-Am<strong>in</strong>o Ketone with Direct-Type Catalytic<br />

Mannich Reaction ans Investigat<strong>in</strong>g its Physical Properties<br />

Bahadir Kesk<strong>in</strong> ∗ , S. Arda Ozturkcan ∗ , Ahmet Alt<strong>in</strong>dal ‡<br />

∗ Chemistry – Yildiz Technical University – 34210 – Istanbul – TUR<br />

‡ Physics – Yildiz Technical University – 34210 – Istanbul – TUR<br />

bahadirkesk<strong>in</strong>@gmail.com<br />

The scientific endeavor on the <strong>in</strong>vestigation of ferrocene conta<strong>in</strong><strong>in</strong>g molecules keeps<br />

<strong>in</strong>creas<strong>in</strong>g although 60 years has passed over its discovery by Pauson and Kealy. [1] An<br />

important carbon–carbon bond form<strong>in</strong>g reaction <strong>in</strong> organic synthesis for the preparation<br />

of beta-am<strong>in</strong>o carbonyl compounds [2] is Mannich reaction. Water is one of<br />

the eco-friendly, ease of access, <strong>in</strong>expensive solvent and can certa<strong>in</strong>ly be considered<br />

as the cleanest solvent available for chemists. [3] Sonochemistry as a green <strong>in</strong>novation<br />

powerful technique can be extremely efficient and is applicable to a wide variety of<br />

practical syntheses has <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> accelerate organic reactions. [4] The concept<br />

of green <strong>in</strong>novations <strong>in</strong> synthetic chemistry have emerged as a major solution<br />

for the development of cleaner and more benign chemical processes. [5] As part of<br />

this green concept, “water” and “ultrasound” have become so popular and received<br />

substantial <strong>in</strong>terest.<br />

A green <strong>in</strong>novative, quite rapid, powerful novel and efficient method was developed<br />

to synthesize various beta-am<strong>in</strong>oketone derivative (4) from cyclohexanone (3), substituted<br />

4-am<strong>in</strong>obenzyl cyanide (2) and, ferrocenecarboxaldehyde (1) via ultrasoundassisted<br />

direct-type catalytic Mannich reaction us<strong>in</strong>g bismuth (III) triflate <strong>in</strong> water.<br />

Good yields of the desired product (4) were obta<strong>in</strong>ed from available substrates, such<br />

as beta-am<strong>in</strong>oketones, at room temperature <strong>in</strong> 2 hours by ultrasound. The prom<strong>in</strong>ent<br />

advantages of the proposed method are simple conditions, easy work-up, low toxicity,<br />

shorter reaction time, anti-selectivity and higher yields over to traditional methods.<br />

The product clarified by spectroscopic methods (FTIR, 1 H NMR, UV-Vis, MS) after<br />

the purification processes and <strong>in</strong>vestigated its physical properties.<br />

Scheme 1. Synthesis of beta-am<strong>in</strong>oketone us<strong>in</strong>g Mannich reaction.<br />

[1]<br />

D. A. Boyd, R.J. Crutchley, P.E. Fanwick, T. Ren, Inorg. Chem. 2009, 49, 1322-1324.<br />

[2]<br />

S. Kobayashi, H. Ishitani, Chem. Rev. 1999, 99, 1069-1094.<br />

[3]<br />

J. Noei, A. R Khosropour, Ultras. Sonochem. 2009, 16, 711-717.<br />

[4]<br />

Y. Q. Liu, L. H. Li, L. Yang, H. Y. Li, Chemical Papers 2010, 64, 533-536.<br />

[5]<br />

S. K. Hota, A. Chatterjee, P. K. Bhattacharya, P. Chattopadhyay, Green Chem. 2009, 11,<br />

169-176.<br />

Poster 096 Thursday 17:40 - 20:10 153


Synthesis of complex Phosphonates via Fe-catalyzed Allylic<br />

Substitution<br />

Susanne Rommel, André P. Dieskau, Bernd Plietker<br />

Institut für Organische Chemie – Universität Stuttgart – Pfaffenwaldr<strong>in</strong>g 55 –<br />

70569 Stuttgart – GER<br />

susanne.rommel@oc.uni-stuttgart.de<br />

Organo-phosphonates are useful build<strong>in</strong>g blocks <strong>in</strong> organic synthesis. They are used<br />

<strong>in</strong> a broad spectrum of reactions, e.g. the Horner-Wadsworth-Emmons-reaction. So<br />

far the access to complex organo-phosphonates is mostly limited to high temperature<br />

procedures. Even more challeng<strong>in</strong>g are phosphonates with two adjacent quaternary<br />

carbon centers due to unfavorable steric <strong>in</strong>teractions.<br />

Previously, our group succeeded <strong>in</strong> develop<strong>in</strong>g a Fe-catalyzed regioselective alkoxyallylation<br />

of activated double bonds. Here we present the extension of this method to<br />

the snythesis of diversely functionalised organo-phosphonates via a tandem phospha-<br />

Michael-addition-allylic substitution-reaction.<br />

[1] S. Rommel, A. P. Dieskau, B. Plietker, Eur. J. Org. Chem., accepted.<br />

[2] A.P. Dieskau, M.S. Holzwarth, B. Plietker, Chem. Eur. J. 2012, 18, 2423.<br />

[3] W.S. Wadsworth, W.D. Emmons, J. Am. Chem. Soc., 1961, 83, 1733.<br />

154 Thursday 17:40 - 20:10 Poster 097


Small molecules adsorbed on fuel cell catalysts studied by a<br />

comb<strong>in</strong>ed XAS/<strong>in</strong>-situ DRIFTS approach<br />

Claudia Brieger ∗ , Alexander Schökel ∗ , André Wolz ∗ , Christ<strong>in</strong>a Roth ∗<br />

∗ Institute of Chemistry and Biochemistry – FU Berl<strong>in</strong> – Takustr. 3 – Berl<strong>in</strong> – GER<br />

† Institute of Material Science – TU Darmstadt – Petersenstr. 23 – Darmstadt – GER<br />

claudia.brieger@fu-berl<strong>in</strong>.de<br />

One problem <strong>in</strong> fuel cell technology is the Pt-catalyzed carbon corrosion at the cathode,<br />

lead<strong>in</strong>g to a severe degradation of the performance <strong>in</strong> long-term operation. Consequently,<br />

new support concepts are required. One approach is to replace the carbon<br />

support by electron conduct<strong>in</strong>g (doped) oxides. But while oxide supports are very<br />

common <strong>in</strong> heterogeneous catalysis, only little is known about their structure, work<strong>in</strong>g<br />

pr<strong>in</strong>ciples, degradation behavior and their application <strong>in</strong> electrocatalysis. Thus<br />

to follow structural changes of the novel catalyst systems, and <strong>in</strong> particular changes<br />

of the novel oxide support materials, will be of great importance <strong>in</strong> the future.<br />

Here we report on our approach to comb<strong>in</strong>e XAS (<strong>in</strong> particular delta µ XANES)<br />

and <strong>in</strong>-situ DRIFTS for future <strong>in</strong>vestigation of the <strong>in</strong>teraction between the support<br />

material and the adsorption of small molecules relevant to fuel cell catalysis. In-situ<br />

measurements shall be used to differentiate between reactive <strong>in</strong>termediates and “spectator”<br />

adsorbates and account for metal-support-<strong>in</strong>teractions. Due to the catalysts’<br />

small particle size and low metal load<strong>in</strong>gs, XAS is the optimum choice for our studies,<br />

s<strong>in</strong>ce it provides <strong>in</strong>formation on structure (EXAFS) and adsorbates (delta µ XANES)<br />

at the same time. In particular, EXAFS yields results about cluster size and morphology<br />

whereas delta µ XANES gives additional <strong>in</strong>formation about b<strong>in</strong>d<strong>in</strong>g sites<br />

and adsorbate coverage. With <strong>in</strong>-situ DRIFTS <strong>in</strong>teractions between the adsorbates<br />

and the oxide support can be studied. A comb<strong>in</strong>ation of both techniques, for <strong>in</strong>stance<br />

XAS-IR, has been shown by Newton. [1] To further establish the novel delta µ XANES<br />

technique, <strong>in</strong>-situ DRIFTS measurements will be carried out simultaneously to complement<br />

the delta µ XANES <strong>in</strong>formation. Therefore, CO oxidation has been picked as<br />

a model reaction to analyze the metal-support <strong>in</strong>teractions of oxide-supported Pt-M<br />

catalysts, s<strong>in</strong>ce numerous studies for comparison can be found <strong>in</strong> the literature. Additionally,<br />

it exhibits a good spectral signature, which allows for comparison between<br />

delta µ XANES and DRIFTS.<br />

For the planned experiments, we will exam<strong>in</strong>e the adsorption of CO on Pt-M (M=Pt,<br />

Ru) on different support materials (carbon, oxides) as a model system which is relevant<br />

to fuel cell catalysis. Us<strong>in</strong>g a temperature controlled, comb<strong>in</strong>ed reactor cell, delta<br />

µ XANES and <strong>in</strong>-situ DRIFTS measurements will be done simultaneously. This cell<br />

is constructed right now and based on a DRIFTS cell design by Drochner. [2] Different<br />

requirements have to be taken <strong>in</strong>to account, such as implementation of X-ray w<strong>in</strong>dows<br />

and m<strong>in</strong>imization of the dead volume. This design allows for the first time to<br />

take XAS and <strong>in</strong>-situ DRIFTS spectra of the sample and the reference <strong>in</strong> one s<strong>in</strong>gle<br />

cell, thus under the same conditions. The new <strong>in</strong>sight will be used to develop tailormade<br />

and more stable catalysts, whose structure will be adapted to the prevail<strong>in</strong>g<br />

conditions <strong>in</strong> order to reduce costs, which is of particular <strong>in</strong>terest for commercial applications.<br />

Furthermore, new <strong>in</strong>formation will be ga<strong>in</strong>ed about reaction and poison<strong>in</strong>g<br />

mechanisms of catalysts <strong>in</strong> fuel cells.<br />

[1] M. A. Newton, A. J. Dent, S. G. Fiddy, B. Jyoti, J. Evans Catalysis Today 2007, 126, 64-72.<br />

[2] S. Kohl, A. Drochner, H. Vogel Catalysis Today 2010, 150, 67-70.<br />

Poster 098 Thursday 17:40 - 20:10 155


Regio- and Enantioselective Cyclobutene Allylations<br />

Supaporn Niyomchon, Davide Audisio, Marco Luparia, Nuno Maulide<br />

Max-Planck-Institut für Kohlenforschung – Kaiser-Wilhelm-Platz 1 –<br />

45470 Mülheim an der Ruhr – GER<br />

niyomchon@kofo.mpg.de<br />

Palladium catalysed asymmetric allylic alkylation (AAA) is a powerful synthetic<br />

method for the preparation of optically active compounds. [1] Recently, our laboratory<br />

has focused on the palladium-catalysed reactions of bicyclic lactone 1 with stabilized<br />

(“soft”) nucleophiles to generate highly functionalised cyclobutenes with impressive<br />

diastero- and enantioselectivities. [2,3]<br />

We have now <strong>in</strong>vestigated the behaviour of this system <strong>in</strong> the presence of nonstabilized<br />

(“hard”) nucleophiles. In this presentation, we report our prelim<strong>in</strong>ary results<br />

on the catalytic, asymmetric regioselective allylation of lactone 1 with allyl boronates<br />

2 as well as exploratory mechanistic studies. [4]<br />

[1] B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943.<br />

[2] a) F. Frébault, M. Luparia, M. T. Oliveira, R. Goddard, N. Maulide, Angew.Chem. Int. Ed.<br />

2010, 49, 5672-5676; b) M. Luparia, D. Audisio, N. Maulide, Synlett. 2011, 735-740.<br />

[3] a) M. Luparia, M. T. Oliveira, D. Audisio, F. Frébault, R. Goddard, N. Maulide, Angew.<br />

Chem. Int. Ed. 2011, 50, 12631-12635; b) D. Audisio, M. Luparia, M. T. Oliveira, D. Klütt, N.<br />

Maulide, Angew. Chem. Int. Ed. 2012, 51, 7314-7317.<br />

[4] S. Niyomchon, M. Luparia, D. Audisio, submitted.<br />

156 Thursday 17:40 - 20:10 Poster 099


Effect of the preparation conditions on the photoactivity of<br />

TiO2 prepared by hydrolysis of titanium isopropoxide<br />

Magdalena Grześkowiak, Jacek Przepiórski, Antoni W. Morawski<br />

Institute of Chemical and Environmental Eng<strong>in</strong>eer<strong>in</strong>g –<br />

West Pomeranian University of Technology – Pułaskiego 10 – Szczec<strong>in</strong> – POL<br />

mgrzeskowiak@zut.edu.pl<br />

Titanium dioxide also called as titania is very well-known photocatalyst. [1]<br />

Received TiO2 powders were obta<strong>in</strong>ed through the hydrolysis of precursor solution<br />

consist<strong>in</strong>g of a mixture of organometallic compound, titanium isopropoxide (TTIP),<br />

and 2-propanol <strong>in</strong> a volume ratio of 1:3. Subsequently, precursor solution was dissolved<br />

by slowly add<strong>in</strong>g <strong>in</strong>to water under magnetic stirr<strong>in</strong>g at ambient temperature<br />

<strong>in</strong> various pH. Obta<strong>in</strong>ed a colloidal white suspension was dried overnight at 110 o C.<br />

F<strong>in</strong>ally, portions of the hydrated amorphous titanium dioxide was calc<strong>in</strong>ed at 500 o C<br />

for various times <strong>in</strong> an argon atmosphere.<br />

The aim of the present work is to focus on the <strong>in</strong>fluence of the water volume used<br />

to hydrolysis process and calc<strong>in</strong>ation time on the chamical and physical properties<br />

of obta<strong>in</strong>ed TiO2 photocatalysts. Moreover, titanias obta<strong>in</strong>ed through hydrolysis<br />

process carried out <strong>in</strong> 250 ml of water <strong>in</strong> an environment of both acidic and alkal<strong>in</strong>e<br />

conditions were compared.<br />

The obta<strong>in</strong>ed powders were characterized by N2 adsorption-desorption (BET) and<br />

X-ray powder diffraction. Also the photocatalytic activity of obta<strong>in</strong>ed TiO2 powders<br />

and its photodecomposition of azo-dye as a model compound (New Cocc<strong>in</strong>e) was<br />

<strong>in</strong>vestigated (Fig. 1).<br />

Figure 1. Concentration changes of New Cocc<strong>in</strong>e dur<strong>in</strong>g the photodecomposition process<br />

under UV irradation us<strong>in</strong>g test materials obta<strong>in</strong>ed by: a) hydrolysis <strong>in</strong> various water<br />

volume and calc<strong>in</strong>ed at 500 o C for 180 m<strong>in</strong>, b) hydrolysis <strong>in</strong> 250 ml of water and calc<strong>in</strong>ed<br />

at 500 o C for various times<br />

[1] D. P. Macwan, P. N. Dave, S. Chaturvedi, “A review on nano-TiO2 sol-gel type synthesis and<br />

its applications”, The Journal of Materials Science 2011, 46, 3669-3686.<br />

Poster 100 Thursday 17:40 - 20:10 157


Microwave Assisted Synthesis of Chitosan & Prote<strong>in</strong><br />

Conjugates<br />

Zafer Omer Ozdemir<br />

Chemistry – Kırklareli University – Kirklareli – TUR<br />

ozdemirz@gmail.com<br />

Chitosan is a biodegradable natural polyelectrolyte bear<strong>in</strong>g -NH2 groups. These<br />

characteristics of chitosan make it convenient for conjugation reactions. [1-3]<br />

Microwave assisted synthesis of vary<strong>in</strong>g ratios of conjugates of chitosan with prote<strong>in</strong>s<br />

(BSA and HSA) and polyacrylic acid us<strong>in</strong>g various activators (carbodiimide<br />

and HBTU/HOBt) and characterization of these molecules are aimed <strong>in</strong> this project.<br />

In addition, chitosan will be modified with bromoacetic acid to make it water-soluble.<br />

Microwave usage <strong>in</strong> conjugation reactions is a new approach and usage of microwave<br />

energy <strong>in</strong> chemical reactions is rapidly <strong>in</strong>creas<strong>in</strong>g.<br />

Synthesized bioconjugates will be characterized with various chromatographic and<br />

spectroscopic methods and <strong>in</strong>terpreted. The bioconjugates synthesized <strong>in</strong> the project<br />

will have usage potential <strong>in</strong> many fields (enhanc<strong>in</strong>g immunogenicity, drug delivery,<br />

molecular imag<strong>in</strong>g, gene transfer, artificial tissues, etc.) by modify<strong>in</strong>g them with<br />

various methods.<br />

[1] H. Zhang, R. Li, W. Liu, International Journal of Molecular Sciences 2011, 12, 917-934.<br />

[2] I. Aranaz, R. Haris, A. Heras, Current Organic Chemistry, 14, 308-330, 2010.<br />

[3] S. C. Yadav, A. Kumari, R. Yadav, Peptides, 32, 173-187, 2011.<br />

This work was supported by Yildiz Technical University Project No 29-07-04-GEP01<br />

158 Thursday 17:40 - 20:10 Poster 101


Efficiently Quenched Fluorescent NIR Probe for Detection of<br />

Enzyme Activity<br />

Jagoda Sloniec, Ute Resch-Genger, Andreas Hennig<br />

Analytical Chemistry; Reference Materials –<br />

Federal Institute for Materials Research and Test<strong>in</strong>g – Richard-Willstätter-Straße 11 –<br />

Berl<strong>in</strong> – GER<br />

jagoda.sloniec@bam.de<br />

Fluorescence technologies are powerful research tools <strong>in</strong> the detection of enzyme<br />

activity. [1] The use of activatable optical probes, which are targeted aga<strong>in</strong>st diseaserelated<br />

enzymes, allows imag<strong>in</strong>g of enzymatic activity, monitor<strong>in</strong>g of enzyme reaction<br />

and determ<strong>in</strong>ation of k<strong>in</strong>etic properties of an enzyme. [2] Here<strong>in</strong> we <strong>in</strong>troduce an efficiently<br />

quenched fluorescent probe for activity detection of a model enzyme (PGA).<br />

Ow<strong>in</strong>g to position<strong>in</strong>g dye and quencher at the same side of the enzyme recognition<br />

moiety we secure a close spatial proximity and thereby an optimal dye-quencher <strong>in</strong>teraction<br />

<strong>in</strong> our fluorescent probe. Hence, our approach ensures efficient fluorescence<br />

quench<strong>in</strong>g for NIR dyes by exploit<strong>in</strong>g contact-based quench<strong>in</strong>g mechanisms. The enzymatic<br />

cleavage of our fluorescent probe leads to a fragmentation <strong>in</strong>to <strong>in</strong>dividual<br />

molecular build<strong>in</strong>g blocks via a well-established qu<strong>in</strong>one-methide elim<strong>in</strong>ation and to<br />

a release of previously quenched dyes. We report the successful multistep synthesis,<br />

a dye screen<strong>in</strong>g with a set of NIR dyes, relative quantum yields of synthesized fluorescent<br />

probes, fluorescence quench<strong>in</strong>g mechanism and enzyme k<strong>in</strong>etic parameters.<br />

Fig.1. Design pr<strong>in</strong>ciple of our efficient quenched fluorescent probe.<br />

[1] a) A. Hennig, D. Roth, T. Enderle et al., ChemBioChem 2006, 7, 733; b) H. Sahoo, A. Hennig,<br />

M. Florea et al., J. Am. Chem. Soc. 2007, 129, 15927; c) A. Hennig, H. Bakirci, W. M. Nau,<br />

Nat. Meth. 2007, 4, 629; d) A. Hennig, M. Florea, D. Roth et al., Anal. Biochem. 2007, 360,<br />

255; e) R. N. Dsouza, A. Hennig, W. M. Nau, Chem. Eur. J. 2012, 18, 3444.<br />

[2] W. Pham, Y. Choi, R. Weissleder et al., Bioconjugate Chem. 2004, 15, 1403.<br />

Poster 102 Thursday 17:40 - 20:10 159


Fluorescent Lipids as FRET-Probes<br />

– Sh<strong>in</strong><strong>in</strong>g Light on Sph<strong>in</strong>golipid Metabolism –<br />

Thomas P<strong>in</strong>kert, Christoph Arenz<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 –<br />

12489 Berl<strong>in</strong> – GER<br />

thomas.p<strong>in</strong>kert@chemie.hu-berl<strong>in</strong>.de<br />

Lipid signal<strong>in</strong>g processes have been shown to be related to major cellular events<br />

e.g. proliferation, cell death (apoptosis, necroptosis), autoimmune and <strong>in</strong>flammatory<br />

processes. [1] Related diseases comprise acute lung <strong>in</strong>jury, diabetes and cancer [2]<br />

as well as bacterial <strong>in</strong>fections (e.g. Neisseria gonorrhoea). [3] Therefore, the realtime-visualization<br />

and <strong>in</strong>-situ-quantification of these processes <strong>in</strong> liv<strong>in</strong>g tissues are<br />

of key importance <strong>in</strong> lipid chemistry. Recently, this was accomplished for the acid<br />

ceramidase [4] and different phospholipases [5] by the synthesis of doubly labeled fluorescent<br />

lipid analogues which allow the determ<strong>in</strong>ation of enzyme activity with<strong>in</strong> the<br />

liv<strong>in</strong>g cell by means of Förster resonance energy transfer (FRET).<br />

These biochemical tools could not only supersede laborious and expensive radioactive<br />

assays, but could also sh<strong>in</strong>e light on transport k<strong>in</strong>etics and topology, essential <strong>in</strong>formation<br />

that is still elusive s<strong>in</strong>ce established analytical methods (mass spectrometry<br />

of purified fragments) fail <strong>in</strong> this regard.<br />

Hav<strong>in</strong>g synthesized a probe for the acid ceramidase [4] we now aim at establish<strong>in</strong>g<br />

probes for the sph<strong>in</strong>gomyel<strong>in</strong>-synthase and acid sph<strong>in</strong>gomyel<strong>in</strong>ase (aSMase). The latter<br />

enzyme is responsible for the degradation of membrane constituent sph<strong>in</strong>gomyel<strong>in</strong><br />

and <strong>in</strong>volved cell cycle regulation and development of Niemann-Pick lysosomal storage<br />

disease. [3] In order to design a FRET-probe for the aSMase we want to synthesize a<br />

fluorescently labeled artificial substrate, which upon action of the enzyme shows different<br />

photospectral properties. This should allow the determ<strong>in</strong>ation of the enzyme<br />

activity <strong>in</strong> situ.<br />

Structure and mode of operation of the envisioned aSMase-FRET-probe.<br />

[1] R. W. Jenk<strong>in</strong>s, D. Canals, Y. A. Hannun, Cell Signal 2009, 21, 836-846.<br />

[2] E. L. Smith, E. H. Schuchman, FASEB J 2008, 22, 3419-3431.<br />

[3] T. Kolter, K. Sandhoff, Angew. Chem. Int. Ed. 1999, 38, 1532-1568.<br />

[4] K. P. Bhabak, A. Hauser, S. Redmer, S. Banhart, D. Heuer, C. Arenz, <strong>2013</strong>, <strong>in</strong> revision.<br />

[5] O. Wichmann, J. Wittbrodt, C. Schultz, Angew. Chem. Int. Ed. 2006, 45, 508-512.<br />

160 Thursday 17:40 - 20:10 Poster 103


LC-MS of <strong>in</strong>tact prote<strong>in</strong>s - a tool for fast venom mass<br />

profil<strong>in</strong>g. Application to death adder (Acanthophis laevis)<br />

venom.<br />

Daniel Petras ∗ , Stefan H. Hüttenha<strong>in</strong> † , Roderich D. Süssmuth ∗ , Juan J. Calvete ‡<br />

∗ Institut für Chemie – TU Berl<strong>in</strong> – GER<br />

† Fachbereich Chemie- und Biotechnologie – Hochschule Darmstadt – GER<br />

‡ Laboratorio de Venómica y Prote<strong>in</strong>ómica Estructural –<br />

Instituto de Biomedic<strong>in</strong>a de Valencia, CSIC – ESP<br />

daniel.petras@chem.tu-berl<strong>in</strong>.de<br />

Snake venoms are complex mixtures of bioactive polypeptides. A deep understand<strong>in</strong>g<br />

of the composition of venoms is of applied importance not only for explor<strong>in</strong>g their<br />

enormous potential as sources of pharmacological novelty, but also to fight the dire<br />

consequences of snakebite envenom<strong>in</strong>gs. [1] Unravel<strong>in</strong>g complex molecular venom phenotypes<br />

is now with<strong>in</strong> the reach of “omic” tecnologies. In particular, the last decade<br />

has witnessed the development of bottom-up proteomic strategies to explore venom<br />

proteomes. [2] Proteomics-based protocols to quantify the extent of cross-reaction of<br />

IgG or (Fab’)2 antivenoms aga<strong>in</strong>st homologous and heterologous venoms, have been<br />

also recently <strong>in</strong>troduced. [3-5] Drawbacks of bottom up venomics <strong>in</strong>clude the co-elution<br />

(HPLC), low mass resolution (SDS-PAGE), or impaired quantification ability (2DE),<br />

of the venom components. In addition, HPLC peak identification is restricted to the<br />

detection limit (LOD) of UV detectors, which is up to 100 times higher than LODs<br />

of mass analysers. [6] Further, off-l<strong>in</strong>e mass determ<strong>in</strong>ation is time-consum<strong>in</strong>g and not<br />

amenable for high-throughput screen<strong>in</strong>g. To overcome these difficulties, LC-MS can<br />

be applied for the rapid venom analysis. [7] In this work, we applied a LC-MS method<br />

us<strong>in</strong>g high resolution mass spectrometry for the rapid mass profil<strong>in</strong>g of death adder,<br />

Acanthophis laevis, venoms from three different geographic regions of Papua-New<br />

Gu<strong>in</strong>ea. Quantification of detected masses was achieved by comb<strong>in</strong><strong>in</strong>g UV chromatographic<br />

areas and the summed extracted ion chromatogram signals. Our results show<br />

that A. laevis venom consists of PLA2s (50-75%), 3FTxs (10-35%), Kunitz-type <strong>in</strong>hibitors<br />

(2-15 %), peptides (< 1%), and non-assigned m/z < 2000 (5-7 %) and >23<br />

kDa (∼4%) components. These data provide a valuable <strong>in</strong>sight <strong>in</strong>to A. laevis venom<br />

composition and geographic variability, and found the scaffold for the further venomic<br />

characterization of this medically relevant snake.<br />

[1]<br />

R. J. McCleary , R. M. K<strong>in</strong>i, Toxicon <strong>2013</strong>, 62, 56-74.<br />

[2]<br />

J. J. Calvete, Expert Rev. Proteomics 2011, 8, 39-58.<br />

[3]<br />

B. Lomonte, J. Escolano, J. Fernández, L. Sanz, Y. Angulo, J. M. Gutiérrez, J. J. Calvete, J.<br />

Proteome Res. 2008, 7, 2445-2457.<br />

[4]<br />

D. Petras, L. Sanz, A. Segura, M. Herrera, M. Villalta, D. Solano, M. Vargas, G. León, D. A.<br />

Warrell, R. D. Theakston, R. A. Harrison, N. Durfa, A. Nasidi, J. M. Gutiérrez, J. J. Calvete, J.<br />

Proteome Res. 2011, 10, 1266-1280.<br />

[5]<br />

D. Pla, J. M. Gutiérrez, J. J. Calvete, Toxicon 2012, 15, 688-699.<br />

[6]<br />

R. J. He<strong>in</strong>, Proquest, Umi Dissertation Publish<strong>in</strong>g 2011.<br />

[7]<br />

B. G. Fry, J. C. Wickramaratna, W. C. Hodgson, P. F. Alewood, R. M. K<strong>in</strong>i, H. Ho, W. Wüster,<br />

Rapid Commun Mass Spectrom. 2002, 1, 600-608.<br />

Poster 104 Thursday 17:40 - 20:10 161


Mutual Lewis Acid–Base Interactions of Cations and Anions<br />

<strong>in</strong> Ionic Liquids<br />

Markus Holzweber ∗ , Ralf Lungwitz † , Denise Doerfler ‡ , Stefan Spange † , Mihkel Koel ⋄ ,<br />

Herbert Hutter ‡ , Wolfgang L<strong>in</strong>ert ‡<br />

∗ Division 6.8 - Surface Analysis and Interfacial Chemistry –<br />

BAM - Federal Institute for Material Science and Test<strong>in</strong>g – Unter den Eichen 44 –<br />

Berl<strong>in</strong> – GER<br />

† Institute of Chemistry – Chemnitz University of Technology – Strasse der Nationen 62 –<br />

Chemnitz – GER<br />

‡ Institute of Applied Synthetic Chemistry – Vienna University Of Technology –<br />

Getreidemarkt 9/ – Vienna – AUT<br />

⋄ Institute of Chemistry – Tall<strong>in</strong>n Technical University – Akadeemia Tee 15 –<br />

Tall<strong>in</strong>n – EST<br />

markus.holzweber@bam.de<br />

Solute properties are known to be strongly <strong>in</strong>fluenced by solvent molecules due to<br />

solvation. This is due to mutual <strong>in</strong>teraction as both the properties of the solute<br />

and of the solvent strongly depend on each other. The presented work is based<br />

on the idea that ionic liquids are cations solvated by anions and anions solvated<br />

by cations. To show this (<strong>in</strong> this system strongly pronounced) <strong>in</strong>teraction the long<br />

time established donor–acceptor concept for solvents and ions <strong>in</strong> solution by Viktor<br />

Gutmann is extended to ionic liquids. A number of solvent parameters, such as the<br />

Kamlet–Abboud–Taft and the Dimroth–Reichardt ET scale for ionic liquids neglect<br />

this mutual <strong>in</strong>fluence, which, however, seems to be <strong>in</strong> fact necessary to get a proper<br />

description of ionic liquid properties. It is shown how strong such parameters vary<br />

when the <strong>in</strong>fluence of the counter ion is taken <strong>in</strong>to account. Furthermore, acceptor<br />

and donor numbers for ionic liquids are presented.<br />

162 Thursday 17:40 - 20:10 Poster 105


Synthesis and study of antioxidant properties of fullerene C60<br />

derivatives.<br />

Robert Czochara, Michał Symonowicz, Grzegorz Litw<strong>in</strong>ienko<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

rczochara@chem.uw.edu.pl<br />

Oxidative damage of organic materials is caused by free radicals and Reactive Oxygen<br />

Species (ROS). Antioxidants can <strong>in</strong>hibit oxidation reaction by removal of free<br />

radicals. Activity of antioxidants depends on structure and chemical nature, thus,<br />

nanoparticles are new promis<strong>in</strong>g objects for free radical research. Fullerenes [1] can<br />

f<strong>in</strong>d many potential applications <strong>in</strong> science, <strong>in</strong>dustry and medic<strong>in</strong>e. [2,3] Carbon core<br />

makes fullerene an <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>itial structure <strong>in</strong> the development of novel radicalscaveng<strong>in</strong>g<br />

compounds with specific functionalities. Recently, it has been shown that<br />

fullerenes and their derivatives can trap several radicals per molecule [4] and can potentially<br />

be used as a protective substance aga<strong>in</strong>st ROS.<br />

The aim of our studies is to synthesize [5] organic derivatives of fullerene C60(X)n<br />

(where X= C10HqqNO2; (NHC6H4OH)6; C9H9NO). The structures are shown <strong>in</strong><br />

Figure 1.<br />

By means of the differential scann<strong>in</strong>g calorimetry (DSC) and Clark electrode [6,7] we<br />

also carried out the <strong>in</strong>vestigations on the potential antioxidant properties dur<strong>in</strong>g the<br />

oxidation of stearic (ST) and l<strong>in</strong>olenic (LNA) acids as models of oxidizable organic<br />

materials. Our results showed that at high temperature <strong>in</strong> bulk lipid phase the C60<br />

and its derivatives are stable and can break radical oxidation cha<strong>in</strong>s. This feature<br />

is useful because new derivatives can be applied as antioxidants work<strong>in</strong>g <strong>in</strong> extreme<br />

conditions.<br />

This work was supported by Faculty of Chemistry, University of Warsaw, grant BST<br />

501/86-DSM-102400.<br />

Figure 1. Obta<strong>in</strong>ed fullerene C60 derivatives.<br />

[1]<br />

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.<br />

[2]<br />

B.C. Yadav, R. Kumar, International Journal of Nanotechnology and Applications 2008,<br />

2, 15.<br />

[3]<br />

R. Bakry, R. Vallant, International Journal of Nanomedic<strong>in</strong>e 2007, 2, 639.<br />

[4]<br />

S. S. Huang, S. K. Tsai, C.L. Chih, L.Y. Chiang, Free Radical Biol. Med. 2001, 30, 643.<br />

[5]<br />

M. Prato, M. Magg<strong>in</strong>i, Acc. Chem. Res. 1998, 31, 519.<br />

[6]<br />

P. Ziaja, K. Jodko-Piorecka, R. Kuzmicz, G. Litw<strong>in</strong>ienko, Polym. Chem. 2012, 3, 93.<br />

[7]<br />

R. Czochara, P. Ziaja, P. Piotrowski, R. Pokrop, G. Litw<strong>in</strong>ienko, Carbon 2012, 50, 3943.<br />

Poster 106 Thursday 17:40 - 20:10 163


Homogeneous immunoassay based on biolum<strong>in</strong>escence<br />

resonance energy transfer from Luciola m<strong>in</strong>grelica luciferase<br />

Daria V. Smirnova, Janna V. Samsonova, Alexander P. Osipov, Natalia N. Ugarova<br />

Chemistry Department – M.V. Lomonosov Moscow State University –<br />

Len<strong>in</strong>skiye Gory 1-3 – Moscow – RUS<br />

S_mir_nova@mail.ru<br />

Homogeneous immunoassay is one of the perspective, but <strong>in</strong>sufficiently explored direction<br />

of biolum<strong>in</strong>escence resonance energy transfer (BRET) applications. Here we<br />

propose a rapid and potentially sensitive homogeneous immunoassay of low molecular<br />

weight antigen based on the BRET. In this work we studied possibility of luciferase L.<br />

m<strong>in</strong>grelica application <strong>in</strong> homogeneous immunoassay for determ<strong>in</strong>ation of low molecular<br />

weight antigens. Progesterone was chosen as a model antigen. System <strong>in</strong>cludes<br />

thermostable mutant form of luciferase (4TS), conjugated with progesterone (donor)<br />

and fluoro-labeled antibody (acceptor of biolum<strong>in</strong>escence). As an acceptor we used<br />

Alexa fluor 610-x dye, because it has an optimal spectral overlap of the lum<strong>in</strong>escent<br />

and dye excitation spectra and a larger quantum yield as compared with Cy3 or Cy3.5,<br />

described at [1] . The method could f<strong>in</strong>d a wide range of applications by exchang<strong>in</strong>g<br />

antigens and correspond<strong>in</strong>g antibodies.<br />

In this work, we optimized conditions of synthesis of luciferase-progesterone conjugates.<br />

Via heterogeneous ELISA we demonstrated, ability of progesterone-luciferase<br />

conjugate form a complex with antibody. The strict dependence of Biolum<strong>in</strong>escent<br />

activity on the ratio luciferase/progesterone <strong>in</strong> reaction mixture was observed: <strong>in</strong>creased<br />

from 12 to 63 percent, while this ratio was reduced from 1: 50 to 1: 5. We<br />

obta<strong>in</strong>ed conjugates of dye-labeled antibody (BRET-acceptor), with an F/P ratio of<br />

3 to 10, and tested them for the lum<strong>in</strong>escence energy transfer measurement.<br />

Then biolum<strong>in</strong>escent progesterone-tagged luciferase spectra <strong>in</strong> absence and presence<br />

of fluoro-labeled antibody were registrated at different concentrations of components.<br />

In absence of fluoro-labeled antibody only one maximum (590 nm), correspond to<br />

the luciferase emission was obserwed. When fluoro-labeled antibody was added, a<br />

reduction <strong>in</strong> the light emission at around 590 nm, and <strong>in</strong>crease around 630 nm were<br />

observed, suggest<strong>in</strong>g a transfer of energy from the progesterone-tagged luciferase to<br />

the fluoro-labeled anti-progesterone antibody.<br />

BRET-<strong>in</strong>dices were taken as the ratios of the light emissions at 630 and 590 nm.<br />

L<strong>in</strong>ear relationship was observed between BRET <strong>in</strong>dices and the amount of dye <strong>in</strong>corporated<br />

<strong>in</strong>to a prote<strong>in</strong>. Then the relationships between the BRET <strong>in</strong>dices and labeled<br />

antibodies concentration were plotted. A reduction of BRET <strong>in</strong>dex <strong>in</strong> presence of progesterone<br />

was observed. This show possibility of application Luc4TS conjugate for<br />

the determ<strong>in</strong>ation of low molecular weight antigen via homogeneous ELISA <strong>in</strong> short<br />

time.<br />

[1] Y. Yamakawa, H. Veda et al., Journal of Bioscience and Bioeng<strong>in</strong>eer<strong>in</strong>g, 2002, 93, 537-542.<br />

164 Thursday 17:40 - 20:10 Poster 107


Wheat Bran as Anti-Urolithiasis Crystallization<br />

Khaled Sekkoum ∗ , Nasser Beleboukhari ∗ , Abdelkrim Cheriti † , Safia Taleb ‡<br />

∗ Biomolecules & Chiral Separation Laboratory – University of Bechar – POBox 417 –<br />

Bechar – ALG<br />

† Phytochemistry & Organic Syntheesis Laboratory – University of Bechar –<br />

POBox 417 – Bechar – ALG<br />

‡ Material & Catalysis Laboratory – Djilali Liabes University – Sidi Bel Abess – ALG<br />

khalidos669@yahoo.fr<br />

Urolithiasis can lead to the loss of renal function <strong>in</strong> some cases. In this study, we<br />

tested the <strong>in</strong>hibit<strong>in</strong>g effect of wheat bran (Triticum aestivum L) extract on calcium<br />

oxalate crystallization <strong>in</strong> a turbidimetric model, by FTIR spectroscopy, and polarized<br />

microscopy. The results show that this plant extract has a major <strong>in</strong>hibitory effect on<br />

calcium oxalate crystallization.<br />

Poster 108 Thursday 17:40 - 20:10 165


Preparation of z<strong>in</strong>c phthalocyan<strong>in</strong>e catalysts by cotton fabric<br />

dye<strong>in</strong>g<br />

Ahmet Lütfi Uğur ∗ , Ali Erdoğmuş † , M. Arif Kaya †<br />

∗ Chemistry – Canakkale 18 March University – Canakkale – TUR<br />

† Chemistry Department – Yildiz Technical University – Istanbul – TUR<br />

alugur3@hotmail.com<br />

Among tetrapyrrole compounds, phthalocyan<strong>in</strong>es (Pc) which are full-aromatic planar<br />

molecules due to their 18-π electron structure can be substituted with a great deal of<br />

functional groups. In addition to their extensive use as pigments and dyes, this versatility<br />

gives rise to many applications, such as catalysts, liquid crystals, electrochromic<br />

and photochromic substances, data storage systems, photodynamic cancer therapy<br />

agents, photoactive units, chemical sensors, and nonl<strong>in</strong>ear optical devices. [1-3] Catalytic<br />

activities of metallo-phthalocyan<strong>in</strong>es derived from their structural similarity to<br />

metallo-porphyr<strong>in</strong> complexes have been widely studied because of their rather cheap<br />

and facile preparation <strong>in</strong> a large scale and of their chemical and thermal stability. [4]<br />

In this study, a novel phthalonitrile derivative was prepared from a s<strong>in</strong>gle step reaction.<br />

By us<strong>in</strong>g phthalonitrile derivative, metallo-phthalocyan<strong>in</strong>es carry<strong>in</strong>g acidic substituents<br />

on the periphery were synthesized. Spectral results such as FT-IR, UV–Vis,<br />

EI-MS and 1H-NMR for the newly synthesized compounds are <strong>in</strong> good agreement<br />

with the proposed structures. Last part of this work dealt with the cotton fabric<br />

which was modified with a cationic auxiliary and converted to cationic cotton fabric<br />

for dye<strong>in</strong>g process.<br />

[1]<br />

N. B. McKeown, Phthalocyan<strong>in</strong>e materials: synthesis, structure and function Cambridge<br />

University Press, Cambridge, 1998.<br />

[2]<br />

F. H. Moser, A. L. Thomas, Properties The phthalocyan<strong>in</strong>es, vol. 1CRC Press, Boca Raton,<br />

FL, 1983.<br />

[3]<br />

C.C. Leznoff, A.B.P. Lever, Phthalocyan<strong>in</strong>es properties and applications, VCH Publishers,<br />

We<strong>in</strong>heim, 1989.<br />

[4]<br />

M. Kimura, Y. Yamaguchi, T. Koyama, K. Hanabusa, H. Shirai, “Catalytic oxidation of 2mercaptoethanol<br />

by cationic water-soluble phthalocyan<strong>in</strong>atocobalt(II) complexes”, J. Porphyr<strong>in</strong><br />

Phthalocyan<strong>in</strong>es 1997, 1 (4), 309-315<br />

166 Thursday 17:40 - 20:10 Poster 109


The structure and biological activity of the fucoidans from<br />

the brown alga Fucus evanescens<br />

Ksenia Porshneva ∗ , Olesya S. Vishchuk † , Tatiana N. Zvyag<strong>in</strong>tseva †<br />

∗ bioorganic chemistry and biotechnology – Far Eastern Federal University –<br />

27, Oktabrskaya Street – Vladivostok – RUS<br />

† PIBOC FEB RAS – prospekt stoletiya Vladivostoka, 159 – Vladivostok – RUS<br />

porszneva@gmail.com<br />

Nowadays the search and isolation of biological active substances from algae are very<br />

actual problems. Polysaccharides from brown algae of the Russian Far Eastern seas<br />

possess unique structure and properties. Thus, brown algae of the Russian Far Eastern<br />

are of great <strong>in</strong>terest because they are renewable and easily cultivated source of<br />

this substances. Fucoidans are high sulfated homo- and heteropolysaccharides from<br />

brown algae. The reason of high <strong>in</strong>terest to these polysaccharides is wide spectrum<br />

of biological activities, such as ant<strong>in</strong>eoplastic, immunomodulat<strong>in</strong>g, antibacterial, antiviral<br />

and antiphlogistic activity. Due to fucoidans are nontoxic for the body they<br />

are widely tested on ability to prevent from development of different types of cancer.<br />

The alga Fucus evanescens was found out to be the richest source of fucoidans. The<br />

aim of this research was to obta<strong>in</strong> highly purified fucoidans from this species of algae<br />

for further determ<strong>in</strong>ation of the structural characteristics of isolated fucoidans. The<br />

next stage of the <strong>in</strong>vestigation is to elucidate correlation between the structure of<br />

fucoidans and their anticancer and ant<strong>in</strong>eoplastic activity.<br />

Poster 110 Thursday 17:40 - 20:10 167


Analysis of the size distribution and the fluorence probe<br />

encapsulation <strong>in</strong> water <strong>in</strong> oil macromeulsion used as cell<br />

model systems<br />

Maria Concetta Dipalo ∗ , Emiliano Altamura ∗ , Pasquale Stano † , Fabio Mavelli ∗<br />

∗ Chemistry Department – University – Via Orabona 4 – Bari – ITA<br />

† Biology Department – University of Roma Tre – Viale Guglielmo Marconi 446 –<br />

Roma – ITA<br />

marichy@t<strong>in</strong>.it<br />

Emulsion droplets and lipid vesicles have been extensively used as compartmentalized<br />

chemical systems to model cells <strong>in</strong> lab experiments [1] , s<strong>in</strong>ce they have an aqueous core<br />

enclosed by a lipid boundary. Their size can range from few nanometers to tens of<br />

micron and they can encapsulate biomolecules, like prote<strong>in</strong>s, DNA and RNA, <strong>in</strong> the<br />

<strong>in</strong>ner aqueous solution. [2] Recently, the phase transfer method has been presented as<br />

a new method for giant vesicle preparation where the macroemulsion formation is the<br />

<strong>in</strong>itial step of the procedure. Moreover, the physics of the biomolecules encapsulation<br />

dur<strong>in</strong>g the lipid compartment preparation is highly relevant both <strong>in</strong> basic and applied<br />

research. In orig<strong>in</strong> of life studies, the entrapment of solutes <strong>in</strong>side liposomes might<br />

expla<strong>in</strong> the onset of metabolic pathways <strong>in</strong> primitive cells. Prelim<strong>in</strong>ary unexpected<br />

observations [3] seem to <strong>in</strong>dicate that the formation of liposomes acts as an attractor<br />

for the solutes <strong>in</strong> solution, br<strong>in</strong>g<strong>in</strong>g about a very high local concentration <strong>in</strong> some of<br />

them.<br />

In this contribution, we present a study of macroemulsion droplets preparation and<br />

fluorescence probes encapsulation. The ternary system studied is m<strong>in</strong>eral oil/1palmitoyl-2-oleoyl-sn-glycero-3-phosphochol<strong>in</strong>e(POPC)/water.<br />

The <strong>in</strong>fluence of the<br />

vortex<strong>in</strong>g time on the droplets size distribution and on the probe encapsulation has<br />

been studied by perform<strong>in</strong>g both a dimensional and a fluorescence <strong>in</strong>tensity analysis<br />

by confocal microscopy. We have also <strong>in</strong>vestigated the correlation between the yield<br />

of encapsulation of various fluorophores and different physical-chemical properties, <strong>in</strong><br />

order to determ<strong>in</strong>e a law of distribution of their local concentration.<br />

Water <strong>in</strong> Oil droplets conta<strong>in</strong><strong>in</strong>g 10 µM Calce<strong>in</strong> <strong>in</strong><br />

[1]<br />

P. Walde, K. Cosent<strong>in</strong>o, H. Engel,P. Stano, ChemBioChem 2010, 11, 848-865.<br />

[2]<br />

P. Stano, P. Carrara, Y. Kuruma, T. de Souza, P. L. Luisi, J. Mat. Chem. 2011, 21, 18887-<br />

18902.<br />

[3]<br />

P. L. Luisi, M. Allegretti, T. de Souza, F. Ste<strong>in</strong>iger, A. Fahr, P. Stano, ChemBioChem 2011,<br />

11, 1989-1992.<br />

168 Thursday 17:40 - 20:10 Poster 111


Thym<strong>in</strong>e and 2,6-diam<strong>in</strong>opur<strong>in</strong>e: a crystal architecture study<br />

<strong>in</strong> the context of crystal eng<strong>in</strong>eer<strong>in</strong>g and nucleic acid base<br />

pair<strong>in</strong>g<br />

Urszula Budniak, Katarzyna N. Jarzembska, Paul<strong>in</strong>a M. Dom<strong>in</strong>iak<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

urszula.budniak@student.uw.edu.pl<br />

Nucleobases, i.e. either pur<strong>in</strong>es or pyrimid<strong>in</strong>es, constitute undoubtedly a crucial group<br />

of compounds <strong>in</strong> the context of nucleic acids. The specific <strong>in</strong>teractions between these<br />

moieties are responsible for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a proper structure of DNA, and thus are<br />

essential for the correct transfer of the genetic <strong>in</strong>formation. Nucleobases may form<br />

hydrogen bond<strong>in</strong>g (<strong>in</strong> general, between the complementary pairs) but also may participate<br />

<strong>in</strong> π-stack<strong>in</strong>g <strong>in</strong>teractions (between the aromatic r<strong>in</strong>g fragments).<br />

Beside the natural nucleic acid bases (NABs), also their analogues are commonly<br />

<strong>in</strong>vestigated. Some of such derivatives are encountered <strong>in</strong> organisms, while others<br />

are obta<strong>in</strong>ed artificially. Nevertheless, the <strong>in</strong>formation ga<strong>in</strong>ed from the studies of<br />

unnatural compounds can contribute to our knowledge about nucleic acid properties<br />

<strong>in</strong> general, and is extremely useful for drug design.<br />

The presented project is focused on two nucleobases, i.e. thym<strong>in</strong>e and 2,6- diam<strong>in</strong>opur<strong>in</strong>e.<br />

The first one occurs naturally <strong>in</strong> biological systems, whereas the second is the<br />

derivative of aden<strong>in</strong>e. The two analysed moieties should b<strong>in</strong>d together via triple hydrogen<br />

bond<strong>in</strong>g, which is <strong>in</strong> contrast to a double Watson-Crick bond<strong>in</strong>g characteristic<br />

for a standard A-T pair. With<strong>in</strong> this project a lot of effort was dedicated to synthesis<strong>in</strong>g<br />

the component crystals and the co-crystal, and to characterise them. For that<br />

purpose X-ray diffraction experiments were carried out. For good quality and well<br />

diffract<strong>in</strong>g crystals the experimental charge density analysis was performed, while for<br />

the rema<strong>in</strong><strong>in</strong>g cases the TAAM procedure (Transferable Aspherical Atom Model) was<br />

applied. [1] Here, we present a comprehensive study of crystal pack<strong>in</strong>g and energetic<br />

features of the analysed systems <strong>in</strong> the context of the related compounds deposited<br />

<strong>in</strong> the Cambridge Structural Database (CSD) and our previous works dedicated to<br />

the NAB derivatives. [2,3] The nature of <strong>in</strong>termolecular <strong>in</strong>teractions, structural motifs<br />

and crystal pack<strong>in</strong>g was analysed via Hirshfeld surfaces and f<strong>in</strong>gerpr<strong>in</strong>t plots, charge<br />

density distribution, and theoretical calculations (CRYSTAL, Gaussian, and PIXEL).<br />

The solvent impact was also considered.<br />

[1] N. K. Hansen, P. Coppens, “Test<strong>in</strong>g aspherical atom ref<strong>in</strong>ements on small-molecule data sets”,<br />

Acta Cryst. 1978, A34, 909-921.<br />

[2] K.N. Jarzembska, M. Kubsik, R. Kamiński, K. Woźniak, P.M. Dom<strong>in</strong>iak, “From a s<strong>in</strong>gle molecule<br />

to molecular crystal architectures - structural and energetic studies of selected uracil derivatives”,<br />

Cryst. Growth Des. 2012, 12, 2508-2524.<br />

[3] K.N. Jarzembska, A.M. Goral, R. Gajda, P.M. Dom<strong>in</strong>iak, “Hoogsteen-Watson-Crick 9-methyladen<strong>in</strong>e:1-methylthym<strong>in</strong>e<br />

complex: charge density study <strong>in</strong> the context of crystal eng<strong>in</strong>eer<strong>in</strong>g and<br />

nucleic acid base pair<strong>in</strong>g”, Cryst. Growth Des. 2012, 13, 239-254.<br />

[4] The authors acknowledge Polish M<strong>in</strong>istry of Science and Higher Education for f<strong>in</strong>ancial support<br />

with<strong>in</strong> the “Diamond Grant” program.<br />

Poster 112 Thursday 17:40 - 20:10 169


Synthesis and evaluation of polycations as <strong>in</strong>hibitors of<br />

human coronavirus NL63<br />

Justyna Ciejka ∗ , Aleksandra Milewska † , Kamil Kam<strong>in</strong>ski ∗ , Anna Karewicz ∗ ,<br />

Dorota Bielska ∗ , Maria Nowakowska ∗ , Jan Potempa † , Krzysztof Pyrc † ,<br />

Krzysztof Szczubialka ∗<br />

∗ Faculty of Chemistry – Jagiellonian University – Ingardena 3 – Krakow – POL<br />

† Faculty of Biochemistry Biophysics and Biotechnology – Jagiellonian University –<br />

Gronostajowa 7 – Krakow – POL<br />

justyna.ciejka@gmail.com<br />

Human coronavirus NL63 (HCoV NL63) is generally classified as a common cold virus<br />

and it may cause severe upper and lower respiratory tract diseases. Thus, there is a<br />

need to develop effective methods of prevent<strong>in</strong>g and treat<strong>in</strong>g these <strong>in</strong>fections.<br />

The aim of this study was to synthesise and explore anticoronaviral activity of polymerbased<br />

compounds. Four polycations, i.e. N(2 hydroxyl)propyl 3 trimethylammonium<br />

chitosan chloride (HTCC), hydrophobically modified HTCC (HM HTCC), O(2<br />

hydroxypropyl) 3 trimethylammonium poly(v<strong>in</strong>yl alcohol) chloride (HTPVA) and<br />

poly(allylam<strong>in</strong>e hydrochloride) (PAH) were <strong>in</strong>vestigated. In order to evaluate the<br />

<strong>in</strong>hibitory activity of the tested polymers <strong>in</strong> vitro study us<strong>in</strong>g LLC MK2 cells and<br />

ex vivo study us<strong>in</strong>g human airway epithelium (HAE) cultures were performed. The<br />

cytopathic effect (CPE) was correlated with a quantitative RT PCR based assay. The<br />

cytotoxicity was exam<strong>in</strong>ed by an XTT assay and a Neutral Red assay.<br />

The results show that cationically modified polymers are effective <strong>in</strong>hibitors of HCoV<br />

NL63 replication. A cationically modified chitosan derivative HTCC seems to be the<br />

best <strong>in</strong>hibitor of replication of HCoV NL63 at nontoxic concentrations. Non modified<br />

polymers (chitosan, polyv<strong>in</strong>yl alcohol) did not show any antiviral properties.<br />

Acknowledgements<br />

This work was supported by the grant from Foundation for Polish Science Team<br />

Programme cof<strong>in</strong>anced by the EU European Regional Development Fund (PolyMed,<br />

TEAM/2008 2/6), the M<strong>in</strong>istry of Scientific Research, Poland (0095/B/P01/2009/37<br />

and N N204 151336), Iuventus Plus grant from the M<strong>in</strong>istry of Science and Higher<br />

Education, Poland (IP 2010 033870) (KP) and Foundation for Polish Science with<strong>in</strong><br />

the Hom<strong>in</strong>g Programme. The Faculty of Biochemistry, Biophysics and Biotechnology<br />

of the Jagiellonian University is a beneficiary of the structural funds from the<br />

European Union (grant No: POIG.02.01.00 12 064/08 “Molecular biotechnology for<br />

health”).<br />

Structures of the polymers show<strong>in</strong>g anticoronaviral properties<br />

170 Thursday 17:40 - 20:10 Poster 113


Polymeric photosensitizer for use <strong>in</strong> antimicrobial<br />

photodynamic therapy<br />

Urszula Kwolek, Ewa Rząd, Mariusz Kępczyński, Maria Nowakowska<br />

Department of Physical Chemistry and Electrochemistry – Jagiellonian University –<br />

Ingardena 3 – Kraków – POL<br />

kwolek@chemia.uj.edu.pl<br />

A porphyr<strong>in</strong>-polycation conjugate, a polymeric photosensitizer was synthesized and<br />

characterized. The conjugate (Fig. 1) was prepared by modification of the method<br />

described previously [1] , based on covalent attachment of the protoporphyr<strong>in</strong> IX (Pp)<br />

to the polycation cha<strong>in</strong> of polyethyleneim<strong>in</strong>e (PEI). Protoporphyr<strong>in</strong> was chosen due<br />

to its good photosensizit<strong>in</strong>g properties [2] , while PEI was previously shown to cross<br />

through bacterial outer membranes. [3,4] Therefore, this conjugate is expected to be<br />

promis<strong>in</strong>g for use <strong>in</strong> antibacterial photodynamic therapy (APDT).<br />

The polymeric photosensitizer was characterized us<strong>in</strong>g spectroscopic methods (fluorescence,<br />

absorption and NMR spectra) and chromatographic analysis. The obta<strong>in</strong>ed<br />

results <strong>in</strong>dicate that Pp-PEI exhibits strongly aggregation <strong>in</strong> aqueous solution at physiological<br />

pH (pH=7.4), whereas absorption and fluorescence spectra of Pp-PEI dissolved<br />

<strong>in</strong> methanol were typical for monomeric form of porphyr<strong>in</strong>s. Chromatographic<br />

analysis (GPC) provided <strong>in</strong>formation that synthesized product is uncrossl<strong>in</strong>ked.<br />

The <strong>in</strong>fluence of Pp-PEI on lipid membranes was studied us<strong>in</strong>g liposomes as a model.<br />

The k<strong>in</strong>etics of the <strong>in</strong>corporation of Pp-PEI <strong>in</strong>to the liposomes, the b<strong>in</strong>d<strong>in</strong>g constant<br />

(Kb) to the lipid membranes and fluorescence quench<strong>in</strong>g of porphyr<strong>in</strong> were evaluated.<br />

The results demonstrate that porphyr<strong>in</strong> chromophores b<strong>in</strong>d to liposomes, but due to<br />

the large size of the attached polymer, the b<strong>in</strong>d<strong>in</strong>g constant is rather low. Incorporation<br />

of Pp-PEI <strong>in</strong>to lipid membranes was confirmed us<strong>in</strong>g laser scann<strong>in</strong>g confocal<br />

microscopy.<br />

Fig. 1. The structure of Pp-PEI.<br />

[1]<br />

L. Huang, T. Zhiyentayev, Y. Xuan, D. Azhibek, G. B. Kharkwal, M. R. Hambl<strong>in</strong>, Lasers <strong>in</strong><br />

Surgery and Medic<strong>in</strong>e 2011, 43, 313-323.<br />

[2]<br />

F. Ricchelli, Journal of Photochemistry and Photobiology B: Biology 1995, 29, 109-118.<br />

[3]<br />

T. Dai, G. P. Tegos, T. Zhiyentayev, E. Mylonakis, M. R. Hambl<strong>in</strong>, Lasers <strong>in</strong> Surgery and<br />

Medic<strong>in</strong>e 2010, 42, 38-44.<br />

[4]<br />

I. M. Helander, K. Latva-Kala, K. Lounatmaa, Microbiology 1998, 144, 385-390.<br />

Poster 114 Thursday 17:40 - 20:10 171


An Novel Acyclic Nucleic Acid Mimic: Preparation,<br />

Properties and Prospection [1]<br />

Meng Su<br />

Fakultät für Chemie und Pharmazie – Ludwig-Maximilians-Universität München –<br />

Butenandtstr. 5-13, Build<strong>in</strong>g F – 81377 Munich – GER<br />

nieseln.su@gmail.com<br />

For decades, nucleic acid mimics have aroused cont<strong>in</strong>ued <strong>in</strong>terest to chemist as well as<br />

biologist and shown impressive applications <strong>in</strong> molecular biology and pharmaceutical<br />

sciences. Here<strong>in</strong>, a novel nucleic acid mimic based on 3-am<strong>in</strong>o-1,2-propanediol was<br />

designed and synthesized. The opened sugar r<strong>in</strong>g allowed more flexibility. Amide<br />

l<strong>in</strong>kage was <strong>in</strong>troduced to avoid nuclease hydrolysis, and the reserved phosphodiester<br />

bond ensured the solubility. F<strong>in</strong>ally, the distance between the base and sugar was<br />

<strong>in</strong>creased, which benefited the repulsion between strands.<br />

After the four monomers were <strong>in</strong> hand, substituted s<strong>in</strong>gle strands and thromb<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

aptamers (TBA) were synthesized with solid phase synthesizer, confirmed by<br />

MADLI-TOF mass spectrometry. Accord<strong>in</strong>g to the melt<strong>in</strong>g temperatures, all the<br />

15-mer oligomers, substituted at different positions, showed lower duplex stability<br />

compared to dsDNA (-3.7 ∼ -9.0 K). However, when the acyclic monomer placed<br />

<strong>in</strong> positions T3, T7 and T12, the aptamer showed higher thermodynamic stability<br />

than unmodified one (+10.7K ), while substitution at other positions decreased the<br />

stability (-16.4 ∼ -20.2 K). Besides, conformational difference was <strong>in</strong>dicated by CD<br />

spectra. Furthermore, for the s<strong>in</strong>gle strand, the hydrolysis resistance were improved<br />

50 fold <strong>in</strong> SVPDE and 32 fold <strong>in</strong> bov<strong>in</strong>e serum, and for the quadruplex 3.6 fold and<br />

1.7 fold respectively.<br />

In short, the novel acyclic nucleic acid mimic offered greater protection towards exonucleases,<br />

specific substituted aptamers even showed improved thermodynamic stability.<br />

This study provides valuable <strong>in</strong>formation regard<strong>in</strong>g the optimal design of oligonucleotides.<br />

Study of further applications such as RNA <strong>in</strong>terference and molecular<br />

beacon are now underway.<br />

Left: acyclic nucleic acid monomers <strong>in</strong> this study, R = P(OCH2CH2CN)N i Pr2; middle:<br />

melt<strong>in</strong>g temperatures (partially) of modified dsDNA and aptamers, letters <strong>in</strong> bold and<br />

italic stand for modified monomers; right: PAGE show<strong>in</strong>g the cleavage k<strong>in</strong>etics of ssDNA<br />

and aptamers by SVPDE and bov<strong>in</strong>e serum<br />

[1] This work was supported by the National Natural Science Foundation of Ch<strong>in</strong>a. The author<br />

thanks Dr. X<strong>in</strong>j<strong>in</strong>g Tang at Pek<strong>in</strong>g University Health Science Center for helpful discussions.<br />

172 Thursday 17:40 - 20:10 Poster 115


Characterization of a Cisplat<strong>in</strong>-DNA-Antibody and its<br />

Correspond<strong>in</strong>g Antibody-Antigen-Complexes by Mass<br />

Spectrometry Under Native Conditions<br />

Lena Ruhe ∗ , Johanna Hofmann † , Ulrike Hochkirch ∗ , Jürgen Thomale ‡ ,<br />

Michael W. L<strong>in</strong>scheid ∗<br />

∗ Department of Chemistry – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 –<br />

Berl<strong>in</strong> – GER<br />

† Department of Molecual Physics – Fritz-Haber-Institute of Max-Planck-Society –<br />

Faradayweg 4-6 – Berl<strong>in</strong> – GER<br />

‡ Institute of Cell Biology – University Hospital Essen – Hufelandstraße 55 –<br />

Essen – GER<br />

lena.ruhe@chemie.hu-berl<strong>in</strong>.de<br />

S<strong>in</strong>ce antibodies have been <strong>in</strong>creas<strong>in</strong>gly used <strong>in</strong> the diagnostic and therapeutic medic<strong>in</strong>e,<br />

new analytical tools for their detection and characterization are gett<strong>in</strong>g more and<br />

more important. In recent years, especially soft ionization techniques of mass spectrometry<br />

like electrospray ionization (ESI) were improved for the detection of high<br />

masses. This allows the analysis of precise molecular masses of large native prote<strong>in</strong>s<br />

like antibodies without any fragmentation. In order to understand structural aspects<br />

of native non-covalent complexes the analysis of a whole antibody-antigen-complex is<br />

a big challenge and first results are presented <strong>in</strong> this work.<br />

In this study we analyzed the monoclonal rat antibody R-C18 specific for Cisplat<strong>in</strong><br />

<strong>in</strong>duced DNA adducts which was developed by Thomale et al. [1] The detection of<br />

this antibody <strong>in</strong> its native state was successfully performed by a modified nano-ESI<br />

time of flight mass spectrometer (ToF-MS). [2] The antibody was found to be 20 to<br />

50 fold charged - extremely depend<strong>in</strong>g on the parameters used. The correct mass of<br />

the unmodified antibody was determ<strong>in</strong>ed to 144 kDa. As a model for the antigen<br />

we used synthetic oligonucleotides with known base sequences to produce the specific<br />

plat<strong>in</strong>ated DNA antigens. Oligomers conta<strong>in</strong> 50 bases and were analyzed as s<strong>in</strong>gle<br />

and double strands. The sequences of these 50mers was chosen that only one of the<br />

s<strong>in</strong>gle strands conta<strong>in</strong>s two adjacent guan<strong>in</strong>es to give the supposed b<strong>in</strong>d<strong>in</strong>g pattern<br />

G*G*-cisPt(NH3)2 after <strong>in</strong>cubation with Cisplat<strong>in</strong>. As a result we could detect the<br />

unmodified and the plat<strong>in</strong>ated DNA oligomers us<strong>in</strong>g mass spectrometry <strong>in</strong> positive<br />

and negative mode. The whole antibody-antigen-complex us<strong>in</strong>g these synthetic plat<strong>in</strong>ated<br />

oligomers could be successfully measured <strong>in</strong> positive mode. Surpris<strong>in</strong>gly, the<br />

antibody b<strong>in</strong>ds not only to the plat<strong>in</strong>ated synthetic 50mer double strand but also to<br />

each of the correspond<strong>in</strong>g plat<strong>in</strong>ated s<strong>in</strong>gle strands. That means that the b<strong>in</strong>d<strong>in</strong>g<br />

pattern of this special antibody might neither be restricted to DNA double strands,<br />

nor to the until now assumed b<strong>in</strong>d<strong>in</strong>g pattern of G*G* <strong>in</strong>trastrand Cisplat<strong>in</strong> adducts.<br />

In conclusion we show the successful detection of antibodies and their antibodyantigen-complexes<br />

under native conditions via nano-ESI-High Mass-Q-ToF-MS. In<br />

future it could be possible to determ<strong>in</strong>e the precise epitope-b<strong>in</strong>d<strong>in</strong>g structure of DNA<br />

antigens detected by diagnostic relevant antibodies.<br />

[1] Liedert et al., Nucl. Acids Res. 2006, 34 (6), e47.<br />

[2] van den Heuvel et al., Anal. Chem. 2006, 78, 7473-7483.<br />

Poster 116 Thursday 17:40 - 20:10 173


K<strong>in</strong>etic studies on the antiradical activity of sulforaphane.<br />

Jakub Cędrowski, Grzegorz Litw<strong>in</strong>ienko<br />

Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

jcedrowski@chem.uw.edu.pl<br />

Sulforaphane (1-isothiocyanato-4-(methylsulf<strong>in</strong>yl)butane, SFN, Figure 1) is a product<br />

of glucoraphan<strong>in</strong> hydrolysis, a compound naturally found <strong>in</strong> cruciferous vegetables<br />

such as broccoli. SFN belongs to the group of isothiocyanates and it is considered as<br />

a potential anticancer agent with antioxidant activity. [1]<br />

The antiradical molecular mechanism of SFN has not been clearly recognized yet.<br />

Yuan et al. [2] suggested that methylene sulfoxide group (CH3-SO-CH2-) is responsible<br />

for SFN activity and proposed a mechanism <strong>in</strong>volv<strong>in</strong>g H-atom transfer from<br />

methylene group (CH3-SO-CH2-) to an alkyl radical. This <strong>in</strong>terpretation is surpris<strong>in</strong>g<br />

because of high BDE value (Bond Dissociation Energy) for C-H bond of methylene<br />

sulfoxide group (eg. BDE for C-H bond <strong>in</strong> dimethyl sulfoxide is 94 kcal/mol). [3] It<br />

is also suggested that isothiocyanate group of SFN (–N=C=S) is not essential for<br />

antioxidant properties, because after reaction of benzyl isothiocyanate with hydroxyl<br />

radical, the –N=C=S group is unchanged. [2]<br />

The aim of this study was to answer which moiety is responsible for SFN antioxidant<br />

activity. In our work we studied SFN and its analogues (n-hexyl isothiocyanate<br />

(HITC) and dibuthyl sulfoxide (DBSO)) with model DPPH radical <strong>in</strong> methanol. The<br />

progress of the reaction was measured by stopped-flow measurements at 517nm.<br />

Obta<strong>in</strong>ed bimolecular rate constants show that DBSO is almost <strong>in</strong>active toward<br />

