03.03.2013 Views

Surface-consistent Gabor deconvolution

Surface-consistent Gabor deconvolution

Surface-consistent Gabor deconvolution

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Surface</strong>-<strong>consistent</strong><br />

<strong>Surface</strong> <strong>consistent</strong><br />

<strong>Gabor</strong> <strong>deconvolution</strong><br />

Carlos A. Montaña, Monta , Gary F. Margrave,<br />

and Dave Henley


Outline<br />

Why could we need SCGABOR?<br />

Overview of <strong>Gabor</strong> <strong>deconvolution</strong><br />

A surface <strong>consistent</strong> <strong>Gabor</strong><br />

algorithm<br />

Example<br />

Conclusions


DIVETSCO TESTS<br />

(From Perz et al., 2005, CSEG meeting)


Outline<br />

Why could we need SCGABOR?<br />

Overview of <strong>Gabor</strong> <strong>deconvolution</strong><br />

A surface <strong>consistent</strong> <strong>Gabor</strong><br />

algorithm<br />

Example<br />

Conclusions


t<br />

From Wiener to <strong>Gabor</strong><br />

1. Constant Q theory 3. <strong>Gabor</strong> transform<br />

W matrix Q matrix r s<br />

τ τ<br />

t<br />

G<br />

τ t<br />

[] s ( τ , f ) ∫<br />

2. Nonstationary convolutional model<br />

<br />

s(<br />

f )<br />

∞<br />

− 2π<br />

ift<br />

= s ( t ) g ( t − τ ) e dt<br />

− ∞<br />

∞<br />

<br />

−2πifτ<br />

= w(<br />

f ) ∫α<br />

Q(<br />

f , τ ) r(<br />

τ ) e dτ<br />

−∞


Fourier of<br />

the<br />

wavelet<br />

<strong>Gabor</strong> of<br />

the trace<br />

Nonstationary conv. conv.<br />

Model<br />

in the <strong>Gabor</strong> domain<br />

Factorization of the nonstationary<br />

convolutional model<br />

<br />

s(<br />

f<br />

)<br />

∞<br />

<br />

−2πifτ<br />

= w(<br />

f ) ∫α<br />

Q ( f , τ ) r(<br />

τ ) e dτ<br />

−∞<br />

Approximated<br />

factorization<br />

<br />

G Q τ<br />

[] s ( τ , f ) ≈ w(<br />

f ) α ( τ , f ) G[]<br />

r ( , f )<br />

≈<br />

Attenuation<br />

function<br />

<strong>Gabor</strong> of the<br />

reflectivity


<strong>Gabor</strong> <strong>deconvolution</strong><br />

Time<br />

<strong>Gabor</strong> transform of the trace<br />

Frequency<br />

Deconvolutional operator:<br />

- smoothing<br />

-phase:<br />

using Hilbert<br />

transform<br />

Estimate of the<br />

<strong>Gabor</strong> reflectivity<br />

Wavelet removal and compensation for attenuation are simultaneous


Φ(f)<br />

Minimum phase, linearity,<br />

causality and Hilbert<br />

transform.<br />

Minimum phase<br />

– Explosive sources<br />

are also minimum<br />

phase.<br />

f<br />

A(f)<br />

=H(log( )<br />

f<br />

Futterman (1962) showed that<br />

wave attenuation in a causal,<br />

linear theory is always<br />

minimum phase.