DPPH radical. On the other hand HITC reacts with DPPH but much slower than<br />

SFN. Equimolar mixture of DBSO with HITC does not change the rate of reaction<br />

as compared to HITC used alone.<br />

We have proved that isothiocyanate group (-NCS) slowly reacts with radicals and this<br />

observation is <strong>in</strong> agreement with reports on k<strong>in</strong>etics of reactions of other compounds<br />

with -NCS group and radicals. [4,5] We account that the presence of both the methylene<br />

sulfoxide group and isothiocyanate group <strong>in</strong> SFN is necessary for its antiradical<br />

properties.<br />

This work was supported by Faculty of Chemistry, University of Warsaw, grant BST<br />

501/86-DSM-102400.<br />

Figure 1. The structure of sulforaphane.<br />

[1]<br />

Zhang Y.S., Talalay P., Cancer Res.(Suppl.) 1994 54, 1976-1981.<br />

[2]<br />

Yuan H. et al.,<br />

Ch<strong>in</strong>.J.Chem.Eng. 2010 18, 312-321.<br />

[3]<br />

Luo Y.R., Handbook of bond dissociation energies<br />

<strong>in</strong> organic compounds, CRC Press LLC 2003.<br />

[4]<br />

Leard<strong>in</strong>i R. et al., J.Org.Chem. 1997<br />

62, 8394-8399. [5] Benati L. et al., J.Org.Chem. 2000 65, 8669-8674.<br />

174 Thursday 17:40 - 20:10 Poster 117


Towards new fungal enzyme <strong>in</strong>hibitors via five and six<br />

membered nitrones<br />

Mattia Ghirardello, Fernando Gomollon-Bel, David Sadaba, Tomas Tejero, Pedro Mer<strong>in</strong>o<br />

Departamento de Síntesis y Estructura de Biomoléculas –<br />

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) –<br />

Universidad de Zaragoza - CSIC - C/ Pedro Cerbuna 12 – Zaragoza – ESP<br />

mattiag@unizar.es<br />

Even though they are not the most understood molecules <strong>in</strong> biology, it is well known<br />

that glycans are a primary class of biomolecules, as important as DNA, RNA, prote<strong>in</strong>s<br />

or lipids. [1] For <strong>in</strong>stance, carbohydrates decorate the surface of most cells direct<strong>in</strong>g<br />

the <strong>in</strong>teractions between them. Therefore, study<strong>in</strong>g the enzymes that synthesize and<br />

modify membrane-attached glycans may lead to the understand<strong>in</strong>g of very important<br />

biological pathways. Also, by prepar<strong>in</strong>g and study<strong>in</strong>g modified sugars to <strong>in</strong>hibit this<br />

enzymes we can achieve potencial antibiotics, fungicides or antitumoral agents.<br />

In our laboratory, thanks to the vast experience we have <strong>in</strong> the chemistry of nitrones, [2]<br />

we are develop<strong>in</strong>g several methods for the preparation of five and six membered nitrones<br />

that can be functionalized and then reduced to give pirrolid<strong>in</strong>es and piperid<strong>in</strong>es,<br />

classic <strong>in</strong>hibitors of glycosidases and transglycosidades (Figure 1). The products<br />

obta<strong>in</strong>ed are currently be<strong>in</strong>g tested <strong>in</strong> molecular dock<strong>in</strong>g, molecular dynamics and<br />

<strong>in</strong>hibition assays.<br />

Figure 1<br />

Aknowledgements:<br />

M. G. thanks the Spanish M<strong>in</strong>istry of Education, Culture and Sports for a FPU Predoctoral grant.<br />

F. G.-B. and D. S. are grateful to the Spanish Council for Scientific Research (CSIC) for their JAE<br />

Predoctoral grants.<br />

References:<br />

[1] R. F. Service, Science 2012, 18, 321-323.<br />

[2] P. Mer<strong>in</strong>o, S. Franco, F. Merchán, T. Tejero, Synlett. 2000, 442-454; I. Delso, T. Tejero, A.<br />

Goti, P. Mer<strong>in</strong>o, J. Org. Chem. 2011, 76, 4139-4143.<br />

Poster 118 Thursday 17:40 - 20:10 175


A mechanistic study of the <strong>in</strong>teraction between nitrite and<br />

oxy myoglob<strong>in</strong> us<strong>in</strong>g ultra fast techniques<br />

Gabriela Denisa Hathazi, Sonia Mahut, Radu Silaghi-Dumitrescu<br />

Faculty of Chemistry and Chemical Eng<strong>in</strong>eer<strong>in</strong>g – Babes-Bolyai University –<br />

Arany Janos Str. no. 11 RO-400028, Cluj Napoca – Cluj-Napoca – ROU<br />

denisahathazi@yahoo.com<br />

The nitrite anion NO −<br />

2 has recently received much biochemical attention as an endogenous<br />

source of nitric oxide that has the potential to be supplemented for therapeutic<br />

effects [1] , as well as for its <strong>in</strong>volvement <strong>in</strong> the Blue Baby Syndrome [2] , or its use as a<br />

preservative <strong>in</strong> meat products. [3] S<strong>in</strong>ce the reaction can proceed <strong>in</strong> two directions due<br />

to the equilibrium between the oxy and the deoxy form of the glob<strong>in</strong>s, we set out to<br />

establish which is the route taken and which are the very first species formed at the<br />

start of the process. This reaction is known to have complex autocatalytic k<strong>in</strong>etics,<br />

mediated by prote<strong>in</strong> free-radicals, start<strong>in</strong>g with a slow (lag) phase, after which proceeds<br />

onto a fast autocatalytic phase, lead<strong>in</strong>g to the oxidation of the oxy form to the<br />

met form, nitrite to nitrate; <strong>in</strong> the presence of a higher concentration of NO −<br />

2 nitritemet<br />

adducts are formed. [4] UV-vis spectra were collected upon stopped-flow mix<strong>in</strong>g<br />

of glob<strong>in</strong>s with a supraphysiological excess of nitrite and various k<strong>in</strong>etic simulations<br />

were performed, deconstruct<strong>in</strong>g the result<strong>in</strong>g spectra <strong>in</strong>to <strong>in</strong>dividual components, we<br />

have found a match, that suggests that the <strong>in</strong>itial pathway <strong>in</strong>volves the formation<br />

of an iron(II)-peroxonitrate adduct which releases nitrate and the high-valent radical<br />

species, ferryl. This is the first study where a reaction <strong>in</strong>termediate is directly<br />

detected <strong>in</strong> the oxy+nitrite reaction.<br />

[1] A. Keszler, B. Piknova, A. N. Schechter, N. Hogg “The reaction between nitrite and oxyhemoglob<strong>in</strong>:<br />

a mechanisti study”, J. Biol. Chem. 2008, 281(1), 9615-1922.<br />

[2] R. H. Ste<strong>in</strong>horn, “Therapeutic approaches us<strong>in</strong>g nitric oxide <strong>in</strong> <strong>in</strong>fants and children”, Free<br />

Radic. Biol. Med. 2011, 51(5), 1027-1034.<br />

[3] A. Dejam, C.J. Hunter, C. Tremonti, R. M. Pluta, Y. Y. Hon, G. Grimes, K. Partovi, M.M.<br />

Pelletier, E. H. Oldfield, R. O. Cannon, A. N. Schechter, M. T. Gladw<strong>in</strong>, “Nitrite <strong>in</strong>fusion <strong>in</strong><br />

humans and nonhumans primates: endocr<strong>in</strong>e effects, pharmacok<strong>in</strong>etics and tolerance formation”,<br />

Circulation 2007, 116(16), 1821-1831.<br />

[4] R. Grub<strong>in</strong>a, Z. Huang, S. Shiva, M. S. Joshi, I. Azarov, S. Basu, L. A. R<strong>in</strong>gwood, A. Jiang,<br />

N. Hogg, D. B. Kim-Shampiro, M. T. Gladw<strong>in</strong>, “Concerted nitric oxide formation and the release<br />

from simultaneous reactions of nitrite with deoxy and oxy hemoglob<strong>in</strong>”, J. Biol. Chem. 2007,<br />

282, 12916-12927.<br />

176 Thursday 17:40 - 20:10 Poster 119


Structural modification of thiazol<strong>in</strong>-4-ones as potent<br />

5-lipoxygenase <strong>in</strong>hibitors<br />

Andreas Lill, Sebastian Barzen, Carmen B. Rödl, Dieter Ste<strong>in</strong>hilber, Bett<strong>in</strong>a Hofmann,<br />

Holger Stark<br />

Institute of Pharmaceutical Chemistry – Goethe University – Max-von-Laue-Straße 9 –<br />

Frankfurt am Ma<strong>in</strong> – GER<br />

lill@pharmchem.uni-frankfurt.de<br />

Arachidonic acid released from cytoplasmic membrane upon external stimuli is the<br />

source of one important group of <strong>in</strong>flammatory mediators: the leukotrienes (LTs). The<br />

key enzyme of their biosynthesis is the iron-conta<strong>in</strong><strong>in</strong>g, heme-free 5-lipoxygenase (5-<br />

LO). LTs play a pivotal role <strong>in</strong> <strong>in</strong>flammation, allergic disorders, asthma, cardiovascular<br />

diseases and cancer. Up to now, only two LT-<strong>in</strong>terfer<strong>in</strong>g drugs are marketed with<br />

limited success: the LT-receptor antagonist Montelukast (S<strong>in</strong>gulair R○) and the iron<br />

chelat<strong>in</strong>g 5-LO <strong>in</strong>hibitor Zileuton (Zyflo R○). The need to discover new active ligands<br />

for anti-leukotriene therapy is still urgent. [1,2]<br />

Based on early virtual screen<strong>in</strong>g [3] and medium-throughput screen<strong>in</strong>g we previously<br />

identified the 5-arylidene-2-aryl-thiazol<strong>in</strong>-4-one as a lead structure (Fig. 1). [4]<br />

Our previous studies on structure activity-relationships (SAR) po<strong>in</strong>ted out that this<br />

lead shows a cont<strong>in</strong>uous SAR for 5-LO. [4] Now we were focused on further evaluation,<br />

characterization and cytotoxicity of the thiazol<strong>in</strong>ones. Therefore we designed<br />

and synthesized novel 5-arylidene-2-aryl-thiazol<strong>in</strong>-4-one derivatives as direct 5-LO <strong>in</strong>hibitors,<br />

modify<strong>in</strong>g lipophilicity, the exocyclic double bond and <strong>in</strong>troduc<strong>in</strong>g bicylic or<br />

mono aryl residues (part A to C). The compounds were prepared by one-pot dom<strong>in</strong>o<br />

reaction of thioglycolic acid, the correspond<strong>in</strong>g benzaldehyd and benzonitrile or <strong>in</strong> a<br />

related two-step synthetic procedure.<br />

With the results of 5-LO <strong>in</strong>hibitory assay us<strong>in</strong>g cell-free as well as whole-cell (PMNL<br />

cells) [2][4] conditions we identified a naphthalene derivative with a ten-fold higher<br />

<strong>in</strong>hibitory potency than Zileuton and ga<strong>in</strong>ed further <strong>in</strong>sights <strong>in</strong>to the SAR of the<br />

thiazol<strong>in</strong>one-based 5-LO <strong>in</strong>hibitors. [5]<br />

K<strong>in</strong>dly supported by TRIP, OSF, NeFF, Anwendungsorientierte Arzneimittelforschung<br />

(Fraunhofer IME) and EU COST Actions CM1103, BM1107, BM0806.<br />

Figure 1: 5-Arylidene-2-aryl-thiazol<strong>in</strong>one core scaffold with structural variations<br />

[1] M. Peters-Golden and W. Henderson, N. Engl. J. Med. 2007, 357, 1841.<br />

[2] O. Werz, O and D. Ste<strong>in</strong>hilber, Pharmacol. Ther. 2006, 112, 701.<br />

[3] G. Schneider et al., ChemMedChem 2008, 3, 1535.<br />

[4] B. Hofmann et al., J. Med. Chem. 2011, 54, 1943.<br />

[5] S. Barzen et al., Bioorg. Med. Chem. 2012, 20, 3575.<br />

Poster 120 Thursday 17:40 - 20:10 177


Identification and Characterization Of Secondary<br />

Metabolites Of Paenibacillus larvae<br />

Sebastian Müller ∗ , Eva Garcia-Gonzalez † , Ra<strong>in</strong>er Borriss ‡ , Elke Genersch † ,<br />

Roderich Süßmuth ∗<br />

∗ Department of Organic Chemistry, Biological Chemistry –<br />

Technische Universität Berl<strong>in</strong> – Müller-Breslau Straße 10 – Berl<strong>in</strong> – GER<br />

† Bee Research Institute, Molecular Microbiology and Bee Diseases –<br />

Humboldt-Universität Berl<strong>in</strong> – Friedrich-Engels-Str. 32 – Hohen Neuendorf – GER<br />

‡ Bacterial Genetics – Humboldt-Universität Berl<strong>in</strong> – Chausseestr. 117 – Berl<strong>in</strong> – GER<br />

sebastian.mueller@chem.tu-berl<strong>in</strong>.de<br />

American foulbrood (AFB) is considered the most contagious and destructive <strong>in</strong>fectious<br />

disease <strong>in</strong> honeybees, caused by the Gram-positive, spore-form<strong>in</strong>g bacterium<br />

Paenibacillus larvae. [1] Recently, comparative genome analysis revealed that P. larvae<br />

harbours giant gene clusters that code for polyketide synthases (PKS) and nonribosomal<br />

peptide synthetases (NRPS). [2] These enzymatic complexes are responsible for<br />

the biosynthesis of natural products that are implicated <strong>in</strong> multiple functions such as<br />

antibiotic, immunosuppressive, cytostatic and toxic activity. We hypothesized that<br />

P. larvae requires these substances <strong>in</strong> order to successfully compete aga<strong>in</strong>st bacterial<br />

competitors present <strong>in</strong> the larvae, i.e. that the substances produced by these NRPS<br />

serve as antibiotics. In P. larvae genome, we so far identified, extended, and assembled<br />

three putative NRPS/PKS clusters. Us<strong>in</strong>g bacterial growth <strong>in</strong>hibition assays<br />

we were able to demonstrate that P. larvae stra<strong>in</strong>s <strong>in</strong>deed <strong>in</strong>hibited the growth of<br />

different bacterial species suggest<strong>in</strong>g that at least some of these NRPS/PKS clusters<br />

are functional and lead to non-ribosomal antibiotic production. One of these clusters<br />

expresses a tripeptide that is related to antibiotic activity of P. larvae supernatants.<br />

The structure of the tripeptide D-Phe-D-Ala-L-Trp could be elucidated by means of<br />

LC-ESI-MS and GC-CI-MS. A knock-out mutant for the trimodular NRPS cluster<br />

showed a dramatic decrease <strong>in</strong> bacterial growth <strong>in</strong>hibition. The NRP itself showed<br />

no antibiotic activity. Further experiments, both <strong>in</strong> vitro and <strong>in</strong> vivo, are planned to<br />

prove the role of this substance <strong>in</strong> pathogenesis.<br />

NRPS assembly l<strong>in</strong>e of tripeptide FAW (D-Phe-D-Ala-L-Trp)<br />

[1] E. Genersch, E. Forsgren, J. Pentikä<strong>in</strong>en, A. Ashiralieva, S. Rauch, J. Kilw<strong>in</strong>ski, I. Fries. Int.<br />

J. Syst. Evol. Microbiol. 2006, 56, 501-511.<br />

[2] A. Koumoutsi, X. H. Chen, A. Henne, H. Liesegang, G. Hitzeroth, P. Franke, J. Vater, R.<br />

Borriss, JB. 2004, 186.4, 1084-1096.<br />

178 Thursday 17:40 - 20:10 Poster 121


3,9,17,23-tetraiodo-phthalocyan<strong>in</strong>e magnesium(II) for<br />

applications <strong>in</strong> targeted photodynamic therapy of cancer<br />

Małgorzata Cyza ∗ , Mariusz Kępczyński ∗ , Grzegorz Szewczyk † , Arkadiusz Gut ∗ ,<br />

Łukasz Łapok ∗ , Maria Nowakowska ∗<br />

∗ Department of Physical Chemistry and Electrochemistry – Jagiellonian University –<br />

Ingardena 3 – Cracow – POL<br />

† Department of Biophysics – Jagiellonian University – Gronostajowa 7 – Cracow – POL<br />

malgorzatacyza@gmail.com<br />

Over the past years, metallophthalocyan<strong>in</strong>es (MPc) have been recognized as a very<br />

important compound <strong>in</strong> biomedical studies. MPc derivatives are aromatic macrocycles<br />

based on an 18 π electron system. These compounds are photoactive and tend to<br />

generate s<strong>in</strong>glet oxygen species. Due to this property they can be used as potential<br />

photosensitizers <strong>in</strong> the photodynamic therapy (PDT) of tumors. [1]<br />

Phthalocyan<strong>in</strong>es are known to aggregate <strong>in</strong> aqueous solution. [2] It is expected that<br />

aggregates will have an adverse effect on efficacy of the PDT. One way to overcome<br />

the low solubility of MPc is their encapsulation <strong>in</strong> liposomal vesicles. [1]<br />

3,9,17,23-tetraiodo-phthalocyan<strong>in</strong>e magnesium(II) (PcI4Mg), a MPc derivative, was<br />

obta<strong>in</strong>ed <strong>in</strong> this study and its photochemistry was evaluated. The obta<strong>in</strong>ed compound<br />

is characterized by low value of fluorescence quantum yield. The tendency to generate<br />

s<strong>in</strong>glet oxygen species was measured us<strong>in</strong>g phosphorescence detection. This method<br />

<strong>in</strong>dicated a high value of the s<strong>in</strong>glet oxygen quantum yield. Unfortunately, it was observed<br />

a tendency for aggregation both <strong>in</strong> aqueous environments and methanol. The<br />

aggregation constant <strong>in</strong> methanol was determ<strong>in</strong>ed us<strong>in</strong>g physicochemical techniques<br />

<strong>in</strong>clud<strong>in</strong>g UV-ViS and fluorescence. Next, the <strong>in</strong>teraction between PcI4Mg and liposomes,<br />

a model of biological membrane, was studied. So called b<strong>in</strong>d<strong>in</strong>g constant to<br />

liposomes was determ<strong>in</strong>ed. Studies us<strong>in</strong>g the liposomes were carried out <strong>in</strong> a phosphate<br />

buffer solution (pH 7.4). F<strong>in</strong>ally, photostability of the obta<strong>in</strong>ed phthalocyan<strong>in</strong>e<br />

<strong>in</strong> organic solvents was evaluated.<br />

3,9,17,23-tetraiodo-phthalocyan<strong>in</strong>e magnesium(II) (PcI4Mg)<br />

[1] C. Gol, M. Durmus, Synthetic Metals 2012, 162, 605-613.<br />

[2] A. Ogunisipe, D. Maree, T. Nyokong, Journal of Molecular Structure 2003, 650, 131-140.<br />

[3] K. Nawalany, A. Rus<strong>in</strong>, M. Kępczyński, A. Mikhailov, G. Kramer-Marek, M. Śnietura, J. Połtowicz,<br />

Z. Krawczyk, M. Nowakowska, Journal of Photochemistry and Photobiology B: Biology<br />

2009, 97, 8-17.<br />

Poster 122 Thursday 17:40 - 20:10 179


Vibrational multiconfiguration self-consistent field theory<br />

and a web<strong>in</strong>terface for provid<strong>in</strong>g potential energy surfaces<br />

Florian Pfeiffer, Sandra Heislbetz, Guntram Rauhut<br />

Institute of Theoretical Chemistry – University of Stuttgart – Pfaffenwaldr<strong>in</strong>g 55 –<br />

Stuttgart – GER<br />

pfeiffer@theochem.uni-stuttgart.de<br />

The accurate determ<strong>in</strong>ation of vibrational state energies based on variational approaches<br />

requires the <strong>in</strong>clusion of vibration correlation effects. However, based on<br />

VSCF wavefunctions many states show very small lead<strong>in</strong>g VCI coefficients and show<br />

thus multi-reference character. For that reason we have implemented vibrational multiconfiguration<br />

self-consistent field theory (VMCSCF). [1] With several improvements<br />

we have been able to accelerate our program tremendously. [2] We will present the<br />

theory of the current implementation and illustrate benchmark calculations. Based<br />

on multi-level potential energy surfaces (PES) obta<strong>in</strong>ed from explicitly correlated<br />

coupled-cluster theory, i.e. CCSD(T)-F12/VTZ-F12, mean absolute deviations with<br />

respect to experimental data were found to be as low as 3.0 cm −1 . [3]<br />

To provide these high-level multi-dimensional PES to the scientific community we have<br />

set up a web <strong>in</strong>terface (www.pes-database.theochem.uni-stuttgart.de) which allows to<br />

download potential files free of charge. [4] These can be used for vibrational structure<br />

calculations, molecular dynamics simulations and many other purposes, which require<br />

very accurate representations of the PES. The functionality of the web <strong>in</strong>terface allows<br />

the users to search for certa<strong>in</strong> molecules and even to upload potential files, which have<br />

been generated by Molpro.<br />

[1] S. Heislbetz, G. Rauhut, J. Chem. Phys. 2010, 132, 124102.<br />

[2] S. Heislbetz, F. Pfeiffer, G. Rauhut, J. Chem. Phys. 2011, 134, 204108.<br />

[3] F. Pfeiffer, G. Rauhut, J. Phys. Chem. A 2011, 115, 11050.<br />

[4] F. Pfeiffer, M. Neff, G. Rauhut, to be submitted 2012.<br />

180 Thursday 17:40 - 20:10 Poster 123


Three-dimensional, porous superstructures by self-assembly<br />

of noble metal nanoparticles – <strong>in</strong>vestigation of structural<br />

properties and their application <strong>in</strong> catalysis<br />

Anne-Krist<strong>in</strong> Herrmann, Nikolai Gaponik, Alexander Eychmüller<br />

Physical Chemistry/Electrochemistry – TU Dresden – Bergstraße 66b – Dresden – GER<br />

AK.Herrmann@chemie.tu-dresden.de<br />

New challenges <strong>in</strong> nanotechnology arise <strong>in</strong> the assembly of nanocrystals <strong>in</strong>to threedimensional<br />

and complex superstructures which may carry synergistic properties and<br />

opens up new k<strong>in</strong>d of application fields. A new approach lead<strong>in</strong>g to highly porous,<br />

non-ordered nanostructured solids makes use of a sol-gel process where noble metal<br />

nanoparticles act as build<strong>in</strong>g blocks for nanowires which are <strong>in</strong>terconnected and <strong>in</strong>terpenetrat<strong>in</strong>g<br />

and therefore form<strong>in</strong>g a self support<strong>in</strong>g network with macroscopic<br />

dimensions. [1,2] In this case no l<strong>in</strong>ker systems or templates are used <strong>in</strong> order to realize<br />

the network formation. Instead of this controlled destabilization of the colloidal solution<br />

act as key step for <strong>in</strong>itialization of the process. Subsequent supercritical dry<strong>in</strong>g<br />

<strong>in</strong> CO2 is used <strong>in</strong> order to remove the solvent from the pores and transfer the material<br />

<strong>in</strong>to so called aerogels. Details concern<strong>in</strong>g the mechanism and the particle <strong>in</strong>teraction<br />

are still under <strong>in</strong>vestigation. In order to characterize the aerogels concern<strong>in</strong>g their<br />

composition and structure on the nano- and micro-scale different techniques are used<br />

as for example optical spectroscopy (HR)TEM, SEM, XRD, EDX, N2 and H2 adsorption.<br />

It was shown that their primary structural units match the size range of<br />

the <strong>in</strong>itial nanoparticles (5-15 nm) and they provide a very high surface area, extreme<br />

low density (1/1000 compared to the correspond<strong>in</strong>g bulk metals) but also macroscopic<br />

dimensions whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g most of the nanoscale properties. Therefore<br />

metallic aerogels provide promis<strong>in</strong>g candidates for many different application fields as<br />

for example: heterogeneous- and electrocatalysis, energy harvest<strong>in</strong>g systems, optical<br />

sensors, surface enhanced Raman scatter<strong>in</strong>g (SERS) substrates, broad band optical<br />

limiters, and conduct<strong>in</strong>g transparent substrates. [3] As an example of an application<br />

<strong>in</strong> the field of catalysis the electrocatalytical activity towards the oxidation of ethanol<br />

of a freestand<strong>in</strong>g α-, β-, or γ- cyclodextr<strong>in</strong> modified palladium nanoparticle aerogel<br />

with extremely high electrocatalytic current density and good durability was recently<br />

reported. [4] Further possibilities and results for application <strong>in</strong> catalysis will be discussed<br />

with<strong>in</strong> the presentation.<br />

[1] Bigall, Herrmann, Vogel, Rose, Simon, Carrillo-Cabrera, Dorfs, Kaskel, Gaponik, Eychmüller,<br />

“Hydrogels and Aerogels from Noble Metal Nanoparticles”, Angew. Chem. Int. Ed. 2009, 48,<br />

9731.<br />

[2] Herrmann, Bigall, Lu, Eychmüller, “Ordered and nonordered porous superstructures from metal<br />

nanoparticles”, <strong>in</strong>: Complex-Shaped Metal Nanoparticles, ed. Sau, Rogach, Wiley-VCH, 2012.<br />

[3] Gaponik, Herrmann, Eychmüller, “Colloidal Nanocrystal-Based Gels and Aerogels: Material<br />

Aspects and Application Perspectives”, J. Phys. Chem. Lett. 2012, 3, 8-17.<br />

[4] Liu, Herrmann, Geiger, Borchardt, Simon, Kaskel, Gaponik, Eychmüller, Angew. Chem. Int.<br />

Ed. 2012, 51, 5743-5747.<br />

Poster 124 Thursday 17:40 - 20:10 181


Towards large scale vibrational structure calculations<br />

Dom<strong>in</strong>ik Oschetzki, Michael Neff, Guntram Rauhut<br />

Institut für Theoretische Chemie – Universität Stuttgart – Pfaffenwaldr<strong>in</strong>g 55 –<br />

D-70569 Stuttgart – GER<br />

osch@theochem.uni-stuttgart.de<br />

The calculation of accurate anharmonic frequencies for large molecules or clusters is<br />

still very demand<strong>in</strong>g. The reason for that are the calculation of high-level potential energy<br />

surfaces (PES) <strong>in</strong> comb<strong>in</strong>ation with accurate vibrational correlation calculations<br />

as provided by vibrational configuration <strong>in</strong>teraction methods (VCI). For the efficient<br />

calculation of the PES several techniques can be used for acceleration, like an automated<br />

iterative <strong>in</strong>terpolation or a gridcomput<strong>in</strong>g <strong>in</strong>terface. The gridcomput<strong>in</strong>g <strong>in</strong>terface<br />

allows for the use of massive parallel architectures and distributed systems, like<br />

the Cray XE6 at the HLRS <strong>in</strong> Stuttgart. Together with the SEGL Client the generation<br />

of the PES can be completely automated on these massive parallel architectures.<br />

In addition to this bottleneck the subsequent VCI calculation becomes expensive,<br />

s<strong>in</strong>ce the configuration space grows rapidly with the system size. To reduce the computational<br />

demands of the VCI calculation, a configuration selection technique is used<br />

to limit the calculation to those configurations, which have a large contribution to the<br />

energy. The observation is that only a very small fraction of the configuration space<br />

is needed to get wavenumber accuracy compared to the experiment. The selection<br />

is based on a VPT2 like energy criterion. To reduce the computational demands of<br />

the VCI calculations further, contractions <strong>in</strong> the calculation of matrix elements and a<br />

more rigorous use of Slater-Condon analogous rules are used. We <strong>in</strong>vestigated a set of<br />

lithium fluoride cluster (up to Li10F10). The equilibrium structures and PES of these<br />

clusters have been calculated at the DF-LCCSD(T)-F12a level of theory us<strong>in</strong>g a reasonable<br />

basis set. For these systems the LCCSD(T)-F12a method gives an accurate<br />

discription of the electronic structure, while the PES calculation on several thousand<br />

cores benefits from the DF implementation. As the bottleneck of the PES calculation<br />

is reduced dramatically by us<strong>in</strong>g the Cray XE6 the subsequent VCI calculations get<br />

more and more the bottleneck. Thereby improv<strong>in</strong>g the VCI calculations will be aga<strong>in</strong><br />

<strong>in</strong> focus.<br />

182 Thursday 17:40 - 20:10 Poster 125


The application of X-rays fluorescence spectroscopy to<br />

determ<strong>in</strong>ation of fluorides <strong>in</strong> solid materials<br />

Zuzanna Kowalkiewicz , Sylwia Lipiecka, Katarzyna Makowska, Włodzimierz Urbaniak<br />

Faculty of Chemistry – Adam Mickiewicz University <strong>in</strong> Poznań –<br />

Umultowska Street 89b – Poznań – POL<br />

zuzanna.kowalkiewicz@amu.edu.pl<br />

X-rays fluorescence spectroscopy is a method based on the fluorescence phenomenon.<br />

Fluorescence is an emission of characteristic X-rays from sample after radiation of a<br />

high energy (X-rays or Gamma rays). Fluorescent radiation of a certa<strong>in</strong> <strong>in</strong>gredient is<br />

result of the transition of electrons dur<strong>in</strong>g release of absorbed energy. Characteristic<br />

emitted radiation can be measure as wavelength of photons (wavelength dispersive<br />

spectrometer- XRF WDS) or energy of photons (energy dispersive spectrometer- XRF<br />

EDS). The majority of X-rays fluorescence spectrometers are limited to determ<strong>in</strong>ation<br />

elements from sodium to uranium, therefore determ<strong>in</strong>ation of fluor<strong>in</strong>e by XRF<br />

spectroscopy is impossible. Moreover, hydrofluoric acid reacts with silicon dioxide<br />

(a component of glass), thus ICP-MS technique is not allowed to measure samples<br />

consist of even small amounts of fluorides.<br />

The aim of this study is to design the new method of determ<strong>in</strong>ation of fluorides <strong>in</strong><br />

solid samples us<strong>in</strong>g X-rays fluorescence spectroscopy. This method <strong>in</strong>cludes two steps<br />

of preparation of sample-lixiviation calcium compounds by acetic acid and sample<br />

filtration. The residue on the filter constitutes the most <strong>in</strong>soluble <strong>in</strong> water fluoride<br />

salt-calcium fluoride (CaF2, fluorspar). Fluorides from a filtrate are determ<strong>in</strong>ed by<br />

ion-selective electrode measurement and simultaneously fluorides from a residue are<br />

determ<strong>in</strong>ed us<strong>in</strong>g XRF apparatus. Own<strong>in</strong>g to mentioned reason fluor<strong>in</strong>e could not be<br />

directly measured by XRF spectroscopy. Hence, a concentration of the anions is calculated<br />

by measurement of a content of calcium <strong>in</strong> the residue. Thus, the concentration<br />

of fluorides are computed by stoichiometric composition of CaF2.<br />

Poster 126 Thursday 17:40 - 20:10 183


A sesquiterpenes acids content of the sedative properties of<br />

lavender flowers (Lavandula angustifolia)<br />

Michal<strong>in</strong>a Adaszyńska, Maria Swarcewicz, Małgorzata Śmist<br />

Department of Organic Synthesis and Drug Technology –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – Piastow Avenue 42 – Szczec<strong>in</strong> –<br />

POL<br />

madaszynska@zut.edu.pl<br />

Lavender is a valuable resource for a wide therapeutic biological activity. In a series<br />

of publications, new varieties of lavender are still generat<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> research,<br />

result<strong>in</strong>g <strong>in</strong> the possibility of us<strong>in</strong>g this herb, such as an antibacterial agent, antifungal,<br />

antioxidant, anti-<strong>in</strong>flammatory as well as act<strong>in</strong>g as a natural antidiabetic medication<br />

and sedative. [1-3] Count<strong>in</strong>g a group of sedative drugs and sleep aids, almost completely<br />

devoid of adverse side effects at normal dosages, preparations are made based on plant<br />

extracts. The aim of this study was to determ<strong>in</strong>e the content of sesquiterpenes acids:<br />

valeric and acetoxyvalerenic acids with flowers of different varieties of lavender.<br />

The determ<strong>in</strong>ation was performed by the method described <strong>in</strong> the European Pharmacopoeia.<br />

[4] Samples of lavender flowers were subjected by gr<strong>in</strong>d<strong>in</strong>g. Extraction of<br />

sesquiterpenes acid were made <strong>in</strong> methanol. The result<strong>in</strong>g extract was analyzed by<br />

HPLC chromatography and chromatographic analysis were carried out <strong>in</strong> parallel with<br />

the addition of the <strong>in</strong>ternal standard (1,8-dihydroxyantrah<strong>in</strong>one). Studies have shown<br />

that different varieties of lavender sesquiterpenes acids content. Most valeric acid was<br />

determ<strong>in</strong>ed <strong>in</strong> the variety ’Ellegance Purple’ (1.52 mg/100 g), and the least <strong>in</strong> the<br />

variety ’Blue River’ (0.75 mg/100 g). However, the flowers of ’Blue River’ conta<strong>in</strong>ed<br />

10-fold more acetoxyvalerenic acid (65.8 mg/100 g) than those of ’Ellegance Purple’<br />

(6.5 mg/100 g).<br />

[1] L. Hui, L. He, L. Huxan, L. XiaoLan, Afri. J. Microbiol. Res., 2010, 4, 309-313.<br />

[2] A. Issa, M. Mohammad, M. Hudaib, K. Tawah, J. Med. Plants. Res. 2011, 5 (16), 3876-3882.<br />

[3] W. Soyowan, V. Siripornpanich, T. Piriyapunyaporn, J. Med. Assoc. Thai. 2012, 9 (4), 2-9.<br />

[4] European Pharmacopoeia 5.0.<br />

184 Thursday 17:40 - 20:10 Poster 127


Gas chromatographic-mass spectrometric identification and<br />

quantitation of volatile cognac spirit components<br />

Peter Nalivayko<br />

Analitycal Chemistry – Belarussian State University – ul. Len<strong>in</strong>gradskaya 14 – M<strong>in</strong>sk –<br />

BLR<br />

NalivaykoPeter@gmail.com<br />

Cognac is a heavy object of analysis because of the complexity of production technology<br />

that requires sophisticated analytical equipment, specialized methodological<br />

materials, skilled labor and certa<strong>in</strong> material costs. This fact comb<strong>in</strong>ed with the lack<br />

of fund<strong>in</strong>g and high cost of production generated a flow of counterfeit that occupied<br />

significant market share. The purpose of this study is to develop a methodology of<br />

f<strong>in</strong>d<strong>in</strong>g of most common ways of cognac adulteration <strong>in</strong> Eastern Europe. The study<br />

is based on an assessment of the organoleptic characteristics of cognac, and gas GC-<br />

MS analysis that allows to def<strong>in</strong>e the composition and ratio of volatile cognac spirit<br />

components as well as components of the decomposition of oak.<br />

Poster 128 Thursday 17:40 - 20:10 185


A DFT Study on The Coord<strong>in</strong>ation of N,<br />

N-dimethyl-N’-(2-chloro)benzoylthiourea with Ni 2+ and<br />

Co 3+ Metal Ions<br />

Celal Özpınar ∗ , Gül Altınbaş Özpınar † , Fatih Mehmet Emen ‡ , Nevzat Külcü ⋄<br />

∗ Department of Chemistry – Kirklareli University – Kavakli – Kırklareli – TUR<br />

† Department of Chemistry – Bursa Technical University – Mer<strong>in</strong>os – Bursa – TUR<br />

‡ Department of Chemistry – Mehmet Akif Ersoy University – Burdur – TUR<br />

⋄ Department of Chemistry – Mers<strong>in</strong> University – Mers<strong>in</strong> – TUR<br />

celal93@yahoo.com<br />

N,N-dialkyl-N’-benzoylthioureas are extensively used as ligands <strong>in</strong> coord<strong>in</strong>ation chemistry<br />

due to the fact that these structures <strong>in</strong>clud<strong>in</strong>g very strong donor groups such<br />

as carbonyl and thioamide are able to coord<strong>in</strong>ate to especially transition metal ions<br />

as monoanionic bidentate ligands which are formed by deprotonation. [1,2] They have<br />

recently attracted great attention as versatile ligands <strong>in</strong> numerous applications such<br />

as <strong>in</strong> pharmaceutical and agrochemical <strong>in</strong>dustries for potential therapeutic agents.<br />

In this study, we have performed theoretical <strong>in</strong>vestigation on the bis(N,N-dimethyl-N’-<br />

(2-chloro)benzoylthioureato)nickel(II) and tris(N,N-dimethyl-N’-(2-chloro)benzoylthioureato)cobalt(III)<br />

complexes us<strong>in</strong>g density functional B3LYP, BLYP, OLYP,<br />

PBEPBE, and wB97XD methods with cc-pVDZ basis set. Optimized geometries,<br />

electronic and spectral properties of the complexes are compared with experimental<br />

data.<br />

Figure 1. Structures of Cu (left) and Ni (right) complexes<br />

Bis(N,N-dimethyl-N’-(2-chloro)benzoylthioureato)nickel(II) (right) and<br />

tris(N,N-dimethyl-N’-(2-chloro)benzoylthioureato)cobalt(III) (left) complexes<br />

[1] P. Muhl, K. Gloe, F. Dietze, E. Hoyer, L. Beyer, Z. Chem. 1986, 26, 81.<br />

[1] K. R. Koch, Coord. Chem. Rev. 2001, 473, 216-217.<br />

186 Thursday 17:40 - 20:10 Poster 129


Method of f<strong>in</strong>d<strong>in</strong>g of honey adulteration by means of<br />

determ<strong>in</strong>ation of 5-hydroxymethylfurfural presence<br />

Ir<strong>in</strong>a Alshakova, Peter Nalivayko<br />

Organic Chemistry – Belarussian State University – ul. Len<strong>in</strong>gradskaya, 14 – M<strong>in</strong>sk –<br />

BLR<br />

ialshakova@gmail.com<br />

Method of f<strong>in</strong>d<strong>in</strong>g of honey adulteration by means of determ<strong>in</strong>ation of 5-hydroxymethylfurfural<br />

presence was proposed <strong>in</strong> this article. Method <strong>in</strong>cludes synthesis of<br />

standart of 5-HMF, sample preparation of honey samples and follow<strong>in</strong>g chromatographic<br />

analysis by means of high performance liquid chromatography accord<strong>in</strong>gly<br />

to proposed conditions. The quality of synthesized standard was confirmed by gas<br />

chromatography-mass-spectrometry. Comparative characteristics of classical methods<br />

of determ<strong>in</strong>ation of 5-HMF <strong>in</strong> homey samples that was <strong>in</strong>troduced <strong>in</strong> this article<br />

confirm higher efficiency HPLC analysis as primary method of determ<strong>in</strong>ation of adulteration<br />

of honey samples.<br />

Poster 130 Thursday 17:40 - 20:10 187


Accurate anharmonic vibrational frequencies and<br />

Franck-Condon factors for SeH2/SeH + 2<br />

Patrick Meier ∗ , Joonsuk Huh † , Robert Berger † , Guntram Rauhut ∗<br />

∗ Institute of Theoretical Chemistry – University of Stuttgart – Pfaffenwaldr<strong>in</strong>g 55 –<br />

Stuttgart – GER<br />

† Clemens-Schöpf-Institute – Technical University of Darmstadt – Petersenstr. 22 –<br />

Darmstadt – GER<br />

patrick.meier@gmx.de<br />

Photoelectron spectra provide valuable <strong>in</strong>sight <strong>in</strong>to the vibronic structure of a molecule.<br />

In many cases a reliable <strong>in</strong>terpretation of such spectra requires the accurate simulation<br />

based on ab <strong>in</strong>itio calculations. If the relevant potential energy surfaces are expanded<br />

<strong>in</strong> different coord<strong>in</strong>ates, the Dusch<strong>in</strong>sky rotation needs to be taken <strong>in</strong>to account. This<br />

rotation <strong>in</strong> comb<strong>in</strong>ation with an accurate description of the vibrational wavefunctions<br />

by a l<strong>in</strong>ear comb<strong>in</strong>ation of distributed Gaussians leads to a computational bottleneck,<br />

which is subject to current research. Such an approach was tested quite recently. [1]<br />

A new program for the calculation of Franck-Condon factors mak<strong>in</strong>g use of these<br />

features has been developed with<strong>in</strong> the Molpro suite of ab <strong>in</strong>itio programs.<br />

Here we present highly accurate calculations on the vibronic transitions of the<br />

SeH2/ SeH +<br />

2 system based on wavefunctions obta<strong>in</strong>ed from vibrational configuration<br />

<strong>in</strong>teraction calculations. The potential energy surface has been obta<strong>in</strong>ed from CCS-<br />

DTQ calculations with basis sets up to quadruple-ζ quality. Moreover, relativistic and<br />

core correlation effects were found to be important and were thus <strong>in</strong>cluded with<strong>in</strong> the<br />

determ<strong>in</strong>ation of the 3-dimensional potential energy surface. Vibrational structure<br />

calculations make use of the full Watson Hamiltonian. Comparison with experimental<br />

data is provided.<br />

[1] J. Huh, M. Neff, G. Rauhut and R. Berger, Mol. Phys. 2009, 108, 409.<br />

188 Saturday 9:00 - 11:30 Poster 131


GC/MS Analysis of Extract and Essential Oil Samples from<br />

Wisteria s<strong>in</strong>ensis<br />

Justyna Sobczak, Elżbieta Huzar, Hal<strong>in</strong>a Kwiecień<br />

Department of Organic Synthesis and Drug Technology –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – al. Piastów 42 – 71-065 Szczec<strong>in</strong> –<br />

POL<br />

jsobczak@zut.edu.pl<br />

Wisteria s<strong>in</strong>ensis is a woody climb<strong>in</strong>g v<strong>in</strong>e of the family Legum<strong>in</strong>osae, that can reach<br />

a height of 20 m, characterized by pendent racemes of light blue-violet, scented flowers.<br />

Orig<strong>in</strong>ally from Ch<strong>in</strong>a, Japan and Southern USA, wisteria was brought <strong>in</strong>to<br />

Europe <strong>in</strong> the n<strong>in</strong>eteenth century.<br />

Several compounds isolated from different wisteria species have been reported to have<br />

antioxidant, antibacterial and anticancer activities. [1,2] Wisteria s<strong>in</strong>ensis flowers are<br />

known for their pleasant, creamy sweet smell. A survey of the literature showed that<br />

the key <strong>in</strong>gredients of the characteristic fragrance of Wisteria s<strong>in</strong>ensis flowers are two<br />

aromatic compounds: 7-hydroxy-6-methoxy-4H-1-benzopyran and 6,7-dimethoxy-4H-<br />

1-benzopyran. [3]<br />

We report our results on the analysis of solvent extracts and essential oils from Wisteria<br />

s<strong>in</strong>ensis flowers. The essential oil was obta<strong>in</strong>ed by steam distillation of the<br />

Wisteria s<strong>in</strong>ensis flowers collected <strong>in</strong> Poland with use of the Deryng apparatus. The<br />

extracts were prepared by maceration both fresh and dried flowers us<strong>in</strong>g methanol,<br />

chloroform and n-hexane as solvents. Samples were analyzed with use gas chromatograph<br />

with a mass selective detector. The compounds were identified us<strong>in</strong>g a NIST<br />

02 mass spectral library and the programmed temperature retention <strong>in</strong>dexes were also<br />

determ<strong>in</strong>ed. A prelim<strong>in</strong>ary analysis by GC/MS lead to characterize the essential oil<br />

and extracts of Wisteria s<strong>in</strong>ensis flowers. Methyl or ethyl esters of fatty acids such<br />

as 14-methylpentadecanoic, hexadecanoic, octadecanoic, 9,12,15-octadecatrienoic and<br />

l<strong>in</strong>oleic acid as well as 9-octadecenamide and aliphatic hydrocarbons such as heptacosane,<br />

eicosane were identified as the ma<strong>in</strong> components. Eugenol, 6,10,14-trimethyl-<br />

2-pentadecanon and phytosterols were also detected.<br />

Figure 1. Wisteria s<strong>in</strong>ensis<br />

[1]<br />

T. Konoshima, M. Takasaki, M. Kozuka, H. Tokuda, H. Nish<strong>in</strong>o, E. Matsuda, M. Ngai, Biol<br />

Pharm Bull, 1997, 20(8), 865-868.<br />

[2]<br />

M.A. Mohamed, M.M. Hamed, A.M. Abdou, W.S. Ahmed , A.M. Saad, Molecules, 2011, 16(5),<br />

4020-4030.<br />

[3]<br />

D. Joula<strong>in</strong>, R. Tabaccchi, Phytochemistry, 1994, 37(6), 1769-1770.<br />

Poster 132 Saturday 9:00 - 11:30 189


SPE-HPLC Onl<strong>in</strong>e Coupl<strong>in</strong>g for the Determ<strong>in</strong>ation of<br />

Zearalenone <strong>in</strong> Edible Oil: First Results<br />

Drzymala Sarah ∗ , Marten Silvia † , Stefan Risch † , Matthias Koch ∗<br />

∗ Department 1 – Federal Institute for Materials Research and Test<strong>in</strong>g –<br />

Richard-Willstätter-Str. 11 – Berl<strong>in</strong> – GER<br />

† Department "Applications and Columns" –<br />

Wissenschaftlicher Gerätebau, Dr. Ing. Herbert Knauer GmbH – Hegauer Weg 38 –<br />

Berl<strong>in</strong> – GER<br />

sarah.drzymala@bam.de<br />

Zearalenone (ZEN) is a non-steroidal hyperestrogenic mycotox<strong>in</strong> that contam<strong>in</strong>ates<br />

different crops worldwide. Due to its lipophilic nature it is often found <strong>in</strong> edible oil<br />

derived from contam<strong>in</strong>ated material. The dilemma of seperat<strong>in</strong>g an apolar analyte<br />

from an apolar matrix either leads to a lack of specifity or very laborious, cost <strong>in</strong>tensive<br />

techniques. Thus, the extraction and clean-up of ZEN from edible oil has long been<br />

termed problematic.<br />

In 2010, Siegel et al. [1] proposed a highly specific one-pot sample preparation technique.<br />

Carbonyl compounds as ZEN can be covalently bound to hydraz<strong>in</strong>e functionalized<br />

polymer particles. After the clean-up process ZEN is cleaved from the polymer<br />

and quantified by HPLC with fluorescence detection.<br />

The aim of this work was to f<strong>in</strong>d out if a covalent SPE approach is suitable for<br />

onl<strong>in</strong>e-coupl<strong>in</strong>g to HPLC.<br />

Seven different res<strong>in</strong>s, polymer and silica based, were tested for their suitability. One<br />

silica and one polymer res<strong>in</strong> were found to have superior k<strong>in</strong>etic properties and were<br />

chosen for SPE cartridge fill<strong>in</strong>gs. First results regard<strong>in</strong>g the technical setup, recovery<br />

and reusability rates are presented. This is the first work to explore whether a SPE<br />

based on covalent <strong>in</strong>teraction has the potential to be coupled to HPLC.<br />

[1] D. Siegel, K. Andrae, M. Proske, C. Kochan, M. Koch, M. Weber,I. Nehls, “Dynamic covalent<br />

hydraz<strong>in</strong>e chemistry as a selective extraction and cleanup technique for the quantification of the<br />

Fusarium mycotox<strong>in</strong> zearalenone <strong>in</strong> edible oils.” J.Chromatogr. A 2010, 1217 (15), 2206-2215.<br />

190 Saturday 9:00 - 11:30 Poster 133


Synthesis, characterization and sensory property of<br />

magnesium porphyraz<strong>in</strong>e possess<strong>in</strong>g<br />

methyl(2-thienylmethyl)am<strong>in</strong>o substituents <strong>in</strong> the periphery<br />

Wojciech Szczolko ∗ , Jacek Kujawski † , Zbigniew Dutkiewicz ∗ , Marek Bernard † ,<br />

Tomasz Gosl<strong>in</strong>ski ∗<br />

∗ Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

† Department of Organic Chemistry – Poznan University of Medical Sciences –<br />

Grunwaldzka 6 – Poznan – POL<br />

wszczolko@ump.edu.pl<br />

INTRODUCTION Peripherally functionalized porphyraz<strong>in</strong>es (Pzs) 1 are isoelectronic<br />

with porphyr<strong>in</strong>s, but <strong>in</strong> comparison possess substantially different electronic properties.<br />

The first possibility to modify Pz is to substitute the core with metal entities<br />

(M), while the second one is connected with peripheral modifications (Figure). Pzs<br />

substituted <strong>in</strong> the periphery have many potential applications as photosensitizers<br />

<strong>in</strong> photodynamic therapy, sensors, molecular semiconductors and non-l<strong>in</strong>ear optical<br />

materials. [1]<br />

RESULTS Maleonitrile (3) was synthesized accord<strong>in</strong>g to the two approaches (Figure).<br />

In the first approach double-reductive alkylation of diam<strong>in</strong>omaleonitrile (2)<br />

was employed to yield 2,3-bis[(2-thienylmethyl)am<strong>in</strong>o]-2(Z)-butene-1,4-d<strong>in</strong>itrile (3)<br />

follow<strong>in</strong>g a method elaborated by the Sheppard [2] and Barrett-Hoffman [3] teams. In<br />

second approach maleonitrile 3 was synthesized <strong>in</strong> a one-step procedure us<strong>in</strong>g 5-ethyl-<br />

2-methylpyrid<strong>in</strong>e borane complex and acetic acid <strong>in</strong> methanol. [1] Alkylation reaction<br />

of 3 with dimethyl sulfate <strong>in</strong> THF led to the novel maleonitrile (4) which was subsequently<br />

used <strong>in</strong> L<strong>in</strong>stead macrocyclization reaction towards symmetrical porphyraz<strong>in</strong>e<br />

(5). Peripheral metallation study of Pz 5 with PdCl2 (PhCN)2 <strong>in</strong> the UV-Vis and<br />

NMR are ongo<strong>in</strong>g. Experimental results will be compared with the theoretical calculations<br />

(Gaussian G09 suite code). The structures of the different Pz 5 conformers with<br />

PdCl2 have been optimized accord<strong>in</strong>g to the density functional theory at B3LYP/6-<br />

31G(d,p) level, <strong>in</strong>clud<strong>in</strong>g PCM solvation model. Moreover, the related calculations<br />

will be compared to the experimental NMR spectra and analyzed us<strong>in</strong>g (i) IGLOII<br />

basis for H, C, N, O, S atoms, (ii) standard base cc-pVTZ for magnesium cation, and<br />

(iii) LANL2DZ ECP for palladium salt. [5,6]<br />

Figure<br />

[1]<br />

M. S. Rodriguez-Morgade, P. A. Stuzh<strong>in</strong>, J. Porphyr. Phthalocya. 2004, 8, 1129.<br />

[2]<br />

R. W. Begland, D. R. Hartter, F. N. Jones, D. J. Sam, W. A. Sheppard, O. W. Webster, F. J.<br />

Weigert, J. Org. Chem. 1974, 39, 2341.<br />

[3]<br />

L. S. Beall, N. S. Mani, A. J. P. White, D. J. Williams, A. G. M. Barrett, B. M. Hoffman, J.<br />

Org. Chem. 1998, 63, 5806.<br />

[4]<br />

E. R. Burkhardt, B. M. Coleridge, Tetrahedron Lett. 2008, 49, 5152.<br />

[5]<br />

J. Kujawski, M. Doskocz, H. Popielarska, A. Myka, J. Kruk, M. K. Bernard, Polyhedron <strong>2013</strong>,<br />

submitted.<br />

[6]<br />

P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.<br />

Wojciech Szczołko and Jacek Kujawski are scholarship holders with<strong>in</strong> the project “Scholarship<br />

support for PH.D. students specializ<strong>in</strong>g <strong>in</strong> majors strategic for Wielkopolska’s development”, Submeasure<br />

8.2.2 Human Capital Operational Programme, co-f<strong>in</strong>anced by European Union under the<br />

European Social Fund. The authors acknowledge f<strong>in</strong>ancial support for the project from the Polish<br />

M<strong>in</strong>istry of Science and Higher Education (N N405 356339).<br />

Poster 134 Saturday 9:00 - 11:30 191


Synthesis of N-substituted<br />

3,4-dihydropyrimid<strong>in</strong>e-2(1H )-thiones via regioselective<br />

additions of organolithiums to pyrimid<strong>in</strong>e-2(1H )-thiones<br />

Łukasz Struk, Jacek G. Sośnicki<br />

Institute of Chemistry and Environmental Protection –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – Piastów Avenue 42 – Szczec<strong>in</strong> –<br />

POL<br />

lukasz.struk@zut.edu.pl<br />

In the last twenty years 3,4-dihydropyrimid<strong>in</strong>e-2(1H )-thiones were recognized as valuable<br />

pharmacophores, which show a wide range of pharmalogical activity. [1] A large<br />

majority of 3,4-dihydropyrimid<strong>in</strong>e-2(1H )-thione derivatives were synthesized accord<strong>in</strong>g<br />

to three-component protocol developed by Big<strong>in</strong>elli <strong>in</strong> 1893 (Scheme 1). To the<br />

present, a number of improvements have been <strong>in</strong>troduced <strong>in</strong> order to enhance the efficiency<br />

of this reaction. [2,3] As the result of the last attempts N-substituted derivatives<br />

were obta<strong>in</strong>ed start<strong>in</strong>g from N-substituted thiourea. [4] However, despite of the vast<br />

derivatization opportunities, Big<strong>in</strong>elli reaction suffers from the lack of the attachment<br />

of the optional substituent at C-5 and lead ma<strong>in</strong>ly to the derivatives with carbonyl<br />

groups bonded to this carbon atom. Recently, we have demonstrated a new synthetic<br />

approach to C-4 substituted, NH 3,4-dihydropyrimid<strong>in</strong>e-2(1H )-thiones via addition of<br />

organolithiums to commercially available NH pyrimid<strong>in</strong>e 2(1H )-thione. [5] Follow<strong>in</strong>g<br />

this strategy we present now the prelim<strong>in</strong>ary results of the synthesis of 4-alkil(aryl),<br />

5-(H)aryl N-substituted 3,4-dihydropyrimid<strong>in</strong>e-2(1H )-thiones (2). The efficiency and<br />

the regioselectivity of the addition of organolithium reagents are discussed. Besides,<br />

the synthesis of new 5-aryl N-substituted pyrimid<strong>in</strong>e 2(1H )-thiones (1) is presented.<br />

Acknowledgment<br />

F<strong>in</strong>ancial support by the National Science Center (N N204 219640) is gratefully<br />

acknowledged<br />

[1]<br />

J.-P. Wan, Y. Pan, M<strong>in</strong>i-Rev. Med. Chem. 2012, 12, 337.<br />

[2]<br />

Suresh, J.S. Sandhu, ARKIVOC 2012, 1, 66.<br />

[3]<br />

C. O. Kappe, Acc. Chem. Res. 2000, 33, 879.<br />

[4]<br />

H. Comas, D.-A. Buisson, R. Najman, F. Kozielski, B. Rousseau, R. Lopez. Synlett 2009,<br />

1737.<br />

[5]<br />

J.G. Sośnicki, Phosphorus, Sulfur, Silicon Relat. Elem. 2009, 184, 1946.<br />

192 Saturday 9:00 - 11:30 Poster 135


Synthesis of Highly Lum<strong>in</strong>escent Z<strong>in</strong>c Conta<strong>in</strong><strong>in</strong>g Indium<br />

Phosphide Nanoparticles<br />

Gordon M. Stachowski, Stephen G. Hickey, Alexander Eychmüller<br />

Physikalische Chemie/ Elektrochemie – Technische Universität Dresden –<br />

Bergstraße 66b – 01069 Dresden – GER<br />

Gordon.Stachowski@chemie.tu-dresden.de<br />

Progress <strong>in</strong> the field of semiconductor quantum dots has been driven ma<strong>in</strong>ly by research<br />

<strong>in</strong>to cadmium chalcogenides. As a result these materials are presently among<br />

the most <strong>in</strong>vestigated colloidal quantum dots and can be synthesized to possess high<br />

emission quantum yields across the visible spectral region. Unfortunately, with regard<br />

to bio-applications, the toxicity aspects argue aga<strong>in</strong>st the use of cadmium conta<strong>in</strong><strong>in</strong>g<br />

quantum dots. However, the more biocompatible material <strong>in</strong>dium phosphide can<br />

be synthesized such that it covers almost the same spectral range as the cadmium<br />

chalcogenides.<br />

In this work we present the synthesis and characterization of highly emitt<strong>in</strong>g <strong>in</strong>dium<br />

phosphide quantum dots with a dist<strong>in</strong>ct amount of z<strong>in</strong>c. The emission color of the<br />

as-formed material spans the visible spectrum from blue-green to red. A one-pot hot<br />

<strong>in</strong>jection dehalosilylation synthesis method has been comb<strong>in</strong>ed with a well-controlled<br />

temperature program to modify the reaction rate. The as-prepared quantum dots<br />

possess high quantum yields without the further requirement for a passivat<strong>in</strong>g shell.<br />

Furthermore the amount of z<strong>in</strong>c <strong>in</strong>corporated <strong>in</strong> the quantum dots has been <strong>in</strong>vestigated<br />

us<strong>in</strong>g ICP/OES and XPS. We have observed a relationship between the amount<br />

of z<strong>in</strong>c and the higher quantum yields as well as a shift of the emission profile to higher<br />

energies.<br />

Poster 136 Saturday 9:00 - 11:30 193


Five-membered, N-heterocyclic Ligands <strong>in</strong> Organometallic<br />

and Coord<strong>in</strong>ation Chemistry<br />

Markus Kreye ∗ , Andreas Glöckner ∗ , Constant<strong>in</strong> Daniliuc ∗ , Matthias Freytag ∗ ,<br />

Peter G. Jones ∗ , Matthias Tamm ∗ , Marc D. Walter ∗<br />

∗ Chemie – Institut für Anorganische und Analytische Chemie, TU Braunschweig –<br />

Hagenr<strong>in</strong>g 30 – 38106 Braunschweig – GER<br />

† Chemie – Organisch-Chemisches Institut, WWU Münster – Corrensstr. 40 –<br />

48149 Münster – GER<br />

markus.kreye@tu-bs.de<br />

In contrast to the well-developed chemistry of cyclopentadienyl ligands (Cp) and<br />

their complexes, the coord<strong>in</strong>ation chemistry of the related N-heterocyclic ligands is<br />

underdeveloped. First reported by Kuhn <strong>in</strong> 1991, the sterically demand<strong>in</strong>g 2,5-ditert-butyl-pyrrolyl<br />

(Pyr tBu2 ) was found to react as a Cp-analogue and to b<strong>in</strong>d <strong>in</strong> a<br />

eta 5 -fashion form<strong>in</strong>g diaza-metallocenes of Fe, Co, Ni, Sn and Pb. [1]<br />

We have recently begun to explore the coord<strong>in</strong>ation and reaction chemistry of sterically<br />

demand<strong>in</strong>g pyrrolyl and imidazolyl ligands with transition metals. [2] In this context<br />

the possibility to switch between different coord<strong>in</strong>ation modes was established<br />

with Cr(II) and Mn(II) centers. These and other results will be presented.<br />

[1] a.) N. Kuhn, K. Jendral, R. Boese, D. Bläser, Chem. Ber. 1991, 124, 89-91; b.) N. Kuhn,<br />

M. Köckerl<strong>in</strong>g, S. Stubenrauch, D. Bläser, R. Boese, J. Chem. Soc., Chem. Commun. 1991,<br />

1368-1370; c.) N. Kuhn, G. Henkel, J. Kreutzberg, S. Stubenrauch, J. Organomet. Chem. 1993,<br />

456, 97-106; d.) N. Kuhn, G. Henkel, S. Stubenrauch, J. Chem. Soc., Chem. Commun. 1992,<br />

760; e.) N. Kuhn, G. Henkel, S. Stubenrauch, Angew. Chem. 1992, 104, 766-768.<br />

[2] M. Kreye, A. Glöckner, C. G. Daniliuc, M. Freytag, P. G. Jones, M. Tamm, M. D. Walter,<br />

Dalton Trans. <strong>2013</strong>, 42, DOI: 10.1039/c2dt32433d.<br />

194 Saturday 9:00 - 11:30 Poster 137


SiO6 conta<strong>in</strong><strong>in</strong>g Silicophosphates - Syntheses at Room<br />

Temperature<br />

Sandra Jähnigen ∗ , Erica Brendler † , Uwe Böhme ∗ , Edw<strong>in</strong> Kroke ∗<br />

∗ Institut für Anorganische Chemie – TU Bergakademie Freiberg – Leipziger Straße 29 –<br />

Freiberg – GER<br />

† Institut für Analytische Chemie – TU Bergakademie Freiberg – Leipziger Straße 29 –<br />

Freiberg – GER<br />

Sandra.Jaehnigen@chemie.tu-freiberg.de<br />

In nature, only a few silicates are known where silicon is coord<strong>in</strong>ated with six oxygen<br />

atoms, e.g. stishovite. [1,2] Most of them are formed at high-pressure. Silicophosphates<br />

also conta<strong>in</strong> SiO6 octahedra but the ma<strong>in</strong> difference lies <strong>in</strong> their formation at normal<br />

pressure. Examples for it are SiP2O7 [3] and Si5P6O25 [4] phases. However, their<br />

syntheses still require high temperatures or the addition of alkali or alkal<strong>in</strong>e earth<br />

halides.<br />

Recently [5,6] we developed a novel synthesis of silicophosphates start<strong>in</strong>g from anhydrous<br />

H3PO4. We also <strong>in</strong>vestigated one of the products by s<strong>in</strong>gle crystal X-ray<br />

structure analysis (Fig. 1). In addition to established but parameter dependend reactions<br />

at high temperatures or sol-gel-techniques, we were now able to synthesize<br />

silicophosphates at room temperature and normal pressure.<br />

Fig. 1 Si V I (PO4 )6 (Si IV O4 Et2 )6 -Ion 5 with SiO6 located <strong>in</strong> the center of the<br />

complex.<br />

[1] S.M. Stishov, S.V. Popova, Geokhimiya 1961, 837.<br />

[2] E.C.T. Chao, J.J. Fahey, J. Littler, J. Geophys. Res. 1962, 67, 419.<br />

[3] E. Tillmanns, W. Gebert, W.H. Baur, J. Solid State Chem. 1973, 7, 69.; G. Bissert, F.<br />

Liebau, Acta Cryst. 1970, B26, 233.; F. Liebau, K.F. Hesse, Z.Kristallogr. 1971, 133, 213.<br />

[4] H. Mayer, Monatsh. Chem. 1974, 105, 46.<br />

[5] S. Jähnigen, E. Brendler, U. Böhme, E. Kroke, Chem. Commun. 2012, 48, 7675.<br />

[6] S. Jähnigen, U. Böhme, E. Brendler, G. Heide, E. Kroke, “Silikat-Phosphat-Materialien (SiOPs)<br />

- Verfahren zu deren Herstellung und Anwendungen”, Deutsche Patentanmeldung 10 2012 011<br />

034.0, Anmeldetag 05.06.2012.<br />

Poster 138 Saturday 9:00 - 11:30 195


Synthesis of benzo[1,4]oxaz<strong>in</strong>-3-one derivatives with potential<br />

biological activity<br />

Małgorzata Śmist, Michal<strong>in</strong>a Adaszyńska, Hal<strong>in</strong>a Kwiecień<br />

Department of Organic Synthesis and Drug Technology –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – Al. Piastów 42 – Szczec<strong>in</strong> – POL<br />

maugustyniak@zut.edu.pl<br />

The benzo[1,4]oxaz<strong>in</strong>e scaffold is an <strong>in</strong>terest<strong>in</strong>g structural unit which occurs <strong>in</strong> a large<br />

number of biologically active natural and synthetic compounds. Some of them were<br />

found to be antibacterial and antifungal agents. For example, ofloxac<strong>in</strong> [1] is a drug<br />

active aga<strong>in</strong>st Gramnegative bacteria, while the analogues of fluconazole were found<br />

to be a novel class of antifungal agents active aga<strong>in</strong>st Candida albicans. [2] Moreover,<br />

natural derivatives of benzo[1,4]oxaz<strong>in</strong>e were found to be plant allelochemicals, wellknown<br />

for their phytotoxic activity and for tak<strong>in</strong>g part <strong>in</strong> the defense strategies of<br />

Gram<strong>in</strong>eae, Ranunculaceae, and Scrophulariceae plants. [3]<br />

The aim of our research was to obta<strong>in</strong> novel halo-substituted benzo[1,4]oxaz<strong>in</strong>-3ones<br />

as the compounds with potential antifungal and pharmacological properties.<br />

The synthesis starts from 2-nitrophenols (1) and methyl 2-bromoalkanoates (2) and<br />

proceeds by reductive cyclization of methyl 2-(2-nitrophenoxy)alkanoates (3) to give<br />

the desired benzo[1,4]oxazep<strong>in</strong>-3-ones (4). The dibromo derivatives (6) were f<strong>in</strong>ally<br />

obta<strong>in</strong>ed by further brom<strong>in</strong>ation of unsubstituted 2-alkylbenzo[1,4]oxaz<strong>in</strong>-3-ones (5).<br />

Accord<strong>in</strong>g to our expectations some of the products exhibited antifungal activity (<strong>in</strong><br />

vitro tests).<br />

Scheme 1.<br />

[1] th<br />

A. Kleeman, J. Engel, Pharmaceutical substances, Thieme, Stuttgart-New York, 4 Edition,<br />

2001.<br />

[2]<br />

H. B. Borate, S. R. Maujan, S. P. Sawargave, M. A. Chandavarkar, S. R. Vaiude, V. A. Joshi,<br />

R. D. Wakharkar, R. Iyer, R. G. Kelkar, S. P. Chavan, S. S. Kunte, Bioorg. Med. Chem. 2010,<br />

20, 722-725.<br />

[3]<br />

H. M. Niemeyer, J. Agric. Food Chem. 2009, 57, 1677-1696.<br />

196 Saturday 9:00 - 11:30 Poster 139


Synthetic applications of<br />

3-alcoxycarbonyl-4-alkynylcoumar<strong>in</strong>s<br />

Amparo Sanz-Marco, Gonzalo Blay, José Ramón Pedro<br />

Química Orgánica – Universitat de València – Dr. Mol<strong>in</strong>er n o 50 – Burjassot – ESP<br />

amparo.sanz-marco@uv.es<br />

The 3,4-dihydrocoumar<strong>in</strong> r<strong>in</strong>g system constitutes the core of many natural products<br />

and biologically active compounds. [1] In this context, we have described the enantioselective<br />

synthesis of 4-substituted dihydrocoumar<strong>in</strong>s through a new Zn-bis(hydroxyamide)-catalyzed<br />

conjugate addition of term<strong>in</strong>al alkynes. Because of the synthetic versatility<br />

of the triple bond compounds like 1 can be used as build<strong>in</strong>g blocks <strong>in</strong> organic<br />

synthesis.<br />

In this communication, we describe this synthetic potential by carry<strong>in</strong>g out different<br />

transformations <strong>in</strong>volv<strong>in</strong>g the coumar<strong>in</strong> skeleton and/or the triple bond. Thus,<br />

the triple bond can be totally or partially hydrogenated to give C -4 alkylated 2 or<br />

alkenylated 3 dihydrocoumar<strong>in</strong>s, respectively. On the other hand, hydrogenation and<br />

descarboxylation, followed by reduction of the lactone and Mitsunobu reaction give<br />

alkynylated chromane 4 used <strong>in</strong> the synthesis of others chromanes with antihypertensive<br />

activity. [2] Besides, by gold-catalyzed cyclization leads to fused acetal 5 hav<strong>in</strong>g<br />

the tetrahydrofuro[2,3-b]benzofuran skeleton characteristic of fungal metabolite aflatox<strong>in</strong>s<br />

and other natural products. [3] All these synthetic transformations are carried<br />

out with excellent yields and without loss of optical purity.<br />

F<strong>in</strong>ancial support from the M<strong>in</strong>isterio de Ciencia e Innovación and FEDER (CTQ2009-<br />

13083) and from Generalitat Valenciana (ACOMP/2012/212 and ISIC/2012/001) is acknowledged.<br />

A S-M thanks the MICINN for a pre-doctoral grant (FPI).<br />

[1] a) F. Roelens, K. Huvaere, W. Dhooge, M. Van Cleemput, F. Comhaire, D. de Keukeleire, Eur.<br />

J. Med. Chem. 2005, 40, 1042; b) A. Kumar, B. K. S<strong>in</strong>gh, R. Tyagi, S. K. Ja<strong>in</strong>, S. K. Sharma,<br />

A. K. Prasad, H. G. Raj, R. C. Rastogi, A. C. Watterson, V. S. Parmar, Bioorg. Med. Chem.<br />

2005, 13, 4300.<br />

[2] a) E. Tyrell, K. Mazloumi, D. Banti, P. Sajdak, A. S<strong>in</strong>clair, A. Le Gresley, Tetrahedron Lett.<br />

2012, 53, 4280; b) E. Tyrrell, K.-H. Tesfa, I. Greenwood, A. Mann, Bioorg. Med. Chem. Lett.<br />

2008, 18, 1237.<br />

[3] S. Bakirdere, S. Bora, E. G. Bakirderel, F. Ayd<strong>in</strong>, Y. Arslan, O. T. Komesli, I. Ayd<strong>in</strong>, E.<br />

Yildirim, Centr. Eur. J. Chem. 2012, 10, 875.<br />

Poster 140 Saturday 9:00 - 11:30 197


Diversity oriented synthesis <strong>in</strong> the row of 4-Qu<strong>in</strong>alones<br />

Mariia Miliut<strong>in</strong>a, Anton Ivanov, Peter Langer, Viktor O. Iaroshenko<br />

Organic chemistry – University of Rostock – Albert E<strong>in</strong>ste<strong>in</strong> str. 3a – 18059-Rostock –<br />

GER<br />

miamasha@mail.ru<br />

Wide application of qu<strong>in</strong>olones <strong>in</strong> plenty of medic<strong>in</strong>al spheres motivates to go further<br />

<strong>in</strong> search for new efficient and rapid approaches to synthesis of differently substituted<br />

representatives of this structural type. [1-3]<br />

Herewith we present convenient method for synthesis of 4-qu<strong>in</strong>olones via [5+1] cyclization<br />

of o-chloroaryl acetylene ketones 3 and primary am<strong>in</strong>es 4 (Scheme 1). Start<strong>in</strong>g<br />

from 2-chloro-5-nitro-benzoic acid chloranhydride 1 and vary<strong>in</strong>g appropriate acetylenes<br />

2 and am<strong>in</strong>es 4 on the step of cyclization we afforded a row of differently substituted<br />

4-qu<strong>in</strong>olones with yields from good to excellent.<br />

Besides we showed 4-qu<strong>in</strong>olones as a substrate for further functionalizations. Among<br />

them are brom<strong>in</strong>ation, arylation by Susuki-Miaura cross-coupl<strong>in</strong>g reaction and <strong>in</strong>troduction<br />

of trifluoromethyl group <strong>in</strong>stead of brom<strong>in</strong>e <strong>in</strong> third position of the 4qu<strong>in</strong>olone<br />

skeleton as well as reduction of nitrogroup to am<strong>in</strong>ogroup, change of the<br />

latter to brom<strong>in</strong>e with subsequent arylation towards sixth position of the molecule.<br />

Novel polysubstituted compounds 5 and 6 obta<strong>in</strong>ed by the mentioned methods are<br />

of considerable <strong>in</strong>terest as potentially bioactive agents.<br />

Scheme 1. Reagents and conditions: (i) 0.01 eq. Pd(PPh3)2Cl2, 0.02 eq. CuI, THF,<br />

1.3 eq. Et3N, 1.3 eq. of appropriate acetylene, r.t., 6 h; (ii) 1.7 eq. of appropriate am<strong>in</strong>e,<br />

2 eq. K2CO3 or K3PO4, DMF, 120 ◦ C, 6 h.<br />

[1]<br />

L. A. Mitscher, Chem. Rev. 2005, 105, 559-592.<br />

[2]<br />

Cl. Mugna<strong>in</strong>i, Ch. Falciani, M. d. Rosa, A. Brizzi, S. Pasqu<strong>in</strong>i, F. Corelli, Tetrahedron 2011,<br />

67, 5776-5783.<br />

[3]<br />

V. O. Iaroshenko, I. Knepper, M. Zahid, R. Kuzora, S. Dudk<strong>in</strong>, A. Vill<strong>in</strong>ger, P. Langer, Org.<br />

Biomol. Chem. 2012, 10, 2955-2959.<br />

198 Saturday 9:00 - 11:30 Poster 141


Studies Towards the Total Synthesis of Glyceoll<strong>in</strong>es<br />

Marcus Blümel, Susann Baier, Peter Metz<br />

Fachrichtung Chemie und Lebensmittelchemie – University of Techology Dresden –<br />

Bergstraße 66 – 01062 Dresden – GER<br />

Marcus.Bluemel@chemie.tu-dresden.de<br />

The glyceoll<strong>in</strong>s, as a subgroup of isoflavonoids, belong to the naturally anabolized<br />

polyphenols. In case of fungal, viral, or bacterial attack these phytoalex<strong>in</strong>s are formed<br />

and act as anti-microbial agents. [1] For the reason of their structural similarity to human<br />

hormones, such as 17β-estradiol (E2), the isoflavonoids <strong>in</strong> general and glyceoll<strong>in</strong>s<br />

<strong>in</strong> particular are able to <strong>in</strong>teract with the human hormone balance. Thus, a broad<br />

spectrum of applications results <strong>in</strong> order to treat diseases associated with unbalanced<br />

hormone level, such as breast cancer, atherosclerosis, and osteoporosis. [2,3,4] Consequently,<br />

these glyceoll<strong>in</strong>s have attracted much attention <strong>in</strong> the past decades.<br />

The first total synthesis of racemic as well as (+)-, and (-)-glyceoll<strong>in</strong> was published<br />

by Erhardt and coworkers <strong>in</strong> 2008 and recently scaled up to multigram-scale. As<br />

key step a Sharpless oxidation with stoichiometric amounts of OsO4 was used. [5,6]<br />

For our approach toward the glyceoll<strong>in</strong> total synthesis we used a gold catalyzed cyclization.<br />

Coupl<strong>in</strong>g of two fragments derived from commercially available 4-bromo resorc<strong>in</strong>ol<br />

4 is supposed to yield our key <strong>in</strong>termediate, the orthogonal protected isoflavene 5.<br />

A catalytic epoxidation of the central double-bond of isoflavene 5 should open access<br />

to an enantioselective route without us<strong>in</strong>g great amounts of toxic OsO4. Previous research<br />

<strong>in</strong> our group suggests a successful synthesis of (-)-glyceoll<strong>in</strong>s if the enantiopure<br />

epoxide <strong>in</strong>termediate is ga<strong>in</strong>ed.<br />

[1]<br />

T. Aoki, T. Akashi, S.-I. Ayabe, J. Plant Res. 2000, 113, 475-488.<br />

[2]<br />

V. A. Salvo, S. M. Boue, J. P. Fonseca, Cl<strong>in</strong>. Cancer Res. 2006, 12, 7159-7164.<br />

[3]<br />

E. W. Ra<strong>in</strong>es, R. Ross, J. Nutr. 1995, 125, S624-S630.<br />

[4]<br />

T. Usui, Endocr<strong>in</strong>e Journal 2006, 53, 7-20.<br />

[5]<br />

R. S. Khupse, P. W. Erhardt, Org. Lett. 2008, 10, 5007-5010.<br />

[6]<br />

A. Luniwal, R. Khupse, M. Reese, J. Liu, M. El-Dakdouki, N. Malik, L. Fang, P. Erhardt,<br />

Org. Process Res. Dev. 2011, 15, 1149-1162.<br />

Poster 142 Saturday 9:00 - 11:30 199


Design, synthesis and transformation of some<br />

heteroannulated 3-am<strong>in</strong>opyrid<strong>in</strong>es-pur<strong>in</strong>e isosteres with<br />

exocyclic nitrogen atom<br />

Qnar Araqelyan, Ashot Gevorgyan, Satenik Mkrtchyan, Marcelo Vilches-Herrera,<br />

Dmitro Ostrovskyi, Muhammad S.A. Abbasi, L<strong>in</strong>da Supe, Ani Hakobyan,<br />

Viktor Iaroshenko<br />

Faculty of Chemistry – University Rostock – Albert E<strong>in</strong>ste<strong>in</strong> str. 3a, 18059 Rostock –<br />

Rostock – GER<br />

sm19860214@gmail.com<br />

Pur<strong>in</strong>es and pur<strong>in</strong>e-like scaffolds are compounds with extensive application portfolio<br />

<strong>in</strong> the life science and medic<strong>in</strong>e sector. The substances from the pur<strong>in</strong>e/pseudopur<strong>in</strong>e<br />

family have been hav<strong>in</strong>g a significant impact on drug design and drug-development. [1]<br />

Recently, laboratory of Iaroshenko have published a number of methods related to<br />

the synthesis of various heterocycle condensed pyrid<strong>in</strong>e/pyrimid<strong>in</strong>e derivatives via<br />

the [3+3] heteroannulation reaction of pyrid<strong>in</strong>e/pyrimid<strong>in</strong>e moiety on the core of<br />

electron-rich am<strong>in</strong>oheterocycles and anil<strong>in</strong>es <strong>in</strong>volv<strong>in</strong>g set of 1,3-CCC- and 1,3-CNCdielectrophiles.<br />

[2] Cont<strong>in</strong>u<strong>in</strong>g this research synthesis of 1-deazapur<strong>in</strong>es and isosteres<br />

bear<strong>in</strong>g the exocyclic nitrogen atom at position-3 was developed bas<strong>in</strong>g on the formal<br />

[3+3]-cyclization reaction of nitro-malonaldehyde with the set of electron-rich am<strong>in</strong>oheterocycles<br />

(Figure 1). Through the functionalization of the pur<strong>in</strong>e-like scaffolds<br />

synthesized the diversity of compounds furnished <strong>in</strong> the possition-3 with aryl, alk<strong>in</strong>yl,<br />

and v<strong>in</strong>yl rests, were obta<strong>in</strong>ed (Figure 1). [3]<br />

Figure 1. Synthesis of 1-deazapur<strong>in</strong>es and isosteres bear<strong>in</strong>g the exocyclic nitrogen<br />

[1] a) W. B. Parker, Chem. Rev. 2009, 2880; b) P. G. Baraldi, M. A. Tabrizi, S. Gessi, P. A.<br />

Borea, Chem. Rev. 2008, 238.<br />

[2] a) S. Mkrtchyan, V. O. Iaroshenko, S. Dudk<strong>in</strong>, A. Gevorgyan, M. Vilches-Herrera, G. Ghazaryan,<br />

D. Volochnyuk, D.Ostrovskyi, Z. Ahmed, A. Vill<strong>in</strong>ger, V.Y. Sosnovskikh, p. Langer, Org.<br />

Biomol. Chem. 2010, 5280; b) V. O. Iaroshenko, S. Mkrtchyan, A. Gevorgyan, M. Vilches-<br />

Herrera, D. V. Sevenard, A. Vill<strong>in</strong>ger, T. V. Ghochikyan, A. Saghiyan, V. Ya. Sosnovskikh, P.<br />

Langer, Tetrahedron 2012, 2532.<br />

[3] V.O. Iaroshenko, M. Vilches-Herrera, A. Gevorgyan, S. Mkrtchyan, K. Arakelyan, D. Ostrovskyi,<br />

S. A. A. Muhammad, L. Supe, A. Hakobyan, A. Vill<strong>in</strong>ger, D.M. Volochnyuk, A. Tolmachev,<br />

Tetrahedron <strong>2013</strong>, <strong>in</strong> press, DOI: 10.1016/j.tet.2012.11.026.<br />

200 Saturday 9:00 - 11:30 Poster 143


A Trispyrazolylborato Iron Cyste<strong>in</strong>ato Complex as a<br />

Functional Model for the Cyste<strong>in</strong>e Dioxygenase<br />

Madleen Sallmann, Christian Limberg<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 –<br />

12489 Berl<strong>in</strong> – GER<br />

madleen.sallmann@web.de<br />

The cyste<strong>in</strong>e dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes<br />

the irreversible oxidation of cyste<strong>in</strong>e by dioxygen to yield cyste<strong>in</strong>e sulf<strong>in</strong>ic acid,<br />

which is the first major step <strong>in</strong> cyste<strong>in</strong>e catabolism <strong>in</strong> mammalian tissues. [1] While<br />

the function of many oxygenat<strong>in</strong>g non-heme iron enzymes could be successfully imitated<br />

with<strong>in</strong> the last decades us<strong>in</strong>g molecular model compounds, [2] to date there are<br />

hardly any reports <strong>in</strong> the literature on biomimetic models for the CDO.<br />

Unlike other mononuclear non-heme iron dioxygenases, the active sites of which typically<br />

conta<strong>in</strong> a 2-histid<strong>in</strong>e-1-carboxylate coord<strong>in</strong>ation motive, the iron ion of CDO is<br />

bound by three histid<strong>in</strong>e ligands. [1] To this unit, the substrate cyste<strong>in</strong>e coord<strong>in</strong>ates<br />

through the sulfur atom and the nitrogen atom as a chelat<strong>in</strong>g ligand.<br />

Here we present the successful coord<strong>in</strong>ation and dioxygenation of a protected cyste<strong>in</strong>ato<br />

ligand to a (His)3 Fe II analogue (see Scheme): [3] In complex [Tp Me,P h FeCysOEt],<br />

the Tp Me,P h ligand excellently mimics the (His)3-coord<strong>in</strong>ation sphere and also the<br />

function is simulated, as treatment with dioxygen ma<strong>in</strong>ly leads to cyste<strong>in</strong>e sulf<strong>in</strong>ic<br />

acid. 1 is thus the hitherto most realistic model for the active site of the CDO.<br />

[1] C. A. Joseph, M. J. Maroney, Chem. Commun. 2007, 3338-3349.<br />

[2] a) M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr., Chem. Rev. 2004, 104, 939-986; b) W.<br />

Nam, Acc. Chem. Res. 2007, 40, 465-465; c) I. Siewert, C. Limberg, Chem. Eur. J. 2009, 15,<br />

10316-10328; d) S. Friedle, E. Reisner, S. J. Lippard, Chem. Soc. Rev. 2010, 39, 2768-2779.<br />

[3] M. Sallmann, I. Siewert, L. Fohlmeister, C. Limberg, C. Knispel, Angew. Chem. Int. Ed.<br />

2012, 51, 2234-2237.<br />

Poster 144 Saturday 9:00 - 11:30 201


Cell culture analysis of select<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g bioactive<br />

nanoparticles<br />

Isabella Tavernaro ∗ , Katja Tr<strong>in</strong>kaus † , Léa Bouche ‡ , Figen Beceren-Braun ⋄ ,<br />

Jens Dernedde ⋄ , Hans-Ulrich Reissig ‡ , Katr<strong>in</strong> Susanne Lips † , Sab<strong>in</strong>e Schlecht ∗<br />

∗ Institue of Inorganic and Analytical Chemistry – Justus Liebig University Giessen –<br />

He<strong>in</strong>rich-Buff-R<strong>in</strong>g 58 – 35392 Giessen – GER<br />

† Laboratory of Experimental Trauma Surgery – Justus Liebig University Giessen –<br />

Kerkrader Str. 9 – 35394 Giessen – GER<br />

‡ Institute of Organic Chemistry – FU Berl<strong>in</strong> – Takustr. 3 – 14195 Berl<strong>in</strong> – GER<br />

⋄ Institute of Laboratory Medic<strong>in</strong>e, Cl<strong>in</strong>ical Chemistry and Pathobiochemistry –<br />

Charité Berl<strong>in</strong> – H<strong>in</strong>denburgdamm 30 – 12203 Berl<strong>in</strong> – GER<br />

Isabella.Tavernaro@Anorg.chemie.uni-giessen.de<br />

Interest <strong>in</strong> nanoparticles and their possible use <strong>in</strong> medical applications has significantly<br />

<strong>in</strong>creased <strong>in</strong> recent years. Although still at the beg<strong>in</strong>n<strong>in</strong>g of its development, first<br />

successful results <strong>in</strong>dicate the great potential of this research area.<br />

Some ligands tend to b<strong>in</strong>d only weakly to their complementary receptors <strong>in</strong> biological<br />

systems. Stronger b<strong>in</strong>d<strong>in</strong>g or enhanced <strong>in</strong>hibition can be achieved by the use of<br />

multivalent <strong>in</strong>teractions. [1] Due to their remarkably high surface-to-volume ratio <strong>in</strong><br />

comb<strong>in</strong>ation with their high stability, nanoparticles are well suited as templates for<br />

the multivalent presentation of functional groups. Because of this, they are used <strong>in</strong><br />

this project for the immobilization of potential select<strong>in</strong>-<strong>in</strong>hibitors. Select<strong>in</strong>s are a<br />

natural class of carbohydrate b<strong>in</strong>ders, and play an essential role <strong>in</strong> the <strong>in</strong>flammation<br />

process.<br />

We synthesized water-soluble and biocompatible nanoparticles of different sizes with a<br />

term<strong>in</strong>ally functionalized organic thiol shell, to present multivalently select<strong>in</strong> ligands<br />

to the respective lect<strong>in</strong>s. This multivalent presentation of select<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g structures<br />

led to highly improved b<strong>in</strong>d<strong>in</strong>g properties compared to the monovalent structures. [2]<br />

Tests were conducted to <strong>in</strong>vestigate the behavior of the functionalized nanoparticles<br />

<strong>in</strong> cell cultures.<br />

[1] G. M. Whitesides et al. Angew. Chem. 1998, 110, 2908-2953.<br />

[2] M. Roskamp et al. Org Biomol. Chem. 2011, 9, 7448-7456.<br />

202 Saturday 9:00 - 11:30 Poster 145


A new approach to α-(trifluoromethyl)benzyl substituted<br />

oxazirid<strong>in</strong>es<br />

Greta Utecht, Emilia Obijalska, Grzegorz Mlostoń<br />

Organic and Applied Chemistry – University of Lodz, Faculty of Chemistry –<br />

Tamka 12 – Lodz – POL<br />

gretautecht@gmail.com<br />

The chemistry of organofluor<strong>in</strong>e compounds is <strong>in</strong>tensively developed part of modern<br />

organic chemistry. Insertion of fluor<strong>in</strong>e atoms to the molecules causes significant<br />

changes <strong>in</strong> their chemical, biological and physical properties, <strong>in</strong> comparison with<br />

their nonfluor<strong>in</strong>ated analogues. [1,2] Perfluor<strong>in</strong>ated oxazirid<strong>in</strong>es were used as powerful<br />

oxidation agents. [3]<br />

The synthesis of new, N -substituted oxazirid<strong>in</strong>es 3,4 bear<strong>in</strong>g an α-(trifluromethyl)benzyl<br />

substituent at C(3) was achieved by m-CPBA oxidation of the correspond<strong>in</strong>g<br />

α-hydroxy-α-(trifluoromethyl)benzyl im<strong>in</strong>es 1,2 and their trimethylsilyl protected<br />

derivatives, respectively. In all cases, mixtures of diastereoisomers were formed. Result<strong>in</strong>g<br />

compounds 3,4 were used <strong>in</strong> the model reaction of oxidation of tioanisole to<br />

mono-S-oxide.<br />

R 1 =Ph, p-MeOC6H4, p-NO2C6H4R 2 =t-Bu, i-Pr<br />

[1]<br />

P. Kirsh, Modern Fluoroorganic Chemistry, Wiley-VCH, We<strong>in</strong>heim, Germany, 2004.<br />

[2]<br />

L. Carroccia, S. Fioravanti, L. Pellacani, C. Sadun, P.A. Tardella, Tetrahedron 2011, 67,<br />

5375-5381.<br />

[3]<br />

V.A. Petrov, G. Resnati, Chemical Reviews 1996, 96 (5), 1809-1823.<br />

Authors thank the National Science Center (Poland) for f<strong>in</strong>ancial support (Grant ‘SONATA’ #<br />

DEC-2011/03/D/ST5/05231)<br />

Poster 146 Saturday 9:00 - 11:30 203


Cisplat<strong>in</strong>–COX Inhibitor Conjugates<br />

Wilma Neumann, Evamarie Hey-Hawk<strong>in</strong>s<br />

Institute of Inorganic Chemistry – Universität Leipzig – Johannisallee 29 –<br />

04103 Leipzig – GER<br />

wilma.neumann@chemie.uni-leipzig.de<br />

Cisplat<strong>in</strong> is one of the most widely used drugs <strong>in</strong> the treatment of cancer. However,<br />

conventional plat<strong>in</strong>um-based chemotherapy is often associated with strong side<br />

effects, and the efficacy of anti-tumour drugs is strongly limited by <strong>in</strong>tr<strong>in</strong>sic and<br />

treatment-<strong>in</strong>duced resistance of tumour cells. An enzyme which is overexpressed <strong>in</strong><br />

several tumour tissues and is <strong>in</strong>volved <strong>in</strong> tumour onset and progression is COX-2,<br />

an isoform of cyclooxygenase (COX). [1] Cl<strong>in</strong>ical studies revealed that target<strong>in</strong>g the<br />

COX-2 pathway is a promis<strong>in</strong>g strategy for the prevention and treatment of tumours.<br />

Furthermore, promis<strong>in</strong>g results were obta<strong>in</strong>ed with comb<strong>in</strong>atorial treatments with<br />

chemotherapeutic agents, such as cisplat<strong>in</strong>, and COX <strong>in</strong>hibitors. [2]<br />

These observed synergistic effects could be improved by comb<strong>in</strong><strong>in</strong>g both molecules <strong>in</strong><br />

one compound. A covalent bond between the chemotherapeutic agent and the COX<br />

<strong>in</strong>hibitor should ensure a concerted transport of the drugs through the body and<br />

uptake <strong>in</strong>to tumour cells. Furthermore, b<strong>in</strong>d<strong>in</strong>g of the coupled COX <strong>in</strong>hibitor at COX-<br />

2 could prevent an efflux of the plat<strong>in</strong>um complex. Besides an <strong>in</strong>creased accumulation<br />

of the drugs <strong>in</strong> the tumour cells, coupl<strong>in</strong>g of cisplat<strong>in</strong> with COX <strong>in</strong>hibitors could<br />

further enhance the efficacy of the chemotherapeutic agent by enabl<strong>in</strong>g a simultaneous<br />

action of both drugs <strong>in</strong> COX-2 overexpress<strong>in</strong>g tumour cells.<br />

[1] N. Ghosh, R. Chaki, V. Mandal, S. C. Mandal, Pharmacol. Rep. 2010, 62, 233-244.<br />

[2] M. Og<strong>in</strong>o, S. M<strong>in</strong>oura, Int. J. Cl<strong>in</strong>. Oncol. 2001, 6, 84-89.<br />

204 Saturday 9:00 - 11:30 Poster 147


Metal-Free Iod<strong>in</strong>e(III)-Promoted Direct Intermolecular<br />

C-H-Am<strong>in</strong>ation Reactions of Acetylenes<br />

Peter Becker, José A. Souto, Álvaro Iglesias, Kilian Muñiz<br />

ICIQ – Av. Països Catalans 16 – Tarragona – ESP<br />

peter.becker1@rwth-aachen.de<br />

Ynamides represent a unique build<strong>in</strong>g block for organic synthesis and they have been<br />

referred to as a modern functional group. [1,2] The synthesis of ynamides through<br />

a direct CN bond form<strong>in</strong>g process between amides and acetylenes is an attractive<br />

method. This has been reported us<strong>in</strong>g copper <strong>in</strong> either stoichiometric or catalytic<br />

amounts, however, more efficient metal-free processes are needed for the preparation<br />

of ynamides. [3-5]<br />

A particularly <strong>in</strong>terest<strong>in</strong>g preparation of ynamides was reported by Stang, [5] us<strong>in</strong>g hypervalent<br />

iod<strong>in</strong>e(III) chemistry. [6] The reaction requires the formation of acetylenyl<br />

iodonium(III) salts 1 and suitable nitrogen nucleophiles, usually <strong>in</strong> their metallated<br />

form, which react <strong>in</strong> a Michael-type addition followed by aryl migration to form the<br />

correspond<strong>in</strong>g ynamide product. [7] This method suffers from limitations such as the<br />

need to <strong>in</strong>dividually perform both metallated amides and acetylenyl iodonium(III)<br />

salts 1.<br />

Here, we present the development of an alternative, direct, metal-free oxidative C(sp1)-<br />

N bond form<strong>in</strong>g reaction us<strong>in</strong>g economically <strong>in</strong>terest<strong>in</strong>g term<strong>in</strong>al acetylenes and def<strong>in</strong>ed<br />

hypervalent iod<strong>in</strong>e(III) reagents. [8] This method provides a simple, rapid and<br />

robust protocol for the synthesis of a diverse series of ynamides <strong>in</strong> a s<strong>in</strong>gle-step<br />

operation. [9]<br />

[1]<br />

K. A. DeKorver, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010,<br />

110, 5064.<br />

[2] [1]<br />

For reviews see and (a) G. Evano, A. Coste, K. Jouv<strong>in</strong>, Angew. Chem. Int. Ed. 2010,<br />

49, 2840; (b) J. A. Mulder, K. C. M. Kurtz, R. P. Hsung, Synlett2003 , 1379; (c) C. A. Zificsak,<br />

J. A. Mulder, R. P. Hsung, C. Rameshkumar, L.-L. Wei, Tetrahedron 2001, 57, 7575.<br />

[3]<br />

T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 833.<br />

[4]<br />

A. Laouiti, M. M. Rammah, M. B. Rammah, J. Marrot, F. Couty, G. Evano, Org. Lett. 2012,<br />

14, 6.<br />

[5]<br />

(a) C. Zhang, N. Jiao, J. Am. Chem. Soc. 2010, 128, 28; (b) W. Jia, N. Jiao, Org. Lett.<br />

2010, 12, 2000.<br />

[6]<br />

P. Murch, B. L. Williamson, P. J. Stang, Synthesis 1994, 1255.<br />

[7]<br />

For a review on the chemistry of hypervalent acetylenyl iod<strong>in</strong>e(III) reagents see: V. V. Zhdank<strong>in</strong>,<br />

P. J. Stang, Tetrahedron 1998, 54, 10927.<br />

[8]<br />

For chemistry of hypervalent iod<strong>in</strong>e(III) reagents see: (a) V. V. Zhdank<strong>in</strong>, P. J. Stang, Chem.<br />

Rev. 2008, 108, 5299; (b) V. V. Zhdank<strong>in</strong>, P. J. Stang, Chem. Rev. 2002, 102, 2523; (c) P. J.<br />

Stang, V. V. Zhdank<strong>in</strong>, Chem. Rev. 1996, 96, 1123; (j) M. Ochiai, Chem. Rec. 2007, 7, 12; (l)<br />

M. S. Yusubov, A. V. Maskaev, V. V. Zhdank<strong>in</strong>, Arkivoc 2011, 1, 370.<br />

[9]<br />

J. A. Souto, P. Becker, Á. Iglesias, K. Muñiz, J. Am. Chem. Soc. 2012, 134, 15505.<br />

Poster 148 Saturday 9:00 - 11:30 205


Am<strong>in</strong>omethylphosphonic Systems Bear<strong>in</strong>g 5-membered<br />

Heteroaromatic Moiety and Their Properties<br />

Agnieszka Matusiak ∗ , Jarosław Lewkowski ∗ , Anna Agnieszka Klimczak † ,<br />

Janusz Szemraj † , Piotr Rychter ‡ , Robert Biczak ‡<br />

∗ Department of Organic Chemistry, Faculty of Chemistry – University of Lodz –<br />

Tamka 12 – Lodz – POL<br />

† Department of Medic<strong>in</strong>al Biochemistry – Medical University of Lodz –<br />

Mazowiecka 6/8 – Lodz – POL<br />

‡ Environment Protection and Biotechnology – Jan Dlugosz University –<br />

13/15 Armii Krajowej Av. – Czestochowa – POL<br />

agusk@poczta.fm<br />

Several N -aryl substituted am<strong>in</strong>ophosphonates have been synthesized s<strong>in</strong>ce a last<br />

decade [1,2] and our scientific group has contributed to this topic too. [3] Kraicheva et al.<br />

have reported recently that diethyl N -4-methylphenylam<strong>in</strong>o(2-furyl)methylphosphonate<br />

showed <strong>in</strong> vitro action towards several tumor cell l<strong>in</strong>es. [4] Therefore, we synthesized<br />

several new N -aryl-substituted am<strong>in</strong>omethyl phosphonates derived from furanic series<br />

<strong>in</strong> hope of their cytostatic activity.<br />

Am<strong>in</strong>ophosphonates 4e-g and im<strong>in</strong>es 2a-f were analyzed <strong>in</strong> the viewpo<strong>in</strong>t of <strong>in</strong>fluence<br />

on cancer cell l<strong>in</strong>es. For the experiments, KYSE 30, KYSE 150 and KYSE 270,<br />

esophageal cancer cell l<strong>in</strong>es were chosen and immortalized esophageal cell l<strong>in</strong>e HET 1<br />

A was used as a control group. Toxicity was evaluated us<strong>in</strong>g the MTT assay. Among<br />

our 12 am<strong>in</strong>ophosphonates a few of them were found to be cytotoxic, but only 4a<br />

had IC50 lower than 100 µM and acted as a potential cancer drug. SAR studies were<br />

attempted.<br />

In this communication, we will present results of these pharmacological studies.<br />

Moreover some of the im<strong>in</strong>es showed <strong>in</strong>terest<strong>in</strong>g biological properties. It demonstrated<br />

significant phytotoxicity parameters for radish (Raphanus sativus) and oats (Avena)<br />

after add<strong>in</strong>g the appropriate amounts of im<strong>in</strong>es to the soil.<br />

Reactions of Schiff bases 2a–f with phosphites 3a–c.<br />

[1]<br />

X.-J. Mu, M.-Y. Lei, J.-P. Zou, W. Zhang, Tetrahedron Lett. 2006, 47, 1125-1127.<br />

[2]<br />

S. Chandrasekhar, S. Jaya Prakash, Tetrahedron Lett. 2001, 42, 5561-5563.<br />

[3]<br />

A. A. Klimczak, A. Kuropatwa, J. Lewkowski, Szemraj, J. Med. Chem. Res. 2012, 21, DOI<br />

10.1007/s00044-012-0065-3.<br />

[4]<br />

I. Kraicheva, A. Bogomilova, I. Tsacheva, Europ. J. Med. Chem. 2009, 44, 3363-3367.<br />

206 Saturday 9:00 - 11:30 Poster 149


Stereoselective Am<strong>in</strong>e-Catalyzed Elongation of unprotected<br />

Carbohydrates<br />

Benjam<strong>in</strong> Voigt, Anastassia Matviitsuk, Ra<strong>in</strong>er Mahrwald<br />

Institute of Chemistry – Humboldt-University Berl<strong>in</strong> – Brook-Taylor-Str. 2 – Berl<strong>in</strong> –<br />

GER<br />

voigtbex@chemie.hu-berl<strong>in</strong>.de<br />

Cha<strong>in</strong> elongated carbohydrates - higher carbon sugars - are important compounds<br />

with biologically fundamental properties. Nature realizes these important transformations,<br />

apparently effortless, through a deployment of dist<strong>in</strong>ctly work<strong>in</strong>g aldolases<br />

and ketolases with extremely high degrees of stereoselectivity. However this high<br />

specificity is limited to a small number of substrates. Also, not all possible stereoisomers<br />

can be accessed by enzymatic transformations.<br />

We have developed an organocatalyzed aldol addition of unprotected carbohydrates<br />

to 1.3-dicarbonyl compounds without us<strong>in</strong>g the classical tedious protect<strong>in</strong>g and deprotect<strong>in</strong>g<br />

procedure. In addition condensation reaction and subsequently rearrangements<br />

are avoided follow<strong>in</strong>g this protocol.<br />

These <strong>in</strong>vestigations show great advantages <strong>in</strong> terms of time and atom economy. Also,<br />

this operationally simple transformation mimics aldolase-catalyzed transformations,<br />

which were identified <strong>in</strong> many biochemical processes. Further optimization and enlargement<br />

of this methodology to more general C-C bond formation processes of<br />

unprotected carbohydrates are under way.<br />

[1] Benjam<strong>in</strong> Voigt, Ulf Scheffler, Ra<strong>in</strong>er Mahrwald, Chem. Commun. 2012, 48, 5304-5306<br />

Poster 150 Saturday 9:00 - 11:30 207


Unexpected transformation of diarylethenes <strong>in</strong>duced by<br />

secondary am<strong>in</strong>es<br />

Dmytro Sysoiev ∗ , Ulrich Groth ∗ , Elke Scheer †<br />

∗ Chemistry – Konstanz University – Universitätsstr., 10 – Konstanz – GER<br />

† SFB 767 – Konstanz University – Universitätsstr., 10 – Konstanz – GER<br />

sonder83@mail.ru<br />

Diarylethenes can undergo a reversible transformation between two geometrically and<br />

electronically different states by irradiation at different wavelengths. In general, the<br />

"open" state is a mixture of rotamers, which turns <strong>in</strong>to diastereomers <strong>in</strong> "closed"<br />

state <strong>in</strong> UV light and forms by-products by further cont<strong>in</strong>uous irradiation. When<br />

condensat<strong>in</strong>g malononitrile and difurylethene bear<strong>in</strong>g an aldehyde group with piperid<strong>in</strong>e<br />

as a catalyst, our attention was drawn to an unusual colour change of the reaction<br />

mixture to deep purple. Successful isolation of reproducibly formed new product and<br />

its structure analysis allowed us to suggest an irreversible cyclization pathway for<br />

diarylethenes <strong>in</strong> absence of irradiation.<br />

208 Saturday 9:00 - 11:30 Poster 151


Synthesis of a Tripodal Germanium Based Ligand Precursor<br />

and its Reactivity at Ruthenium<br />

Roy Herrmann, Thomas Braun<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Straße 2 – Berl<strong>in</strong> –<br />

GER<br />

roy.herrmann@chemie.hu-berl<strong>in</strong>.de<br />

The design of podand-type ligand backbones often allows an elaborated adjustment<br />

of their steric and electronic properties at the metal center to provide a high flexibility<br />

and versatility at the ligand backbone. Examples for heavier group 14 elements <strong>in</strong><br />

the backbone of tetradentate tripodal ligands are rare, whereas tetradentate tripodal<br />

ligands with group 13 and 15 elements as backbone atoms are well established. [1]<br />

The reaction of the germane [Ge(H)(2-C6H4PPh2)3] with [Ru(Cl)2(PPh3)3] <strong>in</strong> the<br />

presence of an excess of NEt3 results <strong>in</strong> the formation of the ruthenium complex<br />

[Ru(Cl)Ge(2-C6H4PPh2)3] (1) (Scheme 1), which bears the Ge(2-C6H4PPh2)3 entity<br />

as a tetradentate tripodal ligand. The Ge-Ru bond length of complex 1 is at the<br />

shorter end of Ge-Ru distances which are reported <strong>in</strong> the literature and the value<br />

is comparable to the Ge-Ru distances <strong>in</strong> a couple of known ruthenium germylene<br />

complexes.<br />

Treatment of complex 1 with HCl results <strong>in</strong> a cleavage of one of the Ge-C bonds to<br />

give the ruthenium complex [Ru(Cl)Ge(Cl)(2-C6H4PPh2)2(PPh3)] (2) (Scheme 1).<br />

Therefore, the podand-type ligand can be transformed <strong>in</strong>to a p<strong>in</strong>cer-type ligand. The<br />

Ge(Cl)(2-C6H4PPh2)2 unit represents a rare example for p<strong>in</strong>cer-type ligands with<br />

germanium <strong>in</strong> the backbone.<br />

Scheme 1: Formation and reactivity of ruthenium complex 1.<br />

[1] I. Kuzu, I. Krummenacher, J. Meyer, F. Armbruster, F. Breher, Dalton Trans. 2008, 5836-<br />

5865.<br />

Poster 152 Saturday 9:00 - 11:30 209


Approaches to synthesis of gold(III) carboxylate complexes<br />

Nailya Akhmadull<strong>in</strong>a ∗ , Aleksandra Borissova † , Oleg Shishilov ‡<br />

∗ Baikov Institute of Metallurgy and Material Science of RAS – Len<strong>in</strong>sky pr., 49 –<br />

Moscow – RUS<br />

† Nesmeyanov Institute of Organoelement Compounds of RAS – Vavilova st., 28 –<br />

Moscow – RUS<br />

‡ Kurnakov Institute of General and Inorganic Chemistry of RAS – Len<strong>in</strong>sky pr., 31 –<br />

Moscow – RUS<br />

nakhmadull<strong>in</strong>a@mail.ru<br />

There are two general approaches to synthesis of carboxylate complexes. The first<br />

one is reactions of b<strong>in</strong>ary carboxylates with different ligands. This approach is used<br />

for all noble metals exclud<strong>in</strong>g gold, s<strong>in</strong>ce gold b<strong>in</strong>ary carboxylates are very unstable<br />

compounds which are extremely difficult to isolate. The second approach is a substitution<br />

of other acido ligands by carboxylate groups. This reaction works perfectly for<br />

halide complexes if silver(I) carboxylate is used as a halide acceptor. The method is<br />

applicable for both gold(I) and gold(III) compounds.<br />

We tested different approaches to synthesis of gold(III) carboxylate complexes. First<br />

we tried to prepare gold(III) acetates us<strong>in</strong>g reaction of chlorides [(L)AuCl2]Cl (L<br />

= bipy and phen) with sodium acetate <strong>in</strong> glacial acetic acid at 80-100C. However,<br />

it was found that for complex with phenanthrol<strong>in</strong>e the reaction leads to significant<br />

rearrangement of gold coord<strong>in</strong>ation sphere and formation of [(phen)AuCl2][AuCl4]<br />

complex <strong>in</strong>stead of any carboxylate derivative.<br />

Four-coord<strong>in</strong>ated cationic gold(III) chloride complexes [(L)AuCl2]BF4 (L = bipy,<br />

phen) react with silver(I) carboxylate RCO2Ag (R = CH3, CMe3, CF3) <strong>in</strong> acetonitrile<br />

media giv<strong>in</strong>g correspond<strong>in</strong>g carboxylate derivatives [(L)Au(RCO2)2]BF4, which were<br />

fully characterized <strong>in</strong>clud<strong>in</strong>g X-Ray diffraction study of [(bipy)Au(CF3CO2)2]BF4.<br />

At the same time pseudo five-coord<strong>in</strong>ated gold(III) complexes LAuCl3 (where L =<br />

2,9-dimethyl-1,10-phenanthrol<strong>in</strong>e and 2,2’-bisqu<strong>in</strong>ol<strong>in</strong>e) do not form stable products<br />

<strong>in</strong> the reaction, most likely, due to unfavourable steric features of the proposed carboxylate<br />

compounds. F<strong>in</strong>ally, we carried out IR-spectroscopic studies for all the<br />

prepared complexes <strong>in</strong> order to expla<strong>in</strong> their stability and reactivity.<br />

We are grateful to the Council of the President of the Russian Federation for young<br />

scientists for f<strong>in</strong>ancial support (project 977.2012.3).<br />

Molecular structure of [(bipy)Au(CF3CO2)2]BF4<br />

210 Saturday 9:00 - 11:30 Poster 153


Push-Pull Chromophores with Planarized Triphenylam<strong>in</strong>e<br />

Donors<br />

Bett<strong>in</strong>a Gliemann, Michael Grunst, Milan Kivala<br />

Department of Chemistry and Pharamcy, Institute of Organic Chemistry I –<br />

Friedrich-Alexander-Universität Erlangen-Nürnberg – Henkestrasse 42 – Erlangen – GER<br />

bett<strong>in</strong>a.gliemann@chemie.uni-erlangen.de<br />

About 40 years ago, Hellw<strong>in</strong>kel and co-workers realized planarized triphenylam<strong>in</strong>e<br />

scaffolds by connect<strong>in</strong>g the three benzene r<strong>in</strong>gs of triphenylam<strong>in</strong>e via carbonyl- or<br />

dimethylmethylene-bridg<strong>in</strong>g units. [1] While numerous chromophores consist<strong>in</strong>g of triphenylam<strong>in</strong>e<br />

donors and various acceptors connected through a suitable π-conjugated<br />

l<strong>in</strong>ker have already been <strong>in</strong>vestigated <strong>in</strong> organic light emitt<strong>in</strong>g diodes (OLEDs) and<br />

dye-sensitized solar cells, such comb<strong>in</strong>ations <strong>in</strong>volv<strong>in</strong>g the bridged triphenylam<strong>in</strong>es as<br />

donors have not been thoroughly <strong>in</strong>vestigated yet. [2]<br />

Here, we report the synthesis and optoelectronic properties of a series of novel pushpull<br />

chromophores <strong>in</strong>volv<strong>in</strong>g the planar triphenylam<strong>in</strong>e donor decorated with various<br />

electron acceptors (A).<br />

Figure 1. Schematic set-up of synthesized push-pull chromophores.<br />

[1] a) D. Hellw<strong>in</strong>kel, M. Melan, Chem. Ber. 1971, 104, 1001-1016; b) Z. Fang, T.-L. Teo, L. Cai,<br />

Y.-H. Lai, A. Samoc, M. Samoc, Org. Lett. 2009, 11, 1-4.<br />

[2] a) Z. Jiang, T. Ye, C. Yang, D. Yang, M. Zhu, C. Zhong, J. Q<strong>in</strong>, D. Ma, Chem. Mater. 2011,<br />

23, 771-777; b) K. Do, D. Kim, N. Cho, S. Paek, K. Song, J. Ko, Org. Lett. 2012, 14, 222-225.<br />

Poster 154 Saturday 9:00 - 11:30 211


Novel Metallasilatrane Complexes: Neutral Monomers and<br />

Cationic Dimers<br />

Gisela Warncke, Jörg Wagler<br />

Inst. f. Anorg. Chem. – TU Bergakademie Freiberg – Leipziger Straße 29 –<br />

09596 Freiberg – GER<br />

Gisela.Warncke@chemie.tu-freiberg.de<br />

The first metallasilatrane complexes, which are group 14 relatives of the nowadays<br />

widely explored metallaboratrane compounds [1] , bear the <strong>in</strong>terest<strong>in</strong>g structural motif<br />

of a dative TM→Si bond. The first representatives of these methimazole-buttressed<br />

paddlewheel-shaped complexes (with TM = Ni 2+ , Pd 2+ , Pt 2+ ) [2] exhibited very poor<br />

solubility <strong>in</strong> various solvents, which causes difficulties for characterization (e.g. NMR<br />

spectroscopy) and potential applications (e.g. homogeneous catalysis) <strong>in</strong> solution.<br />

Hence, their special molecular structures and 29 Si NMR spectroscopic properties were<br />

established by crystal structure analyses, solid state NMR spectroscopy and quantum<br />

chemical calculations. [3]<br />

With the aid of bulkier substituents (such as t-butyl or 2,6-dimethylphenyl) at the<br />

silatrane cage the solubility of metallasilatrane complexes was enhanced remarkably.<br />

In addition to neutral monomeric molecules, upon replacement of the TM-bound<br />

anion these compounds can form dimeric dications. The unexpected TM···TM contact<br />

of the latter is unbridged and can be rationalized by the spatial demand of the<br />

substituent R 1 .<br />

[1] M. Spicer, J. Regl<strong>in</strong>ski Eur. J. Inorg. Chem. 2009, 1553.<br />

[2] a) J. Wagler, E. Brendler Angew. Chem. Int. Ed. 2010, 49, 624; b) J. Wagler, A. F. Hill, T.<br />

He<strong>in</strong>e Eur. J. Inorg. Chem. 2008, 4225.<br />

[3] L. A. Truflandier, E. Brendler, J. Wagler, J. Autschbach Angew. Chem. Int. Ed. 2011, 50,<br />

255.<br />

212 Saturday 9:00 - 11:30 Poster 155


Conjugates of ruthenium(II)-polypyridyl complexes with<br />

fluorene-based electron donors<br />

Ralf Albrecht, Christoph Tzschucke<br />

Department of Chemistry and Biochemistry – Freie Universität Berl<strong>in</strong> – Takustr. 3 –<br />

14195 Berl<strong>in</strong> – GER<br />

ralf.albrecht@fu-berl<strong>in</strong>.de<br />

Ruthenium(II)-polypyridyl complexes covalently attached to electron donor or electron<br />

acceptor units have been frequently used as model systems for light <strong>in</strong>duced electron<br />

transfer and charge separation. [1] We describe the synthesis of electron donor conjugates<br />

of ruthenium(II)-polypyridyl complexes. As ligands, substituted bipyrid<strong>in</strong>es<br />

were prepared by palladium-catalyzed direct arylation of pyrid<strong>in</strong>e N -oxides and subsequent<br />

reduction. [2]<br />

As electron donor, 9,9-diarylfluorenes, with different redox potentials were prepared<br />

and attached to the ruthenium(II) complex by an amide l<strong>in</strong>kage. Correlation of the<br />

redox potentials and the light <strong>in</strong>duced charge separation behavior will be discussed.<br />

Ruthenium(II)-polypyridyl complexe with fluorene-based electron donor.<br />

[1] D. Polyansky, D. Cabelli, J. T. Muckerman, E. Fujita, T. Koizumi, T. Fukushima, T. Wada, K.<br />

Tanaka, Angew. Chem. Int. Ed. 2007, 46, 4169; C. Herrero, B. Lassalle-Kaiser, W. Leibl, A.<br />

W. Rutherford, A. Aukauloo, Coord. Chem. Rev. 2008, 252, 456; A. Magnuson, M. Anderlund,<br />

O. Johansson, P. L<strong>in</strong>dblad, R. Lomoth, T. Polivka, S. Ott, K. Stensjö, S. Styr<strong>in</strong>g, V. Sundström,<br />

L. Hammarström, Acc. Chem. Res. 2009, 42, 1899.<br />

[2] S. Duric, C. C. Tzschucke, Org. Lett. 2011, 13, 2310.<br />

Poster 156 Saturday 9:00 - 11:30 213


Photophysical, Photochemical and BQ Quench<strong>in</strong>g Properties<br />

of Z<strong>in</strong>c Phthalocyan<strong>in</strong>es with Fused Extended Conjugation<br />

Gulsah Gumrukcu ∗ , Gulnur Keser Karaoglan ∗ , Ali Erdogmus ∗ , Ahmet Gul † ,<br />

Ulvi Avciata ∗<br />

∗ Chemistry – Technical University of Yildiz – Davutpasa / 34210 – Istanbul – TUR<br />

† Chemistry – Technical University of Istanbul – Maslak / 34469 – Istanbul – TUR<br />

gumrukcugulsah@hotmail.com<br />

Metallophthalocyan<strong>in</strong>es (MPcs) derivatives display <strong>in</strong>terest<strong>in</strong>g chemical and physical<br />

properties, so they have been studied extensively. [1] The PDT properties of the phthalocyan<strong>in</strong>e<br />

dyes are strongly <strong>in</strong>fluenced by the presence and nature of central metal<br />

ion and substituents <strong>in</strong>troduced on the periphery of the phthalocyan<strong>in</strong>es. Metallation<br />

of phthalocyan<strong>in</strong>e with transition metals gives dyes with short lifetimes. [1]<br />

The effects of substituents and solvents on the photophysical and photochemical parameters<br />

of z<strong>in</strong>c(II) phthalocyan<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g four Schiff’s base substituents attached<br />

directly on peripheral positions are reported. The group effects on pheripheral<br />

position and the cont<strong>in</strong>ual conjugation of the phthalocyan<strong>in</strong>e molecules on the<br />

photophysical and photochemical properties are also <strong>in</strong>vestigated. General trends<br />

are described for photodegradation, s<strong>in</strong>glet oxygen and fluorescence quantum yields<br />

of these compounds <strong>in</strong> dimethylsulfoxide (DMSO), dimethylformamide (DMF) and<br />

tetrahydrofurane (THF). The fluorescence of the substituted z<strong>in</strong>c (II) phthalocyan<strong>in</strong>e<br />

complexes is effectively quenched by 1,4-benzoqu<strong>in</strong>one (BQ) <strong>in</strong> the solvents used.<br />

[1] C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyan<strong>in</strong>es, Properties and Applications, vols. 1–4,<br />

VCH, New York, 1989, 1993, 1996.<br />

[2] H. Ali, J. E. van Lier, Chem. Rev. 1999, 99, 2379.<br />

214 Saturday 9:00 - 11:30 Poster 157


The circular dichroism spectroscopy application for<br />

determ<strong>in</strong>ation of 2,2’-spirobi-1,3-benzodioxol derivates<br />

absolute configuration.<br />

Ewa Wrona, Mateusz Brela, Maria Owińska, Barbara Rys<br />

Department of Organic Chemistry – Faculty of Chemistry, Jagiellonian University –<br />

Ingardena 3 – Cracow – POL<br />

ewa.wrona@uj.edu.pl<br />

Circular dichroism is one of the methods for determ<strong>in</strong>ation the spiranes absolute configuation,<br />

<strong>in</strong>clud<strong>in</strong>g 2,2‘-spirobi-(1,3-benzodioxoles) and 2,2’-spirobi-(1,3-benzodioxol-<br />

4-carboxylic) acids, which obta<strong>in</strong>ed diastereoisomers, have been separated via fractional<br />

crystallization.<br />

For each of the compounds, several circular dichroism spectra had been computed<br />

(TD-DFT, B3LYP, 6-311G** ). In all cases two counter Cotton effects have been<br />

noticed. The wave length for both the effects (c.a. 200nm) is different to the one<br />

predicted (c.a. 230nm for π → π* benzoic acid transfer). Furthermore, an analysis<br />

of atomic orbitals <strong>in</strong>dicates, that the Cotton effects are not due to exciton coupl<strong>in</strong>g.<br />

Nevertheless, the bands observed still follow the correlation between the Cotton effects<br />

abundance and the chirality of molecule. Thus, hav<strong>in</strong>g based on the circular dichroism<br />

spectroscopy as well as computational chemistry calculations the determ<strong>in</strong>ation<br />

of synthetized compounds absolute configuration was possible.<br />

The CD spectra of (P)-2,2’-spirobi-(1,3-benzodioxol-4-carboxylic) acid<br />

N,N’-di-[(1S)-phenylethyl]amide; theoretical (left) and experimental (right)<br />

[1]<br />

J. Grochowski, M. Rutkowska, B. Rys, P. Serda, G. Snatzke, Chem. Ber. 1992, 125, 1837.<br />

[2]<br />

M. Clpas, N. Par<strong>in</strong>ello, C. Saá, J.A. Varela, S. Caccamese, C. Ros<strong>in</strong>i, Tetrahedron: Assymetry<br />

2006, 17, 1387.<br />

[3]<br />

N. Harada, K. Nakanishi, Circular dichroic spectroscopy - exciton coupl<strong>in</strong>g <strong>in</strong> organic chemistry,<br />

Mill Valey, CA: University Science Books, 1983.<br />

Poster 158 Saturday 9:00 - 11:30 215


Cycloadditions: Concerted vs Diradical Stepwise<br />

Mechanisms. The Case of Nitrones Dimerization<br />

David Roca-López , Tomás Tejero, Pedro Mer<strong>in</strong>o<br />

Dpto. de Síntesis y Estructura de Biomoléculas –<br />

Instituto de Síntesis Química y Catálisis Homogénea – Universidad de Zaragoza –<br />

C/ Pedro Cerbuna, 12 – Zaragoza – ESP<br />

drl@unizar.es<br />

The [3+2] cycloaddition reaction of olef<strong>in</strong>ic dipolarophiles with 1,3-dipoles, such as<br />

nitrile oxides or nitrones, is one of the best known and most widely used method for<br />

construct<strong>in</strong>g five-membered heterocycles. [1] Nitrile oxides easily dimerize to furoxans,<br />

and the mechanism of the process has been already elucidated. [2] However, the analogous<br />

process with nitrones is a rarely reported event witnessed previously <strong>in</strong> few cases<br />

for cyclic nitrones.<br />

Recently, the cyclodimerization of several six-membered nitrones was <strong>in</strong>vestigated, [3]<br />

but only configurational and conformational features of the dimers were studied, without<br />

shedd<strong>in</strong>g light on the mechanism, which rema<strong>in</strong>s <strong>in</strong> controversy. Especially, because<br />

the apparent dimerization process consists <strong>in</strong> an unfavored thermal [4π+4π]<br />

cycloadition reaction, and no <strong>in</strong>formation exists to date about the electronic and<br />

steric effects on dimerization of nitrones and the nature of the transition states for<br />

such a process.<br />

In this work, we report DFT studies (both open- and closed-shell) on the dimerization<br />

of nitrones, first on a simple model and after on the 2,3,4,5-tetrahydropyrid<strong>in</strong>e-1-oxide,<br />

us<strong>in</strong>g up to the PCM(dichloromethane)/M06–2X/cc–pVTZ level of calculation.<br />

Concerted closed-shell mechanism (left) versus stepwise open-shell one (middle and right).<br />

Acknowledgements:<br />

D. R.-L. thanks the Spanish M<strong>in</strong>istry of Education (MED) for a FPU-Predoctoral grant.<br />

The authors thank the computer resources from “Term<strong>in</strong>us” and technical assistance provided by<br />

the Institute for Biocomputation and Physics of Complex Systems (BIFI) - University of Zaragoza<br />

(UZ).<br />

References:<br />

[1] Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural<br />

products. A. Padwa, W. H. Pearson (Eds.). John Wiley & sons: New York. 2002.<br />

[2] Z.-X. Yu, P. Caramella, K. N. Houk, J Org. Chem. 2003, 125, 15420-15425.<br />

[3] S. A. Ali, A. Alsbaiee, M. I. M. Wazeer, Phys. Org. Chem. 2010, 23, 488-496.<br />

216 Saturday 9:00 - 11:30 Poster 159


1,8-Anthracene Bridged Ruthenium and Osmium V<strong>in</strong>yl<br />

Complexes as Possible Candidates for the Synthesis of<br />

Anisotropic Supramolecular Rectangles<br />

Daniel F<strong>in</strong>k, Evelyn Wuttke, Ra<strong>in</strong>er W<strong>in</strong>ter<br />

Fachbereich Chemie – Universität Konstanz – Universitätsstr. 10 – Konstanz – GER<br />

daniel.f<strong>in</strong>k@uni-konstanz.de<br />

Discrete supramolecular objects featur<strong>in</strong>g transition metal corners are <strong>in</strong> the focus<br />

of current <strong>in</strong>terest <strong>in</strong> the field of organometallic supramolecular chemistry. For the<br />

preparation of rectangular shaped molecular objects 1,8-disubstituted anthracenes<br />

are particularly suitable, because self-assembly of these molecular clips with bidentate<br />

bridg<strong>in</strong>g ligands such as bipyrid<strong>in</strong>es <strong>in</strong>evitably leads to the formation of the<br />

desired structures. P. J. Stang and coworkers have already <strong>in</strong>troduced these k<strong>in</strong>ds<br />

of supramolecular complexes <strong>in</strong> 2001 [1] and a lot of further <strong>in</strong>vestigations have been<br />

made ever s<strong>in</strong>ce. The obta<strong>in</strong>ed structures mostly conta<strong>in</strong> square planar Pt(II) or<br />

Pd(II) metal centers. However, there is no known example for an anisotropic structure<br />

up to now, due to the fact that the required experimental procedures appear to<br />

be far more challeng<strong>in</strong>g. Possible solutions might be the usage of partially protected<br />

precursors or a comb<strong>in</strong>ation of donor and acceptor molecules.<br />

Here<strong>in</strong> we report the synthesis of two promis<strong>in</strong>g candidates as molecular acceptor<br />

clips for the formation of asymmetric supramolecular rectangles. The complex<br />

[[RuCl(CO)(P i Pr3)2]2(µ-CH=CH-anthracen-CH=CH-1,8)] was obta<strong>in</strong>ed by a hydrometallation<br />

reaction. It was possible to isolate the <strong>in</strong>termediate [Ru(CH=CH-anthracen-C≡CH-1,8)Cl(CO)(P<br />

i Pr3)2] thereby enabl<strong>in</strong>g the synthesis of the novel heterobimetallic<br />

complex [RuCl(CO)(P i Pr3)2OsCl(CO)((P i Pr3)2(µ-CH=CH-anthracen-<br />

CH=CH-1,8)]. Despite the close structural similarity to a published complex [2] improved<br />

reversibilities of the redox processes are observed via cyclovoltammetric exam<strong>in</strong>ations,<br />

thus provid<strong>in</strong>g the possibility to perform spectroelectrochemical studies.<br />

These po<strong>in</strong>t to sizable electronic coupl<strong>in</strong>g between the different metal sites <strong>in</strong> the<br />

mixed-valent radical cations and, <strong>in</strong> agreement with the results EPR studies <strong>in</strong>dicate<br />

high ligand character of the correspond<strong>in</strong>g SOMOs. Furthermore, the experimental<br />

f<strong>in</strong>d<strong>in</strong>gs agree well with the results of accompany<strong>in</strong>g DFT calculations. [3]<br />

The vacant coord<strong>in</strong>ation sites located at the metal centers can be used to <strong>in</strong>troduce<br />

various donor functions lead<strong>in</strong>g to anisotropic molecular objects. Suitable donor clip<br />

molecules have yet to be found and are <strong>in</strong> the focus of further studies.<br />

[1]<br />

C. J. Kuehl, S. D. Huang, P. J. Stang, Journal of the American Chemical Society 2001,<br />

123, 9634-9641.<br />

[2]<br />

Y.-P. Ou, C. Jiang, D. Wu, J. Xia, J. Y<strong>in</strong>, S. J<strong>in</strong>, G.-A. Yu, S. H. Liu, Organometallics 2011,<br />

30, 5763-5770.<br />

[3]<br />

D. F<strong>in</strong>k Bachelor Thesis 2012.<br />

Poster 160 Saturday 9:00 - 11:30 217


Attempts synthesize new 3- and 4- (trifluoromethyl)<br />

azetid<strong>in</strong>-2-ones Staud<strong>in</strong>ger reaction conditions<br />

Rafal Kluza, Emilia Obijalska, Grzegorz Mloston<br />

Department of Organic and Applied Chemistry – University of Lodz – Tamka 12 –<br />

Lodz – POL<br />

rafal.kluza@gmail.com<br />

(Trifluoromethyl) azetid<strong>in</strong>-2-ones comb<strong>in</strong>e the unique physical, chemical, biological<br />

and synthetic utility result<strong>in</strong>g from the presence both of the CF3 group and the βlactam<br />

skeleton. For this reasons, compounds of this type functionalized with CF3<br />

group are an attractive class of substrates for use <strong>in</strong> organic synthesis, as well as<br />

substances with potential biological activity. The literature describes few examples of<br />

methods of preparation of azetid<strong>in</strong>-2-ones bear<strong>in</strong>g CF3 substituent at positions C(3)<br />

or C(4) <strong>in</strong> heterocyclic r<strong>in</strong>g.<br />

The ma<strong>in</strong> goal of presented study was to develop method for obta<strong>in</strong><strong>in</strong>g new 4 or 3-<br />

CF3-β-lactams with usage a start<strong>in</strong>g materials N-(tert-butylsulph<strong>in</strong>yl) im<strong>in</strong>e derivated<br />

from fluoral (1) and 3,3,3-trifluoropropionic acid (2).<br />

Preparation of racemic substrate 1 was unsuccessful. In each case, product was isolated<br />

<strong>in</strong> a appropriate hemiam<strong>in</strong>alan form. That is why, all reactions were carried out<br />

with commercially available (S)-1. Both used substrates 1 and 2 were not convenient<br />

reagents for preparation desired compounds <strong>in</strong> Staud<strong>in</strong>ger type reactions (with acid<br />

chlorides, carboxylic acids or α-diazoketones). Only <strong>in</strong> the case of condensation (S)-1<br />

with enolate anion generated from ethyl propionate gave 4 CF3-β-lactam.<br />

218 Saturday 9:00 - 11:30 Poster 161


N6 − α-Halogenacyl-derivatives of Sydnone Im<strong>in</strong>es<br />

Al<strong>in</strong>a S. Samarskaya, Il’ia A. Cherepanov, Valery N. Kal<strong>in</strong><strong>in</strong><br />

Chemistry of Organoelement Compounds –<br />

A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences –<br />

Vavilov St. 28, 119334 – Moskow – RUS<br />

loi_iver2003@list.ru<br />

Sydnone im<strong>in</strong>es are the most studied representatives of mesoionic heterocyclic compounds.<br />

Their synthesis and study<strong>in</strong>g of their properties are of great <strong>in</strong>terest because<br />

of broad spectrum of sydnone im<strong>in</strong>e’s pharmacological activity. Recently it was shown<br />

that sydnone im<strong>in</strong>es were effective exogenous donors of nitrogen oxide (NO) an unique<br />

<strong>in</strong>tracellular regulator of metabolism <strong>in</strong> liv<strong>in</strong>g organism.<br />

At the moment, there are only unitary examples of N6 − α-halogenacyl- derivatives<br />

of sydnone im<strong>in</strong>es at literature and their reactivity is virtually un<strong>in</strong>vestigated. The<br />

aim of our study was to fill these exist<strong>in</strong>g gaps <strong>in</strong> the chemistry of sydnone im<strong>in</strong>es.<br />

We have obta<strong>in</strong>ed a wide range of N6 − α-halogenacyl-derivatives of sydnone im<strong>in</strong>es<br />

1 by the featured way of the <strong>in</strong>teraction of chloroanhidrides of α-halogensubstituted<br />

carboxylic acids with sydnone im<strong>in</strong>es hydrochlorides.<br />

It has been shown that these derivatives 1 are smoothly <strong>in</strong>teract with different dialkylam<strong>in</strong>es<br />

(Scheme 1) and S-nucleophiles (Scheme 2).<br />

In addition, it has been shown that <strong>in</strong> case of N6 − α-(2-thio-3-cyanopyrid<strong>in</strong>es)acetylderivatives<br />

4 the course of the reaction of <strong>in</strong>tramolecular cyclisation (Thorpe-Ziegler<br />

reaction) <strong>in</strong> 3-am<strong>in</strong>othienopyrid<strong>in</strong>es 5 is possible <strong>in</strong> good-to-excellent yields (Scheme<br />

3).<br />

Thus, a wide range of novel representatives of sydnone im<strong>in</strong>es have b<strong>in</strong> obta<strong>in</strong>ed.<br />

These derivatives are of great <strong>in</strong>terest as potential pharmacological active compounds.<br />

Poster 162 Saturday 9:00 - 11:30 219


(Iso)qu<strong>in</strong>ol<strong>in</strong>ocoumar<strong>in</strong>s: a novel class of bright fluorescent<br />

dyes with large Stokes shift<br />

Maksim V. Sednev, Shamil Nizamov, Vladimir N. Belov, Stefan W. Hell<br />

Department of NanoBiophotonics – Max Planck Institute for Biophysical Chemistry –<br />

Am Fassberg 11 – Gött<strong>in</strong>gen – GER<br />

msednev@gwdg.de<br />

Dyes with large Stokes shifts (80–200 nm) are easy to detect, due to m<strong>in</strong>imal sensitivity<br />

losses caused by reabsorption of light. Large Stokes shifts also facilitate spectral<br />

separation of the emission signal from the scattered excitation light, as well<br />

as from the background fluorescence of biological samples, which usually exhibits<br />

only small Stokes shift. [1] Photostable and bright fluorescent dyes with large Stokes<br />

shifts are rare and only few of them commercially available. Nearly all of them<br />

conta<strong>in</strong> the coumar<strong>in</strong> fragment as a fluorophore. Recently, we reported the synthesis<br />

of 3-heteroarylcoumar<strong>in</strong>s emitt<strong>in</strong>g green light, possess<strong>in</strong>g Stokes shifts of ca.<br />

70 nm, and perform<strong>in</strong>g quite well <strong>in</strong> optical microscopy applications, <strong>in</strong> particular,<br />

super-resolution imag<strong>in</strong>g based on stimulated emission depletion (STED). [2] In the<br />

present study, we show that the Stokes shift can be nearly doubled by fusion of the<br />

coumar<strong>in</strong> system with the (iso)qu<strong>in</strong>ol<strong>in</strong>e r<strong>in</strong>g. For that, an ethene unit was <strong>in</strong>corporated<br />

between C-4 of the fluorophore and the pyrid<strong>in</strong>e r<strong>in</strong>g (compound 3). The new<br />

(iso)qu<strong>in</strong>ol<strong>in</strong>ocoumar<strong>in</strong>s 3 emit yellow or orange light and have the Stokes shifts of<br />

ca. 140 nm. They were prepared from organot<strong>in</strong> precursors 1 and bromoheteroarylcarbaldehydes<br />

2 us<strong>in</strong>g a Stille coupl<strong>in</strong>g reaction followed by cyclization of the <strong>in</strong>termediates<br />

<strong>in</strong> protic solvents and <strong>in</strong> the presence of a base. The large Stokes shifts<br />

and the good quantum yields <strong>in</strong> polar solvents (30 % <strong>in</strong> methanol) suggest that the<br />

modified (iso)qu<strong>in</strong>ol<strong>in</strong>ocoumar<strong>in</strong>s can be applied as photostable markers <strong>in</strong> multicolor<br />

STED microscopy.<br />

[1] F. Vollmer, W. Rettig, E. Birckner, J. Fluoresc. 1994, 4, 65-69.<br />

[2] S. Nizamov, K. I. Willig, M. V. Sednev, V. N. Belov, S. W. Hell, Chem. Eur. J. 2012, 18,<br />

16339-16348.<br />

220 Saturday 9:00 - 11:30 Poster 163


Simple new method of synthesis alkyl nitrites<br />

Tomasz Klucznik<br />

Department of Chemistry – Gdansk University of Technology – Narutowicza 11/12 –<br />

Gdansk – POL<br />

observer9@wp.pl<br />

Alkyl nitrites belong to a class of organic compounds with the general formula RONO,<br />

where R is an alkyl group. Thus, they are esters of nitrous acid. Alkyl nitrites are<br />

useful reagents for organic synthesis, an example for synthesis organic or <strong>in</strong>organic<br />

azides from compounds conta<strong>in</strong> hydraz<strong>in</strong>e group.<br />