Outline<br />

Why could we need SCGABOR?<br />

Overview of <strong>Gabor</strong> <strong>deconvolution</strong><br />

A surface <strong>consistent</strong> <strong>Gabor</strong><br />

algorithm<br />

Example<br />

Conclusions


=<br />

)<br />

( t<br />

σ<br />

σ(t)<br />

<strong>Surface</strong> Consistency<br />

<strong>Surface</strong> Consistency<br />

)<br />

,<br />

(<br />

)<br />

,<br />

( t<br />

s<br />

a<br />

t<br />

s =<br />

σ<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

,<br />

,<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

,<br />

,<br />

,<br />

(<br />

ω<br />

ω<br />

ω<br />

ω<br />

ω<br />

σ<br />

σ<br />

h<br />

D<br />

x<br />

C<br />

r<br />

B<br />

s<br />

A<br />

h<br />

x<br />

r<br />

s<br />

t<br />

h<br />

d<br />

t<br />

x<br />

c<br />

t<br />

r<br />

b<br />

t<br />

s<br />

a<br />

t<br />

h<br />

x<br />

r<br />

s<br />

=<br />

⊗<br />

⊗<br />

⊗<br />

=<br />

<br />

s<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

,<br />

( t<br />

r<br />

b<br />

t<br />

s<br />

a<br />

t<br />

r<br />

s ⊗<br />

=<br />

σ<br />

r<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

,<br />

,<br />

( t<br />

x<br />

c<br />

t<br />

r<br />

b<br />

t<br />

s<br />

a<br />

t<br />

x<br />

r<br />

s ⊗<br />

⊗<br />

=<br />

σ<br />

x<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

(<br />

)<br />

,<br />

,<br />

,<br />

,<br />

( t<br />

h<br />

d<br />

t<br />

x<br />

c<br />

t<br />

r<br />

b<br />

t<br />

s<br />

a<br />

t<br />

h<br />

x<br />

r<br />

s ⊗<br />

⊗<br />

⊗<br />

=<br />

σ<br />

h


<strong>Surface</strong>-<strong>consistent</strong> <strong>Surface</strong> <strong>consistent</strong> <strong>Gabor</strong><br />

<strong>deconvolution</strong><br />

<br />

G[] ( τ , f ) ≈ w(<br />

f ) α ( τ , f ) G[]<br />

Q ρ ( τ , f )<br />

σ<br />

≈<br />

[ w ( f , s)<br />

][ α ( f , τ , h)<br />

][ Gρ(<br />

f , τ , h)<br />

][ w ( f , ) ]<br />

G s<br />

Q<br />

r<br />

σ ( f , τ , h,<br />

r,<br />

s)<br />

=<br />

r<br />

h, r, s: midpoint, receiver and source coordinates respectively


<strong>Surface</strong>-<strong>consistent</strong> <strong>Surface</strong> <strong>consistent</strong> <strong>Gabor</strong> algorithm<br />

For the i, j, k trace: ith midpoint, jth receiver and kth source indexes<br />

≈<br />

s 1 s 2 s 3 … s k .. s Ns w<br />

Sources array<br />

r 1 r 2 r 3 … r i .. r Nr<br />

Receivers array<br />

h 1 h 2 h 3 … h i .. h Nm<br />

Midpoints array


<strong>Surface</strong>-<strong>consistent</strong> <strong>Surface</strong> <strong>consistent</strong> <strong>Gabor</strong> algorithm<br />

For the i, j, k trace: ith midpoint, jth receiver and kth source indexes<br />

≈<br />

s 1 s 2 s 3 … s k .. s Ns<br />

( w )<br />

s<br />

r 1 r 2 r 3 … r i .. r Nr<br />

j<br />

=<br />

M j<br />

∑<br />

m=<br />

1<br />

w ( f , s )<br />

s<br />

M<br />

j<br />

m<br />

j<br />

( w )<br />

r<br />

k<br />

N k<br />

∑<br />

n=<br />

wr<br />

f rn<br />

=<br />

N<br />

1<br />

( , )<br />

k<br />

ijk<br />

k<br />

m 1 m 2 m 3 … m i .. m Nm<br />

Li<br />

∑<br />

l=<br />

i<br />

Ai<br />

=<br />

f x<br />

L<br />

1<br />

α(<br />

, τ ,<br />

i<br />

[ ( w ) ] . ( w )<br />

θ<br />

( f , τ ) = A * * *<br />

l i<br />

s<br />

j<br />

[ ]<br />

r<br />

k


Outline<br />

Why could we need SCGABOR?<br />

Overview of <strong>Gabor</strong> <strong>deconvolution</strong><br />

A surface <strong>consistent</strong> <strong>Gabor</strong><br />

algorithm<br />

Example<br />

Conclusions


Synthetic raw data<br />

(Courtesy DIVESTCO)<br />

The dataset is made up of 78 shots,<br />

96 channels per shot<br />

Q=40, sample rate=2ms, length=2 sec.<br />

Station interval=34 m.<br />

Brute stack


Synthetic raw data<br />

(Courtesy DIVESTCO)<br />

Q=40<br />

⊗<br />

s<br />

⊗<br />

r<br />

V=3500<br />

Strong attenuation Surf. Consist. wavelets Strong random noise


After single channel <strong>Gabor</strong>


After Surf. Cons. <strong>Gabor</strong>


Conclusions<br />

A poor S/N could harm the estimation of the<br />

minimum phase <strong>Gabor</strong> <strong>deconvolution</strong> operator,<br />

introducing undesirables artefacts<br />

The <strong>Surface</strong>-Consistent <strong>Surface</strong> Consistent implementation of<br />

<strong>Gabor</strong> <strong>deconvolution</strong> allows a robust estimation<br />

of the minimum phase <strong>deconvolution</strong> operator<br />

in the presence of<br />

– Strong random noise<br />

– Strong variations of the near-surface near surface features


Acknowledgements<br />

CREWES sponsors<br />

POTSI sponsors<br />

MITACS<br />

NSERC<br />

Mike Perz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!