Classic methods of synthesis alkyl nitrites [1-4] base on add drop by drop cool alcohol<br />

and acid solution to water solution of sodium or potassium nitrite. Nitrite solution<br />

are cool<strong>in</strong>g <strong>in</strong> water and br<strong>in</strong>e bath. Control of temperature and add<strong>in</strong>g reagents<br />

to reaction mixture are crucial parts of alkyl nitrites synthesis. High temperature<br />

favour hydrolysis and evaporation of f<strong>in</strong>al product. That the temperature control<br />

is so important. But us<strong>in</strong>g the bath cool<strong>in</strong>g <strong>in</strong> this case are <strong>in</strong>effective. Time of<br />

reaction are f<strong>in</strong>ally <strong>in</strong>acceptable long. Add<strong>in</strong>g too much acid <strong>in</strong> one pot, <strong>in</strong>iciate<br />

irreversible hydrolysis of alkyl nitrite. F<strong>in</strong>al products of hydrolysis alkyl nitrites are<br />

easy to identify reddish-brown nitrogen dioxide which leaves reaction mixture. That<br />

are most important problems connection with alkyl nitrite synthesis.<br />

My reply for that synthesis troubles are the new easy to implementation method of<br />

synthesis alkyl nitrites. The key ideas are cancellation cool bath and change form of<br />

sodium nitrite. I used the easiest self cooll<strong>in</strong>g mixture as ice blocks. Stoichiometric<br />

(1,1eq) solution of sodium or potassium nitrite was cool<strong>in</strong>g <strong>in</strong> the refrigerator as long<br />

as they are not freeze to cubes. That form of sensitive reagent has many advantages.<br />

Problem of add alcohol and acid solution is elim<strong>in</strong>ation too. Yields of this simply<br />

method are good or very good. The most important part of my solution are easy<br />

applicable to high scale production. Elim<strong>in</strong>ation add<strong>in</strong>g reagents <strong>in</strong> portions and self<br />

controlled temperature are promote this method to technology scale of production.<br />

Ryc.1. The difference between two methods of synthesis alkyl nitrites<br />

[1]<br />

R. Adams, O. Kamm, J. Am.<br />

organiczna 1984, WNT, 347-348.<br />

Chem. Soc. 1918, 40, 1285.<br />

[2]<br />

A. I. Vogel, Preparatyka<br />

[3]<br />

W. A. Noyes, Org. Synth. 1943, Coll. Vol. 2, 108; 1936, Vol. 16, 7.<br />

[4] R. A. Miller, Inorg. Synth. 1946, 2, 139.<br />

Poster 164 Saturday 9:00 - 11:30 221


Synthesis, structure and electrochemical properties of novel<br />

Co(III) complex with 2-acetylpyrid<strong>in</strong>e<br />

S-methylisothiosemicarbazone<br />

Marko Rodić, Mirjana Lalović, Ljiljana Voj<strong>in</strong>ović-Ješić, Ljiljana Jovanović,<br />

Vukad<strong>in</strong> Leovac<br />

Faculty of Sciences – University of Novi Sad – Trg Dositeja Obradovića 3 – Novi Sad –<br />

SRB<br />

marko.rodic@dh.uns.ac.rs<br />

2-acetylpyrid<strong>in</strong>e thiosemicarbazone and its N(4)-substituted derivatives have wide<br />

range of biological activity. This has been the ma<strong>in</strong> reason for <strong>in</strong>tensive study of this<br />

ligand group complexes with transition and non-transition metals. On the contrary, a<br />

limited number of transition metal complexes with 2-acetylpyrid<strong>in</strong>e S-methylisothiosemicarbazone<br />

(HL) is known, of which only few mono-ligand Cu(II) and bis-ligand<br />

Co(III) complexes have been characterized with X-ray analyses.<br />

The paper is concerned with the crystal structure and electrochemical characteristics<br />

of the cobalt(III) complex with 2-acetylpyrid<strong>in</strong>e S-methylisothiosemicarbazone<br />

(HL), of the coord<strong>in</strong>ation formula [CoL2][Co II pyCl3] · Me2CO. X-ray crystallography<br />

revealed that Co(III) is situated <strong>in</strong> a slightly deformed octahedral environment<br />

formed by six nitrogen atoms of the two L molecules <strong>in</strong> the meridional positions.<br />

The ligands molecules coord<strong>in</strong>ate with Co(III) <strong>in</strong> a usual way, i.e. via the pyrid<strong>in</strong>e,<br />

azometh<strong>in</strong>e, and isothioamide nitrogen atoms, each form<strong>in</strong>g two five-membered metallocycles.<br />

Electrochemical studies of the complex <strong>in</strong> DMF showed that the electrode<br />

processes are accompanied by chemical reactions and the correspond<strong>in</strong>g mechanism<br />

was proposed. The obta<strong>in</strong>ed complex was also characterized by elemental analysis,<br />

conductometric measurements and UV–Vis and IR spectroscopy.<br />

Molecular structure of the complex<br />

222 Saturday 9:00 - 11:30 Poster 165


Reactions of 3-acylchromones with dimethyl<br />

1,3-acetonedicarboxylate and 1,3-diphenylacetone: one-pot<br />

synthesis of functionalized 2-hydroxybenzophenones,<br />

6H-benzo[c]chromenes and benzo[c]coumar<strong>in</strong>s<br />

Iryna Savych, Alexander Vill<strong>in</strong>ger, Vyacheslav Sosnovskikh, Peter Langer,<br />

Viktor Iaroshenko<br />

Department of Chemistry – University of Rostock – Albert E<strong>in</strong>ste<strong>in</strong> Str. 3a – GER<br />

savychiryna@gmail.com<br />

Chromones are very attractive targets for comb<strong>in</strong>atorial library synthesis due to<br />

their wide range of valuable biological activities. [1] The biological and <strong>in</strong>dustrial<br />

importance of chromones has led to a considerable amount of synthetic work <strong>in</strong><br />

the field of 3-substituted chromones, especially 3-formylchromone [2] , which conta<strong>in</strong><br />

three electrophilic centers. We envisaged that <strong>in</strong>troduction of powerful electronwithdraw<strong>in</strong>g<br />

groups as methoxalyl, polyfluoroacyl and aroyl <strong>in</strong>to the 3-position of<br />

chromone would <strong>in</strong>crease its reactivity toward nucleophilic reagents. Unlike, these<br />

3-substituted chromones 1-3 have not received much attention despite their potential<br />

<strong>in</strong>terest as build<strong>in</strong>g blocks <strong>in</strong> organic synthesis via the reactions with 1,3-C,Cd<strong>in</strong>ucleophiles.<br />

A fact prompt<strong>in</strong>g us to <strong>in</strong>vestigate their reaction with dimethyl 1,3acetonedicarboxylate<br />

and 1,3-diphenylacetone.<br />

We are report<strong>in</strong>g now, that reactions of 3-substituted chromones 1-3 with dimethyl<br />

1,3-acetonedicarboxylate and 1,3-diphenylacetone <strong>in</strong> the presence of DBU proceed at<br />

the C-2 atom of the chromone system with pyrone r<strong>in</strong>g-open<strong>in</strong>g and subsequent formal<br />

[3+3] cyclocondensation and led to the formation of functionalized 2-hydroxybenzophenones,<br />

6H-benzo[c]chromenes and benzo[c]coumar<strong>in</strong>s, depend<strong>in</strong>g on the substituent<br />

at the 3-position (Figure 1). [3]<br />

The obta<strong>in</strong>ed products constitute an important structural subunit of a variety of<br />

biologically active compounds [4] , which are not readily available by other methods. In<br />

further experiments we studied the base-mediated hydrolysis of the products 4,5. It is<br />

also important to notice, that due to the strong UV-absorption properties synthesized<br />

products can f<strong>in</strong>d a use <strong>in</strong> the preparation of the sun-protective materials and creams.<br />

Figure 1. Synthesis of obta<strong>in</strong>ed products 4-7.<br />

[1] S. T. Saengchantara, T. W. Wallace, Nat. Prod. Rep. 1986, 465-475.<br />

[2] H. Chen, F. Xie, J. Gong, Y. Hu, J. Org. Chem. 2011, 76, 8495-8500.<br />

[3] Viktor O. Iaroshenko, Iryna Savych, Alexander Vill<strong>in</strong>ger, Vyacheslav Ya. Sosnovskikh, Peter<br />

Langer, Org. Biomol. Chem. 2012, 10, 9344-9348.<br />

[4] (a) T. Tzanova, M. Gerova, O. Petrov, M. Karaivanova, D. Bagrel, Eur. J. Med. Chem. 2009,<br />

44, 2724-2730; (b) R. W. Pero, D. Harvan, M. C. Blois, Tetrahedron Lett. 1973, 14, 945-948.<br />

Poster 166 Saturday 9:00 - 11:30 223


Direct reductive am<strong>in</strong>ation of methyl<br />

2-(2-formyl-4-nitrophenoxy)alkanoates. Synthesis of<br />

2-alkyl-1,4-benzoxazep<strong>in</strong>-3-ones.<br />

Agata Wrześniewska, Hal<strong>in</strong>a Kwiecień<br />

Department of Organic Synthesis and Drug Technology –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – 42 Piastów Ave. – Szczec<strong>in</strong> – POL<br />

awrzesniewska@zut.edu.pl<br />

Reductive am<strong>in</strong>ation is the reaction of aldehydes and ketones with ammonia or primary/secondary<br />

am<strong>in</strong>es <strong>in</strong> presence of a selective reduc<strong>in</strong>g agent. It is one of the most<br />

important tools <strong>in</strong> the synthesis of am<strong>in</strong>es. [1]<br />

Our previous research has shown that the reductive am<strong>in</strong>ation of methyl 2-(2-formylphenoxy)alkanoates<br />

with hydraz<strong>in</strong>e leads to the formation of correspond<strong>in</strong>g primary<br />

am<strong>in</strong>o esters, which immediately underwent cyclization to 1,4-benzoxazep<strong>in</strong>-3-ones. [2]<br />

1,4-Benoxazep<strong>in</strong>e derivatives are well-known as compounds possess<strong>in</strong>g antidepressant<br />

or antihistam<strong>in</strong>ic properties. [3]<br />

Here, we report the results of our study of direct reductive am<strong>in</strong>ation of methyl 2-<br />

(2-formyl-4-nitrophenoxy)alkanoates 1 to the correspond<strong>in</strong>g am<strong>in</strong>o esters 3 via Schiff<br />

base <strong>in</strong>termediates 2, followed by the cyclization of the obta<strong>in</strong>ed am<strong>in</strong>o esters to the<br />

1,4-bnzoxazep<strong>in</strong>-3-ones 4. The reductive am<strong>in</strong>ation process was carried out at ambient<br />

temperature with use of sodium triacetoxyborohydride as the selective reduc<strong>in</strong>g<br />

agent and 1,2-dichloroethane as the solvent (Figure 1). The process of obta<strong>in</strong><strong>in</strong>g<br />

1,4-benzoxazep<strong>in</strong>-3-ones by <strong>in</strong>tramolecular cyclization of N-arylated am<strong>in</strong>o esters 3<br />

took several attempts us<strong>in</strong>g a variety solvents, catalysts, and different reaction times.<br />

Optimal results were achieved when the am<strong>in</strong>o esters were heated for 6h at 200-205 o C.<br />

All am<strong>in</strong>o esters and 1,4-benzoxazep<strong>in</strong>-3-ones are new compounds and their structures<br />

were confirmed by spectroscopic methods.<br />

Figure 1. Synthesis of N -phenyl-2-alkyl-7-nitro-1,4-benzoxazep<strong>in</strong>-3-ones from methyl<br />

2-(2-formyl-4-nitrophenoxy)alkanoates.<br />

[1]<br />

S. Gomez, J. A. Peters, T. Maschmeyer, Adv. Synth. Catal. 2002, 344, 1037.<br />

[2]<br />

H. Kwiecień, M. Szychowska, Synth. Comm. 2007, 37, 3599.<br />

[3]<br />

H. Kwiecień, M. Śmist, A. Wrześniewska, Curr. Org. Synth. 2012, 9, 828.<br />

224 Saturday 9:00 - 11:30 Poster 167


Valence isomery <strong>in</strong> phenoxyl ferrocenyl radicals<br />

Andreas Neidl<strong>in</strong>ger, Katja He<strong>in</strong>ze<br />

Institute of Inorganic and Analytical Chemistry – Johannes Gutenberg-University –<br />

Duesbergweg 10-14 – Ma<strong>in</strong>z – GER<br />

neidl<strong>in</strong>g@uni-ma<strong>in</strong>z.de<br />

Electron transfer (ET) is one of the fundamental and most important phenomena <strong>in</strong><br />

chemistry and biology. Mixed-valence and mixed metal compounds are extremly valuable<br />

systems for study<strong>in</strong>g optically and thermally driven electron transfer reactions.<br />

We have been engaged <strong>in</strong> the synthesis of oligopeptides built from 1-am<strong>in</strong>oferrocene-<br />

1’-carboxylic acid [1] which can be oxidized to mixed-valent ferrocene/ferrocenium<br />

peptides. [2,3]<br />

Unlike ET between chemically similar moieties, ET between chemically different<br />

build<strong>in</strong>g blocks is less well explored, even though dissimilar redox partners play a<br />

crucial role <strong>in</strong> many biological ET systems, e.g. <strong>in</strong> photosystem II where phenoxyl<br />

radicals <strong>in</strong> the form of tyrosyl radicals are one of the central redox sites between the<br />

special pair P680 and the oxygen evolv<strong>in</strong>g complex. [4] Interest<strong>in</strong>gly, the formal redox<br />

potentials of the biologically relevant phenolate/phenoxyl pair and the organometallic<br />

ferrocene/ferrocenium pair can be very similar when us<strong>in</strong>g appropriate substituents.<br />

We have designed 2,4-di-tert-butyl-6-(2-ferrocenyl-carbamoyl)-phenol H-1, which, after<br />

deprotonation to 1 − , provides the chemically very different redox centers phenolate<br />

and ferrocene with similar redox potentials. [2,3,5]<br />

A priori it is not obvious which redox site of the dissymmetric phenolate-ferrocene<br />

conjugate 1 − will be oxidized <strong>in</strong> 1 . (valence ambiguity). The behavior of this system<br />

was probed by cyclic voltammograms, UV/Vis/NIR, IR and EPR spectroscopy under<br />

oxidiz<strong>in</strong>g and alkal<strong>in</strong>e conditions <strong>in</strong> different solvents. Density Functional Calculations<br />

were also performed <strong>in</strong> different solvents to <strong>in</strong>terpret the f<strong>in</strong>d<strong>in</strong>gs.<br />

[1] K. He<strong>in</strong>ze, M. Schlenker, Eur. J. Inorg. Chem. 2004, 2974-2988.<br />

[2] D. Siebler, M. L<strong>in</strong>seis, T. Gasi, L. M. Carrella, R. F. W<strong>in</strong>ter, C. Förster, K. He<strong>in</strong>ze, Chem.<br />

Eur. J. 2010, 17, 4540-4551.<br />

[3] D. Siebler, C. Förster, K. He<strong>in</strong>ze, Dalton Trans. 2011, 40, 3558-3575.<br />

[4] J. M. Mayer, I. J. Rhile, F. B. Larsen, E. A. Mader, T. F. Markle, A. G. DiPasquale, Photosynthesis<br />

Research 2006, 87, 3–20.<br />

[5] R. Wanke, L. Benisvy, M. L. Kuznetsov, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Chem.<br />

Eur. J. 2011, 17, 11882-11892.<br />

Poster 168 Saturday 9:00 - 11:30 225


Lacunary dodecavanadate clusters: Versatile build<strong>in</strong>g blocks<br />

for transition metal functionalized polyoxovanadates<br />

Kathar<strong>in</strong>a Kastner, Carsten Streb<br />

Department Chemie und Pharmazie –<br />

Friedrich-Alexander-Universität Erlangen-Nürnberg – Egerlandstraße 1 – Erlangen –<br />

GER<br />

ka.kastner@gmx.de<br />

Polyoxometalates (POMs) are metal oxide clusters based on high-valent early transition<br />

metals such as Mo, W or V. [1] Reactivity as well as wide structural diversity<br />

make POMs <strong>in</strong>terest<strong>in</strong>g candidates for applications <strong>in</strong> areas such as electronic and<br />

magnetic molecular materials, catalysis, medic<strong>in</strong>e and materials science. [2] Despite<br />

the wide structural variety of POM clusters, the targeted synthesis of a cluster framework<br />

for specific applications is still a huge challenge as formation mechanisms are<br />

hard to predict and control. Here, we present a promis<strong>in</strong>g route which enables us to<br />

access a new family of transition-metal substituted polyoxovanadate clusters through<br />

targeted syntheses with predictable outcome. A novel, chloride- templated dodecavanadate<br />

cluster featur<strong>in</strong>g two hexagonal coord<strong>in</strong>ation sites was developed based our<br />

earlier work on cluster assembly under non-aqueous conditions. [3] The cluster is used<br />

as a molecular host for the b<strong>in</strong>d<strong>in</strong>g of a wide range of transition metals whilst reta<strong>in</strong><strong>in</strong>g<br />

the orig<strong>in</strong>al cluster framework. The concept is closely related to the classical<br />

use of organic ligands, allow<strong>in</strong>g us to consider the dodecavanadate cluster as stable,<br />

purely <strong>in</strong>organic ligands. The modification of the physical properties and electronic<br />

and magnetic structure of transition-metal substituted clusters are explored and selective<br />

metal substitution will be employed for the development of stable and highly<br />

active molecular catalysts.<br />

Figure 1 Reaction scheme of the syntheses of transition metal (Fe, Co, Cu) conta<strong>in</strong><strong>in</strong>g<br />

polyoxovanadate clusters start<strong>in</strong>g with a chloride templated dodecavanadate cluster as a<br />

molecular host.<br />

[1]<br />

M. T. Pope, Y. Jeann<strong>in</strong>, M. Fournier, Heteropoly and isopoly oxometalates, Spr<strong>in</strong>ger-Verlag<br />

Berl<strong>in</strong>, 1983.<br />

[2]<br />

Special polyoxometalate issue: L. Cron<strong>in</strong>, A. Müller (guest eds.), Chem. Soc. Rev. 2012,<br />

7325-7648.<br />

[3]<br />

(a) J. Tucher, L. C. Nye, I. Ivanovic-Burmazovic, A. Notarnicola, C. Streb, Chem. Eur. J.<br />

2012, 18, 10494-10453; (b) J. Forster, B. Rösner, R. H. F<strong>in</strong>k, L. C. Nye, I. Ivanovic-Burmazovic,<br />

K. Kastner, J. Tucher, C. Streb, Chem. Sci. <strong>2013</strong>, DOI: 10.1039/c2sc20942j; (c) K. Kastner, B.<br />

Puscher, C. Streb, Chem. Commun. <strong>2013</strong>, DOI:10.1039/C2CC36638J.<br />

226 Saturday 9:00 - 11:30 Poster 169


Advanced materials <strong>in</strong> controlled drug delivery systems<br />

Anna Dabrowska, Marta Gawel, Agnieszka Kierys<br />

Department of Adsorption – Faculty of Chemistry,Maria Curie-Sklodowska University –<br />

Pl. M. Curie-Sklodowskiej 3, 20-031 – Lubl<strong>in</strong> – POL<br />

dabrowska.umcs@gmail.com<br />

Multi-component <strong>in</strong>organic/organic composites have attracted great <strong>in</strong>terest as a new<br />

class of porous solids with potential application <strong>in</strong> gas separation, catalysis, drug<br />

delivery systems or host for <strong>in</strong>clusion compounds. The silica gel is considered to be a<br />

fasc<strong>in</strong>at<strong>in</strong>g and <strong>in</strong>terest<strong>in</strong>g material for many applications due to its porous <strong>in</strong>ternal<br />

structure and morphological characteristics. Therefore, the use of silica gel as fillers<br />

is grow<strong>in</strong>g <strong>in</strong> particular due to the silanol groups presence on its surface which make<br />

it easily modifiable with different functional groups.<br />

One can easily observe the development made <strong>in</strong> recent years <strong>in</strong> the areas of polymer<br />

science, biomaterials, composite systems, and other related fields which has resulted <strong>in</strong><br />

great medical and pharmaceutical progress. Particular significance is the progress that<br />

has been made <strong>in</strong> the areas of the controlled drug delivery systems. The undoubted<br />

advantage of these systems is the susta<strong>in</strong>ed release of a drug at a therapeutic level over<br />

the long period of time. As a consequence, the dos<strong>in</strong>g frequency can be considerably<br />

reduced without los<strong>in</strong>g of effectiveness of therapeutic activity. Therefore, a much<br />

attention and efforts are devoted to prepare a new materials which could be used <strong>in</strong><br />

the controlled drug delivery systems.<br />

It was demonstrated that the release of the drugs out of polymer-based carrier systems<br />

can be achieved by controll<strong>in</strong>g a simple diffusion process. [1] However, the effectiveness<br />

of such delivery systems, is limited by the e.g. stability, porosity or biocompatibility<br />

of the carriers network. Therefore, by us<strong>in</strong>g the polymer-silica composites as a<br />

drug carrier matrix the formation of an appropriate porosity and an improvement of<br />

stability of the polymeric network can be achieved.<br />

In this paper we present the polymer-silica composite which can serve as a carrier<br />

<strong>in</strong> drug release system. The composite was synthesised by the method which consist<br />

<strong>in</strong> swell<strong>in</strong>g of preformed porous polymer particles <strong>in</strong> tetraethoxysilane TEOS. [2,3] It<br />

has been shown that this composite exhibits a relatively high porosity with<strong>in</strong> both<br />

the polymer and silica component. Because of an <strong>in</strong>teraction between the system<br />

components dur<strong>in</strong>g the swell<strong>in</strong>g and the condensation of SiO2 <strong>in</strong> polymer matrix, the<br />

diffusion of the drug is significantly limited and can be controlled. We demonstrate<br />

the profiles of naproxen release and report on the composite system characteristics<br />

through porosity, TEM, SEM and NMR studies.<br />

[1] A. Bernkop-Schnürch, S. Scholler, R. G. and Biebel, “Development of controlled drug release<br />

systems based on polymer-cyste<strong>in</strong>e conjugates”, Journal of Controlled Release 2000, 66, 39.<br />

[2] R. Zaleski, A. Kierys, M. Grochowicz, M. Dziadosz, J. Goworek, “Synthesis and characterization<br />

of nanostructural polymer–silica composite: Positron annihilation lifetime spectroscopy study”,<br />

Journal of Colloid and Interface Science 2011, 358, 268.<br />

[3] R. Zaleski, A. Kierys, M. Dziadosz, J. Goworek, I. Halasz, “Positron annihilation and N2<br />

adsorption for nanopore determ<strong>in</strong>ation <strong>in</strong> silica-polymer composites”, RSC Advances 2012, 2,<br />

3729.<br />

Poster 170 Saturday 9:00 - 11:30 227


The physicochemical properties of novel porphyraz<strong>in</strong>es<br />

possess<strong>in</strong>g an alternate system of 2,5-dimethylpyrrol-1-yl and<br />

dimethyloam<strong>in</strong>o peripheral substituents<br />

Tomasz Koczorowski ∗ , Wojciech Szczolko ∗ , Lukasz Sobotta † , Marc<strong>in</strong> Wierzchowski ∗ ,<br />

Piotr Fita ‡ , Aleksandra Orzechowska ⋄ , Kvetoslava Burda ⋄ , Jadwiga Mielcarek † ,<br />

Tomasz Gosl<strong>in</strong>ski ∗<br />

∗ Department of Chemical Technology of Drugs – University of Medical Sciences –<br />

Grunwaldzka 6 – Poznan – POL<br />

† Department of Inorganic and Analytical Chemistry – University of Medical Sciences –<br />

Grunwaldzka 6 – Poznan – POL<br />

‡ Institute of Experimental Physics, Faculty of Physics – University of Warsaw –<br />

Hoza 69 – Warsaw – POL<br />

⋄ Faculty of Physics and Applied Computer Science –<br />

AGH University of Science and Technology – al. Mickiewicza 30 – Kracow – POL<br />

tkoczorowski@gmail.com<br />

Introduction<br />

For the last 30 years, porphyraz<strong>in</strong>es (Pzs) substituted at their β-positions with nitrogen,<br />

oxygen or sulfur residues have been synthesized and subjected to various<br />

physicochemical as well as biological studies. [1] Pzs have been <strong>in</strong>vestigated as potential<br />

photosensitizers for biomedical, analytical applications, and as compounds for<br />

materials chemistry. [2] Although, there are many examples of Pzs conta<strong>in</strong><strong>in</strong>g peripherally<br />

annulated heteroarene r<strong>in</strong>gs [3] , there are limited data on Pzs substituted directly<br />

at their β-position with five-membered heteroaromatic r<strong>in</strong>gs. [4,5]<br />

Results and Discussion<br />

In the course of our research, novel Pzs conta<strong>in</strong><strong>in</strong>g peripheral 2,5-dimethylpyrrol-1-yl<br />

and dimethylam<strong>in</strong>o groups were synthesized, purified and characterized us<strong>in</strong>g NMR<br />

and X-ray crystallography. Spectroscopic studies performed on Pzs encompassed<br />

steady state absorption and emission measurements, fluorescence decays, femtosecond<br />

transient absorption spectra and thermolum<strong>in</strong>escence. Moreover, the potential<br />

photosensitiz<strong>in</strong>g activity of novel Pzs was evaluated by measur<strong>in</strong>g their ability for<br />

s<strong>in</strong>glet oxygen production us<strong>in</strong>g 1,3-diphenylisobenzofuran.<br />

Fluorescent properties of the Pzs studied were typical for porphyr<strong>in</strong>oids with very low<br />

dipole moment. Time resolved fluorescence studies revealed a significant difference of<br />

fluorescence decays between metallated and free-base Pzs as well as a dependence of<br />

excited-state lifetime on a particular metal ion. Transient absorption measurements<br />

carried out <strong>in</strong> a 2 ns temporal w<strong>in</strong>dow with femtosecond temporal resolution do not<br />

<strong>in</strong>dicate any excited-state processes other than energy relaxation and <strong>in</strong>tersystem<br />

cross<strong>in</strong>g. Thermolum<strong>in</strong>escence measurements showed that Pzs conta<strong>in</strong><strong>in</strong>g Mg, Zn or<br />

Fe ions <strong>in</strong> THF are able to stabilize metastable states under short (a half-width of<br />

about 4 µs) saturat<strong>in</strong>g flash. This effect vanished <strong>in</strong> samples dissolved <strong>in</strong> pyrid<strong>in</strong>e.<br />

[1]<br />

S.L.J. Michel, B.M. Hoffman, S.M. Baum, A.G.M. Barrett Progress <strong>in</strong> Inorganic Chemistry;<br />

Karl<strong>in</strong> K.D., Ed., J. Wiley & Sons: New York, 2001, 50, 473-590.<br />

[2]<br />

R. R. Allison, C. H. Sibata, Photodiagn. Photodyn. Ther. 2010, 7, 61.<br />

[3]<br />

M.P. Donzello, C. Ercolani, P.A. Stuzh<strong>in</strong>, Coord. Chem. Rev. 2006, 250, 1530.<br />

[4]<br />

Q. Luo, S. Cheng, H. Tian Tetrahedron Lett. 2004, 45, 7737.<br />

[5]<br />

S. Szczolko, L. Sobotta, P. Fita, T. Koczorowski, M. Mikus, M. Gdaniec, A. Orzechowska, K.<br />

Burda, S. Sobiak, M. Wierzchowski, J. Mielcarek, E. Tykarska, T. Gosl<strong>in</strong>ski Tetrahedron Lett.<br />

2012, 53, 2040.<br />

This study was supported by the National Science Centre under Grant No. N N404 069440.<br />

228 Saturday 9:00 - 11:30 Poster 171


A Bunch of Novel Cobaltocenium Cations on the Way to<br />

Azo-Bridged Bicobaltocenes<br />

Anne Wolter, Jürgen Heck<br />

Department of Chemistry – University of Hamburg – Mart<strong>in</strong>-Luther-K<strong>in</strong>g-Platz 6 –<br />

20146 Hamburg – GER<br />

woltera@chemie.uni-hamburg.de<br />

Molecular photochromic switches are molecules that can be changed reversibly between<br />

two different (meta)-stable states due to irradiation with light of an appropriate<br />

wavelength. These two isomers have different chemical and physical properties. The<br />

change of the properties can be useful <strong>in</strong> various photonic devices. [1]<br />

A very important photochromic switch is the well-<strong>in</strong>vestigated azo-group. The azoswitch<br />

changes its properties by irradiation due to a change of the configuration, a<br />

E-Z photoisomerisation (Fig.1). The E-isomer is planar and elongated, the Z -isomer<br />

is bent and more compact. [2]<br />

In our work<strong>in</strong>g group we <strong>in</strong>vestigate the <strong>in</strong>teraction of paramagnetic oligonuclear<br />

metallocene derivatives [3] <strong>in</strong> particular azo-bridged paramagnetic metallocenes. Our<br />

target is to l<strong>in</strong>k two paramagnetic metallocenes with an azo-bridge. Due to the<br />

configurationally change of the bridge the magnetic exchange coupl<strong>in</strong>g J 1,2 (Fig.1a)<br />

could change significantly between two paramagnetic cobaltocene moieties and, thus,<br />

changes the magnetic properties of the whole molecule as well. On the way to the<br />

azo-cobaltocene novel functionalized cobaltocenium cations could be synthesized <strong>in</strong><br />

several steps (Fig.1b).<br />

Figure 1. a) E-Z photoisomerisation of the azo-switch b) Key compounds on the way to<br />

the azo-cobaltocene<br />

[1]<br />

M. Irie, Chem. Rev. 2000, 100, 1685-1716.<br />

[2]<br />

M. Kurihara, H. Nishihara, Coord. Chem.<br />

Rev. 2002, 226, 125-135.<br />

[3]<br />

a) N. Pagels, O. Albrecht, D. Görlitz, A. Y. Rogachev, M. H.<br />

Prosenc, J. Heck, Chem. Eur. J., 2011, 17, 4166-4176. b) S. Trtica, M. H. Prosenc, M. Schmidt,<br />

J. Heck, Inorg. Chem., 2010, 49, 1667-1673.<br />

Poster 172 Saturday 9:00 - 11:30 229


Transition Metal-Bismuth Donor-Acceptor Interactions<br />

Supported by Ambiphilic PBiP P<strong>in</strong>cer Ligands<br />

Carol<strong>in</strong> Tschersich, Christian Limberg<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 – Berl<strong>in</strong> –<br />

GER<br />

carol<strong>in</strong>.tschersich@cms.hu-berl<strong>in</strong>.de<br />

Although bismuthanes can act as donor ligands for transition metal ions, [1] they<br />

do not possess a donor strength comparable to e.g. the one of phosphanes, their<br />

lighter homologues. By contrast Bi III compounds often show dist<strong>in</strong>ct Lewis acidic<br />

properties, especially if electronegative ligands, X, are bound. [2]<br />

The σ-donor behavior of electron rich transition metal ions towards unsaturated Lewis<br />

acidic ma<strong>in</strong> group elements has been demonstrated some time ago, and very recently<br />

also compounds have been reported, where transition metal complex fragments act<br />

as donors for saturated Lewis acidic centers like Si IV , Sn IV and Sb V . [3] Such <strong>in</strong>teractions<br />

are also conceivable for Bi centers and the possibility to <strong>in</strong>fluence the reactivity<br />

and catalytic activity (selectivity) of a late-metal complex by Lewis acidic bismuth<br />

moieties appears highly attractive. However, closed-shell M-Bi <strong>in</strong>teractions, for M<br />

represent<strong>in</strong>g a late transition metal, are still virtually unexplored.<br />

To stabilize complexes exhibit<strong>in</strong>g such metallic contacts with pronounced MBi character,<br />

we have developed an ambiphilic ligand system, where a Lewis acidic Bi–X unit<br />

is comb<strong>in</strong>ed with two Lewis basic phosphane donor functions that may serve to place<br />

the Bi atom close to a transition metal center. After the successful synthesis of such<br />

PBiP p<strong>in</strong>cer ligands, we have tested their potential to establish MBi <strong>in</strong>teractions<br />

for d 8 -configurated Pt II characterized by a filled Lewis basic d 2 z orbital, and for Au I ,<br />

s<strong>in</strong>ce the latter can be expected to lead to large relativistic effects. We report on the<br />

results of our efforts that led to complexes <strong>in</strong>corporat<strong>in</strong>g strong PtBi and AuBi<br />

<strong>in</strong>teractions. [4]<br />

[1] a) S. Roggan, C. Limberg, Inorg. Chim. Acta. 2006, 359, 4698-4722; b) H. Braunschweig, P.<br />

Cogswell, K. Schwab, Coord. Chem. Rev. 2011, 255, 101-117.<br />

[2] W. Clegg, R. J. Err<strong>in</strong>gton, G. A. Fisher, D. C. R. Hockless, N. C. Norman, A. G. Orpen, S. E.<br />

Stratford, Dalton Trans. 1992, 1967-1974.<br />

[3] a) A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47, 859-871; b) C. R. Wade, F. P.<br />

Gabbaï, Angew. Chem. Int. Ed. 2011, 50, 7369-7372.<br />

[4] a) C. Tschersich, C. Limberg, S. Roggan, C. Herwig, N. Ernst<strong>in</strong>g, S. Kovalenko, S. Mebs,<br />

Angew. Chem. Int. Ed. 2012, 51, 4989–4992; b) T.-P. L<strong>in</strong>, I.-S. Ke, F.P. Gabbaï, Angew.<br />

Chem. Int. Ed. 2012, 51, 4985-4988.<br />

230 Saturday 9:00 - 11:30 Poster 173


Surface functionalization of hybrid core/shell nanoparticles<br />

based on rare earth ions for bio-applications<br />

Sangeetha Balabhadra, Marc<strong>in</strong> Runowski, Stefan Lis<br />

Department of chemistry – University of Adam Mickiewicz – Grunwaldzka 6 – Poznań –<br />

POL<br />

sangeetha.balabhadra@gmail.com<br />

Nanoparticles coated with organic compounds are an <strong>in</strong>terest<strong>in</strong>g new class of materials.<br />

The organic coat<strong>in</strong>gs protect the nanoparticles aga<strong>in</strong>st aggregation, control its<br />

growth and give them the capability to work as receptors for biomolecules. Lum<strong>in</strong>escent<br />

nanoparticles are an important class of novel functional materials because<br />

they open a way to use the lum<strong>in</strong>escence of <strong>in</strong>organic compounds with<strong>in</strong> an organic<br />

environment. Inorganic compounds doped with lanthanide ions are widely used as<br />

the lum<strong>in</strong>escent materials <strong>in</strong> light<strong>in</strong>g, protect<strong>in</strong>g and trac<strong>in</strong>g techniques, as well as<br />

displays, optical amplifiers, and lasers. [1,2] These modifications can be applied <strong>in</strong> a<br />

hybrid type of nanomaterials, so called core/shell nanostructures. [3]<br />

The doped lanthanide fluorides as core nanoparticles were synthesized via a simple coprecipitation<br />

process, then covered with silica and modified with am<strong>in</strong>e groups. Further<br />

organic modification was performed us<strong>in</strong>g carboxylic acid chloride. The successful<br />

reaction between am<strong>in</strong>e and carboxylic acid was confirmed by FT-IR. The structure<br />

and morphology of the obta<strong>in</strong>ed nano-composites were exam<strong>in</strong>ed with TEM (Transmission<br />

electron microscopy) and powder X-ray diffraction. Spectroscopic properties<br />

of nanomaterials were studied by measur<strong>in</strong>g their excitation and emission spectra as<br />

well as their lum<strong>in</strong>escence decay curves.<br />

Surface functionalized hybrid core/shell nanoparticles, doped with rare earth ions<br />

emerg<strong>in</strong>g new class of bio-probes, which can be an alternative to conventional molecular<br />

probes such as lanthanide chelates and organic dyes. They attract grow<strong>in</strong>g attention<br />

due to its potential applications <strong>in</strong> areas as diverse as bio-detection, bioimag<strong>in</strong>g,<br />

ow<strong>in</strong>g to their superior features such as long lum<strong>in</strong>escence lifetime, high chemical<br />

stability, resistance to photobleach<strong>in</strong>g, and low toxicity.<br />

[1]<br />

S. Zhou, D. Tu, Z. Chen, M. Huang, H. Zhu, E. Ma, X. Chen, J. Am.<br />

134(36), 15083-15090.<br />

[2]<br />

S. Pate, B. K. Mishra, Talanta 2004, 62, 1005-1028.<br />

[3]<br />

J. Hughey, NNIN REU Research Accomplishments 2005, 55-57.<br />

Chem. Soc. 2012,<br />

Poster 174 Saturday 9:00 - 11:30 231


An attempt to synthesize a metallocarbonyl cyclooctyne<br />

derivatives<br />

Aleksandra Kubicka ∗ , Bogna Rudolf † , Emilia Fornal ∗<br />

∗ Department of Organic Chemistry – University of Lodz, Faculty of Chemistry –<br />

Tamka 12 – Lodz – POL<br />

† Chemistry Department – The John Paul II Catholic University of Lubl<strong>in</strong> –<br />

Al. Krasnicka 102 – Lubl<strong>in</strong> – POL<br />

alex.chemi@wp.pl<br />

The Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC) is one of the best methods<br />

for connect<strong>in</strong>g build<strong>in</strong>g blocks conta<strong>in</strong><strong>in</strong>g various functional groups by covalent<br />

bounds and it is commonly applied <strong>in</strong> organic synthesis, surface and polymer chemistry<br />

or medic<strong>in</strong>al chemistry. [1] This reaction is known as an extremely fast and effective<br />

click reaction for bioconjugation. However, Cu(I) has undesirable cytoxicity<br />

even at low concentrations. [2] Alternative to CuAAC is the stra<strong>in</strong>-promoted alkyneazide<br />

cycloaddition (SPAAC) between cyclooctyne and azide. The use of SPAAC<br />

for bio-conjugation was first described by Bertozzi and coworkers <strong>in</strong> 2004. [3] In an<br />

attempt to develop a new method for the <strong>in</strong>corporation of metallocarbonyl labels<br />

<strong>in</strong>to biomolecules, we synthesized a metallocarbonyl cyclooctyne derivative which can<br />

undergo highly efficient SPAAC reaction with azide or other 1,3-dipolar compounds.<br />

Metallocarbonyl complexes display specific IR absorption bands assigned to the stretch<strong>in</strong>g<br />

vibrations of carbonyl ligands occurr<strong>in</strong>g <strong>in</strong> the range of 1850 to 2150 cm −1 , which<br />

is usually free from absorption bands of biomolecules. Thus they can be applied as IRdetectable<br />

markers for the monitor<strong>in</strong>g of biochemical processes such as ligand-receptor<br />

or antigen-antibody <strong>in</strong>teractions. [4]<br />

[1] J. E. He<strong>in</strong>, V. V. Fok<strong>in</strong>, Chem. Soc. Rev. 2010, 39 (4), 1302-1315.<br />

[2] J. C. Jewett, E. M. Sletten, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 3688-3690.<br />

[3] N. J. Agard, J. A. Prescher, C. R. Bertozzi, J. Am. Chem. Soc. 2004, 126, 15046-15047.<br />

[4] N. Fischer-Durand, M. Salma<strong>in</strong>, B. Rudolf, L. Dai, L. Juge, V. Guer<strong>in</strong>eau, O. Laprevote,<br />

A.Vessieres, G. Jaouen, Anal. Biochem. 2010, 407, 211-219.<br />

232 Saturday 9:00 - 11:30 Poster 175


Synthesis and studies on the catalytic activity of new chiral<br />

azirid<strong>in</strong>yl ligands<br />

Szymon Jarzynski, Stanislaw Lesniak, Michal Rachwalski<br />

Department of Organic and Applied Chemistry – University of Lodz – Tamka 12 –<br />

Lodz – POL<br />

szymonjarzynski@wp.pl<br />

Asymmetric synthesis is one of the most important areas of research <strong>in</strong> synthetic<br />

organic chemistry and has wide-rang<strong>in</strong>g <strong>in</strong>dustrial applications. It <strong>in</strong>cludes methods<br />

and strategies for the preparation of chiral, enantiomerically pure compounds by us<strong>in</strong>g<br />

stereoselective reactions. We would like to present the synthesis of series of chiral<br />

ligands be<strong>in</strong>g azirid<strong>in</strong>e alcohols which are built on achiral platform and application<br />

of these ligands as chiral catalysts. All the ligands conta<strong>in</strong><strong>in</strong>g enantiomerically pure<br />

azirid<strong>in</strong>es, namely (S)-2-methylazirid<strong>in</strong>e and (S)-2-isopropylazirid<strong>in</strong>e were synthesized<br />

<strong>in</strong> very good chemical yields.<br />

All obta<strong>in</strong>ed products were applied as chiral catalysts <strong>in</strong> asymmetric addition of diethylz<strong>in</strong>c<br />

to benzaldehyde. These reactions were produced <strong>in</strong> good chemical yields<br />

and very high enantiomeric excess values. [1,2]<br />

[1]<br />

S. Leśniak, M. Rachwalski, E. Sznajder, P. Kiełbasiński, Tetrahedron Asymmetry 2009, 20,<br />

2311.<br />

[2]<br />

M. Rachwalski, S. Leśniak, P. Kiełbasiński, Tetrahedron Asymmetry 2010, 21, 2687.<br />

Poster 176 Saturday 9:00 - 11:30 233


Alkylisocorroles and strategies towards biomimetic heme<br />

analogs<br />

Mart<strong>in</strong> Hoffmann, Birte Böker, Benedikt Wolfram, Mart<strong>in</strong> Brör<strong>in</strong>g<br />

Chemistry – Institute of Inorganic and Analytical Chemistry, TU Braunschweig –<br />

Hagenr<strong>in</strong>g 30 – Braunschweig – GER<br />

mart<strong>in</strong>.hoffmann@tu-bs.de<br />

Site-directed mutagenesis of the peptide scaffold, especially <strong>in</strong> the active pocket region,<br />

has long been the method of choice for the <strong>in</strong>vestigation of functional aspects <strong>in</strong> heme<br />

prote<strong>in</strong>s. [1] An alternative, but much less studied approach, is cofactor exchange. [2]<br />

Extract<strong>in</strong>g the native prosthetic group leads to the formation of an apoprote<strong>in</strong>, which<br />

can be reconstituted with an artificial heme-analogous molecule afterwards.<br />

Apart from modified porphyr<strong>in</strong>s, other tetrapyrroles like phthalocyan<strong>in</strong>e, porphycene<br />

and corrole have been used <strong>in</strong> this regard. [2]<br />

In comparison to the well-known tetrapyrroles porphyr<strong>in</strong> and corrole, 10-isocorrole<br />

(short: isocorrole) beares a disubstituted 10-meso position (Fig. 1). Therefore it<br />

exhibits characteristics of porphyr<strong>in</strong> (dianionic character) and corrole (smaller cavity),<br />

but conta<strong>in</strong>s a non-aromatic, electronically dist<strong>in</strong>ct ligand backbone. [3]<br />

In this poster the metal-templated synthesis of Nickel- and Palladium alkylisocorroles<br />

is presented. Further strategies towards biomimetic heme analogs of the isocorrole<br />

type are demonstrated.<br />

Fig 1: Core-structures of porphyr<strong>in</strong>, isocorrole and corrole.<br />

[1] Y. Lu, S. M. Berry, T. D. Pfister, Chem. Rev. 2001, 101, 3047-3080.<br />

[2] L. Fruk, C.-H. Kuo, E. Torres, C. M. Niemeyer, Angew. Chem. 2009, 121, 1578-1603;<br />

Angew. Chem. Int. Ed. 2009, 48, 1550-1574.<br />

M. Brör<strong>in</strong>g, F. Brégier, O. Burghaus, C. Kleeberg, Z. Anorg. Allg. Chem. 2010, 636, 1760-1766.<br />

[3] G. Hohlneicher, D. Bremm, J. A. Wytko, J. Bley-Escrich, J.-P. Gisselbrecht, M. Gross, M.<br />

Michels, J. Lex, E. Vogel, Chem. Eur. J. 2003, 9, 5636-5642.<br />

234 Saturday 9:00 - 11:30 Poster 177


Synthesis and Characterization of a New Phthalocyan<strong>in</strong>e<br />

Includ<strong>in</strong>g Pentanuclear Z<strong>in</strong>c (II) Complexes<br />

Gulnur Keser Karaoglan ∗ , Gulsah Gumrukcu ∗ , Ali Erdogmus ∗ , Ahmet Gul † ,<br />

Ulvi Avciata ∗<br />

∗ Chemistry – Technical University of Yildiz – Davutpasa / 34210 – Istanbul – TUR<br />

† Chemistry – Technical University of Istanbul – Maslak / 34469 – Istanbul – TUR<br />

gulnurkeser@hotmail.com<br />

Metallophthalocyan<strong>in</strong>es (MPcs) derivatives display <strong>in</strong>terest<strong>in</strong>g chemical and physical<br />

properties, so they have been studied extensively. MPcs enjoy many applications <strong>in</strong><br />

fields such as non-l<strong>in</strong>ear optics chemical sensors, semiconductors, liquid crystals and<br />

catalysis. [1] The <strong>in</strong>creas<strong>in</strong>g importance and use of phthalocyan<strong>in</strong>es as advanced materials<br />

have created impetus for design variables of the central metal ion and peripheral<br />

substituents to reach the desired properties. [2]<br />

In the present study, complexation on the periphery to obta<strong>in</strong> pentanuclear complex<br />

has been accomplished through the reaction of the phthalocyan<strong>in</strong>e carry<strong>in</strong>g salicylideneim<strong>in</strong>o<br />

ligat<strong>in</strong>g groups with z<strong>in</strong>c (II) complex of 8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e. The new<br />

compounds have been characterized by elemental analysis FTIR, 1H-NMR, UV-Vis<br />

and mass spectra.<br />

[1] G. K. Karaoglan, G. Gumrukcu, A. Koca, A. Gul, “The synthesis, characterization, electrochemical<br />

and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyan<strong>in</strong>e<br />

with extended conjugation”, Dyes Pigm 2011, 88, 247-256.<br />

[2] H. Kantek<strong>in</strong>, Y. Gok, M. B. Kilicaslan, I. Acar “Synthesis and characterization of new metalfree<br />

and nickel(II) phthalocyan<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g hexaazadioxa macrobicyclic moieties”, J. Coord.<br />

Chem. 2008, 61 (2), 229-236.<br />

Poster 178 Saturday 9:00 - 11:30 235


Transformations of 2-(2-cyano-2-carbamoyl-1-ethynyl)-3-oxo-<br />

1-cyclohexen-1-olates <strong>in</strong><br />

water<br />

Mariia Vodolazhenko ∗ , Nikolay Gorobets ∗ , Oleg Zhikol ‡ , Sergey Desenko ∗<br />

∗ Department of Heterocyclic Compounds Chemistry –<br />

SSI “Institute for S<strong>in</strong>gle Crystals” NAS of Ukra<strong>in</strong>e – Len<strong>in</strong> ave. 60 – Kharkiv – UKR<br />

‡ Department of X-ray Diffraction Studies and Quantum Chemistry –<br />

SSI “Institute for S<strong>in</strong>gle Crystals” NAS of Ukra<strong>in</strong>e – Len<strong>in</strong> ave. 60 – Kharkiv – UKR<br />

vodolazhenko.maria@yandex.ua<br />

A simple method for synthesis of polyfunctional resonance stabilized 2-(2-cyano-2carbamoyl-1-ethynyl)-3-oxo-1-cyclohexen-1-olates<br />

4 has been previously <strong>in</strong>troduced<br />

by our group. [1] These solts have high solubility <strong>in</strong> water or alcohols and act as reactive<br />

<strong>in</strong>termediates <strong>in</strong> the synthesis of various heterocyclic compounds. In this report our<br />

study of their transformations <strong>in</strong> water under different conditions is presented.<br />

Screen<strong>in</strong>g of the reaction conditions [2] for one-pot three-stage selective synthesis of<br />

2-pyrons 6 we found that <strong>in</strong> the presence of acid the desired compounds 6 are formed<br />

as a ma<strong>in</strong> product of the reaction and 2-pyridones 7 as by-products. [3]<br />

Interest<strong>in</strong>gly, that <strong>in</strong> pure water the transformation of the salts 4 has changed its<br />

direction towards 3-cyano-2-pyridones 8. This method for synthesis of 8 is more<br />

simple then our previous one, [4] and allowed us to understand some aspects of the<br />

reaction mechanism.<br />

S<strong>in</strong>ce the direct hydrolysis of a cyano group requires much more vigorous reaction<br />

conditions than the applied for the hydrolysis of salts 1, we believe that both products<br />

6 and 7 are formed via <strong>in</strong>termediate 2-im<strong>in</strong>opyrans 5. This suggestion was confirmed<br />

by quantum chemical calculations us<strong>in</strong>g DFT B3LYP/aug-cc-pvdz method.<br />

Synthesis of the salts 4 and their transformations <strong>in</strong> water<br />

[1] S. A. Yermolayev, N. Yu. Gorobets, E. V. Luk<strong>in</strong>ova, O. V. Shishk<strong>in</strong>, S. V. Shishk<strong>in</strong>a, S. M.<br />

Desenko, Tetrahedron 2008, 64, 4649-4655.<br />

[2] M. A. Vodolazhenko, N. Yu. Gorobets, S. A. Yermolayev, V. V. Musatov, V. A. Chebanov, S.<br />

M. Desenko, RSC Advances 2012, 2, 1106-1111.<br />

[3] N. Yu. Gorobets, B. H. Yousefi, F. Belaj, C. O. Kappe, Tetrahedron 2004, 60, 8633-8644.<br />

[4] S. A. Yermolayev, N. Yu. Gorobets, S. M. Desenko, J. Comb. Chem. 2009, 11, 44-46.<br />

236 Saturday 9:00 - 11:30 Poster 179


Utilization of cross-coupl<strong>in</strong>g reactions<br />

for the synthesis of 3D-NLOphores<br />

Elisabeth Ziemann, Jürgen Heck<br />

Institute of Applied and Inorganic Chemistry – University of Hamburg –<br />

Mart<strong>in</strong>-Luther-K<strong>in</strong>g-Platz 6 – 20146 Hamburg – GER<br />

ziemann@chemie.uni-hamburg.de<br />

In times of persistent grow<strong>in</strong>g <strong>in</strong>formation technology markets there is by nature a<br />

great demand for more efficient data transmission methods. Nonl<strong>in</strong>ear optical (NLO)<br />

active materials play a very important role for this enhancement, but to <strong>in</strong>crease the<br />

application range it is necessary to optimize the NLOphores, especially <strong>in</strong> terms of<br />

response time and size of the exam<strong>in</strong>ed NLO-effect. [1]<br />

Besides exam<strong>in</strong><strong>in</strong>g dendritic structures [2] we are directed towards so-called<br />

“3D-NLOphores” which are based on a 1,3,5-trisubstituted benzene r<strong>in</strong>g coord<strong>in</strong>ated<br />

to a cationic cyclopentadienyl-ruthenium unit serv<strong>in</strong>g as an acceptor, metallocenes<br />

fulfill the donor function.<br />

Their NLO-activity has already been successfully characterized us<strong>in</strong>g Hyper-Rayleigh-<br />

Scatter<strong>in</strong>g (e.g. compound A) [3] , our ongo<strong>in</strong>g research now focusses on tun<strong>in</strong>g this<br />

effect (quantified by the value β0) by expand<strong>in</strong>g the π-electron-system, vary<strong>in</strong>g the<br />

metal centers, the substitution pattern of acceptor and donor function, and the<br />

counter ion (compound B).<br />

The expansion of the π-electron-system should be achieved by the <strong>in</strong>troduction of<br />

eth<strong>in</strong>ylbridges. To prevent observed undesired C-C-cleavage processes [4] we needed<br />

to <strong>in</strong>vestigate different synthetic routes for example <strong>in</strong>clud<strong>in</strong>g Hiyama-, Sonogashiraand<br />

Stille-cross coupl<strong>in</strong>g reactions. We are present<strong>in</strong>g the different results of these<br />

approaches and the characterization of the new eth<strong>in</strong>ylferrocene-substituted complex<br />

[RuCp(C6H3(C ≡ C − F c)3)] + .<br />

[1] N. J. Long, Angew. Chem. 1995, 107, 37-56.<br />

[2] J. Holtmann, E. Walczuk, M. Dede, C. Wittenburg, J. Heck, G. Archetti, R. Wortmann, H.-G.<br />

Kuball, Y.-H. Wang, K. Liu, Y. Luo, J. Phys. Chem. B, 2008, 112, 14751.<br />

[3] S. Steffens, M. H. Prosenc, J. Heck, I. Asselberghs, K. Clays, Eur. J. Inorg. Chem. 2008,<br />

1999–2006. [4] S. Steffens, Dissertation, University of Hamburg, 2005.<br />

Poster 180 Saturday 9:00 - 11:30 237


Synthesis and complexation abilities of new <strong>in</strong>dazole<br />

derivatives with expected cytostatic activity<br />

Jacek Kujawski ∗ , Hanna Popielarska ∗ , Beata Drab<strong>in</strong>ska ∗ , Anna Myka ∗ ,<br />

Sab<strong>in</strong>a Smusz ‡,† , Rafal Kurczab † , Andrzej Bojarski †<br />

∗ Department of Organic Chemistry – Poznan University of Medical Sciences –<br />

Grunwaldzka 6 – Poznan – POL<br />

† Department of Medic<strong>in</strong>al Chemistry –<br />

Institute of Pharmacology, Polish Academy of Sciences – Smetna 12 – Krakow – POL<br />

‡ Faculty of Chemistry – Jagiellonian University – Ingardena 3 – Krakow – POL<br />

jacekkuj@ump.edu.pl<br />

A series of new dimeric <strong>in</strong>dazole derivatives 5 (A) was obta<strong>in</strong>ed by a four-step synthesis<br />

that <strong>in</strong>cluded classical aromatic nucleophilic substitution, Vicarious Nucleophilic<br />

Substitution of Hydrogen (VNS) ortho to the nitro group, reduction of the latter<br />

functionality and cyclization to a pyrazole r<strong>in</strong>g by diazotization. The use of Raney<br />

nickel together with hydraz<strong>in</strong>e hydrate as a source of molecular hydrogen allowed for<br />

considerable shorten<strong>in</strong>g of the hydrogenation time. As the resulted am<strong>in</strong>es 4 were<br />

usually <strong>in</strong>soluble <strong>in</strong> water, the diazotization was carried out <strong>in</strong> solid phase us<strong>in</strong>g the<br />

microwave method (MAOS). The prelim<strong>in</strong>ary biological tests showed that some of<br />

the f<strong>in</strong>al products 5 had cytotoxic activity <strong>in</strong> cell-based bioassays. [1] The cytotoxicity<br />

mechanism may be connected with the compounds ability either to complex metal<br />

ions present at the active sites of prote<strong>in</strong>s or to bond with the nucleic base pairs.<br />

Thus, the simulation of complexation with magnesium ions was performed for compound<br />

5b (B) on this account. [2] Moreover, the theoretical calculations (long range<br />

DFT- B3LYP/6-31G(d,p), and QTAIM methods), us<strong>in</strong>g the Gaussian G09 program,<br />

showed the ability of compound 5b to form strong and weak hydrogen bonds with<br />

guan<strong>in</strong>e, cytos<strong>in</strong>e, [3] as well as urid<strong>in</strong>e (C). Some physicochemical properties of the<br />

compounds 5 (log P and pKa) were additionally calculated based on mach<strong>in</strong>e learn<strong>in</strong>g<br />

algorithms – support vector regression and multilayer perceptron.<br />

Synthesis of <strong>in</strong>dazole derivatives 5 and complexes of 5b wit Mg (B) and urid<strong>in</strong>e (C).<br />

[1]<br />

E. Totoń, E. Ignatowicz, M.K. Bernard, J. Kujawski, M. Rybczyńska, J. Phys. Pharmacol.<br />

2012, submitted.<br />

[2]<br />

J. Kujawski, M. Doskocz, H. Popielarska, A. Myka, J. Kruk, M. K. Bernard, Polyhedron <strong>2013</strong>,<br />

submitted.<br />

[3]<br />

J. Kujawski, H. Popielarska, B. Drabińska, E. Jodłowska, J. Adamus, K. Czaja, A. Myka,<br />

M. K. Bernard, “New pyrazole derivatives with potential biological activity: theoretical studies<br />

on complexation of small-molecule ligands” 5th Conversatory on Medic<strong>in</strong>al Chemistry, Lubl<strong>in</strong>,<br />

13-15.09.2012.<br />

Investigations were supported by PCSS grant No. 96/2011, SBN grant No. 126/2012, polish<br />

National Science Centre (NCN) grants No. N N401 642340 and NNZ2/02478, EU scholarship<br />

for PhD students (Poznan, WUP, Task 8.2.2. PO KL 2011-2012).<br />

238 Saturday 9:00 - 11:30 Poster 181


Synthesis and properties of C-phosphonate nucleotide<br />

analogues bear<strong>in</strong>g alkyne moiety for label<strong>in</strong>g via CuAAC<br />

reactions<br />

Sylwia Walczak, Joanna Kowalska, Błażej Wojtczak, Jacek Jemielity<br />

Division of Biophysics, Institute of Experimental Physics, Faculty of Physics –<br />

University of Warsaw – Zwirki i Wigury 93 – Warsaw – POL<br />

sylwalczak@gmail.com<br />

“Click chemistry” is a modern approach towards the synthesis of compounds by jo<strong>in</strong><strong>in</strong>g<br />

small units <strong>in</strong> high-yield<strong>in</strong>g, stereospecific and simple reactions such as Cu-catalyzed<br />

azide-alkyne cycloaddition. The considerable part of grow<strong>in</strong>g applications of CuAAC<br />

<strong>in</strong>cludes modifications of nucleosides and oligonucleotides. Therefore, more and more<br />

attention is paid to the synthesis of specifically designed analogues of nucleosides<br />

that may be used as reagents for 1,3-dipolar Huisgen cycloaddition. In order to<br />

take advantage of CuAAC as a powerful chemical strategy of jo<strong>in</strong><strong>in</strong>g our analogues<br />

of nucleotides with different entities we synthesized the C-phosphonate analogue<br />

of N 7 -methyl-guanos<strong>in</strong>e-5’-monophosphate with 4-butynyl substituent (m 7 GppC4H5;<br />

Fig.1a). Both the presence of term<strong>in</strong>al alkyne and excellent solubility make it a good<br />

substrate for click reaction with azide-modified molecules.<br />

Hav<strong>in</strong>g synthesized m 7 GppC4H5, we ligated it <strong>in</strong> a simple click reaction to azidemodified<br />

fluorescent dyes (Fig.1c) and magnetic nanoparticles. The former compounds<br />

would enable biologists to visualize biomolecules <strong>in</strong>teract<strong>in</strong>g with their nucleic<br />

part whereas the latter conjugates might be found applicable to modern technics of<br />

the aff<strong>in</strong>ity chromatography. In order to explore whether triazole r<strong>in</strong>g could mimic<br />

phosphate moiety, we have synthesized d<strong>in</strong>ucleotide cap analogue with triazole r<strong>in</strong>g<br />

with<strong>in</strong> 5’-5’ phosphate bridge (Fig.1b). It may serve as a tool for selective <strong>in</strong>hibition or<br />

activation of the processes <strong>in</strong> which cap structure is <strong>in</strong>volved i.e. mRNA maturation,<br />

<strong>in</strong>tracellular transport, translation and degradation.<br />

Fig.1. a) N 7 -methyl-guanos<strong>in</strong>e-5’-monophosphate with 4-butynyl substituent<br />

(m 7 GppC4H5); b) The cap analogue with triazole r<strong>in</strong>g with<strong>in</strong> 5’-5’ triphosphate bridge;<br />

c) m 7 GppC4H5 attached to fluorescent dye<br />

Poster 182 Saturday 9:00 - 11:30 239


Mechanistic <strong>in</strong>sight <strong>in</strong>to the palladium(II)-catalyzed<br />

oxidative cyclization of diaryl am<strong>in</strong>es<br />

Tobias Gensch, Ingmar Bauer, Hans-Joachim Knölker<br />

Department of Chemistry – Technische Universität Dresden – Bergstraße 66 – Dresden –<br />

GER<br />

tobias.gensch@chemie.tu-dresden.de<br />

The palladium(II)-catalyzed oxidative cyclization of diarylam<strong>in</strong>es to carbazoles is of<br />

great importance for the construction of a wide range of natural products with the<br />

carbazole structure [1] and is an example of a twofold direct C–H-activation for C–Cbond<br />

formation (Fig. 1 A). Insights <strong>in</strong>to the mechanism of this transformation were<br />

ga<strong>in</strong>ed by isolat<strong>in</strong>g and characteriz<strong>in</strong>g an <strong>in</strong>termediate diarylpalladium(II) complex<br />

(Fig. 1 B) that consists of a palladacycle connect<strong>in</strong>g both aromatic r<strong>in</strong>gs. [2] This<br />

complex undergoes facile conversion to carbazole and palladium(0) and was shown<br />

to be catalytically active for the oxidative cyclization of diarylam<strong>in</strong>es. Its isolation<br />

was possible by the twofold chelation with coord<strong>in</strong>at<strong>in</strong>g, ortho-direct<strong>in</strong>g substituents<br />

at the diarylam<strong>in</strong>e. Characterization of this new class of palladium(II) complexes<br />

offers an understand<strong>in</strong>g of the mechanism of direct C–H-activation and reductive<br />

elim<strong>in</strong>ation.<br />

Figure 1. A : Oxidative cyclization of diarylam<strong>in</strong>es to carbazoles catalyzed by Pd(II).<br />

B: Example of a stable palladacycle <strong>in</strong>termediate of the oxidative cyclization.<br />

[1] a) I. Bauer, H.-J. Knölker, Top. Curr. Chem. 2012, 309, 203–253; b) A. W. Schmidt, K. R.<br />

Reddy, H.-J. Knölker, Chem. Rev. 2012, 112, 3193–3328.<br />

[2] T. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva, I. Bauer, H.-J. Knölker, Chem.<br />

Eur. J. 2012, 18, 770–776.<br />

240 Saturday 9:00 - 11:30 Poster 183


Hexaphenoxycyclotriphosphazen as a flame retardant for<br />

transparent Polycarbonat<br />

Bert Käbisch ∗ , Ulrich Fehrenbacher ∗ , Edw<strong>in</strong> Kroke †<br />

∗ Environmental Eng<strong>in</strong>eer<strong>in</strong>g – Fraunhofer – Joseph-von-Fraunhofer-Str. 7 – Pf<strong>in</strong>tztal –<br />

GER<br />

† Inorganic Chemistry – TU Bergakademie Freiberg – Leipziger Straße 29 –<br />

Freiberg – GER<br />

bert.kaebisch@ict.fraunhofer.de<br />

The protection of plastics with flame retardants is one of the important topics for<br />

<strong>in</strong>troduc<strong>in</strong>g a material to the market and for its end application. Because of new<br />

regulations most of the current used flame retardants are evaluated because of their<br />

toxicity and their environmental impact. Also by add<strong>in</strong>g particular additive flame<br />

retardants to a polymer the mechanical properties are most times negetively affected.<br />

One of these properties is the transparancy of a polymer, e.g. polycarbonate, which<br />

normally will be very negatively affected by us<strong>in</strong>g an particular additive flame retardant.<br />

Therefore, nonhazardous flame retardants with good compatibillity to the<br />

polymer needs to be <strong>in</strong>vestigated. By <strong>in</strong>troduc<strong>in</strong>g Hexaphenoxycyclotriphosphazen<br />

(1) as a particalur flame retardant to protect polycarbonate it is possible to obta<strong>in</strong> a<br />

trasparent material while us<strong>in</strong>g a particular, nonhazardous additive. The <strong>in</strong>vestigated<br />

concentrations of 1 <strong>in</strong> polycarbonate are 0, 1, 2, 5 and 10 mass%. The mechanical<br />

properties of the protected polymer, tenacity, tensile elongation, dynamic mechanical<br />

analysis, Charpy impact and transparency were characterized. The flame retardancy<br />

was evaluated with LOI and the UL94 test and shows, even with the big differnce of<br />

the decomposition temperature of 1 and polycarbonate, a very promis<strong>in</strong>g effect.<br />

Poster 184 Saturday 9:00 - 11:30 241


Bromodimethylsulfonium Bromide (BDMS) Mediated-<br />

Synthesis of Urea via Lossen Rearrangement<br />

Deepak K. Yadav, Arv<strong>in</strong>d K. Yadav, Vishnu P. Srivastava, Geeta Watal, L. D. S. Yadav<br />

University of Allahabad – Allahabad – IND<br />

deepakanu123@gmail.com<br />

Bromodimethylsulfonium bromide (BDMS) was found to be a very efficient reagent<br />

for Lossen rearrangement of hydroxamic acids to the correspond<strong>in</strong>g isocyantes which<br />

were subsequently trapped <strong>in</strong>-situ with various am<strong>in</strong>es afford<strong>in</strong>g ureas <strong>in</strong> good to<br />

excellent yields. The protocol is experimentally simple, mild and represents valuable<br />

alternatives to phosgene-based approaches for the preparation of isocyanates.<br />

Bromodimethylsulfonium bromide (BDMS); Lossen rearrangement; Hydroxamic acid; Isocyanates;<br />

Ureas<br />

242 Saturday 9:00 - 11:30 Poster 185


Synthesis of Phosphorylated Iso<strong>in</strong>dol<strong>in</strong>one Derivatives<br />

Piotr Zagórski ∗ , Andrzej Jóźwiak ∗ , Dariusz Cal † , Mieczysław W. Płotka ∗<br />

∗ Department of Organic Chemistry – University of Lodz – Tamka 12 – 91-403 Lodz –<br />

POL<br />

† Department of Organic and Applied Chemistry – University of Lodz – Tamka 12 –<br />

91-403 Lodz – POL<br />

zagorek@op.pl<br />

Iso<strong>in</strong>dol<strong>in</strong>one build<strong>in</strong>g block is present <strong>in</strong> many natural alcaloids like Lennoxam<strong>in</strong>e. [1]<br />

There are other synthetic drugs that conta<strong>in</strong> iso<strong>in</strong>dol<strong>in</strong>ones moiety, for example<br />

Pagoclone. [2] In recent years a lot of attention has been paid to the synthesis of<br />

phosphorylated iso<strong>in</strong>dol<strong>in</strong>one derivatives. [3-6] Our research aim is to enrich a modest<br />

library of new phosphonic acids and esters conta<strong>in</strong><strong>in</strong>g an iso<strong>in</strong>dol<strong>in</strong>one structure.<br />

A key step <strong>in</strong> the synthesis is lithiation of iso<strong>in</strong>dol<strong>in</strong>one (1) us<strong>in</strong>g sec-buthyllithium<br />

<strong>in</strong> tetrahydrofuran followed by a reaction of the generated lithiated species with diethyl<br />

v<strong>in</strong>ylphosphonate (for products 2a) or diethyl(3-bromopropyl)phosphonate (for<br />

products 2b).<br />

[1]<br />

J. R. Fuchs, R. L. Funk, Organic Letters 2001, 3, 3923-3925.<br />

[2]<br />

T. L. Stuk, B. K. Ass<strong>in</strong>k, D. T. Erdman, V. Fedij, S. M. Jenn<strong>in</strong>gs, J. A. Lassig, R. J. Smith,<br />

T. L. Smith, Organic Process Research & Development 2003, 7, 851-855.<br />

[3]<br />

J. L. Viveros-Ceballos, M. Ordonez, C. Cativiela, Tetrahedron: Asymmetry 2011, 22, 1479-<br />

1484.<br />

[4]<br />

A. Couture, E. Dienau, P. Woisel, P. Grandclaudon, Synthesis 1997, 12, 1439-1445.<br />

[5]<br />

G. O. Kachkovskyi, O. I. Kolodiazhnyi, Phosphorus, Sulfur and Silicon and the Related<br />

Elements 2010, 185, 2441-2448.<br />

[6]<br />

M. Ordonez, G. D. Tibhe, A. Zamudio-Med<strong>in</strong>a, J. L. Viveros-Ceballos, Synthesis 2012, 44,<br />

569-574.<br />

Poster 186 Saturday 9:00 - 11:30 243


Mesomorphic properties of some<br />

4-(4-alkoxybenzylideneam<strong>in</strong>o)azobenzenes<br />

Anna Lesniak, Agnieszka Puchala<br />

Institute of Chemistry – Jan Kochanowski University – Swietokrzyska 15G – Kielce –<br />

POL<br />

plesniaczek26@wp.pl<br />

Azometh<strong>in</strong>e compounds are important due to their applications <strong>in</strong> dyes, pigments,<br />

functional materials and they were early recognized as the liquid-crystall<strong>in</strong>e compounds.<br />

Azometh<strong>in</strong>e bond (CH=N) <strong>in</strong>corporated <strong>in</strong>to the molecular structure cause<br />

<strong>in</strong>crease the length and polarizability anisotropy of the molecular core <strong>in</strong> order to<br />

enhance liquid crystal phase stability.<br />

We present synthesis and the liquid crystall<strong>in</strong>e properties of the series of 4-(4-alkoxybenzylideneam<strong>in</strong>o)azobenzenes.<br />

The synthesis were carried out <strong>in</strong> a two-step process.<br />

The start<strong>in</strong>g 4-alkyloxybenzaldehydes were obta<strong>in</strong>ed <strong>in</strong> the usual way by the reaction<br />

of 4-hydroxybenzaldehyde with the appropriate n-alkylbromide. 4-(4-Alkoxybenzylideneam<strong>in</strong>o)azobenzenes<br />

were prepared by the condensation of the correspond<strong>in</strong>g aldehydes<br />

with 4-am<strong>in</strong>oazobenzene us<strong>in</strong>g a microwave oven (PLAZMATRONICA RM800).<br />

The use of such reaction conditions, compared to classical heat<strong>in</strong>g, reveals several features<br />

like: better selectivity, shorter reaction time and easier of work-up after reaction.<br />

All f<strong>in</strong>al products were purified by chromatography on silica gel with chloroform as an<br />

eluent and characterized by IR, NMR and mass spectroscopy. The mesophases of the<br />

4-(4-alkoxybenzylideneam<strong>in</strong>o)azobenzenes were studied by polariz<strong>in</strong>g optical microscope<br />

(POM) and differential scann<strong>in</strong>g calorimetry (DSC). Investigated compounds<br />

exhibit nematic, smectic A and smectic B mesophases. We will discuss the <strong>in</strong>fluence<br />

of an alkyl cha<strong>in</strong> length on the mesophase sequence.<br />

244 Saturday 9:00 - 11:30 Poster 187


Synthesis and structure of the first vanadium complex with<br />

the Schiff base of salicylaldehyde and am<strong>in</strong>oguanid<strong>in</strong>e<br />

Mirjana Lalović, Marko Rodić, Ljiljana Voj<strong>in</strong>ović-Ješić, Vukad<strong>in</strong> Leovac<br />

Faculty of Sciences – University of Novi Sad – Trg Dositeja Obradovića 3 – Novi Sad –<br />

SRB<br />

mirjana.lalovic@dh.uns.ac.rs<br />

The great <strong>in</strong>terest <strong>in</strong> vanadium coord<strong>in</strong>ation chemistry <strong>in</strong> the context of medical<br />

applications has arisen from the ability of vanadium complexes to promote the <strong>in</strong>sul<strong>in</strong><br />

mimetic activity <strong>in</strong> the treatment of human Diabetes mellitus. Despite the fact<br />

that am<strong>in</strong>oguanid<strong>in</strong>e (AG) shows wide range of pharmacological activity, vanadium<br />

complexes with its Schiff bases are still unknown. Besides, only a few complexes of<br />

salicylidene-am<strong>in</strong>oguanid<strong>in</strong>e (SalAG) have been synthesized, so it seems worthwhile<br />

to exam<strong>in</strong>e the synthesis and characteristics of the new ones.<br />

Here we present the synthesis and structure of the ligand SalAG·HNO3 and its complex<br />

with dioxidovanadium(V). S<strong>in</strong>gle crystals of the ligand are obta<strong>in</strong>ed <strong>in</strong> the reaction<br />

of the ethanolic solutions of the am<strong>in</strong>oguanid<strong>in</strong>e hydrogennitrate and salicylaldehyde<br />

<strong>in</strong> the presence of the acetic acid, while the reaction of ammoniacal solutions<br />

of the ligand and NH4VO3 resulted <strong>in</strong> formation of s<strong>in</strong>gle crystals of the complex<br />

[VO2(SalAG−H)]. In this complex, SalAG is coord<strong>in</strong>ated, as a monoanion, <strong>in</strong> a tridentate<br />

ONN mode, via oxygen atom of phenolic hydroxyl and nitrogen atoms of<br />

azometh<strong>in</strong>e and im<strong>in</strong>o groups of the am<strong>in</strong>oguanid<strong>in</strong>e fragment. Vanadium atom is<br />

situated <strong>in</strong> almost ideal square-pyramidal environment (τ = 0.032), with the anion of<br />

the chelate ligand and one oxido-ligand <strong>in</strong> the basal plane and the other oxido-ligand<br />

<strong>in</strong> the apical position.<br />

Molecular structure of the ligand and the complex<br />

Poster 188 Saturday 9:00 - 11:30 245


Synthesis and Photophysical Properties of Some<br />

Tetraalkynylpyrid<strong>in</strong>es<br />

Andranik Petrosyan †,∗ , Peter Ehlers ∗ , Tariel Ghochikyan † , Ashot Saghyan † ,<br />

Peter Langer ∗<br />

∗ Leibniz-Institut für Katalyse an der Universität Rostock e.V. –<br />

Albert E<strong>in</strong>ste<strong>in</strong> Str. 29a – Rostock – GER<br />

† Faculty of Chemistry – Yerevan State University – Alex Manoogian 1 – Yerevan – ARM<br />

andranik.petrosyan@catalysis.de<br />

Both <strong>in</strong> materials science and organic chemistry, polyethynylated carbon-rich molecules<br />

are of particular <strong>in</strong>terest because of their extended conjugated structure. Those k<strong>in</strong>d<br />

of molecules have potential as liquid crystals, nonl<strong>in</strong>ear optical materials as well as<br />

build<strong>in</strong>g blocks for robust graphite-like carbon networks. [1]<br />

Encouraged by <strong>in</strong>terest<strong>in</strong>g structural, and potential properties of such compounds,<br />

and based on the work done on polyhalogenated pyrid<strong>in</strong>es before, [2] a series of new<br />

tetraalkynylpyrid<strong>in</strong>es were efficiently synthesized us<strong>in</strong>g multiple Sonogashira reaction<br />

protocol.<br />

After symmetrical tertraalkynyl compounds 1 were obta<strong>in</strong>ed via tetrafold Sonogashira<br />

coupl<strong>in</strong>g, we optimized reaction conditions <strong>in</strong> order to reach selectivity. As a result,<br />

dialkynylpyrid<strong>in</strong>e derivatives 2 were easily synthesized, which <strong>in</strong> fact, served as important<br />

start<strong>in</strong>g po<strong>in</strong>t for mak<strong>in</strong>g molecules 3 with mixed acetylene moieties.<br />

In order to get <strong>in</strong>sights <strong>in</strong>to the impact of substituents <strong>in</strong> 4-position of the pyrid<strong>in</strong>e<br />

core, we studied the absorption and emission properties of the synthesized<br />

tetraalkynylpyrid<strong>in</strong>es and already reported pentaalkynylpyrid<strong>in</strong>es. [2]<br />

Pentaalkynylpyrid<strong>in</strong>es absorb and emit at lower energies and possess higher quantum<br />

yields than tetraalkynylpyrid<strong>in</strong>es. While a sterically demand<strong>in</strong>g isopropoxygroup <strong>in</strong><br />

the 4-position leads to the highest blue shift of the absorption and emission bands as<br />

well as low quantum yields. This effect is based on a poorer conjugation caused by<br />

steric repulsion of the functional groups.<br />

Figure 1. Synthesis of products 1-3.<br />

[1] (a) U. H. F. Bunz, Y. Rub<strong>in</strong>, Y. Tobe, Chem. Soc. Rev. 1999, 28, 107; (b) F. Diederich,<br />

Nature 1994, 369, 199. (with the references cited there<strong>in</strong>)<br />

[2] (a) P. Ehlers, A. Neubauer, S. Lochbrunner, A. Vill<strong>in</strong>ger, P. Langer, Org. Lett. 2011, 13,<br />

1618-1621; (b) V. Engelhardt, J. G. Garcia, A. A. Hubaud, K. A. Lyssenko, S. Spyroudis, T. V.<br />

Timofeeva, P. Tongwa, K. P. C. Vollhardt, SYNLETT 2011, 2, 0280-0284.<br />

246 Saturday 9:00 - 11:30 Poster 189


Solventless selective phosgene-free N-carbonylation of<br />

N-heteroaromatics (pyrrole, <strong>in</strong>dole, carbazole) under mild<br />

conditions<br />

Francesco Iannone, Marianna Carafa, Valent<strong>in</strong>a Mele, Eugenio Quaranta<br />

Dipartimento di Chimica – Università degli Studi di Bari – Via E. Orabona 4 – Bari –<br />

ITA<br />

francesco.iannone@uniba.it<br />

Organic carbonates (RO)2CO (R = alkyl, aryl), nowadays available through phosgeneless<br />

routes even on an <strong>in</strong>dustrial scale, [1] are arous<strong>in</strong>g greater <strong>in</strong>terest as environmentally<br />

friendly carbonylat<strong>in</strong>g agents. [2] Very little is known about their utilization<br />

<strong>in</strong> carbonylation reactions of N-heteroaromatic compounds HetNH to HetNCO2R<br />

(R = alkyl, aryl) derivatives (eqn (1)), which are important synthetic <strong>in</strong>termediates<br />

for the preparation of a variety of chemicals, [3] <strong>in</strong>clud<strong>in</strong>g pharmaceutically relevant<br />

substances and biologically active compounds.<br />

HetNH + (RO)2CO → HetNCO2R + ROH (1)<br />

In this report we present a selective method for N-carbonylation of N-heteroaromatics<br />

HetNH, such as pyrrole (1), <strong>in</strong>dole (2) and carbazole (3), by a direct reaction with<br />

diphenyl carbonate (DPC; eqn (1), R = Ph), used as environmental friendly carbonyl<br />

active species <strong>in</strong> place of toxic and hazardous phosgene. [4]<br />

The carbonylation reaction can be effectively catalyzed by 1,8-diazabicyclo[5.4.0]undec-<br />

7-ene (DBU), which can act as a base catalyst by activat<strong>in</strong>g the HetNH substrate to<br />

the more nucleophilic HetN − anion, and as a nucleophile catalyst by activat<strong>in</strong>g the organic<br />

carbonate trough the formation of ketene am<strong>in</strong>al phenyl 1,8-diazabicyclo[5.4.0]<br />

undec-6-ene-8-carboxylate. [5]<br />

The <strong>in</strong>fluence of reaction parameters (temperature, reaction time, DBU load,<br />

DPC/HetNH molar ratio) on the productivity of the process has been also <strong>in</strong>vestigated.<br />

The synthetic methodology does not require severe temperature conditions, is<br />

solventless, simple (only one step), efficient (high yield) and selective, and offers a new<br />

solution to the synthesis of synthetically versatile HetNCO2Ph derivatives through a<br />

route alternative to the current traditional phosgenation methods.<br />

[1] (a) D. Delledonne, F. Rivetti, U. Romano, Appl. Catal. A 2001, 221, 241-251.<br />

[2] (a) M. Carafa, E. Quaranta, M<strong>in</strong>i-Rev. Org. Chem. 2009, 6, 168-183 and references there<strong>in</strong>;<br />

(b) E. Quaranta, M. Carafa, F. Trani, Appl. Catal. B 2009, 91, 380-388; (c) M. Distaso, E.<br />

Quaranta, Appl. Catal. B 2006, 66, 72-80; (d) M. Distaso, E. Quaranta, J. Catal. 2008, 253,<br />

278-288.<br />

[3] M. Carafa, V. Mele, E. Quaranta, Green Chem. 2012, 14, 217-225.<br />

[4] M. Carafa, F.Iannone, V. Mele, E. Quaranta, Green Chem. 2012, 14, 3377-3385.<br />

[5] M. Carafa, E. Mesto, E. Quaranta, Eur. J. Org. Chem. 2011, 2458-2465.<br />

Poster 190 Saturday 9:00 - 11:30 247


Porphyraz<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g styryldiazep<strong>in</strong>e r<strong>in</strong>gs and their<br />

liposomal formulations: preparation, photochemical<br />

properties and photodynamic activity aga<strong>in</strong>st oral cancer cell<br />

l<strong>in</strong>es<br />

Jaroslaw Piskorz ∗ , Krystyna Konopka † , Nejat Düzgünes † , Tomasz Gosl<strong>in</strong>ski ‡ ,<br />

Jadwiga Mielcarek ∗<br />

∗ Department of Inorganic and Analytical Chemistry –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

† Department of Biomedical Sciences – University of the Pacific, School of Dentistry –<br />

2155 Webster Street – San Francisco – USA<br />

‡ Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

piskorz.jaroslaw@onet.eu<br />

Photodynamic therapy (PDT) is a novel, alternative, anticancer treatment, which<br />

has also been used to cure cardiovascular, dermatological, and ophthalmic diseases<br />

as well as various microbial <strong>in</strong>fections. PDT consists of three factors: compound<br />

(photosensitizer), oxygen, and light. Upon irradiation with light of specific wavelength<br />

the photosensitizer undergoes activation and produces reactive oxygen species such<br />

as s<strong>in</strong>glet oxygen. As a consequence, it leads to the death of the treated tissue. [1]<br />

Here we present our data on the synthesis of porphyraz<strong>in</strong>es and tribenzoporphyraz<strong>in</strong>es<br />

conta<strong>in</strong><strong>in</strong>g styryldiazep<strong>in</strong>e r<strong>in</strong>gs. Condensation reactions of known dicyanodiazep<strong>in</strong>s<br />

with 3,4,5-trimetoxybenzaldehyde and 1-methyl-2-imidazolecarbaldehyde led to the<br />

novel 1,4-diazep<strong>in</strong>e-2,3-dicarbonitriles conta<strong>in</strong><strong>in</strong>g arylv<strong>in</strong>yl substituents. However,<br />

only diazep<strong>in</strong>es with 3,4,5-trimetoxyphenyl groups subjected to macrocyclization reactions<br />

gave the desired macrocycles of sufficient stability. [2,3] Novel macrocyclic<br />

compounds were characterized us<strong>in</strong>g various spectroscopic methods and extensively<br />

<strong>in</strong>vestigated <strong>in</strong> photochemical studies. Moreover, their photodynamic activity was<br />

exam<strong>in</strong>ed <strong>in</strong> vitro us<strong>in</strong>g two human oral squamous cell carc<strong>in</strong>oma cell l<strong>in</strong>es, HSC-3<br />

cells derived from the tongue and H413 cells from the buccal mucosa. Magnesium<br />

tribenzoporphyraz<strong>in</strong>e (Pz1) revealed high activity aga<strong>in</strong>st cancer cells even at low<br />

concentrations and low light dose. Moreover, significantly higher cytotoxicity of Pz1<br />

was observed after its <strong>in</strong>corporation <strong>in</strong>to negatively charged liposomes (figure).<br />

[1]<br />

R.R. Allison, C.H. Sibata, Photodiagn. Photodyn. Ther. 2010, 7, 61.<br />

[2]<br />

T. Gosl<strong>in</strong>ski, J. Piskorz, D. Brudnicki, A.J.P. White, M. Gdaniec, W. Szczolko, E. Tykarska.<br />

Polyhedron 2011 30, 1004.<br />

[3]<br />

J. Piskorz, E. Tykarska, M. Gdaniec, T. Gosliński, J. Mielcarek, Inorg. Chem. Commun. 20<br />

(2012) 13.<br />

This study was supported by the Polish M<strong>in</strong>istry of Science and Higher Education Grant No. N401<br />

067238 and funds from the University of the Pacific, Arthur A. Dugoni School of Dentistry.<br />

248 Saturday 9:00 - 11:30 Poster 191


Reactivity of InVO4 towards SrO <strong>in</strong> the solid state<br />

Agnieszka Pacześna, Elżbieta Filipek<br />

Department of Inorganic and Analytical Chemistry –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – Al. Piastów 42 – Szczec<strong>in</strong> – POL<br />

agnieszka.paczesna@zut.edu.pl<br />

The literature review has shown that InVO4–SrO system and reactions tak<strong>in</strong>g place<br />

<strong>in</strong> this system <strong>in</strong> the solid state <strong>in</strong> air have not been subject of research before our<br />

<strong>in</strong>vestigations. The properties of the components of the InVO4–SrO system are well<br />

known. [1, 2] The compound InVO4 is formed <strong>in</strong> the V2O5–In2O3 system and it melts<br />

<strong>in</strong>congruently deposit<strong>in</strong>g solid In2O3 at 1135 ◦ C. [3] The <strong>in</strong>dium(III) ortovanadate(V)<br />

crystallizes <strong>in</strong> the orthorhombic system, space group Cmcm. [4] There exist three polymorphic<br />

forms of InVO4. [5] InVO4 was found to be a visible light driven photocatalyst<br />

for H2 evolution from pure water. [1] Strontium oxide crystallizes <strong>in</strong> the cubic system,<br />

space group Fm3m. [6] SrO is promis<strong>in</strong>g as catalyst for the transesterification of soybean<br />

oil to biodiesel. [2]<br />

The aim of this research was, first of all, to <strong>in</strong>vestigate whether the reaction between<br />

InVO4 and SrO yields new phase. For the experiments were prepared eight samples<br />

with their compositions represent<strong>in</strong>g the whole components concentrations range of<br />

the system under consideration. Weighed <strong>in</strong> suitable proportions reactants were homogenized<br />

and calc<strong>in</strong>ated <strong>in</strong> the temperature range from 450 to 900 ◦ C <strong>in</strong> 24 h stages.<br />

After each heat<strong>in</strong>g stage XRD exam<strong>in</strong>ation was performed and selected samples were<br />

additionally subjected to DTA/TG <strong>in</strong>vestigation.<br />

The phase compositions of samples after the f<strong>in</strong>al heat<strong>in</strong>g stage have shown that<br />

InVO4 with SrO react <strong>in</strong> the solid state <strong>in</strong> air giv<strong>in</strong>g among other a new compound.<br />

However, they <strong>in</strong>dicated that the SrO content <strong>in</strong> the new compound is ∼ 50.00 mol%.<br />

On the base of XRD phase analysis of the all <strong>in</strong>vestigated samples, the two component<br />

system InVO4–SrO was divided <strong>in</strong>to five subsidiary subsystems.<br />

The <strong>in</strong>vestigations are cont<strong>in</strong>ued, first of all, <strong>in</strong> order to establish the formula of new<br />

compound.<br />

[1]<br />

J. Ye, Z. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, T. Shisido, Chem. Phys.<br />

Lett. 2002, 356, 221-226.<br />

[2]<br />

X. Liu, H. He, Y. Wang, S. Zhu, Catal. Commun. 2007, 8, 1107-1111.<br />

[3]<br />

M. Touboul, A. Popot, J. Therm. Anal. 1986, 31, 117-124.<br />

[4]<br />

M. Touboul, P. Tolédano, Acta Cryst. 1980, B36, 240-245.<br />

[5]<br />

M. Touboul, K. Melghit, P. Bénard, Eur. J. Solid State Inorg. Chem. 1994, 31, 151-161.<br />

[6]<br />

W. Primak, H. Kaufman, R. Ward, J. Am. Chem. Soc. 1948, 70, 2043-2046.<br />

Poster 192 Saturday 9:00 - 11:30 249


Model<strong>in</strong>g the CO Oxidation Site of Nickel Conta<strong>in</strong><strong>in</strong>g<br />

Carbon Monoxide Dehydrogenase - Carbonyl Ligand<br />

Oxidation <strong>in</strong> a β-Diketim<strong>in</strong>ato Nickel Complex by N2O or O2<br />

Bett<strong>in</strong>a Horn, Christian Limberg, Christian Herwig, Michael Feist, Stefan Mebs<br />

Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Straße 2 – Berl<strong>in</strong> –<br />

GER<br />

BettiHorn@gmx.de<br />

Although carbon monoxide is an important substrate <strong>in</strong> many <strong>in</strong>dustrial processes<br />

such as hydroformylation, methanol synthesis, the Fischer-Tropsch and Monsanto<br />

processes, or for the production of dihydrogen <strong>in</strong> the water gas shift reaction, CO<br />

impurities <strong>in</strong> gases are often unwarranted, as they can poison catalysts employed to<br />

convert respective gases, for <strong>in</strong>stance H2. Hence, catalysts have been developed to<br />

selectively oxidize CO to the less harmful CO2, and these are often based on noble<br />

metals like gold. [1] In nature enzymatic systems do exist which utilize nickel centers<br />

for the reversible conversion of CO to CO2, namely carbon monoxide dehydrogenases<br />

(CODH). Here water serves as the oxygen source, and dur<strong>in</strong>g the reaction electrons<br />

as well as protons are produced concomitantly.<br />

Sett<strong>in</strong>g out with low coord<strong>in</strong>ated β-diketim<strong>in</strong>ato nickel carbonyl compounds [2] and<br />

bear<strong>in</strong>g the CODH reactivity <strong>in</strong> m<strong>in</strong>d we were <strong>in</strong>terested to <strong>in</strong>vestigate the reactivity<br />

of a nickel(0) carbonyl complex aga<strong>in</strong>st oxidiz<strong>in</strong>g reagents. As this complex is highly<br />

sensitive towards hydrolysis, experiments employ<strong>in</strong>g water as the oxygen source (as<br />

the enzyme) excluded themselves, though. Consider<strong>in</strong>g that CO oxidation requires<br />

one O atom (formally H2O → [O] + 2e − + 2H + ) we have chosen N2O as the O<br />

atom source, which has received <strong>in</strong>creas<strong>in</strong>g attention as an <strong>in</strong>trigu<strong>in</strong>g reagent for<br />

oxidations dur<strong>in</strong>g the last decades. [3] As an alternative oxidant O2 has been employed<br />

successfully, too. Here we describe the first precedent case of an oxidation of carbonyl<br />

ligands bound to low oxidation state nickel centers by both, N2O and O2, under<br />

formation of a unique carbonate compound, K6[L tBu Ni(CO3)]6, which was fully<br />

characterized. [4]<br />

[1] H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem. 2011, 123, 10242;<br />

Angew. Chem. Int. Ed. 2011, 50, 10064.<br />

[2] B. Horn, S. Pfirrmann, C. Limberg, C. Herwig, B. Braun, S. Mebs, R. Metz<strong>in</strong>ger, Z. Anorg.<br />

Allg. Chem. 2011, 637, 1169.<br />

[3] V. N. Parmon, G. I. Panov, A. Uriarte, A. S. Noskov, Catal. Today 2005, 100, 115.<br />

[4] B. Horn , C. Limberg , C. Herwig , M. Feist, S. Mebs, Chem. Commun. 2012, 48, 8243.<br />

250 Saturday 9:00 - 11:30 Poster 193


Application of ’Click’ Cycloaddition for Synthesis of Sulfur<br />

and Oxygen Conta<strong>in</strong><strong>in</strong>g Oligomeric System<br />

Monika Stefaniak, Marc<strong>in</strong> Jasiński, Jarosław Romański<br />

Department of Organic and Applied Chemistry – University of Łódź – Tamka 12 –<br />

Łódź – POL<br />

monika_stefaniak@o2.pl<br />

Macrocyclic system, for example crown ethers or cryptands conta<strong>in</strong><strong>in</strong>g the heteroaromatic<br />

moiety, such imidazole, pyrid<strong>in</strong>e etc., are well known and play very important<br />

role <strong>in</strong> supramolecular chemistry and coord<strong>in</strong>ation chemistry as a complex<strong>in</strong>g<br />

agents. [1] In last decade, <strong>in</strong>dependently of each other, Meldal and Sharpless turned<br />

their attention to the <strong>in</strong>troduction of Cu(I) as catalyst <strong>in</strong> the Huisgen 1,3-dipolar cycloaddition.<br />

In this reaction very stable 1,2,3-triazole r<strong>in</strong>g is formed, which have very<br />

<strong>in</strong>terest<strong>in</strong>g application <strong>in</strong> medic<strong>in</strong>e or biotechnology. [2] We applied ’click’ approach to<br />

prepare sulfur and oxygen conta<strong>in</strong><strong>in</strong>g macrocyclic systems with built-<strong>in</strong> 1,2,3-triazole<br />

r<strong>in</strong>gs. We obta<strong>in</strong>ed compounds A, B, C with very good yields. The oligomer C<br />

conta<strong>in</strong>s the Cookson’s ’birdcage’ moiety which <strong>in</strong>creases its lipophilicity. It might be<br />

<strong>in</strong>terest<strong>in</strong>g to test possibility of our compounds to complex ions of metals of group I<br />

and II periodic table or also ions of metals of transitional groups.<br />

[1]<br />

J. L. Atwood, J. W. Steed, “Encyclopedia of Supramolecular Chemistry”, Taylor & Francis<br />

Group, 2004.<br />

[2]<br />

M. Meldal, Ch. W. Tornoe, Chem. Rev., 2008, 108, 2952-3015.<br />

Poster 194 Saturday 9:00 - 11:30 251


Ferrocenyl analogs of pl<strong>in</strong>abul<strong>in</strong> as organometallic <strong>in</strong>hibitors<br />

of tubul<strong>in</strong> polimerization<br />

Anna Wieczorek ∗ , Damian Plażuk ∗ , Andrzej Błauż † , Błażej Rychlik † ,<br />

Janusz Zakrzewski ∗<br />

∗ Department of Organic Chemistry – University of Łódź – 12 Tamka St. –<br />

91-403 Łódź – POL<br />

† Department of Molecular Biophysics – University of Łódź – 12/16 Banacha St. –<br />

90-237 Łódź – POL<br />

aniwie9@wp.pl<br />

Organometallic compounds are among the promis<strong>in</strong>g drug candidates with strongly<br />

enhanced anticancer activities. Ferrocene, one of the metallocenes, is the most widely<br />

<strong>in</strong>vestigated organometallic compound. It is a redox active, stable <strong>in</strong> biological media<br />

and nontoxic molecule. Ferrocene has shown only slight cytotoxic activity, whereas<br />

when conjugated with biologically active compounds it provides some promis<strong>in</strong>g anticancer<br />

agents. In recent years many ferrocenyl compounds have been prepared which<br />

have exhibited significant cytotoxicity [1,2] and anti-malarial activities [3] .<br />

Microtubules are noncovalent polymers of the prote<strong>in</strong> tubul<strong>in</strong> that are found <strong>in</strong> all<br />

divid<strong>in</strong>g eucariotic cells and <strong>in</strong> most differentiated cell types. Chemicals that target<br />

microtubules distrupt and suppreses the function by <strong>in</strong>hibit<strong>in</strong>g or promot<strong>in</strong>g microtubule<br />

polimerization. [4]<br />

Pl<strong>in</strong>abul<strong>in</strong> 1 is a potent microtubule-target<strong>in</strong>g agent derived from the natural diketopiperaz<strong>in</strong>e<br />

“phenylahist<strong>in</strong>” 2. Pl<strong>in</strong>abul<strong>in</strong> is now under phase II cl<strong>in</strong>ical trials as an<br />

anticancer drug. [5]<br />

We have synthesized ferrocenyl analogs of pl<strong>in</strong>abul<strong>in</strong> (e.g. 3 and 4) of exhibit<strong>in</strong>g<br />

potent microtubule depolymerization and highly cytotoxic.<br />

Acknowledgments: The authors are grateful for the f<strong>in</strong>ancial support of Polish<br />

National Science Centre (grant 2011/01/B/ST5/03933 years 2011-2014).<br />

Figure A 1 pl<strong>in</strong>abul<strong>in</strong>, 2 phenylahist<strong>in</strong>, 3-4 ferrocenyl analogs of pl<strong>in</strong>abul<strong>in</strong><br />

[1]<br />

S. Top, J. Tang, A. Vessières, D. Carrez, C. Provot, G. Jaouen, Chem.Commun., 955.<br />

[2]<br />

G. Gasser, I. Ott, N. Metzler-Nolte, J.Med.Chem. 2011, 54, 3.<br />

[3]<br />

M. Patra, M. G. Gassler, N. Metzler-Nolte, Dalton Trans. 2012, 41, 6350-6358.<br />

[4]<br />

A. Desai, T. J. Mitchison, Annu. Rev. Cell Dev. Biol. 1997, 13, 83.<br />

[5]<br />

Y. Yamazaki, K. Tanka, B. Nicholson, G. Deyanat-Yazdi, B. Potts, J.Med.Chem. 2012, 55,<br />

1056-1071.<br />

252 Saturday 9:00 - 11:30 Poster 195


Triazolopyrid<strong>in</strong>es: Reactions with dipolarophiles<br />

Rosa Adam, Shamim Alom, Belen Abarca, Rafael Ballesteros<br />

Organic Chemistry department – Universidad de Valencia –<br />

Avda Vicent Andrés Estellés s/n Facultat de Farmacia – Burjassot (Valencia) – ESP<br />

rosa.adam@uv.es<br />

[1,2,3]Triazolo[1,5-a]pyrid<strong>in</strong>es 1 are simple heterocycles present<strong>in</strong>g <strong>in</strong> solution an equilibrium<br />

with its open form, which can be considered a diazo compound. [1,2] The aim of<br />

this work has been to check if triazolopyrid<strong>in</strong>es are able to react as diazo compounds<br />

<strong>in</strong> the presence of several diporalophiles. To achieve our objective we performed<br />

reactions of triazolopyrid<strong>in</strong>es 1 with dipolarophiles (ethyl acrilate, ethyl propiolate<br />

and DMAD) (Scheme 1). In the case of ethyl acrilate reactions we obta<strong>in</strong>ed the<br />

correspond<strong>in</strong>g pyridyl ciclopropanes 2 by the formation of the correspond<strong>in</strong>g pyridyl<br />

carbene. [3] However, <strong>in</strong> the cases of ethyl propiolate and DMAD, pirazoyl pyrid<strong>in</strong>es 3<br />

were obta<strong>in</strong>ed demonstrat<strong>in</strong>g that a 1,3-dipolar cycloaddition reaction from the open<br />

form of triazolopyrid<strong>in</strong>e can take place.<br />

Scheme 1<br />

[1]<br />

C. Wentrup, Helv. Chim. Acta 1978, 1755.<br />

[2]<br />

F. Blanco, I. Alkorta, J. Elguero, V. Cruz, B. Abarca, R. Ballesteros, Tetrahedron 2008, 64,<br />

11150.<br />

[3]<br />

B. Abarca, R. Ballesteros, F. Blanco, Arkivoc 2007, (iv), 297.<br />

Poster 196 Saturday 9:00 - 11:30 253


Microwave and ultrasound assisted etherification of some<br />

biphenols<br />

Aleksandra Walczak, Magdalena Marc<strong>in</strong>kowska, Danuta Rasala<br />

Intitute of Chemistry – Jan Kochanowski University – Swietokrzyska 15G – Kielce – POL<br />

walczako@<strong>in</strong>teria.pl<br />

In the last few years there has been a grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> the use of new techniques<br />

to improve classical organic synthesis. Thus, the obta<strong>in</strong> good yields with<strong>in</strong> shorter<br />

reaction time as well as higher selectivity both microwave irradiation and ultrasound<br />

assisted procedures were used <strong>in</strong> the preparation of mono- and disubstituted ethers<br />

of 4,4-biphenol and 4,4’-thiobiphenol. [1]<br />

In conclusion, we hope that the application microwaves and ultrasound irradiation is<br />

a very promis<strong>in</strong>g <strong>in</strong>novation and may stimulate further progress <strong>in</strong> the etherification<br />

of biphenols <strong>in</strong> comparison to conventional methodologies. [2] Moreover, it should be<br />

mentioned that a number of compounds under study show liquid crystall<strong>in</strong>e properties.<br />

[1] M. Marc<strong>in</strong>kowska, D. Rasała, A. Puchała, A. Gałuszka, Heterocycl. Commun. 2011, 17, 191.<br />

[2] B. Orzeszko, D. Melon-Ksyta, A. Orzeszko, Synthetic Commun. 2002, 32, 3425.<br />

254 Saturday 9:00 - 11:30 Poster 197


Enantioselective Additions of<br />

(Trifluoromethyl)Trimethylsilane to α-Im<strong>in</strong>o Ketones<br />

Derived from Arylglyoxals<br />

Emilia Obijalska, Alice Six, Grzegorz Mlostoń<br />

Department of Organic and Applied Chemistry – University of Lodz – Tamka 12 Street –<br />

91-403 Lodz – POL<br />

emilkaobijalska@gmail.com<br />

Synthesis of fluor<strong>in</strong>ated compounds is an attractive topic <strong>in</strong> the synthetic chemistry. [1]<br />

Special attention is focused on derivatives conta<strong>in</strong><strong>in</strong>g CF3 moiety because of their<br />

potential applications. [1] One of the most popular reagents applied for <strong>in</strong>corporation<br />

of CF3 group <strong>in</strong>to organic molecules is (trifluoromethyl)trimethylsilane (Ruppert’s-<br />

Prakash reagent, RPR). [2] The aim of present study was the elaboration of an new,<br />

enantioselective method for preparation β-am<strong>in</strong>o-α-(trifluoromethyl) alcohols which<br />

are known as useful build<strong>in</strong>g blocks for synthesis of fluor<strong>in</strong>ated derivatives. To the best<br />

of our knowledge there is only one paper <strong>in</strong> which enantioselective method for preparation<br />

of such compounds is described. [3] In our prelim<strong>in</strong>ary studies we developed a simple<br />

method for synthesis of rac-β-NHR-α-CF3 alcohols 2 start<strong>in</strong>g with α-im<strong>in</strong>oketones<br />

1. [4] In crucial step, the chemoselective addition of RPR to the C=O, followed by simultaneous<br />

reduction of C=N bond and desilylation, is performed. Some successful<br />

attempts of enantioselective reactions of Ruppert’s reagents with aldehydes and ketones<br />

are already reported. [5] Additions of RPR to 1 were carried out <strong>in</strong> the presence<br />

of catalytic system (8R,9S)- or (8S,9R)-3/KF or K2CO3 and they led chemoselectively<br />

to trimethylsilylethers. The latter compounds were converted <strong>in</strong>to f<strong>in</strong>al products 2<br />

<strong>in</strong> high overall yields (80-90%). However, the observed ee values rema<strong>in</strong>ed low to<br />

moderate (30-70%). The ee values were determ<strong>in</strong>ed based on the 1H or 19F NMR<br />

spectra registered for products 3 <strong>in</strong> the presence of (S)-(t-butyl)phenylthiophosph<strong>in</strong>ic<br />

acid ((S)-4) used as chiral solvat<strong>in</strong>g agent.<br />

[1]<br />

(a) Kirsh, Modern Fluoroorganic Chemistry, Wiley-VCH, We<strong>in</strong>heim, 2004; (b) J.-P. Bégué,<br />

D. Bonnet-Delpon, Bioorganic and Medic<strong>in</strong>al Chemistry of Fluor<strong>in</strong>e, Wiley, Hoboken, New<br />

Jersey, 2008.<br />

[2]<br />

G. K. S. Prakash, M. Mandal, J. Fluor<strong>in</strong>e Chem. 2001, 112, 123.<br />

[3]<br />

F. Tur, J. M. Saá, Org. Lett. 2007, 9, 5079.<br />

[4]<br />

G. Mlostoń, E. Obijalska, A. Tafelska-Kaczmarek, M. Zaidlewicz, Journal of Fluor<strong>in</strong>e Chem.<br />

2010, 131, 1289.<br />

[5]<br />

(a) S. Mizuta, N. Shibata, M. Hib<strong>in</strong>o, S. Nagano, S. Nakamura, T. Toru, Tetrahedron 2007,<br />

63, 8521; (b) S. Mizuta, N. Shibata, S. Akiti, H. Fujimoto, Org. Lett. 2007, 9, 3707; (c) X. Hu,<br />

J. Wang, W. Li, L. L<strong>in</strong>, X. Liu, X. Feng, Tetrahedron Lett. 2009, 50, 4378.<br />

Research were f<strong>in</strong>anced by the National Science Center <strong>in</strong> Poland (Grant ‘SONATA’ # DEC-<br />

2011/03/D/ST5/05231)<br />

Poster 198 Saturday 9:00 - 11:30 255


Synthesis and characterization of sandwich-type europium<br />

(III) phthalocyan<strong>in</strong>es with different substitutent<br />

Ibrahim Erden, Merve Özdemir, Göknur Yasa, Fatma Aytan Kılıçarslan, Ali Erdogmus<br />

Chemistry Department – Yildiz Technical University – Esenler-34210 – İstanbul – TUR<br />

ierden@yildiz.edu.tr<br />

Phthalocynan<strong>in</strong>es are usually synthesized start<strong>in</strong>g from the appropriate phthalonitriles<br />

and their derivatives or their substitution yield as metal-free phthalociyan<strong>in</strong>e<br />

and metallophthalocyan<strong>in</strong>es which obta<strong>in</strong>ed especially <strong>in</strong> high temperatures with the<br />

presence of a suitable anhydrous metal salt. Sandwich-type porphyr<strong>in</strong>ato and/or phthalocyan<strong>in</strong>ato<br />

complexes, <strong>in</strong> which two planar and parallel conjugated p-systems are<br />

held <strong>in</strong> close proximity by lanthanide metal cation between the two macro-tetrapyrrole<br />

r<strong>in</strong>gs, have been <strong>in</strong>tensively studied over several decades <strong>in</strong> both fundamental academic<br />

and applied fields. [1,2]<br />

They are extensively used <strong>in</strong> pr<strong>in</strong>t<strong>in</strong>g <strong>in</strong>ks, coat<strong>in</strong>gs, pa<strong>in</strong>ts and plastics as blues and<br />

greens pigments. The phthalocyan<strong>in</strong>es f<strong>in</strong>d use also <strong>in</strong> catalyst for control of sulfur<br />

effluents, lasers, lubricants, photography reagents for cancer therapy, optical <strong>in</strong>formation<br />

storage systems, photography and xerography, high energy density batteries,<br />

chemical sensors, electrochoromic display devices and liquid crystal colour display<br />

applications. [3-5]<br />

In this study, we report the synthesis and characterization of different substituted phthalocyan<strong>in</strong>ato<br />

sandwich-type rare earth complexes. The new compounds have been<br />

characterized by elemental analysis, UV, FT-IR, 1H-NMR spectroscopy and mass<br />

spectra. The effect of the solvents and metal on the photophysical and photochemical<br />

parameters of the metallophthalocyan<strong>in</strong>es are also reported.<br />

[1] C. C. Leznoff, A. B. P. Lever (Eds.), Phthalocyan<strong>in</strong>es -Properties and Applications, vols.<br />

1-4, VCH, New York, 1989-1996.<br />

[2] N. B. McKeown, Phthalocyan<strong>in</strong>e Materials-Synthesis, Structure and Function, Cambridge<br />

University Press, New York, 1998.<br />

[3] G. Yaşa, A. Erdoğmuş, A. L. Uğur, M. K. Şener, U. Avcıata, T. Nyokong, “Photophysical<br />

andphotochemical properties of novel phthalocyan<strong>in</strong>es bear<strong>in</strong>g non-peripherally substituted mercaptoqu<strong>in</strong>ol<strong>in</strong>e<br />

moiety”, Journal of Porphyr<strong>in</strong>s and Phthalocyan<strong>in</strong>es 2012, 16, 845-854.<br />

[4] B. Bosnich, C. K. Poon, M. L. ve Tobe, Inorg. Chem. 1965, 4, 1102.<br />

[5] R.P. L<strong>in</strong>stead, “Phthalocyan<strong>in</strong>es”, J. Chem. Soc. 1934, 1016-1031.<br />

256 Saturday 9:00 - 11:30 Poster 199


Substituent Influence on Charge Transfer Interactions <strong>in</strong><br />

α,α-Diferrocenylthiophenes<br />

Matthäus Speck, He<strong>in</strong>rich Lang<br />

Inorganic Chemistry – Chemnitz University of Technology, Institute of Chemistry –<br />

Strasse der Nationen 62 – D-09111 Chemnitz – GER<br />

matthaeus.speck@chemie.tu-chemnitz.de<br />

There is an endur<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> the chemistry of ferrocenyl-substituted homo- and<br />

hetero-aromatics, because such molecules can be regarded as model species for study<strong>in</strong>g<br />

metal-metal electronic <strong>in</strong>teraction. Furthermore, these π-conjugated organometallic<br />

compounds are qualified to design <strong>in</strong>novative electro-active materials like semiconduct<strong>in</strong>g<br />

polymers or molecular wires. The ferrocenyl moiety is a very promis<strong>in</strong>g<br />

candidate for us<strong>in</strong>g it as a redox-active group with a good stability <strong>in</strong> the neutral<br />

and <strong>in</strong> the oxidized state, enabl<strong>in</strong>g electrochemical reversible one-electron transfer<br />

processes. [1,2] With<strong>in</strong> this presentation, the synthesis, properties and spectroelectrochemical<br />

studies of ferrocenyl-substituted thiophenes (type A and B molecules) are<br />

reported. The <strong>in</strong>fluence of substituents on charge transfer <strong>in</strong>teractions between the<br />

iron centers will be discussed.<br />

[1] a) J. K. R. Thomas, J. T. L<strong>in</strong>, J. Organomet. Chem. 2001, 637, 139; b) S. Ogawa, H.<br />

Muraoka, R. Sato, Tetrahedron Lett. 2006, 47, 2479; c) F. Paul, S. Goeb, F. Justaud, G.<br />

Argouarch, L. Toupet, R. F. Ziessel, C. Lap<strong>in</strong>te, Inorg. Chem. 2007, 46, 9036; d) R. Packheiser,<br />

M. Lohan, B. Bräuer, F. Justaud, C. Lap<strong>in</strong>te, H. Lang, J. Org. Chem. 2008, 693, 2898; e) R.<br />

Packheiser, P. Ecorchard, B. Walfort, H. Lang, J. Organomet. Chem. 2008, 693, 933; f) D.<br />

E. Richardson, H. Taube, Coord. Chem. Rev. 1984, 60, 107. g) W. Kaim, B. Sarkar, Coord.<br />

Chem. Rev. 2007, 251, 584.<br />

[2] a) S. C. Jones, S. Barlow, D. O’Hare, Chem. Eur. J. 2005, 11, 4473; b) S. Barlow, D.<br />

O’Hare, Chem. Rev. 1997, 97, 637; c) I. M. Bruce, Coord. Chem. Rev. 1997, 166, 91; d) A.<br />

Hildebrandt, D. Schaarschmidt, H. Lang, Organometallics 2011, 30, 556; e) A. Hildebrandt, U.<br />

Pfaff, H. Lang, Rev. Inorg. Chem. 2011, 31, 111; f) A. Hildebrandt, H. Lang, Dalton Trans.<br />

2011, 40, 11831; g) J. M. Speck, R. Claus, A. Hildebrandt, T. Rüffer, E. Erasmus, L. van As, J.<br />

C. Swarts, H. Lang, Organometallics 2012, 31, 6373.<br />

Poster 200 Saturday 9:00 - 11:30 257


Novel term<strong>in</strong>alalkynyl-substituted asymmetric z<strong>in</strong>c<br />

phthalocyan<strong>in</strong>e and its polymers via click reaction<br />

Betul Nur Sen ∗ , Hatice D<strong>in</strong>cer ∗ , S<strong>in</strong>em Bayraktar † , Humeyra Mert Balaban †<br />

∗ Chemistry – Istanbul Technical University – 34469 – Istanbul – TUR<br />

† Chemical Eng<strong>in</strong>eer<strong>in</strong>g – Hitit University – Uctutlar street number:10 – Corum – TUR<br />

betulnursen_@hotmail.com<br />

Phthalocyan<strong>in</strong>es (Pcs) have been an area of <strong>in</strong>creas<strong>in</strong>g research for several years, due<br />

to their applicability <strong>in</strong> a variety of fields, such as liquid crystals, semiconductors,<br />

non-l<strong>in</strong>ear optics and electron transfer, among others.<br />

Synthetic routes to symmetrical Pcs are relatively straightforward, start<strong>in</strong>g from the<br />

appropriately substituted phthalonitrile. However, unsymmetrical Pcs conta<strong>in</strong><strong>in</strong>g different<br />

substituents <strong>in</strong> the benzo r<strong>in</strong>gs are more difficult to obta<strong>in</strong>. In addition these<br />

compounds provide the properties that can be used <strong>in</strong> advanced materials’ applications<br />

such as <strong>in</strong> particular non-l<strong>in</strong>ear optical properties. [1,2] Then the enormous<br />

diversity of phthalocyan<strong>in</strong>e - conta<strong>in</strong><strong>in</strong>g polymers, developed over thirty years of research,<br />

and offers the prospect of readily processed materials. [3] Recently, 1,3-dipolar<br />

cycloadditions, from the reactions between alkynes and azides known as, “click reactions”,<br />

have been recognized as a useful synthetic methodology due to their be<strong>in</strong>g fast,<br />

quantitative, reproducible, resistant to side reactions and highly tolerant to reaction<br />

conditions.<br />

In this study we aimed that the synthesis of asymmetric phthalocyan<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

polymers. For this purpose, firstly novel unsymmetrical term<strong>in</strong>alalkynyl substituted<br />

z<strong>in</strong>c phthalocyan<strong>in</strong>e will be synthesized from new 4-pent-4-ynyloxy-phthalonitrile and<br />

4-tert-butylphthalonitrile us<strong>in</strong>g statistical condensation method. Then, ‘click’ reactions<br />

between azido-term<strong>in</strong>ated polystyrene (PS) or poly(tert-butyl acrylate) (PtBA)<br />

and alkynyl-term<strong>in</strong>ated z<strong>in</strong>c phthalocyan<strong>in</strong>e will yield Pc functional polymers. All<br />

compounds will be characterized by 1 H NMR, 13 C NMR, FT-IR, UV-Vis, GPC and<br />

elemental analysis.<br />

[1] F. Matemadombo, M. Durmus, C. Togo, J. Limson, T. Nyokong, “Characterization of manganese<br />

tetraarylthiosubstituted phthalocyan<strong>in</strong>es self assembled monolayers”, Electrochim. Acta 2009, 54<br />

(23), 5557-5565.<br />

[2] Y. Q. Liu, Y. Xu, D. B. Zhu, T. Wada, H. Sasabe, X. S. Zhao, X. M. Xie, “Optical 2ndharmonic<br />

generation from langmuir-blodgett-films of an asymmetrically substituted phthalocyan<strong>in</strong>e”,<br />

J. Phys. Chem. 1995, 99 (18), 6957-6960.<br />

[3] N.B. Mc Keown, J. Mater. Chem. 2000, 10 (9), 1979.<br />

258 Saturday 9:00 - 11:30 Poster 201


Chemoselective additions of (trifluoromethyl)trimethylsilane<br />

to C=N bond <strong>in</strong> α-im<strong>in</strong>o ketones derived from arylglyoxals<br />

Marc<strong>in</strong> Kowalski, Emilia Obijalska, Grzegorz Mlostoń<br />

Department of Organic and Applied Chemistry – University of Lodz – Tamka 12 Street –<br />

Lodz – POL<br />

Johny616@gmail.com<br />

Synthesis of fluoroorganic compounds is a challeng<strong>in</strong>g topic of modern organic chemistry.<br />

Incorporation of fluor<strong>in</strong>e atoms or perfluoroalkyl groups <strong>in</strong>to the structure of organic<br />

molecules results <strong>in</strong> significant changes <strong>in</strong> their physical, chemical and biological<br />

properties. [1] (Trifluoromethyl)trimethylsilane (so-called Ruppert’s-Prakash Reagent,<br />

RPR) is one of the most convenient reagent used to nucleophilic trifluoromethylation<br />

of electrophilic subtrates. [2] The goal of presented study is to elaborate new,<br />

simple procedure for synthesis of β-am<strong>in</strong>o-β-(trifluoromethyl) alcohols of type 2 us<strong>in</strong>g<br />

easily available α-im<strong>in</strong>oketones 1 and (trifluoromethyl)trimethylsilane. There are<br />

described <strong>in</strong> literature many methods for preparation of β-am<strong>in</strong>o-α-(trifluoromethyl)<br />

alcohols. [3] Relatively less papers concern preparation of β-am<strong>in</strong>o-α-(trifluoromethyl)<br />

alcohols. They are based on exploration of difficult available trifluoronitroethane or<br />

N,S-ketals of trifluoropyruvaldehydes. [4] In the key step of our procedure additions<br />

of RPR to 1 were performed <strong>in</strong> the presence of <strong>in</strong> situ generated HF (from KF or<br />

KHF2) what allowed for activation of C=N bond. In optimised conditions adducts 2<br />

were the ma<strong>in</strong> products. Further reduction of 2 led to desired am<strong>in</strong>oalcohols 3 with<br />

very good diastereoselectivity.<br />

Research were f<strong>in</strong>anced by the National Science Center <strong>in</strong> Poland (Grant ’SONATA’<br />

# DEC-2011/03/D/ST5/05231)<br />

[1] (a) Kirsh, Modern Fluoroorganic Chemistry, Wiley-VCH, We<strong>in</strong>heim, 2004; (b) J.-P. Bégué,<br />

D. Bonnet-Delpon, Bioorganic and Medic<strong>in</strong>al Chemistry of Fluor<strong>in</strong>e, Wiley, Hoboken, New<br />

Jersey, 2008.<br />

[2] G. K. S. Prakash, M. Mandal, J. Fluor<strong>in</strong>e Chem. 2001, 112, 123.<br />

[3] G. Mlostoń, E. Obijalska, H. Heimgartner, Journal of Fluor<strong>in</strong>e Chem. 2010, 131, 830.<br />

[4] (a) A. K. Beck, D. Seebach, Chem. Ber. 1991, 124, 2897; (b) R. E. Marti, J. He<strong>in</strong>zer, D.<br />

Seebach, Liebigs Ann. 1995, 1193; (c) P. Bravo, M. Crucianelli, T. Ono, M. Zanda, Journal of<br />

Fluor<strong>in</strong>e Chemistry 1999, 97, 27.<br />

Poster 202 Saturday 9:00 - 11:30 259


Reactivity of palladium carboxylate complexes towards<br />

acetonitrile<br />

Oleg Shishilov ∗ , Nailya Akhmadull<strong>in</strong>a † , Andrei Churakov ∗ , Inessa Efimenko ∗<br />

∗ Kurnakov Institute of General and Inorganic Chemistry of RAS – Len<strong>in</strong>sky pr., 31 –<br />

Moscow – RUS<br />

† Baikov Institute of Metallurgy and Material Science of RAS – Len<strong>in</strong>sky pr., 49 –<br />

Moscow – RUS<br />

oshishilov@gmail.com<br />

It’s well-known that nitriles undergo catalytic transformations, <strong>in</strong>clud<strong>in</strong>g C-C, C-N<br />

and C-O coupl<strong>in</strong>g reactions with rearrangement of nitriles or dimerization of products<br />

form<strong>in</strong>g nitrogen-conta<strong>in</strong><strong>in</strong>g compounds of different types <strong>in</strong> the presence of complexes<br />

of transition metals and especially plat<strong>in</strong>um metals. We studied reactions of two<br />

classes of palladium carboxylate compounds - b<strong>in</strong>ary carboxylates [P d(RCO2)2]n and<br />

nitrosyl carboxylates P d4(NO)2(RCO2)6 - with acetonitrile <strong>in</strong> some common organic<br />

solvents. B<strong>in</strong>ary carboxylates are a basic class of palladium carboxylate complexes<br />

and nitrosyl carboxylates were chosen due to potential multifunctionality of nitrosyl<br />

groups. For <strong>in</strong>stance, earlier it was shown that NOx-species promote transfer of<br />

oxygen and reoxidation of palladium <strong>in</strong> catalytic processes.<br />

It was found that reaction of palladium acetate P d3(µ-CH3CO2)6 with acetonitrile<br />

<strong>in</strong> benzene leads to formation of b<strong>in</strong>uclear complex of palladium(II) P d2(C6H4-o-<br />

C(CH3)=NH)2(µ-CH3CO2)2, which conta<strong>in</strong>s coord<strong>in</strong>ated 1-phenylethanim<strong>in</strong>e that<br />

forms as a result of C-C-coupl<strong>in</strong>g between nitrile and arene molecules. Reactions of<br />

polynuclear nitrosyl carboxylate complexes P d4(NO)2(RCO2)6 of palladium(II) with<br />

acetonitrile <strong>in</strong> acetone <strong>in</strong> the presence of water lead to formation of complexes P d5(µ-<br />

NO)(µ-C6H11CO2)7(µ, µ-CH3C(=N)OC(=N)CH3) and P d5(µ-NO)(µ-NO2) (µ-<br />

CMe3CO2)6(µ, µ-CH3C(=N)OC(=N)CH3), which are the first palladium complexes<br />

conta<strong>in</strong><strong>in</strong>g coord<strong>in</strong>ated acetimidic anhydride. The complexes belong to a new<br />

topological type of carboxylate palladium compounds with 5-nuclear cyclic metalcore.<br />

Acetimidic anhydride forms as a result of complicate hydration process conjugated<br />

with C-O-coupl<strong>in</strong>g. Also complex P d5(µ-NO)(µ-NO2)(µ-CMe3CO2)6(µ, µ-<br />

CH3C(=N)OC(=N)CH3) is the first fully characterized palladium carboxylate compound<br />

conta<strong>in</strong><strong>in</strong>g nitrosyl and nitrite groups together.<br />

We are grateful to the Council of the President of the Russian Federation for young<br />

scientists for f<strong>in</strong>ancial support (project 966.2012.3).<br />

Molecular structure of<br />

P d5(µ-NO)(µ-NO2)(µ-CMe3CO2)6(µ, µ-CH3C(=N)OC(=N)CH3)<br />

260 Saturday 9:00 - 11:30 Poster 203


Didecyldimethylammonium salts of am<strong>in</strong>o acids - the<br />

characteristics and application directions<br />

Paula Ossowicz ∗ , Zbigniew Rozwadowski ∗ , Ewa Janus † , Ryszard Pilawka ‡<br />

∗ Department of Inorganic and Analytical Chemistry –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – 42 Piastów Ave. – Szczec<strong>in</strong> – POL<br />

† Institute of Organic Chemical Technology –<br />

West Pomeranian University of Technology, Szczec<strong>in</strong> – Pulaski Str. 10 – Szczec<strong>in</strong> – POL<br />

‡ Institute of Polymers – West Pomeranian University of Technology, Szczec<strong>in</strong> –<br />

Pulaski Str. 10 – Szczec<strong>in</strong> – POL<br />

possowicz@zut.edu.pl<br />

Currently, the attention is focused on a new generation of ionic liquids, which are<br />

derived from natural raw materials such as am<strong>in</strong>o acids. Am<strong>in</strong>o acid ionic liquids are<br />

an alternative to ionic liquids, based solely on petrochemical raw materials. Am<strong>in</strong>o<br />

Acid Ionic Liquids derived from biorenewable raw materials are more biocompatible,<br />

because of greater biodegradability <strong>in</strong> the environment and lower toxicity (ecotoxicity<br />

and cytotoxicity).<br />

The synthesis, identification and physical properties of didecyldimethylammonium<br />

salts of L am<strong>in</strong>o acids were presented. Identification was based on 1 H NMR, 13 C<br />

NMR, FT-IR, UV-VIS analyses. The physical properties of new chiral ionic liquids,<br />

for example the density, viscosity, surface tension, specific rotation, water content,<br />

thermal stability (TG) and phase transformations (DSC) were determ<strong>in</strong>ed. Didecyldimethylammonium<br />

salts of L-am<strong>in</strong>o acids salts were soluble <strong>in</strong> water and were<br />

also characterized by surface tension, critical micelle concentration and stabillity <strong>in</strong><br />

alkal<strong>in</strong>e and acid solution.<br />

Synthesis of didecyldimethylammonium salts of am<strong>in</strong>o acids<br />

Poster 204 Saturday 9:00 - 11:30 261


Design and Synthesis of a new Galantham<strong>in</strong>e Delivery<br />

System<br />

Mihaela-Liliana Țînțaş, Lénaig Foucout, Sylva<strong>in</strong> Petit, Sylva<strong>in</strong> Oudeyer,<br />

Cyril Papamicaël, V<strong>in</strong>cent Levacher<br />

UMR CNRS 6014, IRCOF Rouen, INSA de Rouen – Rue Tesniere 1 –<br />

Mont-Sa<strong>in</strong>t-Aignan – FRA<br />

mihaela_t<strong>in</strong>tas@yahoo.com<br />

Galantham<strong>in</strong>e is one of the acetylchol<strong>in</strong>esterase <strong>in</strong>hibitors (AChEIs) prescribed as<br />

anti-Alzheimer Disease (AD) drug. It has a dist<strong>in</strong>ct mode of action, not observed for<br />

the other <strong>in</strong>hibitors, be<strong>in</strong>g a competitive and reversible AChEI; an allosteric modulator<br />

of nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptors improv<strong>in</strong>g their function<strong>in</strong>g by help<strong>in</strong>g the<br />

release of ACh; and modulates the levels of other neurotransmitters <strong>in</strong>volved <strong>in</strong> dementia:<br />

glutamate, seroton<strong>in</strong> and GABA. The <strong>in</strong>hibit<strong>in</strong>g properties of galantham<strong>in</strong>e<br />

are considered quite modest, but its multiple actions make it one of the most efficient<br />

AD therapy drug. It was observed <strong>in</strong> numerous cases that long treatment with<br />

galantham<strong>in</strong>e produces many side effects (eg. nausea, vomit<strong>in</strong>g, diarrhea, dizz<strong>in</strong>ess,<br />

etc.) caus<strong>in</strong>g treatment disruption. AD patients are dependent of cont<strong>in</strong>uous adm<strong>in</strong>istration<br />

of AChEI to have day-to-day function<strong>in</strong>g and maximize their quality of life<br />

as much as possible. A way to overcome the side-effects of a neuroactive drug is to<br />

ensure a bra<strong>in</strong> targeted transport to the active site mediated by a carrier. One such<br />

chemical delivery system towards bra<strong>in</strong> was developed by Bodor [1] and is based on dihydropyrid<strong>in</strong>e–pyrid<strong>in</strong>ium<br />

redox couple. The neuroactive drug is covalently l<strong>in</strong>ked to<br />

a dihydropyrid<strong>in</strong>e moiety that plays the role of a lipoidal carrier towards bra<strong>in</strong>. Dihydropyrid<strong>in</strong>e<br />

is an unstable and chemically fragile moiety. We developed a new stable<br />

and assertive chemical delivery system based on a dihydroqu<strong>in</strong>ol<strong>in</strong>e–qu<strong>in</strong>ol<strong>in</strong>ium redox<br />

couple. [2,3] We applied this system to galantham<strong>in</strong>e, as schematically represented<br />

below. This transformation represents a valuable drug modification strategy which<br />

<strong>in</strong>creases the chances of a site-specific and susta<strong>in</strong>ed delivery of galantham<strong>in</strong>e <strong>in</strong>side<br />

bra<strong>in</strong>. Dihydroqu<strong>in</strong>ol<strong>in</strong>e moiety will ensure the transport of the drug to the central<br />

nervous system through the lipophilic blood bra<strong>in</strong> barrier (BBB) by passive diffusion.<br />

Then oxidation <strong>in</strong>to a charged qu<strong>in</strong>ol<strong>in</strong>ium salt will prevent the system to cross back<br />

the BBB aga<strong>in</strong>. Enzymatic cleavage will liberate galantham<strong>in</strong>e to target directly the<br />

AChE implied <strong>in</strong> AD followed by its normal metabolism and clearance. Liberation of<br />

the drug just <strong>in</strong>side the bra<strong>in</strong> will lead to lower drug doses and less undesirable side<br />

effects.<br />

[1] L. Prokai, K. Prokai-Tatrai, N. Bodor, Med. Res. Rev. 2000, 20, 367-416.<br />

[2] L. Foucout, F. Gourand, M. Dhilly, P. Bohn, G. Dupas, J. Costent<strong>in</strong>, A. Abbas, F. Marsais, L.<br />

Barré, V. Levacher, Org. Biomol. Chem. 2009, 7, 3666-3673.<br />

[3] P. Bohn, N. Le Fur, G. Hagues, J. Costent<strong>in</strong>, N. Torquet, C. Papamicael, F. Marsais, V.<br />

Levacher, Org. Biomol. Chem. 2009, 7, 2612-2618.<br />

262 Saturday 9:00 - 11:30 Poster 205


Optical Anisotropy of Pb Nanowires on Si(557)<br />

Arne Baumann ∗ , Jochen Räthel ∗ , Eugen Speiser ∗ , Daniel Lükermann † ,<br />

Christopher Krich † , Christoph Tegenkamp † , Norbert Esser ∗<br />

∗ Nanostrukturen – Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V. –<br />

Albert-E<strong>in</strong>ste<strong>in</strong>-Straße 9 – 12489 Berl<strong>in</strong> – GER<br />

† Institut für Festkörperphysik – Leibniz Universität Hannover – Appelstraße 2 –<br />

30167 Hannover – GER<br />

arne.baumann@isas.de<br />

Reduc<strong>in</strong>g the dimensionality of metal films on semi-conductor surfaces can lead to the<br />

appearance of <strong>in</strong>terest<strong>in</strong>g physical phenomena. Due to the high electron correlation it<br />

could be not longer accurate to describe the electron gas by traditional Fermi liquid<br />

theory. For example, the <strong>in</strong>herent <strong>in</strong>stabilities of 1D electronic systems, like Peierls<br />

<strong>in</strong>stabilities, can entail the formation of charge and sp<strong>in</strong> density waves, moreover the<br />

systems may exhibit Lutt<strong>in</strong>ger liquid behavior. The goal of our work is to elucidate<br />

these phenomena by the means of optical methods, such as reflectance anisotropy<br />

spectroscopy (RAS).<br />

Metal nanowire model systems <strong>in</strong>volve noble metal, In or Pb nanowires on vic<strong>in</strong>al<br />

Si or Ge surfaces. One particular <strong>in</strong>terest<strong>in</strong>g system is Pb on Si(557), where the<br />

adsorption of approximately 1.3 monolayers of Pb onto the clean Si(557) surface<br />

<strong>in</strong>duces a reorganization of the surface structure. The clean Si(557) surface consists<br />

of (111) oriented terraces and (112) oriented steps. After the adsorption of Pb low<br />

energy electron dispersion patterns and scann<strong>in</strong>g tunnel<strong>in</strong>g microscopy measurements<br />

show an evenly stepped surface decorated with distant Pb nanowires.<br />

At low temperatures (< 78 K) this system shows almost exclusively electronic conductivity<br />

parallel to the steps. Increas<strong>in</strong>g the temperature above this temperature<br />

causes a phase transition and enables conductivity perpendicular to the wires. A reorder<strong>in</strong>g<br />

of the surface <strong>in</strong>duces a change <strong>in</strong> the electronic properties and with this also<br />

<strong>in</strong> the dielectric function. Hence, <strong>in</strong> this clearly anisotropic system it is possible to<br />

apply RAS, <strong>in</strong> connection with density functional theory based calculations, to study<br />

the anisotropic optical transitions <strong>in</strong> the surface band structure. By compar<strong>in</strong>g the<br />

RAS spectra of the clean Si(557) surface with the Pb covered surface it is possible<br />

to identify signals belong<strong>in</strong>g to adsorption <strong>in</strong>duced states. Furthermore, by carry<strong>in</strong>g<br />

out temperature dependant measurements it can be possible to observe the appearance<br />

of new anisotropic transitions below 78 K, <strong>in</strong>dicat<strong>in</strong>g a change <strong>in</strong> the surface<br />

band structure of the system, as well as changes <strong>in</strong> the optical conductance behavior<br />

accompany<strong>in</strong>g the phase transition.<br />

Poster 206 Saturday 9:00 - 11:30 263


Micelle Formation<br />

Marta Cybulak<br />

Faculty of Chemistry – Maria Curie-Sklodowska University <strong>in</strong> Lubl<strong>in</strong> –<br />

pl. Marii Curie-Sklodowskiej 2 – Lubl<strong>in</strong> – POL – Lubl<strong>in</strong> – POL<br />

marta.cybulak@wp.pl<br />

The structure and thermodynamics of formation of mixed micelles is of great theoretical<br />

<strong>in</strong>terest. Micelles are also often present and often <strong>in</strong>tegrally <strong>in</strong>volved <strong>in</strong> practical<br />

processes. For example, <strong>in</strong> a small pore volume surfactant flood<strong>in</strong>g process (sometimes<br />

called micellar flod<strong>in</strong>g), the solution <strong>in</strong>jected <strong>in</strong>to an oil field generally conta<strong>in</strong>s 5-12<br />

weight % surfactant and the surfactant is predom<strong>in</strong>ately <strong>in</strong> micellar form <strong>in</strong> the reservoir<br />

water. In detergency, solubilization can be important, so micelles are generally<br />

present <strong>in</strong> the detergent solution. In micellar – enhanced ultrafiltration, a separation<br />

technique to remove dissolved organic from water, micelles effect the separation.<br />

The Critical Micelle Concentration (CMC) is the lowest surfactant concentration at<br />

which micelles form – the lower the CMC, the greater the tendency of a system to<br />

form micelles. When the total fraction of surfactant equals the CMC, an <strong>in</strong>f<strong>in</strong>itesimal<br />

fraction of surfactant is present as micelles.<br />

[1]<br />

W.B. Gogarty, J. Pet. Technol. 1983, 35, 1581.<br />

[2]<br />

K. Sh<strong>in</strong>oda <strong>in</strong> “Colloidal Surfactants”, K. Sh<strong>in</strong>oda, T. Tanamushi, T. Nakagawa, T. Isemura,<br />

Academic Press: New York, 1963, Chapter 1.<br />

[3]<br />

R.F. Kamrath, E.I. Frances, J. Phys. Chem. 1984, 88, 1642.<br />

[4]<br />

K. Sh<strong>in</strong>oda, J. Phys. Chem. 1954, 58, 541.<br />

[5]<br />

K.J. Mysels, R.J. Otter, J. Colloid Sci. 1961, 16, 474.<br />

[6]<br />

B.W. Barry, J.C. Morrison, G.F. Russel, J. Colloid Interface Sci. 1970, 33, 554.<br />

264 Saturday 9:00 - 11:30 Poster 207


Shear-<strong>in</strong>duced structure formation <strong>in</strong> a mixture of a nonionic<br />

associative polymer and anionic surfactant<br />

Alena Tomsik, Jaroslav Katona, Sandra Njaradi<br />

Department of Biotechnology and Pharmaceutical Eng<strong>in</strong>eer<strong>in</strong>g –<br />

University of Novi Sad, Faculty of Technology –<br />

Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia – Novi Sad – SRB<br />

alena.tomsik@gmail.com<br />

Mixtures of polymers and surfactants are commonly found <strong>in</strong> a wide range of consumer<br />

products. Interaction between polymers and surfactants <strong>in</strong>fluence different<br />

properties of these products, e.g. stability, flow properties, phase behavior etc. [1-3] In<br />

this work, <strong>in</strong>fluence of shear rate on flow properties of a mixture of hydroxypropylmethyl<br />

cellulose (HPMC), a nonionic associative polymer, and sodium dodecylsulfate<br />

(SDS), an anionic surfactant was <strong>in</strong>vestigated. B<strong>in</strong>ary mixtures composed of 0.70%<br />

wt. HPMC and SDS concentration rang<strong>in</strong>g from 0.00% to 2.00% wt. were prepared<br />

<strong>in</strong> deionized water and <strong>in</strong> 0.01M NaCl. Rheological properties of the mixtures were<br />

exam<strong>in</strong>ed by determ<strong>in</strong><strong>in</strong>g the steady state viscosity under different shear rates. At<br />

low shear rates, HPMC and SDS mixtures show Newtonian plateau where viscosity is<br />

<strong>in</strong>dependent on shear rate. On further <strong>in</strong>crease <strong>in</strong> shear rate, a typical shear th<strong>in</strong>n<strong>in</strong>g<br />

behavior with a power low decrease <strong>in</strong> viscosity takes place. However, <strong>in</strong> mixtures<br />

with SDS concentration higher than 0.15% SDS, above a critical shear rate an <strong>in</strong>crease<br />

<strong>in</strong> viscosity accompanied with an <strong>in</strong>crease <strong>in</strong> the first normal stress difference<br />

occurs. The shear thicken<strong>in</strong>g behavior <strong>in</strong>dicates shear <strong>in</strong>duced structure formation<br />

due to HPMC-SDS <strong>in</strong>teraction. The shear thicken<strong>in</strong>g flow takes place <strong>in</strong> both water<br />

and 0.01M NaCl b<strong>in</strong>ary mixtures. The critical shear rate is lower, while the viscosity<br />

<strong>in</strong>crease is more pronounced <strong>in</strong> the 0.01M NaCl mixtures than <strong>in</strong> the correspond<strong>in</strong>g<br />

deionised water mixtures. This is attributed to a stronger HPMC-SDS <strong>in</strong>teraction<br />

due to charge screen<strong>in</strong>g effect <strong>in</strong> HPMC-SDS complex by sodium cations. When<br />

SDS concentration is higher than 1.50% wt. no shear thicken<strong>in</strong>g is observed <strong>in</strong> the<br />

<strong>in</strong>vestigated shear rate range.<br />

[1] B. Nystrom, A.-L. Kjoniksen, B. L<strong>in</strong>dman, “Effect of temperature, surfactant, and salt on the<br />

rheological behavior <strong>in</strong> semidilute aqueous systems of a nonionic cellulose ether”, Langmuir 1996,<br />

12, 3233-3240.<br />

[2] J. M. Katona, V. J. Sovilj “Rheological <strong>in</strong>vestigation on dynamics and structure of separated<br />

phases <strong>in</strong> polymer-mixture - ionic surfactant ternary mixtures”, Carbohydrate Polymers 2008,<br />

74, 193-200.<br />

[3] J.M. Katona, V.J. Sovilj, L.B. Petrović, “Microencapsulation of oil by polymer mixture ionic<br />

surfactant <strong>in</strong>teraction <strong>in</strong>duced coacervation”, Carbohydrate Polymers 2010, 79, 563-570.<br />

Poster 208 Saturday 9:00 - 11:30 265


Studies of Dodecane/Water Interfaces by<br />

Polarization-Dependent and Time-Resolved Second<br />

Harmonic Generation<br />

Michal Hamkalo, Piotr Fita<br />

Faculty of Physics – Institute of Experimental Physics, University of Warsaw – Hoza 69 –<br />

Warsaw – POL<br />

michalhamkalo@student.uw.edu.pl<br />

Properties of organic dyes: eos<strong>in</strong> B, Rhodam<strong>in</strong>e 640, Rhodam<strong>in</strong>e 6G, Malachite<br />

Green, and Sulforhodam<strong>in</strong>e 101, at dodecane/water <strong>in</strong>terfaces have been <strong>in</strong>vestigated<br />

with polarization-dependent and time-resolved surface second harmonic generation<br />

(SHG). [1,2] In this experimental technique an <strong>in</strong>terface under study is illum<strong>in</strong>ated<br />

(probed) with a beam of femtosecond pulses and the second harmonic of the probe<br />

beam is detected us<strong>in</strong>g a sensitive photodetector. Due to symmetry the second harmonic<br />

is generated only <strong>in</strong> a very th<strong>in</strong> layer separat<strong>in</strong>g two different phases, which<br />

ensures high spatial selectivity.<br />

This study was focused on polarization-dependent SHG, <strong>in</strong> which the probe beam is<br />

l<strong>in</strong>early polarized and the plane of polarization can be cont<strong>in</strong>uously rotated us<strong>in</strong>g a<br />

halfwave plate. Polarization of the detected second harmonic is selected by a polarizer<br />

located after the sample and can be either parallel or perpendicular to the plane of<br />

<strong>in</strong>cidence. For both polarizations of the detected light its <strong>in</strong>tensity is measured as a<br />

function of the direction of polarization of the probe beam.<br />

The <strong>in</strong>vestigation aims to describe the behavior of organic molecules at <strong>in</strong>terfaces<br />

between 2 non-mix<strong>in</strong>g liquids. In polarization-dependent measurements 3 parameters<br />

were varied: the dye concentration, the <strong>in</strong>tensity of the laser beam and the age of<br />

the sample. It has been found that both, the dye concentration and - surpris<strong>in</strong>gly,<br />

the probe beam <strong>in</strong>tensity affect the polarization dependence of the second harmonic<br />

<strong>in</strong>tensity. Comparison of the results obta<strong>in</strong>ed for different conditions suggests that<br />

the state of molecules at the surface changes and aggregates are formed at higher<br />

dye concentrations. Nevertheless aggregation alone cannot expla<strong>in</strong> all the observed<br />

phenomena, therefore we will carry out additional time-resolved measurements which<br />

should help to identify the processes occurr<strong>in</strong>g <strong>in</strong> molecules adsorbed at the <strong>in</strong>terface.<br />

[1] K. B. Eisenthal, J. Phys. Chem. 1996, 100, 12997-13006.<br />

[2] J. C. Conboy, J. L. Daschbach, G. L. Richmond, J. Phys. Chem. 1994, 98, 9688-9692.<br />

266 Saturday 9:00 - 11:30 Poster 209


Emission Properties of Quantum Dots Affected by the<br />

Ligand Shell – Theory and Experiment<br />

Susanne Leubner ∗ , Soheil Hatami † , Tommy Lorenz ∗ , Jan-Ole Joswig ∗ ,<br />

Nikolai Gaponik ∗ , Ute Resch-Genger † , Alexander Eychmüller ∗<br />

∗ Physical Chemistry – TU Dresden – Dresden – GER<br />

† BAM Federal Institute for Materials Research and Test<strong>in</strong>g – Berl<strong>in</strong> – GER<br />

susanne.leubner@chemie.tu-dresden.de<br />

In recent years semiconductor quantum dots (QDs) have drawn a broad <strong>in</strong>terdiscipl<strong>in</strong>ary<br />

attention as an attractive choice for the use <strong>in</strong> light-emitt<strong>in</strong>g devices and<br />

imag<strong>in</strong>g techniques. This is strongly related to their superior optical properties compared<br />

to other classes of functional dyes, such as high photostability, large ext<strong>in</strong>ction<br />

coefficient, tunable and narrow band gap lum<strong>in</strong>escence and high photolum<strong>in</strong>escence<br />

(PL) quantum yields.<br />

Especially the PL quantum yield is a significant characteristic for the emission quality<br />

and is often cited <strong>in</strong> literature. However, for valuable data on one hand a proper<br />

determ<strong>in</strong>ation procedure is crucial and on the other hand the understand<strong>in</strong>g of particle<br />

properties <strong>in</strong>fluenc<strong>in</strong>g the emission is of great importance. In detail, the optical<br />

properties of the nanocrystals are affected by both the core material and the ligand<br />

shell. As the surface chemistry of QDs can still be tuned after the synthesis, a complete<br />

understand<strong>in</strong>g of the impact of the stabiliz<strong>in</strong>g shell on the emission properties is<br />

promis<strong>in</strong>g for the design of highly emitt<strong>in</strong>g materials.<br />

Hence, this study discusses the proper experimental PL quantum yield determ<strong>in</strong>ation<br />

as well as the analytical study of the nanoparticle surface and its relation to the<br />

PL quantum yield for the model system of aqueous synthesized CdTe nanocrystals<br />

capped with thiols. The <strong>in</strong>vestigation of the ligand shell <strong>in</strong>cludes analytical techniques<br />

together with theoretical calculations.<br />

Poster 210 Saturday 9:00 - 11:30 267


N -Am<strong>in</strong>oalkylation of heterocycles with α-amidosulfones<br />

Marc Montes<strong>in</strong>os Magraner, Gonzalo Blay, Rosa María Girón, José Ramón Pedro<br />

Departament de Química Orgànica – Universitat de València – Dr. Mol<strong>in</strong>er, 50 –<br />

Burjassot – ESP<br />

marc.montes<strong>in</strong>os@uv.es<br />

Nitrogen conta<strong>in</strong><strong>in</strong>g heterocycles are present <strong>in</strong> a vast number of natural products<br />

and biologically active molecules. [1] So, the functionalization of these compounds is<br />

an important goal <strong>in</strong> organic chemistry. However, the <strong>in</strong>troduction of an am<strong>in</strong>oalkyl<br />

group is less developed due to the low reactivity of im<strong>in</strong>es as electrophiles. [2]<br />

Recently, we have carried out the first regioselective am<strong>in</strong>oalkylation of <strong>in</strong>doles 1 with<br />

α-amidosulfones (7) <strong>in</strong> either the C -3 or N -1 position under basic conditions. Both<br />

methods are also useful to <strong>in</strong>troduce different am<strong>in</strong>oalkyl moieties <strong>in</strong> other nitrogen<br />

conta<strong>in</strong><strong>in</strong>g heterocycles.<br />

In this communication we present an extension of the scope of the reaction of am<strong>in</strong>oalkylation<br />

on the nitrogen us<strong>in</strong>g different heterocycles as 7-aza<strong>in</strong>doles 2, pur<strong>in</strong>es 3, pyrrole<br />

(4), benzimidazole (5) or <strong>in</strong>dazole (6). Our method afforded heterocycles functionalized<br />

with an am<strong>in</strong>omethyl group bear<strong>in</strong>g aryl, heteroaryl or alkyl substituents.<br />

F<strong>in</strong>ancial support from the M<strong>in</strong>isterio de Ciencia e Innovación and FEDER (CTQ 2009-<br />

13083) and from Generalitat Valenciana (ACOMP/2012/212 and ISIC/2012/001) is acknowledged.<br />

M.M. thanks the Universitat de València for a pre-doctoral grant.<br />

[1] (a) I. S. Young, P. D. Thorntonb, A. Thompson, Nat. Prod. Rep. 2010, 27, 1801; (b) K.<br />

Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2009, 48, 3224; (c) R. Garg, S. P. Gupta, H.<br />

Gao, M. S. Babu, A. K. Debnath, C. Hansch, Chem. Rev. 1999, 99, 3525.<br />

[2] (a) H. Zhang, C.-X. Lian, W.-C. Yuan, X.-M. Zhang, Synlett 2012, 23, 1339; X. (b) Mi, S.<br />

Luo, J. Hea, J.-P. Chen, Tetrahedron Lett. 2004, 45, 4567; (c) W. Xie, K. M. Bloomfield, Y. J<strong>in</strong>,<br />

N. Dolney, P. G. Wang, Synlett 1999, 498.<br />

268 Saturday 9:00 - 11:30 Poster 211


Surface modification of segmented copolymers via hydrolysis<br />

and am<strong>in</strong>olysis<br />

Agata Niemczyk, Zygmunt Staniszewski, Mirosława El Fray<br />

Polymer Institute – West Pomeranian University of Technology, Szczec<strong>in</strong> –<br />

10 Pułaski Street – Szczec<strong>in</strong> – POL<br />

aniemczyk@zut.edu.pl<br />

Polymeric implants are an important class of biomaterials, which have facilitated the<br />

development of numerous prostheses and implants for orthopedic and cardiovascular<br />

applications, which are exposed to prolonged contact with tissue. However, <strong>in</strong>fections<br />

are a common complication aris<strong>in</strong>g from the tissue-biomaterial <strong>in</strong>teraction, lead<strong>in</strong>g to<br />

cl<strong>in</strong>ically significant problems. The major role of implant susceptibility to <strong>in</strong>fections<br />

is associated with the adhesion of a pathogen to the implant surface, therefore one<br />

of the strategies to obta<strong>in</strong> better surface resistance to microbial colonization is their<br />

modification.<br />

Poly(aliphatic/aromatic-ester) (PED) multiblock copolymers with different concentration<br />

of hard segment (poly(ethylene terephthalate) (PET)) and soft segments (dil<strong>in</strong>oleic<br />

acid (DLA)), namely 50, 55, 60, 65 and 70% wt. were modified to <strong>in</strong>duce surface<br />

hydrolysis and am<strong>in</strong>olysis, respectively. The chemical structure of the neat PET/DLA<br />

is shown <strong>in</strong> Figure 1.<br />

Hydrolysis of PET/DLA copolymers <strong>in</strong> concentrated alkal<strong>in</strong>e solution produced a<br />

carboxyl-enriched surface, and am<strong>in</strong>olysis <strong>in</strong> 1,6-hexanediam<strong>in</strong>e /propanol solution<br />

<strong>in</strong>troduced am<strong>in</strong>o groups. That surface functionalization leads to the negative (COO-<br />

) or positive (NH3+) charges on copolymer surface thus provid<strong>in</strong>g activated groups<br />

capable anchor<strong>in</strong>g polyelectrolytes <strong>in</strong> a layer-by-layer process. The changes of surface<br />

chemistry were monitored and verified ma<strong>in</strong>ly by FTIR spectroscopy.<br />

Figure 1. Chemical structure of PET/DLA copolymers<br />

Poster 212 Saturday 9:00 - 11:30 269


DFT-Study of the adsorption process of GaP-precursors on<br />

Si(001)(2x1) <strong>in</strong> Metal Organic Vapour Phase Epitaxy<br />

Phil Rosenow, Ralf Tonner<br />

Fachbereich Chemie – Philipps-Universität Marburg – Hans-Meerwe<strong>in</strong>-Straße 4 –<br />

Marburg – GER<br />

Rosenowp@students.uni-marburg.de<br />

Lasers on silicon are of particular <strong>in</strong>terest <strong>in</strong> optoelectronics and chip design. A system<br />

of great <strong>in</strong>terest is the quarternary III/V-semiconductor Ga(NAsP). In order to<br />

avoid lattice mismatches GaP is used as an <strong>in</strong>termediate layer. [1,2] The electronic<br />

properties depend highly on the <strong>in</strong>itial structure of the GaP-adlayer. Thus a DFTstudy<br />

has been started <strong>in</strong> order to ga<strong>in</strong> a better understand<strong>in</strong>g of the process us<strong>in</strong>g<br />

the VASP code.<br />

Calculations on gas-phase decomposition reactions suggest that hardly any decomposition<br />

occurs <strong>in</strong> the gas phase. Therefore surface reactions are supposed to play<br />

an important role <strong>in</strong> the adsorption process. The reactivity of the surface is determ<strong>in</strong>ed<br />

by the degree of hydration. Experimental studies of the silicon surface show<br />

that under high temperature MOVPE reactions the surface is clean whereas at low<br />

temperature conditions it is hydrated. [3]<br />

Adsorption reactions at the hydrated are possible under <strong>in</strong>sertion <strong>in</strong> Si-H or Si-Si<br />

bonds or under release of dihydrogen or hydrocarbon ligands. Adsorption is preceded<br />

by physisorption accompanied by activation of Si-H bonds.<br />

Layer growth depends on residues attached to the adsorbed atoms. t-Butyl groups<br />

block neighbour<strong>in</strong>g adsorption sites whereas mere hydrogen atoms have hardly any<br />

<strong>in</strong>fluence on adsorption. A notable exception is the case of gallium hydride species<br />

where a borane-like species occurs which leads to strongly stabilized structures.<br />

[1] B. Kunert, K. Volz, J. Koch, W. Stolz, Appl. Phys. Lett., 2006, 88, 182108.<br />

[2] I. Németh, B. Kunert, W. Stolz, K. Volz, J. Cryst. Growth, 2008, 310, 1595.<br />

[3] U. Höfer, L. Li, T. F. He<strong>in</strong>z, Phys. Rev. B, 1992, 45, 9485.<br />

270 Saturday 9:00 - 11:30 Poster 213


Rapid Preparation of 15 N3-labeled Enniat<strong>in</strong>s<br />

Svenja Schloß ∗ , Matthias Proske ∗ , Irmtraut Zaspel ∗ , Matthias Koch ∗ , Ronald Maul ∗<br />

∗ 1.7 Lebensmittelanalytik – Bundesanstalt für Materialforschung und -prüfung (BAM) –<br />

Richard-Willstätter-Straße 11 – Berl<strong>in</strong> – GER<br />

† Institut für Forstgenetik – Johann He<strong>in</strong>rich von Thünen-Institut –<br />

Eberswalder Chaussee 3a – Waldsieversdorf – GER<br />

svenja.schloss@bam.de<br />

In the class of depsipeptides, the enniat<strong>in</strong>s (ENN) are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly significant.<br />

As secondary metabolites of various Fusarium species, they represent a common<br />

source of food and feed contam<strong>in</strong>ation ma<strong>in</strong>ly affect<strong>in</strong>g cereal products. [1] Due to the<br />

limited data on the toxicity, occurrence, and contam<strong>in</strong>ation levels ENN are also referred<br />

to as “emerg<strong>in</strong>g mycotox<strong>in</strong>s”. [2] The detection of the analytes by means of mass<br />

spectrometry has been found as a suitable method. However, coelution of matrix components<br />

may lead to ion suppression or ion enhancement effects <strong>in</strong> LC-MS-analysis.<br />

Thus, for a reliable quantitation the use of isotope-labeled <strong>in</strong>ternal standards is advisable.<br />

All matrix effects <strong>in</strong>fluence the <strong>in</strong>ternal standard and the analyte <strong>in</strong> the same<br />

way. Also losses dur<strong>in</strong>g sample process<strong>in</strong>g can be compensated by addition of the<br />

isotope labeled <strong>in</strong>ternal standard at the beg<strong>in</strong>n<strong>in</strong>g of the sample extraction.<br />

The cultivation of Fusarium cultures and the isolation of unmarked ENN have been<br />

successfully carried out. Accord<strong>in</strong>g to Hu et al., the four ma<strong>in</strong> compounds ENN A,<br />

A1, B and B1 can be replaced with their 15 N3-labeled versions by grow<strong>in</strong>g a stra<strong>in</strong><br />

of Fusarium <strong>in</strong> an artificial culture medium with Na 15 NO3 as sole nitrogen source. [3]<br />

In variation from this, the labeled ENN were isolated by a modified rapid cleanup of<br />

the mycelium.<br />

After a solid-liquid extraction of the ENN from the homogenized fungal mycelium of<br />

Fusarium avenaceum, a fractionation and purification was carried out on a normal<br />

phase silica gel column with cyclohexane, ethyl acetate and methanol as eluents. The<br />

fractions conta<strong>in</strong><strong>in</strong>g the target analytes were identified by subsequent LC-MS analysis<br />

and evaporated to dryness. The residue was dissolved <strong>in</strong> methanol.<br />

The pattern of the native ENN and the 15 N-ENN (s<strong>in</strong>gle, double and triple labeled)<br />

and the accurate masses were determ<strong>in</strong>ed by LC-QToF-MS. Less than 2 percent of<br />

unlabeled ENN was detected <strong>in</strong> the isolated standard. Hence, the obta<strong>in</strong>ed isotope<br />

labeled ENN will be suitable for follow<strong>in</strong>g quantitative LC-MS based ENN analyses<br />

<strong>in</strong> food and feed.<br />

[1] Malachova et al., J. Agric. Food Chem. 2011, 28, 59(24), 12990-12997.<br />

[2] M. Jestoi, Crit Rev Food Sci Nutr. 2008, 48(1), 21-49.<br />

[3] Hu et al., J. Agric. Food Chem. 2012, 25, 60(29), 7129-36,<br />

Poster 214 Saturday 9:00 - 11:30 271


Novel phthalocyan<strong>in</strong>e derivatives possess<strong>in</strong>g dietheroxy<br />

substituents at non-peripheral positions as s<strong>in</strong>glet oxygen<br />

generators<br />

Lukasz Sobotta ∗ , Marc<strong>in</strong> Wierzchowski † , Tomasz Gosl<strong>in</strong>ski † , Jadwiga Mielcarek ∗<br />

∗ Department of Inorganic and Analytical Chemistry –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

† Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – Poznan – POL<br />

lsobotta@wp.eu<br />

Photodynamic therapy (PDT) is a novel promis<strong>in</strong>g treatment of cancer and precancer<br />

diseases, and of potential utility <strong>in</strong> bacterial and viral <strong>in</strong>fections. In PDT<br />

three components are necessary, such as photosensitizer, molecular oxygen and light<br />

of an appropriate wavelength. Interest<strong>in</strong>gly, an excited form of a drug <strong>in</strong>teracts with<br />

molecular oxygen <strong>in</strong> its tryplet state generat<strong>in</strong>g s<strong>in</strong>glet oxygen. S<strong>in</strong>glet oxygen can<br />

react with many biological cell components caus<strong>in</strong>g their destruction. [1] The photodynamic<br />

efficacy of three phthalocyan<strong>in</strong>es (Pc-1, Pc-2, Pc-3) was studied and their<br />

potential usefulness <strong>in</strong> photodynamic therapy was evaluated (Fig.1). The generation<br />

of s<strong>in</strong>glet oxygen by Pc-1 – Pc-3 was studied. 1,3-Diphenyloisobenzofuran (DPBF)<br />

was used as a s<strong>in</strong>glet oxygen quencher. The photooxidation process was <strong>in</strong>vestigated<br />

<strong>in</strong> aerobic conditions and <strong>in</strong> an environment with limited access of oxygen (Fig.1). [1]<br />

Accord<strong>in</strong>g to these studies, phthalocyan<strong>in</strong>es Pc-1 and Pc-2 generate s<strong>in</strong>glet oxygen,<br />

but <strong>in</strong> the environment with limited access of oxygen this process occurs to a much<br />

lesser extent. The quantum yield of s<strong>in</strong>glet oxygen generation was estimated by compar<strong>in</strong>g<br />

with the reference macrocycle (z<strong>in</strong>c phthalocyan<strong>in</strong>e). Moreover, Pc-2 appeared<br />

to be the most efficient photosensitizer among the series of macrocycles studied. The<br />

follow<strong>in</strong>g values of the quantum yield of s<strong>in</strong>glet oxygen generation <strong>in</strong> DMF and DMSO<br />

were found 0.32 and 0.30 for Pc-1, 0.46 and 0.34 for Pc-2, respectively.<br />

Fig.1 S<strong>in</strong>glet oxygen assessment spectra of Pc-1 were plotted dur<strong>in</strong>g measurement, <strong>in</strong>set<br />

presents process of DPBF oxidation)<br />

[1]<br />

R. R. Allison, G. H. Downie, R. Cuenca, X. Hu, C. J. H. Childs, C. H. Sibata, Photodiagn<br />

[2]<br />

Photodyn 2004, 1, 27-42. W. Szczolko, L. Sobotta, P. Fita, T. Koczorowski, M. Mikus, M.<br />

Gdaniec, A. Orzechowska, K. Burda, S. Sobiak, M. Wierzchowski, J. Mielcarek, E. Tykarska, T.<br />

Gośliński, Tetrahedron Lett. 2012, 53, 2040-44.<br />

This study was supported by the National Science Centre under Grant No. N N401 067238.<br />

272 Saturday 9:00 - 11:30 Poster 215


Incorporation and Organization of β-Peptides <strong>in</strong> Lipid<br />

Membranes<br />

Diana Petersen, Tatjana Polupanow, Ulf Diederichsen<br />

Institute of Organic and Biomolecular Chemistry – Georg-August-University Gött<strong>in</strong>gen –<br />

Tammannstr. 2 – 37077 Gött<strong>in</strong>gen – GER<br />

dpeters2@gwdg.de<br />

Transmembrane prote<strong>in</strong>s are spann<strong>in</strong>g the lipid bilayer and act<strong>in</strong>g as gateways for a<br />

selective transport of small molecules across the membranes. [1] The structural similarities<br />

of one or more hydrophobic regions <strong>in</strong> terms of α-helices or α-helical aggregates<br />

are common <strong>in</strong> transmembrane prote<strong>in</strong>s. [2] Properties like fold<strong>in</strong>g, channel formation<br />

and transmembrane signall<strong>in</strong>g are essentially affected by the non-covalent <strong>in</strong>teractions<br />

between the helix-motifs. Moreover, important are also the surround<strong>in</strong>g lipids<br />

and their orientation <strong>in</strong> the membrane (Scheme 1). [3] In order to better understand<br />

<strong>in</strong>termolecular <strong>in</strong>teractions and organization of transmembrane prote<strong>in</strong>s, we have chosen<br />

β-peptides as novel model system to study membrane assembly. β-Peptides are<br />

promis<strong>in</strong>g motifs to show various secondary structures with high helical content. [4,5]<br />

Therefore, various β-peptides with different hydrophobic side cha<strong>in</strong>s will be synthesized<br />

and exam<strong>in</strong>ed regard<strong>in</strong>g helix topology and membrane <strong>in</strong>corporation.<br />

Scheme 1: Schematic illustration of potential peptide assembly based on molecular<br />

recognition of helix side cha<strong>in</strong>s <strong>in</strong>side the membrane bilayer. Left: Aggregation via<br />

electrostatic attraction between a positive charged lys<strong>in</strong>e residue and a negative charged<br />

glutamic acid side cha<strong>in</strong>. Right: Helical assembly obta<strong>in</strong>ed by hydrogen bond<strong>in</strong>g of two<br />

asparag<strong>in</strong>e residues.<br />

[1]<br />

K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heyman, A. Engel, Y. Fujiyoshi,<br />

Nature 2000, 407, 599-605.<br />

[2]<br />

O.S. Andersen, R. E. Koeppe, Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 107-130.<br />

[3]<br />

J. U. Bowie, Nature 2005, 438, 581-589.<br />

[4]<br />

D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodivers. 2004, 1, 1111-1239.<br />

[5] S. H. Gellman, Acc. Chem. Rev. 1998, 31, 173-180.<br />

Poster 216 Saturday 9:00 - 11:30 273


Chromatographic retention parameters as predictors of the<br />

biological activity of some aldopentose and aldohexose<br />

derivatives<br />

Strah<strong>in</strong>ja Kovacevic, Lidija Jevric, Sanja Podunavac Kuzmanovic, Natasa Kalajdzija,<br />

Eva Loncar<br />

Department of Applied and Eng<strong>in</strong>eer<strong>in</strong>g Chemistry –<br />

University of Novi Sad, Faculty of Technology – Bulevar cara Lazara 1 – Novi Sad – SRB<br />

strah<strong>in</strong>jakovacevic@hotmail.com<br />

Chromatographic retention parameters, R 0 M and C0, have been used to form mathematical<br />

models for prediction of the biological behavior of 1,2-O-izopropylidene<br />

derivatives of aldohexoses and 1,2-O-cyclohexylidene derivatives of aldopentoses. The<br />

biological activity of these molecules was confirmed <strong>in</strong> several scientific papers. [1−3]<br />

In silico biological descriptors of the exam<strong>in</strong>ed molecules, such as enzyme <strong>in</strong>hibition<br />

(EI), nuclear receptor ligand b<strong>in</strong>d<strong>in</strong>g (NRL), k<strong>in</strong>ase <strong>in</strong>hibition (KI), protease<br />

<strong>in</strong>hibition (PI), ion channel modulation (ICM), G prote<strong>in</strong>-coupled receptors b<strong>in</strong>d<strong>in</strong>g<br />

(GPCR), and Caco-2 cells permeability (Caco-2), were calculated by PreADMET [4]<br />

and Mol<strong>in</strong>spiration [5] software. The retention factors R 0 M and C0 were determ<strong>in</strong>ed by<br />

normal-phase th<strong>in</strong>-layer chromatography <strong>in</strong> the solvent systems cyclohexane : ethylacetate,<br />

cyclohexane : acetone, cyclohexane : dioxane, cyclohexane : tetrahydrofuran<br />

and benzene : acetone, and silica gel as stationary phase.<br />

The correlations between def<strong>in</strong>ed biological descriptors and retention parameters were<br />

determ<strong>in</strong>ed by statistical software Statistica 8. [6] Quadratic equations that relate R 0 M<br />

and C0 with EI, PI, KI, NRL, ICM, GPCR and Caco-2 were established. The validity<br />

of the generated mathematical models was confirmed by standard statistical measures<br />

(correlation coefficient (r), the standard error of estimation (s), Fisher’s value (F)),<br />

and cross-validation parameters (PRESS value, TSS value, Spress value, r 2 cv, r 2 adj ).[7]<br />

Optimal values of the cross-validation parameters confirm predictive ability of the<br />

estimated equations.<br />

On the basis of the obta<strong>in</strong>ed results it can be concluded that etablished mathematical<br />

models can be used for prediction of the biological behavior of the exam<strong>in</strong>ed molecules.<br />

It <strong>in</strong>dicates that retention parameters obta<strong>in</strong>ed by normal-phase chromatography can<br />

successfully predict some biological characteristics of the exam<strong>in</strong>ed aldopentose and<br />

aldohexose derivatives.<br />

[1]<br />

G. Catelani, F. D’Andrea, M. Landi, C. Zuccato, N. Bianchi, R. Gambari, Carbohydr. Res.<br />

2006, 341, 538.<br />

[2]<br />

G. Catelani, F. D’Andrea, E. Mastrorilli, N. Bianchi, C. Chiarabelli, M. Borgatti, D. Martello,<br />

R. Gambari, Bioorg. Med. Chem. 2002, 10, 347.<br />

[3]<br />

R. Trivedi, E. R. Reddy, Ch. Kiran Kumar, B. Sridhar, K. Pranay Kumar, M. Sr<strong>in</strong>ivasa Rao,<br />

Bioorg. Med. Chem. Lett. 2011, 21, 3890.<br />

[4]<br />

preadmet.bmdrc.org<br />

[5]<br />

www.mol<strong>in</strong>spiration.com<br />

[6]<br />

www.statsoft.com<br />

[7]<br />

S. Podunavac Kuzmanovic, D. Cvetkovic, S. Gadzuric, APTEFF 2011, 42, 251.<br />

274 Saturday 9:00 - 11:30 Poster 217


Selective Oxidation of Methane over VOX Catalysts: Effect<br />

of CO2 admixtures on formaldehyde selectivity<br />

Enno Schönborn, Philipp Wallis, Claudio Pirovano, Narayana Kalevaru, Andreas Mart<strong>in</strong>,<br />

Sebastian Wohlrab<br />

Leibniz-Institut für Katalyse e.V. – A.-E<strong>in</strong>ste<strong>in</strong>-Str. 29a – Rostock – GER<br />

enno.schoenborn@catalysis.de<br />

The selective oxidation of methane to oxygenates is one of the challeng<strong>in</strong>g tasks <strong>in</strong><br />

catalysis. Promis<strong>in</strong>g catalytic systems with enhanced selectivity for formaldehyde are<br />

based on vanadium oxide species supported on mesoporous silicas. [1, 2] In the present<br />

work, we compare properties of differently prepared VOX catalysts supported on<br />

mesoporous silicas (MCM-41, SBA-15) us<strong>in</strong>g different analytical methods. In addition,<br />

we show the <strong>in</strong>fluence of CO2 -admixtures on the catalytic performance of these<br />

catalysts for the selective oxidation of methane to formaldehyde.<br />

Isolated low-molecular VOX species are assumed to be the active sites <strong>in</strong> the selective<br />

oxidation of methane. [3] However, analytic <strong>in</strong>vestigations of the catalysts prepared under<br />

different conditions showed concise differences related to preparation method as<br />

well as supports used. [4] The catalytic oxidation experiments are congruent with the<br />

analytical results. Besides such preparative developments, the process can be further<br />

positively <strong>in</strong>fluenced by technological variations. Primarily, the total oxidation can<br />

be suppressed by CO2 admixtures to the reactant feed. Fig. 1 shows such effect over<br />

VOX /SBA-15 catalyst prepared by IWI method. Start<strong>in</strong>g from a feed mixture of<br />

7.5:1:4:7.5 (CH4: O2:N2:CO2) methane conversion xCH4 was 5.6%. The formaldehyde<br />

selectivity SHCHO was found to be 19.6%. After 3 h the CO2 was substituted<br />

by N2 and xCH4 <strong>in</strong>creased while SHCHO decreased tremendously. If a cont<strong>in</strong>uous<br />

flow of CO2 was used for the whole reaction time we observed only a slight <strong>in</strong>crease of<br />

xCH4 and appreciably lower decrease of SHCHO. It can be concluded that CO2 <strong>in</strong> the<br />

feed reduces the overall conversion of methane while the selectivity to formaldehyde<br />

is <strong>in</strong>creased.<br />

From this, we can conclude that CO2 admixtures to the reactant feed have a positive<br />

<strong>in</strong>fluence on the methane oxidation reaction which leads to enhancement of the<br />

formaldehyde selectivity. Together with methods <strong>in</strong>clud<strong>in</strong>g rapid formaldehyde isolation<br />

from the reaction zone such CO2 admixtures to the feed help to reduce total<br />

oxidation of methane to carbon dioxide.<br />

Fig. 1. Influence of CO2 admixtures on the performance of VOX catalyst (T = 923 K;<br />

cat. amount = 100 mg; GHSV = 180,000 lkg −1 h −1 , CH4:O2:N2:admixture =<br />

7.5:1:4:7.5, 6 h), left: xCH4 , right: SHCHO .<br />

[1] H. Berndt et al., J. Catal. 2000, 191, 384.<br />

[2] L.D. Nguyen et al., J. Catal. 2006, 237, 38.<br />

[3] V. Fornés et al., Appl. Catal. A: Gen. 2003, 249, 345.<br />

[4] C. Pirovano et al., Catal. Today 2012, 192, 20.<br />

Poster 218 Saturday 9:00 - 11:30 275


One-step synthesis of tetrazolo[1,5-a]pyrid<strong>in</strong>es from pyrid<strong>in</strong>e<br />

N -oxides<br />

Shanshan Liu, Christoph Tzschucke<br />

Department of Chemistry and Biochemistry – Freie Universität Berl<strong>in</strong> – Takustr. 3 –<br />

D- 14195 Berl<strong>in</strong> – GER<br />

liushan329@126.com<br />

Organic azides are important functional groups, they are used as precursors to primary<br />

am<strong>in</strong>es [1] , nitrenes [2] , and triazoles [3] . Tetrazole is the predom<strong>in</strong>ant species <strong>in</strong><br />

the azide/tetrazole equilibrium of 2-azidopyrid<strong>in</strong>es. We seek an practical and convenient<br />

manufactur<strong>in</strong>g route to <strong>in</strong>troduce azides us<strong>in</strong>g cost efficient reagents. Different<br />

sulfonyl and phosphoryl reagents and various solvents were compared <strong>in</strong> this reaction.<br />

Various substituted tetrazolopyrid<strong>in</strong>es were prepared <strong>in</strong> good to excellent yield from<br />

the correspond<strong>in</strong>g pyrid<strong>in</strong>e-N -oxides. Reaction optimization and substrate scope will<br />

be discussed.<br />

Synthesis of tetrazolo[1,5-a]pyrid<strong>in</strong>es from pyrid<strong>in</strong>e N -oxides.<br />

[1] (a) A. Boruah, M. Baruah, D. Prajapati, J. S. Sandhu, Synlett 1997, 1253-1254; (b) M.<br />

Vaultier, N. Knouzi, R. Carrie, Tetrahedron Lett. 1983, 24, 763-764; (c) H. J. Boyer, J. Am.<br />

Chem. Soc. 1951, 73, 5865-5866.<br />

[2] (a) M.-L. Tsao, M. S. Platz, J. Am. Chem. Soc. 2003, 125, 12014-12025; (b) S. Murata, R.<br />

Yoshidome, Y. Satoh, N. Kato, H. Tomioka, J. Org. Chem. 1995, 60, 1428-1434; (c) A. Alb<strong>in</strong>i,<br />

G. Bett<strong>in</strong>etti, G. M<strong>in</strong>oli, J. Am. Chem. Soc. 1991, 113, 6928-6934.<br />

[3] (a) W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radic, P. R. Carlier, P. R. Taylor, M. G. F<strong>in</strong>n,<br />

K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41, 1053-1057; (b) Y. Angell, K. Burgess, J.<br />

Org. Chem. 2005, 70, 9595-9598; (c) A. F. Brigas, Sci. Synth. 2004, 13, 861-915.<br />

276 Saturday 9:00 - 11:30 Poster 219


Qu<strong>in</strong>ol<strong>in</strong>ium based Dyes <strong>in</strong> Ionic Liquids - Synthesis,<br />

Theoretical Calculations and Photophysical Properties<br />

Stella Schmode ∗ , Sebastian Reimann ∗ , Nikolaus P. Ernst<strong>in</strong>g † , Ralf Ludwig ∗<br />

∗ Theoretical and Physical Chemistry – University of Rostock – Dr.-Lorenz-Weg/1 –<br />

Rostock – GER<br />

† Physical Chemistry – Humboldt Universität zu Berl<strong>in</strong> – Brook-Taylor-Str./2 –<br />

Berl<strong>in</strong> – GER<br />

stella.schmode@uni-rostock.de<br />

Ionic Liquids have attracted much attention <strong>in</strong> science and technology over the past<br />

decades. First <strong>in</strong>novative applications are already established <strong>in</strong> the fields of chemical<br />

synthesis, catalysis, biochemical and pharmaceutical research as well as material<br />

science. [1,2] Despite the impressive enhancements, the reasons of fundamental chemical<br />

properties like solvation behavior and acidity are often not completely understood.<br />

Different spectroscopic methods can be used to probe <strong>in</strong>ter- and <strong>in</strong>tramolecular <strong>in</strong>teractions<br />

<strong>in</strong> ionic liquids. [3]<br />

Here we present a comb<strong>in</strong>ation of spectroscopy with synthesis of new low melt<strong>in</strong>g salts<br />

supported by DFT calculations. The structural unit of all exam<strong>in</strong>ed compounds is<br />

qu<strong>in</strong>ol<strong>in</strong>ium. This heterocyclic molecule is substituted <strong>in</strong> N-position by alkyl groups<br />

which results <strong>in</strong> a native zwitterionic molecule with a negative charge at the oxygen<br />

and a positive one at the nitrogen atom. Low melt<strong>in</strong>g salts are formed by conversion<br />

with acids conta<strong>in</strong><strong>in</strong>g weak coord<strong>in</strong>ation anions, e.g. triflate. Structural <strong>in</strong>formation<br />

is given by NMR and MIR spectroscopy. The <strong>in</strong>fluence of different alkyl cha<strong>in</strong> length<br />

is studied by comparison of b<strong>in</strong>d<strong>in</strong>g energy <strong>in</strong> terms of measured melt<strong>in</strong>g po<strong>in</strong>ts and<br />

calculated molecular energies.<br />

[1]<br />

N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37 (1), 123-150.<br />

[2]<br />

J. Stoimenovski, D. R. MacFarlane, K. Bica, R. D. Rogers, Pharmaceutical Research 2010,<br />

27 (4), 521-526.<br />

[3]<br />

A. Wulf, K. Fum<strong>in</strong>o, R. Ludwig, Angew. Chem. Int. Ed. 2010, 49, 449-453.<br />

Poster 220 Saturday 9:00 - 11:30 277


Target<strong>in</strong>g tumor cells by us<strong>in</strong>g drug-magnetic nanoparticles<br />

conjugate<br />

Anita Jarzeb<strong>in</strong>ska ∗ , Anna Maria Nowicka ∗ , Agata Kowalczyk ∗ , Mikolaj Donten ∗ ,<br />

Pawel Krys<strong>in</strong>ski ∗ , Zbigniew Stojek ∗ , Ewa August<strong>in</strong> † , Zofia Mazerska †<br />

∗ Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

† Department of Pharmaceutical Technology and Biochemistry –<br />

Gdansk University of Technology – Narutowicza 11/12 – Gdansk – POL<br />

anita.jarzeb<strong>in</strong>ska@student.uw.edu.pl<br />

A disadvantage of many drugs used <strong>in</strong> therapy of solid tumors is their cytotoxicity<br />

aga<strong>in</strong>st healthy tissues. Doxorubic<strong>in</strong> is especially toxic to the heart and the kidneys,<br />

which limits its therapeutic applications. Therefore, it is important to f<strong>in</strong>d a<br />

carrier that can deliver the drug selectively to the tumor tissue. The b<strong>in</strong>d<strong>in</strong>g of a<br />

magnetic nanoparticle with a doxorubic<strong>in</strong> and apply<strong>in</strong>g a properly directed external<br />

magnetic field might be a good alternative to such traditional forms of the drug like<br />

liposomes and micels. The improved by us synthesis of the conjugate of doxorubic<strong>in</strong><br />

with iron-oxide magnetic nanoparticles allows a substantial depression of the aggregation<br />

process of the nanoparticles and therefore the exam<strong>in</strong>ation of cytotoxicity of the<br />

modified drug. It has been shown, by perform<strong>in</strong>g the electrochemical microbalance<br />

measurements, that the use of magnetic field guarantees the efficient delivery of the<br />

drug to the requested place. The change <strong>in</strong> the synthesis led to an <strong>in</strong>crease <strong>in</strong> the<br />

number of DOX molecules attached to one magnetic particle. It has also been found<br />

that the release of the drug takes place below pH 5.8, which pH characterizes the cancer<br />

cells. We demonstrated that unmodified iron-oxide magnetic nanoparticles were<br />

not cytotoxic toward human ur<strong>in</strong>ary bladder carc<strong>in</strong>oma cells UM-UC-3. Tumor cell<br />

sensitivity of DOX-Np complex was slightly higher <strong>in</strong> comparison to identical concentration<br />

of doxorubic<strong>in</strong> alone. Therefore, the magnetic nanoparticles were shown to be<br />

a good carrier for doxorubic<strong>in</strong> <strong>in</strong>to the <strong>in</strong>vestigated tumor cells.<br />

[1]<br />

J. O’Shaughnessy, Oncologist 2003, 8, 1-2.<br />

[2]<br />

V. I. Shubayev, T. R. Pisanic II, S. J<strong>in</strong>, Advanced Drug Delivery Rev. 2009, 61, 467-477.<br />

[3]<br />

S. M. Hussa<strong>in</strong>, K. L. Hess, J. M. Gearhart, K. T. Geiss, J. J. Schlager, Toxicol.<strong>in</strong> Vitro 2005,<br />

19, 975-983.<br />

[4]<br />

A. M. Nowicka, A. Kowalczyk, M. Donten, P. Krys<strong>in</strong>ski, Z. Stojek, Anal. Chem. 2009, 81,<br />

7474-7483.<br />

278 Saturday 9:00 - 11:30 Poster 221


Synthesis and biological activity of novel phthalocyan<strong>in</strong>es<br />

with dietheroxy and nitroimidazolylethoxy moieties<br />

Marc<strong>in</strong> Wierzchowski ∗ , Sebastian Lijewski ∗ , Lukasz Sobotta † , Krystyna Konopka ‡ ,<br />

Michael Lee ‡ , Nejat Düzgünes ‡ , Ewa Tykarska ∗ , Jadwiga Mielcarek † , Tomasz Gosl<strong>in</strong>ski ∗<br />

∗ Department of Chemical Technology of Drugs –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – 60-780 Poznan – POL<br />

† Department of Inorganic and Analytical Chemistry –<br />

Poznan University of Medical Sciences – Grunwaldzka 6 – 60-780 Poznan – POL<br />

‡ Department of Biomedical Sciences – University of the Pacific – 2155 Webster Street –<br />

San Francisco, 94115 CA – USA<br />

sebastianlijewski@o2.pl<br />

Phthalocyan<strong>in</strong>es (Pcs) are aromatic macrocyclic compounds consist<strong>in</strong>g of four iso<strong>in</strong>dole<br />

fragments l<strong>in</strong>ked together with azometh<strong>in</strong>e groups. These synthetic analogues<br />

of natural porphyr<strong>in</strong>oids are known to possess wide applications <strong>in</strong> dyes <strong>in</strong>dustry,<br />

<strong>in</strong> materials chemistry as sensors, molecular semiconductors and non-l<strong>in</strong>ear optical<br />

materials, and as photosensitizers <strong>in</strong> photodynamic therapy. Medical applications<br />

of phthalocyan<strong>in</strong>es impose good solubility <strong>in</strong> water and <strong>in</strong>creased accumulation <strong>in</strong><br />

pathologic tissues. The structure of Pcs may be modified by <strong>in</strong>troduc<strong>in</strong>g substituents<br />

at their peripheral and non-peripheral positions, as well as various metal ions <strong>in</strong>to the<br />

central cavity of a macrocycle. Good solubility <strong>in</strong> water can be reached by <strong>in</strong>troduc<strong>in</strong>g<br />

polyetheric substituents [1] <strong>in</strong> non-peripheral positions. Increased accumulation<br />

<strong>in</strong> hypoxic tissues such as cancer tissue can be reached by <strong>in</strong>corporat<strong>in</strong>g nitroimidazole<br />

moieties to the structure. [2] New compounds were synthesized accord<strong>in</strong>g to the<br />

procedure shown on Figure 1.<br />

Newly synthesized phthalocyan<strong>in</strong>es Pc-1, Pc-2, Pc-3, Pc-4 as well as the precursor<br />

d<strong>in</strong>itriles 1 and 2 were fully characterized by NMR, UV-Vis, MS, HPLC. Additionally,<br />

new d<strong>in</strong>itryles were characterized by combustion analysis and crystallographic data.<br />

New phthalocyan<strong>in</strong>es were tested for photodynamic activity aga<strong>in</strong>st human oral squamous<br />

carc<strong>in</strong>oma cells HSC-3. The best activity was revealed by compound Pc-3<br />

possess<strong>in</strong>g two types of substituents – dietheroxy and nitroimidazolylethoxy. Pc-3<br />

showed photocytotoxicity at the level of IC50 0.10 µM. Z<strong>in</strong>c compound Pc-2 was three<br />

times more active than the magnesium Pc-1 and seems to be a promis<strong>in</strong>g compound<br />

for further research.<br />

This study was supported by the National Science Centre under Grant No. N401<br />

067238.<br />

Fig. 1<br />

[1] F. Lv, B. Cao, Y. Cui, T. Liu, Molecules 2012, 17, 6349-6361.<br />

[2] R. J. Abdel-Jalil, M. Übele, W. Ehrlichmann, W. Voelter, H. J. Machulla, J. Radioanal. Nucl.<br />

Chem. 2006, 267, 557-560.<br />

Poster 222 Saturday 9:00 - 11:30 279


Highly Chemoselective Metal-free Reduction of Phosph<strong>in</strong>e<br />

Oxides to Phosph<strong>in</strong>es<br />

Yuehui Li, Liang-Qiu Lu, Kathr<strong>in</strong> Junge, Matthias Beller<br />

Leibniz-Institut für Katalyse – Albert-E<strong>in</strong>ste<strong>in</strong>-Str. 29a – Rostock – GER<br />

yuehui.li@catalysis.de<br />

Chemoselective reductions of unsaturated compounds constitute an important tool<br />

box for more benign organic synthesis. Little is known on the catalytic reduction<br />

of related P=O bonds, which are thermodynamically highly stable. With a bond<br />

energy of around 502 kJ/mol they are significantly more stable compared to typical<br />

organic functional groups and the general order of bond energy stability is: P-O ><br />

C-H > C-O > C-C > C-N). [1,2] Therefore, it is not surpris<strong>in</strong>g that highly chemoselective<br />

reductions of phosph<strong>in</strong>e oxides until today represent an unsolved problem<br />

although the result<strong>in</strong>g organophosph<strong>in</strong>es represent valuable <strong>in</strong>termediates and ligands<br />

for transition-metal catalysis. [3] For the first time, unprecedented chemoselective<br />

reductions of phosph<strong>in</strong>e oxides to phosph<strong>in</strong>es proceed smoothly <strong>in</strong> the presence of<br />

catalytic amounts of specific Brønsted acids. Utiliz<strong>in</strong>g <strong>in</strong>expensive silanes, e.g. PMHS<br />

or (EtO)2MeSiH, other reducible functional groups such ketones, aldehydes, olef<strong>in</strong>s,<br />

nitriles, and esters are well tolerated under optimized conditions. [4]<br />

Chemoselective reduction of phosph<strong>in</strong>e oxides.<br />

[1]<br />

S. B. Hartley, W. S. Holmes, J. K. Jacques, M. F. Mole, J. C. McCoubrey, Quart. Rev. 1963,<br />

17, 204-223.<br />

[2]<br />

Y. Li, S. Das, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2012, 134, 9727-9732.<br />

[3]<br />

K. D<strong>in</strong>g, Z. Han, Z. Wang, Chem. Asian. J. 2009, 4, 32-41.<br />

[4]<br />

Y. Li, L.-Q. Lu, S. Das, S. Pisiewicz, K. Junge, M. Beller, J. Am. Chem. Soc. 2012, 134,<br />

18325-18329.<br />

280 Saturday 9:00 - 11:30 Poster 223


Determ<strong>in</strong>ation of orig<strong>in</strong>ality of fruit brandies us<strong>in</strong>g l<strong>in</strong>ear<br />

regression analysis<br />

Natasa Kalajdzija ∗ , Sanja Podunavac Kuzmanovic ∗ , Lidija Jevric ∗ ,<br />

Strah<strong>in</strong>ja Kovacevic ∗ , Biljana Marosanovic † , Maja Lojovic †<br />

∗ Department of Applied and Eng<strong>in</strong>eer<strong>in</strong>g Chemistry –<br />

University of Novi Sad, Faculty of Technology – Bulevar cara Lazara 1 – Novi Sad – SRB<br />

† Department of Instrumental Analysis – SP Laboratory – Industrijska zona bb –<br />

Becej – SRB<br />

natasa.ns@live.com<br />

Production of fruit brandy should be based on the use of fruit from which fermentable<br />

sugars are transformed <strong>in</strong>to ethanol dur<strong>in</strong>g fermentation. However, due to the manufacturers<br />

aim to achieve higher profits, they are <strong>in</strong>creas<strong>in</strong>gly resort<strong>in</strong>g to the use of<br />

sugar produced from sugar beet due to much lower purchase prices of raw materials.<br />

Given that sugar beet belongs to the C3-plants as well as fruit (apples, pears), the<br />

addition of sugar that comes from sugar beet can be confirmed through isotope ratio<br />

mass spectrometry analysis (IRMS) of stable isotopes of hydrogen <strong>in</strong> the molecule<br />

of ethanol. [1] On average, 85% of deuterium orig<strong>in</strong>at<strong>in</strong>g from sugar dur<strong>in</strong>g the fermentation<br />

process is be<strong>in</strong>g <strong>in</strong>corporated <strong>in</strong> the methyl-group, and 75% of deuterium<br />

orig<strong>in</strong>at<strong>in</strong>g from water <strong>in</strong>to methylene-group of ethanol molecules. [2] If alcoholic beverages<br />

are sweetened with sugar beet, analysis of ethanol will obta<strong>in</strong> δD values that<br />

are significantly lower compared to the values obta<strong>in</strong>ed for the ethanol molecule that<br />

is derived exclusively from fruit. [3]<br />

The exam<strong>in</strong>ation of apple and pear brandies that orig<strong>in</strong>ate from the areas of the Republic<br />

of Serbia, confirmed the existence of dependence between the amount of added<br />

sugar derived from sugar cane and the value of the stable isotopes of hydrogen <strong>in</strong><br />

ethanol molecule (δD). We analyzed six samples of brandy, and for each sample, by<br />

us<strong>in</strong>g a l<strong>in</strong>ear regression analysis, a mathematical formulation was derived that describes<br />

the given l<strong>in</strong>ear dependence. Statistical parameters that prove the validation<br />

of the model equations (Pearson’s correlation coefficients (r), the standard error of<br />

estimation (s), Fisher’s value (F) and parameters of cross validation (PRESS value,<br />

r2 cv and r2 adj )) were calculated us<strong>in</strong>g the software package Statistical System Number<br />

Cruncher-NCSS 2007. The practical application of the equations is reflected <strong>in</strong> the<br />

calculation of the amount of added sugar derived from sugar beets dur<strong>in</strong>g the production<br />

of brandy on the basis of δD values, and it is necessary to know the type and<br />

variety of fruit from which it is produced.<br />

[1] N. Christop, A. Rossmann, S. Voerkelius, Mitt. Klosterneuburg 2003, 53, 23.<br />

[2] M. Guček, J. Marsel, N. Ogr<strong>in</strong>c, S. Lojen, Acta Chim. Slov. 1998, 45, 217.<br />

[3] K. Ishida-Fujii, S. Goto, R. Uemura, K. Yamada, M. Sato, N. Yoshida, Biosci. Biotechnol.<br />

Biochem. 2005, 69, 2193.<br />

Poster 224 Saturday 9:00 - 11:30 281


Photogeneration of charge carriers <strong>in</strong> poly(N-v<strong>in</strong>ylcarbazole)<br />

doped with 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole and<br />

tris(2-phenylpyrid<strong>in</strong>e) iridium<br />

Anna Stefaniuk, Jarosław Jung, Ireneusz Głowacki<br />

Department of Molecular Physics, Faculty of Chemistry –<br />

Łódź University of Technology – Żeromskiego/116, 90-924 Łódź – Łódź – POL<br />

anna.stefaniuk@hotmail.com<br />

Poly(N-v<strong>in</strong>ylcarbazole) (PVK) and a mixture of PVK with 40 wt. % of 2-(4-diphenyl)-<br />

5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PVK - PBD) are commonly used as an electrolum<strong>in</strong>escent<br />

matrix. [1] PVK-PBD system is characterized by comparable transport<br />

of holes and electrons. The high level of triplet excitons’ energy of carbazole groups<br />

allows the effective energy transfer from the matrix to the phosphorescent dopant. [2]<br />

Analysis of the spectral distribution of thermolum<strong>in</strong>escence spectrum confirms the<br />

presence of the deep traps for holes and efficient recomb<strong>in</strong>ation centers which are<br />

located on the tris(2-phenylpyrid<strong>in</strong>e) iridium (Ir(ppy)3) particles. The addition of a<br />

small amount (2 wt. %) of Ir(ppy)3 effectively quenches the excited states of PVK<br />

and PBD-PVK. [3] A similar value of the triplet energy levels (∼ 3.2 eV) and the ability<br />

of the formation of triplet excitons <strong>in</strong> PVK and Ir(ppy)3 has a significant impact<br />

on the generation of electron-hole pairs and their dissociation <strong>in</strong> a high electric field<br />

<strong>in</strong> PVK-PBD systems doped with tris(2-phenylpyrid<strong>in</strong>e) iridium.<br />

The aim of this work was to determ<strong>in</strong>e the quantum yield of photogeneration of<br />

charge carriers by xerographic discharge method. Samples of PVK and PVK-PBD<br />

doped with iridium complex (2 wt. %) with a thickness from 1,5 to 6 µm was obta<strong>in</strong>ed<br />

by drop-cast<strong>in</strong>g method. Based on the analysis of the results of quantum efficiency of<br />

photogeneration of charge carriers depend<strong>in</strong>g on the <strong>in</strong>tensity of the electric field and<br />

the excitation wavelength the photoconductivity of exam<strong>in</strong>ed systems PVK and PVK-<br />

PBD doped with iridium complex was rated. The results obta<strong>in</strong>ed for the samples<br />

doped with Ir(ppy)3 show that the quantum efficiency of photogeneration of charge<br />

carriers is significantly reduced <strong>in</strong> comparison with pure PVK. This is associated with<br />

the effective capture of holes by Ir(ppy)3 particles. Addition of 40 wt. % of PBD<br />

(which is characterized by a high mobility of electrons) to the PVK + Ir(ppy)3 system<br />

results <strong>in</strong> an appearance of photoconductivity <strong>in</strong> the electric field from −4 · 10 5 V/m<br />

to −3 · 10 7 V/m.<br />

[1] I. Glowacki, and Z. szamel, J. Phys. D: Appl. Phys. 2010, 43, 295101.<br />

[2] D.F. Prepichka, N. Meng, M.-M. L<strong>in</strong>g, “Phosphorescent polymer light-emitt<strong>in</strong>g diodes, Organic<br />

light-emitt<strong>in</strong>g materials and devices”, Z. Li, H. Meng, Tylor Francis, Boca Raton 2007, 413-449.<br />

[3] Z. Szamel “Trapp<strong>in</strong>g and recomb<strong>in</strong>ation of charge carriers <strong>in</strong> polymer electrophosphorescent<br />

systems”, Ph.D. Thesis, Lodz University of technology, 2007.<br />

282 Saturday 9:00 - 11:30 Poster 225


Detection of the Cyanotox<strong>in</strong> Cyl<strong>in</strong>drospermops<strong>in</strong> <strong>in</strong> Brassica<br />

Species<br />

Katr<strong>in</strong> Kittler ∗ , Monika Schre<strong>in</strong>er † , Angelika Krumbe<strong>in</strong> † , Matthias Koch ∗ ,<br />

Sascha Rohn ‡ , Ronald Maul ∗<br />

∗ Analytical Chemistry; Reference Materials –<br />

Federal Institute for Materials Research and Test<strong>in</strong>g – Richard-Willstätter-Straße 11 –<br />

Berl<strong>in</strong> – GER<br />

† Department of Quality Research –<br />

Leibniz-Institute of Vegetable and Ornamental Crops – Theodor-Echtermeyer-Weg 1 –<br />

Großbeeren – GER<br />

‡ Institute of Food Chemistry – University of Hamburg – Gr<strong>in</strong>delallee 117 –<br />

Hamburg – GER<br />

katr<strong>in</strong>.kittler@bam.de<br />

Cyl<strong>in</strong>drospermops<strong>in</strong> (CYN), a potent cyanobacterial hepatotox<strong>in</strong>, occurs <strong>in</strong> freshwater<br />

bodies worldwide. Humans or animals get exposed to this tox<strong>in</strong> by <strong>in</strong>gestion,<br />

sk<strong>in</strong> contact, or <strong>in</strong>halation predom<strong>in</strong>antly when swimm<strong>in</strong>g <strong>in</strong> contam<strong>in</strong>ated water.<br />

Another known exposure route is the uptake of CYN conta<strong>in</strong><strong>in</strong>g seafood. [1] In many<br />

countries it is common to use surface water for crop irrigation also from potentially<br />

cyanotox<strong>in</strong>-contam<strong>in</strong>ated resources. [2] Therefore, an exposure to CYN by eat<strong>in</strong>g contam<strong>in</strong>ated<br />

crops seems possible. The aim of this study was to clarify whether CYN is<br />

taken up by plants and transported from the roots to the leaves. Different Brassica<br />

species served as model crops, which were irrigated with CYN conta<strong>in</strong><strong>in</strong>g water.<br />

In experiment 1 the roots of two leaf stage Brassica oleracea var. sabellica and<br />

Brassica juncea plants were irrigated with a nutrient solution <strong>in</strong> an aeroponic system<br />

for 30 days. The water conta<strong>in</strong>ed pure CYN and CYN from an unpurified APH<br />

extract (cCY N = 18-35 µg L −1 ). In experiment 2 S<strong>in</strong>apis alba seedl<strong>in</strong>gs were used to<br />

exam<strong>in</strong>e the concentration dependency for CYN uptake. Therefore, the plants were<br />

exposed to concentrations <strong>in</strong> the range of 20 to 445 µg L −1 CYN for a growth period<br />

of 3 days. The plant material from the two different experiments was freeze-dried,<br />

extracted, and analyzed by HPLC-MS/MS. [3]<br />

In all experiments performed, a significant uptake of CYN by the test plants was<br />

observed. The CYN concentrations <strong>in</strong> the leaves reached up to 21 % of the concentration<br />

<strong>in</strong>itially applied to the roots. Furthermore, a l<strong>in</strong>ear concentration dependency<br />

of the CYN absorption <strong>in</strong> the selected concentration range was determ<strong>in</strong>ed for<br />

S<strong>in</strong>apia alba seedl<strong>in</strong>gs. The results <strong>in</strong>dicate that CYN is systemically available to the<br />

exam<strong>in</strong>ed Brassica species. Thus, it seems possible that crop plants irrigated with<br />

CYN-conta<strong>in</strong><strong>in</strong>g surface water may represent a significant source of this tox<strong>in</strong> with<strong>in</strong><br />

the food cha<strong>in</strong>. [3]<br />

[1] S. K<strong>in</strong>near, Mar. Drugs. 2010, 8(3), 542–564.<br />

[2] A. Peuthert, Environ. Toxicol. 2007, 22(4), 436-442.<br />

[3] K. Kittler, Food Chem. 2012, 133(3), 875-879.<br />

Poster 226 Saturday 9:00 - 11:30 283


Characterization Anthocyan<strong>in</strong> by UV-Vis Spectroscopy and<br />

HPLC Detection <strong>in</strong> Chokeberry<br />

Jelena M. Brcanović, Aleksandra N. Pavlović, Snežana S. Mitić, Jovana N. Veljković,<br />

Milan N. Mitić, Jovana Lj. Pavlović<br />

Department of Chemistry – Faculty of Sciences and Mathematics, University of Niš –<br />

Višegradska 33 – Niš – SRB<br />

djolejeca97@gmail.com<br />

Aronia melanocarpa, native to eastern North America, is a member of the Rasaceae<br />

family. Chokeberries are rich <strong>in</strong> phenolic compounds and have been reported to<br />

have antioxidative effects <strong>in</strong> vitro and <strong>in</strong> vivo. It has been applied as a natural<br />

antihypertensive and anti-atherosclerotic drug, ma<strong>in</strong>ly by the polyphenols and anthocyan<strong>in</strong>s.<br />

The anthocyan<strong>in</strong>s are water-soluble plant pigments with antioxidant, anti<strong>in</strong>flammatory,<br />

antimicrobial, anticancer, hepatoprotective, gastroprotective. In the<br />

fruit, chlorogenic and neochlorogenic acids are dom<strong>in</strong>ant among the aromatic acids.<br />

High contents of cyanid<strong>in</strong>-3-arab<strong>in</strong>oside, cyanid<strong>in</strong>-3-galactoside and (-)-epicatech<strong>in</strong><br />

are also typical of chokeberries.<br />

In this study we have determ<strong>in</strong>ed the total content of anthocyan<strong>in</strong>s by the pHdifferential<br />

spectrophotometric method <strong>in</strong> five different samples (syrup, juice, berry,<br />

dried tea and chokebbery tea <strong>in</strong>fusions). Two dilutions were prepared, one with<br />

potassium chloride buffer (pH 1.0) and the other with sodium acetate buffer (pH<br />

4.5). Absorbance was measured simultaneously at 510 nm and 700 nm. The content<br />

of total anthocyan<strong>in</strong>s was expressed <strong>in</strong> mg of cyanid<strong>in</strong>-3-O-glucoside equivalents per<br />

100 g of chokeberry or liter of juice (mg C3GE/g or mg C3GE/L). Total anthocyan<strong>in</strong>s<br />

content from different samples ranged from 1055.68 mg/100 g (<strong>in</strong>fusion tea) to 56.757<br />

mg/100 g (chokeberry). Total anthocyan<strong>in</strong>s content from different solvents <strong>in</strong> chokeberry<br />

from 101.2 mg/100 g (solvent methanol 60%) to 28.71 mg/100 g (solvent water).<br />

Total anthocyan<strong>in</strong>s content from different samples <strong>in</strong> one solvent methanol 60% from<br />

715.65 mg/100 g (dried tea) to 96.52 mg/100 g (chokeberry). Qualitative and quantitative<br />

determ<strong>in</strong>ation of the content of anthocyan<strong>in</strong>s and phenolic compounds was<br />

measured by HPLC.<br />

This research was supported by the M<strong>in</strong>istry of Education, Science and Technological<br />

Development, grand number BI172047.<br />

Key words: anthocyan<strong>in</strong>s, chokeberry, HPLC, phenolic compounds<br />

284 Saturday 9:00 - 11:30 Poster 227


Taylor Dispersion Analysis (TDA) for Liquid Diffusivity<br />

Measurements<br />

Bianka Sieredz<strong>in</strong>ska ∗ , Magdalena Ligia Naurecka † , Anna Lewandrowska ‡ ,<br />

Aldona Majcher ‡<br />

∗ Faculty of Chemistry – the University of Warsaw – Pasteura 1 – Warsaw – POL<br />

† Faculty of Chemistry – Maria Curie-Sklodowska University <strong>in</strong> Lubl<strong>in</strong> –<br />

pl. Marii Curie-Sklodowskiej 2 – Lubl<strong>in</strong> – POL<br />

‡ Institute of Physical Chemistry – the Polish Academy of Sciences – Kasprzaka 44/52 –<br />

Warsaw – POL<br />

madamebianca@gmail.com - magda_naurecka@wp.pl<br />

Taylor Dispersion Analysis is a method for the study of diffusion coefficient, which<br />

was first described by Taylor (1953) and further developed by Aris (1954). It is based<br />

on the measurements of effective molecular diffusion coefficient dur<strong>in</strong>g flow through a<br />

long, th<strong>in</strong> capillary with and without selector. [1,2,7] The analysis demonstrates that<br />

it is possible to design an <strong>in</strong>strument that operates very nearly <strong>in</strong> accordance with<br />

the simplest mathematical description of the dispersion of a solute pulse <strong>in</strong> a fluid<br />

<strong>in</strong> lam<strong>in</strong>ar flow with<strong>in</strong> a straight, circular cross-section tube. The small departures<br />

of a practical <strong>in</strong>strument from the ideal are evaluated as corrections by means of<br />

a general perturbation treatment that allows them to be exam<strong>in</strong>ed one at a time.<br />

The corrections considered <strong>in</strong>clude the effects of the f<strong>in</strong>ite volume of the <strong>in</strong>jection<br />

pulse, the f<strong>in</strong>ite volume of the concentration monitor, the coil<strong>in</strong>g of the tube, and the<br />

nonuniformity and noncircularity of the cross section, as well as the variation of the<br />

fluid properties with composition. [3]<br />

TDA is a typical chromatographic method, where the chromatographic column is<br />

replaced by a capillary filled with an appropriate eluent (Tris-phosphate buffer, Tris-<br />

HCl buffer). A small <strong>in</strong>jection of the sample is applied to the system and the diffusion<br />

coefficients of the free ligand and the free selector (l-phenylalan<strong>in</strong>e, ribonuclease and<br />

warfar<strong>in</strong>) is determ<strong>in</strong>ed by TDA. The concentration of the ligand is the same as <strong>in</strong><br />

the experiment without selector. The concentration of the selector is the same as an<br />

eluent. The effective diffusion coefficient of the ligand dur<strong>in</strong>g the flow <strong>in</strong> the presence<br />

of the selector depends on the diffusion coefficient of free and complexed ligand, and<br />

also stability contact of the ligand-selector complex. [4] A method we used <strong>in</strong> our experiment<br />

was, ultrahigh pressure liquid chromatography (UHPLC). However, around<br />

the world there are several other methods used to determ<strong>in</strong>e dispersion coefficient,<br />

e.g. dynamic light scatter<strong>in</strong>g, [5] and nuclear resonance spectroscopy. [6]<br />

TDA might be useful <strong>in</strong> the study of biological substances. There is a large group<br />

of <strong>in</strong>dustrial processes that may f<strong>in</strong>d the dispersion coefficient parameter to be useful<br />

<strong>in</strong> designat<strong>in</strong>g and analyz<strong>in</strong>g new technological solutions. Furthermore, dispersion<br />

coefficient along with hydrodynamic properties can deliver <strong>in</strong>formation both about<br />

size and shape of macromolecules such as prote<strong>in</strong>s.<br />

[1]<br />

R. Aris, Proc. Soc. Lond. A 1956, 235, 67-77.<br />

[2]<br />

A. Bielejewska, A. Byl<strong>in</strong>a, K. Duszczyk, M. Fialkowski, R. Holyst, Anal.<br />

5463-5469.<br />

Chem. 2010, 82,<br />

[3]<br />

A. Alizadeh, C. A. Nieto de Castro, W. A. Wakeham, Int. J. Thermophys. 1980, 1, 243-284.<br />

[4] M. Zuo, Y. Han, L. Qi, Y. Chen, Ch<strong>in</strong>. Sci. Bull. 2007, 52, 3325-3332.<br />

[5] C. Yang, W. Li, Vu. Ch, J. Physic. Chem. 2004, 108, 11866-11870.<br />

[6] E. O. Stejskal, J. E. Tanner, J. Chem. Physics 1965, 42, 288-292.<br />

[7] M. Johnson, R. D. Kamm, J. Fluid Mech. 1986, 172, 329.<br />

Poster 228 Saturday 9:00 - 11:30 285


Influence of substituent effect on structure of imidazole<br />

N-oxide derivatives<br />

Marlena Lukomska ∗ , Agnieszka Rybarczyk-Pirek ∗ , Krzysztof Ejsmont † ,<br />

Marc<strong>in</strong> Palusiak ∗<br />

∗ Structural Chemistry and Crystallography Group – University of Lodz –<br />

Pomorska 163/165 – Lodz – POL<br />

† Crystallography Group – University of Opole – Oleska 48 – Opole – POL<br />

mlukomska@uni.lodz.pl<br />

Imidazole derivatives occur <strong>in</strong> biologically important systems and are used <strong>in</strong> agriculture<br />

and medic<strong>in</strong>e. [1-4] Various medicaments based on imidazole and benzimidazole<br />

derivatives are applied <strong>in</strong> treatment of parasitic diseases like trichomoniasis or<br />

Chang disease which are caused by protozoa Trichomonas vag<strong>in</strong>alis and Trypansoma<br />

cruzi. [5,6] S<strong>in</strong>ce currently used drugs cause serious side effects, chemists are look<strong>in</strong>g<br />

for new more effective chemicals which <strong>in</strong> the same time could be less toxic. In that<br />

light it is worth mention<strong>in</strong>g that some imidazole N–oxide derivatives were tested <strong>in</strong><br />

vitro aga<strong>in</strong>st the mentioned protozoa [7] with positive results.<br />

As cont<strong>in</strong>uation of broad studies on novel imidazole N-oxide derivatives the crystal<br />

structures of six new compounds were determ<strong>in</strong>ed by X–ray method. The analysis<br />

of structural properties of <strong>in</strong>dividual molecules as well as <strong>in</strong>termolecular contacts <strong>in</strong><br />

crystals was performed. The <strong>in</strong>fluence of substituent effect on selected geometrical<br />

parameters <strong>in</strong>clud<strong>in</strong>g parameters of <strong>in</strong>tramolecular N − H · · · O (−) charge assisted<br />

hydrogen bond will be discussed <strong>in</strong> this presentation.<br />

Acknowledgment: Authors thank dr Marc<strong>in</strong> Jasiński (Department of Organic and<br />

Applied Chemistry, University of Łódź) for crystal samples.<br />

Fig.1:Molecular structure of the <strong>in</strong>vestigated compounds(R=H, CN, OCH3, NO2, CF3, F)<br />

[1]<br />

M. R. Grimmett, Adv. Heterocycl. Chem. 1970, 12, 103.<br />

[2]<br />

M. R. Grimmett, Adv. Heterocycl. Chem. 1980, 27, 241.<br />

[3]<br />

M. R. Grimmett, <strong>in</strong> Comprehensive Heterocyclic Chemistry, Ed. K. T. Potts, Pergamon<br />

Press, Oxford 1984, 5, 374.<br />

[4]<br />

K. Ebel, <strong>in</strong> Methoden der organischen Chemie (Houben-Weyl), Band E8c, Teil III, Ed. E.<br />

Schaumann, G. Thieme, Stuttgart, 1994, 1.<br />

[5]<br />

H. Cerecetto, M. González, Current Topic Med. Chem. 2002, 2, 1185<br />

[6]<br />

C. Cosar, P. Ganter, L. Jolou, Presse Med. 1961, 69, 1069.<br />

[7]<br />

G. Aguirre, M. Boiani, H. Cerecetto, A. Gerpe, M. González, F. Sa<strong>in</strong>z, A. Denicola, C. Ochoa<br />

de Ocáriz, J. Nogal, D. Montero, J. A. Escario, Arch. Pharm. Pharm. Med. Chem. 2004, 337,<br />

259.<br />

286 Saturday 9:00 - 11:30 Poster 229


Crystallographic Description of Crystall<strong>in</strong>e Nanostructures<br />

Virg<strong>in</strong>ia Ramona Bucila ∗ , Davide M. Proserpio † , Mircea V. Diudea ∗ ,<br />

Miranda Petronella Vlad ‡<br />

∗ Department of Organic Chemistry –<br />

Babes-Bolyai University, Faculty of Chemistry and Chemical Eng<strong>in</strong>eer<strong>in</strong>g Cluj-Napoca –<br />

Arany Janos Str.11 – Cluj-Napoca – ROU<br />

† Dipartimento di Chimica – Universita’ degli Studi di Milano –<br />

Via Golgi, 19 - <strong>2013</strong>3 Milano, Italy – Milano – ITA<br />

‡ Department of F<strong>in</strong>ance and Account<strong>in</strong>g –<br />

“Dimitrie Cantemir” Christian University Bucharest Fac. of Eco. Sci. of Cluj-Napoca –<br />

56. Teodor Mihaly Street Cluj Napoca – Cluj-Napoca – ROU<br />

virg<strong>in</strong>iabucila@yahoo.com<br />

The present work is dedicated to present<strong>in</strong>g the crystallographic description of some<br />

studied nano crystall<strong>in</strong>e networks as 3-periodic structures. For each structure, we determ<strong>in</strong>e<br />

the category to which it belongs (3-c net, 4-c net, 3,4-c net or other nets), its<br />

po<strong>in</strong>t symbol, stoichiometry, vertex symbol, topos parameters and identify whether<br />

the structure has a known or new topology, with the help of the TOPOS program<br />

(a program package for multipurpose crystallochemical analysis) and additional programs<br />

we developed.<br />

We also used a program called Systre designed to analyze periodic nets as they arise<br />

<strong>in</strong> the study of extended crystal structures (as opposed to molecular crystals). Systre<br />

uses a method called barycentric placement to determ<strong>in</strong>e the ideal symmetry of the<br />

crystal net (optimal embedd<strong>in</strong>g) and to analyze its topological structure.<br />

Poster 230 Saturday 9:00 - 11:30 287


Terahertz-Time-Doma<strong>in</strong>-Spectroscopy (THz-TDS) as<br />

Method for the Analysis of the Polymorphism <strong>in</strong> Aspir<strong>in</strong><br />

Sebastian Reimann, Christian Roth, Stella Schmode, Ralf Ludwig<br />

Physical and Theoretical Chemistry – University of Rostock / Institute of Chemistry –<br />

Dr.-Lorenz-Weg 1 – Rostock – GER<br />

basti.reimann@googlemail.com<br />

Nowadays, terahertz time doma<strong>in</strong> spectroscopy (THz-TDS) has ga<strong>in</strong>ed remarkable importance<br />

for characterization of materials, s<strong>in</strong>ce THz spectroscopy has high sensitivity<br />

to the conformation and structure of molecules as well as its adjacent environment. [1]<br />

Especially lattice vibrations of molecular crystals occur at THz frequencies be<strong>in</strong>g <strong>in</strong>credibly<br />

sensitive to the <strong>in</strong>termolecular contacts of the crystal system. [2] Thus, variations<br />

<strong>in</strong> crystall<strong>in</strong>e materials composed of identical molecules, such as polymorphs,<br />

typically show unique THz vibrational spectra due to their dist<strong>in</strong>ct three-dimensional<br />

structures.<br />

Aspir<strong>in</strong> exhibits a fasc<strong>in</strong>at<strong>in</strong>g and perplex<strong>in</strong>g structural chemistry possess<strong>in</strong>g two<br />

polymorphs (form I and form II). [3] Exemplarily, we have chosen this ubiquitous<br />

compound to develop a new procedure prob<strong>in</strong>g the phenomenon of polymorphism by<br />

THz-TDS spectroscopy. Both, form I and form II, were synthesized and def<strong>in</strong>ed by Xray<br />

powder diffraction. [3] Subsequently, THz-TDS has been applied to identify both<br />

polymorphs of Aspir<strong>in</strong> provid<strong>in</strong>g structural <strong>in</strong>formation of the molecules as well. The<br />

observed THz features were compared to far-IR measurements and the f<strong>in</strong>al results<br />

were verified theoretically by DFT calculations.<br />

Scheme 1. Elucidat<strong>in</strong>g the polymorphism of Aspir<strong>in</strong> us<strong>in</strong>g THz spectroscopy.<br />

[1]<br />

a) S. L. Dexheimer (Ed.), Terahertz Spectroscopy - Pr<strong>in</strong>ciples and Applications, Taylor<br />

Francis Ltd., Boca Raton, Florida, 2008; b) Y.-C. Shen, Int. J. Pharm. 2011, 417, 48-60; c) R.<br />

M. Smith, M. A. Arnold, Appl. Spec. Rev. 2011, 46(8), 636-679.<br />

[2]<br />

M. D. K<strong>in</strong>g, E. A. Davis, T. M. Smith, T. M. Korter, J. Phys. Chem. A 2011, 115, 11039-<br />

11044.<br />

[3]<br />

a) A. D. Bond, CrystEngComm 2012, 14, 2363-2366; b) A. D. Bond, K. A. Solanko, S.<br />

Parsons, S. Redder, R. Boese, CrystEngComm 2011, 13, 399-401; c) A. D. Bond, R. Boese, G.<br />

R. Desiraju, Angew. Chem. 2007, 119, 625-630.<br />

288 Saturday 9:00 - 11:30 Poster 231


The <strong>in</strong>fluence of the reactants flow through the<br />

reaction-stripp<strong>in</strong>g column on the 1,3-dichloropropan-2-ol<br />

dehydrochlor<strong>in</strong>ation process<br />

Anna Krzyżanowska, Eugeniusz Milchert<br />

Institute of Organic Chemical Technology –<br />

West Pomeranian University Of Technology – Pułaski Str. 10 – Szczec<strong>in</strong> – POL<br />

akrzyzanowska@zut.edu.pl<br />

As a result of 1,3-dichloropropan-2-ol dehydrochlor<strong>in</strong>ation reaction epichlorohydr<strong>in</strong> is<br />

obta<strong>in</strong>ed. Epichlorohydr<strong>in</strong> is an important <strong>in</strong>termediate ma<strong>in</strong>ly use <strong>in</strong> the production<br />

of epoxy res<strong>in</strong>s. [1]<br />

Commercially epichlorohydr<strong>in</strong> is manufactured by react<strong>in</strong>g allyl chloride with chlor<strong>in</strong>e–water<br />

to obta<strong>in</strong> a mixture of chlorohydr<strong>in</strong>s, which are then treated with milk<br />

of lime to produce epichlorohyd<strong>in</strong>. [2] Nowadays, last for research on the receipt of<br />

epichlorohydr<strong>in</strong> from glycerol. This process based on the conversion of glycerol to<br />

dichlorohydr<strong>in</strong>s (ma<strong>in</strong>ly 1,3-dichloropropan-2-ol), and then dehydrochlor<strong>in</strong>ation to<br />

epichlorohydr<strong>in</strong> (the GTE process). [3] In the literature, there are no reports concern<strong>in</strong>g<br />

the process parameters of production of epichlorohydr<strong>in</strong> from 1,3-dichloropropan-<br />

2-ol and the methods of realization of technological process itself.<br />

The aim of doctoral thesis is study on the <strong>in</strong>fluence of technological parameters on<br />

the cont<strong>in</strong>uously dehydrochlor<strong>in</strong>ation process <strong>in</strong> the reaction-stripp<strong>in</strong>g column. One<br />

of this parameters is flow of 88 wt % aqueous solution of 1,3-dichloropropan-2-ol and<br />

10 wt % milk of lime. The total reactants flow was changed (from 12.1 cm 3 /m<strong>in</strong><br />

to 70.0 cm 3 /m<strong>in</strong>) and the <strong>in</strong>fluence on the selectivity to the epichlorohydr<strong>in</strong> and<br />

1,3-dichloropropan-2-ol conversion was studied.<br />

Increas<strong>in</strong>g the summary flow rate of reactants <strong>in</strong> the range of 12.1 to 70.0 cm 3 /m<strong>in</strong>, at<br />

a constant flow of steam (4.3 dm 3 /m<strong>in</strong>), reduces the conversion of 1,3-dichloropropan-<br />

2-ol from about 90% to 80%. The selectivity of epichlorohydr<strong>in</strong> is constant and is<br />

approximately 99%. At summary total flow of reactants which is 70.0 cm 3 /m<strong>in</strong>, the<br />

flood<strong>in</strong>g of column is occur.<br />

[1]<br />

P. Czub, Z. Bończa-Tomaszewski, P. Penczek, J. Pielichowski.<br />

epoksydowych. PWN, Warsaw, 2002, 24-25.<br />

Chemia i technologia żywic<br />

[2]<br />

E. Grzywa, J. Molenda.<br />

2008, 278-280.<br />

Technologia podstawowych syntez organicznych. WNT, Warsaw,<br />

[3]<br />

B.M Bell, J.R. Briggs, Clean Journal, 2008, 36(8), 657-661.<br />

Poster 232 Saturday 9:00 - 11:30 289


Determ<strong>in</strong>ation of folic acid and its major derivatives by<br />

capillary electrophoresis<br />

Justyna Stachniuk, Radoslaw Dalkowski, Barbara Krawczyk, Dom<strong>in</strong>ik Szczukocki,<br />

Robert Zakrzewski<br />

Inorganic and Analytical Chemistry – University of Lodz, Faculty of Chemistry –<br />

Tamka 12 – Lodz – POL<br />

stachniuk.justyna@wp.pl<br />

Folic acid (FA) is the simplest naturally occurr<strong>in</strong>g water soluble vitam<strong>in</strong> and most<br />

stable form of folate, which is essential for humans. Mammals cannot synthesize folate<br />

by themselves so it should be supplied with food. Folic acid has different important<br />

functions <strong>in</strong> the human body while it is not biologically active. All the biological<br />

functions of FA are performed by tetrahydrofolic acid (FH4) and other derivatives<br />

which are generated <strong>in</strong> the presence of dihydrofolate reductase (DHFR). This FH4<br />

is the ma<strong>in</strong> circulat<strong>in</strong>g form of folate which plays a major role <strong>in</strong> the red blood cells<br />

synthesis and tissue development. This compound also facilitates the s<strong>in</strong>gle carbon<br />

transfer reaction for the synthesis of basic constituents of DNA and RNA and the<br />

production of methion<strong>in</strong>e from homocyste<strong>in</strong>e. The supplementation of FA prevents<br />

sp<strong>in</strong>a bifida and related neural tube birth defects.<br />

Methotrexate (MTX) is an analog of folic acid. It is a potent FA antagonist which<br />

acts as an <strong>in</strong>hibitor of DHFR lead<strong>in</strong>g to DNA damage and cell death. Dur<strong>in</strong>g the<br />

last-half century MTX has been widely used <strong>in</strong> large doses for the treatment of acute<br />

lymphoblastic leukemia, as an anti-<strong>in</strong>flammatory and immunosuppressive drug, <strong>in</strong><br />

low doses <strong>in</strong> the treatment of rheumatoid arthritis and other diseases. Today, due<br />

to its antiproliferate activity, MTX is ma<strong>in</strong>ly used <strong>in</strong> the treatment of leukemia,<br />

lymphomas as well as certa<strong>in</strong> solid tumors. As a chemotherapeutic drug for tumors,<br />

methotrexate is usually used <strong>in</strong> high doses, which causes same side effects such as<br />

vomit<strong>in</strong>g, myelosuppression, hepatotoxicity, nephrotoxicity and neurotoxicity. That<br />

is why, high doses of MTX are always followed by fol<strong>in</strong>ic acid (FNA) rescue lead<strong>in</strong>g<br />

to an <strong>in</strong>crease of reduced folates <strong>in</strong> the cellular concentration.<br />

Due to the importance of FA, toxic side effects of MTX and rescue value of FNA, their<br />

concentration <strong>in</strong> nutrition supplements, pharmaceutical preparations and plasma or<br />

ur<strong>in</strong>e should be regularly monitored. In literature several analytical methods, <strong>in</strong>clud<strong>in</strong>g<br />

HPLC and CE, can be found to quantify mentioned compounds separately. [1,2]<br />

These separation techniques are powerful due to their high resolution, high efficiency,<br />

rapid separation of analytes and m<strong>in</strong>imum operation cost. Thus, <strong>in</strong> this study we<br />

evaluate and validate a reliable CE method with UV detection for measur<strong>in</strong>g the<br />

concentration of FA, FNA and MTX <strong>in</strong> biological samples. The start<strong>in</strong>g conditions<br />

for the development of these compounds were calculated from the CE conditions of<br />

a validated method for some organic acids. [3] The method was optimized by test<strong>in</strong>g<br />

the follow<strong>in</strong>g parameters: the used buffer concentration and pH, time of <strong>in</strong>jection and<br />

temperature.<br />

[1]<br />

E. Decon<strong>in</strong>ck, S. Crevits, P. Baten, P. Courselle, J. De Beer, J. Pharm. Biomed. Anal. 2011,<br />

54, 995-1000.<br />

[2]<br />

S. Zhao, H. Yuan, Ch. Xie, D. Xiao, J. Chromatogr. A 2006, 1107, 290-293.<br />

[3]<br />

I. S. L. Lee, M. C. Boyce, M. C. Breadmore, Food chemistry 2011, 127, 797-801.<br />

290 Saturday 9:00 - 11:30 Poster 233


Calcium Fructoborate Influence on Inflammation<br />

Anca-Mihaela Bulearca, Andrei Bita, Romulus Ion Scorei<br />

research department –<br />

Bioboron Research Institute from Natural Research Ltd., Craiova, Dolj, Romania –<br />

Strada A.I.Cuza, nr. 15, bloc Patria, sc.B, ap.11, etaj 2, Craiova, Dolj, Romania –<br />

Craiova, Dolj County – ROU<br />

ancutabulearca@yahoo.com<br />

Several population-based cl<strong>in</strong>ical studies have shown that the level of C-reactive prote<strong>in</strong><br />

(CRP), an immune recognition prote<strong>in</strong>, is a sensitive marker of <strong>in</strong>flammation.<br />

Calcium fructoborate (CF) is a sugar-borate ester (SBE), patented complex of calcium,<br />

fructose and boron found naturally <strong>in</strong> fresh and dried fruits, vegetables and<br />

herbs, and w<strong>in</strong>e. Published cl<strong>in</strong>ical researches <strong>in</strong>dicate that CF significantly reduces<br />

serum levels of CRP <strong>in</strong> humans, suggest<strong>in</strong>g this unique plant-m<strong>in</strong>eral complex controls<br />

the <strong>in</strong>flammation.<br />

Poster 234 Saturday 9:00 - 11:30 291


Design, Synthesis and Biological Study of<br />

4-(Polyfluoroalkyl)-1,2-dihydropyrazolo[3,4-b]pyrid<strong>in</strong>-3-ones<br />

and correspond<strong>in</strong>g Nucleosides - new<br />

6-Polyfluoroalkyl-conta<strong>in</strong><strong>in</strong>g Pur<strong>in</strong>e Isosters as potential<br />

Drug-like Scaffolds<br />

L<strong>in</strong>da Supe ∗ , Robert Begunk † , Jan<strong>in</strong>e Hussner † , Henriette Meyer zu Schwabedissen † ,<br />

Katr<strong>in</strong> Sternberg † , Viktor O. Iaroshenko ∗<br />

∗ Institut für Chemie – Universität Rostock – Albert-E<strong>in</strong>ste<strong>in</strong> Str. 3a – Rostock – GER<br />

† Institut für Biomediz<strong>in</strong>ische Technik – Universität Rostock –<br />

Friedrich-Barnewitz-Straße 4 – Rostock – GER<br />

l<strong>in</strong>dasupe@gmail.com<br />

Nucleosides furnished with fluor<strong>in</strong>e functionality either <strong>in</strong> sugar or <strong>in</strong> the heterocyclic<br />

part take a special place among biologically active molecules. Development of fluor<strong>in</strong>ated<br />

nucleosides became the result of the extensive antiviral and anticancer research<br />

stimulated by emergence of acquired immunodeficiency syndrome (AIDS) and tumours.<br />

To date there are known several marketed drugs so called fluor<strong>in</strong>ated pur<strong>in</strong>e<br />

and pyrimid<strong>in</strong>e antimetabolites cl<strong>in</strong>ically broadly used for the treatment numerous of<br />

cancers and viral <strong>in</strong>fections. [1]<br />

In this work performed reactions <strong>in</strong>clude synthesis of 1H -pyrazolo[3,4-b]pyrid<strong>in</strong>-3ones<br />

3 and correspond<strong>in</strong>g nucleosides 4 (Fig.1). Besides peracylated ribofuranose,<br />

correspond<strong>in</strong>g glycose and rhamnose derivatives were used giv<strong>in</strong>g accord<strong>in</strong>g nucleosides<br />

<strong>in</strong> good to excellent yields. Catalytic reduction of pyrid<strong>in</strong>e r<strong>in</strong>g 3 was carried<br />

out successfully.<br />

Prelim<strong>in</strong>ary biological evaluation library of more than 150 compounds, and subsequent<br />

optimization by the additional hit-to-lead study resulted <strong>in</strong> the identification<br />

of several representatives with strong antagonistic action on human smooth muscle<br />

cells. Lead compounds LS 009 and LS 057 are now under study as novel, cell-selective<br />

drug-candidate for endovascular implants.<br />

Fig. 1. Synthesis of perfluoralkyl group conta<strong>in</strong><strong>in</strong>g pur<strong>in</strong>e-like scaffolds.<br />

[1] (a) K. L. J. Kirk, Fluor. Chem. 2006, 127, 1013-1029; (b) W. K. J. Hagmann, Med. Chem.<br />

2008, 4359-4369; (c) V. Gouverneur, K. Müller, Fluor<strong>in</strong>e <strong>in</strong> Pharmaceutical and Medic<strong>in</strong>al<br />

Chemistry, Imperial College Press 2012, ISBN-10: 1-84816-634-6; (d) P. Shah, A. D. J. Westwell,<br />

Enzyme Inhib. Med. Chem, 2007, 22, 527–540; (e) P. Liu, A. Sharon, C. K. J. Chu, Fluor.<br />

Chem. 2008, 129, 743-766; (f) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.<br />

Rev. 2008, 37, 320-330.<br />

292 Saturday 9:00 - 11:30 Poster 235


PNA/PNA Recognition Mediated Ligation Strategy<br />

Apply<strong>in</strong>g a Photosensitive L<strong>in</strong>ker<br />

Cornelia H. Panse, Stephen Middel, Ulf Diederichsen<br />

Institute of Organic and Biomolecular Chemistry – Georg-August-University Gött<strong>in</strong>gen –<br />

Tammannstr. 2 – Gött<strong>in</strong>gen – GER<br />

cpanse@gwdg.de<br />

The photochemical properties of o-nitrobenzene compounds are known for more than<br />

hundred years, [1] whereas photocleavable groups based on this concept have been<br />

<strong>in</strong>troduced <strong>in</strong> the 1960s. [2] S<strong>in</strong>ce then, photodeprotection and cleavage are well established<br />

<strong>in</strong> various fields of research. [3] Our aim is to use the photocleavable unit to<br />

cleave PNA oligomers after these oligomers served <strong>in</strong> a ligation reaction. PNA/PNA<br />

recognition facilitates nearly unlimited orthogonal ligation sites (Scheme 1). Here<strong>in</strong>,<br />

PNA covalently attached to the peptide br<strong>in</strong>gs the functionalized centres of the<br />

two peptides <strong>in</strong> close proximity by PNA/PNA base pair recognition. Follow<strong>in</strong>g the<br />

PNA-mediated peptide ligation the PNA strands need to be cleaved off us<strong>in</strong>g the onitrobenzene<br />

derivate. For this purpose a photocleavable l<strong>in</strong>ker was synthesized based<br />

on the 3,4-dimethylnitrobenzene structure, which is known to have enhanced quantum<br />

yields and photon absorption properties compared to the unsubstituted nitrobenzene<br />

derivative. [4] For functionalization with PNA an ethyne moiety was <strong>in</strong>troduced <strong>in</strong><br />

benzylic position of the nitrobenzene r<strong>in</strong>g. [5] In prelim<strong>in</strong>ary experiments it was shown<br />

that the photolabile group at the N -term<strong>in</strong>us of a peptide was uncaged with<strong>in</strong> 30 m<strong>in</strong>utes<br />

of UV exposure. Furthermore, functionalization with a res<strong>in</strong> bound PNA strand<br />

apply<strong>in</strong>g copper mediated click chemistry is possible. In near future PNA-mediated<br />

ligation experiments will be explored.<br />

Scheme 1: Strategy for the PNA/PNA mediated ligation us<strong>in</strong>g a photocleavable<br />

auxiliary.<br />

[1] P. Silber, G. Ciamician, Chem. Ber. 1901, 34, 2040.<br />

[2] A. Patchornik, B. Amit, R. B. Woodward, J. Am. Chem. Soc. 1970, 92, 6333.<br />

[3] C. Brieke, F. Rohrbach, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2012, 51, 8446.<br />

[4] K. Schaper, M. Et<strong>in</strong>ski, T. Fleig, Photochem. Photobiol. 2009, 85, 1075.<br />

[5] J. A. Baccile, M. A. Morrell, R. M. Falotico, B. T. Milliken, D. L. Drew, F. M. Rossi,Tetrahedron<br />

Lett. 2012, 53, 1933.<br />

Poster 236 Saturday 9:00 - 11:30 293


HPLC screen<strong>in</strong>g and evaluation of antioxidative capacity of<br />

Hylotelephium spectabile (Boreau) H. Ohba x telephium (L.)<br />

H.Ohba leaf and flower extracts, fractions and their<br />

hydrolysates<br />

Snezana Jovanovic ∗ , Goran Petrovic ∗ , Bojan Zlatkovic † , Aleksandra Djordjevic ∗ ,<br />

Olga Jovanovic ∗ , Vesna Stankov-Jovanovic ∗ , Violeta Mitic ∗ , Marija Ilic ∗ ,<br />

Gordana Stojanovic ∗<br />

∗ Department of Chemistry – University of Niš, Faculty of Sciences and Mathematics –<br />

Visegradska 33 – Nis – SRB<br />

† Department of Biology and Ecology –<br />

University of Niš, Faculty of Sciences and Mathematics – Visegradska 33 – Nis – SRB<br />

snezana_chem@yahoo.com<br />

Hylotelephium genus is well-known due to a wide range of pharmacological effects<br />

(anti-<strong>in</strong>flammatory, anti-radiation, antiviral, anticancer, etc.). Leaf juice locally heals<br />

wound, sk<strong>in</strong> disease and spots, and relieves the pa<strong>in</strong> caused by cold to the ear. Investigated<br />

plant, Hylotelephium spectabile (Boreau) H. Ohba x telephium (L.) H.Ohba,<br />

a taxon of hybrid orig<strong>in</strong> is grown as an ornamental and medic<strong>in</strong>al plant across Serbia.<br />

Ch<strong>in</strong>a and Japan are natural habitats of H. spectabile (Autumn Joy, Ice plant) while<br />

H. telephium (Orp<strong>in</strong>e, Livelong, Frog’s-stomach, Midsummer-men, Witch’s Moneybags,etc.)<br />

is native to Eurasia. Wide use of plant <strong>in</strong> traditional medic<strong>in</strong>e <strong>in</strong>duced our<br />

<strong>in</strong>terests to exam<strong>in</strong>e chemical composition and antioxidative activity of plant MeOH<br />

extracts, its fractions and hydrolysates. Experimental work <strong>in</strong>cluded preparation of<br />

fresh leaves and flowers MeOH extracts and liguid-liguid partition of each extract to<br />

obta<strong>in</strong> hexane, EtOAc and BuOH fractions. Except hexane fraction, MeOH extracts<br />

and theirs fractions were hydrolysed. HPLC chromatograms showed that extracts<br />

conta<strong>in</strong> mostly quercet<strong>in</strong> and kaempferol glycosides, as confirmed by the composition<br />

of hydrolysates whose ma<strong>in</strong> components were quercet<strong>in</strong> and kaempferol. Evaluations<br />

of antioxidant activity were done by apply<strong>in</strong>g the follow<strong>in</strong>g assays: DPPH assay,<br />

ABTS assay and Total reduc<strong>in</strong>g power assay (Fe 3+ to Fe 2+ ). Additionally total<br />

flavonoid content (based on flavonoid aff<strong>in</strong>ity to form complex with AlCl3 ) and total<br />

phenols (by Fol<strong>in</strong>-Ciocalteu reagent based on reduction of Mo 6+ to Mo 5+ ) were<br />

determ<strong>in</strong>ed. Flower EtOAc fraction showed best activity for all performed assays.<br />

Leaf samples have lower activity then correspond<strong>in</strong>g flower samples. Flower samples<br />

(EtOAc, BuOH fractions and their hydrolysates) are better DPPH radical and ABTS<br />

radical cation scavengers than rut<strong>in</strong>, exclud<strong>in</strong>g BuOH fraction aga<strong>in</strong>st ABTS radical<br />

cation. In non hydrolysed samples (mgml −1 ) values for total flavonoid content,<br />

expressed as rut<strong>in</strong> equivalents, was ranged from 57.20 to 121.33 µgml −1 and <strong>in</strong> hydrolysed<br />

from 101.98 to 539.16 µgml −1 . Range values of total phenol content (gallic<br />

acid equivalents), for non hydrolysed samples was from 53.33 to 960.00 µgml −1 and<br />

for hydrolysed samples from 173.33 to 1946.67 µgml −1 .<br />

Acknowledgements: The research was supported by the Serbian M<strong>in</strong>istry of Education,<br />

Science and Technology Development (Grant no 172047).<br />

Keywords: Hylotelephium spectabile (Boreau) H. Ohba x telephium (L.) H.Ohba,<br />

flavonoids, HPLC, antioxidative activity<br />

294 Saturday 9:00 - 11:30 Poster 237


Location of tetraarylporphyr<strong>in</strong> <strong>in</strong> sterically stabilized<br />

liposomes<br />

Natalia Szydłowska, Monika Dzieciuch, Mariusz Kepczynski, Maria Nowakowska<br />

Faculty of Chemistry – University – Ingardena 3 – Krakow – POL<br />

nszydlow@wp.pl<br />

The aim of our studies was to determ<strong>in</strong>e partition<strong>in</strong>g of tetraarylporphyr<strong>in</strong> (mTHPP)<br />

to sterically stabilized liposomes (SSL). Liposomes are spherical vesicles formed by<br />

some amphiphilic compounds, e.g., phosphatidylchol<strong>in</strong>es and are considered as a<br />

model of biological membranes. Incorporation of lipids with covalently attached<br />

poly(ethylene glycol) (PEG) <strong>in</strong>to liposomal bilayer membranes causes significant stabilization<br />

of liposome suspensions, prevents their aggregation and <strong>in</strong>hibits prote<strong>in</strong><br />

and cellular <strong>in</strong>teractions with liposomes thereby considerably prolong<strong>in</strong>g their blood<br />

circulation time. These vesicles are known as pegylated or SSL liposomes and are applied<br />

as effective drug delivery supports. [1,2] The <strong>in</strong>teractions between mTHPP and<br />

SSL were studied us<strong>in</strong>g fluorescence methods. POPC liposomes conta<strong>in</strong><strong>in</strong>g one of the<br />

quenchers were prepared by sonication. [3] A series of doxyl-sp<strong>in</strong> labeled molecules:<br />

3β-doxyl-5α-cholestane (CSL), 5-doxyl stearic acid (5-SASL) or 16-doxyl stearic acid<br />

(16-SASL) was used <strong>in</strong> the measurements. The f<strong>in</strong>al concentration ratio between<br />

POPC and the quencher <strong>in</strong> the sample was 80:20. The vertical localization of the fluorophore<br />

<strong>in</strong> a membrane was calculated accord<strong>in</strong>g to the parallax method. The basic<br />

idea of parallax method is to compare the amount of fluorescence quench<strong>in</strong>g caused<br />

by quenchers which are located at two different depths <strong>in</strong> the bilayer. [4] mTHPP was<br />

quenched mostly by CSL and 16-SASL. The shallow position of mTHPP <strong>in</strong> the pegylated<br />

membrane <strong>in</strong>dicates that the porphyr<strong>in</strong> tends to escape to the PEG layer. An<br />

additional method to obta<strong>in</strong> the <strong>in</strong>formation about the relative vertical depth location<br />

of membrane-bound fluorophores <strong>in</strong> a membrane is quench<strong>in</strong>g of the porphyr<strong>in</strong><br />

fluorescence with copper ions. Fluorescence quench<strong>in</strong>g is associated with a collisional<br />

quench<strong>in</strong>g constant, KSV, which is obta<strong>in</strong>ed from the Stern–Volmer equation. The<br />

KSV value for mTHPP <strong>in</strong> non-pegylated liposomes is much lower than for mTHPP <strong>in</strong><br />

pegylated liposomes, which suggests that the porphyr<strong>in</strong> <strong>in</strong> SSL is situated superficially<br />

<strong>in</strong> the bilayer.<br />

[1] M.C. Woodle, “Controll<strong>in</strong>g liposome blood clearance by surface-grafted polymers”, Adv. Drug<br />

Deliv. Rev. 1998, 32, 139-152.<br />

[2] S. Piperoudi, D. Fatouros, P. V. Ioannou, P. Frederik, S.G. Antimisiaris, “Incorporation of<br />

PEG-lipids <strong>in</strong> arsonoliposomes results <strong>in</strong> formation of highly stable arsenic-conta<strong>in</strong><strong>in</strong>g vesicles”,<br />

Chem. Phys. Lipids 2006, 139, 96-106.<br />

[3] M. Kepczynski, M. Kumorek, M. Stepniewski, T. Róg, B. Kozik, D. Jamróz, J. Bednar, M.<br />

Nowakowska, “Behavior of 2,6-Bis(decyloxy)naphthalene Inside Lipid Bilayer”, 2010.<br />

[4] A. Chattopadhyay, E. London, Biochemistry 1987, 26, 39.<br />

Poster 238 Saturday 9:00 - 11:30 295


Total Polyphenol, Flavonoid Contents and Antioxidant<br />

Capacity of Chokeberry<br />

Jovana N. Veljković, Jelena M. Brcanovic, Aleksandra N. Pavlovic, Snezana B. Tosic,<br />

Milan M. Stojkovic, Dusan Ð. Paunovic, Branka T. Stojanovic<br />

Department of Chemistry – University of Niš, Faculty of Sciences and Mathematics –<br />

Višegradska 33, 18000 Niš, Serbia – Niš – SRB<br />

jovanaveljkovic86@gmail.com<br />

The purpose of the present study was to evaluate small and high molecular phenolics,<br />

flavonoid and antioxidant activity of Aronia melanocarpa. Small berries such as black<br />

chokeberry (Aronia melanocarpa) represent one of the important sources of potential<br />

healthpromot<strong>in</strong>g phytochemicals because these fruits are rich <strong>in</strong> compounds with<br />

high antioxidant properties.The objective of our research was to evaluate the total<br />

polyphenol and flavonoid contents as well as antioxidant activity of five different<br />

products aronia <strong>in</strong> six different solvents.<br />

Total polyphenol content was determ<strong>in</strong>ed spectrophotometrically accord<strong>in</strong>g to the<br />

Fol<strong>in</strong>-Ciocalteu method (λ=760 nm), us<strong>in</strong>g gallic acid (GA) as a standard, and ranged<br />

from 66.68 mg/g (aronia dried tea, solvent acetone) to 4.25 mg/g (juce of aronia,<br />

solvent acetone). The total flavonoid content <strong>in</strong> selected chokeberry samples was determ<strong>in</strong>ed<br />

accord<strong>in</strong>g the alum<strong>in</strong>um chloride spectrophotometric method (λ=510 nm).<br />

Catech<strong>in</strong> was chosen as a standard and the results expressed <strong>in</strong> milligram catech<strong>in</strong><br />

equivalents per gram of extract (mg CE/g). Results are ranged from 52.2 mg/g (aronia<br />

dried tea, solvent acetone) to 3.52 mg/g (syrup, solvent water). DPPH radical scaveng<strong>in</strong>g<br />

activity, 2,2’-az<strong>in</strong>o-bis(3-ethylbenzthiazol<strong>in</strong>e-6-sulphonic acid) radical cation<br />

scaveng<strong>in</strong>g activity (ABTS), ferric reduc<strong>in</strong>g-antioxidant power (FRAP) and reduc<strong>in</strong>g<br />

power assay Fe(III) to Fe(II) (RP) were used to assess the antioxidant capacity (AC)<br />

of chokeberry. These assays, based on different chemical mechanisms, were selected<br />

to take <strong>in</strong>to account the wide variety and range of action of antioxidant compounds<br />

present <strong>in</strong> selected chokeberry samples. All samples showed antioxidant power. The<br />

results obta<strong>in</strong>ed <strong>in</strong> this work are generally consistent with literature data.<br />

This research was supported by the M<strong>in</strong>istry of Education, Science and Technological<br />

Development, grant number BI172047<br />

Keywords: total phenols, flavonoids, antioxidant capacity, chokeberry.<br />

296 Saturday 9:00 - 11:30 Poster 239


A D<strong>in</strong>uclear, Molecular Iron(II) Silicate with two High-Sp<strong>in</strong>,<br />

Square Planar FeO4 Units<br />

Denise P<strong>in</strong>kert ∗ , Serhiy Demeshko † , Fabian Schax ∗ , Beatrice Braun ∗ , Franc Meyer † ,<br />

Christian Limberg ∗<br />

∗ Institut für Chemie – Humboldt-Universität zu Berl<strong>in</strong> – Brook-Taylor-Str. 2 – Berl<strong>in</strong> –<br />

GER<br />

† Institut für Anorganische Chemie – Georg-August-Universität Gött<strong>in</strong>gen –<br />

Tammannstraße 4 – Gött<strong>in</strong>gen – GER<br />

denise.p<strong>in</strong>kert@chemie.hu-berl<strong>in</strong>.de<br />

For four ligand donor atoms surround<strong>in</strong>g a metal ion, tetrahedral and square planar<br />

ligand geometries have to be considered. The comparison of the ligand field stabilization<br />

energies of high-sp<strong>in</strong> and low-sp<strong>in</strong> configurations provides a rationale, why a<br />

certa<strong>in</strong> structure and electron configuration is stable and others are not. Square planar<br />

geometry implicates a large separation of the d x 2 −y 2 orbital from the rema<strong>in</strong><strong>in</strong>g<br />

d orbitals, which is beneficial if only those are filled, <strong>in</strong> particular if the ligand field is<br />

strong. Consequently, for metal ions with more than 4 d electrons and a square planar<br />

ligand geometry low-sp<strong>in</strong> configurations are preferred and compounds with high-sp<strong>in</strong><br />

configuration are rare.<br />

Recently Klüfers [1] et al. and Doerrer [2] et al. reported the first molecular compounds<br />

conta<strong>in</strong><strong>in</strong>g high-sp<strong>in</strong>, square planar FeO4 units which are not coord<strong>in</strong>ated by<br />

a macrocyclic ligand and discussed the prerequisites for this unusual structural motif.<br />

In our work, we set out employ<strong>in</strong>g the known tripodal organotrisilanol LH3 [3] as a<br />

ligand precursor which was reacted with iron(II)-triflate after deprotonation of the<br />

Si-OH groups with sodium methanolate. The result<strong>in</strong>g product conta<strong>in</strong>s two Fe II<br />

centers <strong>in</strong> square planar coord<strong>in</strong>ation spheres spanned by two trisiloxane ligands. The<br />

rema<strong>in</strong><strong>in</strong>g two negative charges are compensated by two sodium ions (additionally<br />

b<strong>in</strong>d<strong>in</strong>g Et2O co-ligands). [4] This compound extends the sparse knowledge <strong>in</strong> this<br />

field with regard to molecular chemistry to d<strong>in</strong>uclear compounds, to 6-membered<br />

chelate r<strong>in</strong>gs and also to silanolate ligands; it thus approaches the situation <strong>in</strong> the<br />

natural iron silicate Gillespite [5] or <strong>in</strong> certa<strong>in</strong> ceramics [6] where also square planar<br />

FeO4 units have been found. Overall for the first time edge-shar<strong>in</strong>g of FeO4 units has<br />

been observed.<br />

[1]<br />

X. Wurzenberger, H. Piotrowski, P. Klüfers, Angew. Chem. Int. Ed. 2011, 50, 4974-4978.<br />

[2]<br />

S. A. Cantalupo, S. R. Fiedler, M. P. Shores, A. L. Rhe<strong>in</strong>gold, L. H. Doerrer, Angew. Chem.<br />

Int. Ed. 2012, 51, 1000-1005.<br />

[3]<br />

M. Veith, A. Rammo, O. Schütt, V. Huch, Z. Anorg. Allg. Chem. 2010, 636, 1212-1221.<br />

[4]<br />

D. P<strong>in</strong>kert, S. Demeshko, F. Schax, B. Braun, F. Meyer, C. Limberg, Angew. Chem. Int. Ed.<br />

<strong>2013</strong>, accepted.<br />

[5]<br />

A. Pabst, Am. M<strong>in</strong>eral. 1943, 28, 372–390.<br />

[6]<br />

Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano,<br />

M. Ceretti, C. Ritter, W. Paulus, Nature 2007, 450, 1062-1065.<br />

Poster 240 Saturday 9:00 - 11:30 297


Alternative synthesis of surfactant KLE by 1,3-cycloaddition<br />

reaction<br />

Monica Violeta Cîrcu, Frank Ala<strong>in</strong> Nüesch, Dor<strong>in</strong>a Maria Opriş<br />

Functional polymers – EMPA – Ueberlandstrasse 129 – Dubendorf – SUI<br />

monica.circu@empa.ch<br />

KLE [poly(ethylene-co-butylene)-block-poly(ethylene oxide)] is an ideal surfactant for<br />

stabilization of monomer nanodroplets <strong>in</strong> <strong>in</strong>verse m<strong>in</strong>iemulsions and is commonly synthesized<br />

us<strong>in</strong>g Kraton liquid [polyethylene-co-butylene (PEB)] as macro<strong>in</strong>itiator <strong>in</strong><br />

ethylene oxide polymerization. [1] The disadvantage of this approach is that ethylene<br />

oxide is gaseous, therefor small scale experiments are not convenient to be implemented.<br />

We propose here an alternative route to synthesize KLE avoid<strong>in</strong>g use of gaseous<br />

ethylene oxide (Scheme 1). In the first step Kraton liquid (A), which represents the<br />

lipophilic part of the aimed surfactant C, was esterified with 4-pentynoic acid by us<strong>in</strong>g<br />

active ester chemistry. The hydrophilic part, B, of this surfactant was obta<strong>in</strong>ed by<br />

us<strong>in</strong>g commercial hydroxyl end functionalized polyethylene oxide (Mw = 2000 g/mol<br />

and Mw = 5000 g/mol). [2] The two build<strong>in</strong>g blocks A and B were covalently coupled<br />

together by so-called “click” chemistry.<br />

Scheme 1. Retrosynthetic scheme for obta<strong>in</strong><strong>in</strong>g KLE<br />

[1] A. Thomas, H. Schlaad, B. Smarsly, M. Antonietti, Langmuir 2003, 19, 4455-4459.<br />

[2] J. A. Opsteen, J. C. M. van Hest, Chem. Commun. 2005, 57-59.<br />

298 Saturday 9:00 - 11:30 Poster 241


Synthesis and Electrochemical Characterization of Cp*Ir<br />

Complexes Bear<strong>in</strong>g an Unsymmetrically Substituted<br />

Bipyrid<strong>in</strong>e Ligand<br />

Fanni Sypaseuth, Christoph Tzschucke<br />

Institut für Chemie und Biochemie - Organische Chemie – Freie Universität Berl<strong>in</strong> –<br />

Takustr. 3 14195 Berl<strong>in</strong> – Berl<strong>in</strong> – GER<br />

fannidaruny@gmail.com<br />

Bipyrid<strong>in</strong>es have been used as chelat<strong>in</strong>g ligands for a wide range of metal ions <strong>in</strong><br />

numerous different applications. [1] Synthesis and catalytic activity of Cp* iridium<br />

bipyrid<strong>in</strong>e complexes have been studied <strong>in</strong> the context of different reactions such<br />

as transfer hydrogenation of ketones and dehydrogenative oxidation of alcohols. [2]<br />

However, the <strong>in</strong>fluence of unsymmetrical substitution patterns on the 2-,2’-bipyrid<strong>in</strong>e<br />

ligand has not been described. We previously developed the synthesis of unsymmetrically<br />

substituted bipyrid<strong>in</strong>es by palladium catalyzed direct arylation of pyrid<strong>in</strong>e<br />

N -oxides. [3] These bipyrid<strong>in</strong>es were employed as ligands <strong>in</strong> the preparation of<br />

[Cp*Ir(bpy)Cl]Cl complexes. The redox behaviour of these complexes was characterized<br />

by cyclic voltammetry. Initial results on their catalytic activity will be presented.<br />

[1] C. Kaes, A. Katz, M. W. Hosse<strong>in</strong>i, Chemical reviews 2000, 100, 3553.<br />

[2] a) S. Ogo, N. Makihara, Y. Kaneko, Y. Watanabe, Organometallics 2001, 20, 4903; b) T.<br />

Abura, S. Ogo, Y. Watanabe, S. Fukuzumi, Journal of the American Chemical Society 2003,<br />

125, 4149; c) Y. Himeda, N. Onozawa-Komatsuzaki, S. Miyazawa, H. Sugihara, T. Hirose, K.<br />

Kasuga, Chemistry 2008, 14, 11076; d) R. Kawahara, K. Fujita, R. Yamaguchi, Journal of the<br />

American Chemical Society 2012, 134, 3643; e) R. Kawahara, K. Fujita, R. Yamaguchi, Angew.<br />

Chem. Int. Ed. 2012, 51, 12790.<br />

[3] S. Duric, C. C. Tzschucke, Organic Letters 2011, 13, 2310.<br />

Poster 242 Saturday 9:00 - 11:30 299


Synthesis of Oligomeric Lign<strong>in</strong>-Analogs<br />

Ramona Pirwerdjan, Tillmann Kle<strong>in</strong>e, Carsten Bolm<br />

Organische Chemie – RWTH Aachen – Landoltweg 1 – Aachen – GER<br />

ramona.pirwerdjan@rwth-aachen.de<br />

In the last decades the valorization of lignocellulosic biomass has become a field of<br />

<strong>in</strong>creased <strong>in</strong>terest due to its relevance as a potential feedstock for fuels, chemicals and<br />

energy. [1] Lign<strong>in</strong>-valorization, <strong>in</strong> contrast to cellulose and hemicelluloses, however is<br />

still <strong>in</strong> an <strong>in</strong>itial phase. [2,3] Because of its great structural diversity, analyses of this<br />

amorphous biopolymer and its reaction products rema<strong>in</strong> rather challeng<strong>in</strong>g. For this<br />

reason, model compounds that mimic the properties of native lign<strong>in</strong> are of prime <strong>in</strong>terest,<br />

<strong>in</strong> order to make the studies on the lign<strong>in</strong> cleavage easier and comprehensible<br />

on a molecular level. [4] In this context, substrates conta<strong>in</strong><strong>in</strong>g β-O-4 l<strong>in</strong>kages are particularly<br />

relevant, as those bonds are most abundant <strong>in</strong> lign<strong>in</strong> (30-50%, depend<strong>in</strong>g on<br />

the wood type). [2,5]<br />

Recently, we described a diastereoselective preparation of dimeric β-O-4 dilignol<br />

model compounds. [5] In 2005 and 2008, Kishimoto and coworkers developed synthetic<br />

routes for the preparation of polymeric β-O-4 mono- and dilignol model compounds. [6]<br />

Based on these previous f<strong>in</strong>d<strong>in</strong>gs, we now present a protocol which allows the synthesis<br />

of oligomeric lign<strong>in</strong> analogs. The cha<strong>in</strong> length of these lign<strong>in</strong> related mono- and<br />

dilignols could be controlled to bear two to four β-O-4 l<strong>in</strong>kages.<br />

[1]<br />

a) F. Cherub<strong>in</strong>i, Energy Convers. Manage. 2010, 51, 1412-1421; b) J. C. Serrano-Ruiz, R.<br />

Luque, A. Sepúlveda-Escribano, Chem. Soc. Rev. 2011, 40, 5266-5281.<br />

[2]<br />

J. Zakzeski, P. C. Bruijn<strong>in</strong>cx, A. L. Jongerius, B. M. Weckhuysen, Chem.<br />

3552-3599.<br />

Rev. 2010, 110,<br />

[3]<br />

a) Y.-T. Cheng, J. Jae, J. Shi, W. Fan, G. W. Huber, Angew. Chem. Int. Ed. 2012, 51,<br />

1387-1390; b) G. W. Huber, A. Corma, Angew. Chem. Int. Ed. 2007, 46, 7184-7201; c) J. B.<br />

B<strong>in</strong>der, R. T. Ra<strong>in</strong>es, J. Am. Chem. Soc. 2009, 131, 1979-1985; d) A. Corma, S. Iborra, A.<br />

Velty, Chem. Rev. 2007, 107, 2411-2502.<br />

[4]<br />

For a recent degradation study, see: T. Kle<strong>in</strong>e, J. Buendia, C. Bolm, Green Chem. <strong>2013</strong>, 15,<br />

160-166.<br />

[5]<br />

J. Buendia, J. Mottweiler, C. Bolm, Chem. Eur. J. 2011, 17, 13877-13882.<br />

[6]<br />

a) T. Kishimoto, Y. Uraki, M. Ubukata, Org. Biomol. Chem. 2005, 3, 1067-1073; b) T.<br />

Kishimoto, Y. Uraki, M. Ubukata, Org. Biomol. Chem. 2006, 4, 1343-1347; c) T. Kishimoto,<br />

Y. Uraki, M. Ubukata, Org. Biomol. Chem. 2008, 6, 2982-2987.<br />

300 Saturday 9:00 - 11:30 Poster 243


Efficient [5+1]-Synthesis of 4-Qu<strong>in</strong>olones by Dom<strong>in</strong>o<br />

Am<strong>in</strong>ation / Conjugate Addition Reactions of<br />

1-(2-Fluorophenyl)prop-2-yn-1-ones with Am<strong>in</strong>es<br />

Satenik Mkrtchyan, Viktor Iaroshenko, Aleksander Vill<strong>in</strong>ger<br />

Faculty of Chemistry – University Rostock – Albert E<strong>in</strong>ste<strong>in</strong> str. 3a, 18059 Rostock –<br />

Rostock – GER<br />

satenikmk@yahoo.co.uk<br />

Functionalized qu<strong>in</strong>ol<strong>in</strong>es are attractive compounds for drug discovery s<strong>in</strong>ce many<br />

of them have been shown to exhibit excellent biological activities. Moreover, a<br />

very special position among all drugs conta<strong>in</strong><strong>in</strong>g a qu<strong>in</strong>ol<strong>in</strong>e core is occupied by the<br />

fluoroqu<strong>in</strong>olones. [1] Recent advances <strong>in</strong> the synthesis of pyrid<strong>in</strong>es, qu<strong>in</strong>ol<strong>in</strong>es and fused<br />

pyrid<strong>in</strong>es by [5+1]-cyclization strategies <strong>in</strong>clude several efficient methods for the construct<strong>in</strong>g<br />

of such heterocyclic scaffolds. [2] Hav<strong>in</strong>g this strategy <strong>in</strong> m<strong>in</strong>d Iaroshenko’s<br />

laboratory exanimated the cyclisation reaction of fluor<strong>in</strong>ated phenylpropyn-1-one 1<br />

with different am<strong>in</strong>es 2. Compounds 1 are available from commercially available<br />

acetylenes and fluor<strong>in</strong>ated benzoylchlorides by Sonogashira reaction. Us<strong>in</strong>g Li2CO3<br />

as base <strong>in</strong> DMA, a series of tandem [5+1]-cyclizations of am<strong>in</strong>es 2 with 1 was conducted,<br />

result<strong>in</strong>g the 4-qu<strong>in</strong>olones 3 with 73-89 % yields (Figure 1). [3] When acetylenes<br />

1 conta<strong>in</strong><strong>in</strong>g a second fluor<strong>in</strong>e atom <strong>in</strong> the molecule were <strong>in</strong>vestigated, we have observed<br />

an <strong>in</strong>terest<strong>in</strong>g phenomenon. In the case when the second fluor<strong>in</strong>e was located<br />

<strong>in</strong> ortho- or para- position to the carbonyl group it was substituted by an am<strong>in</strong>e to<br />

give the am<strong>in</strong>o-substituted qu<strong>in</strong>olones 4. However, the substrates 1 with the second<br />

fluor<strong>in</strong>e <strong>in</strong> meta-position were not prone to react with am<strong>in</strong>es and <strong>in</strong> this case the<br />

reaction resulted <strong>in</strong> 4-qu<strong>in</strong>olones 3 conta<strong>in</strong><strong>in</strong>g the fluor<strong>in</strong>e group <strong>in</strong> the position-6.<br />

Nevertheless, dur<strong>in</strong>g this <strong>in</strong>vestigation we have encountered with the fact that the<br />

double-substitution occurred only with aliphatic am<strong>in</strong>es. The application of anil<strong>in</strong>es<br />

under our standard reaction conditions did not result <strong>in</strong> substitution of the second<br />

fluoride group. However, this result provided us the possibility to use some products<br />

3 to substitute the second activated fluor<strong>in</strong>e atom by aliphatic am<strong>in</strong>es to deliver different<br />

qu<strong>in</strong>olones 4. Moreover, the mechanism of this transformation was <strong>in</strong>vestigated<br />

and a number of <strong>in</strong>termediates was isolated and identified. [3]<br />

Figure 1. Synthesis of functionated 4-qu<strong>in</strong>ol<strong>in</strong>es<br />

[1]<br />

R. B. Silverman, The organic chemistry of drug design, and drug action (Second Edition),<br />

Elsevier Academic Press, 2004, 617, ISBN 0-12-643732-7.<br />

[2]<br />

a) D. Craig, G. D. Henry, Tetrahedron<br />

Lett. 2005, 46, 2559-2562; b) T. Harschneck, S. F. Kirsch, J. Org. Chem. 2011, 76,<br />

2145-2156.<br />

[3]<br />

V. O. Iaroshenko, S. Mkrtchyan, A. Vill<strong>in</strong>ger, Synthesis <strong>2013</strong>, DOI: 10.1055/s-<br />

0032-1316826.<br />

Poster 244 Saturday 9:00 - 11:30 301


Alternative method for blood alcohol determ<strong>in</strong>ation by<br />

proton -NMR – Development and validation<br />

El<strong>in</strong>a Zailer, Bernd Diehl<br />

Spectral Service AG – Spectral Service AG – Emil-Hoffmann-Straße 33 – 50996 Köln –<br />

GER<br />

el<strong>in</strong>a.zailer@googlemail.com<br />

Aims: The 50 - year - old methods of analyz<strong>in</strong>g blood alcohol (BAC) like headspace -<br />

gaschromatography and the enzymatic ADH can be supplemented by the alternative<br />

method of NMR spectroscopy us<strong>in</strong>g only one capillary blood drop with an equivalence<br />

of 20 µL. The aims of this method are the keep<strong>in</strong>g of the demands of the Guidel<strong>in</strong>es<br />

to determ<strong>in</strong>e the BAC for forensic purposes and the <strong>in</strong>troduction of a fast, precise<br />

and non - destructive BAC analysis with a m<strong>in</strong>imum volume of capillary full blood.<br />

Methods: The NMR method <strong>in</strong>volves the use of a solvent of maximum 1 mL D2O<br />

spiked with TMSP, and an <strong>in</strong>ternal standard <strong>in</strong> form of 20 µL DMS. The measurement<br />

occurs with the NMR spectroscopy (600 MHz) with fixed parameters.<br />

Results and Discussion: The volume of 20 µL capillary full blood is enough for the determ<strong>in</strong>ation<br />

of the BAC with the same accuracy like the “old” methods. The stability<br />

at different storage places, the repeatability, reproducibility, l<strong>in</strong>earity and accuracy<br />

confirmed by prepar<strong>in</strong>g calibration series with reference serum and whole blood are<br />

analyzed. Factors like personnel, chemicals, temperature, light and air humidity do<br />

not show any effects on the BAC results. A scientific dr<strong>in</strong>k<strong>in</strong>g test proves that <strong>in</strong>travenous<br />

and capillary blood shows the same BAC level.<br />

Conclusion: The dr<strong>in</strong>k<strong>in</strong>g test proves that a s<strong>in</strong>gle capillary blood drop is sufficient for<br />

a BAC determ<strong>in</strong>ation. A comparison of the BAC results of the forensic jurisprudence,<br />

measured by GC - HS and ADH, and of the alternative NMR – method demonstrates<br />

the accuracy of this method with real blood samples. A forensic usability with the<br />

specified limits can be met.<br />

Key words: blood, alcohol, BAC, NMR, spectroscopy<br />

302 Saturday 9:00 - 11:30 Poster 245


Explor<strong>in</strong>g what’s underneath -<br />

Sub-Surface AFM to locate Nanoparticles with<strong>in</strong> Polymer<br />

Soft Matter<br />

Bob-Dan Lechner ∗ , Eike-Christian Spitzner † , Adekunle Olubummo † , Matthias Schulz ‡ ,<br />

Wolfgang H. B<strong>in</strong>der ‡ , Robert Magerle † , Alfred Blume ∗<br />

∗ Physikalische Chemie – Mart<strong>in</strong>-Luther-Universität Halle-Wittenberg –<br />

Von-Danckelmann-Platz 4 – Halle an der Saale – GER<br />

† Chemische Physik – Technische Universität Chemniz – Reichenha<strong>in</strong>er Str. 70 –<br />

Chemnitz – GER<br />

‡ Makromolekulare Chemie – Mart<strong>in</strong>-Luther-Universität Halle-Wittenberg –<br />

Von-Danckelmann-Platz 4 – Halle an der Saale – GER<br />

bob-dan.lechner@chemie.uni-halle.de<br />

The <strong>in</strong>teractions of mixed systems of lipids and surface modified nanoparticles have<br />

<strong>in</strong>creased researchers <strong>in</strong>terest <strong>in</strong> the past decade. Modified nanoparticles are a valuable<br />

target system for a plenty of biological, biomedical and nano-technological issues<br />

requir<strong>in</strong>g the controllability and tunability of their mix<strong>in</strong>g abilities with<strong>in</strong> lipid membranes<br />

with focus on adsorption, b<strong>in</strong>d<strong>in</strong>g, dispersion and localization. [1] A powerful<br />

mean to <strong>in</strong>vestigate such nanoscopic systems are amplitude modulation atomic force<br />

microscopy (AM-AFM) techniques enabl<strong>in</strong>g visualization of nanostructures and characterization<br />

of key local mechanical properties, simultaneously. By <strong>in</strong>dent<strong>in</strong>g the soft<br />

material of the sample with the oscillat<strong>in</strong>g AFM tip a depth resolved map of mechanical<br />

properties can by ga<strong>in</strong>ed. Hard tissues like non-compressive CdSe nanoparticles<br />

can thus be visualized underneath the respective lipid/polymer surface. [2]<br />

The aim of this work is to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong> <strong>in</strong>teraction pr<strong>in</strong>ciples of CdSe nanoparticles<br />

with mixed lipid/polymer monolayers at the air water <strong>in</strong>terface or transferred films<br />

at solid Si substrates via AM-AFM. We focus on the organization and localization of<br />

the nanoparticles with<strong>in</strong> the monolayer thereby demonstrat<strong>in</strong>g that the nanoparticles<br />

surface modification plays a crucial role for the respective nanoparticle location with<strong>in</strong><br />

or at the <strong>in</strong>terface.<br />

Fig. 1. Location of functionalized CdSe nanoparticles with<strong>in</strong> mixed DPPC/<br />

PIB87-b-PEO17 monolayers; <strong>in</strong>teraction cartoon for hydrophobicly modified<br />

nanoparticles (left), AFM scan of a transferred layer at Si substrate (mid), localization of<br />

CdSe nanoparticle clusters with<strong>in</strong> polymer columns measured by AM-AFM (right).<br />

[1] a) A. Olubummo, M. Schulz, B.-D. Lechner, P. Scholtysek, K. Bacia, A. Blume, J. Kressler, W.<br />

H. B<strong>in</strong>der, ACS Nano 2012, 6 (10), 8713-8727; b) M. Schulz, D. Glatte, A. Meister, P. Scholtysek,<br />

A. Kerth, A. Blume, K. Bacia, W. H. B<strong>in</strong>der, Soft Matter 2011, 7, 8100.<br />

[1] E.-C. Spitzner, C. Riesch, R. Magerle, ASC Nano 2011, 5, 1, 315.<br />

Poster 246 Saturday 9:00 - 11:30 303


Composition and Chemistry of a Pd-Ni-Co alloy studied by<br />

HAXPES<br />

Julius Kühn<br />

6.8 Surface Analysis and Interfacial Chemistry – BAM – Unter den Eichen 44-46 –<br />

Berl<strong>in</strong> – GER<br />

julius.kuehn@bam.de<br />

The surface near region is very important for catalytic processes. Compositional<br />

changes, e.g. segregation of alloy constituents <strong>in</strong> states before and after hydrogen sulfide<br />

exposure was <strong>in</strong>vestigated by non-destructive chemical HAXPES depth profil<strong>in</strong>g.<br />

The HAXPES data are completed by results of AES provid<strong>in</strong>g data characteristic of<br />

the uppermost surface and EDX data characteristic of the bulk of the alloys.<br />

304 Saturday 9:00 - 11:30 Poster 247


Characteriz<strong>in</strong>g electrostatic <strong>in</strong>teractions for drug design<br />

purposes<br />

Marta Kulik ∗ , Anna Maria Goral † , Paul<strong>in</strong>a Maria Dom<strong>in</strong>iak † , Joanna Trylska ∗<br />

∗ Centre of New Technologies – University of Warsaw – Żwirki i Wigury 93 – Warsaw –<br />

POL<br />

† Faculty of Chemistry – University of Warsaw – Pasteura 1 – Warsaw – POL<br />

m.kulik@cent.uw.edu.pl<br />

Accurate tools to establish recognition patterns between small ligands and their receptor<br />

biomolecules are needed <strong>in</strong> order to improve drug design process. Electrostatic<br />

<strong>in</strong>teractions are often crucial <strong>in</strong> recognition of ligands b<strong>in</strong>d<strong>in</strong>g to nucleic acids (for<br />

example, <strong>in</strong> the case of am<strong>in</strong>oglycoside antibiotics target<strong>in</strong>g various RNA motifs). Reconstruct<strong>in</strong>g<br />

the electron density with the s<strong>in</strong>gle po<strong>in</strong>t charge models, as <strong>in</strong> classical<br />

molecular mechanics potential energy functions, lacks the accuracy of the multi-pole<br />

expansion approaches. The methodology that accounts for other than s<strong>in</strong>gle-po<strong>in</strong>t<br />

charge terms <strong>in</strong> the description of electrostatics was applied.<br />

The idea of University at Buffalo Databank (UBDB) [1] is based on the transferability<br />

of electron density parameters between atoms that are <strong>in</strong> chemically equivalent<br />

vic<strong>in</strong>ities. The UBDB parameters allow reconstruct<strong>in</strong>g the electron density from the<br />

experimental structural data even for large systems. The UBDB and the Exact Potential<br />

Multipole Method (EPMM) developed by Volkov [2] were applied to estimate<br />

the electrostatic energy of <strong>in</strong>teractions and its per-r<strong>in</strong>g contributions between RNA<br />

and am<strong>in</strong>oglycosides as the electrostatic effects dom<strong>in</strong>ate the b<strong>in</strong>d<strong>in</strong>g process. [3]<br />

Understand<strong>in</strong>g the amplitude of electrostatic <strong>in</strong>teractions between am<strong>in</strong>oglycosides<br />

and their ribosomal RNA target is necessary to <strong>in</strong>troduce am<strong>in</strong>oglycoside modifications<br />

that would enhance their b<strong>in</strong>d<strong>in</strong>g.<br />

[1] K.N. Jarzembska, P.M. Dom<strong>in</strong>iak, Acta Cryst. 2012, A68, 139-147.<br />

[2] A. Volkov, T. Koritsanszky, P. Coppens, Chem. Phys. Lett. 2004, 391, 170-175.<br />

[3] H. Wang, Y. Tor, Angew. Chem. 1998, 37, 109-111.<br />

The authors acknowledge support from the Foundation for Polish Science Team project (TEAM/2009-<br />

3/8) co-f<strong>in</strong>anced by European Regional Development Fund operated with<strong>in</strong> Innovative Economy<br />

Operational Programme.<br />

Poster 248 Saturday 9:00 - 11:30 305


Coord<strong>in</strong>ation Behavior and Spectroscopic Studies of<br />

Biologically Active Metal Complexes of Triterpene Acid.<br />

Khadija Shahid<br />

Riphah Institute of Pharmaceutical Sciences –<br />

Riphah International University, Islamabad – 7th Avenue, G-7/4 – Islamabad – PAK<br />

khadijajee@yahoo.com<br />

New metal complexes of triterpene acid were synthesized <strong>in</strong> stoichiometric ratio <strong>in</strong><br />

anhydrous toluene under the reflux yield the organometallic complexes [1] with general<br />

formula R4-nMLn(R= Me, n-Bu, Ph, and n= 2, 3 where M= Zn, Fe, Sn, Cu, Sb). All<br />

the complexes have been characterized by various spectroscopic methods (IR,1H,13C<br />

NMR) and atomic absorption spectroscopy. These compounds have also been screened<br />

for biological activities [2] to establish their significance.<br />

[1] (a) K. Shahid, S. Ali, S. Shahzadi, J. Coord. Chem, 2009, 62 (17), 2919-2926; (b) K. Shahid,<br />

S. Shahzadi, J. Serb. Chem. Soc. 2009, 74 (2), 141-154.<br />

[2] A. Rahman, M.I. Choudhary, W.J. Thomsen, Bioassay Techniques for Drug Development,<br />

Hardward Academic Press, Amsterdam 2001.<br />

Key words: Triterpene acid, Biological activity and Spectroscopy.<br />

306 Saturday 9:00 - 11:30 Poster 249


Tun<strong>in</strong>g Selectivity of Switchable Multicomponent<br />

Heterocyclizations <strong>in</strong>volv<strong>in</strong>g am<strong>in</strong>oazoles, salicylaldehydes<br />

and pyruvic acids<br />

Maryna Murlyk<strong>in</strong>a, Yana Sakhno, Valent<strong>in</strong> Chebanov<br />

Department of Heterocyclic Compounds Chemistry –<br />

State Scientific Institution “Institute for S<strong>in</strong>gle Crystals” NAS of Ukra<strong>in</strong>e –<br />

Len<strong>in</strong> ave. / 60 – Kharkiv – UKR<br />

mar<strong>in</strong>avladimirmur@gmail.com<br />

The <strong>in</strong>tense <strong>in</strong>terest <strong>in</strong> multicomponent heterocyclizations of am<strong>in</strong>oazoles, aldehydes<br />

and pyruvic acids is connected with the possibility of realization of several different reaction<br />

pathways depend<strong>in</strong>g on the reagents’ structure, type of solvent and catalyst. [1]<br />

It was also shown that the <strong>in</strong>troduction of OH-group <strong>in</strong> ortho-position of the aldehyde<br />

allows yield<strong>in</strong>g among several types of f<strong>in</strong>al compounds also oxygen-bridged<br />

structures. [2-4]<br />

The present work is dedicated to the tun<strong>in</strong>g selectivity of multicomponent reactions<br />

of am<strong>in</strong>oazoles, salicylaldehydes and pyruvic acid derivatives.<br />

It was shown that the control the direction of these three-component reactions can<br />

be carried out by vary<strong>in</strong>g the temperature condition with the help of non-classical<br />

activation methods (microwave and ultrasonic irradiation). It should be noted, that<br />

<strong>in</strong> comparison with ord<strong>in</strong>ary mechanical stirr<strong>in</strong>g, ultrasonication doesn’t <strong>in</strong>fluence on<br />

the reaction mechanism and direction and its effect comes to decreas<strong>in</strong>g of the reaction<br />

time for account of the effective mass transfer and homogenization.<br />

Scheme 1<br />

[1] V. A. Chebanov, K. A. Gura, S. M. Desenko, Top. Heterocycl. Chem. 2010, 23, 41-84.<br />

[2] Ya. I. Sakhno, S. V. Shishk<strong>in</strong>a, O. V. Shishk<strong>in</strong> et al., Mol. Divers. 2010, 14, 523-531.<br />

[3] N. Yu. Gorobets, Y. V. Sedash, K. S. Ostras et al., Tetrahedron Lett. 2010, 51, 2095-2098.<br />

[4] J. Svetlik, V. Kettmann, Tetrahedron Lett. 2011, 52, 1062-1066.<br />

Poster 250 Saturday 9:00 - 11:30 307


α, β, and ω<br />

Marko Popovic<br />

Faculty of chemistry, University of Belgrade – University of Belgrade – St.Trg 12 –<br />

Belgrade – SER<br />

popovic.pasa@gmail.com<br />

The proposed thermodynamic model of an biological system satisfies the follow<strong>in</strong>g<br />

caracteristics of a liv<strong>in</strong>g organism: the exchange of substance and energy with its<br />

surround<strong>in</strong>gs (open system); the property of growth, so that <strong>in</strong>put of matter <strong>in</strong>to<br />

the system is greater than the output; the membrane is semipermeable; the analyzed<br />

system requires energy and matter from outside for its growth; chemical reactions are<br />

go<strong>in</strong>g on <strong>in</strong> the system and complex structures are formed; it cont<strong>in</strong>uously changes its<br />

state; dur<strong>in</strong>g the change of state errors happen and accumulate over time; there is a<br />

mechanism which repairs the errors but it isn’t perfect; the liv<strong>in</strong>g system has two (or<br />

more) subunits; the subunits are differentiated and each has its role (which represents<br />

the differentiation of cells <strong>in</strong> complex organisms); the function of α subsystem is<br />

dependent on the function of β subsystem (because the catalyst DEF can be produced<br />

only <strong>in</strong> a specialized β cell). The subsystems α and β function as one entity αβ,<br />

surrounded by ω. Based on Schrod<strong>in</strong>ger’s [1] assumption supported by Ho [2] and<br />

Hansen [3] , as well as on the assumption of von Bertalanffy [4] that liv<strong>in</strong>g systems act<br />

as open thermodynamic systems, and on Prigog<strong>in</strong>e’s work [5,6] , the ag<strong>in</strong>g of liv<strong>in</strong>g<br />

systems is described. Ag<strong>in</strong>g of biological systems is directly related to the processes<br />

of life, and is described by thermodynamic equation which shows two tendencies: one<br />

to <strong>in</strong>crease the entropy and the other is an act of the organized biological mach<strong>in</strong>e<br />

to decrease the entropy. Ag<strong>in</strong>g is a consequence of imbalance between these two<br />

tendencies. It’s also concluded that because of the property of growth the <strong>in</strong>put<br />

and output of substance aren’t equal, because a part of the substance rema<strong>in</strong>s <strong>in</strong><br />

the system, as a consequence of that the system is <strong>in</strong> a quasi-steady state. This<br />

means that pressure, temperature, molarity and mol fractions are constant; while the<br />

quantity of substance and entropy of the system are variable.<br />

308 Saturday 9:00 - 11:30 Poster 251


Stereoselective modifications of salen-like ligands - chiral<br />

chelates and macrocycles<br />

Paweł Tokarz ∗ , Jarosław Lewkowski ∗ , Anna Krzyczmonik ∗ , Katarzyna Ślepokura † ,<br />

Tadeusz Lis †<br />

∗ Department of Organic Chemistry – University of Łódź – Ul. Tamka 12 – 91-403 Łódź –<br />

POL<br />

† Department of Chemistry – University of Wroclaw – Ul. F. Joliot-Curie 14 –<br />

Wrocław – POL<br />

paweltokarz.chem@gmail.com<br />

Compounds derived from 1,2 -diam<strong>in</strong>ocyclohexane (DACH ) play a crucial role <strong>in</strong> the<br />

modern chemistry of chiral synthesis. One of the most spectacular substances, derived<br />

from this simple am<strong>in</strong>e, are macrocyclic molecules that can be obta<strong>in</strong>ed by so-called<br />

cyclocondensation. [1] Such macrocycles have found numerous applications, only to<br />

mention a few - the asymmetric catalysis or the chiral recognition of biologically<br />

active agents. [2,3]<br />

Until now little is known about modified structures of DACH -based macromolecules,<br />

<strong>in</strong> particular, those conta<strong>in</strong><strong>in</strong>g lipophilic substituents. We have decided to provide<br />

a simple and stereoselective method of the <strong>in</strong>troduction of long carbon cha<strong>in</strong>s <strong>in</strong>to<br />

the macrocyclic moiety. We have used dialkyl phosphites as cha<strong>in</strong> carriers. In this<br />

way it was possible for us to <strong>in</strong>troduce two cha<strong>in</strong>s per one azometh<strong>in</strong>e bond. We<br />

developed a novel synthetic protocol apply<strong>in</strong>g use of sodium hydride which gave us<br />

diastereoisomeric ratios as high as 100:1:1 for acyclic model systems. In case of the<br />

large, cyclic systems the problem becomes more complex due to a number of possible<br />

isomeric products.<br />

Synthesis of lipophilically modified DACH -based macrocycles<br />

[1] N. E. Borisova, M. D. Reshetova, Y. A. Ustynyuk, Chem. Rev. 2007, 107, 46-79.<br />

[2] G. Zhou, Y. Cheng, L. Wang, X. J<strong>in</strong>g, F. Wang Macromolecules 2005, 38, 2148.<br />

[3] R. D. Hancock Pure Appl. Chem. 1986, 58, 1445-1452.<br />

Poster 252 Saturday 9:00 - 11:30 309


Dihydrogen-bonded complexes as active <strong>in</strong>termediates at<br />

acid mediated transformations of transition metal<br />

tetrahydroborates<br />

Igor E. Golub ∗ , Oleg A. Filippov † , Viktor P. Dyadchenko ∗ , Elena S. Shub<strong>in</strong>a †<br />

∗ Chemistry Department – M.V. Lomonosov Moscow State University –<br />

Len<strong>in</strong>skiye Gory 1-3 – Moscow – RUS<br />

† A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS RAS) –<br />

Vavilov Street 28 – Moscow – RUS<br />

seraph347@gmail.com<br />

The dihydrogen-bonded (DHB) complexes are known to form at the first step of<br />

proton-transfer reaction. These complexes previously <strong>in</strong>vestigated for different types<br />

of metal hydrides and hydrides of ma<strong>in</strong> group elements, but for metal tetrahydroborates<br />

study of <strong>in</strong>fluence <strong>in</strong>termolecular <strong>in</strong>teractions on chemical properties of such<br />

compounds.<br />

The mechanism of acid mediated transformation of transition metal tetrahydroborates<br />

was thoroughly studied by means of comb<strong>in</strong>ation of experimental (IR and NMR,<br />

190-300 K) and computational (DFT/M06) methods. Formation of DHB complexes<br />

as the first reaction step and their thermodynamic characteristic was established<br />

experimentally. By means of theoretical <strong>in</strong>vestigation possible coord<strong>in</strong>ation modes of<br />

DHB complexes were revealed. Despite of existence a large number of DHB different<br />

types (mono-, bi- and trifurcate complexes) and competition between these forms,<br />

only one type of DHB bifurkate complex with participation of term<strong>in</strong>al and bridge<br />

hydrides of tetrahydroborate-group is active <strong>in</strong>termediate of the reactions.<br />

Acknowledgment: This work was supported by Russian Foundation for Basic Research<br />

(project No 13-03-00604).<br />

310 Saturday 9:00 - 11:30 Poster 253


<strong>JungChemikerForum</strong> Aachen<br />

Jeanne Fronert, Peter Becker, Julian Kleemann<br />

Institutes of Chemistry – RWTH Aachen University – Landoltweg 1 – Aachen – GER<br />

jeanne.fronert@gmail.com<br />

The JCF Aachen is a group of 18 active members, who are Bachelor-, Master- or<br />

doctoral students. We meet regularly every four weeks to discuss new projects or<br />

just to meet each other for exchange <strong>in</strong> a casual atmosphere. We organize lectures<br />

that are ma<strong>in</strong>ly addressed to students. Furthermore we realize excursions to chemical<br />

companies. Another special event is our beachvolleyball tournament, that takes place<br />

every summer.<br />

In 2012 the follow<strong>in</strong>g events took place <strong>in</strong> Aachen:<br />

Lecture by Prof. Dr. Klaus Roth – “Vom ersten Bier zum Kater.”:<br />

To the “Tag der Chemie” of the RWTH Aachen University we <strong>in</strong>vited Prof. Dr.<br />

Klaus Roth to give an <strong>in</strong>terest<strong>in</strong>g and enterta<strong>in</strong><strong>in</strong>g lecture related to the <strong>in</strong>teraction<br />

of alcohol with the human body.<br />

Beachvolleyball Tournament:<br />

In July we arranged the annual beachvolleyball tournament with 20 teams and many<br />

spectators. With perfectly sunny weather, music and cold dr<strong>in</strong>ks we had a great<br />

day. After sports we enjoyed a barbecue <strong>in</strong> front of the chemistry department and<br />

decorated the w<strong>in</strong>ners of the tournament.<br />

Excursion to AIXTRON SE:<br />

In August we had the chance to visit AIXTRON SE, which is a lead<strong>in</strong>g provider<br />

of deposition equipment to the semiconductor <strong>in</strong>dustry and has been established <strong>in</strong><br />

Aachen. We listened to <strong>in</strong>terest<strong>in</strong>g presentations and we were given the chance to see<br />

how the deposition equipment is built up.<br />

Our plans for <strong>2013</strong>:<br />

In February a lecture will be held by Prof. Dr. Thomas Loetzbeyer – “Molekulare<br />

Küche - E<strong>in</strong> Experimentalvortrag über Gaudi, Genuss und Lebensfreude.”<br />

In the end of February we are go<strong>in</strong>g to conduct another excursion to LANXESS AG<br />

<strong>in</strong> Cologne.<br />

In March we will pay a visit to the pharmaceutical company Grünenthal GmbH.<br />

Furthermore we organize an experimental lecture <strong>in</strong> the summer term and want to<br />

organize a spr<strong>in</strong>g party afterwards.<br />

Another highlight will be the annual beachvolleyball tournament, that will take place<br />

<strong>in</strong> summer aga<strong>in</strong>.<br />

Poster 254 Saturday 9:00 - 11:30 311


<strong>JungChemikerForum</strong> Gießen<br />

Michael L<strong>in</strong>den ∗ , Rabea Dippel †<br />

∗ Institute of Organic Chemistry – Justus-Liebig-University – He<strong>in</strong>rich-Buff-R<strong>in</strong>g 58 –<br />

Giessen – GER<br />

† Institute of Physical Chemistry – Justus-Liebig-University – He<strong>in</strong>rich-Buff-R<strong>in</strong>g 58 –<br />

Giessen – GER<br />

jcf@chemie.uni-giessen.de<br />

S<strong>in</strong>ce the foundation of the JCF Gießen <strong>in</strong> 2005, the group of members has grown<br />

steadily with about ten of them be<strong>in</strong>g actively engaged. We regularly meet at the<br />

“JCF Stammtisch”, where we plan our events and discuss current topics, problems or<br />

just spend some quality time together.<br />

Lectures:<br />

Each Semester, we have the possibility to <strong>in</strong>vite special guests dur<strong>in</strong>g the ongo<strong>in</strong>g<br />

term of GDCh lectures. We highly appreciate guests who are talk<strong>in</strong>g about uncommon<br />

chemical topics, for example, “Supramolekulare Detektion von Sprengstoffen –<br />

Grundlagen und Anwendungen“ (Prof. Dr. Siegfried R. Waldvogel, Johannes Gutenberg<br />

Universität Ma<strong>in</strong>z); “Das Problem der nuklearen Entsorgung” (Prof. Horst Geckeis,<br />

Institut für Nukleare Entsorgung KIT).<br />

A special lecture was given by Prof. Richard Ernst <strong>in</strong> November 2010. The noble<br />

laureate gave the audience an extraord<strong>in</strong>ary example of <strong>in</strong>terdiscipl<strong>in</strong>ary work <strong>in</strong> his<br />

talk entitled: “Die <strong>in</strong>terkulturelle Passion e<strong>in</strong>es Naturwissenschaftlers: Tibetische<br />

Malkunst, Pigmentanalyse und Wissensvermittlung an tibetische Mönche”.<br />

Theme nights:<br />

Furthermore, we organize theme nights where we take a chemical view at different<br />

topics. For example:<br />

“Themenabend CSI: Chemiker suchen Indizien” Lecture: Dr. H. Wollersen,<br />

Dr. P. Weis<br />

“Berufse<strong>in</strong>stieg für Chemiker” and different lecturers from chemical companies, e. g.,<br />

Evonik, Heraeus, VAA.<br />

Excursions:<br />

So far, we have organized excursions to chemical companies close to Gießen, e. g.,<br />

Merck (Darmstadt), Seidel (Marburg/Fronhausen), ESA (Darmstadt), etc. In the<br />

summer of 2011, we arranged a three-day trip to Leipzig, where we met the JCF<br />

Leipzig and visited BELL and the department of chemistry at the university.<br />

In December 2010, we organized an excursion to BASF Coat<strong>in</strong>gs (Münster) together<br />

with the JCF Münster, followed by a jolly trip to the Christmas market.<br />

Other activities:<br />

In addition, we arrange a number sem<strong>in</strong>ars on different subjects (e.g., presentation<br />

techniques, career entry), and represent the JCF/GDCh at the “Hochschul<strong>in</strong>formationstag”<br />

and the “Studiene<strong>in</strong>führungswoche”.<br />

Together with the association “Vere<strong>in</strong> der Freunde der chem. Institute e.V.” we organize<br />

a regular barbecue to celebrate the end of the summer term.<br />

312 Saturday 9:00 - 11:30 Poster 255


Das JCF Halle<br />

Bob-Dan Lechner, Marlou Keller, Tobias Jost, Ludwig Riedel<br />

<strong>JungChemikerForum</strong> Halle – Mart<strong>in</strong>-Luther-Universität Halle-Wittenberg –<br />

Von-Danckelmann-Platz 4 – Halle (Saale) – GER<br />

jcfHalle@googlemail.com<br />

“Chemie gibt Brot, Wohlstand und Schönheit!”, so der Slogan der chemischen Industrie<br />

der DDR. Insbesondere des Chemiedreieck unserer Region warb damit. Wir haben<br />

uns dieses Motto zum Titel des JCFs gewählt, da auch bei uns derartige Aspekte e<strong>in</strong>e<br />

essentielle Rolle spielen.<br />

Brot: steht für unsere <strong>in</strong>tensiv gepflegte Verb<strong>in</strong>dung zu den hiesigen Lebensmittelchemikern,<br />

die sich <strong>in</strong> der „AG Junge Lebensmittelchemiker“ selbst organisieren, mit<br />

denen wir dann öfter geme<strong>in</strong>same Aktionen durchführen.<br />

Wohlstand: Obgleich man e<strong>in</strong>en solchen den Bewohnern der neuen Bundesländern immer<br />

abschätzig macht, weist das JCF Halle trotzdem selbiges erst kurze Zeit besteht,<br />

e<strong>in</strong>e wahre Fülle an Mitgliedern auf. E<strong>in</strong>e gute Beziehung zum Ortsverbandsvorsitzenden<br />

der GDCh erlaubt uns darüber h<strong>in</strong>aus auch größere Veranstaltungen und<br />

GDCh/JCF Double-features zu erleben.<br />

Schönheit: Nun, was soll man sagen. Schönheit ist e<strong>in</strong> vielberedter Begriff. Man<br />

spricht e<strong>in</strong>erseits von der Schönheit des Rotkohlsaftes, andererseits von der Schönheit<br />

mancher geme<strong>in</strong>samer JCF Abende und natürlich der Schönheit der Frauen unserer<br />

Uni. Nicht umsonst heißt es “Hier bei uns <strong>in</strong> Anhalt-Sachsen, wo die schönen Mädchen<br />

wachsen.“.<br />

http://jcf.chemie.uni-halle.de<br />

Poster 256 Saturday 9:00 - 11:30 313


Index<br />

315


Index<br />

A<br />

Abarca, Belen, 253<br />

Abbasi, Muhammad S. A., 200<br />

Abramczyk, Katarzyna, 119<br />

Abt, Bärbel, 101<br />

Adam, Rosa, 253<br />

Adamczyk, Zbigniew, 90<br />

Adaszyńska, Michal<strong>in</strong>a, 184, 196<br />

Aghatabay, Naz Mohammed, 118<br />

Akhmadull<strong>in</strong>a, Nailya, 210, 260<br />

Albrecht, Ralf, 213<br />

Almazahreh, Laith, 37<br />

Alom, Shamim, 253<br />

Alshakova, Ir<strong>in</strong>a, 187<br />

Altınbaş Özpınar, Gül, 186<br />

Altamura, Emiliano, 168<br />

Altenburg, Horst XXX, 315<br />

Alt<strong>in</strong>bas Ozp<strong>in</strong>ar, Gul<br />

Alt<strong>in</strong>dal, Ahmet, 69, 153<br />

Altun, Altan Alpay<br />

Amakawa, Kazuhiko, 133<br />

Amir, M. D., 118<br />

Andrić, Jelena, 115, 122<br />

Antonschmidt, Leif<br />

Apfel, Ulf Peter, 37<br />

Araqelyan, Qnar, 200<br />

Arbuzova, Anna, 121<br />

Arenz, Christoph, 160<br />

Arkosi, Mariann K<strong>in</strong>ga, 70<br />

Asmis, Knut, 54<br />

Audisio, Davide, 156<br />

August<strong>in</strong>, André<br />

August<strong>in</strong>, Ewa, 278<br />

Avciata, Ulvi, 214, 235<br />

B<br />

Babur<strong>in</strong>, Igor A., 43<br />

Bachl, Jürgen, 116<br />

Baier, Susann, 199<br />

Balabhadra, Sangeetha, 231<br />

316<br />

Bald, Adam, 119<br />

Ballesteros, Rafael, 253<br />

Banerjee, Rahul, 116<br />

Bansen, Roman, 96<br />

Barberá, Joaquín, 53<br />

Barkleit, Astrid, 111<br />

Barner, Leonie, 71<br />

Barner-Kowollik, Christopher, 71<br />

Barta, Christoph<br />

Bartetzko, Max<br />

Bartl<strong>in</strong>g, Christian<br />

Barzen, Sebastian, 177<br />

Baudequ<strong>in</strong>, Christ<strong>in</strong>e, 117<br />

Bauer, Ingmar, 240<br />

Baum, Anne-Kathr<strong>in</strong>, 36<br />

Baumann, Arne, 263<br />

Bayraktar, S<strong>in</strong>em, 258<br />

Beceren-Braun, Figen, 202<br />

Becker, J. Sab<strong>in</strong>e, 28<br />

Becker, Peter, 205, 311<br />

Beeg, Sebastian<br />

Begunk, Robert, 292<br />

Behrens, Malte, 129, 150<br />

Bei, Iryna<br />

Beil, Sebastian<br />

Beleboukhari, Nasser, 165<br />

Beller, Matthias, 74, 280<br />

Belov, Vladimir N., 220<br />

Berger, Robert, 188<br />

Berger, Walter, 46<br />

Bernard, Marek, 191<br />

Bernsdorf, Arne<br />

Biczak, Robert, 206<br />

Bieker, Georg<br />

Bielska, Dorota, 170<br />

Bilg<strong>in</strong>-Eran, Belkıs, 64, 68<br />

Bilyachenko, Aleksey, 79<br />

B<strong>in</strong>der, Wolfgang H., 303<br />

B<strong>in</strong>der, Yvonne<br />

B<strong>in</strong>sker, Florian<br />

Birczyński, Artur, 49<br />

Bisschops, Tom, 127<br />

Bita, Andrei, 291


Blay, Gonzalo, 92, 197, 268<br />

Błauż, Andrzej, 252<br />

Blume, Alfred, 303<br />

Blümel, Marcus, 199<br />

Boeck, Florian, 127<br />

Boeck, Torsten, 96<br />

Böhm, Marv<strong>in</strong><br />

Böhme, Uwe, 195<br />

Böhnert, Tim, 65<br />

Bojarski, Andrzej, 238<br />

Bojić, Aleksandar, 103<br />

Bojić, Danijela, 103<br />

Böker, Birte, 234<br />

Bolm, Carsten, 139, 300<br />

Borissova, Aleksandra, 210<br />

Börner, Hans G., 85<br />

Borriss, Ra<strong>in</strong>er, 178<br />

Bösmann, A., 112<br />

Bouche, Léa, 202<br />

Braun, Beatrice, 297<br />

Braun, Thomas, 209<br />

Bräutigam, Maximilian<br />

Brcanović, Jelena M., 284, 296<br />

Brela, Mateusz, 215<br />

Brendler, Erica, 195<br />

Brendler, V<strong>in</strong>zenz, 73, 111<br />

Breunig, Jens Michael<br />

Brieger, Claudia, 138, 155<br />

Brodersen, Nicolai, 121<br />

Bronste<strong>in</strong>, Lyudmila M., 75<br />

Brör<strong>in</strong>g, Mart<strong>in</strong>, 234<br />

Brudzisz, Anna, 109<br />

Brunner, Eike, 82, 111<br />

Brzózka, Agnieszka, 109<br />

Büchner, Christ<strong>in</strong><br />

Bucila, Virg<strong>in</strong>ia Ramona, 287<br />

Budniak, Adam, 86<br />

Budniak, Urszula, 169<br />

Bulearca, Anca-Mihaela, 291<br />

Burda, Kvetoslava, 228<br />

Butschke, Burkhard, 38<br />

C<br />

Cakar, Fatih, 64, 68<br />

Cal, Dariusz, 243<br />

Calvete, Juan J., 161<br />

Cankurtaran, Ozlem, 64, 68<br />

Carafa, Marianna, 247<br />

Carl, Peter<br />

Carrillo-Cabrera, Wilder, 43<br />

Cativiela, Carlos, 116<br />

Cędrowski, Jakub, 174<br />

Çelebi, Mithat, 77, 104<br />

Celichowski, Grzegorz, 78, 83, 136<br />

Ceylan, Özgür, 77, 104<br />

Chang, Kaich<strong>in</strong>, 56<br />

Chebanov, Valent<strong>in</strong>, 307<br />

Cherepanov, Il’ia A., 219<br />

Cheriti, Abdelkrim, 165<br />

Churakov, Andrei, 260<br />

Ciejka, Justyna, 170<br />

Cieślak, Małgorzata, 136<br />

Cîrcu, Monica Violeta, 298<br />

Cotta, M.A., 101<br />

Cuñat, Ana C., 126<br />

Cybulak, Marta, 264<br />

Cyza, Małgorzata, 179<br />

Czochara, Robert, 163<br />

D<br />

Dabrowska, Anna, 227<br />

Dabrowska, Anna Maria, 132<br />

Dalkowski, Radoslaw, 290<br />

Damian, Grigore, 70<br />

Daniliuc, Constant<strong>in</strong>, 63, 194<br />

Dathe, Margitta, 51<br />

Davis, Ben G., 47<br />

De Keukeleere, Katrien, 44<br />

De Roo, Jonathan, 44<br />

de Souza, A.A., 101<br />

Delso, Ignacio, 48, 131<br />

Demeshko, Serhiy, 297<br />

Dernedde, Jens, 202<br />

Desenko, Sergey, 236<br />

Díaz Díaz, David, 116<br />

Diederichsen, Ulf, 273, 293<br />

Diehl, Andreas<br />

Diehl, Bernd, 302<br />

Diehl, Claudia<br />

Dieskau, André P., 154<br />

Dietl, Nicolas, 54<br />

D<strong>in</strong>cer, Hatice, 258<br />

Dipalo, Maria Concetta, 168<br />

Dippel, Rabea, 312<br />

Diudea, Mircea V., 287<br />

Djordjevic, Aleksandra , 294<br />

317


Dlugaszewska, J., 50<br />

Dmitriev, Aleksey, 79<br />

Dmitrieva, Jana<br />

Dobrowolski, Dariusz, 89<br />

Doerfler, Denise, 162<br />

Dom<strong>in</strong>iak, Paul<strong>in</strong>a Maria, 169, 305<br />

Donten, Mikolaj, 278<br />

Drabińska, Beata, 238<br />

Drath, Christ<strong>in</strong>e<br />

Dronova, Mar<strong>in</strong>a, 79<br />

Drzymala, Sarah, 190<br />

Düdder, Hendrik, 150<br />

Duric, Sasa, 137, 146<br />

Dutkiewicz, Zbigniew, 191<br />

Düzgünes, Nejat, 50, 248, 279<br />

Dyadchenko, Viktor P., 310<br />

Dzieciuch, Monika, 295<br />

E<br />

Ebersbach, Ben<br />

Efimenko, Inessa, 260<br />

Ehlers, Peter, 246<br />

Eisenblätter, Jördis, 71<br />

Eitner, Krystian, 107<br />

Ejsmont, Krzysztof, 286<br />

El Fray, Mirosława, 269<br />

El-khateeb, Mohammed, 37<br />

Emen, Fatih Mehmet, 186<br />

Emmerl<strong>in</strong>g, Franziska, 96<br />

Enderle, Eric<br />

Enders, Dieter, 127<br />

Engeser, Marianne, 128<br />

Erden, Ibrahim, 100, 256<br />

Erdoğmuş, Ali, 100, 166, 214, 235,<br />

256<br />

Ernst<strong>in</strong>g, Nikolaus P., 277<br />

Erol, Ismail, 68<br />

Escamilla, Ana, 126<br />

Esser, Norbert, 263<br />

Ester, Movsisyan<br />

Eychmüller, Alexander, 43, 62, 72, 82,<br />

110, 181, 193, 267<br />

F<br />

Fehrenbacher, Ulrich, 71, 241<br />

Feist, Michael, 250<br />

318<br />

Fensterbank, Louis, 148<br />

Fer<strong>in</strong>gán, Beatriz, 53<br />

Feys, Jonas, 44<br />

Fiechter, Fridol<strong>in</strong><br />

Filipek, Elżbieta, 249<br />

Filippov, Oleg A., 310<br />

F<strong>in</strong>k, Daniel, 217<br />

Fischer, Cathleen, 82<br />

Fischer, Franziska<br />

Fischer, Tobias, 130<br />

Fischer-Fodor, Eva, 70<br />

Fita, Piotr, 228, 266<br />

Fopp, Carol<strong>in</strong><br />

Ford, Leigh, 41<br />

Fornal, Emilia, 232<br />

Foucout, Lénaig, 262<br />

Frei, Maren<br />

Freytag, Matthias, 63, 194<br />

Fr<strong>in</strong>gs, Marcus, 139<br />

Fritz, Maria, 56<br />

Fronert, Jeanne, 127, 311<br />

G<br />

Gabriel, Stefanie, 62<br />

Gambacorta, Augusto, 40<br />

Gandor, Felix<br />

Gaponik, Nikolai, 181, 267<br />

Garcia-Gonzalez, Eva, 178<br />

Gasiorek, Friederike<br />

Gasperi, Tecla, 40<br />

Gawel, Marta, 227<br />

Gehne, Sören, 51<br />

Genersch, Elke, 178<br />

Gensch, Tobias, 240<br />

Gensel, Julia<br />

Gericke, Eike, 96<br />

Gerigk, Melanie<br />

Gevorgyan, Ashot, 200<br />

Ghirardello, Mattia, 175<br />

Ghochikyan, Tariel, 246<br />

Girón, Rosa María, 268<br />

Gliemann, Bett<strong>in</strong>a, 211<br />

Glitscher, Emanuel<br />

Glöckner, Andreas, 194<br />

Glor, C<strong>in</strong>dy , 123<br />

Głowacki, Ireneusz, 282<br />

Goddard, Jean Philippe, 148<br />

Gölden, Simon


Golub, Igor E., 310<br />

Gomollon-Bel, Fernando, 48, 175<br />

Gooßen, Lukas J., 145<br />

Goral, Anna Maria, 305<br />

Górecka, Ewa, 91<br />

Görls, Helmar, 37<br />

Gorobets, Nikolay, 236<br />

Goroncy, Christian, 93<br />

Gosl<strong>in</strong>ski, Tomasz, 50, 143, 191, 228,<br />

248, 272, 279<br />

Göth, Melanie<br />

Gracia, Ismael, 53<br />

Graf, Christ<strong>in</strong>a, 93<br />

Graf, Matthias, 72<br />

Grela, Karol, 144<br />

Grobelny, Jaroslaw, 78, 83<br />

Grolik, Maria, 89<br />

Große, Steffi<br />

Großmann, Kay, 73<br />

Grosu, Ion, 113, 117<br />

Groth, Ulrich, 208<br />

Grünert, Anna<br />

Grunst, Michael, 211<br />

Grześkowiak, Magdalena, 157<br />

Grzyb, Tomasz, 76<br />

Gschw<strong>in</strong>d, Ruth M., 147<br />

Gul, Ahmet, 214, 235<br />

Gumrukcu, Gulsah, 214, 235<br />

Gut, Arkadiusz, 179<br />

H<br />

Hakobyan, Ani, 200<br />

Hamkalo, Michal, 266<br />

Hann, Stephan, 46<br />

Hanßke, Felix<br />

Hashmi, A. Stephen K., 24<br />

Hatami, Soheil, 267<br />

Hathazi, Gabriela Denisa, 70, 176<br />

Hauser, Anett<br />

Heck, Jürgen, 36, 134, 229, 237<br />

Heffeter, Petra, 46<br />

He<strong>in</strong>ze, Katja, 225<br />

Heislbetz, Sandra, 180<br />

Hell, Stefan W., 220<br />

Hendel, Thomas<br />

Hennig, Andreas, 159<br />

Hens, Zeger, 44<br />

Hermann, Gerrit, 46<br />

Hermes, Michael<br />

Herrmann, Andreas, 121<br />

Herrmann, Anne-Krist<strong>in</strong>, 181<br />

Herrmann, Roy, 209<br />

Herwig, Christian, 250<br />

Hey-Hawk<strong>in</strong>s, Evamarie, 204<br />

Hickey, Stephen G., 43, 62, 110, 193<br />

Hnida, Katarzyna, 65<br />

Hochkirch, Ulrike, 173<br />

Hoffmann, Mart<strong>in</strong>, 234<br />

Hofmann, Anna<br />

Hofmann, Bett<strong>in</strong>a, 177<br />

Hofmann, Johanna, 173<br />

Holyst, Robert, 45<br />

Holzweber, Markus, 162<br />

Horeglad, Pawel, 132<br />

Horn, Bett<strong>in</strong>a, 250<br />

Huang, Xueliang , 141<br />

Huh, Joonsuk, 188<br />

Hurtado-Guerrero, Ramon, 48<br />

Hussner, Jan<strong>in</strong>e, 292<br />

Huster, Daniel, 121<br />

Hüttenha<strong>in</strong>, Stefan H., 161<br />

Hutter, Herbert, 162<br />

Huzar, Elżbieta , 189<br />

I<br />

Iannone, Francesco, 247<br />

Iaroshenko, Viktor O., 198, 200, 223,<br />

292, 301<br />

Iglesias, Álvaro, 205<br />

Ilic, Marija, 98, 294<br />

Imhof, Wolfgang, 37<br />

Intelmann, Matthias<br />

Ivanov, Anton, 198<br />

J<br />

Jähnigen, Sandra, 195<br />

Janissen, R., 101<br />

Janoschka, Tobias<br />

Jantschke, Anne, 82<br />

Janus, Ewa, 261<br />

Jarosz, Magdalena, 58<br />

Jarzeb<strong>in</strong>ska, Anita, 278<br />

Jarzembska, Katarzyna N., 169<br />

Jarzynski, Szymon, 233<br />

319


Jasiński, Marc<strong>in</strong>, 251<br />

Jaskuła, Marian, 58, 65, 80, 84<br />

Jemielity, Jacek, 239<br />

Jevric, Lidija, 274, 281<br />

Jones, Peter G., 63, 194<br />

Jost, Tobias, 313<br />

Joswig, Jan-Ole, 267<br />

Jovanović, Ljiljana, 222<br />

Jovanovic, Olga, 294<br />

Jovanovic, Snezana, 98, 294<br />

Jóźwiak, Andrzej, 243<br />

Jung, Jarosław, 282<br />

Junge, Henrik, 74<br />

Junge, Kathr<strong>in</strong>, 280<br />

K<br />

Käbisch, Bert, 241<br />

Kaczor-Kamińska, Marta, 99<br />

Kähler, Kev<strong>in</strong>, 150<br />

Kahraman, Gizem, 88<br />

Kaiser, Sel<strong>in</strong>a<br />

Kalajdzija, Natasa, 274, 281<br />

Kalevaru, Narayana, 124, 275<br />

Kal<strong>in</strong>ichenko, Kira<br />

Kal<strong>in</strong><strong>in</strong>, Valery N., 219<br />

Kalwarczyk, Tomasz, 45<br />

Kam<strong>in</strong>ski, Kamil, 170<br />

Kandemir, Timur<br />

Kapoor, Iti, 116<br />

Kapusta-Kołodziej, Joanna, 80<br />

Karaagac, Erdal<br />

Karaman, Ferdane, 64, 68<br />

Karaoglan, Gulnur Keser, 214<br />

Karavelioğlu, Selvi<br />

Karewicz, Anna, 170<br />

Kastner, Kathar<strong>in</strong>a, 226<br />

Katona, Jaroslav, 265<br />

Kaya, Mehmet Arif, 69, 77, 104, 166<br />

Keßler, Eva<br />

Keller, Marlou, 313<br />

Kępczyński, Mariusz, 171, 179, 295<br />

Keser Karaoglan, Gulnur, 235<br />

Keshavarz, Elahe<br />

Kesk<strong>in</strong>, Bahadir, 153<br />

Kettemann, Frieder<br />

Kierys, Agnieszka, 227<br />

Kılıçarslan, Fatma Aytan, 256<br />

Kırbac, Erkan, 100<br />

320<br />

Kiril<strong>in</strong>, Aleksey, 79<br />

Kittler, Katr<strong>in</strong>, 283<br />

Kittler, Susann, 110<br />

Kivala, Milan, 211<br />

Kjaer Nielsen, Pia, 133<br />

Klaper, Matthias, 125<br />

Kleemann, Julian, 311<br />

Kle<strong>in</strong>e, Tillmann, 300<br />

Klimczak, Anna Agnieszka, 206<br />

Klimczyk, Sebastian , 141<br />

Klos, Manuel Rudolf<br />

Klucznik, Tomasz, 221<br />

Kluza, Rafal, 218<br />

Knar, Arakelyan<br />

Knölker, Hans-Joachim, 240<br />

Knyazyan, Aram<br />

Kob<strong>in</strong>, Björn<br />

Koch, Gregor, 55, 142<br />

Koch, Matthias, 190, 271, 283<br />

Köckert, Hansjochen<br />

Koczorowski, Tomasz, 228<br />

Koel, Mihkel, 162<br />

Koellensperger, Gunda, 46<br />

Kollmorgen, Patrick, 124<br />

Konopka, Krystyna, 50, 248, 279<br />

Koplak, Oksana, 79<br />

Körber, Wieland<br />

Kotus, Joanna<br />

Kovacevic, Strah<strong>in</strong>ja, 274, 281<br />

Kowalczyk, Agata, 278<br />

Kowalkiewicz, Zuzanna, 97, 106, 183<br />

Kowalska, Joanna, 239<br />

Kowalski, Marc<strong>in</strong>, 259<br />

Kowollik, Sandro<br />

Kranz, C., 101<br />

Krause, Norbert, 130<br />

Kraushaar, Konstant<strong>in</strong><br />

Krawczyk, Barbara, 290<br />

Kretzschmar, Jérôme, 111<br />

Kreye, Markus, 194<br />

Krich, Christopher, 263<br />

Krogul, Agnieszka<br />

Kroke, Edw<strong>in</strong>, 195, 241<br />

Krówczyński, Adam, 91<br />

Krstić, Nenad, 103<br />

Kruk, Danuta, 49<br />

Krumbe<strong>in</strong>, Angelika, 283<br />

Kryjewski, Michal, 143<br />

Krys<strong>in</strong>ski, Pawel, 278<br />

Krzyżanowska, Anna, 289<br />

Krzyczmonik, Anna, 309


Kuźmicz, Danuta, 89<br />

Kubiak, Katarzyna, 90<br />

Kubica, Aleksandra, 49<br />

Kubicka, Aleksandra, 232<br />

Küchenthal, Christian<br />

Kuchk<strong>in</strong>a, N<strong>in</strong>a V., 75<br />

Kuc<strong>in</strong>ska, M., 50<br />

Kuckl<strong>in</strong>g, Dirk, 67<br />

Kühbeck, Dennis, 116<br />

Kühl, Stefanie, 150<br />

Kühn, Julius, 304<br />

Kuhrt, Patrick, 123<br />

Kujawski, Jacek, 191, 238<br />

Külcü, Nevzat, 186<br />

Kulik, Marta, 305<br />

Kumke, Michael U., 51<br />

Kurczab, Rafal, 238<br />

Kurowska, Elżbieta, 84<br />

Kuryltso, Vladyslav, 95<br />

Kwiecień, Hal<strong>in</strong>a, 189, 196, 224<br />

Kwolek, Urszula, 171<br />

L<br />

Lalović, Mirjana, 222, 245<br />

Landschulze, Dirk<br />

Lang, He<strong>in</strong>rich, 257<br />

Langer, Peter, 198, 223, 246<br />

Łapok, Łukasz, 179<br />

Lar, Claudia, 113<br />

Lechner, Bob-Dan, 303, 313<br />

Lee, Michael, 279<br />

Lempke, L<strong>in</strong>da, 130<br />

Lentz, Dieter, 146<br />

Leovac, Vukad<strong>in</strong>, 222, 245<br />

Lesniak, Anna, 244<br />

Lesniak, Stanislaw, 233<br />

Leubner, Susanne, 267<br />

Levacher, V<strong>in</strong>cent, 262<br />

Levitsky, Mikhail, 79<br />

Lewandrowska, Anna, 285<br />

Lewkowski, Jarosław, 206, 309<br />

Li, Yuehui, 280<br />

Liebscher, Jürgen, 121<br />

Liebscher, Lydia, 43, 62<br />

Lijewski, Sebastian, 279<br />

Lill, Andreas, 177<br />

Limberg, Christian, 201, 230, 250, 297<br />

L<strong>in</strong>del, Thomas, 39<br />

L<strong>in</strong>den, Michael, 312<br />

L<strong>in</strong>dermayr, Kathar<strong>in</strong>a<br />

L<strong>in</strong>ert, Wolfgang, 162<br />

L<strong>in</strong>ke, Vanessa<br />

L<strong>in</strong>ker, Torsten, 125<br />

L<strong>in</strong>scheid, Michael W., 173<br />

Lipiecka, Sylwia, 97, 106, 183<br />

Lips, Katr<strong>in</strong> Susanne, 202<br />

Lis, Stefan, 61, 231<br />

Lis, Tadeusz, 309<br />

Litw<strong>in</strong>ienko, Grzegorz, 163, 174<br />

Litw<strong>in</strong>ska, Anna, 132<br />

Liu, Shanshan, 276<br />

Loew, Mart<strong>in</strong>, 121<br />

Löhmann, Oliver<br />

Lojovic, Maja, 281<br />

Lommens, Petra, 44<br />

Loncar, Eva, 274<br />

Lorenz, Tommy, 267<br />

Loreto, Maria Antonietta, 40<br />

Lorite, G.S., 101<br />

Losensky, Louisa, 121<br />

Loth, Sebastian, 26<br />

Lu, Liang-Qiu, 280<br />

Ludwig, Ralf, 277, 288<br />

Lukomska, Marlena, 286<br />

Lükermann, Daniel, 263<br />

Lungwitz, Ralf, 162<br />

Lupan, Iulia, 70<br />

Luparia, Marco, 156<br />

Lyczkowska, Patrycja, 136<br />

M<br />

Maaß, Sebastian<br />

Maekawa, Miyuki, 63<br />

Magerle, Robert, 303<br />

Mahrwald, Ra<strong>in</strong>er, 207<br />

Mahut, Sonia, 176<br />

Majcher, Aldona, 285<br />

Makowska, Katarzyna, 97, 106, 183<br />

Makuch, Edyta, 151<br />

Malec, Katarzyna, 58<br />

Mandel, Miles<br />

Mandić, Emanuela<br />

Mansuy, Virg<strong>in</strong>ie, 148<br />

Marca, Eduardo, 48<br />

Marc<strong>in</strong>kowska, Magdalena, 254<br />

Märker, Björn<br />

321


Marosanovic, Biljana , 281<br />

Marrero-Tellado, José Juan, 116<br />

Marten, Silvia, 190<br />

Mart<strong>in</strong>, Andreas, 124, 275<br />

Mart<strong>in</strong>a, Miceli<br />

Matusiak, Agnieszka, 206<br />

Matviitsuk, Anastassia, 207<br />

Maul, Ronald, 271, 283<br />

Maulide, Nuno, 141, 156<br />

Mavelli, Fabio, 168<br />

Mazerska, Zofia, 278<br />

Mazur, Maciej, 86<br />

Mazziotta, Andrea, 40<br />

McDonough, Michael, 47<br />

Mebs, Stefan, 250<br />

Meißler, Maria, 85<br />

Meißner, Gisa, 123<br />

Meier, Patrick, 188<br />

Me<strong>in</strong>eck, Myriam<br />

Mele, Valent<strong>in</strong>a, 247<br />

Mellmann, Dörthe, 74<br />

Mer<strong>in</strong>o, Pedro, 48, 131, 175, 216<br />

Mert Balaban, Humeyra, 258<br />

Mette, Kathar<strong>in</strong>a, 150<br />

Metz, Peter, 199<br />

Meyer zu Schwabedissen, Henriette, 292<br />

Meyer, Franc, 297<br />

Miceli, Mart<strong>in</strong>a, 40<br />

Michel, Kathr<strong>in</strong><br />

Middel, Stephen, 293<br />

Mielcarek, Jadwiga, 50, 143, 228, 248,<br />

272, 279<br />

Milchert, Eugeniusz, 289<br />

Milewska, Aleksandra, 170<br />

Miliut<strong>in</strong>a, Mariia, 198<br />

Milovanović, Milan, 115<br />

Mis<strong>in</strong>i, Majda, 115<br />

Misztal, Krzysztof<br />

Mitić, Milan N., 284<br />

Mitić, Snežana S., 284<br />

Mitic, Violeta, 98, 294<br />

Mitrović, Jelena, 103<br />

Mizaikoff, B., 101<br />

Mkrtchyan, Satenik, 200, 301<br />

Mlostoń, Grzegorz, 203, 218, 255, 259<br />

Mohamed Saied Mostafa, Essa<br />

Monleón, Alicia, 92<br />

Montes<strong>in</strong>os Magraner, Marc, 268<br />

Morawski, Antoni W., 157<br />

Mot, August<strong>in</strong> Catal<strong>in</strong>, 70<br />

Muhler, Mart<strong>in</strong>, 150<br />

322<br />

Müller, Fabian<br />

Müller, Jens, 120<br />

Müller, Sebastian, 178<br />

Muñiz, Kilian, 205<br />

Münzel, Mart<strong>in</strong>, 47<br />

Murias, M., 50<br />

Murillo Munar, D.M., 101<br />

Murlyk<strong>in</strong>a, Maryna, 307<br />

Myka, Anna, 238<br />

N<br />

Nalivayko, Peter, 185, 187<br />

Narozny, Maciej, 107<br />

Naurecka, Magdalena Ligia, 285<br />

Nechifor, Gheorghe, 105<br />

Neda, Ion, 113<br />

Neff, Michael, 182<br />

Neidl<strong>in</strong>ger, Andreas, 225<br />

Neumann, Mike, 102<br />

Neumann, Wilma, 204<br />

Nielsch, Kornelius, 65<br />

Niemczyk, Agata, 269<br />

Nikolić, Ružica, 103<br />

Nikolic-Mandic, Snezana, 98<br />

N<strong>in</strong>ković, Dragan, 115, 122<br />

N<strong>in</strong>nemann, N<strong>in</strong>a M., 146<br />

Niyomchon, Supaporn, 156<br />

Niza Silva, B.C., 101<br />

Nizamov, Shamil, 220<br />

Njaradi, Sandra , 265<br />

Njie, Abdoulie<br />

Nojoumi, Saba<br />

Nowak, Michal, 143<br />

Nowakowska, Maria, 59, 87, 89, 170,<br />

171, 179, 295<br />

Nowicka, Anna Maria, 278<br />

Nüesch, Frank Ala<strong>in</strong>, 298<br />

O<br />

Obesser, Kathar<strong>in</strong>a, 112<br />

Obijalska, Emilia, 203, 218, 255, 259<br />

Ocak, Hale, 64, 68<br />

Olubummo, Adekunle, 303<br />

Omenat, Ana, 53<br />

Oppermann, Alex<br />

Opriş, Dor<strong>in</strong>a Maria, 298


Orbeci, Crist<strong>in</strong>a, 105<br />

Orzechowska, Aleksandra, 228<br />

Oschetzki, Dom<strong>in</strong>ik, 182<br />

Osipov, Alexander P., 164<br />

Ossowicz, Paula, 261<br />

Ostrovskyi, Dmitro, 200<br />

Oudeyer, Sylva<strong>in</strong>, 262<br />

Owińska, Maria, 215<br />

Özdemir, Merve, 256<br />

Ozdemir, Zafer Omer, 158<br />

Ozkal, Selma, 64<br />

Özpınar, Celal, 186<br />

Ozturkcan, S. Arda, 108, 153<br />

P<br />

Pacześna, Agnieszka, 249<br />

Palumbo, Chiara, 40<br />

Palusiak, Marc<strong>in</strong>, 286<br />

Panse, Cornelia H., 293<br />

Papamicaël, Cyril, 262<br />

Paunovic, Dusan Ð., 296<br />

Pavlović, Aleksandra N., 284, 296<br />

Pavlović, Jovana Lj., 284<br />

Pedersen, Kasper<br />

Pedro, José Ramón, 92, 197, 268<br />

Pescador, Paula, 121<br />

Petersen, Diana, 273<br />

Petit, Sylva<strong>in</strong>, 262<br />

Petkova, Nadezhda<br />

Petran, Anca, 121<br />

Petras, Daniel, 161<br />

Petrosyan, Andranik, 246<br />

Petrovic, Goran, 294<br />

Pfeffer, Inga, 47<br />

Pfeiffer, Florian, 180<br />

Pfister, Andrea<br />

Pfister, Kai, 145<br />

Pilawka, Ryszard, 261<br />

P<strong>in</strong>kert, Denise, 297<br />

P<strong>in</strong>kert, Thomas, 160<br />

Pirovano, Claudio, 275<br />

Pirwerdjan, Ramona, 300<br />

Piskorz, Jaroslaw, 248<br />

Piskorz, Tomasz, 140<br />

Plachetta, Silke, 123<br />

Plażuk, Damian, 252<br />

Plietker, Bernd, 154<br />

Płotka, Mieczysław W., 243<br />

Podunavac Kuzmanovic, Sanja, 274,<br />

281<br />

Polte, Jörg, 42<br />

Polupanow, Tatjana, 273<br />

Popielarska, Hanna, 238<br />

Popovic, Marko, 308<br />

Poppe, Jan, 62, 110<br />

Porshneva, Ksenia, 167<br />

Pospiech, Steffen<br />

Potempa, Jan, 170<br />

Povie, Guillaume, 41<br />

Pozzi, Davide, 41<br />

Proserpio, Davide M., 287<br />

Proske, Matthias, 271<br />

Prymak, Iuliia, 124<br />

Przepiórski, Jacek, 157<br />

Przybylska, Dom<strong>in</strong>ika, 94<br />

Puchala, Agnieszka, 244<br />

Puciul-Mal<strong>in</strong>owska, Agnieszka, 95<br />

Purtak, Katarzyna, 91<br />

Pyrc, Krzysztof, 170<br />

Q<br />

Quaranta, Eugenio, 247<br />

R<br />

Rachwalski, Michal, 233<br />

Rademann, Klaus, 42, 96<br />

Radović, Miljana, 103<br />

Raimer, Björn, 39<br />

Ramondenc, Yvan, 117<br />

Rasala, Danuta, 254<br />

Räthel, Jochen, 263<br />

Rauhut, Guntram, 180, 182, 188<br />

Reimann, Sebastian, 277, 288<br />

Re<strong>in</strong>hardt, Ulrike<br />

Reissig, Hans-Ulrich, 202<br />

Reitz, Annika, 67<br />

Renaud, Philippe, 41<br />

Resch-Genger, Ute, 159, 267<br />

Ressler, Thorsten, 55, 135, 142<br />

Reznikov, Ivan<br />

Richter, Constanze, 73<br />

Riedel, Ludwig, 313<br />

Riemer, Mart<strong>in</strong>, 149<br />

Risch, Stefan, 190<br />

323


Roca-López, David, 216<br />

Rodić, Marko, 222, 245<br />

Rödl, Carmen B., 177<br />

Roelens, Stefano, 116<br />

Rohn, Sascha, 283<br />

Röhr, Merle Insa Silja<br />

Romanova, Natalia A., 56<br />

Romański, Jarosław, 251<br />

Rommel, Susanne, 154<br />

Rosenow, Phil, 270<br />

Rosowski, Marc<strong>in</strong>, 78, 83<br />

Rosseeva, Elena, 43<br />

Rossow, Torsten, 52<br />

Roth, Christian, 288<br />

Roth, Christ<strong>in</strong>a, 138, 155<br />

Roth, Klaus, 32<br />

Rozwadowski, Zbigniew, 261<br />

Rudolf, Bogna, 232<br />

Rudolph, Manfred, 37<br />

Ruhe, Lena, 173<br />

Runowski, Marc<strong>in</strong>, 231<br />

Rurack, Knut, 130<br />

Rybarczyk-Pirek, Agnieszka, 286<br />

Rychlik, Błażej, 252<br />

Rychter, Piotr, 206<br />

Rys, Barbara, 215<br />

Rząd, Ewa, 171<br />

S<br />

Sachs, Anne, 134<br />

Sadaba, David, 131, 175<br />

Saghyan, Ashot, 246<br />

Saha, Subhadeep, 116<br />

Şah<strong>in</strong>, Gizem<br />

Sakhno, Yana, 307<br />

Sallmann, Madleen, 201<br />

Samarskaya, Al<strong>in</strong>a S., 219<br />

Samojłlowicz, Cezary<br />

Samsonova, Janna V., 164<br />

Sanz, Juan F., 126<br />

Sanz-Marco, Amparo, 197<br />

Savych, Iryna, 223<br />

Sawoszczuk, Tomasz, 58<br />

Scharf, Daniel<br />

Scharf, Philipp, 120<br />

Schaumberg, Christian<br />

Schax, Fabian, 297<br />

Scheer, Elke, 208<br />

324<br />

Scheidt, Holger, 121<br />

Schendzielorz, Florian<br />

Scheunemann, Jana<br />

Schilde, Uwe, 102<br />

Schlangen, Maria, 54<br />

Schlecht, Sab<strong>in</strong>e, 202<br />

Schlögl, Robert, 129, 133, 150<br />

Schloß, Svenja, 271<br />

Schmidt, Bernd, 149<br />

Schmidt, Bernd M., 146<br />

Schmidt, Lena, 142<br />

Schmidt, Mart<strong>in</strong>, 128<br />

Schmode, Stella, 277, 288<br />

Schmudde, Madlen, 93<br />

Schober, Katr<strong>in</strong>, 147<br />

Schofield, Christopher J., 47<br />

Schökel, Alexander, 138, 155<br />

Schollmeyer, Mart<strong>in</strong><br />

Scholz, Juliane, 135<br />

Schön, Eva-Maria, 116<br />

Schönborn, Enno, 275<br />

Schre<strong>in</strong>er, Monika, 283<br />

Schre<strong>in</strong>er, Peter R., 30<br />

Schröder, Felix, 148<br />

Schulz, Christian<br />

Schulz, Matthias, 303<br />

Schumann, Julia, 129<br />

Schütz, Denise<br />

Schwarz, Helmut, 38, 54<br />

Scorei, Romulus Ion, 291<br />

Sednev, Maksim V., 220<br />

Seidt, Britta<br />

Seiffert, Sebastian, 52<br />

Sekkoum, Khaled, 165<br />

Sen, Betul Nur, 258<br />

Sener, Muhammet Kasim, 69<br />

Senf, Antti<br />

Serrano, Jose Luis, 53<br />

Sevim, Ilhan, 114<br />

Shahid, Khadija, 306<br />

Shifr<strong>in</strong>a, Z<strong>in</strong>aida B., 75<br />

Shishilov, Oleg, 210, 260<br />

Shub<strong>in</strong>a, Elena S., 79, 310<br />

Shyichuk, Andrii, 61<br />

Sieredz<strong>in</strong>ska, Bianka, 285<br />

Sikorski, Andrzej, 140<br />

Silaghi-Dumitrescu, Radu, 70, 176<br />

Simon, Paul, 43<br />

Simonovic, Strah<strong>in</strong>ja, 98<br />

Six, Alice, 255<br />

Skup<strong>in</strong>-Mrugalska, P., 50


Ślepokura, Katarzyna, 309<br />

Sloniec, Jagoda, 159<br />

Smirnova, Daria V., 164<br />

Śmist, Małgorzata, 184, 196<br />

Smolan, Willi<br />

Smusz, Sab<strong>in</strong>a, 238<br />

Sobczak, Justyna, 189<br />

Sobotta, Lukasz, 50, 228, 272, 279<br />

Sobottka, Sebastian<br />

Sokolowski, Anja, 152<br />

Soliwoda, Katarzyna, 78, 83<br />

Sośnicki, Jacek G., 192<br />

Sosnovskikh, Vyacheslav, 223<br />

Souto, José A., 205<br />

Söyler, Zafer, 118<br />

Sozanski, Krzysztof, 45<br />

Spange, Stefan , 162<br />

Speck, Matthäus, 257<br />

Speiser, Eugen, 263<br />

Spitzner, Eike-Christian, 303<br />

Sponholz, Peter, 74<br />

Srivastava, Vishnu P., 242<br />

Stachniuk, Justyna, 290<br />

Stachowski, Gordon M., 193<br />

Stange, Uta Cor<strong>in</strong>na<br />

Staniszewski, Zygmunt, 269<br />

Stankov-Jovanovic, Vesna, 98, 294<br />

Stanković, Maja, 103<br />

Stano, Pasquale, 168<br />

Stark, Holger, 177<br />

Stefaniak, Monika, 251<br />

Stefaniuk, Anna, 282<br />

Ste<strong>in</strong>hilber, Dieter, 177<br />

Ste<strong>in</strong>kamp, Anne-Dorothee, 139<br />

Sternberg, Katr<strong>in</strong>, 292<br />

Stockmann, Madlen, 73<br />

Stojanovic, Branka T., 296<br />

Stojanovic, Gordana, 294<br />

Stojek, Zbigniew, 278<br />

Stojkovic, Milan M., 296<br />

Strauch, Peter, 102<br />

Streb, Carsten, 226<br />

Struk, Łukasz, 192<br />

Stuckmann, Alexandra<br />

Stutz, Christian<br />

Su, Meng, 172<br />

Sulka, Grzegorz D., 58, 65, 80, 84, 109<br />

Supe, L<strong>in</strong>da, 292, 200<br />

Süßmuth, Roderich, 178<br />

Süssmuth, Roderich D., 161<br />

Svensson, Emma, 137<br />

Swarcewicz, Maria, 184<br />

Sydow, Karl, 51<br />

Sygula-Cholew<strong>in</strong>ska, Justyna, 58<br />

Symonowicz, Michał, 163<br />

Sypaseuth, Fanni, 299<br />

Sysoiev, Dmytro, 208<br />

Szafraniec, Joanna, 87<br />

Szczepaniak, Grzegorz, 144<br />

Szczolko, W., 50<br />

Szczolko, Wojciech, 191, 228<br />

Szczubiałka, Krzysztof, 89, 170<br />

Szczukocki, Dom<strong>in</strong>ik , 290<br />

Szemraj, Janusz, 206<br />

Szewczyk, Grzegorz, 179<br />

Szpak, Agnieszka, 59<br />

Szuwarzyński, Michał, 66<br />

Szydłowska, Natalia, 295<br />

T<br />

Taden, Andreas, 85<br />

Talantsev, Artem, 79<br />

Taleb, Safia, 165<br />

Tamm, Matthias, 194<br />

Tamm, Nadezhda B., 56<br />

Tarasov, Andrey, 129<br />

Tatev, Grigoryan<br />

Tavernaro, Isabella, 202<br />

Tegenkamp, Christoph, 263<br />

Tejero, Tomás, 48, 131, 175, 216<br />

Teng, Heidi<br />

Terec, Anamaria, 113, 117<br />

Thiedemann, Birk<br />

Thomale, Jürgen, 173<br />

Thomas, Nygil, 129<br />

Tikhonova, Julia<br />

Țînțaş, Mihaela-Liliana, 262<br />

Tkacz-Szczesna, Beata, 78, 83<br />

Tokarz, Paweł, 309<br />

Töllner, William, 65<br />

Tomsik, Alena, 265<br />

Tonner, Ralf, 270<br />

Tosic, Snezana B., 296<br />

Tosun, Ece, 81<br />

Tr<strong>in</strong>kaus, Katja, 202<br />

Troyanov, Sergey I., 56<br />

Trunschke, Annette, 133<br />

Trützschler, Anne-Krist<strong>in</strong><br />

Trylska, Joanna, 305<br />

325


Tschersich, Carol<strong>in</strong>, 230<br />

Tugcu, Fatma Tülay, 60, 81, 88<br />

Turgut, Zuhal, 108<br />

Turhan, Kadir, 108<br />

Tykarska, Ewa, 50, 279<br />

Tzschucke, C. Christoph, 123, 137, 146,<br />

152, 213, 276, 299<br />

U<br />

Uebele, Kathar<strong>in</strong>a<br />

Ugarova, Natalia N., 164<br />

Uğur, Ahmet Lütfi, 100, 166<br />

Untea, Ion, 105<br />

Urbaniak, Alicja<br />

Urbaniak, Włodzimierz, 97, 106, 107,<br />

183<br />

Utecht, Greta, 203<br />

V<br />

Van Driessche, Isabel, 44<br />

Vasilkevich, Alexey<br />

Veiros, Luis F., 141<br />

Veljković, Jovana N., 284, 296<br />

Viehoff, Maria<br />

Viktor, Iaroshenko<br />

Vilches-Herrera, Marcelo, 200<br />

Villa, Giorgio, 41<br />

Vill<strong>in</strong>ger, Alexander, 223, 301<br />

Vishchuk , Olesya S., 167<br />

Vlad, Miranda Petronella, 287<br />

Vodolazhenko, Mariia, 236<br />

Voigt, Benjam<strong>in</strong>, 207<br />

Voj<strong>in</strong>ović-Ješić, Ljiljana, 222, 245<br />

von Kiedrowski, Gunter, 114<br />

von Rekowski, Felicitas, 147<br />

Vondung, Lisa<br />

W<br />

Wagler, Jörg, 212<br />

Wahl, Sebastian<br />

Walczak, Aleksandra, 254<br />

Walczak, Sylwia, 239<br />

Wallis, Philipp, 275<br />

Walter, Marc D., 63, 194<br />

326<br />

Warncke, Gisela, 212<br />

Wasserscheid, P., 112<br />

Watal, Geeta, 242<br />

Węcławiak, Mariusz<br />

Weidemann, Stefan, 96<br />

Weigand, Wolfgang, 37<br />

Wendt, Robert<br />

Wiebalck, Swantje, 123<br />

Wieczorek, Anna, 252<br />

Wieczorek, Sebastian<br />

Wierzchowski, Marc<strong>in</strong>, 50, 228, 272,<br />

279<br />

Wiglusz, Rafał, 94<br />

Wildenhof, Thomas<br />

Wilhelm, René, 67<br />

W<strong>in</strong>d, Marie-Louise<br />

W<strong>in</strong>kler, Helmut<br />

W<strong>in</strong>kler, Rajko<br />

W<strong>in</strong>ter, Ra<strong>in</strong>er, 217<br />

Wohlrab, Sebastian, 124, 275<br />

Woiczechowski-Pop, Adrian, 117<br />

Wojtczak, Błażej, 239<br />

Wolfram, Benedikt, 234<br />

Wolski, Karol, 66<br />

Wolter, Anne, 229<br />

Wolter, Klaus-Jürgen, 72<br />

Wolters, Daniel<br />

Wolz, André, 155<br />

Wowra, Bogumił , 89<br />

Wozniak, Mart<strong>in</strong><br />

Wróblewska, Agnieszka, 151<br />

Wrona, Ewa, 215<br />

Wrześniewska, Agata, 224<br />

Wuithschick, Maria, 42<br />

Wuttke, Evelyn, 217<br />

Wybranska, Iwona, 58<br />

Wylęgała, Edward, 89<br />

Y<br />

Yadav, Arv<strong>in</strong>d K., 242<br />

Yadav, Deepak K., 242<br />

Yadav, L. D. S., 242<br />

Yasa, Göknur, 100, 256<br />

Yıldırım, Hüsey<strong>in</strong>, 77, 104<br />

Yurtseven, Hilal, 69<br />

Yuzik-Klimova, Ekater<strong>in</strong>a Yu., 75


Z<br />

Zagórski, Piotr, 243<br />

Zailer, El<strong>in</strong>a, 302<br />

Zakrzewski, Janusz , 252<br />

Zakrzewski, Robert, 290<br />

Zapotoczny, Szczepan, 59, 66, 87, 95<br />

Zarić, Snežana, 115, 122<br />

Zaspel, Irmtraut, 271<br />

Zeuschner, Janek<br />

Zhikol, Oleg, 236<br />

Ziel<strong>in</strong>ski, Adam, 144<br />

Ziemann, Elisabeth, 237<br />

Zitterbart, Robert<br />

Zlatkovic, Bojan, 294<br />

Zorlu, Yunus<br />

Zucker, S<strong>in</strong>a P., 146, 137<br />

Zühlke, Mart<strong>in</strong><br />

Zvyag<strong>in</strong>tseva, Tatiana N., 167<br />

327


328


Sudoku<br />

329


330<br />

C O H B<br />

F He<br />

O Li H Be He C N<br />

Li N<br />

Be He C H F<br />

B Li<br />

He N F Be F Li C<br />

He N<br />

B Be Li N


Mg<br />

S Mg P Na Ne<br />

Al Mg Si S<br />

Ne Si Mg<br />

Mg S Cl Ne P<br />

Ar Na Cl<br />

Cl Al Mg S<br />

Ne Al Ar S Na<br />

Na<br />

331


332<br />

Ga Kr<br />

Kr Se Ca<br />

Ca As Rb<br />

Rb As Se Ge<br />

As K<br />

Ca K Ga Kr<br />

Kr Se Br<br />

K Ga Ge<br />

K Rb


I Sb Cs Sn<br />

Sb Sn Xe<br />

In I Te<br />

Sn Cs<br />

Ba Sb<br />

Te Ba<br />

Ba Sr I<br />

In Ba Xe<br />

I Sr Xe Sn<br />

333


Supporters


9:00<br />

1 0:00<br />

1 1 :00<br />

1 2:00<br />

1 3:00<br />

1 4:00<br />

1 5:00<br />

1 6:00<br />

1 7:00<br />

1 8:00<br />

1 9:00<br />

20:00<br />

Wednesday<br />

March 6 th<br />

Registration<br />

1 2:00-20:00<br />

Social Activities<br />

1 6:00-1 9:00<br />

Welcome Reception<br />

20:00<br />

Thursday<br />

March 7 th<br />

Open<strong>in</strong>g Ceremony<br />

8:50-9:30<br />

Plenary Lecture<br />

Prof. Dr. S. Hashmi<br />

9:30-1 0:30<br />

Break<br />

1 0 m<strong>in</strong> Poster Talks<br />

3x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 0:50-1 2:00<br />

Friday<br />

March 8 th<br />

Lunch Break Lunch Break<br />

3x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 3:30-1 4:30<br />

3x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 3:30-1 4:30<br />

Break Break<br />

Plenary Lecture<br />

Dr. S. Loth<br />

1 4:50-1 5:50<br />

Break<br />

1 0 m<strong>in</strong> Poster Talks<br />

4x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 6:1 0-1 7:40<br />

Poster Session<br />

and Champagne<br />

Reception<br />

1 7:40-20:1 0<br />

Plenary Lecture<br />

Dr. habil. J. S. Becker<br />

9:1 0-1 0:1 0<br />

Break<br />

1 0 m<strong>in</strong> Poster Talks<br />

4x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 0:30-1 2:00<br />

Plenary Lecture<br />

Prof. Dr. P. R. Schre<strong>in</strong>er<br />

1 4:50-1 5:50<br />

Break<br />

1 0 m<strong>in</strong> Poster Talks<br />

4x 20 m<strong>in</strong> Oral<br />

Presentations<br />

1 6:1 0-1 7:40<br />

Break<br />

Conference D<strong>in</strong>ner<br />

1 9:00-21 :30<br />

Conference Party<br />

22:00<br />

Saturday<br />

March 9 th<br />

Poster Session<br />

and<br />

"Frühschoppen"<br />

9:00-1 1 :30<br />

Clos<strong>in</strong>g Lecture<br />

Prof. Dr. K. Roth<br />

1 1 :30-1 2:30<br />

Clos<strong>in</strong>g Ceremony<br />

1 2:30-1 3:30<br />

Break<br />

Social Activities<br />

1 4:00-1 9:00

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!